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ABSTRACT 

Unavoidable widenings of the vacuum chamber in an accelerator or 

storage ring may function as resonant cavities and thereby promote 

instabilities of the beam. A formalism for computing rise times of 

longitudinal instabilities is presented, for the case of a coasting 

beam. With a particular model of the vacuum chamber, a system of 

equations for Fourier coefficients of the electric field is derived 

from the linearized Maxwell-Vlasov equations. Use of a nonharmonic 

Fourier series allows a complete treatment of resistive-wall boundary 

conditions. The kernel matrix of the system'is given by a slowly 

converging series, which is subjected to·a Watson-Sommerfeld transfer-

mation to improve the rate of convergence. The transformed series 

permits efficient numerical computation of rise times for virtually 

any choice of geometrical parameters. Part II contains numerical 

solutions and physical discussions of the equations. In the case of 

fairly deep cavities, the coupling impedance is obtained by a rapidly 

convergent p8rturbation method that avoids numerical solution of large 

sets of equations. Part 'III takes up mathematical questions concerning 

convergence and truncation of the infinite system. 

... "\7 



-3-

1.1 INTRODUCTION 

A beam in an accelerator or storage ring may be strongly affected 

by variations in the vacuum chamber cross section. Regions of 

substantial widening can function as high-Q resonant cavities. As was 

shown by Laslett, Neil and Sessler
1 

in 1961, longitudinal instability 

of a coasting beam may occur when a high .harmonic of the particle 

revolution frequency is nearly equal to the resonant frequency of 

such a cavity. If a longitudinal perturbation of charge density 

has a Fourier component with frequency near the cavity resonance wr' 

then there will be a charge density wave with wave number k = n/R 

(R = ring radius) having phase velocity wr/k close to the average 

particle velocity ~c. The cavity sees this wave as a source 

oscillating near its resonant frequency, which excites a large resonant 

field that can act on the beam with the proper phase to cause a 

longitudinal instability. The latter may be manifested as spontaneous 

modulation of charge density in an initially uniform beam. For minimum 

rise time of the instability, w/k is equal to ~c pl.us a small shift 

that depends on several accelerator parameters. Because of periodicity 

the mode number n is an integer, and the condition wr/k ~ ~c is the 

statement that w be near·the n-th harmonic of the revolution frequency: 
r 

w ~ n>l = n~c/R. For a cylindrical cavity of radius d, .the fundamental 
r 

resonance is at wr j
01

c/d, where j 01 ~ 2.4 is the first zero of the 

Bessel function J . In typical cases the. harmonic n is quite high, per­
c 

haps n = J' R/d~- 103, and the resonant frequency w /2n is 108-10
9 

Hz. 
ol r 

Unstable behavior is favored by a high Q factor of the cavities, as 

well as by high current density and small velocity.spread. Also, the rise 

.. 
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time of an instability depends on the transit time factor, which is 

a sensitive function of geometric parameters. Because the unstable 

mode number n is so high, a small change in average velocity ~c can 

change the mode number by one unit. If the cavity resonances are very 

narrow, as is the case for metallic cavity walls, there will be a rapid 

variation of the rise time of an instability as ~c is varied enough to 

change n by ~.ne unit. 

An important problem in accelerator design is to delineate the 

range of parameters for which the growth time of. such instabilities 

will be long enough to be acceptable. The set of parameters includes 

geometric dimensions, wall conductivity, current density, and the 

velocity distribution. The problem was studied carefully by Keil and 

Zotter
2

•
3 

for the particular model of the vacuum chamber shown in Fig. 1; 

namely, a straight, infinite, cylindrical pipe of radius b, which 

widens abruptly to a cylinder of radius d and length 2g (length g in the 

notation of Ref. 2). The widenings appear with period 2nR in the 

longitudinal distance z, so that the picture can be viewed as an 

approximation to a circular accelerator ring with large ring radius R, 

having just one widened segment of mean arc length 2g. The model has 

resistive cylindrical walls, but perfectly conducting cavity end walls. 

Keil and Zotter computed the longitudinal coupling impedance,. which 

summarizes the effect of the conductors surrounding the beam, and is the 

quantity required for computation of the rise time of an unstable 

perturbation through solution of the plasma dispersion relation. 
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Our p.urpose in this series of papers is to make certain improve- advantages. The kernel matrix of the system is given by an infinite 

ments in the treatment of Keii and Zotter, so as to enhance computational series, which unfortunately is difficult to compute owing to the fact 

efficiency and develop physical insights. We also treat mathematical that the summand has a maximum far out in the series. This difficulty 

questions concerning convergence and truncation of the infinite set of is severe when the ring radius R is large. Accordingly, Keil and Zotter 

equations for field coefficients. We achieve substantial savings of did their calculations for a value of R that is too small for many 

computational effort in a scheme which emphasizes the physics of cases of interest. We avoid the difficulty by performing a Watson-

resonant cavities and allows firm control of truncation errors. Our Sommerfeld transformation of the series, which converts it to a series 

model of the vacuum chamber is the same as that of Ref. 2, except with an. essentially positive monotonically decreasing summand. The 

that the planar cavity end walls have finite conductivity. The latter is easily computed for any values of geometrical parameters. 

techniques introduced might aid in the study of more elaborate models; (3) The Watson-Sommerfeld transformation has the further advantage 

for instance, chambers with reentrant cavities, two or more cavities of revealing how the equations behave for small b/d, a limit not 

per period, off-center beams, and so on. Our discussion has the following discussed in Ref. 2. In the limit b /d -> 0, a/b -> constant, one 

new features. obtains the analytically soluble problem of a simple cylindrical 

(1) 'd h d . . 4 ~ apting t e stan ard Landau theory of plasma oscillations, cavity traversed by a line charge. We develop a pertur.bation method 

we apply linearized Maxwell-Vlasov equations under resistive wall which takes the simple cavity solution as a·· starting point, and converges 

boundary conditions. The usual description of the system in terms of rapidly for moderately large values of b/d. The'techniqueavoids 

a single coupling impedance emerges as an approximation which is not numerical solution of large systems of equations, and is our preferred 

universally valid. The generally valid description entails an inethod of computing the coupling impedance and rise time for an 

impedance matrix rather than a single impedance, owing to the fact important range of parameters. The perturbation method is derived by 

that Fourier modes of the fields are not eigenmodes of the full system eliminating the resonant mode from the equations. Such an elimination 

with tube corrugations. A case requiring a 2 x 2 impedance matrix is is useful even when the perturbation method is ·not employed. 

that in which a cavity resonance frequency lies in the middle between (4) We account for resistivity of the cavity end walls, which 

two adjacent harmon.ics of the revolution frequency. is quantitatively important, by using a non-harmonic Fourier series. 

(2) We derive a system of equations for the Fourier coefficients The extra numerical effort required is negligible, once the appropriate 

of the electric field in the cavity region, which is closely r·elated equations have been derived. 

to the system employed by Keil and Zotter but has some technical (5) We explore the mathematical status of the infinite system of 

equations for cavity field coefficients, and develop a method to control 
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the error in the finite-dimensional truncation used for numerical 

work. We find that the equations can be transformed so that .Fredholm 

theory becomes applicable; (Fredholm theory in a Banach space of 

discrete sequences, rather than the usual theory of integral equations). 

For numerical. work we use analytical results on high mode number 

behavior together with a mapping and interpolation technique based on 

spline functions. We thereby approximate the tail of every infinite 

sum, instead of merely throwing it away. 

(6) In solving the dispersion relation to find the rise time 

of an instability we account for the rapid variation of the coupling 

impedance near a cavity resonance. Although that variation is usually 

ignored, it leads in fact to a rapid variation of rise time with 

average particle velocity (and with other accelerator parameters). 

A short summary of our formalism and some numerical results are 

given in Ref. 5. 
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1.2 RELATED WORK 

Month and Peierls6 also reexamined the equations of Keil and 

Zotter, using a Watson-Sommerfeld transformation. Their use of the 

transformation is completely different from ours, however, in that 

they transform the solution of the equations for field coefficients, 

rather than the kernel. Consequently, they have to assume analyticity 

properties of an unknown funct·ion, and that makes the results difficult 

to evaluate. In our case the function is known and the transformation 

is rigorously justified. 

In ·an interesting paper Keil and Messer·schmid 7 studied nonlinear 

effects in the longitudinal stability of a coasting beam by means of 

numerical simulation. They find that the linear theory gives a good 

first approximation, but find interesting behavior of the velocity 

spread in. the nonlinear saturation of instability. 

Measurements on destabilizing effects of vacuum chamber cross.:-

h b f d t the ISR.8,9 section variations ave een per orme a A special 

experimental cavity placed around the ISR beam was. used to study 

longitudinal stability of a coasting beam; 9 theoretical estimates 

of thresholds for instability were found to be valid. Stability of 

bunched beams has been the topic of many experimental and theoretical. 

investigations. For a recent review emphasizing design considerations 

10 
see Hofmann. 

