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; -Abstract

The statistical‘prdperties of excited shell model nuclei with the
inclusion of the ﬁngulaf’momentum and the pairing correlation are studied.
Particular attehtion is dedicated to the dependence of.the shell effects and
of the superfluid proéeities upon angular momentum. The statistical functions,
generated from @hé.péiring Hamiltonian properly generalized to account for
angular momentum,larg.calculﬁted for Qarious nuclei on the basis of the Nilsson
model. The neutron and proton gap parameters are evaluated as a function of
temperature and angular momentum. The dependence of the critical ahgular
momenta and of.the critical températures upon the ﬁhysical quantities charac-
terizing‘the nucléus is discussed. The question of the‘existence'of a second
. order phase transition associated with the dissppearance of the pairing corre-
lation is.cénsidered._ The tererature scale is transformed to the excitation—.
energy scale and the yrast lipe; as ﬁell as dther energy angular momentum
isotherms, are calculated. The evaluation of the thermodynamical quantities
for the combined system.of neutrons ahd protons is discussed jn detail. As
a final product, the 1evei_densities as a function of angular!momentum and

|

excitation energy are obtained. |
| .
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1. Introduction

I |
’ . i : ! v
In the past few years & substantial progress has been made in the

descriptioﬁ of the pfoperties of excited nuclei. Level density forﬁalisms

have been developed and applied both'to'schematicl—h and realistics*g'singlé

. |
particle spectra. Such an approach has led to a quantitative understanding

of the disappearance of the sheli effects with increasing excitation energy.
The B.C.?. Hamiltonian has also been introduced to describe the
effect of short fangé residual interactions in excited systems. This has 

been performed first for a uniform spectrum of single particle levéls,lo’ll

later for shell model level schemes.l2-lh In this way, the interaction of
shell effects, péiring effects, and excitation energj has been studied.
Further devélopment has led to the introduction of the nuclear defor-
mation.in conjunéfion with the shell model and the pairing Hamiltonian in
order to describe.the deformation probability of an excited nucleus.lB’lh
Such a study has illﬁstrated the disappearance of the shell structure as a
function of excitation energy in a very pictorial way. An immediate applica—
tion of this formalism has been made to study the_stability_against figssion
of excited superheavy nuclei and the disasppearance of their fission barrier
with increasing excitation energy.ls’16 |
‘In this context it should be mentioned that the feature of the dis-
appearance of shell effects with excitation energy contained in the statistical
theories has been'used to calculate the ground state shell effects as an

alternafive to the Strutinski met.hod.l?--21

)
In the papers mentioned so far, angular mdmentum has been introduced by

means of the spin cut-off parameter formalism, which holds only for moderately small
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values of the aﬁgular momentum. In particular, in the formalisms involving
the pairing Hamiltonian, the pairing correlation was taken to be independent
on angular mémentum. However, angular momentum drastiéally affects the pairing
correlation, and its effect has been accounted for in two of our previous
papers.ze’23 In these papers the z projection of angular momentum was intro-
duced as a constant of the motion by means of a Lagrangé multiplier. The
complete set 6f thermodynamical quantities was then derived for the case .of an
arbitrary sequence of single particle levels, assuming sﬁherical symmetry. In
order to explore the interaction of excitation energy and angular momentum
with the pairing cérrelation without the interference of the shell effects,
the formalism was applied to the &niform model, namely a model for which the
single particle lével spacing is a constant and where each level has a constant
spin pfojection on the z axis. Such a simple model can be easily handled.
The zero temperaﬁure angular momentum dependence of the gap parameter as well
as the yrast line were calculated analytically. Furthermore the critical
femperature as a function of angular momentum was shbwn to be a decreasing
function with a rather strange anomaly at large angular momenta. In this
region an antiblocking effect of temperature, called "thermally assisted pairing
correlation", results in an increasing pairing correlation, or even in the
onset of pairing correlation with an increase>in temperature.

In the caiculgtions mentioned above, the shell model was not included
and the problem of the two components of the nucleus was not accounted for ih
detail. It is tﬁe purpose of the present paper to e#tend the discussion and

the calculations to shell model nuclei where the interplay of the shell

structure with pairing, angular momentum and excitation energy can be studied.

Y SO
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In particular, in Seg. 2 the complete statistical formalism with
inclusioh of pairing and anghlar momentum is presented; the grand partition
function, the first inteérals of motion like energy, particle number and total
angular momentum 2z projectioh are written down explicitly as well as the gap
equation, the entropy ahd thT partial derivatives nécessary for the calculation
of the level density dehominétor.

In Sec. 3 the details of the shell model and of t?e B.C.S5. Hamiltonian

| . .
employed in the calculations, are iliustrated. |

In Sec. 4 all the relevant statistical quantities are calculated on
-the basis of the shell model for each component of the nucléus and are com-
pared with the results obtained from the uniform model. The overall dependénce
of the gap parameter on temperature and angular momentum is displayed. The
denominator of the level density'is calculated to show the discontihuitj
assoéiated with,the superfluid phase~transition and the existence of such
a transition in éctual nuclei is discussed. The entropy is displayed as a
function of temperature and angular momentum, the transformation from the
temperature to the energy scale is performed and the yrast line is calculated.

In Sec. 5 the neutron and proton components of the nucleus are con-
sidered at.the‘séme time, and the thermodynamical.quantities, including the
level density, are evaluated for the whole nucleus.

'In Sec. 6 the conclusions of the work are presénted, an assessment is made

of the development of the statistical nuclear theories and the possible extensions

and improvements of such theories are discussed.

ya
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2, Summary of the Formalism

The complete formalism describing the statistical properties of a nucleus
in terms of pairing, angular momentum and excitation energy23 is presented
below. All of the quantities refer to a singie nuclear component.

