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Abstract 

A method is developed for obtaining the spectra of 

trees of NMR and chemical interests. The characteristic 

polynomials of branched trees can be obtained in terms of 

the characteristic polynomials of unbranched trees and 

branches by pruning the tree at the joints. The unbranched 

trees can also be broken down further till we obtain a tree 

containing just two vertices. This effectively reduces the 

order of the secular determinant of the tree we started 

with to determinants of orders at most equal to the number 

of vertices in the branch containing the largest number 

of vertices. An illustrative example of a NMR graph is 

given for which the 22 x 22 secular determinant is reduced 

to determinants of orders at most 4 x 4 in just the second 

step of the algorithm. The tree pruning algorithm can be 

applied even to trees with no symmetry elements and such a 

factoring can be achieved. Methods developed here can be 

elegantly used to find if two trees are cospectral and to 

construct cospectral trees • 

i 
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I. Introduction 

In recent years graph theory has been found to be extremely useful in 

chemical applications. These applications concern representation of dynamical 

processes in molecules, inter-molecular interactions, enumerations of struc-

tures, topological correlation of chemical properties that depend on the 

structure of molecules, etc •. For example, thermodynamic properties of molecules 

can be correlated to their topologies [1]. Ever since the middle of this 

century chemists have recognized the intimate relation between the topology 

of molecules and their energy, etc. An evidence of this recognition is the 

valence bond method and the associated combinatorial and graph theoretical 

techniques [2-7]. It is well-known that molecular topology can be character-

ized by the associated graphs but for automorphisms. However, these auto-

morphisms can be recognized as shown by Randic [8]. 

The relation between the topological matrices used in Hlickel theory and 

the adjacency matrices of the associated molecular graphsis well-known [9-30]. 

Many quantum mechanical results can be derived or rederived using the spectral 

properties of the associated graphs. 

The characteristic polynomials and spectra of chemical graphs have signi-

ficant applications in other areas of chemical physics such as chemical 

kinetics {31,32] dynamics of oscillating chemical reactions [33], solutions of 

Navier-Stokes equations [34] and related applications in statistical mechanics. 

The spectra of graphs are important in obtaining topological indices such 
the 

as Hosoya index [18-19] which are potentially useful in/correlation of topology 

to thermodynamic properties of molecules. 

One of the achievements of graph theory is the recognition of isospectral 

graphs. Isospectral graphs are graphs which can be topologically non-equivalent 

and yet have identical spectra. Thus isospectral molecules will have similar 

thermodynamic properties. 



The present author [35] recently introduced the concept of NMR graphs 

which are diagrammatic representations of nuclear spin-spin coupling inter

actions. Consequently, the study of the spectra of graphs will have special 

significance in obtaining the spectra of NMR spin Hamiltonians within the 

spirit of equal coupling limit. The methods developed here can also be 

extended to non-equal coupling limits which makes these methods especially 

important in magnetic resonance. This aspect will be considered in a future 

publication. 

The methods of simplifying spectra of graphs such as Sach's theorem [30] 

becomes quite cumbersome for graphs containing large number of vertices. 

Even for a graph containing 12 vertices Sach's theorem becomes quite diffi

cult. It is possible to factor the characteristic polynomials of graphs 

exploiting the symmetry elements present in the graphs. Such symmetry 

factorings of the characteristic polyn?mials of graphs have been considered 

by King [26], D'Amata [25], and Davidson [27]. These methods naturally depend 

on the symmetry elements and are therefore not applicable for graphs with no 

symmetry elements. In this paper we develop techniques to factor the charac

teristic polynomials of trees even if they have no symmetry element. 

2 

The objective of this investigation is to develop elegant graph-theoretical 

factoring techniques for evaluating the characteristic polynomial of trees by 

a tree-pruning technique outlined in this paper. Tree-pruning techniques have 

been used by Balaban [36] and the present author [37-38] in other applications. 

The motivation for the method developed in this paper takes its origin in the 

papers of Godsil and McKay [39], Schwenk [40] and the present author [37]. The 

methods developed here can considerably simplify the evaluation of spectra of 

chemical trees and do not depend on symmetry of the trees. For example, a 

22 x 22 secular determinant of NMR interest is shown to be reducible to 
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determinants of orders at most equal to 4 x 4. The method developed here also 

leads to the construction of cospectral trees. In Sec.II we outline these 

methods and in Sec.IIIwe give examples to show the use of the methods 

developed in this paper for characterizing cospectral trees. In the Appendix 

an algorithm is formulated based on the techniques developed here. 