Calculations of coupling impedance for models different from that 

of Ref. 2 have been done by several' authors. Hahn and Zatz11 treat 

single and double step discontinuities of cross section in a circular 
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tube, without periodicity. 
. 12 

Hereward considered a single step in a 

rectangular tube. Kriegler, Mills, and van Blade1, 13 and also 

Trickett,
14 

studied a reentrant cavity (annulus coupled to the main tube 

through a slot). Chatard-Moulin and Papiernik15 treated an arbitrary 

small periodic modulation of tube radius. Their method was applied by 

Kr . k 16 d 17 l.ns y an by Cooper and Morton, and was reformulated by Krinsky 

and Gluckstern. l8 19 
Sessler gave a general review of the effects of 

beam surroundings on stability, listing further references. Related 

problems of wave propagation in corrugated wave guides have received 

much attention in the engineering literature. 20 
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1.3 CONTENTS OF PART I 

The task of the present Part I is to set up the basic equations 

which are to be analyzed, solved, and discussed physically in Parts II 

and III. 

Section 2 is concerned with linearization of the Vlasov equation 

(a step which requires careful interpretation in the present case), 

and Laplace and Fourier transforms of the linear Vlasov-Maxwell system. 

Section 3 contains the. derivation of equations for Laplace-Fourier 

coefficients of field perturbations due to a prescribed charge-current 

perturb~tion. The discussion parallels that of Ref. 2, but has been 

generalized to allow arbitrary charge-current perturbations, resistive 

cavity end walls, and initial-value terms arising from the Laplace 

transform in time. Most of the details on initial-value terms are found' 

in two appendices. 

In Section 4 the Vlasov equation is_combined with_the electromagnetic 

equations of Section 3 to give "self-:consistent" equations in which the 

perturbed charge-current does not appear. The general equations 

determining growth times of· unstable perturbations are stated, and 

the description in terms of a single coupling impedance is derived as 

an approximation. 

Section 5 contains the Watson-Sommerfeld transformation of the 

equations for cavity field coefficients, which is the main new result 

of practical importance in calculations.· 



-ll-

2. LAPLACE AND FOURIER TRANSFORMS OF MAXW.ELL-VLASOV EQUATIONS 

We take the axis of the tube to be the z-axis with the origin at 

a cavity centroid; the ends of the cavities then lie in the planes 

z = 2nnR±g, where n is any integer. The particle distribution., 

function, u(~, ~· t), is presumed to obey the Vlasov equation, 

<lu + v • <lu + .5!. (_E + _v x _B) 
<lt - <lr M 

21 
We suppose that u has the form 

<lu av = o. (2.1) 

8 (a - r) o (v ) o (v ) [f (v ) + f 1 (z, v , t)] 
X · y 0 Z Z 

(2.2) 

where 8 is the unit step function, and 6 is understood as a smooth 

but sharply peaked even function approximating the Dirac delta function. 

Thus, charge and current are spatially uniform over a cross section of 

the beam, within the beam radius a. On the average, particles move 

only in the z direction. If we substitute (2.2) in (2.1) and evaluate 

the equation at~= (O, 0, z), ~ = (0, 0, v), the result is 

(_l_ + v _l_) f
1

(z, v, 't) + .s!.MEz(z, t) a =0. (lt az av[fo(v)+fl(z,v,t)] 

(2.3) 

We wish to l~nearize (2.3) about the configuration corresponding 

to f 
0 

Accordingly we write the electric field as 

.. 

(2.4) 
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wher·e £!
0 

and .E;_
1 

correspond to charge-current densities (p 
0

, J 
0

) and 

(p
1

, J
1

) defined as follows: 

(2 .5) 

We emphasize that both ~ and .E;_
1 

correspond to the same boundary 

conditions, those for the corrugated tube with resistive walls. 

At points on the axis sufficiently far from the cavity ends the 

field lines of £!
0 

leave the axis almost exactly in the radial direction, 

so that E
0

z on the axis is negligible. At points nearly adjacent to 

the cavity ends, E
0

z on the axis will be nonzero but small; the field 

lines must bend around to meet the cavity ends at nearly normal 

incidence. For the linearization we treat E on axis as a first order 
oz 

quantity, even though it is formally of zeroth order. The accuracy of 

this procedure could be judged by solving the boundary value problem 

which determines E
02

, using methods like those developed in the following. 

When second-order quantities are dropped, equation (2.3) takes the form 

(;t + v ~z) f 1 (z, v, t) + ~ E21 (z, t) f~(v) - .s!.M E (z)f' (v). ·zo o 
(2. 7) 

. This equation is to be solved together with the Maxwell equations and 

boundary conditions for .E;_
1 

and !
1

, with sources (P
1

, J
1

) given by (2.5) 

and (2. 6). Thus we have a linear system to determine (f
1

, .E;_
1

, ! 1 ) in 

terms of f
0

, Ezb' and the initial values (f1 , .E;_1 , !l)t=o· We need not 
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actually specify Ezo and the initial values, since the rise time of an 

unstable perturbation turns out no.t to involve those time-independent 

quantities. 

Of course, we ignore completely the implications of the Vlasov 

equation (2.1) at points off the z-axis, as befits the approximation of 

one-dimensional motion. 

Before proceeding to the Maxwell equations, some comments are in 

order. 
4 

Generalizing the theory of Landau damping , we begin at t = 0 

with an arbitrary small perturbation, (f1 , ! 1 , _!!1)t=O' of the uniform 

beam configUration, (f
0

, !o), and ask how that perturbation evolves 

in time. We can never expect that the perturbation will decay to zero, 

even if parameters are such that the beam is actually stable, because 

(f
0

, !a) is not an exact steady-state solution of the nonlinear Maxwell­

Vlasov system, Indeed, if f 1 = 0 and ! 1 = 0, then (2.3) reduces to the 

false equation E
20 

.{z) f~(v) = O; Clearly, a steady state solution 

must have some variation of charge.density in the z-direction, to 

a~count for the presence of the cavities. A rigorous discussion of 

stability would have to proceed by first finding. an exact steady-state 

solution of the nonlinear system. Linearization about that solution 

~uld then decide the question of stability. 

As time passes, the perturbed field ! 1 , as computed from th_e 

linearized equations above, will either (i) increase in magnitude 

indefinitely or· (ii) tend to a constant. .(There is also the mathematical 

possibility that ! 1 could oscillate indefinitely without approaching a 

limit, but that would not seem to make sense.physically.) We interpret 

•' 
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case (i) as instability and (ii) as stability, while emphasizing 

that the interpretation is plausible but not rigorously justified. 

Since the configuration (f
0

, ~) about which we linearize is already a 

perturbation of the true stationary configuration (f(o), !(o)) 

(supposed to exist), the true initial perturbation of the stationary 

state is 

(2.8) 

Our interpretation of an increasing ! 1 as instability could be wrong if 

the beam were actually stable to a sufficiently small perturbation, 

but not to one as large as the "minimum" perturbation that we are able 

to treat theoretically, the latter being 

( f -·f(o) E - E(o) ) 
0 ' '-o- .o. 

The distribution function is to be normalized so that 

z +2TrR 
na'2: J 0 dz L,, dv f(z, v, t) 

z 
0 

N, 

(2. 9) 

(2 .10) 

where N is the average number of particles in the interval z < z < z + 
. ' 0 0 

~R. We shall impose periodicity of f in z through a Fourier development, 

so that N will be independent of z
0

•• To maintain (2 .10) in the linearized 

formalism, we first take f (v) to satisfy (2.10) by itself: 
0 

N. (2.11) 
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Next, we choose .the initial value of f
1

, which is arbitrary, so that 

z +21TR 

f 0 
dzf d f ( ) v 1 z,v,O 

z 
0 

0. (2.12) 

For instance, condition (2.12) is satisfied if there is no constant 

term in the Fourier series for f
1 

at time 0: 

L fln (v, 0) exptin z/R). 
niO 

(2.13) 

Now f = f
0 

+ f
1 

satisfies (2.10) at time 0, and the linearized equation 

(2.7) then implies that f satisfies (2.10) for all time. Also, the 

linearized equation implies that the continuity equation holds for 

all z and t: 

~ + .£..,! = 0. 
dt az 

(2.14) 

We next state the Maxwell 'equations for perturbed fields ~l and 

~l = ~~l with sources p 1 , J 1 given by (2.5) and (2.6). We take 

cylindrical coordinates (z, r, ~),and look only for solutions 

independent of ~· Higher modes depending on ~ are believed to have 

relatively little effect on stability, but perhaps should be investi-

gated at a later stage. Henceforth we suppress the subscript 1 

denoting perturbations, and write the axially symmetric equations for 

perturbed fields of the transverse magnetic (TM) mode as follows: 

p 

£0 (2 .15) 
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aE aE ~ r z ----- - \10 az ar at 
(2.16) 

aH aE 
____j_ r 

az - £ at 0 
(2.17) 

1 _l_ 
aE 

(rH ) z 
J + £0 r ar ~ at (2.18) 

The corresponding equations for the transverse electric (TE) mode 

are obtained from (2.15) - (2.18) by dropping p and J and making the 

replacements E ++ H, 11
0 

++- £
0

• The boundary conditions at the 

resistive walls do not mix the TM fields (Er, Ez, H~) with the TE 

fields (Hr, Hz, E~), at least in the standard approximate treatment 

of boundary conditions (Ref. 22 and Appendix~). Since only the TM 

fields affect the longitudinal particle distribution through the Vlasov 

equation (2.7), we may then ignore the TE fields entirely; (under assump­

tion (2.2) the TE fields have no sources, and in fact vanish at all times 

if they vanish at t = 0). 

