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ABSTRACT 

A comprehensive analytical analysis of the damping coefficient 

and its temperature dependence associated with lattice resonance in 

pure ionic crystals is presented. Contributions fromcubic and quartic 

·terms in the Hamiltonian and first- and second-order terms in the 

electric moment are taken into account. A first-order self-consistent 

method for obtaining a. closed system of dependent Green-function 

equations is used to derive the appropriate expressions for the damping 

coefficients. 

It is shown that the quartic contribution to the damping 

coefficient is different from the previously obtained T2 (classical 

limit) expression. However, our result for the quartic contribution 

is in qualitative agreement with experimental results that take into 

account the implicit temperature dependence of the thermal expansion 

coefficient. 
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I. INTRODUCTION 

Theories of lattice dynamics attempt to explain the nature of 

interatomic forces in crystals, and the variation of the associated 

damping coefficient with temperature is of fundamental importance in 

these theories. The problem of determining the proper temperature 

dependence of the damping coefficient has motivated considerable 

1 experimental and theoretical research for many years. During the 

last ten years, significant progress (as a result of intensive research) 

has been made in identifying the essential features of the problem. 2 -~3 

However, the basic problem remains unresolved. A comprehensive review 

of recent theoretical and experimental developments has been given by 

.. 14 
MOOl.J. 

The present paper is devoted to a complete and systematic 

analytical analysis of the damping coefficient and its temperature 

variation associated with lattice resonance in pure ionic crystals. 

Contributions from the second-order electric moment and quartic 

terms in the Hamiltonian are treated by use of the same method as 

that employed in the trivial harmonic approximation. The second step 

in this investigation is the numerical evaluation of the derived 

expressions for the damping coefficient in each case. This evaluation 

and a detailed comparison with available experimental results will 

be presented in a separate paper. In the present paper, we show that 

our results are in qualitative agreement with experimental results. 

The equation-of-motion technique for two-time Green's functions 

is the main mathematical tool used in this analysis. It is well known 

that an infinite set of dependent {coupled) Green-function equations 

is implied in this technique. We use a symmetric decoupling method to 

terminate (form a closed system) this system of equations at the first-

., 
' 
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order self-consistent stage. That is to say, our prescription is to 

(a) write the equations for the original Green's functions (these 

Green's functions will be referred to as the first kind, and their 

equations will be classified as first order), (b) examine the generated 

higher-order Green's functions (second kind) in the first-order 

equations and reduce (when possible);. by means of symmetric decoupling, 

Green's functions of the second kind to those of the first kind, 

(c) write equations for the irreducible second kind (second-order 

equations), and (d) reduce the higher-order Green's functions in the 

second-order equations to Green's functions of the first and/or 

second kind. In general, higher-order equations may be needed. 

However, our problem does not require equations of orders higher than 

the second before self-consistence is achieved. The crucial point is 

the reduction of generated Green's functions to those previously 

defined at the earliest possible stage (the first-order self-

consistent method). 

BY use of the above prescription for obtaining a closed system 

of equations, we have developed a solution for the well studied 

harmonic case and extended the analysis (same technique) to obtain 

results for higher-order contributions to the damping coefficient. 

The usual lower-order results are obtained, but the damping coefficient 

which includes the quartic contribution differs from the usual 
,-, 

explicit T(,_ (classical limit) expression. In our higher-order 

results, the arguments of the accompanying Dirac delta functions 

contain functions with an explicit temperature dependence. 

The essentials of two-time Green-f'unction theory needed in our 

analysis along with details related to the crystal and field inter-

actions are presented in Sec. II. An.analysis of the system in the 
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harmonic approximation is given in Sec. III, and the lowest-order 

damping coefficients are developed in Sec. IV. Section V is devoted 

to the calculation of quartic contributions to the damping coefficient. 

For continuity of presentation, we have placed the details of lengthy 

decoupling analyses in the Appendices. 

' ' 
w I 
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II • MATHEMATICAL PRELIMINARIES 

In this section, we (a) present a brief introduction to the 

theory of two-time temperature-dependent retarded Green's functions 

(two-time Green's functions), (b) express the linear electric suscepti-

bility tensor in terms of the Fourier transform of a two-time Green's 

function, and (c) represent the anharmonic Hamiltonian (to quartic 

terms) and the electric moment (to second-order terms) of an ionic 

crystal in terms of phonon creation and annihilation operators. 

A. Two-Time Green's Functions 

Kubo;15 in a now classical paper, developed a general 

statistical-mechanical scheme for calculating transport coefficients 

(response functions) without the traditional use of Boltzmann's 

equation. However, it is extremely difficult to evaluate Kubo's 

response formulas directly. By establishing a connection between 

Kubo' s formulation and :(ield-theoretical Green's functions, 16 

Bogolyubov and Tyablikov17 develbped the method of two-time Green's 

functions; Hence the method of two-time Green's functions is a power-

ful theoretical tool whiCh can be used to ascertain important physical 

information in response related problems. The two-time Green's 

function is defined by18 

G(t - t I) = -i9(t - t')([A(t)jB(t')]) 

= ((A(t); B(t'))) = G(A; B) 

where 

1; t - t' > 0 

e(t- t') = 

o; t - t' <.. 0 

(2.1) 

(2.2) 
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The causality condition, G(t - t') = 0 for t - t' < 0, clearly holds 

because of the conditions imposed on 9. The canonical ensemble 

{thermal) average is indicated by (···) and is defined by 

< .•. ) = 
-r:m Tr(e ·. ·) 

. AH 
Tr e ~-' 

The operators A and B are second quantized operators in the 

(2.3) 

Heisenberg representation. The trace is denoted by Tr; ~ and T 

are Boltzmann's constant and absolute temperature, respectively. The 

Hamiltonian of the isolated system under investigation is represented 

by H. Throughout this paper, 1T is taken to be unity. 