The logarithm of the grand partition function is:

Q= -8B Z:((-:k - A -E) +Zln[l + exp (-B(Ek - _Ymk)).]

| 2 . .
+Zln[l + exp (-8(E, + ym))] - 8 %- . (})

In this expression € and m, are the single particle energies and spin projections
respectively; B, o = BA and 4 = BY are the Lagrange multipliers which fix the

- energy, the particle number and the angular momentum projection respectively; G is

the pairing strength; A is the gap parameter; the quasiparticle excitation Ek

U ' 11/2 . . .
is given by: E = [(ek - A)2 + A2] / . The quantity B is also the reciprocal
of the temperature and A is identified with the chemical potential. The gap:

parameter A is obtained as a function of Bs A, ¥ by solving the gap equation:

Z-e—%:';[tanh-;—'B(Ek—Ymk).+tanh%B(Ek+Ymk)]=f2}' . (2)

The constants of motion are the particle number N, the tbtal energy E, the
angular momentum projection M. These quantities are givenvbyjthe following

expressions:

k

- A
N = Z[l - EkQE {tanh%B(EK - Ymk) + tanh %B(Ek + Ymk)}] R (3)

y

L4
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r - A | | . n .2
E=Z%_1-€§Ek {tm%B(Eké-Ymk)+tanh-é-B(Ek+Ymk.)}:| -%— . (1)

-~

M_Z 1 1
- kal+expB(Ek—Ymk7"l+e@B(Ek+Ymk) B

The above equations, together with the gap equation define A, A, B, and Y as

a fupction of N, E, M, G, ek, and mk.

The entropy is given by:

) 1nl1 + exp (-B(E, - ym))] + ) 1l + exp (-B(E, + ym )]

. E - + ‘
+3 1+ exp B( + B ) (6)

S

E - ym) 1+ exp B(E,_ + o)

The level density is given by:

m)

. _ S
o(E, Ni’ M) = ?;-E§§§;iz§ . (1)

The index i indicates that more than one component may be present (in the present case
one has neutrons and protons) and n is equal to the number of Lagrange multipliers

introduced in the formalism., The quantity D is given by:

D = det moi— | | (8)

'~ where the ai's indicate the Lagrange multipliers. The‘partial derivatives

necessary for the evaluation of the determinant follow:
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2 .
ae _'1 2 21 | 21
3u2 =3 ka[sech 5 B(Ek Y mk) + sech 5 B(Ek + v mk)]

| (9)
- BA %ﬁ- Z -IEI—E{-; [sech2 % B(Ek -y mk) - sech2 % B(Ek + Y mk)]

;T‘;= ) (e - 0P sy + 0% ) by - B 52 D (e - Mlay - by) (10)
” _

3°Q 2 2 ~ 2 2

S.é.é.=>\A Eekbk+A_ E ek(ek-)\)gk+g ek(ek-—k) ay,

(11)

dA L2
BA 3% [ Z Ek(ek - A)(ak - bk) * %G

+

: (e, - A)
guga =1 § kEk mk[‘se°h2 5 B(E, -y m) - sech” % B(E, + v m)]
(12)

BA -g—é%; Z%{k— [sechgés(Ek ‘y mk) _ SeChQ%B(Ek y mk)]

+

a8 _ i_ Z% {(e:k -A) ék + 0%} [sech® % B(Ek + Y mk) - sech® -é- B(Ek -y mk)v‘]

3)

+

BA %% kaﬁk [sech2 % B(Ek + Y mk) - sech® ']é'; B(Ek =Y mk)]

2 - :

o §1 2 ' 2 2

SonE = - AA E _bk - E ek(ek.— A) a - A E '(t~:‘k - A) a

(1k)

- BA —g% Z (g, - M(a - by)
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The quantities ak, bk" 38° 5u° o are given by: i ‘

oA

a8

3A

o0,

The above

A
>
By

) AQZak + Zak e (e, - A) - X;bk(ek - )

= —1_ [tamn -;- B(E, - Y m) + tanh -:g— B(E, + Y m )]

3
k

‘BA Z(ak - bk)

[l

ij Z . mk[sech2 ':2L' B(Ek + Y mk) - sech® -]2; B(Ek' -y mk)]

'[sechz -'-é- B(E_-v mk) + sech® -;— B(E, + ym)]

LBL-1298

(15)

(16)

(17)

{18)

) Z(Ek - My - a)

BA Z(a.k—bk) |

’BAZ(ak-bk) ) \

three derivatives are to be set equal to zero when A = O.

(19)
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3. The Shell'Mode% and the Pairing Hamilfonian

3.1. THE SHELL MODEL

A mosﬁ convenient model for its simplicity and its ability to account
for the experimental shell structure is the Nilsson moael. The version of the
. Nilsson model used here is that described by Nilsson gg;gi?h ' The parameters
which characterizé the model are the oscillator quantum hwo, the spin orbit
parameter K and the 22 parameter Kﬁ. The values of K and.u have been taken
from.ref. 2L and fnr the oscillator quantum the following isospin dependent

expression has been used:

o N-Z
hwo(l + 1/3 T)

hély

]

hff)o = 41 a7Y/3 (20)

o
ho
P

o N-Z
hwo(l -1/3 A‘)
3.2, THE PAIRING HAMILTONIAN

The residual inﬁeraction, in the pairing epproximation, takes the

general form:

%ﬁﬁ%:_Esz'%'{ak% ? | (21)
kkl

: Wnere the a; a, are the single particle creation and annihilation operators and

Gkk' are the pairing matrix elements of the short rangé residual interaction. 1In

the present paﬁer it is assumed that all of the pairing‘matrix elements are equal

to a constant G. Unfértunately with such an approximation the gap equation

- diverges., It is_pherefdre necessary to truncate the sum in the gap equation and

in the relaﬁed expressions by means of a 10Wer.and uppen bound in order to insure

convergence. This is not a bad approximation because, due to the Pauli principle,

’é

;Y




U

e

2 T
N - X ; . :
Weoowd L L7 g i P

Secaw

L .t Ya

9= LBL~1298

the residual interaction affects the system close to the Permi surface only.