Following Landau
4 , we perform a Fourier transformation of the 

equations with respect to z, and a Laplace transform with respect to 

t. (Some authors use a Fourier transform in t for stability studies, but 

are thereby led to logical inconsis"'tencies that were already noted by 

Landau. In proving that the resulting prescriptions for computing 

growth times are correct one is in fact led back to the Laplace transform.) 

We first treat the "tube region", r < b, in which the series in z will 

have period 21TR. Later we use a nonharmonic series in the· "cavity 

region", b < r <d. In the tube region the Fourier-Laplace transform of 

a function ~(z, t) is 



$ (p) 
n 

k 
n 

1 ·
00 

~pt -J e dt 2rrR o 
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-g+2rrR. ik z 
J e n </>(z,t)dz, 
. -g 

n/R, n = 0,±1,±2, ... 

(2 .19) 

(2.20) 

The Fourier transform (without Laplace transformation), evaluated at 

t = 0, is denoted by ~n(O). Through integration by parts, 

p~ (p) ~ ~ ( 0) •. 
n ·n 

(2.21) 

A reader committed to thinking in terms of frequencies may put p = ~ iw in 

in the following equations. 

Transformation of the linearized Vlasov equation (2.8) yields 

(p + ik v)f (v, p) + .S.M E (r, p) I f'(v) 
n n zn r=O o 

fn(v,t)l _.S.E !f'(v). (Z.22) 
t=O M zon p o 

In stating the transformed Maxwell equations we. simplify notation 

by suppressing arguments r, p, n; thus E (r, p) = E , and for initial 
zn z 

values we write Ezn (r, 0) = Ez (0). Then transformation of (2 .15) -(2 .18) 

yields 

.!. _1_ (rE ) 1 
+ ik E ~;:,, r ar r z (2.23) 

0 

aE 
ik E 

z fl + H (0), 
r ar - lJ0P 

~ 
JJo 

~ 
(2.24) 

ik fi - £oP E + £0 Er (0), 
~ r (2.25) 

.!. .1._ (r fi ) J + £oP E - £o Ez(O). r ar ~ z (2.26) 

In the cavity region, b < r < d, -g < z < g, we employ 

generalized Fourier developments, 
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E (r, z) = I [E
1 

(r) sin Cl z + E2 (r) COS CISZ.), r rs s rs s=o 

E (r, z) f ·1 A2 • 
CISZ), = [E (r) cos Cl z + E (r)sin z s=o zs s zs 

H~(r, z) I A 1 
H!s(r) sinCl :~:]. (2.27) = [H~s(r) cos (l z + s=o s . s 

Here and in most of the equations to follow we suppress the variable 

p. One must keep in mind that almost all quantities, in-particular 

the Laplace-Fourier coefficients of fields, are functions 

of p. The nonharmonic wave numbers Cl are certain nonlinear 
s 

functions of s and p, determined by boundary conditions on the planar 

end walls of the cavity. It turns out that the functions sin Cl z and 
s 

cos ClsZ are mutually orthogonal, so that there is a set of equations 

for the cavity field coefficients analogous to (2 .23) -(2 .26). Again 

suppressing arguments r, p, s, we find that for i = 1, 2, 

1 a (rEi) (-) i ·i 
0, (2.28) + nE 

r ar r z 

(-)i+l ·i 
a:Ei 

'i 
H!<o>, 

z (2.29) e1E ar - JJoP H~ + JJo r 

(-)i+l 'i ii Ei(O), (2 .30) e1H~ £·op - £ r 0 r 

1 a (r Hi) :Ei Ei(O). (2 .31) E
0

p - £ r ar . ~ z 0 z 

The equations (2.23)-(2.26) and (2.28)-(2.31) are to be solved 

subject to continuity conditions at the tube-cavity interface 

(r = b, - g < z <g). and boundary conditions relating tangential 
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electric and magnetic fields at the walls. The solution is in 

terms of charge-current densities and initial values of fields. 

Expressing charge and current in terms of .the distribution function, 

~ and evaluating the latter by (2.22), one finally obtains the field 

coefficients in terms of initial values of the fields and distribution 

function. For instance, one can obtain the electric field perturbation 

on the axis, E (r, p) j ~in terms of the initial perturbation of zn r=u 

the distribution function, f(z, v, 0), and two independent initial 

field perturbations, say Ez(r, z, 0) and H.P(r, z, 0). By an inverse 

Laplace transformation, one may then calculate the rise time T of an 

unstable perturbation as T = 1/Rep*, where p* is the right-most 

singularity of E (0, p) in the complex p-plane.. This method of 
zn 

solution is quite analogous to that of Landau's theory, but more 

complicated because of the boundary conditions and the initial-value 

problem. The treatment of initial values was trivial in Landau's 

electrostatic problem, but is somewhat tedious in the present 

example. One. expects, by analogy to Landau's case, that the particular 

initial values of fields and the distribution function do not affect 

the rise time. To make sure that there are no suprises, we have 

worked out the role of arbitrary initial-value terms in detail, under 

the restriction that the planar end walls of the cavity-have infinite 

conductivity; (there are technical difficulties in allowing finite 

conductivity with initial-value terms). _We report the calculations 

in Appendix A, and drop the initial-value terms in most of the main 

text. 

The resistive wall boundary condition is usually stated under 

the assumption of exponential time dependence of the fields, 
18 

which is equivalent to stating it for the Fourier transform of 

the fields in time, We need a statement for the Laplace transform 

of the fields, which is derived in Appendix B. 
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3. EQUATIONS FOR LAPLACE-FOURIER COEFFICIENTS OF FIELDS One of the three initial fields may be eliminated from (3 .1). Make 

use of the continuity equation, 

In this. section we find equations for the Laplace-Fourier 

coefficients of fields which satisfy (2.23)-(2.26), (2.28)-(2.31), ikJ + PP p (0)' (3.3) 

and the required continuity and boundary conditions. We define 

three regions of the vacuum chamber: and the Poisson equation (.2 .15), after Fourier transformation 

I: O<r<a 

li: 

lii: b < r < d, ~g-< z <g. 

In Regions I and II, the relevant Maxwell equations are (.2.23)-(2.26), 

whereas (2.28)-(2.31) apply to Region III. To solve (2.23)-(2.26) 

~-

we first find a second order equations for Ez alone. The system 

degenerates when k = 0, so that it is important to eliminate Er and 

H$ in such a way that the resulting equation holds even at k = 0. 
·, 

Take Er from (2.25) and substitute in (2.24); then solve (2.24) 

for H$, and substitute the latter in (2.26) to obtain 

2 
1 a ik 

= .x___ (.J - E E (0)) - r ar {r[JJ
0

H.._(O) - -p Er(O)J}• 
E

0
p o z 'Y 

where 

2 
X 

(3.1) 

2 2 
k + (p/c) . (3.2) 

but before Laplace transformation, evaluated at t = 0: 

.!~ (r E (0)) +ikE (0) = El p(O) 
r or r z 

0 

(3.4) 

From (3.1)-(3.4) one finds the necessary condition on Ez' 

.!.L(raEz)_x2E 
r ar ar z 

' ik P - ...£... E (0) - IJ 0 ..L (r H (0)). 
= ll oP J + £ 2 z r ar "' 

0 c 'Y 

(3 .5) 

The linear combination of J and p that appears in (3.5) is in some 

sense the natural analog of the charge density p that appears in 

Landau's electrostatic problem, and will occur repeatedly in the 

23 
following. We select [f(O), Ez(O), H$(0)] as the set of independent 

initial values to be chosen arbitrarily, (within the restriction that 

they be small). Notice that the remaining initial value Er(O) inay be 

expressed in terms of the others by integrating (3.4) and applying 

the requirement that Er(r, 0) be finite at r = 0: 

1 r 
Er(r, 0) = r f udu[-ikEz(u, 0) +-!- 6(a- u) f dv f(v, O)J. 

