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. ' ABSTRACT

Unavoidable widenings of the vacuum chamber in an accelerator or
storage ring may function as resonant cavities and thereby promote
instabilities of the beam. A formalism for computing rise times of
longitudinal instabilities is presented, for the case of a coasting -~
beam. With a particular model of the vacuum chamber, a system of
equations for Fourier coefficients of the electric field is derived
from the linearized Maxwell-Vlasov equétions. Use of a_nonharmonic
Fourier series allows a complete treatment of resistive-wall boundary
conditions. The Kernel matrix of the system'is given by a slowly
converging series, which is subjected to a Watson-Sommerfeld transfor-
mation to improve the rate of convergence. The transformed series
permits efficient numerical computation of rise times for virtually
any choice of geometrical paraﬁetets. Part II contains numerical
solutions and physical discussions of the equations. In the case of

fairly deep cavities, the coupling impedance is obtained by a rapidly

convergént pertufbation method that avoids numerical solution of large
sets of equations. Part III takes up mathematical questions concerning

convergence and truncationof the infinite system.

T
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1.1 INTRODUCTION

A beam in an accelerator or storage ring may be strongly affected
by variations in the vacuum chamber cross section. Regions of
substantial‘widening can function as high-Q resonant cavities. As was
shown by Laslett, Neil and Sesslerl in 1961, longitudinal instability
of a coasﬁing beam may occur when a high»ha?méﬁic of the particle
revolution frequency is nearly equal to the resonant frequency of
such a cavity. If a longitudinal perturbation of cha;ge density
has a Fourier component &ith frequency near Fhe cavity resonance w,
ﬁhen there will be a charge density wave with wave number k = n/R
(R = ring radius) having phase velocity wr/k close to the average
particle velocity Bc. The cavity sees this wave as a source
.oscillating near its resonant frequency, which excites a large resonant
field that can act on the beam with the proper phase to cause a
longitudinal instability. The latter may be manifested aé spontaneous
modulation of charge density in an initiaily uniform beam. For minimum
rise time of the instability,'mr/k is equal to Bc plus a small shift
that depends on several accelerator parameters. Because of pefiodicity

the mode number n is an integer, and the condition mf/k ~ B¢ is the

statement that w, be near the n~th harmonic of the revolution frequency: .

w ~ nQ = nBc/R. TFor a cylindrical cavity of radius d, the fundamental

resonance is at w, = j01C/d’ where j01 ~ 2.4 is the first zero 6f the

Bessel function JO. In typical cases the harmonic n is quite high, per-

8

haps n = jolR/dB "103, and the resonant frequency wr/2ﬂ %s 10 —109 Hz.

Unstable behavior is favored by a high Q factor of the cavities, as

well as by high current density and small velocity spread. Also, the rise
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time of an instability depends on the transit time factor, which is
a sensitive function of geometric parameters. Because the unstable
mode number n is so high, a small cﬁange in average velocity Bc can
change the mode numbér by one unit. If the cavity resonances are very

narrow, as is the case for metallic cavity walls, there will be a rapid

variation of the rise time of an instability as Bc is varied enough to

change n bi one unit.

An important problgm in accelerator design is to delineate the
range of parameters for which the growth time ofnsuéh instabilities
will bé long enough to be acceptable. The set of parameters includes
geometric dimensions, wall conductivity, current density, and the
velocity distribution. The problgm was studied carefully by Keilland

Zotterz’3 for the particular model of the vacuum chamber shown in Fig. 1;

namely, a straight, infinite, cylindrical pipe of radius b, which

wiﬁens abruptly to a cylinder of radius d and length 2g (lenéth g in the
notation of Ref. 2). The widenings appear with périod 27R in the
longitudinal distance z, so that the picture can be viewed as an
approximation to a circular accelerator ring with large ring raaius R,
having just one widened segment of mean arc length 2g. The model has
re;istive cylindrical walls, but perfectly conducting cavity end walls.
Keil and Zotter computed the longitudinal_coupling impedance,. which
summarizes the effect of the condﬁctqrs surrounding the beam, and is the
quantity fequired for computation of the rise time of an unstable

perturbation through solution of the plasma dispersion relationm.
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Our purpose in this series of papers is to make certain improve-
ments in the treatment of Keil and Zofter,‘sp as to emhance computagional
efficiency and develop physical insights. We also treat mathematical
questions concerning convergence and truncation of the infinite set of
equations for field coefficients. We achieve ;uSstantial savings of
computational effort in a scheme which emphasiées the physics of
resonant cavities and allows firm control of truncation errors. Our
model of the vacuum chamber is the same as th;t of Ref. 2, except
fhat the planar cavity end walls have finite conductivity. The
t?chniques introducéd might aid in the study of more elaborate models;
for instance, chambers with reentrant cavities, two or more éavities
per period, off-center beams, and so on. Our discussion has the following
new features. |

(1) Adapting the standard Landau theory of plasma oscillati;)ns,4
we apply linearized Maxwell-Vlasov equations under resistive wall
Boundary conditions. The usual description‘of the sysfem in terms of
a single coupling impedance emerges as an approximation which is not
universally valid. The generally valid aescription entails an
impedance matrix rather than a single impedance, owing to the fact
thaﬁ Fourier modes of the fields are not eigenmodes of the full system
with tube corrugations. A case requiring a 2 x 2 impddance matrix is
that iﬁ'which a cavity resonance frequency lies in the middle between
two adjacent harmonics of the revolution frequency. ‘ -

(2) We derive a system of equations for the Fourier coefficients
of the electric field in the cavity region, which is clqsgly related

to the system employed by Keil and Zotter but has some technical
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advantages. The kernel matrix of the system is given by an infinite

series, which unfortunately is difficult to compute owing to the fact
that the summand has a maximum far out in the series. This difficulty
is seve?e when the ring radius R is large. Accordingly, Keil and Zotter
did their calculations for a vaiue of R that is too sméll for many

cases of interest. We avoid the difficulty by performing a Watson-

" Sommerfeld transformation of the series, which converts it to a series

with an essentially positive monotonically decreasing summand. The
latter is éasily computed for any values of geometrical parameters.
(3) The Watson-Sommerfeld transformation has the further advantage

of revealing how the equations behave for small b/d, a limit not

~discussed in Ref. 2. In the limit b/d > 0, a/b - constant, one

obtains thebahalytically soluble'problem of a'simple cylindrical
cavity traversed by a line charge. We develop a perturbation method
which takes‘the simple cavity solution as a" starting point, and converges
rapidly for modérately large values of b/d; The ‘technique avoids
numerical solution of large systems of. equations, and is our preferred
method of compﬁting the coupling impedance and’rise time for an
important range of parametérs. The perturbatioh method is derived by
elﬁninating the resonant mode from the equations. Such-an elimination
is useful even when the perturbation method is not employed.

%) Wevaccount for resistivity of the cavity end walls, which
is quanfitatiVely important, by using a non-harmonic Fourier series.
The extra numerical effort required-is negligible, once the appropriate
equations have Been derived.

(5) We explore the mathematical status of the infinite system of

equations for cavity field coefficients, and develop a method to control
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the error in the finite-dimensional truncation used for numerical
work. We find £hat the equations can be transformed so that Fredholm
theory becomes applicable; (Fredholm theory in a.Banach space of
discrete sequences, rather than the usual theory of iﬁtegral equations).
For numerical work we use analytical ‘results on high mode number
behavior together with a mapping and interpolation technique based on
spline functions. We thereby‘approximate the tail of every infinite
sum, instead of merély throwing it away.

(6) 1In éolving the dispersion relation to find the rise time
of an instability we account for the rapid variation of the coupling
impedance near a‘caQity resonance. Although that variation is usually
ignored, it leads in fact to a rapid variation of rise time with
average particle velocity (and with other accelérator parameters) .

A short summafy of our formalism and some numerical results are

given in Ref. 5.

1.2 RELATED WORK

Month and Peierls6 also reexamined the equations of Keil and
Zotter, using a Watson-Sommerfeld transformation. Their.use of the
transformation is completely different from ours, however, in that
they transform the solution of thevequations for field coefficients,
rather than the kerﬁel. Consequently, they have to assume analyticity
properties of an unknown function, and that makes the results difficult )
to evaluate. In our case.the function is known and the transformation
is rigorously justified.