As discussed in ref. 2&, the following expression gives adequate values for G:
=. + ——— = = {
G xA go tg x> B, =19.2 MeV, g, 7.4 MeV (22)

provided that the lower and uppér bound for the summation be taken V15N or
V152 levels above and below the Fermi surface. The plus sign refer to protons
and the minus sign refers to neutrons. This prescription fulfills two purposes:

a) it réproduces the experimental trend for the even-odd masé differences,

l/2; b) for the nuclei in which we are interested, namely for A > 140

A ~v12/A
the energy interval about the Fermi surface is quite large and it does not

Pose any serious problem copcerning the possible overflowing of quasi-particles
beyond the bounds even at tge largest temperatures of interest. The aboﬁe |
Prescription fails for 2 or N less than 60 for lack of a sufficient number of
levels below the Fermi surface and may fail in finite potentiéls of the
Wood-Saxon type due to an insufficient number of bﬁund levels above the Fermi

surface. In such cases it is necessary to reduce the summation range and to

renormalize the pairing strength accordingly.
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‘4. Shell Model Calculations with One Component

In the formalism illustrated in Sec. 2, only the z component M of the
total angular momentum is accounted for, while no explicit mention is made

about the total angular momentum I. However, for & spherically symmetric

i
A-x

system, the formalism is indeed complete. Because of such a symmetry, the
laboratory fixed z axis can be made to coincide with the body fixed z' axis
and both can be aligned within the quantum mechanicél'uncertainty with the
angular momentum direction. In this case the whole p$ysical effects of the
anguldr momentum are taken up by the z projection and it is possible to
identify and substitute.M with I. This is correct in the classical limit;

in the quantum mechanical limit the substitution should be M - YI(I+1) VI +'% .

4.1 DEPENDENCE OF A UPON ANGULAR MOMENTUM AT T = 0O

. The angular momentum is generated By breaking pairs and by aligning
the resulting quasiparticles, and it tends to destro& the pairing correlation
through the blocking of the single particle levels close to the Fermi surface.
In the case of the uniform model, a simple and elegant relationship between A

and I for T = 0 is obtained:

o I ,1/2
a=4, -7 | (23)
cr _
where Ao is the gap parameter for I = 0, T = 0 and Icf is given by: .
Icr =g on . _ (2k4) j

In this equation, g is the density of the doubly degenerate single particle

levels and m is the single particle spin projection on the z axis taken to be
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the same f0ﬁ1all the levels. These expressions illustraﬁe The decrease in
the pairiné correlation wiéh incréasing angular momentum énd its sudden
disappearance at the critical angular momentum Icr' The dependence of Icr
on the physical parameters of the uniform model can be used as a guide fo
understand the general trends observed in actual shell model calculations.
In fhe case]of a shell model level scheme, the calculation is more
complicated because of the discontinuities which appear in the relevant
equations for B = » or T = '0. However one can gain a suffidiently accurate

picture by setting B equal to a very large value. The desired function can

be obtained'by solving a system of three non linear equations: the gap

equation (2) the angular momentum equation (5) and the particle equation (3).

Once B is assigned +the chosen value, the system can be éolved for A, Y, and

A. Such a system can be solved by iteration after linearization in the

'neighborhood'of a guess. The calculation can be simplified by solving the

gap equation (2)‘and the particle equation (3) for a fixed value of y; the
solution for A and A can be introduced in the angular momentum equation (5)
together with Y to obtain M = i. In fig. 1 the fesults are shown for the
neutron and proton components of l9hPt. It should be made clear that the
angular momentum in abscissa refers to a single component only and not to the
total nucleus. It can be noticed that the critical angular momentum for the
neutron component is approximately twice that of the proton component.,vThis
is mainly a consequencé of the smooth depehdence of Icr on the single particle
level density g, on the gap parameter Ao and on the average spin projection m,

as illustrated by the equation (24). The overall dependence of A on I is also

rather close to that predicted by equation (23). However, the shell structure
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affects such a dependence substantially. For instence, the proton gap para-
meter becomes double-valued at angular momenta close to the critical value.

A check on the tofal energy of the system corresponding to the two values of A
indicates that the eﬁergy.is the same. This>means that, at these angular momenta,

the nucleus can be indifferently paired or unpaired without change in energy.

4.2. DEPENDENCE OF THE CRITICAL TEMPERATURE UPON ANGULAR MOMENTUM
The present formalism predicts that, at zero angular momentum, the
I : .
pairing correlation decreases with increasing temperature and vanishes at a

critical temperature Tcr'. In the case of the uniform model, the critical

temperature has the value:

T = 2Ao/3.50 . | (25)

The angular momentum also tends to decrease the pairing correlation
as seen in fhe previous section. Therefore the criticgl temperature is
expected to decrease with increasing angular momentum. |

The dependence of the critical temperature‘upon angular momentum for
the uniform model is shown in fig. 2. The expected dependence is indeed |
.observed; however, for angular momenta close to the critical value, the critical
temperature becomes double—?alued. It appears that, for angular momenta
slightly above the critical value, an increase in temperature brings the
pairing correlation back. Such phenomenon, described in our previous paper23
as "thermally assisted pairihg correlation" has the following explanation.
The blocking produced by quasi-particles is most effective when it occurs

close to the Fermi surface. At large angular momenta and for T = 0 the effect

of blocking is meximum because all the Quasiparticles are tightly packed

[}
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around the Fermi surface. An initial increase of the temperature, instead
| ‘ .

of breaking pairs, actually spreads out the quasiparticles, thus diminishing

the effect of blocking.

" In order to calculate the anguiar momentum dependence of the critical
temperature for a shell ﬁodel nucleus one can proceed as follows. The gap
equation (2) and the‘particie equation (3) can be solved simultaneously for
xcr and Yor after setting A’é 0 and T equal to one of the successive values
between 0 and the critical témperature at zero angular momentum. The angular
momentum can be obtained from equation (5) by setting A = 0 and by introducing
T, Ycr’ and Acr' In this way it is possible to solve the problem avoiding the
system of three non linear équations which should be dealt with in principle.