Differentiation of G(t- t') with respect to t leads to 

the following equation of motion for the two-time Green's fUnction: 

idG(t - t') 
dt = o{t- t')([A(t),B(t')]) + (((A(t),H]; B(t'))) • 

(2.4) 

The Fourier transform of G(t - t'') · is given by 

G(E) 1 = G(A; B)E = 2rc 
iET 

e dT (2.5) 

where T = t - t'. On taking the Fourier transform of Eq. (2.4), we 

obtain (in the energy representation) 

. EG(A; B)E 
1 

= 2rc ([A,B])E + G((A,H]; B)E (2.6) 

' i 

I 
~, 

! 
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where E = ul + iE. The frequency of the 'external perturbing field is 

w, and the adiabatic switching-on of the perturbation is controlled by 

€. 

B. The Susceptibility Tensor 

18 Zubarev has shown that the ~v component of the linear 

complex susceptibility tensor per unit volume can be written in the 

following form: 

?C (w) = -2n G(M ; M )E 
~v ~ v 

where M is the electric moment of the system. The directions of 

the applied field and the response are v and ~ respectively. 

One can readily establish the connection between X (w) 
~v 

and the differential (absorption) cross section for scattering by the 

system in question. 19 It can also be shown that the absorption 

coefficient corresponding to ?( (w) is given by20 
~v 

a (w) 
~v 

= 4n ~ Im X (w) • 
c ~v · 

C. The Hamiltonian 

(2.8) 

The system to be placed in a perturbing electric field is a 

crystal with N unit cells each containing "rigid" ions. If periodic 

boundary conditions are imposed on the system, the lattice Hamiltonian 

(to quartic anharmonic terms) in terms of phonon creation and annihila-

t . t . 21 1on opera ors 1s 

(2.9) 
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v(4) A A A A 
a:,f3, r,p a f3 r p 

a, f3, r,p 

(2.10) 

(2.11) 

(2.12) 

The indices a, (3, Y, and p are used to represent both the wave 

vectors k and polarization (branch) index j. For example, a: = !9 

and f3 = !:' j'. Capital A is defined as follows: Aa = a~ + aa:. 

The quantities a~ and aa: are phonon creation and annihilation 

operators respectively. Note that 

= o. 

tion is denoted by 

The frequency of the normal mode of vibra

The v(3) and v<4) coupling coefficients 

are Fourier transforms of the third- and fourth-order atomic force 

constants respectively. They are given by
1 

and 

. (4) . v a:,f3, r,p 

l 

1 
= 4(24N) 

(3) ( ) 
i6 K 4>(a,f3,r) -

(w w w w )1 (:2 
a: f3 r P 

(2.13) 

(2.14) 

! . : 
I 

., 
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The ll>'s are force constants, and the V's are completely symmetric 

in the indices. For example (diatomic crystals),1 '7 

v(3) v(3) (3)* -v(3) (2 .15) = v cx,r?>, Y r?>,cx, Y -a, -r?> J -y -a,-r?>,-r 

and 

v(4) v(4) v(4)* (4) (2.16) = v . cx,r3, r,p r3,cx, r,p -a,-r?>,-Y,-p -a,-r?>,-Y,-p 

In addition to Eq. ( 2 .15), we also require that v(3) = 0. -a,cx, .. . 

Translational invariance restricts 6(3)(K) by the following ,.., 
relation:1 '7 

= { 1; ~ 
o; K f= k + k' + k" 
~ rv rv rv 

= k + k' + k" 
"" "" "' 

(2.17) 

where K is the primitive translational vector of the reciprocal ,..... 
lattice. A similar condition is valid for 6 ( 4) ( K). The problem 

r-J 

associated with mixed modes (polaritons) will not be considered, and 

the Born-Oppenheimer approximation is assumed to be valid. 

D. The Electric Moment 

The electric moment of our crystal can be represented as a 

general Taylor expansion in the nuclear displacements. The linear 

term in this expansion is the usual dipole moment. Higher-order terms 

result from charge deformation produced during lattice vibration. The 

~th component of the electric moment, to second-order, in terms of 

phonon creation and annihilation operators is1 

(2.18) 



where 

and 

M 1 
J.L 
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~~2 r 

1 
= 4 

o:,o 

0 

M (a,-o) 
1.1. A A 

( )1/2 0: -8 
wa we 

(2.19) 

(2.20) 

where M (0) and M (o:,-8) are the usual expansion coefficients, 
1 

J.L 1.1. 

8 =~',and the index 0 means Oj. The following symmetry relations 

hold for the second-order expansion coefficient: 

M (o:,-6) = M (-o,o:) 
1.1. 1.1. 

* = M (-a,o) . 
1.1. 

(2.21) 

We neglect contributions related to the interactions of multipole 

moments of the ions with the applied electromagnetic radfation. 

•: 
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III. LINEAR SUSCEPTIBILITY AND ABSORPTION: HA = 0 

The physical fact that higher-order effects are generated from 

lower-order processes is an intrinsic feature of the first-order self-

consistent method of forming a closed set of Green-function equations . 

This feature is revealed by use of a direct analysis of the basic 

equations for our main results in Sec. v. Our plan of attack, however, 

is to proceed from the simpler lower-order problem to the higher-order 

results. Using this plan, we are able to (a) clearly explain the 

basic mathematical method by solving a well-known problem and (b) show 

that the first-order self-consistent scheme is a viable method before 

obtaining results for Mf and H4 contributions to the damping 

coefficients. The harmonic approximation results in Eqs. (3.7) and 

1 (3.19) are well known. 

