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I I ' 
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November 1972 

Abstract 

The statistical properties of excited shell model nuclei with the 

I 
inclusion of the angular momentum and the pairing correlation are studied. 

Particular attention is dedicated to the dependence of the shell effects and 

of the superfluid properties upon angular momentum. The statistical functions, 

generated from the pairing Hamiltonian properly generalized to account for 
I 

angular momentum, are calculated for various nuclei on the basis of the Nilsson 
. I 

model. The neutron and proton gap parameters are evaluated as a function of 
I 

temperature and angular momentum. The dependence of the critical angular 

momenta and of the critical temperatures upon the physical quantities charac-

terizing the nucleus is discussed. The question of the existence of a second 

order phase transition associated with the disappearance of the pairing corre-

lation is considered. The temperature scale is transformed to the excitation
! 

energy scale and the yrast line, as well as other energy angular momentum 

isotherms, are calculated. The evaluation of the thermodynamical quanti ties 

for the combined system of neutrons and protons is discussed in detail. As 
I 

a final product, the level depsities as a function of angular'momentum and 
I 

excitation· energy are obtained. 
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1. . Introduction 
I I i I 

In the past few years a substantial progress has been made 'in the 

description of the properties of excited nuclei. Level density formalis.ms 

have been developed and applied both to schematic1- 4 and realistic5- 9 single 
I 

particle spectra. Such an approach has led to a quantitative understanding 

of the disappearance of the shell effects with increasing excitation energy. 

The B.C.S. Hamiltonian has also been introduced to describe the 
I 

effect of short range residual interactions in excited systems. This h~ 

. 10 11 been performed first for a uniform spectrum of single partJ.cle levels, ' 

12-14 later for shell model level schemes. In this ~' the interaction of 

shell effects, pairing effects, and excitation energy has been studied. 

Further development has led to the introduction of the nuclear defor-

mation in conjunction with the shell model and the pairing Hamiltonian in 

order to describe the deformation probability of an excited nucleus. 13 , 14 

Such a study has illustrated the disappearance of the shell structure as a 

function of excitation energy in a very pictorial way~ An immediate applica-

tion of this formalism has been made to study the stability against fission 

of excited superheavy nuclei and the disappearance of their fission barrier 

15 16 with increasing excitation energy. ' 

'In this context it should be mentioned that the feature of the dis-

appearance of shell effects with excitation energy contained in the statistical 

theories has been used to calculate the ground state shell e~fects as an 

alternative to the Strutinski method.l7-21 

In the papers mentioned so far, angular momentum has been introduced by 

means. of the spin cut-off parameter formalism, which holds o~ly for moderately small 
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values of the angular momentum. In particular, in the formalisms involving 

the pairing Hamiltonian, the pairing correlation was taken tobe independent 

on angular momentum. However, angular momentum drastically affects the pairing 

correlation, and its effect has been accounted for in two of our previous 

22 23 papers. ' In these papers the z projection of angular momentum was intro-

duced as a constant of the motion by means of a Lagrange multiplier. The 

complete set of thermodynamical quantities was then derived for the case of an 

arbitrary sequence of single particle levels, assuming spherical symmetry. In 

order to explore the interaction'of excitation energy and angular momentum 

with the pairing correlation without the interference of the shell effects, 

the formalism was applied to the uniform model, namely a model for which the 

single particle level spacing is a constant and where each level has a constant 

spin projection on the z axis. Such a simple model can be easily handled. 

The zero temperature angular momentum dependence of the gap parameter as well 

as. the yrast line were calculated analytically. Furthermore the critical 

temperature as a function of angular momentum was shown to be a decreasing 

function with a rather strange anomaly at large angular momenta. In this 

region an antiblocking effect of temperature, called "thermally assisted pairing 

correlation", results in an increasing pairing correlation, or even in the 

onset of pairing correlation with an increase in temperature. 

In the calculations mentioned above, the shell model was not included 

and the problem of the two components of the nucleus was not accounted for in 

detail. It is the purpose of the present paper to extend the discussion and 

the calculations to shell model nuclei where the interpl~ of the shell 

structure with pairing, angular momentum and excitation energy can be studied. 
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In particular, in Sec. 2 the complete statistical formalism with 

.I 
inclusion of pairing and angular momentum is· presented; the grand partition 

function, the first integrals of motion like energy, particle number and total 

angular momentum z projection are written down explicitly as well as the gap 

equation, the entropy and the partial derivatives necessary for the calculation 
I 

of the level density denominator. 

In Sec. 3 the details of the shell model and of the B.C.S. Hamiltonian 
I I 

employed in the calculations
1
are illustrated. 

In Sec. 4 all the relevant s.tatistical quanti ties are calculated on 

the basis of the shell model for each component of the nucleus and are com-

pared with the results obtained from the uniform model. The overall dependence 

of the gap parameter on temperatUre and angular momentum is displayed. The 

denominator of the level density is calculated to show the discontinuity 

as.sociated with the superfluid phase-transition and the existence of such 

a transition in actual nuclei is discussed. The entropy is displayed as a 

function of temperature and angular momentum, the trans.formation from the 

temperature to the energy scale is performed and the yrast line is calculated. 

In Sec. 5 the neutron and proton components of the nucleus are con-

sidered at the same time, and the thermodynamical quantities, including the 

level density, are evaluated for the whole nucleus. 

In Sec. 6 the conclusions of the work are presented, an assessment is made 

of the development of the statistical nuclear theories and the possible extensions 

and improvements of such theories are discussed. 
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2. Summary of the Formalism 

The complete formalism describing the statistical properties of a nucleus 

in terms of pairing, angular momentum and excitation energy23 is presented 

below. All of the quantities refer to a single nuclear component. 