In fig. 3 some examples of calculations are presented. The neutron
critical temperatures shown in fig. 3b have been chosen in order to illustrate
the effect of the N = 126 shell. As N approaches 126, both the critical
temperature and the critical angﬁlar momentum are seen to decrease regularly.
This reflects mainly the local decrease in single particle level density. The
"thermally assisted pairing correlation" is to a large extent masked by the
local spin fluctuations. The neutron critical angular‘momehta are in general
much larger than the proton critical angular momenta Because of the much
larger averagé sihgle particle level density. The proton critical temperatures
showh in fig. 3a have been chosen to illustrate the effect of a high spin
state. While the Z = 78 and Z = 80 curves show a regular decrease in the
critical femperature and in the critical angular momentum due to the Z = 82

shell, the Z = 86 curve shows a moderate increase in the critical angular
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momentum. This is mainly due to a high spin level (h9/2) which provides a
considerable average quasi-particle contribution to the total angular

momentum.

4.3. THE GAP PARAMETER AS A FUNCTION OF T AND I

The complete dependence of A upon T and I for the uniform model can
be observed in fig. 4. The presence of the "thermally assisted pairing
correlation" can be best seen for angular momenta close to the critical value.
In the shéll model case, the calculation of the lines of equal A can be
performed in the simplest way as illustrat;d in subsec. 4.2. Instead of
setting A= 0, A is set equal to the desired value, the value of T is chosen
among those of a suitable grigd and eq. (2) and eq. (3) are solved for Yy and A. The
v;lues of’A,lT, Y, and A are then substituted in eq. (5) and the correspbnding
value of the angular momentum is obtained. In fig. 5 the A surfaces are pfe-
sented in the fdrm of isometric projections for the neutron and proton components
of various nuclei. Again it can be observed that the shell structure affects
both the qualitative and quantitative features of the A surface ratherv
dramatically. The A surface extends towards large values of T for nuclei
with large single particle level density at the Fermi surface, it extends
toward large angular momentum values for nuclei with large j values close to
the Fermi surface. |

Beneath the apparent simplicity of these results, a very complicated
behaviour of the system can be observed. As examples‘of the complex anatomy
of the nuclear structuré, the dependences of Yy on I, of A on Yy and of A on
A at various temperatures for the proton component of aggsn are shown in

figs. 6, T, and 8. These functions vary quite substantially from one nucleus
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to another and contein all of the thermodynamical information concerning the
nuclear properties. | ‘ |

The calculations become rather difficult at very low temperetufes:
this is due to the fact that the multidimensional surfaces represented by
eq. (é) and (5) become: very ill-behaved at low T and tend to gecome dis~-
continuous for T = 0. Because of this, the linearization of the various
systems of equatiens_necessery for the numerical search of tPe solution
becomes problemetic. The quantities B, Y, and A may even lose their mono-
tonic dependence on eneréy, angulsar momentum, and particle number, respectively.

Furthermore, the saddle point method which underlies thée whole formalism

described here, tends to fail at very low temperatures.

4.4, THE SUPERCONDUCTIVE PHASE TRANSITION AND THE DISCONTINUITY IN THE SPECIFIC
HEAT

The line of the critical tempersture in the T, I plane repre-
sents the locus of the points at'which.A reaches zero, the superfluid and
superconductive properties of the system disappear, and the nﬁcleus reverts
to a gystem of uncerrelated nucleons. At this point the residual interection
affects the properties of the system only through a shift of the ground state
energy:  namely the nucleus, excited above the critical temperature, behaves
as if its ground state was ﬁnpaired instead ef paired,

The transition from the paired to the unpaired region can be induced
either by increasing the temperature at constant angular momehtum, or'by in-
creasing the angular momentum et constant temperature. Such a phase transi-
tion is of the second order, namely a discontinuity is observed in the specific

heat instead of appearing in the free energy. In the present formalism, the
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determinant which,éppears in the expression for the level dénsity is a mono-
tonic function of the specific heat and indeed presents the expected discon-
tinuity. In fig. 9 the determinant for the uniform model is presented as a
function of femperature for diffefent angular momenta. In fig. 10 two examples
of calculations on the basis of the shell model are presented. In these
pictures tﬁe detérminant is expressed as a functién of anéular momentum for
different temperstures.

"In all of these pictureslthe discontinuity is clearly visible both
when the critical line is crossed by increasing the temperature and by
increasing the angular‘momentum. In the case of the uﬁiform model, the
determinant is independént of angular momenﬁum outside the critiéél region.
Due to the sheli structure such independence is not verified in shell ﬁodel
nuclei as can be seen by the fact that the lines of specific heat at constant
teméeratures are not horizontal outside the critical region.

A note of caution should be made concerning the real existence of
such discontinuities in actual ﬁuclei. In the present formalism the gap
paremeter A is chosen in such a way as to maximize the grand partition
function eﬂ; namely be requiring that %§%== 0. It is easily seen that such
8 condition.is equivalent to the gap equation. In a.macroscopic system the
prébability distribution in A is_infinitely sharp, so that its most probable
value contains all the necessary ihformation regarding the system. In
particular, at the temperature for which the most probable value of A goes
to zero, the‘whole distribution goes to zero and a discoptinuity appears. For
.small systems,'like a nucleus, the width and the higher moments of the A

25

distribution become important. In fig. 11, the probability distribution in

4




[E]

) E -17- LBL-1298

A for the uniform model is presented for various temperatures at zero angular

J

|
t

momentuwti. The width ofzthe{éistribution appears to be alwayé coﬂpgrable with
the most probable value. Furthermore, as fhe temperature increaseé, the
astmefry of the distribution becomes so substantial as to make the average

and most probaﬁle values of A.quite different. While, aﬁ the critical tempera-
ture‘and ébové, the mbst probable value of A vanishes, the average value df

A remains finite. Beéaﬁse of the fluctuations Just described, no discontinuity
is expéctedléo appear at the critical temperature. In fig; iz the specific
heat of the system is shown both for the case in which_the most probable value
of A is used and for the case in which the average value is employed.