II. Spectra of Root-to-root Products 

A. Preliminaries 

The adjacency matrix of a graph is defined as follows. 

if the vertices i and j are connected 
A •. 

l.J 
(2.1) 

otherwise 

The secular determinant of the adjacency matrix of a graph is known as the 

characteristic polynomial of the graph. The eigenvalues of the adjacency 

matrix constitute the spectrum of the graph. Two graphs are said to be iso-

spectral or cospectral if their spectra are identical. Two graphs can have 

identical spectra even if their adjacency matrices are not transformable into 

one another by any permutation of the vertices of these two graphs. If the 

characteristic polynomials of two graphs are identical then their spectra 

must be identical. Consequently, if the characteristic polynomials of two 

graphs are identical then they are cospectral. 

Tree is a connected graph with no cycles. The vertices of a tree with 
can 

degree (valence) more than 1/be defined as the roots of the tree. Then a tree 
a 

can be expressed as/product of a quotient tree Q formed by these roots alone 

and the branch resulting from pruning the tree at these roots. For example, 

the tree r in Fig. 1 can be obtained by joining the black dots (roots) of Q 

and a black dot of a copy of the type T. Let Y. be the set of ail vertices in 
l. 



Q that have the same degree and are attached to a root of the copy of the same 

type Ti. Then the root-to-root product of Q with T
1

,T2, .•.. ,Tt denoted as 

Q.(T1 ,T2 , •••• ,Tt), is defined as the tree resulting by attaching a root in the 

set Y. and the root of a copy of the type T .• This product was introduced by 
1 - 1 

the author in the context of isomer enumeration.[37] In Fig. 2 we have another 

example of a root-to-root product. The rooted product defined by Godsil and 

McKay[ 3J~s similar to root-to-root product. For example, the tree in Fig. 1 

be considered as the rooted product of Q with T(l) and T( 2) where T(l) 

T( 2) are the copies of the same type T shown in Fig. 1. In general, 

can 

and 

(1) (2) . (n) 
rooted product of a graph Q with a sequence of graphs T ,T , ••• and T , 

(1) (2) 
is obtained by identifying the roots of Q with the roots ofT ,T , ••• 

and T(n). 

B. Spectra of Trees by Pruning the Trees 

Any tree can be pruned at the branches successively till we obtain an 

unbranched tree. The characteristic polynomial of the tree we started with 

can be obtained in terms of the characteristic polynomials of branches and 

the unbranched tree as we show here. 

We start with the method proposed by Godsil and McKay for the charac,... 

teristic polynomials of rooted product of two graphs. Let H.(x) be the 
1 

characteristic polynomial of the type T .. Let H~(x) denote the characteristic 
1 1 

polynomial obtained by deleting the root ofT .• Let q .. be an element of 
1 1] 

the adjacency matrix of the quotient tree Q. Let Y. be the set of vertices 
1 

in Q that are mapped to the same type T .• Equivalently, roots of Y. are 
1 1 

joined to the root of a copy of the type T. in obtaining the root-to-root 
- 1 

product. Then define a new adjacency matrix A given as follows. 

4 
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A .. 
l.J !I\ (x) if 

= -qij~(x) 
i=j and ie:Yk 

if i=#j and ie:Yk 
(2.2) 

This definition of the matrix A is not identical to the definition of GodSil 

and McKay. However, this can be reduced to their definition. We have the 

following theorem. 

Theorem 1 [Godsil and McKay]: 

The characteristic polynomial of the root-to-root product 

Q. (T
1

,T2 , •••• ) is the determinant of the matrix A defined above. 

This theorem was proved by Godsil and McKay using a lemma of Schwenk stated 

below as Lemma 1. 

Lemma 1 [Schwenk]: Let G be a graph with a root rand let H be a graph 

with a root s. Let G(x) and H(x) be the characteristic polynomials of G and H, 

respectively. Let G'{x) and H'(x) be the characteristic polynomials of the 

graphs obtained by deleting the roots r and s of G and H, respectively. Let 

G.H be the graph obtained by identifying the roots r and s. Then the charac-

teristic polynomial of G.H, denoted by G.H(x) is given as follows. 

G.H(x) = G(x)H'(x) + G'(x)H(x)- xG'(x)H'(x) (2.3) 

The proof of this lemma was given by Schwenk [40]. 