The logarithm of the grand par~ition function is: 

~ 2-
+ Lln[l + exp (-13(~ + 'YII\:))] - 13 ~ • (l) 

In this expression ~ and ~ are the single particle energies and spin projections 

respectively; 13, a = 13A and ~ = 13Y are the Lagrange multipliers which fix the 

energy, the particle number and the angular momentum projection respectively; G is 

the pairing strength; ll is the gap parameter; the quasiparticle excitation ~ 

is given by: The quantity 13 is also the reciprocal 

of the temperature and A is identified with the chemical potential. The gap 

parameter ll is obtained as a functibn of 13, A, y by solving the gap equation: 

~ l l l 2 L 2E [tanh 2 13(~ - 'YII\:) + tanh 2 13(~ + ~)] = G 
k 

The constants of motion are the par~icle number N, the total energy E, the 

angular momentum projection M. These quantities are given by the following 

expressions: 

(2) 

(3) 
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M = I"k [ 1 + exp at~ 'f"kl -1 + exp at~+ '1'\:) J 

The above equations, together with the gap equation define~' A, 8, andy as 
I 

a function of N, E, M, G, £k' and~· 

The entropy is given by: 

S = L ln[l + exp (-8(~ - 'VI\:))] + L ln[l + exp (-8(~ + 'VI\:))] 

~ ~-~ ~ ~+~ 
+ 8 L 1 + exp 8 ( ~ - 'VI\:) + 8. L 1 + exp s ( ~ + ~) 

The level density is given by: 

( · ) = e~S p E, N., M 2 1/2 1 
( 2rr )n D 

(5) 

(6) 

(7) 

The index i indicates that more than one component may be present (in the present case 

one has neutrons and protons) and n is equal to the number of Lagrange multipliers 

introduced in the formalism. The quantity D is given by; 

D = det 

where the a; 's indicate the Lagrange multipliers. The partial derivatives 
]. 

necessary for the e.valuation of the determinant follow: 

(8) 
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a2n · 1 \ 2 2 1 1 2 1 -:2 = 4 ~~[sech 2 S(Ek- y ~) + sech 2 S(Ek + y ~)] 
a~ . 

(9) 
ab. \' ~ 2 1 2 1 

- Sb. a~ ~ 4Ek [sech 2 S(Ek- y ~) - sech 2 S(Ek + y ~)] 

(10) 

( 11) 

(12) 

ab. 1 \' ~ 2 1 2 1 
+ Sb. aa 4 ~ ~ [sech 2 B(Ek + y ~) - sech 2 B(Ek- y ~)] 

(13) 

ab. \' ~ 2 1 2 1 
+ Sb. aa ~~ [sech 2 S(Ek + y ~)- sech 2 S(Ek- y ~)] 

k 

I 

~:~a = - M 
2 L bk - L £k ( £k - A) 

2 
ak - b.

2 L ( £k - A) ~ 

(14) 
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, aA aA all . 
The quanti ties ~, bk_, a/3' ap' aa are g1ven by: 

1 1 21 21 
ak = 4~ [sech 2 S(Ek- y ~) + sech 2 S(Ek + y ~)] 

Ek 
(15) 

1 1 1 
bk = --

3 
[tanh 2 S(Ek- y ~) +tanh 2 S(Ek + y ~)] 

28Ek 

(16) 

·' 

(17) 

1 \1 2 1 2 1 
4 ~E ~[sech 2 S(Ek + y ~) - sech 2 S(Ek- y ~)] 

all k . 

all = - Sll L ( ~ -bk) 
(18) 

all 
aa = - (19) 

The above three derivatives are to be set equal to zero when ll = 0. 
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3. The Shell Model and the Pairing Hamiltonian 

3.1. THE SHELL MODEL 

A most convenient model for its simplicity and its ability to account 

for the experimental shell structure is the Nilsson model. The version of the 

Nilsson model used here is that described by Nilsson et a1?4 · The parameters 

which characterize the model are the oscillator quantum hw
0

, the spin orbit 

2 
parameter K and the ~ parameter· ~· The values of K and ~ have been taken 

from ref. 24 and for the oscillator quantum the following isospin dependent 

expression has been used: 

hti_ = h~ (1 + 1/3 N-Z) 
1~ o A 

h~ = 41 A-l/3 
0 

(20) 

3. 2. THE PAIRING HAMILTONIAN 

The residual interaction, irt the pairing approximation, takes the 

general form: 

' 
(21) 

where the ~ ~ are the single particle creation and annihilation operators and 

Gkk' are the pairing matrix elements of the short range residual interaction. In 

the present paper it is assumed that all of the pairing matrix elements are equal 

to a constant G. Unfortunately with such an approximation the gap equation 

diverges. It is therefore necessary to truncate the sum in the gap equation and 

in the related expressions by means of a lower and uppel bound in order to insure 

convergence. This is not a bad approximation because, due to the Pauli principle, 
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the re~idual interaction affects the system close to the Fermi surface only. 
I 

As discussed in ref. 24, the following expression gives adequate values for G: 

N-Z GXA=g +go - 1 A (22) 

provided that the lower and upper bound for the summation be taken 115N or 

I15Z levels above and below the Fermi surface. The plus sign refer to protons 

and the minus sign refers to neutrons. This prescription fUlfills two purposes: 

a) it reproduces the experimental trend for the even-odd mass differences, 

~ ~12/A1/2 ; b} for the nuclei in which we are interested, namely for A> 140 

the energy interval about the Fermi surface is quite large and it does not 

pose any serious problem concerning the possible overflowing of quasi-particles 

beyond the bounds even at the largest temperatures of interest. The above 

!?rescription fails for Z or N less than 60 for lack of a sufficient number of 

levels below the Fermi surface and may fail in finite potentials of the 

Wood..Sax:on type due to an insufficient number of bound levels above the Fermi 

surface. In such cases it is necessary to reduce the summation range and to 

renormalize the pairing strength accordingly. 
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4. Shell Model Calculations with One Component 