The complete expression for the ~v component of the linear 

complex susceptibility tensor is 

"'.l-2(w) 
""'~ v . 

where 

= 

= 
2 1 

-21( G(M ; M )E' and .· . ~ v = 

(3 .1) 

1 2 
-21( G(M ; M )E 

~. v 

-2:rr G(M 2 · M 2) • 
~ ' v E 

(3.2) 

The related problem of nonlinear susceptibility and damping (for 

Mf = o) has been treated. 13 
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A. The One-Phonon Process 

In this trivial case, we must evaluate oXll(w). 
(J.V 

Here the 

superscript on the left of )G refers to the order of approximation 

in the Hamiltonian, and the superscripts on the right refer to the 

orders of the moments considered. For example, 

0-vll(w) 
F'VfJ.v 

= 

= 

1 1 
-2:rr G(M • M ) 

f..1 ' v E 

- 2~N L 
o,o' 

1 ( +· ) 2 ( ) where G = G a0 ; A0 , E and G = G a0 ; A0 , E' 

(3.3) 

The equations for G1 and G2 in the energy representation 

are 

(3.4) 

and 

(3.5) 

On solving Eqs. (3.4) and (3.5) for G1 and G
2 

respectively and 

substituting the result into Eq. (3.3), we obtain 
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0 11 N -~ 
M (0) M (0) 

~ /w0 - E -1w~) X IJ.V = 2 
ll .· v 

wo 
o· 

N t Mll (o) Mv(o) fP~ /wJ- P(w ... 

2 wo 
0 .. 

+ i~[5(w- w0) - 8(w + w0 )]} 

We have used the Dirac identity, 

C 1 )" lim X . = 
0 

+ 1E 
E~ -

1 '\ 
i 

- (JJO i 

(3.6) 

to obtain the final result in Eq. (3.6). The corresponding expression 

for the absorption coefficient is 

= 

0 
(3.7) 

The absorption, 8{w - w0 ), consists of 5-fUnction-type 

absorption lines at_ w = w0 {no damping). This is the well-known 

·result for the absorption by a system composed of N independent 

harmonic oscillators all of frequency w0 • The e(w + w0 ) term 

represents a pole in the complex frequency {energy) plane for negative 

w0 • This latter condition is needed to satisfy the requirements of 

causality and.reality of the response fUnction {Krammer-Kronig 

relations). Note that 

dependence. 

0a11(w) has no explicit temperature 
IJ.V 
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B. Two-Phonon Processes and 

Here we are interested in determining the effect of the 

second;_order electric moment on the absorption. We must evaluate 

0 12(w) 
Xllv ' 

OX2l(w) and 
llV ' 

0 22( ) ""'-/ w • 
/VIlV 

The required expression 

for OX.l2(w) (one-phonon process) is 
llV 

0 12(w) -21( NJ-/2 L M (0) M (a',-5') 
(s1 

+ s2) (3.8) I:!: v = (2 . )1/2 X1-1v · 4 o,a' ,e' 

where s1 
= \J(ab"; ~' A_5, )E and 

required equations for s1 and s2 

and 

wo wa, we, 

The 

are 

(3.9) 

(3.10) 

On solvings Eqs. (3.9) and (3.10) for s1 

obtain s1 = s2 
= 0. Hence ~~~(w) = 

and s2 respectively, we 

0; similarly, 

In obtaining this result, we have assumed that the thermal average 

of an odd number of creation or annihilation operators is equal to 

zero. We thus conclude that the interaction between the first- and 

second-order electric moments introduces no contribution to the 

absorption coefficient in the harmonic approximation. 

We now proceed to evaluate 
0 22 
Xll/w); its basic equation is 

i 

-! 
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0 22( ) X Co) 

IJ.V I L 
a' ,e' a",e" 

M (a' -e') M (a" -e") 
j..l. ' .· v ' 

(3.11) 

where 

The appropriate equations for the H-type Green's functions are 

(3.12) 

a.nd 

(3.14) 

where 
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(:J.lG) 

(3.17) 

The susceptibility is 

* M (ex, -e) M (a, -e) 
hL v 

G~ +n5 
+ 1 2(ne - n ) ~ + na +l) 

X + . a (3.18) E + w +we E + wa - w5 E - w - w a a 5 

The corresponding absorption coefficient is 

* 

f~ 
2 

2: 
M (cx,-6) M (a,-5) 

0 22( ) 4:rr w (.l. v + n0 + l) a IJJ = 8C llV w we 
a,e a 

X [e( (d - - ())5) - 5(w + wa + (J)o) J + 2(~ - no) o(w 
1 

It) +(A) we).> ·- ' a a 
J 

.-:~~-· 
(3.19) .i 

,. 

We have restricted the calculation to the case of nonpiezoelectric 

crystals, (.A) =: (.&.) 

a -a The n quantities are the usual average 

( 
-1 

boson occupation numbers, ncx = exp ~ wa - l) . Here we have 

absorption away from w = w0 . 
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The summation over k in Eq" (3.19) indicates continuous 

absorption. This continuous absorption provides a mechanism for 

explaining the presence of absorption peaks on the short-wavelength 

side of the main peak in the spectra of alkali halide crystals. That 

is to say, short-wavelength modes produce charge deformations that 

result in absorption by a pair of short-wavelength phonons. The 

Orv22 (w) explicit temperature dependence of ~ is contained in the 
IJ.V 

definition of the n's. 

In homopolar materials (such as diamond, silicon, and 

germanium), ~ = 0. Hence the intrinsic lattice absorption is 

explained by use of if. This process is clearly demonstrated in 

Eq. (3 .19) · 

The results in this harmonic approximation are quite well 

known. However, it is important to note the straightforward manner 

in :which they were obtained. Note particularly the ease at which 

the absorption coefficient for the second-order moment, Eq. (3 •. 19), 

was obtained without solving a complicated integral equation. 22 

Equation (3.19) has also been derived by use of the thermodynamic 

Green's function method which makes use of diagrams.5 The results 

for higher-order contributions will be obtained using the same 

procedure. 
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IV. LINEAR SUSCEPTIBILITY AND DAMPING: H) f 0 

A. One~fhonon Process: 3.x11(w) 
. f..l.V 

The right-hand side of Eq. (3.3) is the required expression 

for the susceptibility in this case. The equations for G1 and G2 

now become 

8
o,o· r < > 1 2 3 ---''-- - 3 . v 3 0 (g + 2g + g ) 
2~ ~,~, 

a,~ 

(4.1) 

and 

(4.2) 

The higher-order Green's functions are given by g
1 

= G(a; a~~; A0, )E 

2 + 3 
g = G(ao: a~; A0 ,)E' and g = G(a_o:a~; A0 ,)E. To solve the equations 

for G1 and G2
, we must first find the appropriate expressions for 

the g Green's functions. The decoupled equations for the g Green's 

functions are 

= 

2 (E + w - (JJ. )g 
u r~ 

= 6v~3, 0),-A(nN - n )G
1 

+ 6v( 3) (n - n )G
2 

~ ~ ~ ~ o:,O,-~ ex ~ 

(4.4) 

and 



(E - wo: - w )g3 
t3· 

-19-. 