In ‘an interesting‘paper Keil and Messe‘r‘schmid7 studied nonlinear
effects in the longitudinal stability of a coasting beam by means of
numerical simulation. They find that the linear theory givés a good
first approximation, but find interesting behavior of the velocity
spfead in’ the nonlinear saturation of in#tability.

Measurements on destabilizing effects of vacﬁum chamber cross-
section variations have been performed at the ISR.8’9 A special
experimental cavity placed around the ISR beam was. used to study
longitudinal stability of a coasting béam.;9 theoretical estimates
of thresholds for instability were found to be valid. Stability of
bunched beams has been the.topic of many experimental and theoretical
investigations. For a recent review emphasizing design considerations
;ee qumann.lo

Calculations of coupling impedance for models different ffom that
of Ref. 2 have bgen done by several authors. Hahn and Zatz.l1 treat

single and double step discontinuities of cross section in a circular
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. 1
tube, without periodicity. Hereward 2 considered a single step in a

rectangular tube. Kriegler, Mills, and van Bladel,13 and also

. 14 . ' :
Trickett, studied a reentrant cavity (annulus coupled to the main tube

through a slot). Chatard-Moulin. and Papiernikls tfeéted an-arbitfary
small periodic modulation of tube radius. Their method was applied by
Krinsky16 and by Cooper and Morton,l7 and was reformulated by Krinsky
and Gluckstern.:‘l8 Sessler19 ga&e a geﬁéral review of the effects of
beam surroundings on stability, listing further references. Related
ﬁroglems of ‘wave ptopagation in corrugated wave guides have received

: 20
much attention in the engineering literature.
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1.3 CONTENTS OF PART I

The task of>the present Part I is to set up fhe basic equations
which are to be analyzed, solved, and discussed physically in Parts II
and III. ’

Section 2 is concerned wiph linearization of tﬁe Vlasov equation
(a step which requires careful interpretation in the present case),
and Laplace and Fourier transforms of the 1ine§r Vlasov-Maxwell system.

Section 3 contains the derivation of equations for Laplace-Fourier
coefficients of field perturbations due to a préscribed charge-current
perturbation. The discussion parallgls that of Ref. 2, but has bgen
generalized to allow arbitrary charge-current perturbations, resistive.
cavity end walls, aﬁd initial—valué tefms arising from the Laplace
transform in timé. Most of the details on iﬁitial-value terms are found
in two appendices.

In Section 4 the Vlasov equation is combined with the electromagnetic
equations. of Section 3 to give “self:consigtent" equations in which the
perturbed charge-current does nét appear. The general equations
determining g%owth times of unstable péitﬁrbations are stated, and
the description in terms of a sinéle coupling impedance is derived as
an approximatioﬁ. |

" Section 5 contains the Watson-Sommerfeld transformation of the
equations for cavity field coefficients, which is the main new result

of practical importance in calculations.



~11 -
2. LAPLACE AND FOURIER TRANSFORMS OF MAXWELL-VLASOV EQUATIONS

We take the axis of the tube to be the z-axis with the origin at
a cavity centroid; the ends of the cavities then lie in the planes
z = 2nnR*g, where n is any integer. The particle distribution:

function, u(r, v, t), is presumed to obey the Vlasov equation,

5
LU

. v XB) * »—=0. ' (2.1)

[F] N5
Iﬂlc
+
=Ria
~
't
+
Q
[=1

We suppose that u has the form21

u(r, v, t) = 8(a - r) ¢ (vx)d_(vy)[fo(yz) + fl(z, o~ t)]
(2.2)
where 6 is the unit step function, and § is understood as a smooth
but sharply peaked even function approximating the Dirac delta function.
Thus, charge and current are spatially uniform over a cro;s section of
the beam, within the beam radius a. On thé average, particles move
only in the z direction.‘FIf‘we substitute (2.2) in (2.1) and evaluate

the equation at r = (0, 0, z), v = (0, 0, v), the result is

D 3 : a, 2 =0
(at + v Bz) fl(z, v, t) + M Ez(z, t)_av [fo(v) + fl(z, v,t)] =0.

(2.3)
‘We wish to lnearize (2.3) about the configufation correspénding
to f . Accordingly we write the electric field as
@® +EG, o), - (2.4)

E(r, t) = E_
E(x E

~-12-

where E and E
2 e

1 correspond to charge-current densities (po, Jo) and

(pl, Jl) defined as follows:

L

0, (D) + oy (r, t? = 6(a - 1)q f_m[fo(v) +£,(v, z, Oldv, (2.5

o

8(a - r)q j:mv_[fo(v) + fl(v, z, t)]dv. = (2.6)

Jo(_r_) + Jl,(l’, t)

We emphasize that both Eo and E. correspond to the same boundary

1
conditions, thdserfor the corrugated tube with resistive walls.

At ;61nts on the axis sufficiently far from the cavity ends the
field lines of Eo leave the axis almost exactly in the radial direction,
so that Eoz on the axis is negligible. At points nearly adjacent to

the caQity en&s, Eoz on the axis will be nonzero but small; the field

lines must bend around to meet the cavity ends at nearly normal

~incidence. For the linearization we treat Eoz on axis as a first order

quantity, even though it is formally of zeroth order. The accuracy of
this procedﬁre could be judged by solving the boundary value problem
which determines Eoz’ using methods like those developed in the following.

When second-order quantities are dropped, equation (2.3) takes the form

(v e G, v, 0 +8E G 0 Em=-38 @f®. @D

N

. This equation is to be solved together with the Maxwell equations and

boun&ary conditions for.g_1 and El’ with sources (pl, Jl) given by (2.5)

and (2.6). Thus we have a linear system to determine (fl, El’ §1) in

terms of fo, Ezb,.and the initial values (fl’ El’ El)t=0' We need not
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gctually specify Ezo and the initial values, ;ince the rise time of an
unstable perturbation turns out not to involve those time-independent
unantitieé.

Of course, we ignore completely the impliéations of‘the Vlasov
equation (2.1) at points off the z-axis, as befits the approximation of
one—di;ensional motion.

Before proceeding to the Maxwell equations, some comments are in
order. Generalizing the theory of Landau dampinga,'we begin at t = 0

with an arbitrary small ﬁerturbation, (£ of the uniform

1 & El)t=0’
beam configuration, (fo’ EOL and ask how that perturbation evolves
in time. We can never expect that the perturbation will decay to zero,
even if parameters are such that the beam is actually stable, because
(fo, Eo) is not an exact steady-state solution of the nonlinear Maxwell-
Vlasov system: Indeed, if f1 = 0 and El = 0, then (2.3) reduces to the
.false equation 'EZO'(Z) fé(Q) = 0. Clearly, a steady state solution
must have some variation of charge. density in the z-direction, to
véqcount for the presence of the cavities. A figorous discussion of
stability would have to proceed by first finding an exact steady-state
solution of the nonlinear system. Linearization about that solution
would thenbdecide the question of stability.

As time passes, the perturbed field El’ as co?puted from the
linearized equations above, will either (i) increase in magnitude
indefinitely or- (ii) tend to a constant. (There is also the mathematical

possibility that E; could oscillate indefinitely without approaching a

iimit, but that would not seem to make sense,.physically.) We interpret

14—

case (i) as instability and (ii) as.stability, while emphasizing

that the interpretation is plausible but not rigorously justified.