In the formalism illustrated in Sec. 2, only the z component M of the 

total angular momentum is accounted for, while no explicit mention is made 

about the total angular momentum I. However, for a spherically symmetric 

system, the formalism is indeed complete. Because of such a symmetry, the 

laboratory fixed z axis can be made to coincide with the body fixed z' axis 

and both can be aligned within the quantum mechanical uncertainty ~ith the 

angular momentum direction. In this case the whole physical effects of the 
I 

angular momentum are taken up by the z projection and it is possible to 

identi~ and substitute M with I. This is correct in the classical limit; 

in the quantum mechanical limit the substitution should be M + {I(I+l) ~I+~ • 

4.1 DEPENDENCE OF ~ UPON ANGULAR MOMENTUM AT T = 0 

, The angular momentum is generated by breaking pairs and by aligning 

the resulting quasiparticles, and it tends to destroy the pairing correlation 

through the blocking of the single particle levels close to the Fermi surface. 

In the case of the Uniform model, a simple and elegant relationship between ~ 

and I for T = 0 is obtained: 

(23) 

where ~ is the gap parameter for I = 0, T = 0 and I is given by: o cr 

I = g ~ cr o 
(24) 

In this equation, g is the density of the doubly degenerate single particle 

levels and m is the single particle spin projection on the z axis taken to b'e 
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the same for all the levels. These expressions illustrate the decrease in 
I' I I 

I I 

the pairing correlation with increasing angular momentum and its sudden 

disappearance at the critical angular momentum I . The dependence of I cr cr 

on the physical parameters of the uniform model can be used as a guide to 

understand the general trends observed in actual shell ~odel calculations. 

In the case of a shell model level scheme, the calculation is more 

complicated because of the discontinuities which appear in the relevant 

equations for S = oo or T = 'o. However one can gain a suffic'iently accurate 

picture by setting S equal to a very large value. The desired function can 

be obtained by solving a system of three non linear equations: the gap 

equation (2) the angular momentum equation (5) and the particle equation (3). 

Once 6 is assigned the chosen value, the system can be solved for~' y, and 

A. Such a system can be solved by iteration after lineariza~ion in the 

· neighborhood of a guess. The calculation can be simplified by solving the 

gap equation (2) and the particle equation (3) for a fixed value of y; the 

solution for ~ and A can be introduced in the angular momentum equation (5) 

together with y to obtain M = I. In fig. 1 the results are shown for the 

neutron and proton components of 194Ft. It should be made clear that the 

angular momentum in abscissa refers to a single component only and not to the 

total nucleus. It can be noticed that the critical·angular momentum for the 
I. 

neutron component is approximately twi.ce that of the proton component. This 

is mainly a consequence of the smooth dependence of I on the single particle cr 

level density g, on the gap parameter ~0 and on the average spin projection m, 

as illustrated by the equation (24). The overall dependence of~ on I is also 

rather close to that predicted by equation (23). However, the shell structure 
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affects such a dependence substantially. For instance, the proton gap para-

meter becomes double-valued at angular momenta close to the critical value. 

A check on the total energy of the system corresponding to the two values of ~ 

indicates that the energy .is the same. This means that, at these angular momenta, 

the nucleus can be indifferently paired or unpaired without change in energy. 

4.2. DEPENDENCE OF THE CRITICAL TEMPERATURE UPON ANGULAR MOMENTUM 

The present formalism predicts that, at zero angular momentum, the 
. I I 

pairing correlation decreases with increasing temperature and vanishes at a 

critical temperature T • In the case of the uniform model, the critical 
. cr 

temperature has the value: 

T = 2~ /3.50 cr o {25) 

The angular momentum also tends to decrease the pairing correlation 
' 

as seen in the previous section. Therefore the critical temperature is 

expected to decrease with increasing angular momentum. 

The dependence of the critical temperature upon angular momentum for 

the uniform model is shown in fig. 2. The expected dependence is indeed 

observed; however, for angular momenta close to the critical value, the critical 

temperature becomes double-valued. It appears that, for angular momenta 

slightly above the critical value, an increase in temperature brings the 

pairing correlation back. Such phenomenon, described in our previous paper23 

as "thermally assisted pairi~g correlation" has the following explanation. 

The blocking produced by quasi-particles is most effective when it occurs 

close to the Fermi surface. At large angular momenta and for T = 0 the effect 

of blocking is maximum because all the quasiparticles are tightly packed 
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around the F~rmi surface. An initial increase of the temperature, instead 
i I . I 

of breaking pairs, actually spreads out the quasiparticles, thus diminishing 

the effect of blocking. 

In order to calculate the angular momentum dependence of the critical 

temperature for a shell model nucleus one can proceed as follows. The gap 

equation (2) and the particle equation (3) can be solved simultaneously for 

Acr and y after setting ~ = 0 and T equal to one of the successive values 
cr I i 

between 0 and the critical temperature at zero angular momentum. The angular 

momentum can be obtained from equation (5) by setting~= 0 and by introducing 

T, y , and A • In this way it is possible to solve the problem avoiding the cr cr 

system of three n?n linear equations which should be dealt with in principle. 

In fig. 3 some examples of calculations are presented. The neutron 

critical temperatures shown in fig. 3b have been chosen in order to illustrate 

the effect of the N = 126 shell. As N approaches 126, both the critical 

temperature and the critical angular momentum are seen to decrease regularly. 