Let h. be the characteristic polynomial of a type containint i vertices 
l. 

including the root. 
i i-2 

Then h. can be seen to be equal to x - (i-1) x 
l. 

Let 

I 

h. be the characteristic polynomial of the tree obtained after deleting this 
l. 

i-1 root. h. can be seen to be x • 
l. 

Let us now illustrate theorem. 1 with the tree shown in Fig. 1. In this 

case there is one type and one Y set. The adjacency matrices of Q and T are 

identical for this example and are shown below. 



Thus H(x) = h2 and H'(x) The matrix A is shown below. 

By theorem 1 the characteristic polynomial of the graph Q.T is just the 

determinant of A which is 

2 2 2 
(x -1) -x 

6 

(2.4) 

(2 .5) 

(2.6) 

Incidentally, this is the characteristic polynomial of the topological matrix 

of butadiene. The secular determinant of butadiene which is of the order 

4 x 4 was reduced to a secular determinant of order 2 x 2. This reduction 

has nothing to do with the symmetry of the molecule. It is purely graph 

theoretical. Thus, such a reduction is possible for molecules with no 

symmetry. 

As a second illustrative example, consider the graph r in Fig. 2. 

r is the root-to-root product Q.(T1 ,T2 ,T3) with Y1 = {1,2}, Y2 = {3}, and 
an 

Y3 = {4}. The secular determinant of order 9 x 9 by/application of this 

theorem can be reduced considerably. The adjacency matrix of Q is shown 

below. 

0 0 0 1 

0 0 0 1 
((Q)) = 

0 0 0 1 

1 1 1 0 

(2. 7) 

.j 
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The matrix A is shown below. 

h2 0 0 -h' 
2 

0 h2 0 -h' 
((A)) 2 (2.8) 

0 0 h4 -h' 
4 

' • -hl ~ 
-h' 

1 
-h' 

1 hl 

' Inserting the appropriate values of h1 ,h1 , etc., in A and evaluating the 

secular determinant of A we obtain the characteristic polynomial of r as 

(2.9) 

In this case we reduced the 9 x 9 determinant to determinants of orders 

at most 4 x 4. In many cases further reduction is possible if the quotient 

graph has more than one root as we show in the next section. 

C. Iterative Algorithm for Evaluating the Characteristic Polynomials of Trees 

The algorithm we outlined in Sec.IIB can be iterated particularly for 

bigger trees till the secular determinant becomes sufficiently small. 

Actually, the algorithm can be repeated till we obtain a tree that contains 

at most one root. This algorithm reduces the secular determinant of the 

matrix of the tree we started with to determinants of orderat most equal to 

the maximum number of vertices in any type generated in all iterations. 

Even then, the secular determinant of any type can be factored further if 

there is any symmetry element in the type. This simplification will be 

v considered in a future paper which will incorporate the symmetry groups of 

graphs in this algorithm. The algorithm is outlined below. 

The tree we start with is pruned at joints. Pruning is continued till 

we obtain a tree with no branches, This tree can also be broken down 



further by a rooted product. Let Q. be the quotient tree generated at the 
J 

· th · · L T b d J 1terat1on. et .. e a type generate 
1] 

. h .th . . 1n t e J 1terat1on. Let 

t~!j) be the elements of the adjacency matrix of the type T... Let Y .. be 
1] 1] 

the set of vertices in Q. that are mapped to the same type T ... We define 
1 1] 

a matrix D(ij) as follows 

8 

~,j-l if Q.=m and Q.EYk,j-l (2.·lc>) 

-H' t(ij) f ~ d 
k . l n i Q.rut an Q.EYk,J'-l ,]- "'m 

where ~,j-l is the secular determinant of D(k,j-l). 

,determinant of the matrix D'(k,j-l) which is obtained 

' ~ is the secular -K.,j-1 

by deleting the row 

(k ·-1) 
and column of D ,J that corresponds to the root in Tk,j-l' ~l is the 

characteristic polynomial of the type Tkl which is hi (defined in Sec. liB) 

if this type contains i vertices. Then we have the following theorem. 

Theorem 2: The characteri~tic polynomial of the tree we started with 
is the secular determinant of the matrix defined below. 

and Q.EYk ,n 

Q.;&m and Q.EYk ,n 

where qi:) is a typical element of the adjacency matrix of the quotient 

h Q d . h th . . grap n generate 1n t e n 1terat1on. Theorem 2 can be proved easily by 

repeated applications of theorem 1 at every iteration of the algorithm. 