Since the configuration (fo, Eo) about which we linearize is already a
. . . ; ) _(o)

perturbation of the true stationary configuration (f , ET0)

(supposed to exist), the true initial perturbation of the stationary

state is

. (@ (0)
(f,+f -£7,E +E -E, E-)t=o’ (2.8)

Our interpretation of an increasing El as instability could be wrong if

the beam were actually stable to a éufficiehtly'small perturbation,

but not to one as large as the "minimum' perturbation that we are able
to treat theoretically, the latter being

" (o) (o) '
(F, - %, B -EY, 0. (2.9)

The distribution function is to be normalized so that

z +27mR © v
2.1
na? f ° dz fm dv f(z, v, t) = N, ( 0)

z
o

where N is the a§erage)number of particles in‘the interval zo< z < z, +
2rR. We éhall impose periodicity of f-in z through a fourier development,
so that N will be independent of_zo. To maintain (2.10) in the linearized
formalism, we first take fo(v) to satisfy (2.10) by itself:

©

(ra®) 2B [ dv £ (v) = N. (2.11)

—c0
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Next, we choose the initial value of fl, which is arbitrary, so that

zo+2vR ' .
f dzf dv f,(z, v,0) = 0. . o : (2.12)

z ~00
o

For instance, condition (2.12) is satisfied if there is no constant

term in the Fourier series for fl at time O:

£,(z, v,0) = [ £ (v, 0) explinz/B). (2.13)
n#0

Now f = fo + fl satisfies (2.10) at time O, and the linearized equation

. (2.7) then implies that f satisfies (2.10) for all time. Also, the

linearized equation implies that the continuity equation holds for

all z and t:

3p 4 33 :
T v (2.14)

We next state the Maxwell équations for perturbed fields §1 and

§1 = “051 with sources 01s J1 given by (2.5) and (2.6). We take

"cylindrical coordinates (z, r, ¢), and look only for solutions

independent of ¢. Higher modes depending on ¢ are believed to have
relatively little effect on stability, but perhaps should be investi-

gated at a later stage. Henceforth we suppress the subscript 1

~denoting perturbations, and write the axially symmetric equations for

perturbed fields of the transverse magnetic (TM) mode as follows:

—~
[a]
=1
+

I

Sl

13 : z p (2.15)
r .
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%_% - _UOE;% ' (2.16)
% = -e, % (2.17)
%~ i%-(rﬂ¢) = J+e, i;% (2.18)

The corresponding equations for the transverse electric (TE) mode
are obtained-from (2.15) - (2.18) by dropping p and J and making the
replacements E <> H, ¥ > = €yt The boundary conditions at the
resistive wallskdo not mix the TM fields (Er’ Ez, H¢) with the TE
fields (Hr’ H, E%), at least in the standard approximate treatment
of boundary conditions (Ref. 22 and Appendix B). Since only the TM
fields affect the longitudinal particle distribution through the Vlasov
equation (2.7), we may then ignore the TE fields entirely; (under assump-
tion (2.2) the TE fields have no sources, and in fact vanish at‘all times
if they vanish at t = 0).

Following Landaué, we perform a Fourier transform;tion of the
equations with respect to z, and a Laplace transform with respect to
t. (Some authors use a Fourier traﬁsform in t for stability:studies, but
are thereby led to logical inconsistencies that were already no;ed by
Landéu} In proving that the resulting prescriptions for computing
growth times are correct one is in fact led back to the Laplace trénsform.)
We fifst treat the '"tube region", r <b, in which the geries in z will
havevperiod 2nR. Later we use a nonharmonic series in_the:"cavity
region", b <r <d. In the tube‘region the Fourier—ﬁaplace fransform of

a function ¢(z, t) is
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P 1 . pt
¢n(P) "2 b® Prac

kn = n/R, n=0, % },
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-g+2rR. ik z

e = ¢(z,t)dz,
2, ... .

(2.19)

(2.20)

The Fourier transform (without Lapiéce transformation), evaluated at

t = 0, is denoted by ¢n(0). Through integration by pafts,

3 Y -
5 = po (p) - $,€0).

A reader committed to thinking in terms of frequencies may put p = - i

in the following equations.

(2.21)

Transformation of the linearized Viasov equation (2.8) yields

: £ g ; ' =
(p + 1knv)fn(v, p) + M Ezn(r,.p) r=of°(V)

£ (v, t) e Y

n."’ £=0 M “zonp o

(2.22)

In stating the transformed Maxwell equations we:simplify notation

by sﬁppressing arguments r, p, n;
values we write Ezn(r, ) ='Ez(0)

yields

13 , .- i

T H (I‘Er) + ik E =
)

ik § - —=2 =
T ar

ik i =
¢

13 3 =

r 3T (I' H¢)

In the cavity region, b <r <d, -g <z < g, we employ

generalized Fourier developments,

thus Ezn(r, p) = Ez’ and for initial

. Then tfansformation of (2.15)-(2.18)

LN
.8_“,
[o]

“uP H o+ H¢(0),

¢

- Eop Er + Eo Er(o)y

J+epkE, -e, E (0.

(2.23)

(2.24)

(2.25) -

(2.26)

-18~

E (r, z) =

. .1 ) -2 :
. Z [Ers(r) sin o _z + Ers(r) cos aSZ],
s=o
N A1 22 .
Ez(r, z) = szo [Ezs(r) cos az + Ezs(r)31n aSZ],
B (r, z) = Z [ﬁ 1(r) cos ¢ z +:ﬁ2 (r) sinagzl. (2.27)
62 sso T¢s s”  T¢s : 5 :

Here and in most of the equatioﬁs to follow we suppress the variabie
p- .One must keep in mind that almost all quantities, in- particular
the Laplace—Fourier'coefficienfs of fields; are functions

of p. ‘The nonharmonic wave numbefs as are certain nonlinear
functions of s and p, determined by boundary conditions on the planar
end walls of the cavity. It turns out that the functiomns sin oz and
cos a_z are mutually orthogonal, so that there is a set of equatioms
for the cavity field coefficients analogous to.(2.23)—(2.26). Again

suppressing arguments r, p, s, we find that for 1 = 1, 2,

%-g% GEH + (o aEl = o, (2.28)
M agl - 3%; = - up ﬁi + uolui(O), (2.29)
(ot o} o= eép}ﬁ: - e ENO), (2.30)
;»é%~(r ﬁi) = eo? ﬁ: - e, Ei(O). (2.31)

The equations (2.23)-(2.26) and (2.28)-(2;31) are to be solved
subject to continuity conditions at the tube-cavity interface

(r = b, - g <z < g) and boundary conditions relating tangential
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electric and magnetic fields at the walls. The solution is in
. : which is equivalent to stating it for the Fourier transform of

terms of charge-current densities and initial values of fields.
the fields in time. We need a statement for the Laplace transform

Expressing charge and current in terms of the distribution functiom, .

_ . : ‘ of the fields, which is derived in Appendix B.
and evaluating the latter by (2.22), one finally obtains the field
coefficients in terms of initial values of the fields and distribution
function. For instance, one can obtain the electric field perturbation
on the axis, ﬁzn(r, P)lr=0 in terms of the initial perturbation of

the distribution function, f(z, v, 0), and two independent initial

field perturbatioﬁs, say Ez(r, z, 0) and H (r, z, 0). By an inverse

¢
Laplace transformation, one may then calculate the rise time 1 of an
unstable perturbation as 1 = l/Rep*, where Py 1s the right-most
singularity of ézn(o, p) in the coyplex p-plane. .fhis method of
solution is quite aﬂalogous to that of Landau's theory, but more
complicatéd because of the boundary conditions and thé iniﬁial—value
problem. Tﬁe treatment of initial values was trivial in Landau's
electrostatié problem, but is somewhat gedious in the present

example. One.expects, by analogy to Landau's case, that the pargicular
initial values of fields and the distribution'functién do nét affect
thé rise t;me. To make sure that there are no suprises, we have
ﬁérked out the role of arbitrary initial-value terms in detail, under
the restriction that the planar end walls of the cavity-havebinfinitg
conductivity; (there are technical difficulties in allowing finite
conductivity with initial-vélue terms). We report the calculations

in Appendix A, and droé the initial-value terms in most of the main
text.

The resistive wall boundary condition is usually stated under

) . 18
the assumption of exponential time dependence of the fields,
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3. EQUATIONS FOR LAPLACE~FOURIER COEFFICIENTS OF FIELDS

In this section we find equations for the Laplace—Fourief

coefficients of fields which satisfy (2.23)-(2.26), (2.28)-(2.31),

N
\

and the required continuity and boundary conditions. We define

three regioné of the vacuum chamber:

I: 0<r<a
11: _a‘< r<bp

111: b<r<gq, -g<z<g,

In Regions I and I1I, the relevant Maxwell equations are (2.23)-(2.26),

whereas (2.28)—(2.31)‘app1y to Region III. To solve (2.23)-(2.26)
we firsi find a second order equations for ﬁ; alope. The system
degenerates when k = 0, so that ig is important to eliminaté ﬁr and
ﬁ¢ in such a way that the.resulting equation holds even at k = O.

