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HOPF BIFURCATION FOR A MODEL OF SOLID FUEL COMBUSTION

Victor Roytburd

Computer Science and Applied Mathematics Department
Physics Division
Lawrence Berkeley Laboratory
Iniversity of California
Perkeley, California 94720

ABSTRACT

Under some reasonable assumptions, a mathematical model for gasless
combustion of one-dimensional solid fuel can be reduced to a free bound-
ary problem for a system of semilinear parabo1ic equations. The problem
is in a sense analogous to the two-phase Stefan problem witﬁ nonlinear
jump conditions related to heat release. Solutions demonstrate behavior
typical for fhe Hopf bifurcation, i.e., loss of stability for the
steadily traveling wave solution as a parameter changes and the
emergence of a non1inear11y stable pu]sating combustion front.

A formal bifurcation analysis of these phenomena was carried out
recently with the help of asymptotic expansions by B. J. Matkowsky and
G. I. Sivashinsky. We develop a‘rigorous treatment of some of these
results. We consider the problem as an evolution equation in a Hilbert
space. To circumvent difficulties with a possible resonance with the
continuous spectrum we introduce appropriate weighted norms. We develop
a suitable version of the Hopf bifurcation theorem and prove the exist-
ence 6f time periodic solutions for values of the parameter near some

critical value.
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INTRODUCTION

This dissertation is devoted to rigorous mathematical study of a
model of the combustion process present in some solid fuels. It should
be mentioned that in many problems involving the combustion.of condensed
systems, the study is complicated by the fact that the combustion occurs
in two stages. The gasification of the solid fuel followed by the
burning proqess which in turn yﬁe1ds gaseous combustion products.
However there are solid fuels in which combustion is_the result of the
direct transformation of the solid fuel into solid combustion products.

A realistic model of gasless combustion of one-dimensional solid

fuel is given by the system of reaction-diffusion equations

Te= kTt ocze™®/(RTY C.= -cze 8/ (RT) (1)

T>0, =< x <= Tand C are the temperature and fuel concentration
of the 1imiting component. « denotes the heat conductivity, Q and E are
the constants éharacterizing the chemical reaction (the heat ré1ease and
the effective activation energy), Z is a normal izing coefficient and R
is the universal gas constant. Note that the fact that the fuel and
combustion products are both solid, means that there is no species
diffusion term in the second equation.

Shkadinsky, Khaikin and Merzhanov showed [14] by numerical
calculations on the model (1), that the range of changing parameters
(essentially Q and E) can be divided ihto two parts, to which there
correspond two different regimes of reaction propagation. In addition

to uniformly propagating combustion, the authors also describe
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oscillatory propagation, when the velocity of propagation of the
reaction front and the temperature on the front exhibit periodic
pulsations. Both types of propagation were observed in experiments with
a mixture of 3Nb + 2B by Merzhanov, Filonenko and Borovinskaya [11].

Theoretical explanation ofvthese pulsations was given by Zeldovich,
Leypunsky and Librovich [17] (see a]sb [14]). They show that these
pu1safions which’ariée at large activation energies, are caused by'
peculiarities of the heat transfer mechanism in the absence of mol ecul ar
diffusion. |

In a recent paper, Matkowsky and Sivashinsky [10] considered the
asymptotic 1imit of large activation ehefgies for the model in (1).
They have shown that the distributed chemical reaction can be approxi-
mated by a concentrated heat source on the combustion front. The
strength of the source may be modeled by e(T-1)N/2 5, where § is the
Dirac function, sitting on the front and N is a nondimensioha] act{va-
tion enérgy. Thus the reactibn takes place only on the combustion front
which playsvthe role of a free boundary between two phases, burnt
products and the fresh fuel. With this delta function kinetics, one can
exclude the equation for the fuel concentration from (1). As the
result, Matkowsky and Sivashinsky obtain the equation for the
nondimensional temperature, 6,

et = eyy - ea(e(ost)'l)ey . : (2)

subject to the jump conditions at t = 0



[e] = o(0+) - e(0-) = 0 , |
[e -! + ea(e'(O,t)—l) = 0 . (3)
y- b}
with boundary conditions
e(’”s?) = 0 s e(“,t) { = . : (4)

Here a is some 1umped parameter. a =vE(Tb-T0)/(2RTb2),
where Tp and Tg are the temperatures of burnt and fresh mixtures.
In the case of normal propagation Tp = Tg + QCq. The equation (2)
is written in a coordinate system attached to the front, y is a non-
dimensional distance to the front and t is nondimensional time. The
jump conditions (3) are caused by the substitution of the delta function
for the chemical kinetics. |

Matkowsky and Sivashinsky noticed that the problem (2) through (4)
has a steady state solution, 8°(y) = ey, y«£ O,Ae°(y) =1, y> 0.
The problem, linearized around 6°, has two complex conjugate solutions
of thé form ex(“)t¢a(y), where A(a) and A(a) cross the imaginary
axis if a exceeds some critical value ag. This fact gives a strong
indication that the model in (2) through (4) experiences a Hopf bifurca-
tion and that which can be used to explain the pulsations. In particu-
lar, Matkowsky and Sivashinsky in [10] have written a series for the
periodic solution of the nonlinear problem, have shown the consistency
of the system of equationé for terms of the series and have calculated
two first non-trivial terms of the series. .The paper [10] does not
claim to be mathematically rigorous and in fact it has some gaps.

For example the influence of the continuous spectrum is not estimated,
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and the convergence of the series for the periodic solution is not
discussed.

Our objective in the present dissertation is to prove the existence
of a periodic so]ution to the problem in (2) through (4). Our main
result (Theorem 4.3) is as follows:

Main Theorem (MT). There exist a one-parametér family ug(y,t)

and functions a(s) and p(s) so that the ug is a solution of the

nonlinear problem in (2) through (4), where there is set a = afs);

ug is periodic with period p(s); u, « and p depend on the para-

- meter infinitely smoothly when s is sufficiently small; «(0) =

ag, P(0) = pg and u(0) = 0. o
Here.pg stands for the period corresponding to the critical value,
ag, of the bifurcation parameter. MT claims the existence of a
periodic solution if a is sufficiently close to ag. "Solution" is
understood in some weak sense: we consider u(.,t) as a function of t

taking values in a Hilbert space
(] 2 - 2 ~
Hy = |0 ]F]% /% dy < )

for some 0 < a < 1. We consider the problem on hand as a nonlinear
evolution equation in Hj. However it could be proved a posteriori
that a periodic solution is classical (Theorem 4.7).

As a corollary to MT it could be shown that ug € Hy for any
0 < a < 1; this ensures an exponential decay of ug, at least as
e¥/2, when y » -= and therefore the boundary condition u(-=) = 0

holds. For y + =, we can derive from MT only that ug may grow not
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faster than any exponential edY, a > 0. Therefore, in addition to MT
we prove that ug is, in fact, bounded (Theorem 4.9), i.e., both
- boundary conditions in (4) hold.

In order to prove MT we are compelled to develop some tedious
technical tools, however the underlying ideas are rather natural and
simple. The goal is to realize the foH]owing plan. |

Step #1. Write the original nonlinear prob]em (2) through (4) in

“the form -

up = Aqu + R(e,u) , | (5)

where Ag is the linearization of the differential operator in (2)
provided with the linearized jump conditions, the linearization is done
around the steady state solution and at « = ag. Find a solution
T(t)up, to the Tinear problem

Uy = Ag U, Uipeg T U s (6)

and show that T(pg) has two eigenvalues on the unit circle whi1e the
remainder of the spectrum lays strictly inside. (The last requirement
is standard for the existence of the Hopf bifurcation).

Step #2. Rewrite the Cauchy problem for the equation in (5) using

a "variation of constants" formula

t
u(t) = T(t)uy + fo T(t=-r)R(a,u(r)) dr . (7)
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Step #3. Consider the operator

_ t |
o(u)(t) = u(t) - T(pt)y, - jo T(p(t-r))R(a,u(r)) dr . (8)

on the space of pg --perfodic functions and find its null space.

We note that the unknown nondimensional period, p, appears exp1icit1y.
in the operator in (8) if we change variables t » tp in (5) and apply
the "variation of constants" formula. If u is a zero of the equation
¢{u) = 0 in the épace of pg - periodic functions, then obviously
up(t) = u(t/p) is é (PDO)_‘ periodic solution of the nonlinear
equation (5).

N

We realize this outlined program in Chapters 2 through 4 (Chapter 1
is devoted to the derivation of the asymptotic model which is fhe
subject of study).

In Chapter 2 we investigate the linearized operator, Ap, which is
an ordinary differential oberator of second order with jump conditions
at 0 or, equivalently, a system of Second order operators on the haff-
axis. We find ?ut that Ag, considered in LZ; has continuous spec-
trum, which touches the origin. Thus a straightforward Hopf bifurcation
cah not take place. It turns out, however, that by introducing the
Hilbert spaces Hz, i.e., L2 with weights ea¥/2 0 < a <1, one
can shift the spectrum from the origin. The spectrum lays on a pafabo]a
which passes through the origin if a = 0 and as a increases, deforms and

collapses into the half-ray, y < -1/4, when a = 1. The idea of using

weighted spaces for shifting the spectrum belong to Sattinger [12].

~
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In order to construct T(t), a solving operator for the linear
problem in (6), we obtain an estimate of the resq]vent, (Ag - A -1,
in some sector of C1. The estimate shows that Ay generates an
analytic semigroup and T(t) = eAOt. In the weighted norm, T(pg)
possesses desired spectral properties (see Sec. 2.7).

Also in Chapter 2 we do somevpfeparations for Step #2 of our
program. We define fractional norms generated by Ag, fifig =
1(-Ag)Sfr, 0 < s <1, and show that these norms can be easily
estimated, at Teast for s = 1 and 1/2, since.they are equivalent
to Sobolev norms (let XS be a space with the norm I.0g then
XS = H2S, where HZS is a Sobolev space). |

In Chapter 3 we realize Step #2 of our plan and show that the
variation of constants formula is applicable, i.e., that the integral
equation in (7) and the differential one in (5) are equivalent.

In order to explain the essence of the problem we have to reveal
the explicit forms of the operators that enter into the non1ineaf
differential equation (5). It is convenient to include jump conditions
at the free boundary in the operator itself. This may be done with
the help of the delta function, keeping in mind that the equation
uxx + plug,u) = 8(x)f(x), where p is a "nice" function, means that
u should satisfy the homogeneous equation for x # 0 with the jump
conditions at x = 0, [u] = 0 and [uyx] = f(0).

Taking into account the previous remark, for the nonlinear

remainder in (5) we obtain



au(0,t)

R = (1-e ) (uy + 1/2 u)

>

+ (1 + oqu(0,t)-e®05t)y (n(y)e?/2-5(y))
| (9)
where H{y) is the Heaviside function, equal to 1, for y < 0, and to 0
for y > 0.

It follows from (9) that the term of the type
t .
F(.,t) = [ f(r) T(t-r) & dr
: 0

should appear in the integral équation'(7). We give meaning to this
term, showing that the parts of F on positive and negative half-axes

satisfy the following parabo]it system in the domain {x > 0, 0 < t < T}

u, =u__ - 1/4 u , = Vg ” 1/4 v - aoex/2 v(Q) ,

_t XX vt

u(0,t) = v(0,t) , u x(O,t) +.vX(0,t)_+ aou(O,t) + f(t) =0 ;

=0 .
(10)

The presence of a nonlocal term, aOeX/ZV(O), prevents us froh*

applying the standard parabolic theory. We construct a solution to
(10) with the help of the Laplace transform. As could be expeﬁted,
the analysis shows that the nonlocal term is of lower order. F can

be represented in the form,

t
F(.Y9t) = ]0 G(y,t'r) f(Y') dr
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The nonlocal character of the nonlinearity reveals itself oncé'more in
the choice of a suitable Hilbert space, where we wish to consider the
evolution equation; the functions should have good traces at 0. We ’
choose Hl = X1/2 for the convenience of calculations (although it
suffices to have XS, s > 1/4).

Now we can rewrite the integral equation (5) in more explicit form

: t
u(t) = T(t)yy + fo T(t-1) Ry(a,u(r)) dr

(11)

& [ 6(.,ter) (14 aou)(O,r)-eau(O’r‘)) dr
0 ,

The second summand on the right-hand side is a "volume potential®
while the third one is a "surface potential" generated by the free
boundary. It is not hard to show that any solution of the integral

equation that is Holder continuous with respect to t satisfies the

-differential equation. It is well known that the volume potential is

automatically Hglder continuous if Ry is sufficiently good (which is
true in our case). |

We carefully study Holder continuity of the surface potential
(Sec. 3.2). We show that the surface potehtial is Holder continuous

with values in an appropriate Hilbert space if its density is Holder

_continuous with the exponent > 1/4. We note that Holder coefficients

can grow like t=P, p < 1, as t » 0, therefore we use Hiolder spaces

with weights tP.
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Appiying the above results, we prove the equivalence of (5) and
(7). We conclude Chapter 3 with an existence and uniqueness theorem
(Theorem 3.5), which we include for two reasons: first, it seems to be
useful for the stability analysis, second the theorem is obtained by
straightforward application of the developed technique. For the
bifurcation analysis of Chaptér 4 we need only a more restrictedfresu]f
(Proposition 6) which claims the existence and uniqueness for small
times. The proposition is rather standard and is proved by application
of the contraction'mapping method.

In Chapter 4 we realize Step #3 of our plan, We find a periodic

solution to the equation in (8). We follow the ideas of Crandall and

Rubinowitz [1] and look for a one-parameter fami1y of periodic soiutions

in the form

u® = s(eg+ v(s)) , p(s) . als)

where eq = eg(t) is a periodic solution of the linearized problem,

v € V, a subspace of periodic functions complementary to {ep,e1}l.

(Recall that the linearized problem has two linearly independent

periodic so]utions'corresponding to purely imaginary eigenvalues).

To this end following [1] we introduce a function
sTho(p,o,s(egtv)) , s # 0
Y(s,p,a,v) = |

¢oy(psa,0)(egtv) s=0

In Sec. 4.1 we carry out the preliminary technical work and show that Y

is smooth (in fact infinitely smooth). After that, in Sec. 4.2, we
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prove that the Frechet derivative of Y with respect to p,a and v at the

point (0,1,29,0) is an isomorphism and therefore the implicit function

theorem is applicable to the equation Y = 0. This yields the desired

family of solutions to the problem ¢(u) = 0. The solution to the:
originé] problem in (2) through (4) is & = 60 + uS (recall that 8°
is a steady state solution). |

Having a periodic solution, we study in Section 4.3 its regularity
properties. The guiding observafion is that the solution & of the

nonlinear equation (2) solves the linear equation

U T U - o2(8(0,t)-1) u, (12)

Considering (12) in the domain (0,A) x (0,T) with boundary conditions
u(0,t) = 8(0,t) , u(A,t) = 8(A,t)

and the initial data u(x,0) = 6(x,0) and employing the fact that
boundary and initial conditions are, as easily seen, continuous we
obtain that u is a c]aésica1 solution. Therefore, by uniqueness, 6 = u
is classical also.

In order to prove boundedness we consider (12) in the domain

(0,=) x (0,27) with initial data

u(0,t) = 8(0,t) , u(0,t) = 8.(0,t)

and periodic boundary conditions. Thus (12) is regarded as a Cauchy

problem with x playing the role of time.
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We consider the Laplace transform of the solution which is a
reqgular function for Re z > a, where a is the exponent of the weight
determining the growth of the solution. Studying the resolvent of the
evolution operator of the Cauchy problém we show that for Re z {'a all
singularities of the Laplace transform, except for a pole at 0; lay in
{Re z < 0}. With this fesu1t the solution is seen to be bounded.

In conclusion we should say that a1thou§h stability ana1ysﬁs is not

touched in this dissertation, some helpful tools were developed here.

We leave the analysis for the future work.
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1. THE MATHEMATICAL MODEL
In the'present chapter we derive the model of solid fuel
combustion, which was introduced by Matkowsky and Sivashinsky in [10].
To this end we apply the methods of matched asymptotic expansions and
multiple scaling. We follow the way outlined in [10] and realized in
- [15] for a similar problem.

1.1. Nondimensionalization

We start from the system of equations, which describes the
combustion of solid fuel. The system describes fuels, in which
combustion occurs without preliminary gas phase formation and without
gaseous combustion products. Moreover, since the fuel and combustion

products are both solid, we suppose that there is no species diffusion

) : :
T K.ﬂ_% + QW(C,T) , %%. = -W(C,T) , (1)
3y

~o{y<= t >0, Tand C represent temperature and fuel
concentration of the component which limits the reaction (thus, we
regard a one component reaction). The cohstant k denotes the heat
conductivity of the:solid mixture, Q is the heat release in the reaction
and W represents the chemical reaction rate. We will assume W is given

by Arrhenius law

W= zce”®/(RT)

Here E is the effective activation energy, R is the universal gas

constant and Z is some (big) normalization factor.
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We introduce nondimensional variables as follows. Let Cp and
To be the concentration and the temperature of the unburned mixture.
For the reaction, propagating uniformly (with some velocity U),
temperatures of the unburned mixture, Ty, and of burned one, Ty, are

connected by the relation Ty = Tg + Q Cp. We set

=C/Cy , T=TT, , T=t vk, x = yU/k

o
1

o=Tg/Ty <1 , N=E/(RT,) , w= WK/(COUZ) .

= 7x/(U2NeNy .

>
N

We will drop tildas at new variables, it Wi]] not cause any confusion,
since dimensional variabTes will not appear any more. The new |
parameters have the following meaning. o is the ratio of the
temperature of the cold solid mixture to that of the hot combustion
'products, N is a nondimensional activation energy. The normalization of
the time and the parameter A are chosen in order to normalize the
velocity of normal propagation to one. w represents a nondimensionél

reaction rate. In new variables, equations (1) take the form

3T _ 23°T oC _
-é—t— = ;x—é- + (1-0)W(C,T) ’ 'ﬁ - -W(C’T) H] (2)

where

w = ANC eN(1-1/T)
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1.2. Large Activation Energy Asymptotics

We assume that the combustion front is given by a non-parametric

equation of the form
x - ¢(t) = 0 .

In the coordinate system attached to the front equations (2) become

: 2

aT - .. 9T _ %7 i

F A T '——ayz + (1-0) w(C,T) ,

3C , 3C  _ - (3)
% - by T -w(C,T) .

where ¢' = 3¢(t)/5t; y is a distance to the front

y = x - ¢(t) .