= 6v(3) (n + n + l)G1 
0:' 0' -t3 0: t3 

+ 6v< 3
0) (n + n + l)G2 . 

A A 0:' ' -I-' 0: 1-' 

A symmetric decoupling scheme which consists of retaining only 

diagonal terms was used to terminate the equations for the g Green's 

functions. This scheme is made self-consistent by terminating the 

system of dependent equations in such a way that the original Green's 

functions appear in the decoupled equations for the higher-order 

Green's functions. For example, 

On solving Eqs. (4.3), {4.4), and (l1.')) for 1 
g ' 

2 
g ' 

(4.6) 

and 

g3 respectively, substituting the results into Eqs. (4.1) and {4.2), 

and neglecting terms of order l/N2
, the susceptibility becomes 

M (0) M (0) 
= N ~ _.,..2----'!2;;.---V.::.-..,3=-...,.-: 11_.___ 

~ w0 - w + 2w0 r (n,E) 

where 3 11 . 3 11 
~ (n,E) = 6 (n,w) . 3r11( ) - ~ . n,w . The frequency shifts, 

3611
, and damping coefficient, 3r11

, are given respectively by 
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p (_ 
1 

. ) J + 2 (no: - nf3) 
\:. + (Jo: + (.<)f3 . . 

(4.8) 

and 

= 18rr ' lv(3)0 1
2 

((n + n + l)[6(w- wo: - w ) L -o:, ,f3 a: f3 f3 
0:' f3 

- 5(W + W + W )] + 2(n - n ) 5(W + WO: - WA)} , 
0: f3 0: f3 f-' 

The corresponding absorption coefficient is 

8:n:wN 
c 

. 3 11 
' M (0) M)O) w0 r (n,E) 
'- --~2~~2~2~~--(--2~--=2~3~1~1-(--

(wo - w ) + 4w0 w0 - w ) 6 n,E) 
0 

(4.9) 

(4.10) 

Here we obtain the usual result of a damping coefficient which has an 

explicit T dependence in the classical limit. However, a complete 

analysis requires a detailed assessment of the implicit temperature 

dependence of the v(3) coefficient. This result for 3)C~~(w) 

was first obtained by Vinogradov23 and Wallis and Maradudin.
24 

In ::ummary, we find that J- (HA = 0) leads to 8-f'unction

type absorption lines (no damping), and H7. removes the infinite 
:J 

sharpness (introduces frequency shifts and damping) of the absorption 

lines. The second-order electric moment, ~' gives rise to 
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continuous absorption which leads to secondary absorption away from 

the main absorption peak. 

B. One-Phonon Process: 3~~(w) 

The required expression for the susceptibility is given in 

Eq. (3.8). The equations for the S Green's fUnctions in this case 

are 

(J!l + wo)sl = -3 L 
a,l3 

and. 

(E - w0)s
2 

= 3 [ 

a,l3 

The higher-order Green's fUnctions are defined as follows: 

1 + + s = G(a a · A A ) -a -:13' a' -e' E' 

s3 = G(a-aa13 ; Aa,A_8 ,)E. 

(li.ll) 

(4.12) 

The standard procedure of solving the appropriate equations 

for 1 
s ' 

2 
s ' and s3 and substituting the result into Eqs. (4.11) 

and (4.12) is used to:resolve this system of dependent equations. The 

equations for the higher-order Green's fUnctions are 

- 6v(3) (n + n + l)s2 
a, o, -13 a 13 (4.13) 



and 

(E - w - w )s3 a . ~ 

where 

and 

1 
([s ])E 

-22-

+ 6v(3) (n - n )s2 
a,o,-~ a ~ 

+ 6v(3) (n + n + l)s2 
a,o,-~ a ~ 

' 

(n8, + 1)8~, 8 , 8a,a' +no:' 8-a, ,~ 8-a,e' 

On solving Eqs. (4.13), (4.14), and (4.15) for the higher-order 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Green's functions, substituting the results into Eqs. (4.11) and 

(4.12), and neglecting terms of order l/N2 , we find that the 

susceptibility becomes 

... 



where 

3. 12(w) 
?(,~v 

-23-

~ 
o ,a', 8' 

(4.19) 

(3) ( v-a' '5' 0 2 %:• + n8 , + 1) 
' ' . 

. · ( (3) . '(3)* .. )<·. ) V , , + V n +. n..,_, + 1 _a.,o,o .a',8',o a' u 

(3) . 
v-a, 6' o 2(n5, - ~,) 

+ ' ' E + wa' + w8 , E + w8 , - wa' 

(4.20) 

This result was previously obtained by GowleYJ using thermodynamic 

Green's :functions. The corresponding absorption coefficient is given 

by 

X 

L 
9 ,a' ,5' 

M (o) M (a' ,-8') 
!l v 

( 2 2)2 4 ( 2 2) 3 11( ) w0 . - hJ + w0 w
0 

- w 6 n,w 
(4.21) 
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is the same as in the case for 

coefficient is modified by 

c. Two-Phonon Processes: 3 21( ) AND 3 22(w) 
'X11v w Xllv 

The expression for is 

= L 
o' ,a', 5' 

(4.22) 

where the L Green's functions are defined as follows: 

L3 = G(aa' a_5,; A0 , )E. The equations for the L Green's fUnctions 

are 

(4.23) 

(4.25) 

1 2 3 The complete expressions for L + 2L + L and 

H1 + 2H2 
+ H3 for H

3 
~ 0 are derived in Appendix A. Hence we can 

obtain expressipns for 3 21( ) and X p.::v w 
3 22( ) 
X w. 
. IJ.V 

The form of the 

contribution to the damping coefficient is the same in both cases. 