Take ﬁr from (2.25) and substitute in (2.24); then solve (2.24)

" for ﬁ¢, and substitute the latter in (2.26) to gbtain

2 ) .
=35 (3 - e 5,0) - 15 i, - e (01,
' (3.1)
where

= k2 + (p/o)2. _ )
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One of the three initial fields may be eliminated from (3.1). Make

use of the continuity equation,
1kJ + pp = p(0), , (3.3)

and the Poisson equation (2.15), after Fourier transformation

but before Laplace transformation, evaluated at t = 0:
%air (r E(0) + ik E,(0) = 200 RER))
: o

From (3.1)-(3.4) one finds the necessary condition on ﬁz,

upJ+—o—-2-E(0) u°3 (rH(O)) @)
% c

The linéar combination of J and ¢ that appears in (3.5) is in some
sense thg natural analog of the charge density p that appears in
Landau's électrostatic-préblem, and will occur repeatedly in the »
following.23 We select [£(0), Eé(o), H¢(0)] as the set of independent
initial values to be chosen arbitrarily (within the restriction thﬁt
they be small5. Notice that the remaining initial value Er(O) may be
expressed in terms of the others by integrating (3.4) an& applying

the requirement that Er(;,’O) be finite at r = O:-

r ©
E (r, 0) = % fo udu[-1ikE_(u, 0) +E9; 8(a - u) Ldv f(v, 0)7.
' (3.6)
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In the remainder of this section we put all three of the

I
o

initial values_[f(O),.Ez(O), H¢(0)] equal to zero; hence‘Er(O)
as well. Then the only inhomogeneity in the system of linear
equatioqs is provided by the term from Ez0 in the Vlasov equation
(2.22). 1In other words, we are beginning'witﬁvé charge and field
configuration which differs from a stationary state solution
(f(o), E(o)) of the nonlinear Maxwell-Vlasov system by the amount
(2.9). The field Ezo’ due to wall corrugations, may driﬁe an
initially uniform beam to instability.

With initial fields_absenf the general solution. of (3.5) is

given in terms of modified Bessel functions as

ﬁz = cllo(xr) +:c2K°(xr) + 8(a - ?)F, 3.7
-where
F=- 4% f. dv f(v)[upv + ih T. (3.8)
xT - ° %o

The irregular Bessel function KO is disallowed in Region 1 because
of its singularity at r = 0. Thus, the Fourier developments'of

ﬁz in Regions I and II must have the forms

I -] ikmz )
, ﬁz(r, z)-= .J [A I (x 1) +F]le , (3:9)
m=-c
- ) 1K
£1(r, 2= T [B I (x1) + CK (x D)]e n’, - (3.10)
z ’ mese ™ O X m o “m :

We next find corresponding expressions for ﬁ¢, by a method which

is compatible with the discussion of Appendix A, i.e., which brings

in only EZ(O) and H¢(0) when initi§l value terms are included. The

24—

method is to solve (2.26) for ﬁ¢,‘with ﬁz given by (3.9), (3.10).

The general solution of the corresponding homogeneous equation is

i = y/r, where .y is a constant. Since I, = I; and Kl = - Ké, a

¢ 1

particular solution of the inhomogeneous equation is

|

o}

. .
u[j(u) + ¢(a - u)e pF] du

\ : : o
o " .

. €,P i A Io(xr) : -, r<a,
X (s I, (x) = K (x), T >a. (3.11)

The first term of (3.11) may be expressed in terms of the initial
value of the distribution function, as is seen by applying the
continuity equation (3.3):

v ) ©

‘3<u) + g(a - u) €P F = ik 0 (0) _ik(Xa - u) qf} dvf (v, 0).

2 2
X X
(3.12)

For the present discussion this quantity is zero. Furthermore, one

can rule out a term Y/r in H by demanding that both (2.23) and

9
(2.24) be satisfied; consequerntly,

it ?l ’ ikmz'
ep L X AT (xDe T . (3.13)

m=->

"I.: '
Hylrs 2

ez, (3.1

7,1
ep L [BI (xr)-CK (xr]e

ﬁi&n z)
. . me= =
Corresponding expressions for ﬁr are obtained from (2.24), (2.25),

given the results for ﬁz andAﬁ¢. One can then verify that the fields

satisfy all four Maxwell eQuatibns. If the ﬁz and ﬁ¢ fields for
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Region I are matched to those for Region II at r = a, then fir will Rl(x, x) = 1/x, So(x, X_) =-1/x . (3.21)

automatically be matched as" well, by (2.25).

In Region III the non-harmonic Fourier developments (2.27). and the With initial value terms neglected, the general solution of

Maxwell equations (2.28)-(2.31) imply an equation analogous to (3.5): equations (2.28)-(2.31) in‘ Region IIT may be written

A1 X : : ,
3E . ' a1 i i ‘
o [z} _ 21 : E> = DR (rr, Id) + D'*S (I'r, rd), (3.22)
r or ( ar) r Ez . ’ z o o ;
p i Yo 3 i ' it = 2 ok (re, ra) + oS5 (re, T0)] (3.23)
= o -— < . ~ : . . =—— [D T'r, T + Db'’S r, Id)], .
cz Ez(O) - T 31 (r H¢ 0)), (3.15) s T , 1 1
. ' Al il o i
N S L (3.16) ‘ - E = ()7 IR (Tr, Td) + D'7s, (Tr, rg)]. (3.24)

It is convenient to state solutions in Region III in terms of certain We are now in a position to apply continuity and boundary conditions.

linear combinations of Io(Fr) and KO(I‘r) that have simple expressions Continuity in r at r = a determines the coefficients B and Cm' of the

on the cylindrical cavity wall, r = d. .Accordingly we define, for Region II expansions in terms of the coefficients A, of Region I. Using

the Wronskian identity (3.21) and the definition (3.18) we can then

i==0,1,.
write the Region iI exp;nsions as -
R.(x, y) = K (I, (x) + (-)j+11 (K, (x) (3.17) | ‘
3 077 LR R - \ _— © ' ik z
ﬁz (r, 2z) = mz_w[AmIo()Snr) - X2 So()snr, xma)Fm]e ,
5500 ) = KO + 1 x 0. - (3.18) ' 1(3.25)
. o g . JII . ® 1 ik;nZI
Notice that ) : -H¢ (r, z) = eopm=_)‘m[xm Amll(xmr) -a Slgxmr, xma)Fm]e .
’ (3.26)

R, = aRO/ax, S, = asolax, . (3.19)

1 1

- . a i i : The boundary condition (B.12) applied at the eylindrical cavity wall
and, by a standard Wronskian identity, determines the primed coefficients of (3.22)-(3.24) in terms of the
unprimed ones. After Fourier transformation in z the boundary condition

Ro(x, x) = 0, Sl(x, x) = 0, (3.20) " atr=4d is
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1/2

2i L upy et
B @ = -] )C it (@) . (3.27)

The subscript ¢ (for "cavity") indicates that parameters o are those
.for the cylindrical cavity wall; we also write subscripts e and‘t
("ends" and "tube') for the cavity end walls and the cylindrical tubé
surface (r = b), respectively. By (3.22), (3;23) and identities

(3.20)," (3.21) we find

pio & pt - (3.28)

ne = -(2) e pb, ‘ : O (3.29)

Accofding to (3.28), the combination of Bessel functions that now

appears in Region III fields is

- -
) [4
¥ (r) = R, (Tr, rd) - 3¢ Sj(Fr,Fd), | (3.30)

and the field expansions take the form

~IT1 7,0 1 2 .
Ez (r, z) = S=ZO<D.S(r)[Ds cos a_z + Ds sin asz]f (3.31)
~TI1 ‘ T oa-11 1 -2 : e
= - + )
H (r, 2) EOPSZOFS'és(r)[Ds cos a_z Ds sin asz],(3 32)
~T1I 5 -1,1 1 2 .
= ¢ si - (3.
Er (r, z) £ asrs s(r)[Ds sin msz Ds cos Gsz] (3.33)

s=0

g
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The boundary condition at the cavity end walls (z = ¥ g, b <r <d),

before Fourier transformation in z, is

Br,%g) =38 m(r, 7). (3.34)

e

By choosing the non-harmonic wave numbers‘as appropriately, we may
satisfy (3.34) term-by-term in the expansions (3.32), (3.33). 1t is

sufficient that

' 1 2
[assin ag + (ne/b)cos asg]DS + [ascos @8 - (ne/b)sin-usg]Ds =0,
(3.35)

) . 1 2
[a851n @ g + (ne/b)éos asg]Ds [ascos a8 - (ne/b)sin asg]Ds 0.