It is convenient to rescale and shift the temperature and introduce
8 by
T = (l-ad) 8+ 0 , o (4)
so that in new units of measurement the temperature of the cold mixture
is 0 and the temperature of the combustion products for normal

propagation remains 1. Then (3) takes the form

8y - ¢'0y Byy ¥ wy(C,8)

Cy = ¢'cy -wy(C,0) . (5).

- where the chemical kinetics function is

wy(C,0) = anc e?el®-1)/(or(1-0)0) (6)
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Here

a

(1-0) N/2 (7)

the coefficient A 0(1) could be a function of 8 to be specified later
on. |

We suppose N to be 1arge,}N »1and o = O(1).,vFor'1arge N the
reaction rate depends»strqng]y on temperafure. We will show that
asymptotically, for N + o, the chemical reaction could be approximated
by a concentrated heat source on the front.

We assume the chemical reaction taking place only in some vicinity
of the flame front, and the thickness of this reaction zone being of
order 1/N. |

In a region of order unity adjacent to the reaction zone behind the

front .we have the following regular perturbation expansions

Oy,t) = 8(y,t) + e (y,t) + ... |
| . - (8)
Ply,t) = Qlyat) + e ly,t) + ..

where ¢ = 1/N and the superséript "b" stands for burnt. For definitive-
ness we will assume that the burnt state corresponds to x > ¢(t) (i.e.,
y > 0). Similar expansions are valid for the unburnt region ahead the

" .n

front with replacement of the superscript "b" by the superscript "u".

We assume that

ly,t) = 0, clly,t) = 1 . (9

The first assumption means that dufing the reaction the fuel is burnt

-totally, and the second one is also rather natural, since there is no
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diffusion of species and the reaction does not take place in the
preheating zone corresponding to the unburnt state.

To deal with the reaction zone we perform rescaling and set

¢! = 1
et - ¢Y = :2' eYY + wo ‘(c’e)

Ct -~%L CY = wO(C,e) . (10)
In the reaction zone we employ expansions analogous to (8)
o(Y,t) = eo(Y,t) + € el(Y,t) + eee
CYE) = Col¥,t) + e Ci(Y,t) + ... (11)

Substituting (11) into (10) and collecting equal orders of & we

obtain a sequence of equations. First for 1/¢2 we have
2 2 .
3 eo/aY = 0 .

It follows
We wish to have an asymptotic expansion for 6 valid in some finite

region with respect to y, and 6g must be bounded there. It

immediately follows T = 0 and

op(Yst) = Tolt) . , (12)



-18-

Comparing expansidhs,in (8) and (11) we see that 8pb(+0,t) =
8g(+=,t) and ana1ogously BOU(-O,t) = fg(-=,t), therefore (12)
implies |

oh(-0,) = o0t . Cm

In the reaction zone we will distinguish an 'extinguishing' zone
which is a zone where the reaction rate is-essentia11y decreasing due to
burning out the fuel. In the extinguishing zone we will assume that the
expansion for C in (11) starts from the second term. Usfng the
translation invariance of the problem we can suppose the extinguishing

zone to be situated at Y > 0. Thus our assumption is

ColYst) = 0 for Y>O0 . - (14)

Collecting terms with 1/e2 in (10) we obtain the system of |

equations
2%0, 2a(04-1)
+AChe o=
2y 0
(15)
3CH - 2a(84-1)
0 o .
¢.W - ACOe - 0 .

Adding the equations in (15) we get

2 Gigl +4¢'C) =0
v Gy t¢ b = ’

which implies that

B,y(Y,t) + o' (t)Cy(Y,t) = k(t) , o (16)
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where k(t) is a function of t alone. For Y > 0 (16) gives (recall (14))

GlY(Y,t) = k(t) s

and as earlier (see (12)) we get k(t) = 0.
If expansions in (8) and (11) have some common domain of validity

and if they can be differentiated there, then:

and the boundary condition follows

b
890 9

oy Y

(+0,t) = oy (=,t) .
A similar condition holds for the unburnt state. Therefore for Y » e
we obtain from (16) the following relation
aed 264
3y (+0,t) - T (-0,t) - ¢'(t) = 0 . (18)
Remark 1. The relation (18) gives in zeroth approximation a
connection between the jump of the temperature gradient across the
combustion front and the velocity of the front. To obtain (18) we did
-not use the explicit form of the kinetic function but only the fact that
it is of order l/e and that the reaction takes place in a zone of
thickness ~e. |
In order to evaluate ¢'(t) we consider the reaction rate term more
thoroughly.
As o-1 = 2a/N ~ ¢, follows from (7), the exponent in (6) can be

expanded in an asymptotic series of the form
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2a(8-1)/[1+(1-0)(8-1)]
20:(60-1) + e(2a 61-60+1) + eee

(2a-)(8-1) + 2a(8-60) + €Z(.00) + oov (19)

2a(6-1)/[o+(1-0)6]

where the first term does not depend on Y, in the calculation we used

the equality

6 - 0 éee+526+ (20)

0 1 2 see

We consider 8g(t) as the temperature on the front. We will
assume that processes of combustion are similar for all t. Namely we

assume that within €2

6-0 v
A= A2, (21)

where A > 0 is a sufficient1yvnice function, say A(s) has a unique
* maximum at s = 0 and A L1(-=,0).
Now we are in a position to determine the velocity ¢'. Taking into
account k(t) = 0 we can'express‘co from (16) and substitute it into
the first equation in (15). We obtain
3¢ (za-e)(eo-l) ei 8-8, 2a(9-90)

—t - A e =0 . (22)

€

Integrating (22) from Y = == to Y = 0 and employing again (20) we have

after setting e.= 0

28 aél e2“(90'1)
: —_— . AO = 0 , (23)

Q’I
<
1
Q
-
!
.G.J
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where
| 0 /6-6,\" [8-8,\ 2a(6-6,)
Ay = lim J < _ °> A< - °> e 0" gy
v e+) -
= lim [ A(x)e'zgxe dx = [ A(x) dx .
0 0 0

Remark 2. Ag is a “"universal" constant. Considering the
explicit solution, corresponding to the uniform propagation, one may
show that Ag = 1.

In the same way we have obtained (18) we can derive from (23) the

equality

aeg aeg 1 2a(8,(t)-1)
5y (+0,t) - 3y (-0,t) - gre =0,

which together with (18) give

a -1
o= e (85(t)-1) ’ | (24)

‘where we have chosen the minus sign for ¢' since in our notation the
reaction propagates in negative direction. |

Summarizing (9), (13), (18), and (24) we can say than in zeroth
approximation the asymptotic model has to satisfy the following

conditions

a(S(O,t)-l = 0

[e] = 0, [ey] + e , [C]=-1

where [f] = f(+0)-f(-0) denotes the jump of f across the front.
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It is easily seen that the same conditions follow if we replace |
the distributed heat source by a concentrated one with the intensity

ea(8(t)-1),

The equations in (5) then take the form

o, - ¢'ey = o +'e°(e(0’t)'1)a(y)

. (25)
- $'C. = _ea(B(O,t)-l)s(y) -

where &(y) is Dirac's &-function.
We observe that the assumption in (9) implies that the initial data

to (25) must be chosen so that

1 for y <0

Cly,t) =
0 fory >0

Thus the last equation in (25) can be eliminated and we come to the

problem governed by the single equation

0, + ea(e(o,t)-l)ey = o e2(8(0,t)-1) 50y (26)

The equation with 8-function should be understood in the following

sense. 6(y,t) satisfies the equation

8, + e“(e(o’t)‘l) ey" = o, . . (27)

separately in each of the regions y > 0 and y < 0 subject to the jump

conditions

(e1=0 , [83+e(000D) =g (e8)
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and natural boundary conditions for (27) are

| 6('°°9t) = 0 ’ e('“,t) (e . . (29)

Remark 3. In this paper we use &-functions only as a convenient

shorthand for jump conditions of the type (28).
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2. LINEARIZED PROBLEM

In Chapter 1 we derived the model equatibn

o, = 8, - o008 (1)

which must be satisfied separately in the regions y > 0, and y < 0 with

Jjump conditions at 0

~—r O

(=0 , [o]+e(8@0D g (2

subject to boundary conditions
e("”:t) = 0 ’ e(mst) (o, . (3)

The equation and the jumb condition for the derivative are
nonlinear. In this chapter we linearize the problem around a time
independent solution. We consider the linearized equation as an
evolution equation in a Banaéh.space with some weight; We show that the
evolution operétor has two eigenvectors with éigenva]ues crossing the
imaginary axis when the”parameter a varies. By an appropriate choice of
the weight one can achieve that the operator, considered in a subspace
complementary to eigenvectors, will generate an analytic semigroup with
an estimate for the norm, exponentially decaying in time.

In the Tast subsections we give a brief account of some properties
of semigroups which will be necessary for solving the nonlinear problem
in Chapter 3. Also for the future use we introduce fractional norms
generated by the evolution operator. We show that they are eqUiva]ent

to Sobolev norms and therefore can beaeasi1y estimated.
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A11 Banach spaces appearing in this chapter are supposed to be real
with the customary caveat that the spectral theory is done in the
complexification.

2.1. Linearization

As easy to see the nonlinear problem in (1) through (3) has a time
independent solution
ey ,y<o0

s%(y) = .
1,y20

It fo]]ows from (1.24) that the front speed corresponding to this steady
state solution is -1. Thus s represents the uniformly propagating
plane front and its existence confirms a posteriori correctness of the
normalization in Remark 1.2.

sO is a steady state solution for all values of the parameter a.
Our goal is to study stability of sO and its possible time-periodic
bifurcations when a changes. |

~ We introduce u = 8 - sO and rewrite (1) in the form

= - u - au(0 0. s
uy Uy = Uy au(0,t) (Sy )

+ (1 -veau(O,t)) uy + (53 - §) (1 + aﬁ(O,t) _ eau(O,t) .
(4)

In the derivation of (4) we've used the identity

0 0
S - S + 6 = 0 .
y .

Yy
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Recall that jump conditions at O are served by é-functions in (4).
Boundary conditions for u are the same as for ©
U(-“,ty ='O s U(Q,t) (= ,
Separating in (4) the linear part, one can represent the equation .
(4) as
up = A(a)u +-R(u,uy) .
We will study the linear equation ut = Au which makes the following

sense: solve the equations

-a(0,t)eY :
uyy uy , ¥y<@0 |
Uy = A(a)u = : (5)
uyy-uy , y>0
subject to the jump conditions
[wWl=0 ,[ul+a(t) =0, (6)
and the boundary conditions
U(-“,t) = 0 s u(QQt) < ® . (7)

The problem in (5), (6), and (7) is the linearization of the
problem (1) through (3).
2.2. Weighted Norms

The operator A is an ordinary differential operator. Its spgctral
properties could depend on the Banach space on which A acts. As we will
see in the next section, A demonstrates in a sense a "bad" behavior if
considered in a-natdra] Banach space. But itvtﬁrns out that introducing

an appropriate weighted norm one can "improve" spectral properties of A.
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This idea was introduced and successfully employed by Sattinger in [12],

risl.
Let B denote the space of complex-valued functions on the rays
x <0 and x >0, B'='L2(-w,0) + LZ(O,w), with norm denoted by 1.1,

Let w(x) > 0'be a smooth function. We define the norms

Ilullw’0 .=- tuwl
and

fut . = fuh

J
W, J w,o P I Tyot eer ? 1(d/dx)” un

0 7

By By,j we denote the Banach space of functions with finite nt.ny j

norm

- | J
Bw,j {u'wu € B,...,w(d/dx)’u e B} .

There is a simple relation between the norm of an operator K acting
on Banach spaces with uniform and weighted norms.

Proposition 1. Let K and K, be connected by the similarity

transformation (8). Then
(i) 1Kyt = WKny g, where 1.1 and 1 1y o are the operator
norms associated with the vector norms in B and Bw,03

(i) let
sup 'wx(x)/w(x)l = C, <=
X

then "K"w,041 .
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the norm of K considered as a mapping from By g to B, 1, can be

estimated as follows

Kiy a1 £ (14 C IR D+ 0K .

0+1 .

Proof. The proof is straightforward. Let f e By g.

(i).

= = "1
annw 0 TwKf il IwKw=twf i

-1 .
L MwKw Tn o wfno= ok e

0 7

therefore 1Kty g < IKyt. The inverse inequality follows after the
replacement of w by w-l.

(ii). We have.by definition

"Kf"w,l = u(d/dx)Kfuw,0 + qunw’O .

By virtue of (i) we get for the second summand on the right-hand side

n(d/dx)Kfllw 9 = 1(d/dx)wKf - (wx/w) wKf I

I A

n(d/dx)wafu + C, K Wl

|~

"KWHO*I ﬂf"w;o + Cw"KwH "f"w,O R

and the proposition follows.
Proposition 1 shows that the estimates in weighted norms can be

reduced to estimates in unweighted norms for transformed operators.

)Y
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2.3. The Resp1vent and the Spectrum of the Lfnearized Operator
In order to study stability properties and bifurcations of the
time depehdent solution we need some information about the asymptotic
behavior of the resolvent transformation (A-k)'1 and the spectrum
of A. |
‘We consider the family of weight functions wh(y) = e'bY/Z,
0 < b <1, and denote Bb’j and 1 b, 3 the corresponding weighted
spaces and norms. Note that Bp g = B.

Proposition 2. Consider A as a transformation on By g. Then

(i) A has two complex-conjugate eigenvalues A+(a) which cross
the imaginary axis when o reaches the value ag = 2 + /5. Except for
A+(a) the exterior of a parabola M, is contained in the resolvent

set of A, where
My, = {A[Re A = b%/8 - b/2 - (In 1)%/(1-b)°)

(i1). There exists an invariant projector, Q, on the space
spanned by eigenvectors with eigenvalues A+'and A_ so that QAQ = AQ,
PAP = AP, where P = I-Q.

(1ii).' Let Ap = PAP be the invariant part of A acting on
PBh,0- Then (A-Ap)fl has the following asymptotic behavior.

For ény 0>¢ed>b2/4 -b/2 and § > 0 such that the rays

|arg(A-€)|= m-& lay outside My, there exists C(§) > 0 so that for all

A S - {x,’arg(x-s)| T8, 2% €}

"luun

-1
a) n(x-Ap) uty o < C(8) 'x_-s b0
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-1/2

. -1
b) H(A-Ap) unb,1 < C(8) ,x-e’ Tyl

b,0 .
Remark 1. The parabolas I cross the real axis at x =
b2/4-b/2. We see that for b=0 the spéctrum of A, considered as an
operator on the space B (without weight), touches the origin. For
b = 1, My degenerates into the ray x < -1/4. And for 0 < b < 1 one
has parabo1és laying in Re X < 0 and separated from the origin.
Remark 2. Péssing over to.the problem in Bb,Os b_# 0, we are
looking for solutions which presumably violate the boundary condition'
lu(+=) | < C. Indeed, the weight e~bY/2 demands the exponential decay
for y + -= but allows an exponential growth for.y + o, We will show
a posteriori that the time periodic solution found in By g is in fact
bounded (see Sec. 4.3) |

Proof of,(f{. To find the spectrum of A acting on Bb,O we must

determine A for which (A-A)'1 is unbounded. As follows from

Proposition 1, we may consider the operator

w (A0l = oyt s ot

on B. Carrying out multiplications in the definition of A, we get for

Ap the following expression

vyy-(l-b)Vy+(b2/4-b/2)v - av(0)e{1P/2)Y ey <0

2
- - + - .
Yoy (1 b)vy (b /4-b/2)v , for y> 0

(9)
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We are looking for bounded solutions of the equation
(Ab - A)u = 0 : . (10)

satisfying the same jump conditions as for A (since the weight function
is smooth)

ful = 0 ,H [uy] + au(0) = 0 . (11)

The equation (10) can be easily solved explicitly, and the separate

solutions for y > 0 and y < 0 are

ey, = etPyry(l-b)/Z g
0 (y,0) = (14 o) PYRY(ID)/Z gy (1-D72)y oy g
| (12)
with p = p(x) = (1/4 + 2)1/2, we consider p in the plane, cut from -

to -1/4 along the negative real axis. For A = 0 the solutions ¥4 and

Y. take the form

v (y,0) = (1 - ay) o(1-b/2)y

(1-b/2)y , ¢-by/2

v_(y,0) -ay e

we note that w;(y,x) and y~{y,x) are regular at A = 0.

We obtain a bounded solution of (10) and (11) in two cases:

(a) One can sew together the two decaying soiutions ¢_(y) and
v4(y). (b) ¢4 and w; are both bounded and one can construct a
linear combination of them which meets ¢. at y = 0 with the suitable
jump condition. Néte, that ¢4+ is always growing for y > 0 éxcept for

b=1, » = -1/4; v, (y), y < 0 is always bounded.



-32-

Inxcase (a) the first condition in (11) holds automatically by
virtue of the normalization in (12); ¢-(0) = ¢4(0). The second
jump condition givés the_equation ,

B2+ (1+8a-)r+a = 0 .
Since a is real the equation obviously has two complex-conjugate roots.
which cross the imaginary axis when o = op, where o = 2+/5 is a
positive root of the equation al-4a - 1 = 0. We recall that negative
a is physically senseless. ,

In case (b) one'needs that Re {(1-b)/2-p(A)y} > 0 for |u.| < C
and Re {(1-b)/2-p(A)y} > 0 for boundedness of ¢.. These inequali-
ties, rewritten in terms of Re X and Im X, define the parabola 0.
The jump conditions (11) determine a linear 2x2 system of equations with
respect to coefficients C4 and C. such that the solution is given by
C+vy + Coy. for y < 0 and by ¢. for y > 0. The determinant of
the system is the Wronskian of 4 and y. which does not vanish.

Thus we have shown that (10), (11) have bounded solutions when
A€My or A= As(a). It follows that for such A (Ab-x)'1 is
unbounded on B.

In order to complete the proof of (i) we neéd only to show that
outside My accept for A+(a) the-réso]vent_is reqular. This will be
done by proving the estimates in (i1i).

Proof of (ii) and (iii). We turn now to studyihg the resolvent

equation

(Ap - Mu = f . - (13)
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In order to simplify some "long" expressidns we carry out all
calculations for b = 1, i.e., for degenerate My. The case b < 1 does
not cause any additional difficulty. As wé'underlined before, (13) is
being understood as a system of two equations determined separately for
x < 0 and x > 0 and connected with the help of the jump conditions. It
is more convenient now to make the reflection of the independent
variéb]e, Y+ X = -y, for the equation given on the negative semiaxis.