As an example to illustrate this procedure consider the tree shown in 

Fig. 3. This tree was used by the author in NMR application~ 3 7] This tree 

can be pruned iteratively to a quotient tree containing just 2 vertices in 

2 successive iterations. The quotient tree and the types generated in the 

first and second iterations are shown in Figures 4 and 5, respectively. 

(2.11) 

I 
.;1 

,v 

v 
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The matrices D(ij) and H .. 's are shown below. 
~J 

' ' ' ' Hll = h3 Hll h3 H21 = h4 H21 = h4 

' 
H31 = hl H31 = 1. 

h4 0 0 -h' 
4 

0 h3 0 ' 
D(l2) = -h 3 

0 0 h3 -h' 
3 

-1 -1 -1 hl 

2 r2 
H12 - H12 , which on simplification yields, 

10 6 4 2 2 8 6 4 2 x .(x -lOx +30x -28) - x (x -7x +lOx -12) (2.12) 

Thus we reduced the 22 x 22 determinant problem in to problems involving 

at most 4 x 4 determinants. Further, symmetry in trees T21 and T12 can 

simplify the problem. 
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III. Cospectral Trees 

It is possible to determine elegantly if two trees are cospectral with 

the methods developed in Sec. 2. To illustrate consider the trees shown in 

the paper of Randic et al. [15]. One of them is shown in Fig. 2 while the 

other is shown in Fig. 6. We now show that these two trees are cospectral 

i.e., they have identical spectra. The characteristic polynomial of the 

tree in Fig. 2 was already obtained as an illustrative example (c.f., Eq. 2.9). 

The quotient tree Q and the types T
1

,T2 , and T
3 

of r in Fig. 6 expressed as 

root-to-root product are also shown in this figure. 

h2 -hi 
2 0 0 

-hi -hi 0 h2 
[Q.(T1 ,T2 ,T3)](x) 2 2 

= 
I 

(3.1) 
0 -h 1 hl -hi 

1 

0 0 -hi 
2 h2 

I 

Substituting the expressions for h1 , h1 , etc., in 3.1 we obtain 

[0 (T T T )]() Xg- 8x7 + 17x5 - 10x3 • • 1' 2' 3 X = (3. 2) 

Expressions 3.2 and 2.9 are identical and thus the cospectrality of the trees 

in Figs 2 and 6 is established. 

The pruning technique outlined in Sec. 2 paves the way for constructing 

cospectral trees. From the pruned tree one can construct several trees by 

attaching to the same vertex isospectral fragments. The resulting trees will 

be cospectral. These applications will be considered in future publications. 
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APPENDIX 

The algorithm for characteristic polynomials of trees. For the 

explanation of notations see the text of the paper. Let n be the last 

iteration and let S. be the set of terminal vertices (vertices of degree 1). 
J 

A.l 

For j 

A.2 

A.3 

A.4 

A.5 

A.6 

(Initialize) h. 
i (i-1) i-2 +-x - X 

~ 

h: i-1 +- X 
~ 

~1 +- h. if there are i vertices 
~ 

in the type Tkl" 

~1 +- h:. 
~ 

= 2,n do 

Find s. 
J 

Qj +- Q. 1 - s. 
J- J 

D(ij) +-a if t=m and tEY 
tm --k,j-1 k,j-1 

D(ij) +--a' . t(ij) i.f Mm and tEYk,J'-l tm -l<,J-1·· · tm ·. 

H .. = det (D(ij)) 
~J 

A +- a . if t=m and tEYk tm -l<n ,n 

A +- a' q(n) if t~m and tEYk tm --l<n tm ,n 

A.6 Char+- det (A). 

Final exit. 

Char is the characteristic polynomial of the tree we started with. 
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Figure Captions 

Figure 1. A quotient tree Q and a type T and their root~to

root product. 

Figure 2. A branched tree on 9 vertices expressed as a root-to= 

root product. The roots of Q with the same symbol 

are attached to the root of a type which carries 

that symbol. 

Figure 3. A NMR tree containing 22 vertices. 

Figure 4. The tree Q1 and the types T
11

, T21 , and T31 which 

result on the application of the pruning algorithm 

to the tree in Fig. 3. 

Figure 5. The tree Q2 and the type T12 are generated by pruning 

the tree in Fig. 4. 

Figure 6. A tree which is iso-spectral with the tree in Fig. 2. 

Iso-specricity of these two trees is established 

by pruning process outlined in this paper. 
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