(3.36)
There are two ways for these equations to be satisfied:
x sinx +kecosx =0 D2 =0 'Dl érbitrary (3.37)
s .78 s > s ? s 2
1- 2 . :
x cosx_ -k sinx_= 0, D =0, D arbitrary, (3.38)
. Ps s s s s -
where
o o R =_'EBI/2
Xg T BBy K neg/b (o )e €oP 8- (3.39)

To find solutions of the nonlinear equations -(3.37), (3.38), we

" take advantaée of the circumstance that the dimensionless parameter K is

typically small compared to 1 for the values of p of interest. The

values of p of interest, those involved in computing the rise times of
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unstable perturbaﬁions, are close to the points p = ¥ imr, where
wp = jolc/d is the fundamental frequency of a cylindrical cavity of
radius d; (see the heuristic argument of the introduction, qr the
calculations of Part II). Then the order of magﬁitude of'[xl is 2
"W 1/2 '
|| ~( ° ") equgt = 102 a2z ) 2 (gr0) (3.40)

or ol
%

where Zov= (u5/50)1/2¥ (1207 ohm) is the impedance of free space. For
the conductivity of stainless steel, o, ] 10§(ohm-meter)_l, and

o~

'd ® g ® 1 meter, we than have |Ki~2 x 10—4. The parameters n , n_,

.

ng are typically of .a similar order. In the fqllowing we shall expand

various quantities in powers of k¥ or the n's'and retain only the

lowest powers, keeping in mind that the resulting approximations are

not good at large |p|. Large valugsvof |p| enter the problem only
if-one.wishes to compute the full time dgpendenée of~ghe fields, not
just the asympt;tic fﬂne dep;ndence which:ig tﬁe sbie.concern o%
stability studies; ' o . .

An expansion of the solution X of (3.37) or (3.38) in powers 7

of K gives
x_ = snf2 - 2¢/sm - BT /(sm)” + ..., (3.41)

s=1,2, .....
wﬁere Xg solves (3.37) for even s and (3.38 for odd s. There is also
a solution of (3.37) close to zero, which may be expanded in. powers

of Kl/zz
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x = -1ik7°Q +x/6+ ... . (3.42)

o
The negative of each of the solutions (3.41), (3.42) is élso a
solution, bug by’abredefinition of coefficients Di one sees that it
would be redundant to include a corresponding term in the expansions
(3.31)-(3.33). bThere is also the extraneous solution x_ = 0 of
(3.38), but it makes ﬁo contribution to the field expansions. The
implicit function théorem'for analyvtic'fimcti.onsz4 may be invoked
to show thgt the series (3.41) and (3.&2) converge for sufficiently
small'lK].A Also, the solutions we have found are unique if |Kl<:ﬁ2/16,
as may be seen by apblying Rouché's-theérem;zs all the solutions are
close to those of sin 2x = O.

‘The f;nctions'cos usz:and siﬁ a_z form an orthogonal set on the
interval [-g, g]. Accordihgly, we define the orthonormal functions

-1/2 (—)S/zcos @z, s even,
£ (2) = [1 - x/G + D))
: ‘ (—)(S+;)/zsin @z s odd.
(3.43)
The éeculiar sign factors are introduced so that fé takes the .
convenient form cos as(z + g) at kK = 0, a form that is used in
Appendix A. The fs are orthonormal in the sense
1 B . 5 : (344
3 f_g £ (2)E (2)dz = 8_ . - (3.44)

The result (3.44) follows from the definition of x =og as a

solution of (3.37) (s even) or (3.38) (s odd).
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The set {fs(z)} is complete as well as orthogonal. For
le] < ﬂ2/16 the wave numbers @ give rise to‘a Riesz basis fér the
space L2[-g, gl of équare—integrable functiohs, and the fs.form a
éomplete set in that space.26 Completeness in the space.of continuéus
functions C(-g,g) may be established by considering, for 'u,v (-g,g),

the integral

IdA[Asin(Xu/g)sin(Av/g) K cos(Au/g) cos(iv/g) =0
; lsinx(lcqsl— k sin ¥ sin A(Asin A + ¢ cos})
¥ o

(3.45).

Here Y is any closed contour such that the zeros of the denominators
all lie outside y. By deforming the contour to infinity and noting
that the integrand vanishes exponentially as ImA =+ i=, we deduce from

the residue theorem that

z fs(u)fs(v) = % + z [cos(smu/g)cos(smv/g)

a=0 's=1

+ sin(swu/gisin(snv/g)] = g6(u - v). ' (3.46)

Of course, this formal statement of completeness is to be interpreted
through term-by-term intégration of the product of (3.46) with a
continuous function. .

26-29

The use of nonharmonic Fourier series has a long history

The functions fs(z) are well-known in the theory of heat conduction

27,28
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Redefining the Fourier coefficients, we write (3.31), (3.32) as

TTI 0,

E, " (r, 2) = sEODS¢S(r)fS(z), . (3.47)
111 _ S -l 1

H¢ (r, 2z) = eopszofs Ds¢s(r)fs(z)f | (3.48)

The remaining continﬁity and boundary conditions to be satisfied

are at r-= b:

E(b, 2) = £, 2), -g <z <g, . (3.49)
. \1/2 _ -

~I1 . " 11 RS .

Bk, 2 = - (B) Tk, 2, <2 <om-g, (3.50

ﬁil(b, 2) = flill(b, z), -g<z<g. - (3.51)

To state these conditions in terms of Fourier coefficients, we use

the orthogonality (3.44), as well as the additional overlap integrals;

-g+21R

1 ) : e v
TR j_g_ exp[1(kn - km?z]dz _6mn _ (3.52)
1. (& ) ' - ’ '
7R J:g exp[- 1knz]fs(z)dz = afs(g)NnS, (‘3-53)
1 ~-g+2mR ) )
TR A exp[l(_kn - km)z]dz = Gnm- anm. (3.54)
A .
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The quantities appearing here are

R o
1 - . . \
N = EE-(k g:Z)- xz [(kng + 1K)exp(1kng) - (—)S(kng - iK)exp(-ian],
h N (3.55)
. sin(k_ - k )g i ’
a=B, v _- L (3.56)
ey = Tde
By (3.37), (3.38) it is possible to write fs(g) as
: -1/2.
£.(8) = (f)éxs(xz -« + 2. . (3.57)

Now multiply (3.47) and.(3.48) by exp(—iknzllgpd integrate over
[- g, - g+ 2nR]. Multip}y (3.49) by f;(z) and iﬂtegrate_gver [; g, gl.
Noting the expansions<(3.25), (3.26), (3;47),'(3.485 and the overlap.
integ;als (3.44), (3.52), (3.53),. (3.54), we obtain two sets of linear
equations for ﬁhe A;fand Ds' Adopting a notaﬁion similar to that

of Ref. 2, we state the equations in terms of the following functionms:

< : = _ [¢] | . )
An = AnIo(an) N -Ds = Ds(bs(b)fs(g) N (3.58)
B = - x,a8, (x b, x, @F, C=-(a/b)s,(x b,x a)F , (3.59)
R_ = 2£5(g)0%(B)T b/6X(b), I = I,(x B)/x_bL (x b).
s “te'B)g s s n 1*n n o'n -
(3.60)
The equations; analogous to Egs. (1.23) of Ref. 2, dre
B =-8 + uSZON‘“SDS + ntnio (6 o=V V(LA +C) (3.61)