I 
~ I 
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For siJI1plicity, we .consider the following approximate expression for 

3 22 . X (w): 
J.!V 

L M (a' ,-8') * 
3 22( ) l Mv (a', -8') 
X w ·~ E 

ll .. 
. J.!V wa' WB' 

a' ,8' 

~' +n8 , +l 2(~,.- n8 ,) 
3 21 + ' . 3 .21 . 

- wcx' - we, - r3 (n,E) w + wa' - WB' + r2 (n,E) . 

X (4.26) 

To obtain Eq. (4.26), TNe have neglected terms of order l/N3/2. The 

corresponding expressions for the damping coefficients are 

3 21 
r}. (n,w) = -6(1&) · ~ jv(3) , 1

2 
(n + n + 1), ' L a,(3,8 . ex f3 ' 

a,f3 

. 2 

X. e(w + w + w · + w , - 181( ~ lv'3' , 1 (5n - 3n + l) a a' · f3 L a,(3,8 .· f3 a . 
a,(3 

X 8(w + wa' + wa - wf3) 

. .. . 2 . 

- l8n . L lv~~~,e' l (5na - 3nf3 + l) 8(w + wf3 + wa' - wa) 
a,f3 

cx,(3 
(4.27) 
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3 21 r2 (n,w) 

+ 18n L jv~:~,a' j2 
(5~ - nt' + t) a(w + wa - wt' - wa') 

a,t' 

+ 18n L jv~~~, 5 ,,
2

(5nt3- ~ + ~) 8(w + wt'- wa' - wa) 

cx,t3 

+ 3(18n) L lv~:~,a' 1

2 
(~ + nt' + 1) 8(w - wa - wa' - wt') 

a,t' 

+ 3(24n) L jv~:~,a' 1
2 

{nt' + ~) 5(w + wa' + wa - wt') 
a,t' 

+ 3(24n) ~ 
a,t' 

V(3) 1 1
2 

(n + !) 8(W + WA + W 1 - W ) 
a,~,5 a 3 ~ a a 

- 3(121r) L jv~:6,a' 12 
(no: + nt' + 3-) e(w + wo:' - wa - wt') (4.28) 

ex,() 

, j 



3 21 r z (n,u.l) 
:J 

+ 1& I 
a: ,13 

+ 18n: .\ 
L 
a:' f3 
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X 8(w + w + w - w ,) 
a: 13 a: 

. 2 

jv~:~,e''' (6na: - 4n13 + ~) 8(w + u.> - w13 - wa:') a: 

jv<3) 1
2 

(6n - 4n + L) 8(w 0:,13,8'' 13 a: 3 + wl3 - w - (;J ) 
a:' a: 

+ 18n: L jv~:~,e• 1
2

(~ + n13 + 1) 8(w- wa:- wa:' - w13 ) • 
0:,13 

(4.29) 

Again, we find that the explicit temperature dependence of the damping 

coefficient in the classical limit is T. 



A. 
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V. LINEAR SUSCEPTIBILITY AND DAMPING: HA f 0 

One-Phonon Processes: 4 ll(w) AND 
X11v 

1 2 
The equations for G and G to quartic terms in the 

Hamil ton ian are . ! 

(5 .1) 

and 

(5.2) 

Our first-order self-consistent approach requires the reduction of 

terms involving H4 in Eqs. (5.1) and (5.2) to the original G 

Green's functions. This procedure must be followed even if one is 

dealing with a model for H
3 

only since the above H4 terms are of 

order 1/N. The H4 terms give rise to the usual Hartree-Fock 

approximation to the self-energy. This reduction introduces following 

contribution to the 

3 11 
X (u_l) 

J.l.V 
= N \ M (0) M (0) L J.l. v 

0 

(5-3) 
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where ~ (4) L ( o) = 12 .~ V -a ,ex, 0 , _9 ( 2na: + 1) • Here the damping coeffi-

cient for 3 11( ) 
X . w and 

J.l.V 
remains the same, but the 

frequency shifts must be modified in the following manner: 

3 11 . 3 11 
l.\;ew= [(o) + 6 old(n,w). 

The decoupled equations for the higher-order Green's functions 

(H terms) in Eqs. (5.1) and (5.2) to quartic terms in the Hamiltonian 
3 

are 

= -[6v(3) (n + n + l)G1 
a:' 0' -t' a: t3 

(5.4) 

= 6v(3 ) (n - n )G1 
a:' 0' -t' a: f3 

(5.5) 

and 

= 6v(3) (n + n + l)G1 
a:' 0' ,...r:, a: f3 

(3) 2 1 1 2 2 
+ 6V (n + nA + l)G + R

3 
g + R

3
· g · 

a:' 0' -13 a: f-' 

(5 .6) 

The details of the decoupling and expressions for the R functions 

are given in App mdix B. The sus cepti bili ty is 



where 

(3) v 
-a,o,~ 

na + n(3 + .1 
---------~----~1 + 
E + wa + w~ + R1 E 

-30-

2 ~E----n~a ___ +_n~@~·-+ __ 1---~ 
\_:E -w -w -R3 

f a ~ 3 

The frequency shifts, 4ll 4ll 
!:i {n,w), and damping coefficient, r · {n,w), 

can be obtained in the usual manner. The expression for the damping 

coefficient is 

= 18rc \" jv(3) ·1
2 

({n + n + 1)[5(w - wa - wP. - R.3) L- -a,o,~ a ~ ~ ) 
a,~ 

The damping coefficient for has the same form as that 

·given in Eq.(5.9). 

