
Submitted to Physics Letters B 

LBL-1309 
Preprint : · 

', '·\j ':\ 
,,.. ·. 

THE RELATION BETWEEN FORM FACTORS AND THE 
SCALING FUNCTIONS IN ELECTROPRODUCTION 

AND NEUTRINO REACTIONS 

Paul Langacker and Mahiko Suzuki 

September 26, 1972 

TWO-WEEK LOAN COPY 

Thi: is a Ubrar~ Circulating Cop~ 
~hJch ma~ be borrowed for two weeks. 

or a personal retention cop~. call 
Tech. Info. Division, Ext. 5545 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



-1- LBL-1309 

THE RELATION BETWEEN FORM FACTORS AND THE 

* SCALING FUNCTIONS IN ELECT.ROPRODUCTION AND NEUTRINO REACTIONS 

Paul Langackert and.Mahiko Suzukitt 

Lawrence Berkeley Laboratory and Department of Physics 
University of California, Berkeley, California 94720 

September 26, 1972 

ABSTRACT 

We show that the relation between the asymptotic behavior 

of the transition and isovector elastic form factors and the threshold 

behavior of the scaling functions suggested by Drell and Yan, West, and 

Bloom and Gilman follows from precocious scaling and the equal~time algebra 

of currents, The relation for the isoscalar form factor depends on the 

nature of the J ~ 0 fixed pole, 
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Drell and Yan [1] and also West [2] have suggested on the basis 

of parton models that the rate of decrease of the elastic electromag-

netic form factors of the nucleon as (3] 2 Q ~oo may be correlated 

with the rate at which the scaling function F2(w) vanishes as 

w = 2v/Q2 ~1. They suggested that if the form factor (defined in Eq,(16 

deceases as 
G2(Q2) ~ (l/Q2)n 

Q ~ 00 

(1) 

and if 

pZ{w) (w - l)p , (2) 

then 

n p+l. (3) 

Later, Bloom and Gilman (4] introduced a new scaling variable 

w' = w + m2/Q2 (m =nucleon mass) and showed that experimentally 

2 vW2(v,Q ) scales faster in w' than in w, and that together with 

background contributions, the resonance peaks follow the scaling curve 

F2(w') in the average (i.e., the resonances build up the scaling 

curve). They suggested Eq.(3) from these observations; they 

further argued that Eq. (3) is true also for the form factors for 

the transition between the nucleon and resonances, defined in the 

narrow width approximation by 

r:. 2 2 2 :'\ 2 2 5~ - (Q + ~ - m )/2.) GR (Q ) • ( 4) 

In this paper we will first see bow experimentally observed 

fast scaling plus causality and the mass spectral conditions, as 

embodied in the Deser-Gilbert-Sudarshan [5] (DGS) representation, 
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implies Eq. (3) for the transition form factors. Then utilizing the 

Adler-Da.shen-Gell-Mann-Fubini {or simply Fubini) sum rule, we will 

derive Eq. (3) with a. trivial modification for the elastic isovector 

form factor. It will be shown that the validity of Eq. (3) for the 

isoscalar form factor depends. on the.na.ture of the right signature 

fixed pole a.t J = 0. 

2 The DGS representation for w2(v,Q ) is written as 

2 2 
db cr(~,b) 8(-Q + 2bv- ~) €(v + bm) , 

(5) 

or 

= ~~"" ~ a(, Q2 + ~) 
2m 0 . ~ 2v 

(6) 

for Q2 and v positive. To be precise, this form is appropriate 

for the w2 amplitude of the a.xia.l vector currents. It is customary 

to write the DGS representation for the vector current amplitudes 

with a.n explicit factor of Q2 in front due to the conservation of 

current [6]. However, the final results a.re unchanged [7], so we 

''ill go on with the representation given by Eq. (5). If cr(~, b) is 

unimportant for ~ > ~ (b), then 
~ max 

(7) 
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2 
where w = 2v/Q is the Bjorken scaling variable (see Fig. 1). The 

precocious scaling observed in SLAC-MIT experiment indicates that 

~max(b) (0 < b < 1) is very small. If [8] 

F
2

(w) ~ c(w - l)p , 
!JJ-tl 

we see from Eq. (7) that cr(~,b) must have the behavior 

A. 1 p 
cr(~,1)(b - 1) , c~ ,;, o > 

where cr(~,b) is regular and nonzero a.t b = 1 [9]. Hence, 

(8) 

(9) 

(10) 

Before arguing about the elastic form factor, let us first 

see what Eq. (9) implies for the transition form factors, which we 

define a.s 

(11) 

2 .2 2 
where vR = (Q + M - m )/2 with M and r being the resonance 

mass and width, respectively. This definition includes the background 

under the resonance. Whether or not the relative magnitude of the 

resonances versus the background remains nonvanishing a.s Q2 --+ oo is 

a. dynamical question we can not answer here, but the previous analysis 

[4] indicates that it does. If we substitute Eq. (5) into Eq. (11), 
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and assume we can interchange the orders of integration [7], we have 

db 
2b cr(J.l,b) ' (12) 

where 

(13) 

2 
(The boundaries are illustrated in Fig. 2.) As Q increases, the 

region of integration is pushed closer and closer to the boundary 

b = 1, the same region probed by F2(w) as 

Q2 >> if - m2 + MI', we can use the b .;...... 1 

yielding 

p+l 

2 >II 2 > (Ql2) 
Q >. -m -+MI' 