34—

o

(LA +C). ' . (3.62)

D =R g
mm m

) s m=§mN-ms

To solve (3.61), (3.62), aconvenient first step is to eliminate Kﬁ
in favor bf’ﬁs, or vice versa. To that end we use mattix-notétion, and

define a matrix ﬁ with elements
¥ =8 . . , (3.63)

If the cavity end walls have infinite conductivity (x = 0), N is
equal to N+, the Herﬁitian adjoint of N. We shall prbve that V = {th}
has the representation

V= NN, (3.64)

v (v} = (262(8)8 ) o .69

Defining diagonal matrices R = {Rssst}, I= {Imomn}, we may then write

equatibns‘(3;61), (3.62) 1in matrix notation as

=3
]

~ B+ oND + n (1 - aNvN) (IA + ©), - (3.66)

D = RN(IA + O). ’ (3.67)
The unit matrix is always written as a ﬁumeral 1.
To eliminate A, first rearrange, (3.66): bring the term ntIZ to
the left side, and then multiply the equation on the left by NI(l - ntlfi.

The equation then involves A only in the product NIA, which may be
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expressed in terms of D by (3.67). The resulting equation for D alone

takes the form
- = o~ B o
D = RED + RN(1 - n D Y, - (3.68)
where the kernel matrix E is
~ -1, -1
E= aNI(l-ntI) N(L - ntVR ). (3.69)

The source term of (3.68), linear in the charge-current vector F = {Fn},

entails the vector
¥=¢C - 1B. : C(3.70)

By (3.18), (3.21), (3.59), and (3.60), the components of Y may be
written as
1 oa 0G®

§ ---talllp, _ - (3.71)

Elimination of D in favor of A leads from (3.66), (3.67) to

the equation
A = GIA + GC - B, ' _ (3.72)
with kernel matrix

G = n + aN(R - ntv)N. (3.73)

<
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;Another useful equation is that which expresses A in terms of D.
In (3.66) take ntIK to the left side, and then multiply on the left
by (1 - ntI)_l.'-Express NIA in terms of D by (3.67), and then eliminate

€ in favor of Y by (3.70). The result is
A= ofl —‘ntI)_lN(l - nth'l)ﬁ +'ﬁt(1 - ntI)'li - B. (3.7%)

The companion equation giving D .in terms of A is (3.67).

To demonstrate-(3.64), expand exp(iknz) in the orthonormal set

v{ft(z)}- on (— g, g] to obtain

oo

exp(ik 2) = 2 | ft(g)N_ntft(z). ' ‘ (3.75)
t=0
Now multiply by exp(- ikmz) and intégféte ovér [- é, gl. &he résulting
equation is exactly (3.64).

For a given»cha£ge—current distribution, specified fhrough.thé
function F_ of (3.ﬁ), the électfoQagnetic fiélds may be determined
either by solving (3.68) for D or by solving (3.72) for A. For deep
cavities, d >>'b,vthe Région 11T field coefficients ﬁs are close to -
being the normal mode amplitudes of ihe system, and (3.68) is the’
appropriate equation. The kernel E is nearly diagonal when d ?a’b, s0
that the various caQity modes almost decouple, ghd the equation is easy
to solve numerically. In the less interesting case of shallow cavities,
b =d, the Kh are approximately normal mode amplifudes, and Eq. (3.72)
is the more tractable one. In realisfic cases of interest the range of
d/b may be of the order 2 <d/b <5. 1In such cases (3.68) is strongly

preferred.
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A remark on the relation of (3.68) to the equation employed by

Keil and Zott:er2 may be helpful. Their equation (3.4) is most easily

compared with our (3.68) in the case where all wall conductivities are

infinite. The unknown of their equation, X', is then simply related
to D; in fact, X' = D - RN+§._ The equations for X' and D consequently

have the same.kernel, but different source terms:

%' = orNTINK'+ orNTINRN'E.. (3.76)

D= oarVIND + mPT. 3D

With finite conductivity the situation is éssentiaily the same: the
equatioﬂ'fof X' has mthematical properties similar to that for ﬁ,.but
has a more complicated form. We prefer the D equation for its
simplicity and its more direct physical interpretation as.the

equation for cavity modes.
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4._ EQUATIONS FOR FIELD COEFFICIENTS WITH VLASOV

SELF-CONSISTENCY

-~ To compﬁte.rise times-ofunstablepéfturbations tﬂe Vlasov
equation (2.22) must be combined with the electromagnetic equatibn,
either (3.68) or (3.72). The charge-current density, expressed
through Fn of (3.8), is to be eliminated in favor of field
coefficients. By (3.9) and.(5.58),

L = = A
En (Vg =48, tF = A/ (X b) + Fy- (4.1

Following the viewpoint. of Section 3 we put the initiai value term

'fn(v, 0) equal to zero, so that (4.1) and .(2.22) givé

o = -3 @6+ kA e +F () +E /p]. (4.2)

By the definition (3.8) of Fn and (4.2) we can intégrate on v to get

qQu, = fé(v) pv + iknc2
Fn(p) = £¥; dv X2 p_— iknv FAn(p) + Fn(p) + Ezon/p]'
’ n 4.3)

The integral may be cast into a form familiar in plasma theory. For

n # 0 .the definition (3.2) of xi gives

pv + ik c2 czx2 - )
o _p __m_ 1 ' (4.4)
p+ ik v ik ik p + ik v

n n n n
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The first term on the right integrates to zero (since fo(im)= 0), and

the factor in front of the bracket in (4.3) may be written as

_ 2 1~ dvfé(v) 2 o dvf (v)
W e Ty T T ol e - 4.5
o n P n ) (p + iknv) ‘

The latter way of writing the factor is correct also for n = 0. Recall

that by (2.11),

©

[ davE (v) = N _ : (4.6)
-0 o .
where N is the average particle density. Let us define a plasma

dispersion function,

2

lllP
W=y ——
n T —00, ( P + iknv)z

» WO : 4.7

where ug is the squared.plasma frequency,

2 -.
2 _g°N .
up EOM . ‘ (4.8)

Then (4.3) may bé written as
= - E S 4,
Fn . wn[Ezn + Ezon/p]’ (4.9)

where ézn represents the left side of (4.1). Equivalently,

- Kn Ezon
F = +
n 14+ Wn [Io(xnb) P

. : (4;10)

a
)
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According to (3.72), (3.59), and (4.1), the coefficients of the

electric field on the axis;, Eém’ are homogeneuus linear functions of

the Fn’ which we write as

Eom = ) .Cmn n ) ' ' (4.1

n=-ow

In view of (4.9) we then have an equation for the ézn alone,

Bal® + ] 4 0,0, ) - 5 (5) wan
where v

E(o)(b) =-1 E ¢ (pW_(p)E__ . (4.13)

zm p mn n zon

If initial-value terms were included,‘the right side of (4.12) would
have additional ﬁergs depénding on initial values [f(O);Ez(O), H¢KO)],
bﬁt'the left side would be exactiy the same; see Appendix A.