By use of this approach, the introduction of H4 leads to an 

expression for the damping coefficient which is different from the 

previously obtained T2 {classical limit) expression. The essential 

difference between 3r11 and 4r11 is the presence of the R 

_. I 
i 
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functions in the arguments of the 8-functions in Eq. (5. 9). The 

R functions have explicit temperature dependence. 

B. Two-Phonon Processes: 4 2l(w) AND ~ .22(w) 
x~v -x~v 

The expression for the damping coefficient associated with 

4 22( ) . t . 
X w • However, 1. l.S 

J..I.V 
is the same as that for 

important to note that is at least a factor of ~/2 

larger than The equations for L2 , and L3 to 

quartic terms in the Hamiltonian are 

(5.14) 

(E ) 
2 

+ wa' - w8 , .L = 

(5 .15) 

and 

(5 .16) 

We must reduce the H4 terms to the original type Green's func

tions and write equations (tot quartic terms in the Hamiltonian) for the 

higher-order Green's functions generated by the H
3 

terms. 

equations for the- L Green's functions become 

The 
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.( . - 1) 1 
E + wa' + w8; + R1 L = 

(5.17) 

R 1 Ll + R 3 L3 
2 2 (5 .18) 

and 

"' 3 3 (E - w - w ~ R )L a' 8' · 3 

(5.19) 

where 

- Ri". 
t3 -+a' ' 

and 
t3 -+ -8' 

The resolution of the higher-order Green's functions in Eqs. 

(5.17), (5.18), and (5.19) is accomplished in a manner similar to that 

·used in AppendixA. The required change is the addition of a term 

involving H4 to the equations for the I generator Green's functions. 

The reduction.of these H4 terms in the equations for the I Green's 

functions gives rise to a damping coefficient of the same form as in 

Eg. (5 · 9) • That is to say, the damping coefficient for 
4 21 . ·x (t<>) 

!lV 

and 4 . 22( ) 
XJlV w contains an explicit temperature dependent argument 

. ' 

.. 
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for the accompanying 6-f'unctions. It is therefore clear that the 

important 

4r11 (n,uJ) 

4 21 
~v(Lv) 

contribution of H4 
4 11<' ') ., since XI-LV w . 

to the damping coefficient is 

is at least a factor ~/2 larger than 

and at least a factor N larger than 
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VI. DISCUSSION 

In this paper, we have (a) presented the details of a·first-

order self-consistent method for developing a closed system of Green-

function equations, (b) used this method to show that the contributions 

of Mf and H4 to the damping coefficient can be treated in a way 

that is consistent with lower-order calculations, (c) made unnecessary 

discussions concerning which diagrams to include or exclude, (d) circum-

vented the inherent difficulty associated with the use of arbitrary 

expansion parameters in the Hamiltonian, and (e) demonstrated the 

impact on the final results of each approximation made. 

The main results are (a) the derivations of the expressions 

for the damping coefficients associated with 

and (b) the comprehensive analysis of Mf and H4 contri-

butions ·to the damping coefficient. It is shown that the damping 

coefficients associated with two-phonon processes are much smaller 

than those for one-phonon processes. The derived expressions for the 

various damping coefficients are valid for the Whole temperature range. 

The expression for 4ll r (n,w) contains 8-functions with explicit 

temperature dependent arguments. 

In the classical limit, w·e find that 3r11(n,w) is proportional 

to jv(3)1 2 T which is the same as previously derived results. 23,24 

4ll However, our expression for r (n,w) is proportional to 

( lv(3) 12/ lv(4) 1 2 )~ whiehdiffers from the previously obtained T
2 

dependent expression in the classical limit.6 '7 Our result for the 

quartic contribution is therefore in qualitative agreement with 

Mooij's experimental results for kBt. 

.. 

. ; 

! 
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If the Green-function equations are decoupled so that a T2 

(classical limit, qq~rtic contribution) expression is forced, it has 

been shown that this contribution is inconsistent with the order of 

the approxiina.tion used in the overall calculation. 10 Moreover, this 

contribution has b.een shown to be negligible in comparison with the 

b . t .b t• 10 cu ~c con r~ u ~on. 



-36-

APPENDIX A. 

This Appendix is devoted to the details leading to the solution 

of the equations for the L Green's fUnctions. The higher-order 

Green's fUnctions in Eqs. (4.23), (4.24), and (4.25) reduce to 

(A.2) 

(A.3) 

The .£ higher order Green's functions are given by 

.£' 

(A.4) 

and 

(A.5) 

i 
•: 
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The solutton of'the equations for the .e Green's functions can 

be generated from the solution of the equations for four generator 

• Green's functions. The generator Green's functions will be denoted 

by I; their equations are 

(A.6) 

(A.7) 

(A;8) 

and 

(A.9) 

where 

(A.lO) 

and . 

(A.ll) 

The decoupling of the higher-order Green's functions in the equations 

for the I Green's .functions leads to the following results: 

(A.l2) 
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\~here 

( ~) ·2) '(3) 2 
'-3[V -' . (n + n + 8 + V (n + n + )8 o: ' , 1, 2 1 2 3 3 , B' o: ' , 1, 3 1 . 3 3 2 , B' 

• 

(A.13) 

and 

(A.14) 

(A.15) 

.where 

+ v(3) (n + 1.)4:< + v(3) (n n + 1 )~ 
0:' , 1, -5' · 3 · u2, 3 0: 1 , -2,3 2 - 3 3 -l, 8 1 

(A.16) 
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(A.l7) 

and 

+ V(3) n ... + y(3) (n + 1)... ] 
ex' ,3,-B' l ul,2 ex' ,l,-8' 3 . u2,3 (A.l8) 

(A.l9) 

where 

(A.20) 
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., 

and 

. (A.22) 