2(p + 1) 
1 

w ~ 1. For 

behavior Eq. (9), 

where 1-1
1

,
2 

=if - m2 ± MI'. This is the Bloom-Gilman relation Eq; (3) 

for the transition form factor. It might look at first sight as if 

this were a trivial result as long as GR
2

(Q
2

) includes the background 

contribution, but it is not so. An obvious counter example is 

vw
2

(v,Q2 ) ~ a(w - l)p + b(w - l)q/Q2 (p >q + 1) near w = 1, for 
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which F2(w) ~ a(w - l)p as w ~ 1, but GR2(Q2 ) -> (l/Q2)q+2 as 

2 
Q -> oo. 

We can not carry out the same calculation for the elastic form 

factors, because G2(Q2) is generated from the single point 

(J.l,b) = (0,1), where cr(J.l,b) is expected to be highly singular and 

may include even derivatives of B fUnctions [10]. Instead we must 

invoke an additional relation between the Born term and the continuum. 

One such relation is the Fubini sum rule for the charged currents 

1 1
00 

2 2 . 2 
G (Q ) + dv w2(v,Q ) , 

vo 

(15) 

where v
0 

is the value of v at the ~N threshold, the charged 

currents (~ = o) are normalized as [J
0 
t(t,o ), J

0
(o)] = 

v~3)5(XJ , w2(v,Q2) on the right-hand side is crossing

symmetric in v. The form factor G2(Q2) reduces to 

(16) 

in case of the charged vector current. It should be noted that 

GE and GM are the isovector form factors. Substituting the DGS 

representation (5) into (15) and carrying out the integral over v 

yields the result that 1 - G2(Q2 ) is given by an integral of 

cr(J.l,b)/2b over the shaded region in Fig. 3. Hence, 

X 

-2 2 
m - m 

dJ.1 2 
Q + 1-1 

- ll 

(17) 
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Where m=m+m. 
li 

Again, for Q2 >>m 2 
- m

2 
the integral is 

restricted to b near 1, so we can use the asymptotic behavior of 

cr(~,b) near b = 1, Eq. (9), yielding 

1 p+l 
~ const. + ( Q2 J 

X <ii 2 p+l " - m - ~) cr(~,1) (18) 

The constant term must vanish if G2 (oo) = 0. This establishes the 

relation (3) except that p describes the threshold behavior of 

F
2

-(w) - F
2 

+(w). This will be tested in the inelastic neutrino 

reactions, if the vector and axial vector scaling functions are equal, 

In order to extend our method to the isoscalar current, we 

2 
must find some relation valid for all Q > 0 between the Born term 

and the continuum of the physical electromagnetic structure function, 

The sum rule giving the J = 0 right signature nonsense fixed pole 

may be useful for this purpose [11] : 

:E (Hegge term) } 
o:.> 0 
~ 

(19) 

where vB = Q2j2. It is known that the Hegge residue foi(Q2) behaves 

like (1/Q2)ol..i -
1 

as QZ_, oo , If we can subtract the Hegge terms 

without changing the threshold behavior near W= 1 of the integrand 

of Eq,(19), we can derive by the same technique as before 

Max {f{(1
, (20) 
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This is simila,r to Eq, ( 18). . Nany analyses [12) have been done for the Q2 

dependence of '/(Q2), and they indicate that i(Q2 )jQ2 changes sign between 

Q2 = 0 and 1 GeV~ but that it is almost constant above 1 Gev2 • 

We will ccnclude with a few remarks: (i) In Eq,(lO) d(~,1) is integrated 

from 1-1- = 0 to oo, whereas in Eqs,(14) and (18) the integral extends only to 

a finite value, Our result depends on d(IJ, 1) being nonzero below this finite 

value, Experimentally, scaling sets in very early (at least for electro-

production), as early as Q2 = 1 Gev2 outside of the resonance region, This, 

along with the assumptior. that F 2 (ro) goes to zero smoothly as £0 - 1 (power 

law behavior), i~:r;lies that in fact <3'(1J.,1)~ 0 for~l~0.5 Gev2 . (ii) The 

asym:r;totic behavior of c2 ( Q_2) for resonances does r:.ot set in until Q2 >> M
2 - m2 , 

This is consistent with the argument made by Elitzer [13] that a dipole 

behavior of each transition form factor is compatible with Bloom-Gilman type 

scaling only if the dipole mass increases with the resonance mass. (iii) A13 

is seer. i.n our derivation, the interesting prediction by Bloom and Gilman that 

F2p(w)/F2n(ro)- C/lp/P.n) 2 
as 6)- 1 does not follow, This is because 

there is no simple relation between the coefficients in, for example, Eqs, 

(10) and (18), 

(

-Note added: After completion of this work, we learned that H,A,Biandt and] 

W.-C. Ng (New York University Preprint NYU 14/72) have derived Eq,(3) for 

the transition form factor using essentially the same method, 
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FIGURE CAPTIONS 

Fig. 1. The line integral in the (~,b) plane that generates 

F
2 

(w) as w ~1. 

Fig. 2. The integration region that generates GR
2 (Q2). The two 

b da . 1" . . b Q2 b(Q2 2 2 . ) oun ry ~nes are g~ven y ~ = .. + + M - m ± Mr • 

Fig. 3· The line integral that generates -dG
2

(Q
2

)/dQ
2

• The shaded 

region generates 1 - G2(Q2). 

! 

,+. 
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