0 0 

(3 .6) 
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In the remainder of this section we put all three of the 

initial values [f(O), Ez (0), H~ (0)] equal to zero; hence ·Er(O) 

as well. Then the only inhomogeneity in the system of linear 

equations is provided by the term from Ezo in the Vlasov equation 

(2.22). In other words, we are beginning· with ·a charge and field 

configuration which differs from a stationary state solution 

(f(o), !{o)) of the nonlinear Maxwell-Vlasov system by the amount 

(2.9). The field Ezo' due to wall corrugations, may drive an 

initially uniform beam to instability. 

With initial fields_absent the general solution.of (3.5) is 

given in terms of modified Bessel functions as 

0 

E (3. 7) 
z 

·where 

F - _9._ f 
2 

X 

dv f(v)[lJ pv + ik L 
o E

0 

(3.8) 

The irregular Bessel function K
0 

is disallowed in Region I because 

of its singularity at r = 0. Thus, the Fourier developments of 

E in Regions I and II must have the forms 
z 

EI(r, z) !: [A~ I
0 

Cxmr) + Fm]e z m=-oo 

ik z 
m . 

EII(r, z)= !: [B I0 (~r) + C~K0 (xmr)]e z m 
m=-oo 

(3 ;g) 

ik z 
m (3 .10) 

We next find corresponding expressions for H<P, by a method which 

is compatible with the discussion of Appendix A, i.e., which brings 

in only E (0) and H (0) when initial value terms are included. The 
z ep 

' 
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method is to solve (2. 26) for H ~, with Ez given by (3. 9), (3 .10) . 

The general solution of the corresponding homogeneous equation is 

Rep = y/r, where y is a constant. Since I 1 = I~ and K1 = - K~, a 

particular solution of the inhomogeneous equation is 

1 r. 
r.J u[J(u) + B(a- u)E

0
pF] du 

0 

r <a, 

r >a. (3.11) 

The first term of (3 .11) may be expressed in terms of the initial 

value of the distribution function, as is seen by applying the 

continuity equation (3.3): 

J(u) + S(a- u) E
0

p F = -i~ p{O) = -i~S(a- u) qL,, dvf(v, 0). 

X X 
(3.12) 

For the present discussion this quantity is zero. Furthermore, one 

can rule out a term : /r in Rep by demanding that both (2. 23) and 

(2.24) be satisfied; consequently, 

'IL 
H<P tr, z) 

1 ik z' 
E

0
p L X- A I (X r)e m , 

m m o m m=-oo 
(3 .13) 

(3.14) 

Corresponding expressions for Er are obtained from (2 .24), (2 .25), 

given the results 'for Ez and·H~. One can then verify that the fields 

satisfy all 'four Maxwell equations. If the Ez and Rep fields for 
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Region I are matched to those for Region II at r = a, then Er will 

automatically be matched as well, by (2.25). 

In Region III the non-harmonic Fourier developments (2 .27). and the 

Maxwell equations (2.28)-(2.31) imply an equation analogous to (3.5): 

(3 .15) 

2 ( /.)2 a + p c (3 .16) 

It is convenient to state ·solutions in Region Ill in terms of certain 

linear combinations of I
0

(rr) and K
0

(rr) that have simple expressions 

on the cylindrical cavity wall, r = d. Accordingly we define, for 

j = 0, 1, 

Rj (x, y) 

S. (x, y) 
J . 

Notice that 

and, by a standard Wronskian identity, 

o, sl (x, x) 0, 

(3.17) 

(3.18) 

(3 .19) 

(3 .20) 

" 
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R1(x, xJ 1/x, S
0 

(x, x) - 1/x . (3 .21) 

With initial value terms neglected, the general solution of 

equations (2.28)-(2.31) in Region III may be written 

(3.22) 

·i Eop i i 
H<l> = -r- [D R

1
(rr, rd) + D' s

1
(rr, rd)], (3.23) 

(3.24) 

We are now in a· position to apply continuity and boundary conditions. 

Continuity in r at r = a determines the coefficients B and C of the m m 

Region II expansions in terms of the coefficients A- of Region I. Using 
m 

the Wronskian identity (3.21) and the definition (3 .18) we can then 

write_the Region II expansions as 

(3 .25) 

(3 .26) 

The boundary condition (B.l:l) applied at the cylindrical cavity wall 

determines the primed coefficients of (3.22)-(3.24) in terms of the 

unprimed ones. After Fourier transformation in z the boundary condition 

at r = d is 
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E:i (d) 
zs 

(3. 27) 

The subscript c (for "cavity") indicates that parameters ].l,O are those 

for the cylindrical cavity wall; we also write suhscripts e and t 

("ends" and "tube") for the cavity end walls and the cylindrical tube 

surface (r =b), respectively. By (3.22), (3 .. 23) and identities 

(3.20), (3.21) we find 

(3 .28) 

where the dimensionless parameter nc is defined as in Ref. 2: 

(3 .29) 

According to (3.28), the combination of Bessel functions that now 

appears in Region III fields is 

~ (r) (3 .30) 

and the field expansions· take the form 

(3.31) 

HIII(r, z) Eop 1. f-l~l(r) [Dl cos a z + D2 sin a z] ,(3.32) 
s· s s s s s 

s=o 

EIII(r, z) I a r"'"l~l(r) [Dl sin a z - D2 cos asz].(3.33) 
r s=O s s s s s s 
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The boundary condition at the cavity end walls (z + g, b < r <d), 

before Fourier transformation in z, is 

1/2 
- ll!Ej +I 

o e 
(3 ,34) 

By choosing the non-harmonic wave numbers as appropriately, we may 

satisfy (3.34) term-by-term in the expansions (3.32), (3.33). It is 

sufficient that 

1 2 
[assin asg + (ne/b)cos asg]Ds + [ascos asg - (ne/b)sin -asg]Ds = 0, 

(3 .35) 

1 2 
[assin asg + (ne/b)cos asg]Ds - [ascos asg - (ne/b)sin asg]Ds = 0. 

(3.36) 

There are two ways for these equations to be satisfied: 

x sin x ·x o, 2 o, . Dl arbitrary, .+ K COS D s · · ·s s s s 
(3 .37) 

·X cos X - K sin X 0, Dl = 0, D2 arbitrary, .. s s s s s 
(3.38) 

where 

X asg' K = neg/b (!!.E.) 1/2 E
0

p g. s a e (3.39) 

To find- solutions of the nonlinear equations (3 .37), (3 .38), we 

take advantage of the circumstance that the dimensionless parameter K is 

typically small compared to 1 for the values of p of interest. The 

values of p of interest, those involved in computing the rise times of 
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unstable perturbations, are cl9se to the points p = + iwr' where 

wr = j 01c/d is the fundamental frequency of a cylindrical cavity of 

radius d; (see the heuristic argument of the introduction, or the 

calculations of Part II). Then the order of magnitude of IKI is 

(3 .40) 

where Z 
0 

(JJ h ) l/2
= (1201T ohm) is the impedance of free space. For 

0 0 

the conductivity of stainless steel, o ~ 106 (ohm-meter)-1 , and 
e ' 

' . . -4·· 
d ~ g ~ 1 meter, we than have I K 1.-2 x 10 • The parameters nt' nc' 

ne are typically of . a similar order. In the following we shall expand 

various quantities in powers of K or the n's·arid retain only the 

lowest powers, keeping in mind that the resulting approximations are 

not good at large jp I . Large values of I pI enter the problem only 

if one wishes to compute the full time dependence of ·the fields, not 

just the asymptotic time dependence which. is the sole concern of 

stability studies. 

An expansion of the solution xs of (3.37) or (3.38) in powers 

of K gives 

X 
s 

2 3 
sTT/2 - 2K/sTT - 8K /(sTT) + .••. , (3 .41) 

s =· 1, 2, ..... 

where x solves (3.37) for even sand (3.3~.for odd s. There is also 
s 

a solution of (3.37) close to zero, which may be expanded in powers 

of K
112 : 

X 
0 
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1/2 . 
i K (1 + K/6 + ••• ) . (3 .42) 

The negative of each of the solutions (3.41), (3.42) is also a 

solution, but by a redefinition of coefficients Di one sees that it 
s 

would be redundant to include a corresponding term in the expansions 

(3 .31)-(3 .33). There is also the extraneous solution xs = 0 of 

(3.38), but it makes no contribution to the field expansions. The 

24 implicit function theorem for analytic functions may be invoked· 

to show that the series 0 .41) and (3 .42) converge for sufficiently 

. 2 
Also, the solutions we have found are unique if IK I <1T /16, 

as may be seen by applying Rouch~'s theorem; 25 all the solutions are 

close to those of sin ·2x o. 

The functions cos n
5
z and sin asz form an orthogonal set on the 

interval [-g, g). Accordingly, we define the orthonormal functions 

2 2 -1/2 
s/2 

l 
(-) cos asz' s even, 

fs(z) = [1 - K/(xs + K )] 
(-) (s+l)/2sin a z, s odd. 

s 

The peculiar sign factors are introduced so that f~ takes the 

convenient form cos as (z + g) at K = 0, a form that is used in 

Appendix A. The fs are orthonormal in the sense 

0 
st 

The result (3.44) follows from the definition of x 
s 

solution of (3.37) (s even) or (3.38) (s odd). 