This reflects mainly the local decrease in single particle level density. The 

"thermally assisted pairing correlation" is to a large extent masked by the 

local spin fluctuations. The neutron critical angular momenta are in general 

much larger than the proton critical angular momenta because of the much 

larger average single particle level density. The proton critical temperatures 

shown in fig. 3a have been chosen to illustrate the effect of a high spin 

state. While the Z = 78 and Z = 80 curves show a regular decrease in the 

critical temperature and in the critical angular momentum due to the Z = 82 

shell, the Z = 86 curve sh.ows a moderate increase in the critical angular 
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momentum. This is mainly due to a high spin level (h
912

} which provides a 

considerable average quasi-particle contribution to the total angular 

momentum. 

4 • 3. THE GAP PARAMETER .Af3 A FUNCTION OF T AND I 

The complete dependence of ~ upon T and I for the uniform model can 

be observed in fig. 4. The presence of the "thermally assisted pairing 

correlation" can be best seen for angular momenta close to the critical value. 

In the shell model case, the calculation of the lines of equal ~ can be 

performed in the simplest way as illustrated in subsec. 4.2. Instead of 

setting ~ = 0, ~ is set equal to the desired value, the value of T is chosen 

among those of a suitable grid and eq. (2) and eq. (3) are solved for y and A. The 
I 

values of~' 
1

T, y, and A are then substituted in eq. (5) and. the corresponding 

value of the angular momentum is obtained. In fig. 5 the ~ surfaces are pre-

sented in the form of isometric projections for the neutron and proton components 

of various nuclei. Again it can be observed that the shell structure affects 

both the qualitative and quantitative features of the ~ surface rather 

dramatically. The A surface extends towards large values of T for nuclei 

wi.th large single particle level density at the Fermi surface, it extends 

toward large angular momentum values for nuclei with large j values .close to 

the Fer:mi surface. 

Beneath the apparent simplicity of these results, a very complicated 

behaviour of the system can be observed. As examples of the complex anatomy 

of the nuclear structure, the dependences of y on I, of A on y and of A on 

220 at various temperatures for the proton component of a6Rn are shown in 

figs. 6, 7, and 8. These functions vary quite substantially from one nucleus 
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to another and contain all of the thermodynamical information concerning the 
i I 

nuclear properties. 

Th~ calculations become rather difficult at very low temperatures: 

this is due to the fact that the multidimensional surfaces represented by 

eq. (2) and (5} become very ill-behaved at low T and tend to become dis-

continuous for T = 0. Because of thi.s, the linearization of the various 

systems of equations necessary for the numerical search of the solution 

becomes problemetic. The quantities S, y, and A may even lose their mono-

tonic dependence on energy, angular momentum, and particle number, respectively. 

Furthermore, the saddle point method which underlies the whole formalism 

described here, tends to. fail at very low temperatures. 

4.4. THE SUPERCONDUCTIVE PHASE TRANSITION AND THE DISCONTINUITY IN THE SPECIFIC 
HEAT 

The line of the critical temperature in the T, I plane repre-

sents the locus of the points at which ~ reaches zero, the superfluid and 

superconductive properties of the system disappear, and the nucleus reverts 

to a system of uncorrelated nucleons. At this point the residual interaction 

affects the properties of the system only through a shift of the ground state 

energy:· namely the nucleus, excited above the critical temperature, behaves 

as if its ground state was unpaired instead of paired. 
I 

The transition from the paired to the unpaired region can be induced 

either by increasing the temperature at constant angular momentum, or by in-

creasing the angular momentum at constant temperature. Such a phase transi-

tion is of the second qrder, namely a discontinuity is observed in the specific 

heat instead of appearing in the free energy. In the present formalism, the 
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determinant which. appears in the expression for the level density is a mono-

tonic function of the specific heat and indeed presents the expected discon-

tinuity. In fig. 9 the determinant for the uniformEodel is presented as a 

function of temperature for different angular momenta. In fig. 10 two examples 

of calculations on the basis of the shell model are presented. In thes'e 

pictures the determinant is expressed as a function of angular momentum for 

different temperatures. 

In all of these pictures the discontinuity is clearly visible both 

when the critic.~ line is crossed by increasing the temperature and by 

increasing the angular momentum. In the case of the uniform model, the 

determinant is independent of angular momentum outside the criticS! region. 

Due to the shell structure such independence is not verified in shel~ model 

nuclei as can be seen by the fact that the lines of specific heat at constant 

temperatures are not horizontal outside the critical region. 

A note of caution should be made concerning the real existence of 

such discontinuities in actual nuclei. In the present formalism the gap 

parameter ~ is chosen in such a way as to maximize the grand partition 

n an function e , namely be requiring that a~ = 0. It is easily seen that such 

a condition is equivalent to the gap equation. In a macroscopic system the 

probability distribution in 11 is infinitely sharp, so that its most probable 

value contains all the necessary information regarding the system. In 

particular, at the temperature for which the most probable value of ~ goes 

to zero, the whole distribution goes to zero and a discontinuity appears. For 

small systems, like a nucleus, the width and the higher moments of the ~ 

distribution become important. 25 In fig. 11, the probability distribution in 
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~ for the uniform model is presented for various temperatures at zero angular 
;: '! I 

momentum. The widt~ of the: distribution appears to be always comparable with 

the most probable value. Furthermore, as the temperature increases, the 

asymmetry of the distribution becomes so substantial as to make the average 

and most probable values of ~ quite ~ifferent. While, at the critical tempera-

ture and above, the most probable value of ~ vanishes, the average value of 

~ remains finite. Because of the fluctuations just described, no discontinuity 
1 I 

is expected to appear at the critical temperature. In fig. i2 the specific 

heat of the system is shown both for the case in which the most probable value 

of ~ is used and for the case in which the average value is employed. 