The rise time T of an unstable pefturbation is to be read off

from the inverse Laplace transform,

1 y+ie

R Pt
E, (t) = 55 {_iw eP"E__(p)dp. (4.14)

The integration contour in (4.14) may be moved to the left by
decreasing Yy unéil Y = Rep,, where p*vis the location.of the right~
most singularity of ﬁzn(p)'in the complex p-plane. Generically, two
complex-conjugate simple poles in the fight half p-plané are the
riéhtmost singularities. If thoée poles aré at p, = u* iv, then a
translation of the contour beyond the poles gives the asymptotic form

in terms of pole residues,
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E (tj ;,e(u+iv)t

res(E )
zn zn

u+iv ® u-iv
and the growth time is defined as 1 = 1l/u,

Since wn(p) is analytic in the right half plane, singularities of
ﬁzn(p) as determined by (4.12) could come only from cnm(p) or from

zeros of the determinant of the system,
det{1 + z{(p)W(p)) = 0. : (4.16)

We shall argue that C'ie in fact‘analytic infhe right half plane, so
that zeros of the determinant fix the rise time; see the eiscussioo of
z following (4.22) below. 1

In practice the evaluation of the determinant is easy if the matrix
t is knoon, since it is typical ﬁﬁét only.one term in the sum of (4.12)
is appreciable. As a quantitative discussion 15 Part II will show, a
term in that sum is important only if p is near a cavity resonance
(which correeponds to a pole of ¢(p) at a‘point"pr in the left haif
plane near the imaéinary axis) and m is such' that [Wm(p)l is maximum
for that p. Now Iwml has just one (very sharp) maximum; if it is
regarded as a function of a continuous real variable m at fixed p ¥ P.-
The location of that maximum is given roughly by Imp + k v = 0, where
v is the mean velocity of the unperturbed dlstributlon f (v) Since
m is actually an integer, there will be at most two (neighboring)
values of m for which lwm| is large. The velocity v, (or other.
parameters) may be tuned so that only one m gives a large contribution.

In that case only one column of IW is large, the evaluation of the

determinant is trivial, and the equation determining rise times is

42
det (1 + z(p)W(p)) =1 + ;mm(p)wm(p)‘= 0. (4.17)

This, is the‘faﬁiliar dispersion relation of olasma theory, and Com
is a dimeosionless form of the osualvcouplingvimpedance of aceelerator
theory; (see Par:’II for the exact relation to the impedance) .

As we shall see in Part II,lthe shortest growth time occurs when
v, is tuned so that only one m is imporeant. We may, however, tune v,
so that both m andlm‘+ 1rare important. Regarding wm end Wm+1 as
functions of p, one is then at a vaiue of p roughly qidway between the .
m+i' This case of "falling betweeﬁ'fwo chairs"

leads to growth times longer than minimum, but must be included if one

L
maximum of wm'and that of W
wishes to eurvey the full depen&ence on v, or other parametefs. Since
two columns of W are lérge, the conventional description"in.terms of a

single impedance fails, and the dispersion relation has the form

det (I + TW) =~

) ’ Cmm cm, m+l
1.+ Cmmwm + Cm+l m+1 m+l : mwm+l r = 0.
' m+1l,m m+1 ,m+1
’ (4.:18)

There is yet another waylin which two different values of m can be
1mportant whlch is discussed in Part II. :It corresponds to a special
choice of parameters for whlch effects of nelghboring m values cancel,
and leads to anomalously long growth times.

By (4.11) the computation of Cmn amounts to computing Ezm for
F = §nm; That computation can be donevjn two ways. For shallow

m

cavities, the proper way is to solve (3.72) for Km with F = 6nm’ and then
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obtain.%mlfrom (4.1). For deep cavities, one should solve (3.68) for

DS, then get Km from (3.74) and ﬁzm from (4.1). The latter approach is

comparable to the method of Ref. 2, and givés the following expression

for ¢:
) o B 1~
a(z/b)“[{N(L - n vR )(1 - RE) "RN] Il(x a)
Cmn = 848 I(b)(lt i) XD o
mn - - p - s
n mn o n, m)xnaI° X, ) (1 ntIn)
(4.19)
where
Y. a . 2 n I.(x_a)
n a t 1'"n
8_=1+-—— 8 (X b, xa) - .
I b ’ ~
n o(xn ) “o*'n n b’ 1 n L, XnaIZ(an)

(4.20)

The formula obtained by solving (3.72) is

- 5 -1 O |
Zon = Spn * 2Z_mn«- B] VLT (xgb)-n I (x,B)/x,b] 7.

-{Glﬁ[xnpséxﬁb,xna)—nt(a/b)ﬁlan,xna)]4a(a/b)IN(R-ntV)ﬁjlnSl(xnb,xna)}

(4.21)
where the matrix H is defined

Ho = ol (xb) = n T, Ogb)/x b1 7 INGR-n K] T, O B) /X b

(4.22)

‘As mentioned above, we wish to show that Z(p) has no singularity
in the right half p-plane. Since Z involves the solution of an

infinite~dimensional equation, not known in explicit form, it is not

I
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easy to make a direct analytical demonstration. We can give a per-
suasive physical argument, however, on the basis of the definition

of ¢ in (4.11). 1If the charge and current perturbations were given

. time-independent functions, rather than being determined by Vlasov

dynamics, then tﬁe_field perturbation would also have to be time
independent. Consequently the Laplace transform of the field would
have no singularity in the right half p-plane, but would have a singu-

1aiity on the imaginary axis. The Laplace transform of a constant

‘function is proportional to 1/p, so that by (3.8) the Fn(p) for a

time-independent charge-current distribution is analytic except for
poles at p = O_and-p = % ickn (the latter from the factor X;Z).

Since ﬁzn(p) must have-no singularity in the right half-plane for such

an F , we infer :hat-;nm(p)'must also have none; (take fn(v,p)= 5nmfm(v)/p{

to see that each element of I is free of singularities).

The above discussion emphaéizeé the electric field on the tube axis,
and represents the convent ional viewpoint of accelérator theory. It is
more natural, howevef, to emphasize the field in the cavify region, if

the cavities are fairly deep and resonant. The axial field and the

distribution function may be eliminated in favor of the cavity mode

coefficients D. The rise time of an instability may be found directly

‘from the inverse Laplace transform of ﬁ(p),‘and there is no need to

consider the axial field. The self-consistent equation for D has an
appealing form, and is easier to analyze in a precise way than the

scheme described above.

To derive the equatiom, take Kn from (3.74) and substitute in (4.10).

Solve the resulting equation for Fo in terms °f-ﬁs to obtain

-,
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- o
F_ = n__ | S
no 146 W l(l - ntln)IQ(Xn

[NCL - nvR-D5) 4 —zon |
b) [ T nVR DI, P J )
(4.23)

Now introduce this result for Fn in the source term of (3.68), using
\

(3.71), to obtain the desired equation for D with Vlasov self-consistency:

= e ) .
. D = RSLZ (ESt + sstv)nt + DS ] (4.24)

"self-consistency"

The leﬁters E and S denote "electromagnetic" and
barts of the kernel. That is, E is the same kernel (3.69)" that occurs
- in our previous equation (3.68) with givgn source term, and S is the
new pie¢e that arises from expressing the éource‘in”térms of the field

N

itself. We have

E +8 =
su su
o E N [ Im + 1 g? Il(xma) wm N S
_t smil - n 1 2 b 2, 1l+9oW mu”
m=-c ttm (1 ntIm) Xman(me) m m
T [l - nv R o S (4.25)
Vet - ) : )
Under present assumptions the inhomogeneous term is
2 o ~ I ()( a) WE .
]—)io) 1 (%) z 1 1 'm m zom (4.26)

N = .
sm 1 - ntIm Xmalo(xmb) 1+ ‘emwm

m=-w

(o)

More generally, D'°’contains various initial-value terms; see

Appendix A. .
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Rise times of unstable perturbations could be obtained from zeros

of the determinant of (4.24):
det [1 - R(p)(E(p) + S(p))] = 0. (4.27)

By solving (4.27) one effectively solves the electromagnetic problem and
the dispersion relation simultaneously, without the intermediate step

of computing an impedance. In Part II we shall.find it better not to
work with (4.27) as it stands. We eliminate the resonant mode from

(4.24), and consider the determinant of the reduced equation.
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5. WATSON-SOMMERFELD TRANSFORMATION

A difficulty arises in the practical computation of the sum in
(4.25) that defines the kernel E. The factor Esm or N ié maximum as
a function of m when its denominator ié_minimum,‘kﬁg = mg/R = txs.
In typical cases of interest this occuré at a value of m = m, which
is large from the view point of ptactical.computatipn,‘eveﬁ for the
first few values of s. Values of m far beyond.m* must be included
for‘an accurate éummation Qf the series, and the situation gets
yofse as é increases.