We arrive at the system (recall that b = 1)

Upy = 1/ u-w = f (14)
vxx - 1/4 v - av(0) X2 Ly = g ,

determined for x > 0 subject to boundary conditions
u(0) - v(0) = 0 , _ (15)
'ux(O) + vX(O) + au(0) = 0 . ' (16)

Functions f,g € By = Lz[O,w] are given, we seek solutions of the
problem (14) through (16) belonging to B;.
To solve the problem in (14) through (16) we first consider the

boundary value problem for the system

Uyy = (1/4 + A)u

g + aug e~X/2 (18)

Vay ~ (174 + A)v

u(0) = v(0) = uy , ,u(w)|.< c , 'v(w)l <C . (19)

and after that we choose ug so that the jump condition in (16) would

be satisfied.
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It is not hard to check that the bounded solution of the BVP

Uy = (1/4,+ MNu. = f

u(0) = Ug
is given by

u(x) = uge™ f; k(x,y) f(y) dy (20)

where
k(X,Y) ~ = _p {
e PY (e PX_ePXy | x <y
is a Green function for zero boundary condition at 0. Plugging into

(20) the function g - auge=%/2 in place of f we obtain the solution

of equation (18)

vix) = ué(e'px+%e‘px¥§e'x’2)+f; Koy - (21)

Derivatives of u and v at x = 0 are given by the formulas

—ugp - [ e fy)dy
0

ug(-p = Po/2 + &/ (2N) - [ e gy) dy .
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Employing the jump condition in (16) we obtain the expression for ug:
uy = fO'e-p‘y(f+g)dy/(-2p+a-pa/>‘+a/(2A)) . - (22)

As easy to check the denominator, r(i), vanishes only at X =
A+(a), and up has simple poles at A = As(a).

For |p| = (x+1/8)1/2  sufficiently large, i.e., for a > R with
some R » 1

r(x) = '-2p+a-pa/x+a/(2x)| > c|p| . (23)
Now we need the following result which will be proved after
completion of the proof of the Proposition.
Lemma 3. Let K be an integral operator with the kernel

1
k(x,y) = )

e PY(ePXePXy | x <y

where p = p(x) = (» + 1/4)1/2, Then for any 0 < § < =, e < -1/4,

there exists C > 0 so that in the sector

SE’G = [« C, Iarg(x-e)|‘§ m - 6§}

NKFN < C  _ if (24)
G (S B TYPV T (R

We now estimate the LZ2-norm of the solution of the resolvent

equation (we denote by 1.1 the norm in L2(0,=)). We have from (22)

and (23) by Holder's inequality

'“0' < —%— If e'py(f+g)| < _%_ (nfn + 1gn) ne”PYy
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Noticing that

e = (1/(2 Re p(I)2

we get for ug e”PX the estimate

A -px, . _C_ -px,2
tuge™ ™1 < B (nfn + qgu) e P2

C
1fu_+ ngn) .
'Iplep(”g)
When A is in the sector Se,s and [A] > R,
[Re p()| > clp)| 2 cppt?
and we obtain
nuoe‘pxu < C/|A' (1F1 + n1gn) .

For the terms ug(e=PX a/A - e~x/24/)) entering the expression for
v(x) in (21) we have even better estimate with respect to A.
To estimate the integral terms in (20) and (21) we employ the lemma

and get the estimate

1fk(x,y) fly)dyn < ¢/[p(n)]% afn .

for all X € S¢ 5.

Thus we have in S; 5 the estimate for the resolvent

(AT e/ [rIR(N)| + G/ [Pt (25)
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where p()) is regular, and r()) has poles at A = A:(a), and for

Al >R, [p(A)12>Cay [p(a) r(2)] > CA

. The estimate in (25)
enable us to define a bounded operator by means of a standard Cauchy

integral of operational calculus
Q = 5o I (-0t ax o,

where C is a contour consisting of two circles around the poles. As is
easy to verify (see [2]) Q is an invariant projector, Q2 = Q, QA =
A1Q = QA1Q, it follows P = I-Q is an invariant projector too. Thus

after subtraction of the singularity the obtained operator: function
-1 -1 _ ' -1 _ _yy-1
(Al-x) - (Al-x) Q = (PAlp-x) = (Ap x) .

is regular in Sé’s and by virtue of (25) its norm satisfies the
desired estimate (iii,a).

To obtain the estimate (iii,b) for the derivative we simply note
that the differentiation of expressions (20) and (21) brings down a
factor of order p ~ |)‘|1/2 for all terms except for auoe'x/z/x
which is itself of order |aA|-3/2,

Proof of Lemma 3. The expression for Kf can be decomposed into the

sum

Kf = fx k(x,y) fdy + fw k(x,y) fdy . (26)
0 X

We will estimate only the first summand, the estimate for the second one

is similar. Recall that

k(x,y) = (e=P(x*y) - e=P(x-y)y/(2p) .
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The contribution from the first summand of k is estimated as follows
X © '
e PXs(2p) [ e"PYfdyn < 1e”PXs2pn le'pyfIdy
0 0

< C/|p' 1e~P%y2 < C/'p'zﬂfn- .

We set‘

g(x) = fx e'p(x'y)f(y)dy , S=Rep>0 .
0 _

Then for the contribution from the second summand in k we get'

|A

e ey« [ o efan

|a(x)|
0 x/2

- | 2
¢ e [(e*-1)/(25)1Y7 (f:/ || %ay) /2

. .e-SX[(eZSX_eSX)/(ZS) ]1/2 (I:/Z'flzd)’)l/z .

We observe that g(x) + 0 as x +» 0, since pfeintegral factors are bounded
and both integrals tend to 0. As x » =, the first preintegral
coefficient and the second integral go to zero, while the other terms
remain bounded, therefore g(x) + 0 as x + =,

Multiplying the derivative of g, gx = -pg + f, by g and adding

the complex-conjugate expression, we get

1/2 (d/dx)|g|2 = -Re plg|2 + 2Re(fg) .
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We integrate this equality from x = 0 to x = = taking into account
g(0) = g(=) = 0 and obtain
]|9|2 dx = 2/Rep [ Re(fg) dx < 2/Rep Ifr 1gn , (27)

. whence gt < Cifin/Rep.

2.4. Sobolev spaces

Here we introduce a scale of Sobolev spaces associated with inner
boundary coﬁditions (11).

Let HO = L2(Ry) + L2(R_), where Ry = (0,=) and
R- =.(-w,0), HZ = HZ(Ry) + HZ(R_). We denote norms in HO

and H2 by |.

g and |.]p, so that if f = {f],f2} € H then
2 2 2 Yy

1fl2 = 10+ [{fixef2xd]0 * [ foxxt [0

Let L be the operator

L = d%/dx? - 1/4 .

HO with D(L) = H2, where

We consider L acting in the space HO

W= {fe W|(1) <Fep = 0, (i1) <Fep = O},

the functionals ¢1 and ¢ are given by the jump conditions, for

f = {f1,f2}

f1,(0) - £,,(0) + afl(O) .

<F L0,
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Conditions (i) and (ii) of the définition of H2 make sense because, by
Sobolev's lemma (see also Lemma 5 below), ¢1 and ¢2 are continuous

on HZ, By the same reason ﬁZ is a closed subséace of HO in the
Hz—topology.

L is symmetric on H2. 1Indeed integrating by parts we obtain

0 X o
(L) = (f_+) (N de=-g [ fgx

0 ™
+£(07) g(0) - £ (0)g(0) - (J +[) £, g, dx

- 3 (£,9) - 9(O)[F ()]

- . .
- F(0)9,(07) + F(0)g, (07) + (f_+ [ ) f g, ox

(f,Lg) + g(0)af(0) - f(0)ag(0) = (f,Lg) .
Also it is eaéy to verify that H2 is dense in HO,

Analysis, similar to that in Sec. 2.3, shows that.the resolvent
(L-z)’1 is regular on the complex plane with the cut-off along the
real axis from - to -1/4 except for the point zg = (az-l)/4 Which
corresponds to the eigenfunction

exp(-xa/2) , x>0

¢’0= . .
exp(xa/2) , x<0

Therefore the operators (L % 1‘)"1 are bounded, i.e., ranges of L #* i
coincide with H0. It follows (see e.g., Kato [8, Ch. V, §3]) that L

is self-adjoint.
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We set Lg = a - L, where a > zp, and define for 2 > s > 0

s = 5%l -

S is defined as a completion of HZ under |.|-norm or
equivalently as'D(LOS/Z). It is obvious that the norm, just
introduced, is equivalent for s = 2 to the one introduced earlier.

Fractional powers of Lg can be defined by means of the spectral
resolution of Lg (or as in Sec. 2.5).

There is another way to introduce a norm for s = 1, namely set

”Ifnli = I{flx’ f2x}'8'+ 'flg *

Proposition 4. The norms 1 and ||[.]|l1 are equivalent, i.e,

[l < CLiliflll1 £ C21F]1e

Proof. Llet fe ﬁZ’ then, integrating by parts we get

1F3 = 0% /%0 = (pf, P
0 e ,
-/ + fo) fox T dx + (a+1/4) (f,f)

0 ©
(£,(0) - £,(07)) F(0) + (] + [ ffd+ (a s 1/4) (£.6)

-— 2 2 0 X
< a2 e 1w (B (1« ) pyp

< max {a+ 1741} [IFIIZ .
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Lemma 5. Let [||f[lly < =. For any e > 0, there exists A > 0 such

that

|f(0)| e[ {f14Fox lo + A|f '0 ’

e and A(e) do not depend on f. Assuming the lemma proved we have

leNg = |flg+ 0+ ) Ayl
2 | o =
= |f] o - f(0) [£ ()] - (f_w + fo) ffxxdx'
= ofF(0)|2 + |F]G + (-f,'(L0 - 1/4 - a) )
< |f ’2 + ' - 2, '
Lo [fg+ (Aa+3/4-a) |flg+ (FLyf) .
Whence |

(1= ae)[IFlIE < (Aa+ 374 -a-ac) [fI§+ (F,Lof)-.

Choosing € and a so that

ae <1 , Aa+3/4 ~ac-2a < 0 ,

we get

NeNZ < [f37 - ae)

It should be mentioned that it is not hard to power that-all
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Proof of Lemma 5. Llet e € Cp™(R4), e(0) = i, e(x) = 0, for

x > 1. Set ep(x) = e(x/R), then, by Scﬁwarz's inequality

£(0)]? = ’f; (F eg)y dx|° = J(Fyep + (eg),F)dx|?
< 2|f foepd 2 2
< «CR xl + 2|] f(eR)xdx|
<2 f'fx’zdx f’eR'z dx + 2 j|f|2 dx /|eRx|2 dx

and the Lemma follows if we notice that
[ |ep]? ax = fle(x/R)?[dx = R fle|dx = ¢,
[ |(eg)y|? dx = if Jlegx/m|Pax = L fle,|? dx = em

and choose R so that 2CqR < e.

2.5. Some Facts From Semigroup Theory

The theory of analytic semigroups is treated in a suitable for us
context in a number of books (see e.g., Friedman [5], Yosida [6] and
Henry [6]). We adduce here some facts (without proofs) from [6].

We recall the definition of a sectorial operator: a linear
operator B is called sectorial in a Banach space X if B is closed
densely defined and for some 0 < § < w/2 and some M > 1 and real a,

the sector

S = {a, 'arg(x-a)l <nm-8 , x#*a}l ,

a,s

is in the resolvent set of B and

1(x-8)" 11 < W a-a|  forall  ae s
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Fact 1. If B is sectorial it generates an analytic semigroup by

formula

Bt 1 -1 at

e = T IC ()\-B) e da ,

where C is a contour in the resolvent set of B with argx » 8 for some
9 e (11’/2, 1"-6)0

Consider the problem

dx . = =
F - Bx =0, t>0, x(0) =x, , (28)

where B is a sectorial operator in a Banach space X and xg€ X. A

strong solution of (28) is by defihition a function

x € ¢((0,T),X) n ¢((0,7),0(8)) n cl((0,1),x)

such that x(t) satisfies (28) and x(t) + xg in X as t » O,
Fact 2. The problem (28) has a unique solution. The solution is
given by x(t) = eBtxq.

We introduce fractional powers of -B. For any « > 0 set

« _ _1 ® pa-l tB
(-B)" = O jot e’ dt . (29)
Fact 3. Let B be sectorial with Rec(B) < 0 (ife., fhe spectrum of
B lays in the left half-plane). Then for any « > 0, (-B)% is a
bounded linear operator which is one-one and satisfies
(-B)a(-B)B = (-B)o*B, 4,8 > 0. For a > 0, (-B)~% js defined as
((-B)®)-1 and (-B)*(-B)B = (-B)a*B on D((-B)Y) where y =

max(a,B8,a+8).
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Fact 4. Suppose B is sectorial and Rec(B) < -d < 0. Then for

a > 0 there exists Cq < = such that
1(-B)® eBt_u G e eIt ot ,

‘and if 0 < a< 1, x € D((-B)®), then

1

n(eBt-l)xu < a~C

Co is bounded for a in any compact set of (0,=), C, is also bounded
as o » 0%, ‘

Having a negative sectorial operator one can define an analogue of
Sobolev norms. If B is a sectorial operator in a Banach space X, define

for each a > 0

x* = D(B;) with the graph norm

BSx1 , x e x*

Xty = 1
where B1 = -B - al with a chosen so that Reo(By) > O.

Fact 5. Different éhoices of a given equivalent norms on X©.
X% is a Banach space in the norm 1.1, for a > 0, X0 = X and for
a> B >0, X* is a dense subspace of XB with continuous inclusion.

Fact 6. Let By, By be two sectorial operators with the same
domain and Rec(Bj) >0, j=1,2. Let Xj® be corresponding scales of
Banach spaces. If for some 0 < B < 1, (B] - B2)(-B1)B is a
bounded operator then X1 = X2® with equivalent norms for

0<all.
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2.6. The Linearized Operator as a Generator of a Semigroup

In Sec. 2.3 we considered the linearized operator in Banach spaces
parameterized by b, the exponent of the weight. As before we put for
simplicity b = 1, i.e, choose the weight w = e~X/2, We eliminate the
weight considering instead of A fhe operator wA w‘l, for which we use
the same notation, A (in Sec. 2.3 it was called Ap),

Uy -‘u/4 , x>0
Au = . .
Uy, = u/4+ au(O)eX/z, x <0

We consider A in the space X = HO, with D(A) 2 H2 (for-
definitions of ﬁb and ﬁ? see Sec. 2.4), A is well-defined on ﬁZ by
virtue of Lemma 5. Consider on D(A) the graph-norm lflo + |Af|0.

Due to invertibility of A, D(A) is b]osed in the graph-norm; hence, by
definition, A is c1osed. We. denote by X the space D(A) providéd with

the norm

iy = 'Af'o ,
which is equivalent to the graph-norm since
flo + [Af]o < nA'vln |Af|g + [Af] = Cprfiy < C(|fg + [Af]g) -
Recall that H2 is dense in HQ. Thus

A is a closed densely defined operator

on X with D(A) = X1 (30)
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The estimate of the resolvent of A from Proposition 2 and (30) show
| that Ap = PAP is sectorial in PX with ‘the sector S s, € < 0. (The
invariant projector P and the sector are defined in Proposition 2).
Therefore all the results of Sec. 2.5 are valid for Ap. Moreover in

the course of the proof of Proposition 2 we have obtained the estimate
of the resolvent, (25), which shows fhat A itself is sectorial in some
sector Sgt s° C Se,s+ Se',s' should be chosen so that the

eigenvalues, r+(a), lay outside of it, thus &' > Rexs(a) and

§ <8 < n/2.

In Sec. 2.4 we have defined a scale of Sobolev spaces HS,

0 <s <2, with norm s+ On the other hand, one may define Banach
spaces X® generated by A as in Fact 5, Sec. 2.5 with norms 1i.1,.

Proposition 6. H2S = XS with equivalent norms for 0 <'s < 1.

Proof. The proposition almost immediately follows from Fact 6.
Set By = A, By = -Lg, where Ly is the "Laplacian" generating

HS spaces. Let
Du = (B;-B,)u . u(0)e*/2 H(x)
where H(x) = 1, x < 0, H(x) = 0, x > 0. Then by Lemma 5 for u € H?
o < folo + ] [ oy
< Julp+eufy < cfulz

Therefore funy = |Au|0.§ Clu]p, similarly [ulp < Chuiy. Thus

H2 = X1 and norms are equivalent.
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By the same reason for s > 1/2_
'|neésu|0 < CI(BESU)(O)I .5 c|Bgs'u|1
= clyZBtuly = s STl < cfuly
In the calculations we used Bé“ has the semigroup property'and
Bo-(s-1/2) is bounded for s - 1/2 > 0 (Fact 3). Thus By and By

satisfy the assumptions of Fact 6 and the conclusion of the Proposition

follows.

Remark. We shall use Proposition 6 which for s = 1/2, by virtue of

Proposition 4, means that
2 172, _ 2 2 2
"U"1/2 = '('A) U'o—'HIUHll = !{le’uzx}'o"' ’Ulo .

2.7 The Semigroup

Taking into account the invariant decomposition, A = AP + AQ (where
Q and P are invariant projectors, Q + P = I, Q'istho-dimensiona1), one

can write the exponential of A as

tA
A ) *
eu = (e P>u+zm+,x et<u,¢i) . (31)

where by (<,e) is denoted the scalar product in X; é3, X = Ag,Al, .
are eigenfunctions of A; ¢A* are eigenfunctions. of the adjoint
operator (note that Xy = A_, ¢x_, $os = $3)-

¢) are given by (12):

(1+a/2)e® - o/ Y% |y <0
8 (y) = . (32)
e y>o0
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where p = p(A) = (A+1/4)1/2 and A = A+ are the roots of the equation

B2+ (1+8a-)r+a = 0 . (33)

¢k* can be easily calculated. Let u € D(A), v.€ H2. Integrating

by parts we obtain

(Au,v)

. ) 0 _ 0 . X/2—
(f +[ ) (uxx-1/4 u) vdx + [ u(0)e™ “V(x)dx
0 - '

- 00

o
— — —|o
(fo + f_w)rq(vxx-1/4V)dx + 0o,

+ u(0) (f eX/2ydy + [Vx]x=0) .