In the latter more realistic case, the discontinuity is smoothed out over a 

rather large temperature interval. As a conclusion, no discontinuity should 

exist in the case of nuclei but a smooth though rather rapid transition from a 

correlated to an uncorrelated phase is to be expected. We shall continue using 

the present formalism which allows for a phase transition because of its greater 

simplicity and power. However, one should be cautious in taking seriously 

any conclusion which depends directly upon the quantitative use of the gap 

equation or upon the presence of a phase transition. 

4. 5. THE ENTROPY AS A FUNCTION OF ANGULAR MOMENTUM AND TEMPERATURE 

The behavioUf of entropy as a function of angular momentum for different 

temperatures in the case of the uniform model is shown in fig. 13. In the 
I 

region where the pairing correlation is absent, the entropy at a fixed tempera-

ture does not depend upon angular momentum. In the region where pairing is 

present, the dependence of entropy upon. angular momentum is substantial because 
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of the strong effect of the angular momentum upon the gap parameter. A 

similar calculation perfor.med for a shell model nucleus, is shown in fig. 14. 

While the shell structure is seen to modify the general picture in a quanti-

tative way, the qualitative features are retained, especially at sufficiently 

large temperature. In these latter examples the entropy is clearly affected 

by the onset of pairing at small angular momentum. However, even at angular 

momenta larger than the critical value the entropy is not completely inde-

pendent on angular momentum. This is due to the non uniform. distribution in 

spin projections and spacings in the shell model scheme. 

4. 6. CHANGE TO THE ENERGY SCALE 

The excitation energy, more than the temperature, is _the most suitable 

independent variable for the presentation o~ the various quantities. In order 

to achieve such a transformation, it is sufficient to express the excitation 

energy in terms of temperature and angular momentum. A most interesting 

quantity is the energy vs. angular momentum isother.m for T = 0. Such a 

function is usually called yrast line and represents the locus of the states 

with largest angular momentum at fixed energy or of the states of lowest 

energy at fixed angular momentum. For the unifor.m model such a function can 

be written down in closed for.m: 22- 23 

1 g 6 2 ..L (2 - _L_ ) for I ~ I 2 o I 2I cr cr cr 
E = yrast 

(26) 

1 A2 I
2 

2 
g u

0 
+ --

2
- for I ;;;.. I 

4m g cr 

Above the critical angular momentum the yrast line is a parabola typical of a 
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rotating rigid body with moment of inertia :1 R 
2 = 2m g. Also it is apparent 

' I 

that the' effect of the pairing correlation is completely absorbed into an 

1 . 2 
energy shift equal to the condensation energy C = 2 g &

0
• The above equations 

show that, along the yrast line, the transition from paired to unpaired 

systems occurs at an
1 
energy: 

3 2 3 E =-rgfl =-C cr '+ o 2 (27) 

Below,the critical angular momentum, the yrast line is also a parabola, 

with negative second derivative (fig. 15). In the same figure, other energy 

angular momentum isotherms for T > 0 are also shown. 

'It is instructive to·calculate the mom.ent of inertia and the angular 

frequency along the yrast line in the paired region by means of eq. 26. The 

angular frequency is given by: 

aE 
w = di 

(28) 

where the partial derivative is taken by keeping constant any parameter 

affecting the shape or the internal structure of the system. In the present 

case, as in any case where the parameters are allowed to attain their equi-

librium value, we have: 

(29) 

The partial derivative of E witli respect to !!. at constant pairing strength G 

is equal to zero because the value of the gap parameter fl is determined in such 

a wa::r at?: to minimize the total energy, or, in the case of T > 0, the free 
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energy. Also, it is easy to show that the Lagrange multiplier y represents 
i 

the angular velocity of the system at any temperature and coincides with w 

at T ~ 0. The moment of inertia is given qy: 

. (30) 

By means of eq. 26 one obtains the very simple expressions: 

2I I 
w = ,., cr ( 1 - --) 

.;R 2I cr 
(31) 

( 32) 

As the angular momentum increases from 0 to I , the moment of inertia increases cr 

from 

from 

zero to its rigid 
2I cr 

the value ~ to 
R 

value. At the same time the angular frequency decreases 
I cr 

the value y- . Above the critical temperature the 
R 

moment of inertia remains constant and equal to its rigid value, while the 

angular frequency increases as in the expression w = ~ . 
R 

It follows that even this very crude model predicts a "back-bending" 

in the now fashionable plot of the moment of inertia versus the square of the 

angular frequency. In general a back~ending is observed whenever 

d~ 
yrast 
di2 

< o. 

For a shell model nucleus, t~e !evaluation of the yrast line is more 

complicated, again because of the discontinuities which appear for T = 0. 

Still by setting S 1 = T equal to a large number and solving the proper set of 

equations for 11, A., y, one can calculate an isotherm which is as close as 
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desired to the T = 0 isotherm. Examples of such curves, together with higher 

isotherms are shown in fig. 16. At sufficiently large temperature and 

angular momentum the isotherms are approximately parabolic. Smooth deviations 

from the parabolic behaviour are due to shell effects which introduce 

fluctuations in the moment of inertia. Below the critical temperature and 

the critical angular momentum, the pairing effects dominate the picture. 

However, a comparison between fig. 15 and fig. 16 shows that the yrast line 

has a negative second derivative in the case of the uniform model, while it 

has zero or positive second derivative in the case of the proton and neutron 

194 components of 78Pr. The reason for such a difference is related to the 

very different spin projection distributions in the two cases, a o function in 

the former case, and an approximately constant distribution with a sharp cut off 

in the latter case. 
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5. Shell Model Calculations with Two Components 

5 .1. THE MATCHING OF THE NEUTRON AND PROTON COMPONENTS 

In order to describe the overall statistical properties of a nucleus, 

both components, neutrons and protons, must be simultaneously accounted for. 