(3.43) 

(3.44) 
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The set {f (z)} is complete as well as orthogonal. For 
s 

I ~<I < 1T
2 
/16 the wave numbers as give rise to a Riesz basis .for the 

2 
space L ( -g, g] of square-integrable functions, and the f form a . s 

26 
complete set in that space. Completeness in the space of continuous 

functions C(-g,g) may be established by considering, for ·u,v (-g,g), 

the integral 

Jd,\[Asin(Au/g)sin(Av/g) + K cos(Au/g) cos(Av/g)] = 
sinA(AcosA- K sin~ sin A(Asin A + K cosA) 

0 • 
y 

(3 .45). 

Here y is any closed contour such that the zeros of the denominators 

all lie outside y. By deforming the contour to infinity and noting 

that the integrand vanishes exponentially as Jm,\ + ±oo, we deduce from 

the residue theorem that 

s=O 

fs(u)fs(v) = t + L [cos(srru/g)cos(srrv/g) 
s=l 

+ sin(srru/g)sin(srrv/g)] g6(u- v). (3 .46) 

Of course, this formal statement of completeness is to be interpreted 

through term-by-term integration of the product of (3.46) with a 

continuous function. 

26-29 
The use of nonharmonic Fourier series has a long history 

The functions f (z) are well-known in the theory of heat conduction
27

•
28

• 
s 
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Redefining the Fourier coefficients, we write (3 .31), (3 .32) as 

Hili( z) cp r, 

"' I D <!>
0
(r)f (z), 

s=O s s s 
(3 .47) 

(3 .48) 

The remaining continuity and boundary conditions to be satisfied 

areatr·=b: 

EII(b z) 
z ' 

EIII(b ) 
z ' z ' - g <z <g, (3 .49) 

Z) = (~)l/2.II( ) 
- 0 t Hcp b, z , g< z <21TR- g, (3 .50) 

R11 (b z) = H~ir(b, ) cp , "' z , -g<z<g. (3 .51) 

To state these cortditicins in terms of Fourier coefficients, we use 

the orthogonality (3 .4.4), as well as the additional overlap integrals; 

1 
-g+2rrR 

2nR J exp[i(k - k )z)dz =o (3 .52) 
n m mn -g 

1 r exp[- iknz]fs{z)dz = af <g>N • (3.53) 
2rrR s ns 

-g 

1 J-g+2nR 
exp[i(kn - k )z)dz 0 - av (3 .54) 

2nR m nm nm 
g 

.. 
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The quantities appearing here are 

[(kg + iK)exp(ik g) - (-)s{k g - iK)exp(-ikng)), 
n n n 

v 
run 

sin(kn - km)g 

(kn - km}g 

By (3.37}; (3.38} it is possible to write fs(g} as 

(3.55) 

(3 .56} 

(3.57) 

Now multiply (3.47} and. (3.48} by exp(-ik z}, ?nd integrate over 
. n · .. 

[- g,- g + 2nR). Multiply (3 .49} by f {z) and integrate over [- g, g}. 
. ' s . 

Noting the expansions (3.25), (3.26), (3:47}, (3.48} and the overlap 

integrals (3.44}, (3.52), (3.53}, (3.54}, we obtain two sets of linear 

equations for ,the Am and D . 
s 

Adopting a notation similar to that 

of Ref. 2, we state the equations in terms of the following functions: 

A A I (y b),. 
n no "n 

:B 
n 

R 
s 

D D ~ 0 (b)f (g), 
s s s s 

(3.58) 

C .. -(a/b}S
1

(x b,X a)F, (3.59) 
n n n n 

I 
n I 1 (xnb)/xnbl

0
(xnb). 

(3 .60) 

The equations, analogous to Eqs. (1.23) of Ref. 2, are 

i\ 
m - :B +a I N D + nt I (o -aV )(I A + en) (3.61) 

m s=O ms s n=-"" mn mn n n 
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n 
s 

R L N (I A + c ) . s -ms m m m 
(3. 62) 

m=-oo 

To solve (3.61), (3.62), a convenient first step is to eliminate A 
n 

in favor of i5 , or vice versa. To that end we use matrix· notation, and' s . 

define a matrix N with elements 

N N 
sn -ns 

(3. 63} 

-If the cavity end walls have infinite conductivity (K = 0) , N is 

equal to N+, the Hermitian adjoint of N. We shall prove that V = {Vmn} 

has the representation 

V = NvN , (3 .64) 

v = {v st} (3.65) 

Defining diagonal matrices R = {Rsost}, I= {Im6mn}' we may then 'write 

equations ·(3 ;61), (3 .62} in matrix notation as 

(3. 66) 

. D = RN(IA + C) • (3.67) 

The unit matrix is· always written as a numeral 1. 

To eliminate A, first rearrange, (3.66): bring the term ntiA to 

- -1 the lef.t side, and then multiply the equation o'n the left by NI(l - nti) • 

The equation then involves A only in the product NIA, which may be 
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expressed in terms of D by (3.67). The resulting equation for i5 alone 

takes the form 

- - -1-
D = RED + RN(l - ntl) Y, (3 .68) 

where the kernel matrix E is 

- -1 E = aNI(l-ntl) N(l (3 .69) 

The source term of (3. 68), linear "in the charge-current vector F = {F }. 
n 

entails the vector 

Y c riL 0.70) 

By (3.18), (3.21), (3.59), and ~3.60), the components of Y may be 

"Written as 

(3. 71) 

Elimination of Din favor of A leads from (3.66), (3.67) to 

the equation 

A = GIA + GC - B' (3.72) 

with kernel matrix 

G (3.73) 
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. Another useful equation is that which expresses A in terms of D. 

In (3.66) take ntlA to the left side, and then multiply·on the left 

-1 
by (1 - ntl) • Express NIA in terms of i5 by (3. 67), and then eliminate 

C in favor-of Y by (3.70). The result is 

The companion equation giving n· in terms of A is (3.67). 

To demonstrate (3.64), expand exp(iknz) in the orthonormal set 

{ft(z)} on [- g, g) to obtain 

(3. 7 5) 

Now multiply by exp(- ikmz) and integrate over [- g, g]. The resulting 

equation is exactly (3. 64). 

For a given charge-cUI·rent distribution, specified through the 

function Fn of (3.8), the electromagnetic fields may be determined 

either by solving (3.68) for D or by solving (3.72) for A. For deep 

cavities, d >> b, the Region 111 field coefficients D are close to 
s 

being the normal mode amplitudes of the system, and (3.68) is the 

appropriate equation. The kernel E is nearly diagonal when d >>b, so 

that the various cavity modes almost decouple, and the equation is easy 

to solve numerically. In the less interesting case of shallow cavities, 

b ""'d, the A are approximately normal mode amplitudes, and Eq. (3. 72) n . 

is the more tractable one; In realistic cases of interest the range of 

d/b may be of the order 2 < d/b < 5. In such cases (3. 68) is strongly 

preferred. 
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A remark on the- relation of (3 •. 68) to the equation employed by 

2 
Keil and Zotter may be helpful. Their equation (3 .4) is most easily 

compared with our (.3 .68) in the case where all wall conductivities are 

infinite. The unknown of their equation, X', is then simply related 

to D; in fact, X' = D ~ RNtY. The equations for X' and D consequently 

have the same.kernel, but different source terms: 

(3. 76) 

(3.77) 

With finite conductivity the situation is essentially the same: the 

equation for X' has mathematical properties similar to that for D, but 

has a more complicated form. We prefer the D equation for its 

simplicity and its more direct physical interpretation as the 

equation for cavity modes. 

.• •· 
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4. EQUATIONS FOR FIELD COEFFICIENTS WITH VLASOV 

SELF-CONSISTENCY 

To compute rise times of unstable perturbations the Vlasov 

equation (.2 .22) must be combined with the electromagn_etic equation, 

either (3.68) or (3.72). The charge-current density, expressed 

through Fn of (3 .8), is to be eliminated in favor of field 

coefficients. By (3.9) and (3.58), 

E!n (r)lr=O A /I (X b) + F • 
n o n n 

(4 .1) 

Following the viewpoint of Section 3 we put the initial value term 

fn(v, 0) equal to zero, so that (4.1) and (2.22) give 

By the definition (3.8) of Fn and (4.2) we can integrate on v to get 

2 
q \1 "' 

F (p) =_of . 
n M -~ 

f~ (v) pv + iknc 
2 

dv --2- _p_+_i_k....::..v_ 
xn n 

[An(p) + Fn(p) + Ezon/p]. 