If we require that

ve o) = [veW|lvly = 0 5
[vx] + av(0) + fw ex/lv(x)dx = 0} , (34)

and define on D(A*) the operator

A = a2kl - 14,

separately for x > 0 and x < 0; then (Au,v) = (u,Atv). It is clear
that A* D At (in fact, it is not hard to show, that A* = A*,
i.e, D(A*) = D(AH)).

Solving the equation At¢ = A¢ with jump conditions from (34) one

finds, the eigenfunctions are -
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* [ ePX s, X <0
¢A(X) = C s A=A, - (35)
' e PX x>0
where A4 and A_ satisfy the equation in (33). and normalization
constants Cy are chosen so that (¢, ¢1") = 1.
Note -that eigenfunctions from (32) or (35) belong to the complexi-

fication of the original Banach space X. Since A is real, it is easy to

find real two-dimensional invariant spacesQ For instance, take
-, =172 L ,-1/2= , . 1l
Xg = 2 (4»A+ o) s TN )y Ao/ |2 -

The space, spanned by xp and x3 is clearly invariant (note that
in view of (33), Ax; is expressed by means of xg, X1).

Analogously,

* - * * * *
Xy = 2 1/2(¢A+ + ¢A_) | and  x; = A+x0/|xl

form a basis in a real invariant space. Moreover, as easy to check
* *
(xo ’XO) = 1 ’ (xl ’xl) = 1 s
* * '
(xo,xl) = (xl,xo) = ReA/IA' . _ : (36)

Assume-now, that a = ag, then eigenvalues are purely imagihary;
Ay = tj(ao)l/z/z = #jv. Denote by Ag = A(eg) the operator
corresponding to ag and by T(t) = ePot the exponential. Let, as
before, A, stand for AgPg. Equalities in (36) show that when

Rex = 0, i.e., for a = ag, vectors {xg,x1} and {xq*,x1*}
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form dual bases. The expression (31) for the exponential can be

rewritten in the form

tA .
T(t)u = e P4 (u,xn) (x0 cos vt + x; sin vt)

+ (u,x;) (-x0 sin vt + X, cos vt) . (37)

The mapping T(pg), where pg = 2n/v, will play an important role
. i
in our birfurcation analysis. For an operator A in X, we will denote by

M(A) and R(A) its null space and range in X.

Proposition 7. Consider L = T(pg) on the space X. Then
(i) dim N(I-L) = 2.
(ii) R(I-L) is closed
(ii1) x € R(I-L) if and only if (x,xg*) = (x,x1*) = 0
where xg* and x;* are the vectors, defined above.
Proof. Let Q be an invariant projector on the space spanned by
xq and xi, Q= (.,x0g*)xg + (+,x1%)x1, where vectors
X0 xl,xo* and x1* were defined before. Obviously,
0An = AgQ and P = I-Q is an invariant projector.
It is clear from (37) that Xq = QX C N(I-L). We will show that
on a cbmplement of Xqs the operator I-L is invertable.
Consider Ap on the space Xp = PX. By Proposition 2, Ap is
sectdria] with a sector S¢ s, where € < 0. Then, in view of Fact 4

(Sec. 2.5), we have the estimate

tA _dt
1e Pr < Cce , €<d<0 . (38)
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Employing (38) we estimate the Neumann series for ((I-L)P)-1l =

(P-exp(pgAp))~l. We get

T (exp(ppA N = T ‘exp(npA )
n=0 0"p n=0" 0°p
o  -dnp
<cJe V¢a.,

Therefore I-L is invertable on Xp, hence N(I-L) € QX and R((I;L)P) =
Xp is closed. Automatically R(I-L) is also closed, since R(I-L) =
R((I-1))P) + R((I-L)Q) = R((I-L)P).

The last statement of'the proposition follows from the definition
of Q, since R(I-L) = Xp = (I-Q)X. |

Corollary 8. Conclusion of Proposition 7 remain true if L is
considered on XS, s > 0.

Proof. We observe that

1) Eigenfunctions ¢y and ¢3 (and hence xg and xq) belong
to XS for any s. '

2) ¢A* and di* (hence xo*, xl*f are contfnuous.

functionals on XS. Indeed, by the Schwarz inequality,

* =S * ¢ * *
(o)) = T (x.(A))%ey) = ATS(Agx,e,)

I

cixig (1 |60]F ant/? = cmag

Therefore, Q is an invariant projector also in XS.
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3) Since P = I-Q commutes with Ap, the estimate in (38) is valid

in XS

s N S
NAO exp(tAp)uu = nexp(tAp)Aoun

Ilexp(tA-p)ullS

fexp(tA

In

p)u tutg .

The corollary follows from these observations.
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3. LOCAL EXISTENCE AND UNIQUENESS FOR THE NONLINEAR PROBLEM

We return to our nonlinear problem

8 = 0 - a(e(oat)'l)e
t yy ~ ¢ y

More precisely we will be occupied with the equation (2.4) for u = 6-6°,
where 6° is a steady state solution. Now we drop the boundary condi-
tions u(-=,t) = 0 and |u(=,t)| < » and seek a solution belonging to

L2 with the weight w = e~¥/2, We make the transformation W: u »

w-lu and deal with L2 without the weight. We should note a

fortunate circumstance that nonlinearities of the equation and of jump
conditions depend only on u(0,t) and are not éffected by W.

After the similarity transformation (2.4) takes the form

y + 1u + o u(0,t) (5-6)

ut U.y

L (1 - eau(o,t))(uy +1/2u) + (1 + aou(O,t) _ e'au(o,t)) (s-68) ,

(1)

where S(y) stands for syo(y) from (2.4), S(y) = e¥/2 for y < 0,
S(y) = 0 for y > 0; ag is the critical value of the bifurcation
parameter. Recall that (1) incorporates the inner jump conditions via
§-functions.

We wish to solve the Cauchy problem for (1) with the initial data
u(0,y) = ug(y) which will be specified later. Formally we may reason

~as follows. Consider (1) as a linear non-homogeneous equation
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uy - Aou = Fla,u)

(where Ag = A(ag) is the evolution operator on the left-hand side of

(1)) and "solve" it using a "variation of constants" formula

t
u(t) = T(t)uov +f (1-e4(0:7)y T(tor) (uy +3 u) dr

.
+ ] (requ(or) - e2(0:7)y 7(tor) sdr

+ f; (1+aqu(0,r) - {01y T(tor) sar |
(2)
where T(t) = oMot is the semigroup, solving the linear problem.
Immediately the questions arise in connection witﬁ the integral
equation in (2). How to understand the action of the semigroup on the

§-function, and in what sense the integral equation is equivalent to the

Cauchy problem for (1)?
Applying formally the linearized operator Ag to F, the last term
on the right hand side of (2), we observe that it should satisfy the

equation

(3/3t - AQF = f(t)6 ; F(y,00) = 0O

where f(t) = 1 + agu(0,t) - eau(0,t), 1n Sec. 3.1 we give meaning

to this auxiliary linear problem.
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It is well known that in order to prove that a solution u of the
integral equation (2) satisfies the differential equation, one needs
certain Holder continuity of u. In Sec. 3.2 we show that the term in
(2) generated by the free bouhdary is Holder continuous in some Hilbert
spaces. In Sec. 3.3 we show that an analogous result is true for first
terms in (2). Thus we justify the transfer to the integral equation.
In the last section we prové existence and uniqueness results for the
integral equations for sufficiently small initial data.

3.1. An Auxiliary Linear Problem

In this sectfon and in the following one we omit the subscript "0O"
at op.

We again represent the prdb1em with jump conditions at 0 as a
-system on the half-axis x > 0 (cf. Sec. 2.3). Consider the problem of

finding a soTution'u(t,x), v(t,x) to the system

du/at

u*x - 1/4u

v(0)

av/ot e™X/2 (2)

Vex = 1/4u - «

in the domain.

Qp = {0<t<T , x>0}

subject to initial and boundary conditions

ult ) Vlvt s | )

Tim (u(x,t) - v(x,t)) = 0 (5
x++0 '



-57-

Tim (U (x,t) + v, (x,t) + au(x,t)) + f(t) = 0 , (6)
x++0

where f is given.

Theorem 1. The problem in (3) through (6) has a classical solution
for any f.e C((0,T)) with sup|f] < =.

bfgggf. Tﬁe parabolic system in (3) has a non-standard feature, the
presence of the term aeX/2v(0) = ae;/2<v,6>, which prevents us from
applying avai]ab]e theorems of the parabolic theory. However corres- '

ponding reasonings (see, e.g., Eidel'man [3, Ch. IV]) go on as well.

We'are Tooking for a solution of the form

t
v(x,t) fo Gy (x,t-s) f(s) ds
| (7)

_ t
u(x,t) = IO Gy(x,t-s) f(s) ds

with Green functions G and Gp given by

' a+iw At
G,(x,t) = [ € (e'p(l)x(l +3) -2 e'x/2> dx
1 iw PO | X T3
(8)
at+i= At
G, (x,t) = | e oP(x gy
2 ie PO

where a > 0,

p(A) = (A + 1/8)1/2 | P(A) = -2p + a - pa/r + o/(20) .
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We will always assume that the factor 1/(2wi) fs included in di. The
representation in (8) is certainly motivated by the fact that for any
fixed A the integrands in (8) solve the system of o.d.e. obtained frdm
(3) by means of the Laplace transform. This system was discussed in
Sec. 2.3. It is clear, the functions Gj and Gy are real.

We have to show that the integrals in (7) converge, define a
solution, and satiéfy'initia1 and boundary conditions. We will carry
out 511 the estimates only for v(x,t), since the integral for it
contains a summand defining u(x,t) also. We divide the subsequent
proof into simple steps.

(i) Gp(x,t) is continuous for x> 0, t> 0 and Gj(x,0) = O,

x > 0.

For any a > 0 we have the estimate

0] < 17 o ox(fa] + Y ENC]a] + o2
s e o]+ ¥ o
< Cexp {-al/éX}/x + Ce~¥2/1/2

Tending a » = we get Gj(x,0) = 0. Continuity of Gj(x,t) with
respect to t is obvious. Continuity with respect to x follows from
the uniform absolute convergence of the integral for Gj when x takes

values from a compact set.
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(i1) A new contour of integration.

We recall that P(A) has zeros only at A = Ay and A = A_ =
3;. It follows from the Céuchy theorem and Jordan's lemma that one
can transfer from integration a1ong the imaginary axis A € {a+iR} to
1ntégration along a contour composed of two circles (C* around As
and a contour by-passing the cut-off from -« to -1/4. Then, after

-intrbducing y = X + 1/4, the expression for G1 takes the form

Gyxit) = (f +))
C C

0 _(y-1/4)t v
1 e —..1/2 a o -x/2
T {m ——P—:-(y)——,<exp{+1y x} <1 + y_1/4> - Jo173 e >dy

I+

Il(x,t) "2%{ I;(x:t) e-t/4 ’

where the last term represents the sum of two integrals: one with all

upper signs another with all lower signs; by P+ are denoted

[

Puy) = i yP gty e

Integration along ct gives the corresponding residues

I (x,t) = ZA=A+,A- C)\e>‘t (e'p(x)x(l +5%) --% e™X/2 ) . (9)

I7 is a nice (infinitely smooth) function of x and t. We will be
concerned with estimates of I+(x,t) and its derivatives. We fix for
definiteness the plus sign (and drop subscript at P) and will estimate

separately
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Fe) = I ﬁw;{m : | o

and

© -yt
Folx,t) = ]o 57 (- ye7g) e {iy%} @y

(introducing F; and Fp we have changed variables: y + -y). We note

that

© -yt : a | ©
[Fi8)]| = V@ Ty yfl |. < |10 ceoe| * “a coe]

o -_yt
L aC + / e3/2 dy
a y
= o + t1/2 ] e~2573/2 4,
at
< ac +tl/2 (c 712 4 ¢ / e~Z71/2 dz)

0

< c+ctl/2

Similarly -one can estimate dFy1/dt and obtain

- |dFy/dt| < c o+ ct7H/2
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(iv) Estimates of Fp and its derivatives.

As in (iii1) we divide the integral defining F» into two parts

* y :
C[ReB] <o |l Frgy (- ) e Ly a|

< c+c [ eVEyl2Z gy
a

< c+Cf (-:'yt/yl/2 dy < ct"1/2
0 | v
In order to obtain an appropriate estimate of 3F2/3x we employ
the identity
1/2

exp {iyl/zx} - &yt 3 exp {1y1/2x} .

1X 3y (11)

We write

i eYtasogth) L 1/2.1.1/2
oF,/3x] < C+ [ < X' exp {iy™/“x}y"/“dy
72/ o779,

and integrate by parts using (11)

. 3 . 1/2
< er3 I ey e {1y ) oy

¢ ¢c+& (c+ e Yt (tyl/2 + y'l/z)dy) ¢ C+—b
= x a = xt /2
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In a similar way one can obtain the estimates

2t1/2) .

|32F2/3x2| < cH o/ 'aF.2/8t| < €+ C/(x

We note that in order to estimate 3Fp/3t and 32F2/3x2 onéwshbuld
integrate by parts twicé.. It's not hard to show that in general forv
small x |aNFp/axN| < C/(xNt1/2),

(v) The main siﬁgu]arity of Fo.

We represent Fp as

Fo = 3r | e exp [iyY o)yt gy
0

=yt W20 (1o ey o1 __
+ fo e V" exp {iy™/“x} (p(y) (1 y+1/4 ) 21y1/2) dy

(12)

We recall that Fp is obtained by integration along the Tower edge
of the cut-off in C-plane, and in fact Fp = (Fy)p. If we add
(F.)2, the integral along the upper edge, to (F4)2 in (12), then
the sum of integrals corresponding to the first term in (12) may be
calculated explicitly and gives a fundamental solution of the heat

equation. Thus

1 Xy 13
-—1—/—2 exp {- _4T } + (X,t) . ( )

F, = (F), - (F
2 = (Bl - (R 2(t)

.....
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~The remainder can be estimated similarly to estimations in (iv)

- -1/2
|R(x,t)| < C+ 'f et exp {iyl/zx} EiQLZT_E_l dY’
a y+0(y/ )

<c+cf eYydy < c+cf e¥zdz < C .
a 0

‘For x-derivative we get

'8R/8x| <o+ f eyl gy
a
< c+t M2 e g ¢ ootV?

0

Summing up the results of the steps (i) through (v) we can make the

following conclusions. From (iii) and (iv) it follows that the integral
t '
vix,t) = fO Gy (x,t-s)f(s)ds - ,

is well-defined for all x > 0 if fe L™[0,T]. Moreover for x > 0 the
integral can be differentiated twice with respect to x, and the

differential operator

32' 1 -x/2

M = "'-_2' -K’ ae <o’6> Py

can bé.app]ied. For the same reasons 3v/3t can be calculated as follows

toa
0 ot

v

o= 6 (x,0f(t) + f Gy (x,t-s)f(s)ds
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and by virtue of (i)

t .
v _ 3
% C fo st Gq(x,t-s)f(s)ds .
Therefore, since 3G/3t = MG, v(x,t) satisfies (3).
The initial condition (4) follows from (i). It is left only to
‘verify the boundary condition (6), since (5) follows from G1(0,t) =
Go(0,t).

From (ii) and (v) it follows that Gj(x,t) can be represented in

the form

2 '
e L exp {- b+ r(x,t) (1)

G (x,t) =
1(:8) 2(t)

where r(x,t) is combined of "remainders" appeared in'(9), (10), and (13)
r(x,t) = I (x,t) - ae™/2 AR (1) 4 et iR(x 1)

From estimates of F{ and 3R/3ax we conclude that

3 t

Tim =— f; r(x,t-s)f(s)ds = |

. _
— r{0,t-s)f(s)ds . (15)
x>0 ax ax _

0

As for the first term in (14), there is a well known jump relation for
the single-layer potential (see e.g., Friedman [4, Ch.5]). If we denote
by T'(x,t) the first term in (14) without the factor e~t/4, then the

jump relation is as follows
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3 [t 1 3 4
Tim o= J T(x,t-s)¢(s)ds = -5 o(t) + | == T(x,t-s)e(s)ds
0

- o(t)/2 .

Together-with'(IS)vthe jump relation for Gy(x,t) follows easily.
Recalling the definition of v, it can be written as

14 v (x,t) = -+ f(t) + ft 2 G, (0,t-5)f(s)ds (16)
M TR A g X CLV.ETSITISIES e »

Taking into account that Gj and Gp satisfy the jump condition

% 61058 * 55 6(0,) + o8y (0,t) = 0,

we derive the desired jump condition (6) from (16) and from the
corresponding relation for u(x,t). Thus Theorem 1 is proved.

3.2. Auxiliary linear problem: Holder continui;j.

In Sec. 3.1 we were concerned with local properties of the solution
to the problem, exp]icit]y given in (3). For our purposes we need to
study behavior of the solution considered as a function of t with values
in appropriate Banach spaces.

~We introduce the following:

Definition. A function f: (0,T) + B (where B is a Banach space)

is said to be Hlder continuous of exponent & (0 < 6 < 1) with

singularity t=f(0 < o < 1) or brief Sp-continuous if

sup MF(t)H + H [f] ¢ =
0<t<T p,0+¢
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where

‘ f -f i
Ho osslf] = sup (tf Hf(t)-Fls)¥)

0<t<s<T |t-s|

- It is not hard to show that functions satisfying the definition -
form a Banach spacé which we denote byicp;0+5((0,T),B). If p=0 one
obtains uniformly Holder éontinuous functions on [O,T]. If p#0 one
obtains locally Holder continuous functions with prescribed growth of
Holder coefficients by the approach to O.

Theorém 2. Let w= {u,v} be a sd]ution to the problem (3) thrdﬁgh‘
(6) given in the form (8). Let f € Cp,0+5((O,T),R1) then-

(1) WE Cp-,0+5((O,T),HO), where for any € > O.

| p' = max(0,8-3/4+¢e, p-3/4+€);
(i) we Cpu’0+5((O,T),H1), where for any € > 0
o" = max(0,8-1/4+¢, p-1/4+e);
if in addition & > 1/4 then

(ii1) w € C((0,T),H2)

(iv)  we CL{(0,T),H0).

Remark. The theorem may be reformulated for the case of W:sP
norms. Then in particular the constant 1/4 in (iii) and (iv) should be
replaced by (lél/p)/z. Also one might modernize the theorem for the
case when f itself has an integrable singularity at O.