In the latter more realistic case, the discontinuity is smoothed out over a
rather large temperature interval. As a conclusion, no discontinuity‘should
exist in the case of nuclei but a smooth though rather rapid transition from a
correlated to an uncorrelated phase is to be expected. We shall continue using
the present formalism which allows for a phase transition because of its greater
simplicity and power.. However, one shouid be caﬁtious in taking seriously

any conclusion which depends directly upon the quantitative use of the gap:

equation or upon'the presence of a phase transition.

4.5. THE ENTROPY AS A FUNCTION OF ANGULAR MOMENTUM AND TEMPERATURE
The behaviour of entropy as a functioh of angular momentum for different
temperatures in the case of the uniform model is shown in fig. 13. In the

| ; .
region where the pairing correlation is absent, the entropy at a fixed tempera-

‘ture does not depend upon angular momentum. In the region where pairing is

present, the dependence ofventropy upon angular momentum is substantial because
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of the strqng-effect of the angular momentum upon the gap parameter. A
similar calculation performed for a shell model nucleus, is shown in fig. 1bL.
While the shell structure is seen to modify the general picture in a quanti-
tative way, the qualitativg features are retained, especially at sufficiently
large temperature. In theée latter examples the entropy is clearly affected
by the onset of pairing st small angular momentum. However, even at angular
momenta larger than the critical value the'entropy is not completely inde-

pendent on angular momentum. This is due to the non uniform distribution in

spin projections and spacings in the shell model scheme.

' 4.6. CHANGE TO THE ENERGY SCALE

The excitation energy, more than the temperaturé, is the most suitéble
independent variable for the presentation of the various quantities. In order
to achieve such a transformation, it is sufficient to express the excitation
energy in terms of temperature and angular momentum. A most interesting
quantity is the enefgy vs. angular‘momentum isotherm for T = 0. ©Such a
function is usually called yrast line and represents the locus of the states
with largest angular momentum at fixed energy or of the states of lowest
energy at fixed angular momentum. For the uniform model such a function can

‘be written down in closed form: 22723

12 L . <
> &8, T (2 - 5T ) for I <I,.
- 7 Ter “er
Eyrast = N ' (26)
2 ' ‘
}-gA2+ for I =21
2° 0o I 2 _ - Ter
mg

Above the critical angular momentum the yrast line is a parabola typical of a

(XY




’

e

rotating rigid body with.moment oﬁ inertia,ﬁR = 2m2g. Algo it is apparent
that the effect of the pairing cor}elafion is completely absorbed into an
energy shift equal to the condensétidn energy C = %-g'Ai. The above equations
show that, along the yrdst line, the transition from paired to'unpaired
systéms occurs at an,energyt |

3 _,2_3
E,.=f el =5C . (27)

'Belowlthe critical angular momentum, the yrast line is also a parabola,

_ with negative second derivative (fig. 15). In the same figure, other energy

‘ angular momentum isotherms for T > 0 are also shown.

‘It is instructive to calculate the moment of inertia and the angular
frequency along the yrast line in the paired region by means of eq. 26. The

angular frequéncy is given by:

W= 7T s (28)

where the partial derivative is taken by keeping constant any parameter
affecting the shape or the internal structure of the syétem. In the present
case, as in any case where the parameters are allowed to attain their equi-

1ibrium value, we have:

_ GE _ OE E aa
w=F =5t * 53leaT - (29)

The partial derivative of E with respect to A at constant pairing strength G
is equal to zero because the value of the gap parameter A is determined in such

a way as to minimize the total energy, or, in the case of T > 0, the free
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energy. Also, it is easy to show that the Lagrange multiplier Yy represents

H .
the angular velocity of the system at any temperature and coincides with w

at T = 0. The moment of inertia is given by:
_I '
g =2 (30)

By means of eq. 26 one obtains the very simple expressions:

w=—2§2’—(1-2II) ' (31)
R cr
R 2-I/I ¢

As the angular momentum increases from 0 to Icr’ the moment of inertia increases

from zero to its rigid value. At the same time the angular frequency decreases

_ 21
from the value éxcr to the value 323-. Above the critical temperature the
" ®R R

moment of inertia remains constant and equal to its rigid value, while the

angular frequency increases as in the expression w = %—-.
' R

It follows that even this very crude model predicts a "back-bending"
in the now fashionable plot of the moment of inertia versus the square of the

angular frequency. In general a backwbending4is observed whenever

a°E
yrast < 0
d12

For a shell model nucleus, the Lvaluation of the yrast line is more
complicated, again because of the discontinuities which appear for T = 0.
Still by setting B = %-equal to a large number and solving the proper set of

equations for A, A, Y, one can calculate an isotherm which is as close as

.
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desired‘to the T = 0 isétherm. Examples of such curves, together with higher
isotherﬁs are shown in fig. 16. At sufficiently large tempersture and
angular momentum the isotherms are approximately pafabolic. Smooth deviations
from the parabolic behaviour are due to shell effects which introduce
fluctuations in the moment of inertia. Below the critical temperature and
the critical angular momentum, the pairing effects dominate the picture.
However, a comparison between fig. 15 and fig. 16 shows that the yrast line
has a negative second derivative in the case of fhe uniform model, while it

has zero or positive second derivative in the case of the proton and neutron

» components of l?gPr. The reason for such a difference is related to the

very different spin projection distributions in the two cases, a § function in

the former case, and an approximately constant distribution with a sharp cut off

in the latter case.
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5. Shell Model Calculations with Two Components