This presents the problem of finding the contribution of the neutron and 

proton components to the various thermodynamical quantities for a nucleus with 

fixed excitation energy and fixed angular momentum projection. The answer is 
I 

contained in the statistical mechanics formalism. While the number of particles 

of each component is specified by means of two Lagrange multipliers ~ and Op' 

the total energy and the total angular momentum projection are specified by 

means of a single Lagrange multiplier for each quantity, S for the energy and 

l.l for the angular momentum. The thermodynamical quantities s-2, E, S, M, are 

additive: therefore the proper solution is obtained by writing: 

n = ~ + ~; E = ~ + ~; ( 33) 

where each of the components is characterized by the same S and the same l.l or 

by the same T and the same y. 

In principle the solution of the statistical problem involves the 

simultaneous solution of six non linear equations in the si::ic unknown: ~' Op' 

6, l.l, ~' ~· The equations are: two particle equations, two gap equations, 
I 

one energy equation and one angular momentum equation. In other words, given 
II 

the neutron and proton numbers N, Z, the total energy E, the total angular 

momentum projection M and the neutron and proton pairing strengths GN' GP' one 

can solve for the two chemical potentials AN,AP' for the two gap parameters 
1 I 

~' ~' for the temperature T = 13 and for Y (or l.l). Once these quantities 
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have been calculated, all the statistical functions ca.n be evaluated. It is 
. I I ' 

useful to realize that the neutron and proton components are coupled only by 

the energy and angular momentum equations. Furthermore, for sufficiently 

large energy and/or angular momentum the pairing correlation vanishes thus 

reducing by two the dimensionality of the problem. These considerations 
I 

suggest that it is possible to simplif'y the numerical solution of the problem 

~ considering the two components one at a time. The simplest case arises 

when pairing is abseAt. In this c~se one can generate a sui~able grid in 

B andy. At ~ach point of the grid the particle equations both for neutrons 

and protons can be solved independently for ~ and Ap. The quantities 8, y, 

AN' and ~ are then used to evaluate E, M, and S. In order to obtain the 
I 

thermodynamical functions in terms of a regular grid in E and M (or I) a 

sia~le two dimensional interpolation scheme can be used. 

A more complicated case arises in the paired region. Again it may 

be useful to set up a y, 8 grid at each point of which two independent sets 

of two non linear equations (the gap equation and the particle equation) must 

be simultaneously solved for ~ and A for both kinds of particles. Again one 

can calculate all the thermodynamical quantities and express them in terms 

of a regular grid in E and M by means of interpolation. A possible alternative 

to the above described mode of operation is that of calculating y =Y(S) for 

a fixed temperature grid at ~ = constant. The advantage of such a procedure 

I 
is that of obtaining iso-~ lines without interpolation. However such a 

procedure involves the serious difficulty of matching y's at constant temperature 

between the two components. 
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The match of the two nuclear components is best observed in fig. 17. 

In this figure the level density denominator is shown as a function of angular 

momentum for various temperatures. The presence of the two components is made 

avident by the two discontinuities associated with the neutron and proton 

phase transitions. 

. 194 198 220 I:n fig. 18 the total entropies,of three nucle~, 78Pt, 80Hg, and 86Rn 

are shown as ~ function of temperature and total angular momentum. Together 

with the lines of constant entropy the figures also show the neutron and proton 

critical temperatures vs. angular momentum. In this kind of pres'entation, 

the uniform model without pairing is characterized by horizontal equidistant 

straight lines. The effect of pairing in the above nuclei at zero angular 
I 

momentum is visible in the compression of the lower isoentropy lines towards 

I 
th.e critical temperatures. As t·he angular momentum increases the compression 

is less pronounced, due to the decrease of the pairing correlation. At low 

angular momenta the neutron critical temperature is above the proton critical 

temperature. The situation is reversed at higher angular momentum with the 

consequence that the proton correlation is the last to disappear, even though 

the critical angular momenta for the proton components are in general smaller 

than the critical angular momenta for the neutron components. 
I I 

In fig. 19 the total entropies for the same nuclei are presented as a 
; I 

function of excitation energy and angular momentum. The lower line in each 

figure corresponds to T = 0 and represents the yrast line for the ~hole nucleus. 
I 

From its deviation from a parabola one can learn about the perturbations 

introduced by the shell and pairing effects. The lines indicating the dis-

i appearance of the pairing effects for both neutrons and protons are also shown. 
I 
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In the case of the uniform model, the lines of constant entropy are parabolae. 
I ' I ; I 

I I 

The actual isoentropy line do in fact approach a parabolic behavior at 

large temperatures and angular momenta where the pairing and shell effects 

have been washed out. 

I 

5. 2. FINAL EVALUATION OF THE LEVEL DENSITIES 

At the beginning of Sec. 4 it was shown that the formalism could 

i account completely for the total angular momentum I, although only the z 

projE::ction M was lntroduced explicitly. In the case of spherical symmetry 
I I 

this is accomplished by substituting M with I in all the functions expressing 

intrinsic properties of the nucleus. However, in the evaluation of the 

levet densities one has to account for the statistical factor associated 

with angular moment~. In order to determine such an effect we use the 

26 procedure suggested l;>y Bethe: 

I 

p(E, I) = p(E, M) - p(E, M+l) 

or, with good approximation 

p(E, I) = - ~ p(E, M) IM = I + 1/2 

Ih order to evaluate such a derivative one can write approximately: 

. 2 

p(E, M) ~ f(E, I)e-~/2cr 

where 

I 

( 34) 

( 35) 

(36) 

(37) 

In such an expression f(E, I) and a 2 depend on I through the quantities which 

describe the intrinsic,nuclear properties. The derivative can now be taken 
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= 21 + l f(E, I) 
20'2 