The decoupling of the final generator Green's function is 

(A.23) 

where 

3[v(3) (n + n + 4)~ + v(3) (n + n + 4 )~ 
= a';-1,-2 1 2 ~ u3,-5' a',~2,-3 2 3 ~ ~,~o' 

(A.24) 



• 

.. 
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and 

+ v. (3)* ( + n + 2 )~ +·v(3) (n + + 4)5 
3,2,5' n2 3 ~ ~,ar a',-1,-2 1 n2 ~ 3,-5' 

(A.25) 

We are now .in a position to obtain the solution of the equations 

for the generator, I, Green's functions. Extreme care must be 

exercised when dealing with the coefficients of 11 and 13. In 

these cases, one roayobtain an apparent zero because of the symmetry 

properties of the v(3) coefficients. This situation may be resolved 

by interchanging an index in v(3) with an index in the accompanying 

a-function. The solutions of the equations for the I's are 

(A.26) 

I
2 2 21 l 22 2 23 3 

= d (lj2,3) + f (1,2,3)1 + f (1,2,3)1 + f (1,2,3)1 

(A.27) 

3 3( ) _ll( ) l 12( . ) 2 + fl3(1,2,3)13 I = d 1,2,3 + ~ 1,2,3 1 + f 1,2,3 1 

(A.28) 

(A.29) 
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where 

• 

·" 

The other r· · · ( · · ·) a.re def'ined in a. similar manner. The d's a.re 

def'ined by 

2 d (1,2,3) = a.nd 

Equations. (4.23), (4.24), a.nd (4.25) now become 

. 3 21 .. l 
(E + wet' + w5 , + r1 (n,E) ]L 

where 

3 21 r
1 

(n,E) = 6 y v(3) [f'31 (-a -{Xt' -A) + 1 1 (-a') A, -<X) L a,f3, a·•· ' 1-' 1-' 

a,f3 

. 21 ~1 
+ r (-f3, a, -a') + r (a, -a', f3)] (A.31) 

6 '\ V. (3) (f'32(...rv ...rvf A) + .p22(...rvf A ....rv) · L a; f3 , 5' .._.,' .._.. ' -1-' J. .._., • ' 1-'' '""' 

a,f3 . • 

22 . _12 
+ f ( -f3,et, -a') + r (a, -a', f3) J (A. 32) 



• 

,(, 

and 

1) 
F· == 6- \ v(3) [ .23(-a' ) .23( ) L a,f\,8' r ., (3, -a + r -(3, a:~ -a' 

13 . 
+ f (a, -a', (3)] 

n
1 

G L v~;~,o' [l( -a', (3, -a) + d
2

(-(3, a, -a') 

a,fl 

3 
+ d (a, -a', fl)] 

The equation for 2 
L is 

where 

3 21( ) r2 n,E '\ (3) 22 . ) 12 
= 3 1~ va,(3,t:J' [f (-a, a' :1 -13 + f (f3, -a, a') 

a;,(3 

.12 .. 02 32 
+ r (a', -(3, a) + f (a, a', f3) - f (-a, -a~, ":"f3) 

.22 . . 22 12 
- r (-a' , t3, -a) - f ( -(3, a, -a' ) - f (a, -a' , 13) J 

(A.33) 

(A.35) 

(A.36) 
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21 11 
- f (-13, a, -a') - f (a, -a', 13)] 

F
23 3 L v~~b,5~ [r3( -a, a'' -13) + r13

(13, -a, a') 

a,("> 

23 13 
- f ( -13, a, -a' ) - f (a, -a' , 13) J 

and 

n2 
= 3 L v~:b, 5,[d2(-a, a', -13) + d

3(13, -a, a') 

cx,(3 

(A.37) 

(A.38) 

- 2 2 3 
+ d5(a', -[3, ex)- d-(-a',.l3, -a)- d (-13, a, -a')- d (a, -a', 13)]. 

(A.39) 

The L3 equation reduces to 

[E ) 21( )]L3 
. - w , - (1j-:", - ·· y -z. n,E : = a o ..1 

(A.40) 



.~.) 

where 

3 21 r
3 

(n,E) 6 [ v~:~,B':[l3( -a, a', -t3) + ?-3(f3, -a, a') 
a,f3 

+f13(rv', -A·, rv) +f03(rv rvf A)] 
u. 1-' u. '""''' u. ' 1-' 

. . 

-6 \ v< 3 ) ·.· ·[l1 (-a a' -A) + f 11(A, -a:, a') 
L a,f3,5' ' ' '-' '-' 

a,f3 

11 
+ f (a' , -f3, a) J 

F32 - -6 L v~:~,a' [f22( -a, a'' -f3) + ~2(f3, -a:, a') 
a,f3 

and 

n3 = -6 '[ v~:~, 5, [d
2

( -a, a', -f3) + d3(f3, -a, a') 
a,f3 

The required expression for the combination of L' s is 

(A.41) 

(A.42) 

(A.43) 

(A.44) 



l 2 ) 
L + 2L + L 

where 

x2 = E 

and 

x7 E = 
.) 

+ W I . a 

+ w a' 

- wd' 
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(A.ll)) 

3 21 + w0, + r1 (n,E) 

- wo, 3 21 
+ r2 (n,E) 

- wo' 
3 21 . - r

3 
(n,E) 

The method for solving the equations for the H-type Green's 

functions is similar to that for the L-type Green's functions. The 

results are 

. 3 21 l + ul01 + r
1 

(n,E) ]H 

. 3 21 3 
[E - wal - w0, - r (n,E)]H 

where 

= (A.46) 

(A.47) 

(A.48) 

) . 



3 1 3 
C = - 2rt([H ])E. 

On solving the equations f'or the H Green's functions, we obtain 

(A.49) 
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APPENDIX B. 

Here we present the details of the decoupling of higher-order 

Green's functions generated by H4. For the one-phonon cases in Eqs. 

