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. ABSTRACT
We show that the relation between the asymptotic behavior

2

Drell and Yan [1] and also West [2] have suggested on the basis
of parton models that the rate of decrease of the elastic electromag-
netic form factors of the nucleon as [3] QE — o may be correlated
with the rate at which the scaling function Fz(w) ‘vanishes as

W = EV/Q2 - 1. They suggested that if the form factor (defined in Eq. (1!

deceases as

of the transition and isovector elastic form factors and the threshold
behavior Qf'the scaling functions suggested by Drell and Yan, West, and
Bloom and Gilman follows from precocious scaling and the equal-time algebra
of cuirents. The relation for the isoscalar form factor depends on the

nature of the J = 0 fixed pole.
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and if

) —=> (w-1)°, @
then

‘n = p + 1. (5)

Iater, Bloom and Gilman [4] introduced a new scaling variable

w' =W+ me/Qg (m = nucleon mass) and showed that experimentally

sz(v,Qg) scales faster in ' than in w, and that together with

background contributions, the resonance peaks follow the scaling curve

. Fe(w') in the average (i.e., the resonances build up the scaling

curve). They suggested Eq.(3) from these observations; they

further argued that Eq. (3) is true also for the form factors for

the transition between the nucleon and resonances, defined in the

narrow width approximation by.

01,63 = 8@ - (@ + 1 - 57)/2) 2@ .

()

In this paper we will first see how experimentally observed
fast scaling plus causality and the mass spectral conditions, as

embodied in the Deser-Gilbert-Sudarshan [5] (DGS) representation,
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implies Eq. (3) for the transition form factors. Then utilizing the
Adler-Dashen-Gell-Menn-Fubini (or simply Fubini) sum rule, we will
derivé Eq. (3) with & trivial modification for the elastic isovector
form factor. It will be shown that the validity of Eq. (3) for the
isoscalar form factor depends on the nature of the right signature
fixed pole at J = O.
The DGS representation for Wz(v,Qz) is written as
© 1
We(v,Qz) = dp
° o (5)

® 2
Wio(v,02)/a? = —12-[ a G Q———E) (6)
2m 0 2y .

for Q2 and vy positive. To be precise, this form is appropriate

db o(u,b) 6(—9,2 +2by - ) e(v +bnd)

or

for the W, amplitude of the axial vector currents. It is customary

2
to write the DGS representation for the vector current amplitudes
with an explicit factor of Q2 in front due to the conservation of
current [6]. However, the final results are unchanged [7], so we

will go on with the representation given by Eq. (5). If o(u,b)  is

unimportant for p > umax(b)’ then

o

VWQ(V,QE)/m2 —— —lg du G(u,%) ’
2 -1, 2m
Q> (0 7) 0
with w fixed
= Fo(v) , (7)

e

2 . . _ '
vhere w = 2v/Q” is the Bjorken scaling variable (see Fig. 1). The -
precocious scaling observed in SLAC-MIT experiment indicates that

“max(b) (0 <b <1) is very small. If [8]

Fo(w) — c(w - 1)F, » -(8)
wer 1
we see from Eq. (7) that o(p,b) must have the behavior

o(ub) —> B(u,1)E - 1), (u £ 0) (9)
b1

\

where O(u,b) is regular and nonzero at b = 1 [9]. Hence,

0

Fo(e) —> (- 1P [ a Bu1)/en” (10)

O+e

Before arguing about the elastic form factor, let us first
see what>Eq. (9) implies for the transition form factors, which we
define as

vR+MT/2

o (@) = av Wy(v,Q%) , (11)

vR-MP/E

where Vg = (Q2 + M ;_me)/z with M and r being the resonance
mass and width, respectively. This definition includes the background
under the resonance. Whether or not thé relative magnitude of the.
resonances versus the background remains nonvanishing as Q2 —ow is

a dynamical question we can not answer here, but the previous analysis

[4] indicates that it does. If we substitute Eq. (5) into Eq. (11),
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and assume we can interchange the orders of integration [7], we have

(@7 = a 2ol , (12)
2
0 b, (Q7)
where
v (@) = (€ + /(@@ + ¥ - o 1)
by@) = mall, @ +w)/(@ ¥ -2 ). (23)

. : . 2 .
(The boundaries are illustrated in Fig. 2.) As Q  increases, the
region of integration is pushed closer and closer to the boundary
b = 1, the same region probed by Fg(w) as w —1. For

Q2 >> M - o + MP, we can use the b —» 1  behavior Eq. (9),

yielding
’ p+l
6 @) —= (%) mn
R 5 5 Q? 2(p + 1
QoM -nZ A
X TR el OV DI B VIR (R Lol (S O] P EL)
0 : 0

where Mo = ¥ - o + M'. This is the Bloom-Gilman relation Eq. (3)
for the transition form factor. It might look at first sight as if
this were a trivial result as long as GRQ(Q?) includes the béckground
contribution, but it is not so. An obvious counter example is

vwg(v,qe) —aw - 1) +bw - _1)q/Q,2 (P >¢ +1) near w=1, for

-6-

which Fy(w) »a(w - 1) as -1, but GRE(Q?)V - (/%)% a.s ,_
@ oo ER

We can not carry out the séme calculation fér the elésfic féfm
factors, because Gg(Qe) is generated from the single point |
(u,b) = (0,1), where o(,;,b) is expected to be highly singulé.r<‘ and
may include even derivatives of & functipns [10]. Ihétéad ﬁe must
invoke an additional relation between the ﬁorn term and the cOﬁtinuﬁm.