I 

= 21 + l p(E, M = I + l/2) 
20'2 

( 38) 

(39) 

Such an approximation permits a ~traightforward evaluation of the total level 

194 198 density. In fig. 20 the natural logarithms of the level densities for 
78

Pt, 80Hg, 

220 
and 86Rn are presented as a function of energy and angular momentum. The 

I 
resemblence with fig. 19 is, of course, very close. The main difference is 

' 
related to the factor (2! + 1) in eq. (39) and is particularly visible in the 

upsweep of the lines of equal level densities close to zero angular momentum. 
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6. Conclus-ions 
I 

In the p:receding sections: it has- been shown :how it is possible to 

include a substantial amount of peysics in the calculation of the statistical 

nuclear properties. The shell model has been used in the formalism as well 

as a short range residual interacti6n in the form of the pairing approximation. 
I 

The angular momentum has been introduced in a consistent way as an additional 

constant of motion. Certainly this kind of calculation represents an improve

ment over the old level dens:Lty exp~essio~swhich cannot be considered more 
I 

than gross interpolati:on formulae. The wealth of details obtained in the pre-

sent calculation allows one to follow the evolution of the system as the 

excitation energy and the angular momentum increase. In fact, this 

formalism provides the user with a comprehensive view of a large number of 

.physical quantities like the pairing gap, the moment of inertia, the rotational 

frequency, the entropy and so! on. 

However, limitations of various nature are inherent to the model. 

A minor limitation is associated with the use of the saddle point approximation 

which results in the fact that the constants of motion are not held rigorously 

constant but are constant only on the average. However, this defect is not 

serious except at the very lowest temperatures where the fluctuations are exceed-

ingly large and the ssrddle point method itself fails. A somewhat more serious 

difficulty, very much related' to the previous ones, has to do with the spurious 

prediction of sharp phase transitions as the system undergoes a change from the 

paired to the normal configuration. 

The shortcomings discussed so far are related to the statistical 

approach. Serious difficulties are associated with the total Hamiltonian as 
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well. The single particle part of the Hamiltonian used in the present formalism 

is not self..-consistent. In the Hartree-Fock spirit, each configuration should be 

characterized by its own self-consistent single particle spectrum. It is practi

cally imposible to achieve such a kind of self-consistency in a statistical cal

culation performed within the microcanonical ensemble. In the grand canonical 

sense, by using the thermal averages of the occupaticl.l numbers, it me¥ be possible 

to incorporate a Hartree-Fock self consistency in the future. For the moment the 

experimental existence of sharp shell effects in the density of neutron re

sonances substantiates the hope that the single particle spectrum associated 

with the ground state me¥ not be a totally inaccurate representation of the 

single particle spectrum in excited nuclei. 

The residual interaction used in the present calculation is rather 

schematic and can be improved. It is possible, for instance, to use the actual 

matrix elements of a short range attractive force instead of using a constant 

pairing strength as in the present paper and, in fact, such a kind of calcu

lation is in progress. However, the elimination of the. pairing approximation 

which only considers the scattering of pairs of particles in time reversed 

orbitals does not seem very easy to achieve at the moment. Methods more 

directly related to the spectroscopical calculations mS¥ be more effective 

in properly handling very complicated residual interactions. 

A final comment should be made concerning· the possibility of accurately 

reproducing experimental data. It should be possible to reproduce the level 

densities, or other related properties, at sufficiently large excitation energies, 

say above 10 MeV, rather accurately with minor adjustments of the parameters of 

the model. Unfortunately, the main amount of information comes from neutron 
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resonances, usually at excitation energies smaller than 7MeV. At these 
'i .1 1 

·I I I 
energi.es: aD.Y' small inadequacy of the s.hell model or of the residual inter-

action will produce very large devi.ations: in the level densiti.es. Therefore; 

the ambitious project of accurately reproducing level densities in this region 

mey still require substantial improvement in the Hamiltonian used in the 

calculation. Still one may hope that the present formalism will be of help 

in reproducing the qualitative and semi-qualitative features of the landscape 
I ! 

of excited nuclei and in giving guidance for the understanding of experimental 
! i 

information. 
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Figure Captions 

Fig. 1. Gap parameter 11 as a function of angular momentum for the neutron 

and proton components of 194Pt at a temperature value approaching zero. 

The angular momentum refers to a single component and not to the whole 

nucleus. 

Fig. 2. Dependence of the critical temperature upon angular momentum for 

the uniform model. 

Fig. 3. Dependence of the critical temperature upon angular momentum for 

the proton a} and neutron b} components of various isotopes. Notice 

the decrease in T and I as the N = 126 shell is approached. A large cr cr · 

increase in I cr' associated with the proton h912 level is also seen for 

z = 86. 

Fig. 4. Contour map of the gap parameter as a function of temperature and 

angular momentum for the uniform model. The lines of constant gap 

parameter are spaced 0.05 ~ from~~~ = 1.0 to ~~~ = 0.1. The outer 
0 0 0 

line corresponds to ~~~ = 0. 
0 

Fig. 5. Isometric projections of the gap parameter 

and angular momentum for the proton and neutron 

1§~ c,d) and 
2~~n e,f). 

as a function of temperature 
.· 194 

components of 7sPt a,b) 

Fig. 6. Dependence of y upc-n angular momentum at various temperatures for 

220 the proton component of 86Rn. The effect of pairing is evident at the 

lowest temperatures where y depends rather weakly on angular momentum. 