Proof. As in the proof of Theorem 1 we will carry out the proof

only for the more complicated component, v, of the solution w = {u,v}.
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We recall that the Green function of the problem can be represented (see
(14)) as a multiple of the Gaussian kernel plus a remainder. We will

show that the Theorem is true for the function generated by the Gaussian
lkefne1 while the remainder generates a term which is in a sense of Tower

order.
For brevity we disregard the prefactor e~t/4 and constants in the
- Gaussian kernel which wil]}appear in the form

h(x,t) = g-1/2 exp {-xz/t} .

In what follows we will often use the simple relation valid for 0<a<l,

0<b<1

.
fo (s-t)"3tPat = csl-ad | | o)

where C = Tr(l-a)r(i-b)/r(2-a-b).
The proof is split into several steps.

Step 1. Holder continuity of the main term in HO. Set

F(x,s) = j: h(x,s-t)f(t)dt = j; h(x,t)f(s-t)dt . (18)

The following estimate holds for a > 0

Ih' = x'at(a'l)/z(xz/t)a/zvexp (-xz/t) < Cx"f”t('a'l)/2 . (19)
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Employing (19) with a = a; > 1/2 for x > A and with a = ap < 1/2 for

x < A one obtains

oo 2 _ A ‘00 2 2 A © 2 |
[ fF(xs)|®dx = (J + [ ) [F|"dx < (sup|f])” (J + [ ) h'dtdx
0 0 A 0 A

a,+t1 A -2a a4+l = 223
Coffi s x Faxes T x )
B - 0 A '
< cff|E

To get the Holder continuity we must estimate the difference

A(X,S,k) F(sz+k)'F(X95)

- s+k S
/ hf(s+k-t)dt + [ (f(s+k-t)-f(s-t)hdt = I;+I, .
S 0 o

(20)
For large x, (19) with a > 1 allows us to estimate I énd I» as

follows

[1] £ ¢ |fla x~%

§

S
-a -0 ,(a-1)/2
[T2] £ CkTHy g6lfx -fo (s-t)7" t dt

8 -3
< CkTH, 0pslfIX7T
hence

jA 18(x,5,k)[ 2 dx < C(Hp’0+6[f]ka)2 . | (21)
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For small x we set a = 1/2-2¢ (e > 0) in (19), we get

_1/2+2¢ IS+k (-1/4-¢
. S

'11' < -c|f|°° X dt

’

- cff|, V2 511/4-€k

where S < §; < s + k. If s > k then

A 2,.11/2 -1/4-
(fo |11 (x,5,k) | “dx < le|é kspH/47® < cff]. ks

-1/4-¢

< lelm k651-5-1/4-€- .
If s < k one may estimate as follows

s+k
-1/2+2¢ i t-1/4-e dt

|| x .

1|

A

C'flw x'1/2+2€(s+k)3/4"€

I

. x71/24268gmax(0,6-3/4v¢)

and again (22) holds.

For the second integral employing (19) with a = 1/2-2¢ we obtain

the estimate
8 -a (5 ,-1/8-¢ - .
1'12, < TR 040D x fo t (s-t)7" dt

8 -ag-max(0,1/4+p+e-1)

In

Ck°H, gyel D x
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thereforé,
(jA 1(x,s,k) |2 dx)1/2 ¢ cklsmax(0,0+e=3/4)y  req
0 ' 2 = l -— ‘ p,0+6 ’

this inequality together with (21)vand'(22) yields the conclusion (i) of
the Theorem for the main term.

Step 2. Holder continuity of the maiﬁ term in the H! norm. The.
proof is almost identical to that in Step 1 and is omitted.

Step 3. Continuity of the main term %n H2 norm.

In analogy with (19) one obtains the inequality, a > 0 ,

'hxx' = 2|t'3/2-2x2t'5/2| exp(-xzt)‘_ﬁ cx-2¢(a-3)/2 , (24)

which allows to differentiate twice in (18) under the integral sign
(setting a > 1) -

Fex = f; hy (X,t)f(s-t)dt . | (25)

First, we will show that Fyy(.,s) € L2. We have from (25) with

a=2

IF -251/2

o < xFf| f;vt'l/zdt = ¢[f]. x

—e

and therefore

| [Fag?dx < s <= (26)
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In order to get an appropriate estimate of Fyy for small x we notice
that hyy = chty (here ¢ = 4). Therefore one can estimate the

integral in (25) as follows (makihg use of (24) with a = 1/2-2¢)

|F

S
ol = O i) fs-t)dt|

In

C 'f; htf(s)dt| + 'f; ht(f(s-t)-f(s))dtl

IA

le(s)'s'l/zexp(-xz/t)
s
+ CX-aHp’O+5[f] fo £=/% s )P St .

If € < 8-1/4 then it follows

lFxx, < C|f|ms'1/2exp(-x2/t) + Cx'aHp’OM[f]s'p , (27)

therefore

R .
2 -2max(p,1/2)
fo lFxx| dx < Cs |

Recalling (26) we see that Fyy(.,s) € L2,

In order to prove L2 contimity of Fyy we will again estimate

s+k

S
Bey = fs hy o F(s+k-t)dt +.£ o (fstk-t)-f(s-t))dt = I;+ 1, ,

Equation (24) with a > 3 yields

2 | -a 5
lexl < Cx Hp’0+6[f] (k+Ck°) .
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Hence

f: lexlzdx + 0 , as k +._0 .

Now we observe that for any x > 0 the integral in (25) for Fyy
continuously depends on the_parameter s when 0 < e < s < T. Therefore,

pointwise

'Axx|2 = 'Fxx(x,s) —Fxx(x,so)IZ >0 , as s+ sy,
where s > €. Also Ayy can be estimated using (27)

'Ax*(x,s,so)'2 < 2(|Fxx(x,s)|2 + ,Fxx(x,so)|2)

< ce1/2 exp(-xz/s) + Cx"23cP

Thus, for any s, |Axx(x,s,so)|2 is bounded from above by the
integrable function and one can apply Lebesgue's theorem which yields

that
A 9
JO ’Axx' dx » 0 , ass » s5 .

With resu]té obtained on the previous steps it implies H2 continuity.
Step 4. Differentiability of the main term in HO.

The proof is similar to that on Step 3. We'll use (18) in the form

F(x,) = /Z h(x,s-t)f(t)df
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and estimate the difference

: s+k
F(x,s+k) - F(x,s) = [ h(x,s+k-t)f(t)dt
S

4 f; (h(x,s+k-t) = h(x,s-t))f(t)dt = I; + I,

“We have
ful < |l hxtg) =[] t5t/? exp(-x2/ty) » 0 (28)
as k -+ 0,.since 0 < tgp < k. Taking into account that ht = chyy

we see that the estimate in (24) holds for hy also. Thus we get

S S

Fo(x,s) = fo hs(x,s—t)f(t)dt = fo h o fdt
'and as it was shown on Step 3, Fg is continuous in L2, It is left
to prove that

_ ol

N("S’k’k)"LZ = I"E(F("S+k)'F("S))'FS"L2 > 0 .
As before we will show that [¢(.,s,k)|2, for k < s-e, is bounded
from above by an integrable function. This, in turn, can be reduced to

the estimate from above for |F(x,s+k)=F(x,s)|/k.

- For x > A > 0 we get from (28) that

] <ol
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where C > xtg=1/2exp(-x/tg2). For I» we have

'k'112’ < j; |h;(x,S+e(t)-t)|f(t)dt , (29)

where 0 < 6(t) < k. Employing (24) with a = 2 one easily obtains

[k, < ocfflax?

Note that x~! and x-2 are square integrable on [A,=).
For small x, using the same reasonings as on Step 3 one obtains the

following analogue of (27)
|k'11 | < cexp( 2 cx~2 -2
sl X p(-x“/s) + Cx™% < Cx

a < 1/2, while the estimate in (28) yields [k-1I7| < C.

Thus for x < A-we get C and Cx~2 (a < 1/2) as upper bounds.
Therefore applying Lebesgue's theorem as on Steb 3, we obtain the
desired results. |

Step 5. The remainder.

Let us take a closer look at the remainder. According to (14) the

Green function for the problem is

6(x,t) = ce"/n(x,at) - a4 (1)
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The first two terms of the remainder are "nice" functions.
Indeed e-X/2, e-p(1)x (where X = A4,2_) and their derivatives of
any order belong to'Lz(ﬂ§+), while et and its derivative are
bounded and Fy(t) satisfies the estimates (see (iii) of the proof of

Theorem 1)

)] < c, Rt < /2

Thus conclusions of Theorem 2 are obvious for the first two terms and
6ur concern will be with the last term in the remainder (in what follows
we omit a harmless factor e-t/4),

We recall (cf. (12)) that R(x,t) can be represented by the sum of

two integrals of the form

I(x,t) = fo eV exp(iy'/%x) (—ﬁ%yy (1 - J517a) - (21y/%))dy -

where

Ply) = iy/2(2 + a/(y-1/8)) + o/(2y-1/2) + a .

The second integral differs from J in replacement of i by -i everywhere.

After simple transformations J takes the form

Wet) = ] e™Y* exp(iy'/%x) 177, Aly) dy
oy

. (30)
y/248(y))




-76=-

where A and B are continuous on [0,=) and

o(yY2) + o8, Bly) = 0o(yY?) 4 a2

A(y)

A = o) L B(y) = 0y as y s

<

'yl[Z + B(y)l 2; cls o .

A1l estimates we need are similar. We estimate for example Jyy.
We may differentiate (30) under the integral sign since the presence of

e-Yt, t > 0, guarantees the uniform convergence of the integral. .

1/2x) A -1d
1+y

o
[}

XX -

f e Yt exp(iy
0 ' B

A

1/2

exp(iy™ “x)dy

+ IO eYtexp(iyt/?x) cly)y Pyt %y ly ,  (31)

where C(y) = 0(y=1/2) and'Cy(y) = 0(y=3/2) as y + .
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The first integral on the right hand side plus the corresponding

integral with -i can be easily calculated

1/2

h = fo eVt [exp(iy'/%x) + exp(-iy'/%x) Jdy

= 2] exp (-22t+1zx+x2/(4t)) zdz exp (-xz/(4t))

-00

-1

2 t

cxt=3/2 exp (-x2/(4t)).
(32)

In the course of calculations we have made obvious changes of
variables

z =y . u o= tY2(z-ix/(2t)) .

The second integral in (31) can be estimated employing the identity

2y C(11)

exp(iyl/zx) = -Ziyl/zx’la

y.exp( iy

We have

o«

I1,| - 1 I exp(iyl/ZX)e'ytyC(y)(y1/2+8)'1dy|
X 0 y :

< et fg et oy + [y eYoryhay) < o7t

(33)
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It should be mentioned that since |y!/2 + B| > C-1 the function
0(y-1) is integrable at 0 (we omit details).

The estimate of Ip, suitable for small x, is even simpler
'12' < e Yt y'l/2 dy = ctt/2 (34)
0 _

Thus we observe that Ryx can be represented as the sum of two.
summands: a function satisfyihg the inequality (32) (which is
characteristic for the first derivaf%ve-of the main'term, hy) plus a
remainder satisfying (33).and (34). Therefore the re§u1ts related to
hy (Step 2) can be applied to Ryx and we get even the Holder

continuity in L2-norm of
s '
Fux(+ss) = fo Ryy (5t)f(s-t)dt .

Summing up the reasoningsvof Step 5 we may say that in a sense
smoothness of the remainder is by one order better than smoothness of
the main term. v |

Corollary. Let f e Cp’0+5((O,T),|R1), 8§ > 1/4. Then the
problem (3) through (6) has a unique strong solution in HO,

Proof. Take a solution w of the problem in the form (8).

From (iii) and (iv) of the theorem it follows that w € c(0,T),H2) n

Cl((O,T),HO). Moreover w is continuous at 0. Indeed, it follows
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from Theorem 1 that w(x,t) » 0 as t » 0*. From the proof of

Theorem 2 (Step 1) it is clear that |wl(x,t)| £ #(x), where &(x) is

integrab1e. Therefore

ﬂw(.,t)n,z. >0 as t » 0, .
L

Thus w is a strong solution of the problem (3) through (6) inrHO. If

' is a strong

w' is another strong solution, then the difference u = w-w
solution of the Cauchy problem with homogeneous boundary conditions and
u(0) = 0. From the general theory such a solution is unique and given
by u(t) = etAu(0) = 0. Hence w' = w.
‘ We conclude this section with a lemma, which will be used only in
Chapfer 4, |
Lenma 3. Let w(t,.) = {u(t,.),v(t,.)} be a solution to the problem

(3) through (6), let f € Cp,0+5((O,T);ﬂ21). Then the mapping
(0,%) 2 p > w(p,t,.) = fo 6(.,p(t-r))F(r)dr e €, o,5((0.T)HT)

is infinitely differentiable. For any n > 0 the derivative
apﬂﬁkp,t) is continuous at t = 0 (in the Hl topology) and
3pW(p,0) = 0.

>"££ggj. Assume that p > 8, it is not a restriction since
obviously C, g+s € Cp' o+s for p < o', By Theorem 2 (ii),
wip,t) €(¢’0+5((0,T),H1); As in the proof of Theorem 2 we

- represent W(p,t) in the form



=80-
t
wip,t) = fo h(x,p(t-s))f(s)ds
t .
+ jo r(x,p(t-s))f(s)ds = F(p,t;x)+R(p,t,x) ,

where h is Gaussian kernel, the printipal part of the Green function,
and r is the remainder. Again we restrict ourselves to the
éonsideration of only one component, u, of w.

The main term. First we show that F(p,t,.) *0as t » 0.

Reasoning as in the proof of Theorem 2 (Step 2), we get for Fy(p,t,x).

the following inequalities

|f|£ x'l'e(pt)1/2+€/2 , X > A

2
Fl? < >
Fl? < RIS e et e

(e > 0). Whence #F(p,t,.)01/2 > 0 as t » 0.
The claim of the lemma concerning derivatives is proved by

induction on n. We consider only n =1,

t
apW(t,p) = [ hi(x,p(t-s))(t-s)f(s)ds
0 .

t - |
+ IO re(x,p(t-s))(t-s)f(s)ds
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(where the differentiation under the integral sign will be justified

later). We have the estimates

N

‘Cx'zp'l, x> A

the (xpt)| <
_ Cx-zsp'2+€t'1+e, x < A

where 0 <ve'<01/2. Convoluting with f we find that the main term of
W belongs to Hl and tends to 0 as t + O. Any new differentiation |
with respect to p brings a factor of order tex2/t2 = x2/t which

does not change the'integrabi1ityvproperties. The proof of Holder
continuity is a literal repetition of the corresponding piece of the
proof of Theorem 2 (Step 2).

The remainder.  We omit the proof for the remainder, since it is

absolutely analogous to the proof of Theorem 2 (Step 5). As was noted
' above the main point is that the differentiation with respect to p does
not spof] integrability propertiés. |

Bgmggg. Estimating accurately norms of derivatives one might show
that in fact w is analytic in p. We'don't need this result.

3.3. The Nonlinear Integral Equation

In this section we prove equivalence of the differential equation
and the integral one which were discussed in the introduction to the
present chapter.

Consider the nonlinear equation
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ug = (uyy = 178 = aqu(0,t)s)
= (1 - e““(o’t))(uy +1/20) + (1 + agu(0,t) - e™(Othys 60
| - (352)
or briefly

up = Agu = Fla,u)

which must be satisfied for y#0 sUbject to the jump conditions at O

fu(o,t)] = ©

(35b)
[ (0,£)] + () _ 2o
with the initial data
u(y,0) = ugly) . | (35¢)

The problem (35a), (35b) is just another form of the equation (1), now

without G-functions. Reca11 that

Definition. We say that u(t) = u(.,t) is a solution of the Cauchy
problem (35) on (0,T) if

(i) v e c((0,T), HO) ncC((0,T), H) n cl((0,T), HO)

(i1) u satisfies (35)

(iii) u is Holder continuous in Hl-norm,

u € Co 0+8((0,T),Hl) with & > 1/4, o < 1.
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The definition is similar to that for the case of the Cauchy
problem in the whole space (without boundary conditions). Usually for

the problem

u + Au = f(x,t) , u(0) = Uy
one demands f to be Holder continuous in t, this requirement corresponds
to (iii) of the Definition. The new feature is that the conditions at
the free boundary constrain us to require the Holder exponent to be
larger than 1/4.

Let G be the Green function of the auxiliary linear prob1em'studied

in Sec. 3.1

Gl(x,t) , x>0

G(x,t) = .
GZ(-x,t) ,» x<£0

Consider the integral equation

‘ t
u(t) = T(t)ug + | (1-e®OTN)T(tor) (u s1/2u)dr
0 | y
t : au(0,r)
+ [ (1+ au(0,r) - e »77) T(t-r)Sdr
0

t
- I 8(x,t-r) (1+agu(0,r)-e®4 (0T ygr (36)

or briefly

u(t)

o(u) .. : | (36")
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We note that the equation in (36) is the same as in (2) with
substitution of G for T8, i.e., one can understand formally G as the
- result of the semigroup acting on §-function.

Thedreﬁ“4.” If u is a solution of (35) then u satisfies (36).
Conversely, if u is a continuous function-from (0,T) to X1/2 such that
u(0,t) € Cp,0+5((O,T),ﬂ?1),‘5 > 1/4, and the integral equation holds
for 0 < t < T, then u is a solution of the problem (35).

Remark 1. The value of u at x = 0 is unambiguous. Indeed, any
u€ Xl/zlis a limit of functions from X! which are continuous at 0

by definition. The 1imit is being taken in the I #y/p-norm which by

Proposition 2.6 is equivalent to | 1. Since, by Lemma 2.5,
convergence in ||1 norm implies convergence at'O, the Tihit of
functions continuous at 0 must be continuous at O.

Remark 2. The Banach spaces XS were defined in Sec. 2.6 for any

a. From now on we will use only XS defined for a = ag.

Proof. Part I: If u solves the differential equation then it

solves the integral equation.

Let u(t)vbe a solution of the problem (35). We denote by v(t) the
right-hand side of the integral equation (see (36) and (36')),
calculated for the solution of the differential equation

v = &(u) .

We will show that v is a solution of the equation v{ - Agv = F(u)
with certain jump conditions. It will follow that v = u, i.e., (36)

holds.
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First we observe that, since u is Holder continuous in H1 norm,
by virtue of Lemma 2.5 u(0,.) € Co 04+4((0,T),/R1) with the same o

and §. It obviously follows that eau(0,.) ¢ Cp,0+5. Indeed

leau(O,t+h) _ eGU(O,t)I

'u(O,t+h) - ;(o’t)|a’eaeu(o,t+h)+(1-e)au(g,t)’

I

8,.-p asup u(0,t)
ah't Hp,0+6[u(0")]e R

(where 0 < 8 < 1).