5.1. THE MATCHING OF THE NEUTRON AND PROTON COMPONENTS

In order to describe the overall staﬁistical properties of a nucleus,
both‘components, ﬁeutrons and protons, must be simultaneously accounted for.
This pfesents the problem'of finding the contribution of the neutron and
proton components to the various thermodynamical quantities for & nucleus with
fixed excitation energy and fixed angu%ar momentum prbjection. The answer i§
contained in the statistical mechanics formalism. While the number of particles
of each component'ié specified by means of two Lagrange multipliers Oy and Ops
thgltotal energy‘and the total angular momentum projection are specified by
meansbof a singlé Lagrange mﬁltiplier for each quantity, B fér the energy and
U for the angular momentum. The thermodynamical quantities §}, E, S, M, are

additive: therefore the proper solution is obtained by writing:

= Oy + %3 E=E +E; M=M +M (33)
where eaéh of the components ié.characterized by the same B and the same yu or
by the same T and the same Y.

In principle the solution of the statistical problem involves the
simultaneous solution of six non linear equations in the six unknown: uN, aP,
B, u, AN’ AP. The equations are: two partlcle equatlons, two gap equatlons,'
one énergy equation and one angular moantum equation. In other words, glven
the neutron and proton numbers N, Z, ‘the total energy E, the total angular
momentum projection M and the heutrén_and proton pairing strengths G, GP’ one
can solve for the two‘chemical potentials-AN,AP, for the two gap parameters

. | _ .
AN’ AP’ for the temperature T = %-and for Y (or u). Once these quantities
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have been calculated, all the stat}stical functions cen be evaluated. If is
useful to realize thét the neutron and proton components are coupled only by
the energy and anéular momentum equations. Furthermore, for sufficiently
large energy and/or angular momentum the pairing correlation vanishes thus
reducing by two the dimensionality of the problem. These considerations
suggest that it is péssible to simplify the numerical solution of the problem
by considering the two components one at a time. The simplest case arises
when pairiﬁg {s abseﬁt. In this cése one can generate a'suiéable grid in
g and Y; At éach point of ﬁhe grid the.particle equations both for neutrons
and protons cén be solved independently for AN and AP‘ The quantities 8, v,
AN’ and AP are then used to evaluate E, M, and S.‘ In order go obtain the
thermodynamical functions in terms of a regular grid in E and M (or I) a
simple two dimensional intérpolation scheme can be used.

A more complicated case arises in the paired region. Aéain it may
be useful to set up a y, B grid at each point of which two indepéndent sets
of two non linear equations (the gap equation and the particie equation) must
he simultaneousiy solved for A and A for both kinds of particles. Again one
can calculate all the thermodynamical quantities and express them in terms
of a regular grid in E and M by means of interpolation. A possible alternative
to the above described mode of operation is that of calculating 7y =Y(B) forb
a fixed temperaﬂure grid &at A = constant. The advantage of such a procedure
is that}of obtaining iso-A 1lines without interpolation. However such a
procedure involves tﬁe serious difficulty of matching y's at constant temperaturé

between the two components.



~2b- _ LBL-1298

The match of the two nuclear components is best observed in fig. 1T7.

K

In this figure the level densityvdenominator is shown as a function of angular
momentum for various temperatures. The presence of the two components is made
evident by the two discontinuities associated with the‘neutron and proton
phase:transitions.

_In fig; 18vthe total entropies;of three nuclei, l?gPt, 1ggHg, and 2§2Rn
are shown as & function of temperature:and total_angular momentum. Together

'

with the lines of constant entropy the figures also show the neutron and proton
critical temperatures vs. angular momentum. In this kind of preééntation,
the uniform modél without pairing is characterized by horizontal equidistant
straight lines. The effect of pairing in the above nuclei at zero angular
momentum is visible in the compreséion of the lower isoentropy liges towards
the critical tempefatures. As the angular momentum increases the compression
is less pronounced, due to the decrease of fhe pairing correlation. At low
angular momenta the neutron critical temperature is abové the proton critical
temperature. The situation is reversed at higher angular momentum with the

" consequence that the proton correlation is the last to disappear, eveﬁ though
the criticgl angular momenta for the proton components are in general smaller
than the critical angular momenta for the neutron components.

In fig. 19 the total entropies for the same nuclei are pregenéed as 8
function of excitatiqn enérgy and angular momentum. The lower linL in each
figure corresponds to T = 0 and represents the yrast line for the whole nucieus.
From its deviétionAfrom a parabola one can learn about the perturbLtions

introduced by the shell and pairing effects. The lines indicating the dis-

appearance of the pairing effects for both neutrons and protons ar% also shown.,

!
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In the case of the uniform model, the lines of constant entropy are parabolae.
The actual isééntropy line do in fact approach a parabolic behavior at
large temperatures and angular momenta where the pairing and shell effects

have been washed out.

5.2, FINAL EVALUATION OF THE LEVEL DENSITIES
‘Aﬁ the beginning of Sec. 4 it was shown that the»gormalism could
account cémplefely for the total ahgular momentum I, although only the z
projectjon M was iht?oduced explicitly. In the case of.spherical symmetry
this is:accomplished by substituting M with I in all the functions expressiﬁg
‘intrinsic properties of the nucleus. However, in the evaluation of the |
levél‘densities one has to account‘for the statistical factor associated

with angular momentuﬁ. In order to determine such an effect we use the

procedure suggested by-Bethe:26

o(E, I) = p(E, M) - p(E, M+1) | (34)

or, with good approximation

o(E, I) = - %ﬁ-p(E, M)|M ST +1/2 (35)

Ih order to evaluate such a derivative one can write approximately:

; 2
o(E, M) = £(E, I)e_Mz/20 > | (36)
where
2 _I_ |

-

In such an expression f(E,\I) and 02 depend on I through the quantities which

describe the intrinsic nuclear properties. The derivative can now be taken
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' ~1 + 2)%/206° .
Erirm, e ° (38)

20 ) N

p(E, I)