At the highest temperatures the linear dependence typical of a body 

rotating with a constant moment of inertia is observed. 
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Fig. 7. Gap parameter~ as a function of y at various temperatures for the 
. 22CL_ 

proton component of s6Rn· 
Fig. 8. Dependence of the chemical potential A upon IS.. at various temperatures 

220 for the proton component of 86Rn. At the lowest temperature A shows 

strong variations associated to the discreteness of the single particle 

levels. As the temperature increases the shell structure is washed out 

and peculiar longer range trends are observed. 
I I 

Fig. 9. Square root of the determinant (eq. 8} as a function of temperature 

and angular momentum for the uniform model. The lowest line corresponds 

to I/I = 0 and the following lines are spaced at intervals equal to cr 

Icr/7. The energy unit is equal to the pairing condensation energy and 

equal to twi.ce the rotational energy at I = I cr 

Fig. 10. Square root of the denominator (in MeV) as a function of temperature 

and angular momentum for the proton a) and neutron b) components of 1~~Pt. 
Notice the discontinuities associated with the phase transition and some 

sharp fluctuations occuring in a) at the lowest temperatures due to 

peculiarities in the shell structure. 

Fig. 11. Probability distribution of the gap parameter ~ at various tempera-

tures. The values of ~ at the maxima of the distributions correspond to 

the values obtained by solving the gap equation. The uniform model used 

in the calculation is characterized by g = 7 MeV-l and ~ = 1 MeV. The 
0 

critical temperature is T = 0.57 MeV. cr 

Fig. 12. Specific heat as a function of temperature obtained using the 
I 

, I : 

most probable~ (thin line) and using the average~ (thick line). 



Fig. 13. E:Q..tropy as a function 9f temperature and angular momentum for the 
: ' I I 

uniform ~odel. The lowest isotherm is at T = 0.158 T and the spacing cr 

between the isotherms is 0.053 T • cr 

Fig. 14. Entropy as a function of temperature and angular momentum for the 

194 proton a) and neutron b) components of 
78

Pt. 

Fig. 15. Yrast line and higher isotherms for the uniform model. The isotherm 

next to the yrast line is at T = 0.158 T and the spacing between isotherms 
cr ' 

is 0.0526 T • The dashed line represents the yrast line of the unpaired cr 
I 

system and the upper line crossing the isotherms is the boundary of the 

superfluid phase. For the energy unit see caption to fig. 9. 

Fig. 16. Yrast lines and higher isotherms for the proton a) and neutron-b) 

194 components of 78Pt. 

Fig. 17. 

194Ft 
78 

Square root of the denominator determinant (in MeV} for the nucleus 

as a whole, as a function of temperature and angular momentum. The 

two discontinuities associated with the proton and neutron phase transitions 

are observed in many isotherms. 

Fig. 18. Lines of constant entropy in the temperature•angular momentum plane 

- . 194 198 220 for the nucle1 78Pt a); 8QHg b); 86Rn c). The boundaries of the proton 

and neutron superfluid phases are also shown. 

Fig. 19. Lines of constant entropy in the energy angular momentum plane for 

the same nuclei as in fig. 18. The yrast line and the boundaries of the 

neutron and proton superfluid phases are also shown. 

Fig. 20. Lines of constant natural logarithm of the level density in the 

energy angular momentum piane for the same nuclei as in fig. 118. The 

yrast line and the boundaries of the neutron and proton superfluid phases 

are also shown. 



1.0 

~ 

~ 0.6 
QJ 

E 
0 
~ 

0 
Q. 0.4 
Q. 
0 

(.!) 

0.2 

'' ·, t~l u t) .j '"~ ,r 

0 4 

2 

.. ; 
;,) ~J I <I / \) (J 

-35-

I neutrons (fl) 
8 12 16 

194pf 
78 

/4 6 8 
I protons (n ) 

Fig. 1 

LBL-1298 

, I 

20 24 

10 12 

XBL731-2066 



"- 0.8 
0 

1-
.......... 
1- 0.6 

0.4 

0.2 

0.6 

-36- LBL-1298 

0.8 1.0 1.2 1.4 

I I I cr 
XBL 734-421 

Fig. 2 



_..;.. 

> 
Q) 

~ -
~ 

(.) 

r-

0.6 

0.5 

0.4 

0.2 

0.1 

0 

-37- LBL-1298 

Proton. critical temperatures 

196Pt 78 Ap = 0.8123 MeV 
19sHg 80 .6p = 0.6380 MeV 
2181Rn 
86 .6p = 0.9205 M 1

V ~ 

' 4 8 12 16 1 20 
I (1;) 

i 

Fig. 3a 



-> 
Q) 

~ -
~ 

(.) 

1--

0.2 

0.1 

.0 

Neutron 
~~~Pt 

';:Pt 

'~:Pt 
19aPt 
78 

8 

-38-

critical temperatures 

ilN = 1.1593 MeV 

ilN = 1.0653 MeV 

ilN = 0.9805 MeV 

ilN = 0.8577 MeV 

N =114 
~~- N =116 

N= 118 

't'E--~---.J~-+- N = I 2 0 

16 _24 32 
r en) 

LBL-1298 

40 

X BL732- 2299 

Fig. 3b 

.. 

'" 



-39- LBL-1298 

I ,, 

0.4 

0.2 

0.0 L-...-...J...._,-l..I..--LJ..~I.....L-....LL.-....L...L.-.L...-L.....J..._~I..J.L..L.,.L.L.IL..--L..-L.-:--~ 
0 0.2 0.6 1.0 I. 2 

I I I cr 
XBL733 - 2510 

Fig. 4 



/ 

-40- LBL-1298 

~.Z=116•78 PROTO~S 

l l~TERU~L= 4 HB~R 

DELHI T l~TERU~L= .05860 MEU 

DELl~ IHTERU~L= .40 MEU 

XBL 731-30 

Fig. 5a 



\.i J J ·.J :.) () I ... 
I ' 

...... 

-41- ~1-1298 

I Fig. 5b 
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States Atomic Energy Commission, nor any of their employees, nor 
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any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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