Consider separately all termé on the right<hand side of the

integral equation (36). Set

vlt) = Tty .

then vg solves the problem

Dvolyso = 0 » Dvgudyeo = -ogvg0st) s

VO(XsO) = UO_(X)
| (37)

as follows from Fact 2, Sec. 2.5.

Let

t : : -
v(t) = jo (l-eau(o’r))T(t-r)(uy+1/2u)dr , (38)
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the integral converges, since T is bounded and ue Cp,o+5((0,T),H1)

i.e., in particular supg¢t¢T|u]l € =. Consider the integral

: |
[ - eau(o’r))AOT(t-r)(u (r)+1/2u(r))dr
0 Y

t
= | (l-eau<0’t))A0T(t-r)(u (t)+1/2u(t) )dr
n ' y

t . = .
+ AOT(t-r) (l_eau(O,s))(u (s) + 1/2u(s)) T dr . (39)
0 Y s=t

The first integral on the right-hand side is obviously equal to

(6 = (1-e®8)) (1m(e)) (u ()e1/2u(t))

The second integral can be estimated using Hlder continuity of u.

Denoting by ¢(s) = 1_eau(ﬂ,s) and w(s) = uy(s)+1/ZU(s), we have

t
"IZ(t)no < "-f,o ¢(t)A0T(t'Y‘)(W(Y‘)-W(t))drllo

t
¥ MO (6(r)=4(t))AqT(t-r)w(r)driy

and taking into account that MAgT(s)1 < Cs-l (Fact 4, Sec. 5.2)
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t
1, (t) 1, < '|¢(t)| fo C(t-r)'llw(r)-w(t)|0dr

. o
) [e(@)-0(t)| c(t-r)h w(r) dr
| . )
< C|¢(t)| | (t-r) |u(r)-u(t)|1 dr
- 0
+ a exp {Zq sup u(0,t)} Hp,0+6[“(0")]
t 146 -py
[ (t-r)™""r °|,u(r)|1dr
0

< Ct-max(O,p-G)

where C depends on the Hdlder constant of u, suplu(r)|q, supju(r)|

and |1-eau(0,t)

. Thus we see that the integral (39) converges.

The Riemann sums for it satisfy the relation

) $(ri)AgT(t-r.w(r)a, = Ag y $(r)T(t=r)w(ry)a; . (40)

Therefore, by closedness of Ag, the 1imit of the right-hand side of
(40) is equal to Agvi(t) and equals to the left-hand side integral
in (39).

In a similar way it can be shown that 3vj/3t is well defined and
- au(0,t)
avl/at = on1 + (1 ~-e )(u.y + 1/2u)

Obviously the traces of vi and 3vi/3x at O are well defined (since
vi € D(Ag)) and satisfy linear jump condition in (37). Also it is

clear from the definition of vy, (38) that vi(x,0) = O.
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The treatment of

t
= (L equ(oyr) - (0 hyr(tor)s dr

V2
is similar to that of vy and even simpler because-S does not depend on:

time. One can obtain that vp satisfies the equation

3V2/3t .= A0V2 + (1 + aou(o’t) - eau(O,t)‘) S

with the Tinear jump conditions as in (37) and zero initial data.

The last term in (36)

t ' |
V3 = - fo G(x,t-r) (1+a0u(0,r) - e“u(o’r))dr s

by Theorem 1, satisfies the equation
8v3/3t = on3 s
with zero initial data and jump conditions [v3lx=g = 0

[(V3)x]x=0 = -a0v3(0,t) +1+ GOU(O,t) - eau(O,t)

Summing up we see-that v = vg + vy + vo + v3 is a strong

solution of the problem

dv/at - Agv = Flu) .

eau(O,t)

[V]x=0 = 0 , [vx]x=0 = aou(O,t)-anv(O,t) +1 -

v(x,0)

uO(x) .



-80-

Hence, the difference w = v-u solves the homogeneous linear problem

aw/3t - Agw = 0

Iwleeg = 0 5 Dwd,g = ogw(0,t) , w(x,0) = 0 ,

therefore w = 0 (uniqueness), and u = v = &(u), i.e., u solves the
integral equation in (36).

Part II:' A solution of the integral equation fs a so]ution}of the
.differential equation.

In Part I we have shown that if u € Cp,0+5((O,T),H1) then v =
¢(u) is a solution of the problem (41).
| Remark. 1In fact we could require less than u € C; g+
Estimating the integral in (39) we have used only the fact that the
function is integrable at 0 (not necessarily bounded}) and that the
Holder. coefficient grows at t=P.

Thus if one shows that the solution of the integral equation
u = &(u) is Holder continuous in the sense of the Remark, then it will
follow that u is a solution of (41) with v replaced by u. That is, u is
a solution of (36). As in Part I we consider separately all terms on

the right-hand éide of the integral equation..

For T(t)uo we have

HT(t+h)u0-T(t)u0"1/2 = H(T(N-1T(t)ugly 5

A

Ch5u(-A0)5T(t)u0n1/2

ch8t-1/2-8yy 4 (42)

in
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(Fact 4, Sec. 2.5). And also

1T(t)u ‘5 ct~1/2

0'1/2 oM /2

For

ot | t
u(6) = (1-e®(OT)T(eor) (u +1/20)dr 2§ o(r)T(E-r)u(r)dr
| 0 | y 0
(43)

we have

t+h '
up (t+h)-u, (t) = ft 6(r)T(t+h-r)w(r)dr

t
A IO T U LR R

Estimating analogously to (42) one obtains

$

t
< cn® [ (t-r)t/28
0

n12H1/2 | ﬂw(r)n0|§(r)|dr

t
< ch® sup (|1-e“u(r)1) / (t-r)'l/z'snu(r)ul/zdr
<<t ' 0
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For the first integral one gets

© t+h 12
Mty £ C ft |¢(r) | u»(-‘-A) T(t+h=-r)w(r) 1dr
 t+h |
< cf |¢(r)|(t+h-r)'llzuw(r)u0dr
t

< ont?sup (nu(r)ay, |1-e (0T
’ t<r{t+h

The estimates for the term up generated by S are similar to those

for uj. At last for

R _
ug = - IO G(x,t-r) (1+aqu(0,r) - eau(o’r))dr R

we get Holder continuity from Theorem'2 since u(0,r) is Holder
continuous by assumption and eau(0,r) is also Holder continuous (see
Remark following the statement of Theorem 4). This completes the proof
of Theorem 4.

3.4. Existence and Uniqueness for the Nonlinear Problem

Now we are in a position to formulate our existence and uniqueness
theorem. |
| Theorem 5. Consider the Céuchy problem in (35). For any T > O
‘there exists a(T) > 0 such that for any a«, |a-ag| < a(T), the problem

has a unique solution if the initial data is sufficiently small

hughy /o < L(e,T) ,
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wherevL(a,t) > 0 is some constant. For fixed T,
L@, ) = (C(T) = ¢ (M]o=gy)® 5 CouCy > 0 .

Proof. The idea of the proof is rather sﬁandard (cf. Friedman [4,
Chapter 71). First, employing Theorem 4 we replace the differential .
equation by the integral one. In the latter we freeze the coefficients
- dependent on u(0,t), namely we introduce a function ¢(t) and consider

the linear integral equation
b eas(r)
u(t) = [ (1-e )T(t-r)(uy+1/2u)dr
0

+ [T(t)u0 + ft (1+a0¢(r)-ea¢(r))T(t-r)Sdr
' 0

t _
- fo G(x,t-r)’(1+a0¢(r)-e°¢(r))dr]

(44)

We show that if ¢ is Holder continuous, § > 1/4, then (44) has a unique
solution, u, Holder continuous in X1/2, Thus, one can define a

" mapping ¢ > F(¢) =‘u(0,.). We apply to F the Schauder fixed point
theorem and obtain a solution of the original integral equation. In
order to prove uniqueness we show that the mapping defined by the
right-hand side of (44) is a contraction in Cp’0+5((0,T0),X1/2)

for some Tg small enough.

Now we turn to the detailed proof.
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Step 1. Solving the linear equation (44).
Let ¢ € Cp,o+5((O,T),m}), 1/4 < 8§ < 1/2. We always assume
p > &, it isn't a restriction, since C, g+s < Cp' 0+s if P < 0.

Let f(t) be the inhomogeneous term in (44)
t ot |
f(t) = T(thug + [ (l-e +oy¢)T(t-r)Sdr
: 0
t as(r)
- G(x,t-r) (1+aye(r)-e Ydr .
0

In order to estimate f(t) we first estimate T(t)ug.

If ug € X1/2, then

= 1/2
nT(t)uoull2 = 1A, T(t)uon0 < pnuoltl/z ,

1(T(t+h)-T(£)Jughy p < Chst'anuonl/z .

One may estimate f as follows

: t
-1/2
nf(E)n < Clun! + sup 1+a¢(r)-ea¢(r) [ (t=-r) " “dras

12 = 2702 gepet | |y 0

s oC sup l1+a0¢(r)-ea¢(r)|

< C"”O"l/é + C sup '1+q0¢(r)-e“¢(r)| . (45)
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Analogously

.6, =8
PF(t)-F(t+h) iy o < Cht™ gty
§ a g -1/2-8
+ h sup|1+a0¢(r)-e ¢(r)| | (t-r) drisig
, 0
5 - -
+h Hp,o+5[1+a0¢(r)-e“¢(r)] t‘°+1/4 €
§, -8 ’ s
< Ch°t nuonl/.2 + Ch SUPl'1+a0¢(r)-ea¢(r)|_
enSa=ptl/8-¢ |
+Ch°t Hp,0+5[¢] sup '¢' .
(46)

Thus f € Cpt;0+5(0;/T,X1/2) where p' = p-1/4+¢ for any small e > O.
(We've made use of Fact 4, Sec. 2.5, and Theorem 2).

We have estiméted the inhomogeneous term in the equation (44), now
we observe that the norm of the integral operator was in fact estimated
in the proof of Theorem 4 (see (43) and further).' Summarizing those
calculations we have |

nK(‘)uﬂl/2

t
2 (1-e** ) T(eor) (u +1/20)dr,

t
< Cosup (.|1-e_a¢(r)| tu(r) iy ) fo (t-r)" 124y

= ctl/? sup (Il-e“¢(r), nu(r)nl/z) ,

0<r<t
(47)
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and in addition

1K) (40)=(K,u) (£)8 5 < sup|1-e®*7) | supru(ryny  (ct1/2 8 Sacn1/2)

- (48)

Now we consider the equation:

4= Rt (44")

in the Banach space L®([0,T], X1/2). The inequality (47) shows that

K¢ is a contraction if T is small enough (T depends only on the
magnitude of ¢); Therefore (44') has a unique solution. For arbitrary
T one can divide [0,T] into small intervals and again obtain a
solution. In addition, it follows from (47) that for any L > 0 and any

¢ € Co 046 SUCh that supoetct [6(t)] < L

sup fu(t) < C(L) sup Mf(t)n . - (49)
0<t<T 1/2 0<t<T 172 -

It is clear from estimates in (46) and (48) that if w € L*([0,T],
X1/2) satisfies (44') then u € Cor 04s((0,T), X1/2) with
p' = max (p-1/4+e, 1/2-8) < p. Hence u € C, p+s because
Ho 048091 < Te=PHyr 046097 for any g.

Step 2. The operator on the boundary.

In view of Step 1, there is é well defined mapping ¢ + u, where u
soives (44). Taking the trace of u at x = 0 (which is defined since

u(.,t) € x1/2) one obtains the operator

F:éo+v = u(0,t) .
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Firstly we shbw that F is continuous in Cp,0+5; Let ¢1,42 €
Cp,0+5((O,T),ﬂE1). We denote by uj, up the solutions of the
corresponding equations (44') and let ¢; = F(¢5), i=1,2. As follows

from Lemma 2.5.
'wl(t)-wz(t)l < Cnul(t)-uz(t-)nl/2 .

In order to estimate 1/2-norm we employ (44') and get

Q9

nul(t)-uz(t)nl/2 < "fl'fz"l/z + HK¢1u1-K¢2u2ﬂl/2 . (50)

For the first summand on the right-hand side one obtains (simi]ar]y to

(45))
| t a¢1(r) a¢2(r) :
"fl-f2"1/2 S_ "jo (G(¢1'¢2)'e +e )drul/z
t | ad,(r) ag (r)
+ nfo G(x,t=r) (ay () (r)-o,(r))+e -e )t
< ¢ h1 *%| - 51
= 7 erkt 41702 oo (51)

where C is uniform for all ¢ with |¢] < L.
The estimate for the second summand in (50) is similar to (47).

Put for bfevity

| a¢1(T)

vi(r) = 1 -e s W, = Uy f 1/2ui :

y
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then

t t '
nfo vl(r)T(t-r)wldr - ]O vz(r)T(t-r')wzdr-nl/2
t . .

< n]o (vl(r)-vz(r))T(t-r)wldrnl/z

ot
o+ n]o (vz(v‘)T(t-\r')(wl-wz)drnl/2

1/2 1/2

< €y sup l¢1-;¢2| sup fuy (r) ot "%+ Cy sup Mup=uyly oot .

(52)
If t is chosen so that Cztl/z;g l-a,va'< 0 then usfng (51) and (52)
one can derive from (5) the following estimate

allug (t)-up(t)ty,p & C osup, '¢1'¢é| |-

+ C sup '¢1-¢2' sup Ilul(r‘)lll/ztll2 . (53)

We have obtained this estimate for small t but since Cp in (52)
depends only on L (which is the upper bound for ¢j(t)) one can divide

[O,T] into small intervals and get from (53)

OiggT le(t)-wz(t)l < €y sup '¢1-¢2' 'a-aol +C, sup |¢1-¢2| ,
| (54)

where we have used (49) and (45), Cp depends on L and lugty/p.
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To complete the proof of continuity of F one should compare Holder

coefficients of ¢1-¢2 and ¥1-y2. Again

H [¥,-9,] 1/2
p,0+8-71772- < CHp,n+6[”1'”2’ i

I

CHy oaslfrFod + CH g4slKqup - Koup]

Repeating the cafhu1ations from (45) one easily obtains that

"(fl'fz)'?h"l/z < Ch‘ssup |¢1;¢2, ’a-a0|

-p+l/4-¢

+ Chst Hp’0+6[¢1-¢2] . (55)

And analogously to (48) and (52)

t+h

"(Klul - K2u2)|t "1/2

ad

ad
< sup'e 1-e 2, sup "ul(r)nl/2 (Ct1/2'5h6+Ch1/2)

1/2-6h6+Ch1/2) .

ad '
2
+ sup'l-e ’ sup fuy-uyty /o (Ct

Thus, recalling (53), we have

p=6 t+h ‘ '
sup t"h™" 1(K uy=K,u,) 1 < C sup|éq=d,] sup Huy(r)l
0<t<T,h>0 1417%e0) ¢ M2 #1742 11" 2
ad .
+Csup [l-e °| sup [¢-0,] (56)

(we've made use of the inequality o + 1/2 - 8§ > 0).
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Transforming in the same way the inequality in (55) we obtain

finally
Hp’n+6[w1'w2} | S CHp,O+6[¢1-¢2] + C sup ,¢1-¢2' » (57)

The estimates in (54) ahd (57)'show that F is bontinuous in Co 0+6-
Step 3. A ball, invariant under F. |
Here we show that there exists such L that the ba]}ﬂof the radius L
in Cp,0+5((d,T),Ri) is invariant under F. A1l fhe information we
need was, in fact, obtained on Step 1.

From (47) and (48) we have
sup TKyully p + Hy g, 50KGul <€ sup ’l—e ' sup tully »

and recalling (49) we can continue

< C sup ’1-ea¢| sup II‘FIIl/2 . (58)
Further, from (44'), (58) we obtain
) | _ o _b(x+h)-¥(x)
[Wo,s = sup [ + H, 0ysl¥] = sup [¥] + sup t 8
< (1 +Csup 'l-ea¢') sup nfn1/2 + Hp,0+6[f] R
(59)

and by (45) and (46)
< (1 +¢C sup ’1-e“¢|) (Cluglyp + C sup |1 + agé - e“¢|)

ad; ,
+ Clugly /p + C sup '1 +ogb - e ' + CH9,0+6[¢] sup ’¢’ .

(59a)
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Let L = |¢]y,5- For small L, (59a) yields the following
inequality

Iw’b,a < cohu0n1/2”+ Q1L2 + Clea-aO, .

Tracing accurately all constants one can vérify that Cg, C1 and Co
depend only on T. Thus choosiﬁg a(T) so that Cpa(T) < 1 and taking

such a Lg that

- 2
L(a,T). = (L - CyLg - cho,a-a0|)/c0 .

is maximal, we achieve our goal, ||, s <L, if luglyyp < L(a,T)

(we remind that |a-ag] < a(T)). It's easy to see that
L(a,T) = (1-Cyla-ag|)2/(aCeC,) (60)

Now set p' = &' < §. Consider in the Banach space
Cs* 0+ ((0,T),R1) a subset P| = {6: ] o], s < L}, where L is the
constant just introduced. It is not hard to prove that P_ is
relatively compactvin Cs',04+6" (for the proof see Friedman
[4, Chapter 7]. Thus, a continuous operator F acts on a relatively
compact set, therefore, by Schauder's theorem it has a fixed point
¢g. Solving the integral equatfon (44) with coefficients defined by
¢p we obtain a solution, u, whose trace, by definition, equals ¢p,
i.e., u(0,t) =-¢g(t). Replacing ¢g by u(0,.) in (44) we get the | . B
original nonlinear equation. |
Uniqueness is a corollary of the following proposition, which

itself is of some interest.
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Proposition 6. Consider the Cauchy problem (35). For any a, U > 0

there exists T > 0 so that the problem has a unique solution on the
interval (0,T) if |a-op|< a, tuglyy2 < U

Proof. The proposition is a standard local existence result. For
the proof we'll show that the integral operator is a contraction for
small t.

We introduce the notation

veu 20, wr) = 1= @O = we) ¢ agu(o,n)

t ‘ t
¢(u) = [ wlr)T(t-r)v(r)dr + [ z(r)(T(t-r)S-G(.,t-r))dr .
0 0 ,

Then the integral equation, equivalent to the problem (35), takes the

form
u = T(t)u0 + &(u) .

Consider the operator
u > T(t)u0 + &(u) = B(u) .