(4 .3) 

The integral may be cast into a form familiar in plasma theory. For 

n # 0 -the definition (3 .2) of / gives 
n 

(4.4) 
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'Ihe first term on the right integrates to zero (since f ( ±00) = 0), and 
0 

the factor in front of the bracket in (4.3) may be written as 

d_ _l_ dvf~(v) 
£ M ik J_., p + ik v 
o n n 

(4 .5) 

The latter way of writ-ing the factor is correct also for n 0. Recall 

that by (2.11), 

N (4 .6) 

where N is the average particle density. Let us define a plasma 

dispersion function, 

2 
~ "' dvf

0
{v) 

NJ 
-"' ( p + ik v)

2 
n 

2 
where ~ is the squared plasma frequency, 

Then (4.3) may be written as 

F 
n 

where Ezn represents the left side of (4 .1). .Equivalently, 

F 
n 

n n zon - w [ A E ] 
1 +Wn I

0
(\tb) +-p- · 

(4. 7) 

(4.8} 

(4. 9) 

(4 .10) 
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According to (3. 72), (3 .59), and (4 .1), the coefficients of the 

·electric field on the axis, E , are homogeneous linear functions of 
zm 

the Fn' which we write as 

E zm 
\ z: F • 
L. ~n n 

n=-oo 

In view of . ( 4. 9) we then have an equation for the E alone; 
zn 

Ezm(p) + L ~n{p)Wn(p)Ezn(p) E(o) (p) 
zm 

n=-09 
where 

E(o)( ) 
zm p -

(4.11) 

(4.12) . 

(4.13) 

If initial-value terms were included, the right side of (4.12) would 

have additional terms depending on initial values [f(O), E
2

(0), Hcp(O)], 

but the left side would be exactly the same; see Appendix A. 

The rise time T of an unstable perturbation is to be read off 

from the inverse Laplace transform, 

(4.14) 

The integration contour in (4 .14) may be moved to .the left by 

decreasing y until y = Rep*' where p* is the location of .the right­

most singularity of E
2
n(p) in the complex p-plane. Generically, two 

complex-conjugate simple poles in the right half p-plane are the 

rightmost singularities. If those poles are at p* = u ± iv, then a 

translation of the contour beyond the poles gives the asymptotic form 

in terms of pole residues, 
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E (t) - e (u+iv) tres(E ) + e (u-iv)tres(E ) 
zn zn u+iv zn u-iv 

(4 .15) 

and the growth tim.e is defined as T. = 1/u, 

Since Wn(p) is analytic in the right half plane, singularities of 

Ezn(p) as determined.by (4.12) could come only from ~nm(p) or from 

zeros of the determinant of the system, 

det(l + ~(p)W(p)) = 0. (4 .16) 

We shall argue that ~ is in fact analytic in the right half plane, ·so 

that zeros of the determinant fix the rise time; see the discussion of 

s following (4.22) below. 

In practice the evaluation of the determinant is easy if the matrix 

~ is known, since it is typical that only one term in the sum of (4.12) 

is appreciable. As a quantitative discussion in Part II will show, a 

term in that sum is important only if p is near a cavity resonance 

(which corresponds to a pole of 1,; (p) at a· point" p in the left half 
r --

plane near the imaginary axis) and m is such that lw (p) I is maximum 
m 

for that p. Now lw I has just one (very sharp) maximum, if it is 
m 

regarded as ·a function of a continuous real variable m at fixed p ""Pr· 

The location of that maximum is given roughly by Imp + k' v 
· r .·. m o 

0, where 

v 
0 

is the mean velocity of the unperturbed distribution £
0 

(v). Since 

m is actually an integer, there will be at most two (neighboring) 

values of m for which lwm I is large. The velocity v 
0 

(or other 

parameters) may be tuned so that only one m gives a large contribution. 

In that case only one column of ~W is large, the evaluation of the 

determinant is trivial, and the equation determining rise times is 
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det (1 + s(p)W(p))."=' 1 + ~ (p)W (p) · mm m 
0. ( 4 .17) 

This. is the familiar dispersion relation of plasma theory, and smm 

is a dimensionless form of the usual coupling impedance of accelerator 

theory; (see Part .II for the exact relation to the impedance). 

As we shall see in Part II,_ the shortest growth time occurs when 

v
0 

is tuned so that only one m is important. We may, however, tune v
0 

so that both m and m + 1 are important. Regarding Wm and Wm+l as 

functions of p, one is then at a value of p roughly ~idway between the 

' maximum of Wm and that of Wm+l" This case of "·falling between two chairs" 

leads to growth times longer than minilnum, but must be included if one 

wishes to survey the full dependence on v or other parameters. Since 
. . 0 

two columns of sW are la~ge, the conventional description in. terms of a 

single impedance fails, and the dispersion relation has the form 

det(l' + sW) "" 

ww 1 m m+l 

smm 

sm+l,m 

sm. m+l I 
l';m+l,m+l 

(4 ;18) 

There is yet another way in which two different values of m can be 

0. 

important, which is discussed in Part II. It corresponds to a special 

choice of parameters for which effects of neighboring m values cancel, 

and leads to anomalously iong groWth times. 

By (4.11) the computation of smn amounts to computing Ezm for 

F 
m 

0 .nm 
That computation can be done in two ways. For shallow 

cavities, the proper way is to solve (3. 72) for A with F 
m m onm' and then 
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obtain Ezm from (4.1). For deep cavities, one should solve (3.68) for 

D , then get A from (3. 74) and E from (4 .1). The latter approach is s m zm 

comparable to the method of Ref. 2, and gives the following expression 

for I';: 

where 

a .s 

a 
n 

n mn 

2 -1 -1 -a(z/b) [N(l- n vR )(1 - RE) RN] r
1

(x a) 
t mn n 

The formula obtained by solving (3.72) is 

.s + mn 

(4 .19) 

(4 .20) 

·{.S R.n [xnas0(J<.nb, ~a)- nt (a/b)s1 ~b, ~a) ]-a(a/b) [N(R-nt v)N] R.nsl (~b,~a)} 

(4 .21) 

where the matrix H is defined 

H nm 
-1 -

ntll <xnb)/xnb] [N(R-ntv)N]nmll (~b)/~b. 

(4.22.) 

·As mentioned above, we wish to show that l;(p) has no singularity 

in the right half p-plane. Since I'; involves the solution of an 

infinite-dimensional equation, not known in explicit form, it is not 

("' < 
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easy to make a direct analytical demonstration. We can give a per-

suasive physical argument, however, on the basis of the definition 

of z; in (4 .11). If the charge and current perturbations were given 

time-independent functions, rather than being determined by Vlasov 

dynamics, then the field perturbation would also have to be time 

independent. Consequently the Laplace transform of the field would 

have no singularity in the right half p-plane, but.would have a singu-

larity on the imaginary axis. The Laplace transform of a constant 

function is proportional to 1/p, so that by (3 .8) the F n (p) for a 

time-independent charge-current distribution is analytic except for 

. -2 
poles at p = 0 and p = ± ickn (the latter from the factor xn ) • 

Since E (p) must have no singularity in the right half-plane for such 
zn 

an Fn' we infer that 1; (p) must also have none; (take f (v ,p) = .S f (v) /p, nm n nmm 

to see that each element of I'; is free of singularities). 

The above discussion emphasizes the electric field on the tube axis, 

and represents the conventional viewpoint of accelerator tqeory. It is 

more natural, however, to emphasize the field in the cavity region, if 

the cavities are fairly deep and resonant. The axial field and the 

distribution function may be eliminated in favor of the cavity mode 

coefficients D. The rise time of an instability may be found directly 

from the inverse Laplace transform of D(p), and there is no need to 

consider the axial field. The self-consistent equation for D has an 

appealing form, and is easier to analyze in a precise way than the 

scheme described above. 

To derive the equation, take A from (3.74) and substitute in (4.10). 
n 

Solve the resulting equation for Fn in terms of Ds to obtain 
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n 

-w 
n 

1 + 8 w 
n n 
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E l 
n vR-)i5J +~J. 

t n p 

(4.23) 

Now introduce this result for Fn in the source term of (3. 68), using 
I 

(3.71), to obtai~ the desired equation forD with Vlasov self-consistency: 

i'i 
s 

R [ ~ (E + S ) i5 + Ds(o)] 
s L st st t t=O 

(4.24) 

The letters E and S denote "electromagnetic" and "self-consistency" 

parts of the kernel. That is, E is the same kernel (3. 69), that occurs 

in our previous equation (3. 68) with given source term, and S is the 

new piece that arises from expressing the source in .. terms of the field 

itself. we. have 

E + S 
su su 

a IN [l 
·m=-oo sm 

Under present assumptions the inhomogeneous term is 

2 "' 
~ <~) I 

m=-oo 
N 

sm 

w 
m 

1 + 8 w 
mm 

-(o) . 
More generally, D conta1ns various initial-value terms;' see 

Appendix A. 