(5.1) and (5.2), we obtain 

and 

where 

[(o) __ 12 \ v< 4) 
0 

( 2n + 1) • L a,-a, ,o a 
0: 

(B.l) 

(B.2) 

(B.j) 

~he equations for the g-type Green's functions require the 

following three decouplings: 

+ R 1 1 2 2 + R 3 g3 (B.5) G([acx a~, H4); A0 ,)E ~ + R2 g 2 g 2 

and 

G([a-a a~, H4J; A0 ,)E ~1 gl 2 2 + R 3 ~ (B.6) :::::: + R3 g . 3 

where 

R 1 21!- [ (4) 
+ 1) + 4v(4) (2n + 3n~ + 1) = vo:' '-a' ,o:, -a(2~, 1 a,-a,~,-~ ex 

o:' 
(B. 'f) 

i 
I 

,, ! 

I 

,) 

... 



,. 

'"' 

R 2 
1 

R 1 
2 

-~2 

R 3 
3 

= 

=: 
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24 \' (4) + 1) +V(4) (n +n +1) ~ va' ,~',~,-~(2~, a,~,~,-~ a ~ 
a' 

(B. B) 

12 v (4) 
L va, '~' '~' -~ (2~, + 1) + v~~~,~,-~(8~ - 12n~ - 2) 
a' 

(B.9) 

12 '\' -v<4) (2n + 1) - 12 L (4) 
2.:.. V I I (2n I +1) a I'~ I'~'-~ a I a , ~ ,a, -a a 
a' a' 

+ v< 4) (18n - 24n + 4) 
a,~,~,-~ . a ~ 

(B.10) 

R 3 
1 

a' 

2:· v~7~~' ,a,-o:(28%, + 13) + v~~~,~,-~(12%: - 16n~ + 2) 
a' 

(B.11) 

( B .12) 

(h) (46n 
v a I ' ~I ,a' -a a' + 24) 

+ v< 4) ~(22n + 24nA + 13) 
a' ~' ~' -I-' a 1-' . 

(B.1B) 



-50-

and 

R 3 25 
\"""" ()_I) . ( + l) = L v a ' ' -a' ,a' -a 2na' 3 
a' 

+ v<4) (l2n a, -a,t), -t) a + l6nt3 + l4) . (B.l4) 

i 
~I 



\..I 

,... 

-51-

FOOTNOTES AND REFERENCES 

* This work was supported in'part by the U.s. Atomic Energy 

Commission. 

t Permanent address: Department of Physics, California State 

University~ Hayward, Hayward, California 94542. 

1. M• Born and K. Huang, Pynamical Theory of Crystal Lattices (Oxford 

University Press, New York, 1954). 

2. R. F. Wallis (Editor), Lattice Pynamics (Pergamon Press, New York, 

1965). 

3. R. W. H. Stevenson (Editor), Phonons (Plenum Press, New York, 1966). 

1, .• B. Szigeti, Proc. Roy. Soc. A258, 377 (1960). 

). R. A. Cowley, Adv. Phys. 12, 421 (19G3). 

6. v. N. Kashcheev, Fiz. Tverd. Tela 2' 2339 (1963)[Sov. Phys. Solid 

State .:2_, 1700 (1963)]. 

7. I. P. Ipa tova, A. A. Ma.radudin, and R. F. Wallis, Phys . Rev. ~' 

882 (1967). 

8. C. Postumus, J. R. Ferro, and S. s. Mitra, Phys. Rev. 1]4, 983 

9. 

10. 

ll. 

12. 

13. 

14. 

l ,
)· 

(1968). 

K. W. Johnson and E. E. Bell, Phys. Rev. 187, 1044 (1969). 

C. Harper, Phys. Letters 36A, 387 (1971). 

J. Ji:. gJ.dridge, Phys. Rev. ~~ 1510 (19r(:'). 

E. R. Cowley, J. Phys. ~' 134? (19'(2). 

C. Harper, Phys. Rev. ~' 1613 (1972). 

J. E. Mooij, Far Infra-Red Lattice Resonance of Alkali Halides at 

High Temperature, (Ph. D. Thesis, University of Rotterdam, 1970). 

R. Kubo, J. Phys .. Soc., Japan 12, 5'(0 (19)'(). 



-52-

16. J. Schwinger, Proc. Natl. Acad. Sci. u.s. 2]_, 4521 455 (1951). 

17. N. N. Bogolyubov and s. V. Tyablikov, Dokl. Akad. Nauk !' 53 

(1959) [Sov. Phys. Doklady ~' 589 (1959)]. 

18. D. N. Zubarev, Usp. Fiz. Nauk ]1, 71 (1960) [Sov. Phys. Usp. L' 
320 (1960) J . 

19. Actually, this connection is established by Eqs. (2.5) and (2.7). 

That is to say, the scattering amplitude can be expressed as a 

Fourier transform of a retarded Green's fUnction. 

20. A. A. Maradudin and R. F. Wallis, Phys. Rev. ·123, 777 (1961) • 

. ~~l. A. A. Ma.radudin and A. E. Fein, Phys. Rev. 128, 2589 (19G2). 

22. J. s. Langer, A. A. Maradudin, and R. F. Wallis, Lattice Pynamics 

(Pergamon Press, New York, l))65), R. F. Wallis, Editor. 

23. V. s. Vinogradov, Fiz. Tverd. Tela~' 712 (1962) [Sov. Phys. 

Solid State~' 519 (1962)]. In this paper, a two-time Green's 

fUnction method was used. However, no scheme for obtaining 

higher-order results was advanced. 

24. R. F. Wallis and A. A. M9.radudin, Phys. Rev. 125, 1277 (1962). 

Here a modified Kubo formalism was used. 

if 

·• 

) 



r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



~--- . :;: --
'ICAL INFORMATION DIVISION 

LA 'JCE BERKELEY LABORATORY 

"TVERSITY OF CALIFORNIA 

BE:1 -~ELEY, CALIFORNIA 94720 