We will show that this is a contraction in Cp,o+5((0,T),X1/2) for
some T. We provide all the functions with subscripts 1 and 2, and

calculate the difference,
t
B(uq)-B(uy) = fo wi(r)T(t-r) (v -v,)dr

t t :
+ ]O (wy =Wy )T(t-r)v,dr + fO (z1-25)(T(t-r)S-G(.,t-r)dr .

3

(61)
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As many times before, we have

Hft w, (r)T(t-r)(v,=v,)drl < ft (t-r)-l/z’w (r)'-nv -v, I .dr
0 1 172 172 = 0 1 17°2°0

1/2 , ‘
<t C sup ’wl(r)l sup "ul'u2"1/2 ,
and
ft ()(‘)(. ) e
w, (r)T(t=-r)(v,-v,)dr
o " RS v Ll PR V73
< sup |w,(r)| sup NMuy-u,t C(Sl/2'6h6+Ch1/2) .
A 1 1 7°2°1/2
Thus

t . '
‘ min(1/2,0)
'IO wlT(t-r)(vl-vz)'p s <t C sup'wl(r)' sup "“1'”2"1/2 L

(62)
where |.l, s is defined in (59).
The analogous estimates hold for other terms in (61)
t q
,fo (wl-wz)T(t-r)vzdrlp 6.75 t7C sup ’wl-wz' sup fuyly/p (63)

t -
Ifo (zl-zz)T(twr)Sdr' . < C sup '21'22' t% | q =min(e,1/2) .
P,
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At last,
ﬂft (z4=2,)G(.,t=r)drn "< sup |z,-2 Ct1/4'e
o 1TEIRes 172 £ sw |z, 2'_ ’
(see Step 2 of the proof of Theorem 2) and
t p
lfo (zl-zz)G(.,t-r)drlp’G < Clzl-zz'p,st , (65)

where p = min(p-8+1/4-¢, 1/4-¢), as follows from Theorem 2.
Collecting together estimates in (62) through (65) we obtain from

(61)
r .
|B(U1)'B(U2)|p’5 <t (C1 sup 'wll sup ﬂul-uznl/2

where‘r = min(p,q) > 1/4-¢.

We fix t' > 0 (the length of the existence interval, T, will be
chosen later smaller than t'). Let & = |T(.)u0|0’6, calculated on
the interval (0,t'). We have seen before that £ < Ciugtys2 < CU.

Suppose that uy and up are such that, on (0,t'), luilp’G.S 2%

We start to estimate the right-hand side of (66)

sup|wy v | ='S“p|eauLeGUZ| = sup({u;-u, ea(9u1+(1-e)u2)a)

a2
Cllul-uzlll/2 ae .

I
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Further

e

GU2 C!Ul ,

afBu,+(1-8)u,)
lao(ul-uz) +e “-e 1 2

'21'22' = 'ul'UZ’ 'ao-ae , ,

it follows

22“) + Hp’aﬂxl/z,[ul-uzj)(a0+ae22a)

'zl-ZZ’p,G < Cllup-uply o (op+ae

2af
+ Clup-uphy o Hy gLou+(1-0)us]ae

28 20ty
< C'ul-uz’p’s (a0+qe %22ae“™) = Co(a,z) 'ul'u2,p,5 .

And finally we obtain from (66)

. 208
)+C,280e° " 4C,Cy (a,2)) 'ul-uz’p,é .

(67)

2a8

[B(up)-Bluy)|, s < tT(C)(1+e

Now we take T < t' so small that, for t =T, (67) yields
|B(u1)'-B(uv2)|p,6 < 1/2 'ul‘uz'p,d . |
If we pdt in a standard fashion
=0 s u? = B(u'l) = T(t)uo, coes un.= By"-1

then

|u'1-u0+u0

luo'p,G'-S o 'Iul'p,é p,0

= 'B(uo-u'l) + ”Olp s < ¥ < o2



-105-
and by induction
n -n
W[, 6 < (2272 < 22

Thus, the following series converges

u = (un-un'l) R
n=0

and gives a_so]ution to the problem u = Bu. If u' is another solution
then by taking T even smaller we can make |u']p,5 < 2 and on this

interval u' should coincide with u.
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4. PERIODIC SOLUTIONS

We consider the non-linear problem from (3.35) (t > 0)

uy - Agu - F(a,u) = O
(u(0,t)] = 0

[u (0,6)] + eu(0t) o g
(1)

not imposing initial conditions. In this chapter we show that, forra
sufficiently close to ag, the problem in (1) has a time periodic
'solution. Recall that ap corresponds to crossing the imaginary axis ’
by eigenvalues of A(a), Ay = Alag).

In order to prove the existence we develop an analogue of the Hopf
bifurcation theorem. Our approach is very close to the treatment of thé
theorem by Crandall and Rabinowitz in [1] where they consider the case
of the operator with compact resolvent (cf. also Ize [7]). The most
essential distinction of our problem is due to conditions at the free
.inner boundary (the non-Tinear function in the differential equation
~ contains §-functions). As we have seen in Chapter 3, this circumstance
forces us to be careful about the choice of Banach spaces.

Without entefing into details, we can describe the procedure of
finding a periodfc solution as follows. Instead of (1) we consider the

corresponding integral equation

Q(Tsa’u) (t) = 0 ) ' (2)



-107-

where p is a non-dimensionalized unknown period which appears explicitly
after some change of the time variable. Regarding ¢ as an operator on a
space of periodic functions with the fixed period pg, we seek zeros of -
R |

We use the information that ifia = ag then the linearized
operator has a pp-periodic solution, eqg(t), and construct the

function

| S'lé(p,a,S(eOJrV)), s#0
Y(S,p,al,V) = ' b} (3)

¢u(p,a,0)(e0+v), s=0
where v belongs to V, a complement of ey (and e1) in the space of
pg-periodic functions.

We show that Y is a mapping of class ¢l from a neighborhodd'of
(0,1,0,0) in R3 x v, Y(0,1,0,0) = 0 and that the implicit function
theorem is applicable. Then the soTutions of Y = 0 are given by
- continuously differentiable functions p(s), a(s) and v(s). Setting
u(s)(t) = s(eg(t) + v(s)(t)) we fihd a desired solution to (2). u(s)
is a solution on the interval [0,27] and can be continued periodically
on the whole line. A priori the.continuation may be nondifferentiable
at points 2nk. In order to show that it is not so, we apply the exist-
ence theory of Chapter 3 and construct a solution, v, on the interval
(2w-e, 2m+e) with initial data v(2m-¢) = u(2m-€). By uniqueness u = v

which is smooth at 2w,
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In the last section, as easy conséquence'of parabolic theory we
obtain that a periodic solution is c1as$ica1. We prove also that the
solution is bounded. Recall that the solution, u, belongs to somé
weighted space, and thus u ~ edX/2 as x + =, We consider the equation
(1) as a Cauchy problem in the half-strip (0,27) x (0,«) with x playing
the role of time and with periodic boundary conditions. Studying the
spectrum of this 111;posed problem we prove that the condition.

IQI < CedX/2 yjelds boundedness of u.

4.1. Regularity Properties of the Integral Operator

We are seeking a solution of (1), periodic with some unknown

period p'. p' should be close to pg = 27i/A4(ag). We introduce

p =p'/po exp11cif1y in the equation, making a change of variables,

t > tp and seek a pp-periodic solution of the equation
up = p (Agu + F(a,u)) = 0, (4)
with p close to 1 énd'(a,u) near (op,0).

Employing results of Sec. 3.3, we replace the differential equation

(4) by the following integral equation

¢(p,a,u)(t) = u(t)-T(pt)u(0)
t au(0,r)
-p [fn (1-e2>7/)T(p(t-r)) (u #1/2u)dr

t
£l (1+aqu(0,r)-e® (0" 1(p(t-r) ) sar

t .
= Slp(er)) (tragu(o,n)-e T ar) = 0

(5)



-109~

Denote by Cp the Banach space

c, = he C, 0g((0,mg) X2 0 c(To,pg1,x /%) [h(0) = h(py)}
and by Cp the Banach space
Cy = [h e €, 0,s((0,p0),X%) 0 c(L0,p1,xH%) [hi0) = o}

where p = §, 1/4 < 8 <‘1/2. If We find a zero of &, considered as an
operator on Cp, then, by Theorem 3.4, it will solve the differential
equation (4) on the interval (0,pg). We will show later that its
periodic continuation solves (4) for.a11 t € RL.

Denote by @ ‘g R. xR x Cp that subset for which the expression
(5), defining &(p,a,u), makes sense.

Proposition 1. & is a mapping from Q into Cp, analytic with

respect to u and «, infinitely differentiable with respect to p.

¢(p,a,0) = 0 and for v(.,t) € Cp

(1) (2,(1,a5,0)v)(t) = v(t)-T(t)v(0) ,

(1) (0, (Log,0W)(E) = =tAGT(t)V(0)

t
]0 v(0,r)T(t-r)Sdr

(‘i.Ii) (‘bau(lsaO’O)V)(t)

t
- IO G(.,t-r)v(0,r)dr .
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Proof. At first we show that & maps @ into Cp. We have seen in
the proof of Theorem 3.5 that the operator similar to ¢ (there was p=1)

maps the set
he ¢, gs((0.1),X72) | o) € x1/?)

into Cp,0+5((0,T),X1/2) continuously.
Considering each 'summand on the right-hand side of (5) separately

we see that

(81, nQ(t)-T(pt)u(O)ul/Z

< "U(t)'u(o)nl/z + II(I-T(pt))u(O)lll/Z

u(t)-u(0)1y 5 + 1(1-T(pt)) (-A)/2u(0)1y > 0,

as t » 0, since u(t)esc([o,poj),xl/z) and for analytic semigroup,

T(t)v »vast >0 for any ve X (put v = (-Ao)l/zu(O)). For

t
vpt) = (1O Tp(eor)) (urr/20)dr
0 :

We have

-t .
Nty < S (a(er)) T |1-e240T) |y et /2un ar

< ctt’2s0 , aste0 .
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For the next term on the right-hand side of (5), v3(t), a similar

estimate holds. And at last for

(0,r)

t
Wt = G(x,p(t-r)) (1+ayu(0,r)-e® 7> )dr

we obtain vq(0) = 0 by Lemma 3.3 (Sec. 3.2). Thus, we have shown
that 8(p,a,u)(t) » 0 in X1/2 as t » 0.

We obsérve that ®(p,a,u) is linear with respect to u, u(0,r)
and eau(0,r) 1t s almost obvious that the mapping (a,f) » eof
is analytic from I x Cp’0+5((0,p0), R1) to Cp’0+5((0,p0),ﬂ21).

- Indeed

.f.‘

Palef) = Lisg plaf) /it - e 50

in sup-norm and

-8 , [p, (af) (t+h)-p (af) ()]
k' 'pn(af) (t)—pn(af)(t+k)l a FLFK)-F(T)

-p
at Hp,0+6[f] + 0,

< ak'5|f(t+k)-f(t)| e
. -

(pn)xl
if Iflp,S_SzL <= for any L > 0 since p, > 0 with derivatives on any
finite interval.

We can deduce the proposition.from the chain rule if enough

regularity can be established for the maps
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(x) > T(pt)x , (0,=) x X2 » ¢ o (10,pg1),x12)

t
(p,u) = fo T(p(t-r))u(r)dr ; (0,=) x C([0,pp],X) * Cq

¥

t | 1/2
() = J BCop(t-r)FrIar 5 (0,2) %, 0, 5((0,0), K/E) + ¢y

. (6)
The last map in (6) is infinitely differentiable by Lemma 3.3, whi]é it .
turns out that the first two maps are analytic. We reproduce here the
proof of éna1yticify from Crandall and Rabinowitz [1] (where the

observation is attributed to Henry [61).

Since T(t) is a holomorphic semigroup, the following estimate holds

"AET(t>X"1/2, = n()!\oT(t/m))"‘xnl/2 < <E%> X1y, | (7)

for x € X1/2, 0 < t < tg, C depends only on tg. It follows the
series,

L (tp)"ART(tp)x/m! = T F"/mif (tp) G
m= ‘ :

as a function of t converges in L®([0,pg],X}/2) if B/p is small

enough (say, smaller than 1/Ce). The series in (8) is obviously equal

to T((p+p)t)x. ' | S
~ The inequality in (7) shows that tMAQMT(t) is a bounded '

operator in X1/2 for al1 0 < t < tg. If x € D(Ag™1) then

tMAQMT(t)x » 0 as t > 0, for m > 0. Since D(Ag™1) is dense
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in X172, it follows that for any x € X1/2 the functions fn(t,p)
from'(8) may be extended by continuity to have the value 0 at t = 0,
for m > 0.

Let us prove convergence of the series in (8) in Holder's norm.

M (th,p)-Fo(E,p) 0y o < "(t+h)"’-t"')A’(')‘T((t+h)p)xu1/2

+ it"AG(T((t+h)p) - T(tp))xiy

I

' m-1 cm \"
m(t+h) ‘h'@mﬁ> l!X|l1/2

m
+ t"tp) S (hp)® (%%) Xty

(Cn/p)™ 131y 7y ((m=1)0/ (t4h)4(h/)°)

Noticing that for 0 < 8 <1

1< (h/t)° for h>t
h/(t+h) < ' ,
h/t < (h/t)® for h < t

we arrive at the estimate

, m_ . 5.-8
"fm(t+hap>'fm(t,p)"1/2 i (Cm/p) m ht ||X"1/2 R
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Therefore

‘ : 1/2
fo € Cg orsl(0,pg)s XH/2)

and as before (8) converges if |p/p| £ Cp where Co is sufficiently
small. ”

Thus,owe have proved that the first map in (6) is ana1yt1c.
The proof for the second one is almost the same. Instead of (7), one

should start from the inequaiity

A0 T(t)xhy < (Cm/t)™ £ g (10)

1/2

Employing (10) one can show that the series
~M t
L3 /m! !0 fo(t-r,p)u(ridr

converges in Cq.

Computétion of the derivatives appearing in the statement of the
Proposition, is routine. It reduces to formal differentiation with
respect to the corresponding variables and this is omitted.

Denote by L the operator ¢,(1,a09,0). By Proposition 1,

(Lv)(t) (¢,(1,04,0)v)(t) = v(t)-T(t)v(0) ,

where v € Cp. Let A be a linear operator, we will denote by N(A) and
R(A) its null space and range.
For the bifurcation theorem we need some properties of the Jacobian

L, which we summarize in the following lemma.
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Lemma 2. Consider L as an operator from Cp to Cg.  Then
(i) v € N(L) if and only if v(t) = T(t)x for sbme

x €N(I-T(pg)). |
(i1) he R(L) if and only if H(po) € R(I-T(pg)).

(i) dim N(L) = 2.

(iv) R(L) is a closed subspace in Cg, codim R(L) = 2,
Remark. Note that I-T(pg) is regarded here as an operator on
xl/2,
Proof. Statement (i) as obvious. For (ii), if
h(t) = u(t)-T(t)u(0) |,

and u € Cp, then

h(pg) = ulpg)-T(pglu(0) = (I-T(py))u(0) .

Conversely let h(pg) = (I-T(pp))x, set u(t) = T(t)x+h(t).
Since x € X1/2, T(t)x is HSlder continuous and u(0) = u(pg) = x

therefore u € Cpe Obviously,
h(t) = u(t)-T(t)u(0) .

Thus (i) holds.
We now recall some results of Sec. 2.7. It was proved (Corollary

2.8) that there exist xo* and x1*, continuous linear functionals on

x1/2 so that

R(I-T(pg)) = {xe X2| (x,xg) = (x,x]) = o} .
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In view of (ii) this means, that

R(I-L) = {he Coflhlpg).Xg) = (h(pg)iXp) = O} .

The functionals h + (h(pg),xi*), i = 1,2 are continuous on Cg,
and statement (iv) follows. (iii) follows from (i) and Proposition
2.7, where it was proved that dim ﬁ(I-T(po)) = 2.

4.2. The Bifurcation Theorem -

With the information of the previous section we can now formulate a
version of the Hopf bifurcation theorem. Except for calculations in
two-dimensional space, the prbof is almost identical to one in Crandell
and Rabinowitz [1]. We include it here for completeness.

Theorem 3. Let ¢ be the integral operator defined by (5).

Then there exists a number n > 0 and smooth functions

(p,a,u):{-n,n) + R foxCp such that |
o(p(s),a(s),u(s) = 0 for 's' <n ,
a(0) = o5 , p(0) = 1 , w0 = 0
and u(s) # 0 if 0K ,s| <n .

Proof. By Lemma 2, N(%,(1,a9,0)) is two-dimensional. Let V be
a complement of N(¢,(1,a0,0)) in,Cp, then clearly V is a Banach
subspace of codimension 2.