(4 .25) 

( 4. 26) 
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Rise times of unstable perturbations could be obtained from zeros 

of the determinant of ('4 .24): 

det [1 - R(p}(E(p) + S(p) )J 0. (4. 27) 

By solving (4.27) one effectively solves the electromagnetic problem and 

the dispersion relation simultaneously, without the intermediate step 

of computing an impedance. In Part II we shall find it better not'to 

work with (4.27) as it stands. We eliminate the resonant mode from 

(4.24), and consider the determinant of the reduced equation. 
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5. WATSON-SOMMERFELD TRANSFORMATION 

A difficulty arises in the practical computation of the sum in 

(4. 25) that defines the kernel E. The factor N or N is maximum as 
SID IDS 

a function of m when its denominator is minimum, ·kg= mg/R~ ±x . 
m s 

In typical cases of interest this occurs at a value of m = m* which 

is large from the view point of practical. computation, even for the 

first few values of s. Values of m far beyond m* must be included 

for an accurate summation of the series, and the situation gets 

worse as s increases. 

A Watson-Sommerfeld transformation29 •30 replaces the difference 

of squares in the denominators by a sum of squares, and thereby 

circumvents the difficulty. Furthermore, the transformation eliminates 

the Bessel functions in favor of easily computed Bessel function zeros, 

reveals the behavior of the sum for b/d ~ 0, and facilitates the 

treatment of Eq. ( 4. 24 ). by Fredholm theory. There is no reason to 

make a corresponding transformation of the sum defining the self-

consistency kernel S. As we show in Part II, only one or two terms 

of this sum are important {.those for which 1 + emwm ~0), and in any 

case the sum converges exponentially. 

Let us define 

f(m,s,t) N N 
SID mt 

N N 
-ms mt 

The sum that occurs in the kernel E is 

~ 
st ~ f (m, s, t) Im ( 1 

m=..J» 

(_ 

-1 
n I ) . tm 

(5.1) 

(5.2) 
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For s-t odd, L vanishes: then f is odd in m, while Im as defined st 

in (3.60) is even. Henceforth taking s-t to be even we write 

f (5.3) 

f ( ±) 1 1 __ 1---;,---::-

= 4 (k g)2-x2 ( )2 2 
m s kmg -xt 

[ 
2 2 1 2 +2ik g) 

(kg) + K +(-)s+ (kg + iK) e m m m · 
(5.4) 

The numerator of (5.4) vanishes at kmg = ± x, where x satisfies· (3.37) 

for s even and (3.38) for s odd. Thus f(±) is bounded at kmg = ± xs, 

± xt provided ·that s -1 t. If s ~ t there is a pole with residue 

given by 

(5.5) 

Except for the poles that occur when s = t, f(±) has no singularities 

in the finite m plane and for large Jml has the bound 

~(±)(m) I .,;;;;~ [l + e±(2g/R)Im(m)], 
lm I 

where c is a positive constant. 

To convert the sum to an integral we employ the functions 

q, ( ±) (m) . ) ( ±) ( ) ±i Tim/ J{mf me sinnm, 

(5.6) 

(5. 7) 



where 

J(m) 
I 

m 
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( +) 
Now ~ - has poles at the integers with residue 

(5.8) 

(5 .9) 

and poles that arise from zeros of the denominator of J. Since nt is 

small compared to one, the latter are close to the zeros of I
0 

( Xmb), 

which is to _say near the points at which xmb = ±ijoi' where j
0

i is 

the i-th zero of the ordinary Bessel function J
0

• With such points 

as the first approximation, Newton's method locates, the poles of J(m) 

at the points m = ±mi'. where 

2 ~ 1/2 
-~) 2 • 

j oi 
(5.10) 

·i = 1, 2, ... 

Inside the square root the exact expression· has been expanded to lowest 

order in nt. The poles at m = _,±mi hav·e residue 

lim (m+mi)J(rn) 
m -+ ±mi 

(5 .11) 

to lowest order in nt. Except for these poles J(m) is analytic in 

the finite m-plane. The branch point of 1n does not appear in J(m), 

because the entire functions I- (z) and I
1

(z)/z con·tain o~ly even powers 
0 , 

of z. 

In view of (5.6) and the fact that I
0 

and r
1 

have the same 

-SO-

asymptotic beha_vior. the functions <P (±) are bounded as follows at 

large lml: 

(5.12) 

' ' (±) ' bi 11 . half In fact, each of the functions .p decreases cu ca · y m one -

plane, and exponentially in the other. 

We shall integrate ·over a path C consisting of a rectangle with 

corners - A ± iB, A ± iB, where A lies between two positive integers, 

M< A< M + 1. We first takes# t, and choose Band p so that J(m) 

has no poles inside ·c. Then by (5:3) and (5.9)~ 

M 

J l_<P(+)(m) + <P(-)(m)]dm 2i L J(m)f(m), (5.13) 
c m=-M 

since the only singularities of the integrand inside C are poles at 

integers. Taking a sequence of paths C with increasing A we obtain 

the required sum (5.2) as an integral: 

(5.14) 

Now the integral on Im-(m) = ±B may be replaced by an integral over an 

infinite semi-circle in the upper (lower) half-plane, plus a contribution 

from the poles at the points ±m,. According to (5.12) the integrals on 
]. 

·the semi-~ircles vanish, and the formula (5.11) for pole residues gives 
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~ 
st 

~ _!__ (1 + .2nt ) rf ( +) ( -m.) 
i=l mi j 2 . r ~ . 

0~ 

.:_£(+) (m.) 
. . ~ 

+ 
sim(-Tim.) 

~ 

(5.15) 

We have chosen the branch of the square root in (5.10) so that mi is 

in the uppe.r half-plane·. Since f(+) (m) = f(-) (-m), the poles in the 

upper and lower half-planes give equal contributions. For s = t 

there is an additional term· in ~st from the poles at m = ± xsR/g 

with residue (5.5). These poles are close to the real axis, and 

give the following addition to ~~t: 

2la [1 - K(~;K) J J(x R/g) o • 
s st (5 .16) 

s 

Since ·the mi are near the imagnary axis for the values of p of 

interest, it is convenient to state the final form of ~st in terms of 

nearly real numbers vi defined by 

(5.17) 

Then (5.4), (5.1.')), and (5.16) give 

(. 

ak = a 'i' 
st L 

2 
1ra (~) 

m=-co 

E 
i=l 
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I 
N __ m_ N 

sm 1-n I mt 
t m 

vi 1 

r hi (r b) ~ n I
1
(r b) 

s 0 s t;: s 

1 + 2nt;i. 
0~ 

(5.18) 

(5 .19) 

We have neglected K
2 

in comparison with (11av.f in the coefficients of 
. ~ 

the hyperbolic cosines. The notation of (5.18) is defined in the 

following equations: vi in (5.17), (5.10), x5 in (3.41), (3.42), nt 

as in (3.29), Kin (3.39), a in (3.56), rs in (3.16), fs(g) in (3.57). 

Since v. 
~ 

interest, the 

and xs are approximately 

. . 2 . 2 
denominator (11avi) + xs 

real for the values of p of 

is nearly a sum of squares 

of real numbers, rather than the troublesome difference of squares 

that appeared in the original expression. The series converges 

cubically, and is quite easy to comput·e numerically. 

The last term in (5.18), proportional to ost' is important in 

the analysis of the equations for the case of fairly deep cavities, 

because it is.the only term that survives in the limit b/d + 0. 

It is interesting that this limit is difficult to treat without the 

Watson-Sommerfeld transformation. One may draw an analogy to the 

31 use of that transformation in Regge's scattering theory. There 

the transformation gives the asymptotic behavior, for cos e + oo, of 

the sum of a series in Legendre polynomials, PJI. (cos 6). Here we get 

the asymptotic behavior, for b + 0, of the sum of a series in Bessel 
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APPENDIX A 

INlTIAL VALUE TERMS 

We repeat the considerations of Section 3, allowing arbitrary 

initial values [f(O), E (0), H (0)], but requiring infinite conductivity 
z <I> 

on the end walls of the cavities. Solving (3.5) by the method of 

variation of parameters, we find that (3. 9) and (3 .10) must be modified 

by adding to their summands the term 

where 

~(r) 

r 

J udu ~(u)R0 (Xmr, Xmu), 
', 0 

n: ~0 a 
_...LE (rO)--r ~r{rH (r,O)). 

c2 zm ' o <f>lll 

(A.l) 

(A.2) 

Similarly, by solving (2 .31) we find that (3 .13) acquires the new term 

while (3.14) is augmented by 

where 

K 
m 

L (r) 
m 

-ik q "" 
= -T J f (v,O)dv, 

xm -<X> m 

udu Ezm (u,O) + ~ H<f>m (r, O)J 
£ c 

0 ' 

(A.4) 

(A.5) 

(A.6) 

In solving (2.31), one first has to allow an arbitrary solution Y/r of 

the homogeneous equation, in Region II. The requirement that the fields 
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satisfy aU four Maxwell equations then determines y to be zero. 