*
|

=& L o5, M=1+1/2) . : (39)
20 )

Such an approximation permits a straightforward evaluation of the total level

194
78

. ) :
and gan are presented as a function of energy and angular momentum. The
: .
resemblence with fig. 19 is, of course, very close. The main difference is

198

density. In fig. 20 the natural logarithms of the level densities for 80Hg,

Pt,

related to the factor (2I + 1) in eq. (39) and is partiéularly visible in the

upsweep of the lines of equal level densities close to zero angular momentum.
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| | €. |Conclus‘ions : |

In the preceding sections it has been shbwh how it is pos;ible to
include A substaﬁtial amount of physics in the calcuiation of the statistical
nucléar properties. The shell model has been used in the_formalism as well
as a short range resiéual interactign in the form of the pairing approximation.

|

The angular momentum has been introduced in a consistent way as an édditional
cohstant of motion. Certainly this kind of calculation represents an improve-
ment over the old level dens%ﬁy exp}essioﬁs*which cannot . be considered more
thah gréss intetpolatioﬁ forﬁulae. The wealth of details obtained.in the pre-
sent calculaiién allows one to follow the evolution of the system as the
excitation energy and the angular mpméntum increase. ‘In fact, this !
formalism provides the user with s éomprehensive'view of a large number of -
.physicél quantities like the pairiné gap, the moment of inertia, the rotational
frequency, the entropy and so on.

However, limitations of various nature are inherent to the'modei.
A minor limitatioﬁ‘is associated withvthe use of the saddle point approximation
which results in the fact that the constants of motion are not held rigorously
constant but are constant only on the average. However, this defect is not
serious except ét the very lowest temperaturéS‘where the fluctuations_are exceed-
ingly large and the saddle point method itself,fails._ A somewhat more serious
difficulty, very much related to the previous ones, haé to do with the spurious.
prediction of sharp phase transitioﬁs as the system undergoes a change from the
paired to the normal configuration.-

The shortcomings discussed so far are related to the statistical

approach. Serious difficulties are associated with the totel Hamiltonian as

|
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well. The single particle part of-yhe Hamiltonien used invthe present formalism
is not selfvconsistent.'iIn the Hartree-Fock spirit, each configuration should be
characterizgd by its own self-consistent single particle spectrﬁm. It is practi-
cally imposible to achlieve such a kind of self-consisﬁency in a statistical cal-
culation performed within the microcanonical ensemble. In the grand canonical
sehse, by using the thermal avefages of the occupatic# numbers, it may be possible
to incorporate é Hartree-Fock.self consistency in the fﬁﬁure. For the moment the
experimental existence of sharp sheil effects in the density of neufron re-
sonanceé substantiates the hope that the single particle spectrum associated
with the ground state may not be a éotally inaccurate representati&n of the
single particle spectrum in excited nuclei.

Thé residual interaction used in the present calculation {s rather
schematic and can be improved. It is possible, for instance, to.use the actual
matrix glementé of a short range attractive force instead'qf using a constant
pairing strength as in the present paper and, in fadt, such a kind of calcu-
lation is in progress. However; the elimination of the pairing-approximation
which only considers thé scattering of pairs of particles in time reversed
orbitals does not seem very easy to.achieve at the moment. Methods more
directly related ﬁo the épectroscopical calculations may be more effective_
in properly handliné very complicatéd residual interactions. .

A final comment should be made concerning the poésibility of accurately
reproducing éiperimental data; It'shoﬁld be poésible to reproduce the level
densities, or other'related'pfopertiés, at sufficiéntly.iarge.excitation energies,
. say above 10 Mev;:rather accurately with minor adjustmenﬁs of the parameters of

the model. Unfortunately, the main amount of information comes from neutron
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resonances, usually a? excitation energies smaller than 7 MeV. At these

| oo
I

energies any~sﬁall inadequacf-of the éhell model or of the reéidual iﬁter—
action will produce very large deviations in the level densities, Thérefore;
the ambitious prpject of accurately reproducing level densities in this region
may still require substantial improvement in the Hamiltonian used in the
calculation. Still one may hope that the present formelism will he of help

in repro?ucing the qualitatije and gemi—qualitative feétures of the landscape
of excitéd nuclei and in giving guidance for the understanding of experimental

l i

information. |
|
Ackkowledgments

The author wishes to thanijr. T. Clements for his constant and
invaluable help with the numerical palculations, and Dr, S. G. Thompson for

his encouragement and assistance.

¢

I

| |



2)
3)
k)
5)
6)
7)
8)

9)
10)
11)

12)

13)
1k)
15)
16)
17)

18)
19)
20)

21)

-30- | LBL-1298

iReferences _ R i
N. Rosenzweigh, Phys. Rev. 105 (195#) p. 505 ibid 108 (1957) 817
P. B. Kahn and N. Rosenzweigh, Phys. Rev. 187 (1969) 1193
A. Gilbert, Lawrence Radiation Laboratory Report, UCRL-18095 (1968)
H. Baba, Nucl. Phys. A159 (1970) 625
M. Hillmen snd J. R. Grover, Phys. Rev. 185 (1969) 1303
F. C. Williams, Nucl. Phys. AL33 (1968) 33 i