One such relation is the Fubini sum rule for the charged currents

1l = GE-(Q?) + dy Wé(V’Qe)‘ :b (15)

Yo

where v is the vaiue of v at the xN threshold, the charged
currents (AS = 0) are normalized as [JOT(iﬂo), J5(0)] =
VSB)s(ED s Wz(v,Qz) on the right-hand side is crossing-

symmetric in vy. The form factor GQ(QE) reduces to
[6, (@) + (&%/4) 6,2(@®)1/(1 + ¥ 1) (16)

in case of the charged vector current. It should be noted that
GE and GM are the isovector form factors. Substitﬁting the DGS
representation (5) into (15) and carrying out the intégrglvovér v
yields the result that 1 - G2(Q2) is given by an integral of

o(u,b)/2b over the shaded region in Fig. 3. Hence,

o, o : Ea-m? o 5 '
ac (Q7) _ 1 m -m -y
2 = T T3 5 > =
an 2(Q" +m” - m") o Q° +p

o :
olu, —8 *u y 1
)( (Ei Q2 + E? - m%:> ( 7)
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where m =m + m_ﬂ. Again, for @ >>F - m the integral is

restricted to b near 1, so we can use the asymptotic behavior of

o(u,b) near b =1, Eq. (9), yielding

. -2 2
p+l e
GE(Q,E) ~ const. +(;—T2-> 2—@_%-—174[ dp
o
X @ -a® - P S . (28)

The constant term must vanish if Gg(oa) = 0. This establishes the

relation (3) except that p describes the threshold behavior of

Fz-(w) - F2+(w). This will be tested in the inelastic neutrino
reactions, if the vector and axial vector scaling functions are equal,
In order to extend our method to the isoscalar current, we

must find some relation valid for all Q2 > 0 Dbetween the Born term

and the continuum of the physical electromagnetic structure function.

The sum ruie giving the J = 0 right signature nonsense fixed pole .

may be useful for this purpose [11]:

2
r@®) = v, Q%) +|  av v{i,(v,&°) - = (Regge tern) } ,
. B a.>0
VO . 1
(29)
2 2
where vy = Q /2. It is known that the Regge residue f3;(Q?) behaves

like (1/@22)0(.1 -1 as @ — o ._' If we can subtract the Regge terms
without changing the threshold behavior near @)= 1 of the integrand

_of Eq.(19), we can derive by the same technique as before

G2 ~ Max {Hﬁm I_égﬂ_} - (20)
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This is similar to Eq.(18). . Many aralyses [12] pave been done for the @
dependence of ¥ (Q?), and they indicate that ¥ (@%)/Q2 changes sign between

QZ

=0 and 1 GeV? but that it is almost corstant above 1 GeVZ,

We will ccnclude with a few remarks: (i) In Eq.(10) 3(;1,1) is integrated
from p = 0 to = , whereas in Eqs,(14) and (18) the integral extends only to
a finite value, Our result deperds on 3(’1,1) being nonzero below this finite
value, Experimentally, scaling sets 1n very e;,rly (a.t.least for electro-
production), as early as Q2 =1 GeV2 Qut'Sid_e of the resonance region., This,
along with the assumptior that F,(w) goes to zero smoothly as .—>1 (power
law bekavior), implies that in fact 3(u,1)= 0 for j20.5 Geve, (ii) Tbe
asynptotic behavior of G2(Q2) for resonances doeé rot set in until Q2>) -lVl2 - hz.
This is consistent with the argument made by Elitzer {13] that a dipole
behavior of éa.ch transition form factor is coﬁpatible with Bloom-Gilmar type
scaling only if the diﬁol’e mass increases with the resonance mass. (iii) As
is seer in our derivation, the interesting prediction by Bloom and Gilman that
sz(‘”)/FZn(“)) —_ (le//"n)z as (@ —> 1 does not follow, This is becausg

there is no simplé relation between the coefficien'bsb in, for example, Egs,

"(10) ana (18),

Note added: After completion of this work, we learned that R.A.Brandt and
W.-C. Ng (New York University Preprint NYU 14/72) have derived Eq.(3) for

the transition foi‘m factor using essentially the same method,
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FIGURE CAPTIONS
The line“ihtegral in the (p,b) plane that generates

F, (0) as w -1,

The integration region that generates GRe(Qg). The two

2

' Coae : 2 L2 \ '
~ boundary lines are given by p = -Q@ + b(Q + MQ -m + M).

. : - -2 2
The line integral that generates -dGQ(Q )/ng. The shaded

-région generates 1 - G2(Q2).
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