After an application of the continuity condition at r = a the fields 

in Region II take the form 

·n . 
H<P (r,z) 

J 
ik z 

+ L (r) + K a 2/2r e m 
m m 

(A.8) 

In Region III we now have K= 0 (infinite end-wall conductivity), 

and the functions fs of (3.43) reduce for all s to cos as(z +g). We 

solve (3 .15) by variation of parameters and then solve (2 .31) to 

obtain 

E:nr< ) z r,z I [DR (r r, r d)+ D'S (r r,r d)+G (r)]cos as(z+ g), 
s=O s o s s s o s s s 

where 

£. p ~ [D R1 (r r,r d) + Ds's
1

(rsr, rsd) 
o s~O s s s 

- 2 + Ls(r) + K a /2r]cosa (z +g), 
s s 

r· 
Gs(r) =J tidugs(u)R

0
(r sr, r su), 

b 

g (r) 
s 

\10 
- ....E._ E (r ,0) ( H ( 0)) 2 zs - 7 3; r rj>s r, • 

c 

(A. 9) 

(A.lO) 

(A.ll) 

(A.l2) 
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• (A.l3) 

(A.l4) 

Here fs(v,O) .is the coefficient in a development of f(z,v,O) in the 

f ( ·III unctions sin as z + g). In deriving H<l> from (2 .31), one again has 

to allow a term y/r, and this time y is not zero (for the choice of 

particular solution of the inhomogeneous equation that we have found 

convenient). The requirement that the two Maxwell equations (2.29), 

(2 .30) give the same E determines y 
rs ·· The field Er(r,O) is eliminated 

through Poisson's equation, as in (3.6). 

Given the series (A. 7) -(A.lO), the remaining calculations for 

co"ntiimity and boundary conditions can be done in precise analogy 

to Section 3. The general form of the boundary condition is derived in 

Appendix B. On the cavity wall r = d the boundary condition stated 

in terms of Fourier components is 

(A.l5) 

where the term Asc arises from the initial-value term of (B.l2). 

Similarly, on .the tube wall r = b, 

1/2 
E (b) 

zm 
·(~0 .) ( ) . H<l>m b. + Amt· 

t 

In place of (3.28) the condition (A.15) gives 

D' 
s 

- (D /f b)D . + J , 
c s s s 

(A.16) 

(A.17) 
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A jj. sc 

The continuity and boundary conditions at r = b now lead to our 

(A.l8) 

previous equations (3.66), (3.67) for A and D, specialized toK= 0 

·· d i terms A{o) and {o) and augmente w th RD · , respectively, on their right 

hand sides. With the argument p of all functions indicated explicitly, 

the latter terms have the form 

A
(o) ( , 
m pJ a L N [J(p~ (r b,r d) + Gs(b,p)] - Gm(b,p) 

s=O ms s o sp sp 

+ L (o 
ron n=-oo 

[ 

1/2 2 
- av ) -(.1!.£) (L (b,p) + a2b Kn(p)) 

ron a t n 
+ "nt (p)] ' 

(A.l9) 

R (p)D{o) (p) 
s s 

2 1 
2 

+ £b L N (L (b,p) + ~b Km(p)) 0 so op m=-oo -ms m 

(A.20) 

The initial-value term in the Vlasov equation (2.22) must also 

be accounted for. Its effect is to modify the expression (4.10) for 

Fn by addition of a term 

(1 + W )-l F(o) 
n n ' 

where 

F~o)(p) = ~ J 
xnp 

2 
dv f ( 0) pv + ikn c 

n v, p + ik v 
n 

(A.21) 

(A.22) 
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To see the implications of initial values for the rise time of 

instabilities, we must look at the p-plane analyticity properties of 

initial-value terms in the "self-consistent" equation (either equation 

(4,12) for the axial field or (4.24) for the cavity field). The complete 

inhomogeneous term of (4.24) is R D(o) where s s , 

D(o) 
s 

N 
-ms m=-c:o [-I~+ 1 

1-n I 2 
t m (1-nt~) 

l+:mw ] • 
rom 

(A.23) 

Despite the complicated appearance of (A.23) it is not too difficult 

to be convinced that it is analytic in the right half p-plane and 

consequently does not affect the rise time of an instability. It does 

have singularities on the imaginary axis, which appear to reflect the 

circumstance mentioned in Section 2; namely, that one cannot expect 

the field perturbations to vanish in the course of time. 

To check analyticity of (A.23) we note that the required analyticity 

of the ingredients D(o), A {o), and F(o) follows easily from their 
s m m 

definitions. It then remains to show that 1 - ntim and 1 + emwm 

have no zeros in the right half plane. A zero of the former would, 

by (4.19), imply a pole of ~mn' which has already been ruled out. 

Analysis of 1 + SmWm for particular choices of f
0

(v) (see Part II) 

suggests that its zeros are all in ·Rep~ 0, but a general proof may 

-1 
be difficult. We needn't be concerned, however, since (1 + emWm) 
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also occurs in the kernel of (4.24). A pole of (1 + 6 W )-l in 
mm 

(A.23) would be cancelled by a similar pole from the.kernel, and 

would not appear in the solution D. The same argument applies to 

the factor R in (4.24). 
s 
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APPENDiX B 

RESISTIVE WALL BOUNDARY CONDITIONS FOR THE LAPLACE TRANSFORM 

We adapt the standard treatment
22

o£ resistive wall boundary 

conditions to accomodate the Laplace transform. We suppose that the wall 

is planar, obeys I = o!;· .Q = E !. _!! = )J!!_, and is substantially thicker 

than the skin depth for penetration of fields at the frequencies of 

interest. The unit normal pointing away from the wall is denoted by 

n. We analyze f-ields inside the wall, supposing that they have 

reiatively little variation in directions parallel to the wall; this 

is the essential assumption. Then if. I; is the· distance from the surface 

to a point inside the wall, the gradient acting on any field may be 

written as''i7 =- E:_a/aE,. Laplace transformation of the Maxwell equations 

involving curls· yields 

aE 
n x a€ = IJP !!. - IJ.!!(O), 

n x- = 
aE, - (a + EP)i: + t:!(O). 

Elimination of ! gives 

a!(O) 
- )J(O + Ep).!!(O) - En X --ar 

(B.l) 

(B.2) 

(B .3) 

By variation of parameters we find the general solution of (B.3) 

having exponential decrease for increasing f,. It has the form 
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% e-E;/o/~(x)ex/odx, (B .5) 
0 

where 

. -1/2 
[IJ(a+ Ep)p) , (B .6) 

and a is an arbit·rary constant vector. The branch of the square root 

in (B.6) is such that Reo-
1

>o when Rep> 0. Equation (B.S) implies 

that H satisfies the relat.ion 

1 • 
--H 0-

<.!of"' ( ) -x/od e 11. x e x. 
<. 

(B.7) 

Substitution of (B .. 7) in (B.2) and evaluation of the resulting equation 

at<.= 0 yields the relation between· H and E that must hold at the 

surface: 

• l/2 
E = [----1!£._] n x H + ~' 
- (J + p 

0), (<, (B.B) 

where 

= -
1
-- [EE!(O,O) 

<J + EP 
- n X f"'[£n x a_E!(O,t,) ] <.fo ] --- + )J(a + Ep).!!_(O,o e- d<, . 

o - a<. 
(B. 9) 

The component of Eq.(B.B) in the direction of~ is of no interest, 

since it merely coincides with the corresponding component of (B.2). 

We may then write the tangential part of (B.8) as 

1/2 

_E!/1 =[/! PJ ~ X .!!.// + ~II , (B.lO) 
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where, through an integration by parts, ~// may be cast in the form 

~II 
"'[ £ ) -<./ f, J a ~ EP _E!// (0,<.) -)J.!!: x Jill (O,E;) e di;. 

0 

(B.ll) 

For the values of p of interest it is an excellent approximation to 

drop the displacement current by putting £ = 0. We then have the form 

of the. boundaryconditionused in the foregoing work, 
'-. 

.E!/1 
1/2 I 

·[~] • J H (0 c) -1; 0dc a n x B_/1 - ll n. x -II , " e " • 
0 

(B.l2) 

By using cylindrical coordinates and the. appropriate Bessel functions, 

one can find a similar r.elation for a cylindrical surface. That 

refinement involves little extra effort; we have avoided it only to 

simplify notation. 
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FIGURE CAPTION 

Fig. 1: Cross-section of model vacuum chamber. The quantities 

crt' oe' ac are conductivities of various portions of 

the walls. 



.jJ 

lr> 

I 
r-.. 
\0 

I 

bfl) 

->-
-~ > 
0 
u -
b(J) 

I 
I 
I 
I 
I 
I 
I 
I 

a:: 
t:: 

(\J 

q-
q-
N 

00 
CX) 

....J 
a::l 
>< 



j.· 

This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 