L. G. Moretto, R. Stella, V. Caramella-Crespi, Energia Nucleare 17 (1970) 436
. i .

V. S. Ramamurthy, S. S. Kapoor,7S. K. Kataria, Phys. Rev. Letters gé_(l970)
‘ |

386‘_
F. C. Williams, G. Chan, J. R. Huizenga, Nﬁcl. Phjs, A187 (1972) 225
M. Sano and S. Yamasaki, Prof. Theor. Phys. 29 (1963) 317
D. W. Lang, Nucl. Phys. 42 (1963) 3%3 |
P. Decowski, W; Grochulski, A. Marcinkowski, K. Siwek, Z. Wilhelmi, Nucl.
Phys. A110 (1968) 129 |
L. G. Moretto and R. Stella, Phys. Letters 32B (1970) 558
L. G. Moretto, Nucl. Phys. A182 (1972) 6L1
L. G. Moretto, Phys. Letters 34B (1971) 191
L. G. Moretto, Nucl. Phys. A180 (1972) 337
V. S._Ramamurthy; S. S. Kapoor, and S. K. Kataria,bPﬁys. Rév. Letters 25
(1970) 386 : ' 
L. G. Moretto, Phys. Letters 38B (1972) 393 .' - | }
F. C. Williams, G. Chean, J. R. Huizenga, Nucl. Phys. A187 (1972) 2é5
R. Bengtsson, Nucl. Phys. A198 (1972) 591 | |
A. Jensen and J. Damgsard, preprint

|
i
|
i




22)
23)
24

25)
26)

~31- ‘ - IBL-1298

L. 'G.. Moretto, Phys. Letters §2§~(l97li 379

L. G. Moretto, Nucl. Phys. A185 (1972) 145

S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wychech,

G. Gustafson, I. L. Lamm, P. Moeller and B. Nilsson, Nucl. Phys. Al3l
’ . .

(1969) 1

L. G. Moretto, Phys. Letters 40B (1972) 1

H. Bethe, Phys. Rev. 50 (1936) 332; ibid. 53 (1938) 675
. | |



~30- | ' LBL-1298

Figure Captions

Fig. 1. Gap parameter A as a function of angular momentum for the neutron

lghPt at a temperature value approaching zero.

and proton components of
The angular ﬁomentum refers to a single component and not to the whole
nucleus. -

Fig. 2. Dependeﬁce df thé critical temperature upon angular momentum for
the uniform model.

Fig. 3. Dependence of the critical temperature upon angular momenfﬁm for
the proton a) and neutron b) components of various isotopes. Notice
the decrease in Tcr and Icr as the N = 126 shell is:approachea. A large

increase in Icr’ associated with the protoh h9/2 level is also seen for
Z = 86_._

Fig. 4. Contour map of the gap parameter as a function éf temperature and
sngular mbmentum for the uniform model. The lines of constant gap
parameter are spaced 0.05 A from A/A = 1.0 to A/A_ = 0.1. The outer
line corresponds to A/Ao = 0.

Fig. 5. Isometric projections of the gap parameter as a function of temperature
and angular momentum for the proton and neutron coﬁponents of l?%Pt a,b)
lggﬂg c,d) and 2% n e,f).

Fig. 6. Dependehce of Y upcn angular momentum at farious temperatures for
the proton éomponent of 2§2Rn. The effect of pairing is evident at the 
lowest temperatures where Y depends rather weakly én angular momentum.

At the highest temperatures the linear dependence tyPical of a body

rotating with a cbnétant moment of inertia is observed.
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Fig. 7. Gap parameter A as a function of y at various temp?ratures_for the
proton componen£ of 2§2Rn. ‘ |

Fig. 8. Dependence of the chemical potential A upon A at various temperatures
for the proton.component of 2§2Rn. At the lowest temperature A shows
strong variations associated to the discreteness of the single particle

levels. As the temperature increases the shell structure is washed out

'and peculiar longer range trends are observed.

Fig. 9. Square rOoé of the determinant (eq. 8) aé a functiog of temperature
and angular momentum for the uniform model. The lowest line cofresponds
to I/I‘cr = 0 and the following lines are spaced at intervals equal to
Icr/T. The.energy'unit is equal to the pairing condensation energy and

equal to twice the rotational energy at I = Icr'

Fig. 10. Square root of the denominator (in MeV) as a function of temperature
and angular momentum for the proton a) and neutron b) components of l?gPt.
Notice the discontinuities associated with the phase transition and some
sharp fluctuations occuring in a) at the lowest temperatures due to
peculiarities in the shell structure.

Fig. 11. Probability distribution of the gap parameter A at various tempera-
tures. Thé values‘of A at the maxima of the distributions correspond to
the values obtained by solving the gap equation. The uniform model used
in the calcﬁlation is characterized by g = T MeV_l and AO = 1 MeV. The
critical témperature is Tcr% 0.57 MeV.

Fig. 12. Specific heat as a function of temperature obtained using the

most probable A (thin line) and using the average A (thick line).



-3} © LBL-1298

Fig. 13. Entropy as a function of temperature and angular momentum for the

: |
uniform model. The lowest isotherm is at T = 0.158 T and the spacing

between the isotherms is 0.053 Tcr’

Fig. 14. Entropy as a function of temperature and angular momentum for the
19k

proton a) and neutron b) components of 78Pt.
Fig. 15. Yrast line and higher isotherms for the uniform model. The isotherm
next to the yrast line is at T = 0.158 Tcr and the spacing between isotherms

is 0.0526 Tcr' The dashed line represents the yfast line of the unpaired

! o
system and the upper line crossing the isotherms is the boundary of the

superfluid phase. For the energy unit see caption to fig. 9.

Fig. 16. Yrast lines and higher isotherms for the proton a) and neutron b)
194, ’

components of 78

Fig. 17. Square root of the denominator determinant (in MeV) for the nucleus

194
78

two discontinuities associated with the proton and neutron phase transitions

Pt as a whole, as a function of temperature and angular momentum. The

are observed in many isotherms.

Fig. 18. Lines of constant entropy in the temperature;angular momentum plane
for the nuclei 9h OHg b); 220Rn c). The boundaries of the proton
and neutron superfluid phases are also shown.

Fig. 19. Lines of oonstant entropy in the energy angnlar momentum plane for
the same nuclei as in fig. 18. The yrast line and the»boundanies of the
neutron and proton‘superfluid_phases are also shown5

Fig. 20. Lines of constant natunal logarithm of the level density in the
energy anguiar momentum plane for the same nucled ao in fig. l%. The.

yrast line and the boundaries of the neutron and proton superfluid phases

are also shown.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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