Let xqg € N(I-T(pg)) and set eg(t) = T(t)xp, then o
eg € N(¢,(1,a9,0)). Define
S.'1<I>(p,a,5(e0+V)) , %0

Y(s,p,a,v) = .
@u(p,G,O)(EO+V) s 4S # 0
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By Proposition 1, Y is an infinitely differentiable mapping from a

neighborhood of (0,1,00,0) in B3 x V to Cy. Note that
slo(p,a,s(egt)) = s7H(a(p,0,5(et))-2(p,a,0))

is smooth with respect to s, since &(p,a,u) is smooth in u.
Obviously Y(0,1,aq,0) = 0 and, as follows from Proposition 1, the
Frechet derivative of ‘the map (p,a,v) > Y(s,p,a,v) at (0,1,&0,0) is

the linear operator

Z(p,a,v)(t) = v(t)-T(t)v(0)-ptA T(ty)x,
t ot ‘
+ o/ ey(0,r)T(t-r)Sdr - [ G(.,t-r)ey(0,r)dr) .
0 0
~We will show that Z is an isomorphism. Once this is shown, the implicit
function'theorem implies that the solutions (s,p,a,v) of Y = 0 near
(0,1,a9,0) are given by-smooth functions (p(s),a(s),u(s)). “
Setting

u(s)t = s(ey(t) + v(s)(t)) ,
we obtain the desired curve of solutions of ¢ = 0.
v + v=T(.)v(0) maps V onto R(¢,(1,09,0)) as follows from Lemma

2 and from the closed graph theorem. Moreover both spaces have codimen-

sion 2. Thus Z is an isomorphism if the relation

¢ v
-ptAOT(t)xO + a ]0 eO(O,r)(T(t—r)S - G(.,t-r))dr R(@u(l,aO,O)) R
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implies p = « = 0. By Lemma 2, the inclusion is equiva]ent to the

condition
Po _
’ *
("ppoAOT(po)xo"'a ./0 eO(O,Y‘)(T(pO-Y‘)S ‘G(-spo'r))dr,xi) = 0 ,
i = 0,1 .
(11)
Noticing that T(pg)xp = xo and employing the relations from
Sec. 2.7, (Xi,Xj*) = 8ij, Apxp = Cx1, we observe that if
'Po
*
d = (J eg(0,r)(T(py-r)S - G(.,py-r))dr,xq) * 0 (12)
0 ' . .
then (11) implies « = 0, hence p = 0.
The constant, d, from (17) is closely connected with
duall,apn,0). More precisely, the following temma holds.
Lemma 4. The constant, d, defined in (12) equals to
d = Re(dr(a)/de| )Py (13)

where A(a) is one of two eigenvalues X+.
The lemma follows that d # O, since for o near ag, Rex =
(1+4a-a?)/8 whence dRer/d # 0 at a = ap = 2 + V5,

The theorem is proved.
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Proof of Lemma 4. We recall that in Sec. 2.3 we have found two

eigenfunctions ¢(Xj,x), i = 1,0, X1 = Xg, so that

_A(a)(b(li,.') = x.id)()‘-i,') ’

and the functions w;(x,t) = e*1t¢i(2,.) solve the Cauchy

prob]em

g% - Ala)u = 0 u|t=0 = ¢,(2) . (14)

On the other hand, representing (14) in the form
du _pu o= (Ala)-An)u u = $.(7) (15)
dt 0 0 ’ t=0 i ’

one sees that the solution of (15) should satisfy the integral equation
' t .
u(t) = T(t)¢i(k) + IO T(t-r)(A(a)-AO)u(r)dr R (16)

where, as always, T(t) is a semigroup, generated by Ag.

Now, Qe observé that
(Aa)-Ag) = (a- ap)(s-6)

and the integral in (16) should be understood as

t
- (a-ap) fo u(0,r)(T(t-r)S - G(.,t-r))dr .
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We plug u ='¢0(A,t) into (16), take t = pp and differentiate
with respect to a. At a = ap we obtain
d3/da | oo + deg/da = T(pg)deg/de | .

(17)

t .
+ IO ¢0(0,Y‘)(T(DO-Y‘)S = G(.,t—r))dr ’

where we've used exp(ig{ag)pg) = 1.
Multiplying (17) by xp* and noticing thét, since
| * * *
((-1+T(py))ddg/da,xg) = (dag/do,(-+T" ())xg) = O
the terms with d¢g/da disappear, we obtain

- Po | .
poRe(dr/da(dg,xq)) = UO Re¢0(o,r>(T(pQ-r)S-G(-,po-r)dr,xo) .

(18)

Recall that for « = oy a real basis xg, x1; from Sec. 2.7 has

the form

172, —
Xq 27" (9g*8g)

xi’ = Agxo/v = 2/%i(e5 %) | .

whence ¢g = (x051x1)2'1/2. Taking into account that

(Xj,Xj*) = 8j; we get from (18) the desired result, (13).
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With the help of Theorem 3 we obtain a solution, u, of
the differential equation (4) on the interval (0,pg) such that
u(0) = u(pg). As a simple consequence of results of Chapter 3 we get
the following.

Corollary 4. Let u be‘a solution of problem (4) obtained in

Theorem 3. Set

U(t+kpy) = u(t) , 0<t<py , k = 0,%l,...

then U is a solution of (4) onR!.
Proof. Llet U = sup0<t<p0"u(t)ll1'/2. By Proposition 3.6,

there exists a T > 0, such that the problem

Ve - p(on + Fla,v)) = 0

eepg-trz = uleg /2

has a unique solution v oh the interval (pg-T/2, po+T/2).
By uniqueness, v(t) should coincide with u(t) for pg-T/2 < t < pg
and with u(t-pg) for pnp <t < pg + T/2. Thus v(t) = u(t) on
(po=-T/2, po+T/2), hence u(t) satisfies the equation also at
t = ppe.

Note, that for the proof we could use Theorem 3.5 as well.

We cohc]ude'this section with the following uniqueness result.
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Theorem 5. (Crandall and_Rabinowitz). Under the conditions of
Theorem 3 there exists €> 0 such that if (aj,u;) is a solution of
(1) of period py, where |p1-pgl < e, |aj-0g| < € and
luptyy2 < €, then there are numbers s € [0,n) and & € [0,pg)

such that

up(pyt/pg) = u(s)(t+e)

here u(s)(.) is a solution of (4) found in Theorem 3.
The proof is a literal repetition of the proof of Theorem 1.11(c)
from [1] and is omitted.

4,3, Regularity and Boundedness of the Solution

It éhou1d be noted that in previous sections we dealt with the
nonlinear equation which differs from the original model equation (2.4)‘
by a similarity tfansfofmation. In order to obtain a periodic solution
to the original model problem one should multiply the solution u(t) from
Sec. 4.2 by the weight w = eX/2, |

Al alternative approach is to deal directly with the original
problem not introducing ekp]icit]y the similarity transformation and
estimating weighted norms instead of unweighted norms.

In this way one can show-thaf the reasonings of Sec. 4.1 and 4.2
are applicable to the original prob1em considered in Banach spaces with

any weight_eax/z, 0 < a <1, and the following holds.

4 Proposition 6. Let u be a periodic solution to the problem

ug = p(“yy'eaum’t)“y* (1-e®(0theYy |y <0 (19)
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- _sou(0,t)
u, p(uyy e uy) , y>o0 (20)

(u(®)} = 0 , [u,]

y_y=0+e°‘“(°’t)_-1 -0 . (21)

(u exists under the conditions of Theorem 3, u = eY/zv, where v is a
~solution to (4)). :Then for any 0. < a.< 1 u is a solution (in the sense
~ of Definition Sec. 3.3) in a Banach space with the weight edX/2,

This means, in particu1ar, that
lira - v 40 1
u € C ([ngonga) N Cp,0+5((09p0),Ha) s

where the norms in Hao and Ha1 are given by

R VR el
H 0 =
d
e = 1fl + If .
1 0 x 0
Ha Ha Ha

‘We won't go into details of the proof of Proposition 6, because in
the present section we will obtain a stronger result. Note only that,
by virtue of Proposition 6, the pefiodic solution decays as eX/Z when
x + - and grows slower than any exponential edX, a > 0, as x » =,

From Theorem 3 alone it follows that u(x,.) and uy grow not faster
than eX/2 as x » =,

From now on we will consider all equations only for x > O,

reasonings for x < 0 are similar.
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Our main observation is that a solution of the nonlinear equation

(20) solves the linear equation

Vi S Vey - f(t)vX , x>0 , (22)

where f(t) = eau(0,t) (note that we have omitted thé immaterial factor
p).

First, we will establish the following regularity result.

Theoreﬁ 7. Let u be a periodic solution to the problem (19)
through (21) in the weak sense which was treated in Proposition 6.
Then u is a classical solution.

Proof. We consider the equation in (22) in the domain 0 < x < A,

0 <t <Twith initial data

v(x,0) = uo(x) = u(x,0) , ' (23)

and boundary conditions

v(0,t) = ¢1(t)_ = u(0,t) , v(A,t) = ¢,(t) = u(A,t) . (24)

As.we know, u € Cp,0+5((O,T),H1). ‘It follows that the
functions ¢1, ¢2 and the coefficient f(t) = eat(0,t) are Holder
continuous on (0,T). Moreover, they are Holder continuous on some
larger interval (-a,T+a) because u is a solution on Rl. Since

u(x,0) € HL, it is continuous also.
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Thus we have an initial-boundary value problem with continuous
initial and boundary values and with Holder continuous coefficients. It
is a well known fact‘qf the parabolic theory (see Friedman [4, Chap. 3,
Th. 81) that such a prob]em has a classical solution. Therefore a
solution, v, of the problem (22) through (24) is classical. By
uniqueness, uvs V.

In order fo prove'boundedness of the periodic solution we will
consider the same linear equation (21) in another domain and wfth

different initial and boundary conditions.

Consider the following problem in the domain [0,27] x [0,=)

b () = FOU(x,E)-uy(x,8) = 0 (25)

with initial data

u(0,t) = uo(t) R ux(O,t) = vplt) , 0<t<2n (26)

subject to boundary conditions
u(x,0) = wu(x,27) , x>0 . v (27)

Here f, up and vg are given 2n-periodic functions, and f is
continuous.

We will regard the problem in (25) through (27) as a Cauchy problem
in some Hilbert space of periodic functions, with x playing the role of
time. In a standard fashion, we transfer from the equation of second

order (25) to the system

(- GG ()
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We will define the'Hilbert space with the help of the operator
i3¢, which we consider now in some detail. 3¢ with the domain of
definition D = {¢ € Hl(0,27) | $(0) = ¢(2n)} (where Hl stands for the
Sobolev space) is, clearly, self-adjoint. The exponentials eint form
a complete system of eigenfunctions and the eigenvalues are 0,*1,... If
c is real, c ¢ Z , then the operator'(c+iat) is self-adjoint and

invertible. We define

L @

T = (c+ i3
as the arithmefica1 square root of (C+id¢).
Let (.,.) be the standard scalar product in HO = L2(0,27).
‘We denote by L a subspace of the space of two-vectors HO + 1O,
Set L = D(T) + HO where the domain of definition is generated by

periodic boundary conditions. If w = {u,v} € L, then the scalar product

is defined as

W,W>q = 172 [(Tu,Tu) + (v,v)] .

It is easy to show thath is closed and therefore that L is a Hilbert
space.

Another description of L may be obtained via Fourier coefficients.
Let {ap} and {bp}, n = 0,%1,..:, be Fourier coefficients of u and v,

then for w = {u,v} we have

oy = 172 (nf_m (¢+|n])]a, |2 + ng;“ o2 -
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By obvious reasons the norm, just defined, is equivalent to
2
wows = 1/2(]ay|° + 3 In] [an|? + 1 ,bn'z) , (29)

this norm will be denoted by 1.1 (i.e., twi2 = <w,wd1). Thus L is a
subspace of 22 + 22 defined by the condition ftwi < e,

It is easily seen that the vectors

ey = 1,1} , fq = {1,-1}
- (30)

e = {(in)-l/Zeinx.

] 1nX} , f = {(ih)-l/Zeinx’_einX} .

> © n

where n = *1,*2 ..., form an orthonormal basis in L.

The fo]]owing assertion can be made about the Cauchy problem

G w ) o () e ) e (50

X

in the space L.
Theorem 8. Let w = {u,v} be a solution of the problem in (31).

Assume that

/ nw(x,.)ll2 e 23X 4y ¢ 0 . (32)
0

for some a < u, where
wo= (2n)l T f(t)dt , w0 . (33)
0 .

Then tw(x,.)1 < C < .
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The meaning of the condition a < u will be ¢1eared up later on.

It turns out that u is the minimal positive eigenvalue of M.

~ Proof. - The plan of the proof. First, we will find the eigenvaTues
of M. In the degenerate case f = 0, we will estimate the resolvent.
‘We will then obtain the estimate for the general case by applying
perturbation theory to the former one. Using spectral properties of M
we wii1 show that the Laplace transform of the solution can be continued
analytically from the half plane, {Rez > a} into some sector containing
{Rez > 0}. The desired result then follows.

Solving the equation Mw = iw, where w = {u,v} one sees that

u, + Afu - Azu = 0 , v = Au . (34)

Solutions of (34) are given explicitly by

t
u(t) = Cexp (Azt-x [ f(s)ds) , : (35)
0

therefore u is 2w-periodic if and only if, for some nGEZZ,AZ-Xu = in.

The last condition yields two series of characteristic numbers

e, = w2 (s it s w2 - 08 iYL 3)

Note that £, and np lay on two branches. of the hyperbola
(Rez-1/2)2-(1Imz)2 = u2/4._'If

-t
F(t) = fn (f(s)-u)ds ,
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then, in virtue of (35), the eigenfunctions, corresponding to A = €n

and X = np, can be written as follows

C {exp(int-£ F(t)) , &exp(int-£ F(t))} ,

®n

(37)

fr

C {exp(int-nnF(t)) s npexp(int-n F(t))} .

Now, we will find-generalized eigenvectors. Let w be an
eigenvector with the eigenvalue X and w' be a generalized eigenvector
such that (M-A)zw' = 0. Then from the equatibn (M-2)w' = w we obtain

the following nonhomogeneous analogue to (34)

u% + Afu' - Azu' = 2\ - fu, v' =u+ ' .

Solving the equation with respect to u', one may calculate that
u' = ue(2xt - ut - F(t)) .

It follows that if u' is 2w-periodic then neceséari]y A= u/2,

Comparing X with eigenvalues from (36) one sees that the only

possibility is w = 0 and A = &g = ng = 0. It is easy to show that

for w = 0, the multiplicity of zero-eigenvalue is no bigger than 2.
Now, we consider the degenerate case, when the coefficient, f, is

identically 0. Then, of course, u = 0 and from (37) we obtain

. eigenvectors,
é; = C{exp(int) , (in)l/zexp(int)} ,
£ = clexp(int) -(in)l/zexp(int)} ,
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which after the normalization coincide for n # 0 with basis vectors,

en and fp from (30). For n = 0, we add to ey = Fb = (1,0) the

generalized eigenvéctor ep' = (1,1).

Thus we see that the operatdr,

has the complete system of eigenvectors, {en,fn}, n # 0, eg' =

ep and.?b. Solving the resolvent equation
\ : L _ ' ' g
(MO -2 (1 aney * 2n$0bnfn * bOfO) = 1 e * zn*O_bnfn * bOfO ’
one observes that
-2 -1 ' v
IR(AM )1 < C|A' + p(1, spec My) , | (38)

where 1.1 means the operator norm in L and p(A,spec Mg) is the
distance from A to the spectrum of MQ. Taking into account that the

spectrum of Mg lays on lines Rez = iImz, we obtain the estimate

nR(A,MO)n < C/x (39)
which holds in the domain

2, = Cl- {[arg(r-n/a-kn/2)| < 5 K = 0,1,2,3}

- {1 < rl . v (40)

for any € > 0 and r > 0.
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We now turn to the general case, f = 0. We observe that

IR M R

If f is continuous, then F is a bounded operator with the L-norm,

M

1IFn = maxQﬁ?SZ“ |f(t)| .

For the resd]vent of M one obtains

-1

1 il

-1

(M#F-2)"1 = (M) (1 (M)

Thus, if the cdnstants e and r defining Q¢ p are chosen so that'

u(MO-)‘)-_lu £ €K iFn=1 in Qé’r then

IR(AME < €/ A, | | (41)
holds in Q¢ p. |

In order to control the spectrum of M inéide the circle x| <r,
we do the following. We consider some circle, TR = {Ir] = R}, which
does not touch the spectrum of Mg. Applying standard results of the
perturbation theory (see Kato [8, Chapter [IV, §3]), we observe that
there exists a homotopy TI'(s) of the contour 'y such that the number of
eigenvalues of M(s) = Mg+sF in T'(s) is equal to that of My in Tg.
Taking R Sufficiently large we can show that the only singularities of

the resolvent R(A,M) inside {|A]| < r} are the eigenvalues of M, i.e.,

En and ny  from (36) such that 1&nls Inpl < r.
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Remark. It could be proved that the spectrum of M is discrete.
We need here only the above result about a bounded part of the spectrum.
Now we pass to the analytical part of the proof. Let W(z) be the
Laplace transform of the solution. By the Schwartz inequality we héve

for Rez > a

é-Z(Rez-a)
0

W(z) 12 = 1) wix)e Pdx1® < | m(x)1° e 2¥*dx | xdx .
0 0

Thus, in virtue of the assumption (33),

M(z)1 < C(Rez-a)"/% (42)

therefore W(z) is regular for Rez > u-s.'
It is well known that W(z) = R(z,M)w(0) (see Yosida [16]). We will
employ the information about the resolvent, obtained above, in order to

continue W(z) analytically into the left half-plane. We choose two rays

r, = {z |mz = t&y(Rez-6) , Rez §<0} , y>o0 .

so that the larger sector between TI'y and T'_ doesn't contain any
eigenvalue with non-positive real part except for 0. W(z) can be
continued in the sector and has there only a sfmp]e pole at 0. (We
recall that for f = 0 all eigenvalues are simple).

w(x) can be restored using the inverse Laplace transform

a-e+ij= '
wix) = | e W(z)dz . (43)
d-e=jo .

-----
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Employing the fact that there‘are no singularities of the resolvent
between {Rez = a-€¢} and the contour T = I'y u I'_ except for 0 and
recalling the estimaté’in (39), one can change the contour of
integration in (43)

w(x)  = £ eZX W(z)dé + Res Z=OW(Z) .

~ And the estimate fIw(x)1 < C + e'GX.S C follows. The proof is
vcomp1eted.

The following theorem is a simple corollary of Theorem 8.

Theorem 9. For a sufficiently close to ag, the periodic solution
of the nonlinear problem is bounded. |

Proof. Let up be'the-périddic solution of the problem in (1),
obtained in Sec. 4.3. By definition, this means that
% )

up(et) € CH(-T,TLH0) A €y gyl (=T, H

for any T, therefore v
wp € C1([0,27], HO) n C([0,27],H1) .
Since u = ex/2u1 is a solution of the nonlinear problem in (19)

through (21) it follows that u satisfies the inequalities

2T = 12 =X |
[ dt | |ux(x,t)| e dx < e
0 0 o

- (44)
2

T o ‘
] dtJ 'u (x,t)'2 e Xdx < = .
0 o !t |
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By Theorem 7, uy and uy are continuous functions and one may
apply Fubini's theorem to the integrals in (44). Changing the order of

integrations in (44) and noticing that for any ¢ = ¢ anei”t . -

) | |
foﬂ '¢tl2dt = I nz'anl2 > la0|2 + Z,nl‘an'z ,

&3

one obtains

J ll{u,u.x}ﬂ2 e~ Xdx
0

i |ut(t,x)|2

< [ dxe™ |
0 0 v

o =X 2w 2
dt + [ dxe™ | |ux(t,x)| dt ¢ =
0 0 .
Thus {u;ux} satisfies the assumption (32) of Theorem 8 with a =1/2.

It is left to notice that for some e > 0 if |a-ag| < e then

u(0,t) is small. Thus for f = eau(0,t) we have

2m

N T N -
0

Therefore in virtue of Theorem 8 u and uy are bounded. |
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