29,30

A Watson-Sommerfeld transformation .repIac;es the difference .

of squares in the denominators by a sum of squares, and thereby

circumvents the difficulty. Furthermore, the transformation eliminates

the Bessel functions in favor of easily computed Bessel function zeros,
reveals the behavior of the sﬁm for b/d > 0, and facilitates the
treatment of Eq. (4.24) by Fredholm theory. There is no reason to
make a corresponding transformation of the sum‘defining the self-
consistency kernel S. As we show invPart II, only one or two terms

of this sum are important (those for which 1 + nglzo), and in any
case the sum converges exponentially.

Let us define

f(m,s,t) = NsmNmt = N—mstt' ) (5.1)

The sum that occurs in the kernel E is

©

'z -3 £m,5,01 (1 -n 1) | (5.2)

st m=—o
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For s-t odd, zst vanishes: then f is odd in m, while Im as defined
in (3.60) is even. Henceforth taking s-t to be even we write

+ =) ' (5.3)

f=1f + £ ,

g _ 1 1 1
4 2 2 2 2
(kmg) _xs (kmg) -Xt

2. : 2 F2ik g
. [(kmg) P kg T a0 e " ] (5.4)

The numerator of (5.4) vanishes at kmg = * x, where x satisfies (3.37)

0 . _ -
is bounded at k g = ¥ x ,
m' s

for s even and (3.38) for s odd. Thus £
tx, provided ‘that s # t. If s = t there is a pole with residue

given by

lim [(m Fx R/g)f(+)(m;s,s)] = -lim [(@F x R/g)f(-)(m,s,s)]
k g>+x s k gotx s
m s m s
2
. X" -kt K
- iR s 5 L v (5.5)
8 8x

Except for the poles that occur when s = t, f(i) has no singularities

- in the finite m plane and for large |mi has the bound

. m

where ¢ is a positive constant.
To convert the sum to an integral we employ the functions

i Tm

P @ = 3w e ™ sin ra, : (5.7)
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where
I .
I@) = T = Ill))(x‘fb) - ©(5.8)
Tt Xm0 X N1 Y
(1)
Now ¢ has poles at the integers with residue

tim @ = we V@ =1 s w, (5.9)
m >n '

and poles that arise from zeros of the denominator of J. Since nt is
small compared to one, the latter are ciose to the zeros of Io(xmb),
which is t th . = 1ij 1 i
1s. p_say‘near e po;nts at ‘which me 1301, where ios is
the i-th zero of the ordinary Bessel function Jo. With such points
as the first approximation, Newton's method locates the poles of J(m)
at the points m = imi, where
el dert ey S
= R|@+ (2 (1- )| - (510
Joi

i=1,2,...

Inside the square root the exact expression has been expanded to lowest

order in n - The poles at - m = 1;mi have residue
: g 2n 2 '
- £ ) . g
lim (w¥m)J(m) = ;ni (1 + —Zt)(g) 5 (5.11)
m > m i igy ! ' o

to lowest order in n. - Except for these poles J(m) is analytic in

the finite m-plane. The branch point of %m does not appear'in J(m),

because the entire functions Ib(z) and Il(z)/z contain oﬁly even powers

of z.

In view of (5.6) and the fact that I0 and 11 have the same
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. - o +
asymptotic behavior, the functions ¢(,) are bounded as follows at

large |ﬁ|§v
16Wmy) <55 o o (5-12)

(#)

In fact, each of the functions ¢ decreases cubically in one half-
plane, ‘and exponentially in the other.
'f<wévshail integraté'oﬁer a path C consisting of a rectangle with

corners - A + iB, A * iB, where A lies between two positive integers,

M< A<M+ 1l. We first take s # t, and choose B and p so that J(m)

-has no péles inside C. Then by (573) and (5.9);

M

J JmEm), . (5.13)
m=-M '

c

+ _ .
f l¢( ) (@) + ¢-( ) (m) }dm = 21
since the only singularities of the integrand inside C are poles at
integers. Téking a sequence of paths C with increasing A we obtain
the required sum (5.2) as an intggfalz

®-iB -+iB

U +I ] P @ + ¢ @lam. (5.14)
~o~iB  J'oo+iB

N
M,H

z
st

Now the integral on Im{(m) = +B may be replaced by an integral over an

infinite semi-circle in the upper (lower) half-plane, plus a contribution

from the poles at the points imi. According to (5.12) the integrals on

‘the semi-circles vanish, and the formula (5.11) for pole residues gives
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) 7 . : -:'L'Hm:,L : igm,
R 1 + -
Yo T Loas (1 +Tt_) [f( M) = v O g
i=1 "1 3% : . sim(~Tm ) 1osint=tmy
oi i
;f(+)(m ) &_ - f(_)(m ) e_-lim_l
- i sinﬁmi i i’ sinmm
(5.15)
We have chosen the bfanch of the square root in (5.10) so that m, is

in the upper.half—pléne; Since f(+)(m) ='f(_?(ﬁn), the poles in the
uﬁper and lower half-élanes vgive equal contributions. For s = t
there is an gdditional term- in Z;t frém the poles at m = ¢ gsR/g
with residue (5.5). _These poles are close to the real axis, and

give the following addition to th:

1 K(1-X) : e
75 {1 - f—;i——] J(st/g)ést. : 7 (5.16)
s

. Since the m, are near the imagnary axis for the values of b of

interest, it is convenient to state the final form of Est in terms of

nearly real numbers vy defined by

«

m, = ip,. ] ' (5.17)

i i

“Then (5.4), (5:.15), and (5.16) give
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© I
v - m
0t"’st ¢ _Zw Nsm«l—n I Nmt
= tm 9
b L 2, 2 N2, .2 sinh 7y,
. i=1 (naui) + X (napi) +‘xtv i

s+l

. [;osh Ty % (—)s+lcosh[nui(1-2a)] + é(—) K(nauifJ"sinh[ﬁui(l-&ﬂﬂ

Fhglser - (5.18)

b= =3 o TBI T b;lerb; D) | (5.19)
s 2fs(g) s et s T Mt1Ms

We have neglected Kz-in comparison with (nauif in the coefficients of

the hyperBolic cosines. The notation of (5.18) is defined in the

following equapjons: uy in (5.17), (5.10), xg in (3.41), (3.42),'71t

as in (3.29), « in (3.39), a in (3.56), I, in (3.16), £ _(g) in (3.57).
Sipge ui and x_ are approgimately real for the values of p of

interest, the denominator (nauif + xz is nearly a sum of sduares

of real numbers, rather than the troublesome difference of squares

that appeared in the original expression. The series converges

A cubically, and is quite easy to compute numerically.

The last term in (5.18), proportional to Gst’ is important in
the analysis of the equations for the case of fairly deep cavities,
because it ié_the only term that survives in the limit b/d -+ O.

It is interesting that this limit is difficult to treat without the

. Watson-Sommerfeld transformation. One may draw an analogy to the

: ) 31
use of that transformation in Regge's scattering theory. There

the transformation gives the asymptotic behavior, for cos 6 =+ =, of
the sum of a series in Legendre polynomials, Pﬁ(cos 8). Here we get
the asymptotic behavior, for b -+ 0, of the sum of a series in Bessel

function ratios, Il(xmb)/xmblo(xmb).
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APPENDIX A

IN1TIAL VALUE TERMS

We repeat the considerations of Sec.:;:ion 3, allowing arbitrary’
initial values {£(0), Ez(o)’ H¢(O)], but requiring infinite conductivity
on the end walls of the cavities. Solving (3.5) by the method of
variation of parameters, we find that (3. 9) and (3. 10) must be modified

: by adding to their summands the term
r

I' udu gm(u)Rb(xmr, xmu), i (A.1)

‘o

Gm(r)

where

8, = ~ B B (r,0) - “—— (rH P (5:0)). (4.2)

C

Similarly, by solving (2.31) we find that (3.13) acquires the new term
lh(r) + Kmr/2 : (a.3)

while (3.14) is augménfed by

. : 2 . - ’ ,
ngy) + Kma /2r, _ . (A.4)
where .
) —ikmq - :
K = [ £ (v,0)dv, (A.5)
m x 2 m
m -0 ‘ .
o[ % . D .
Lm(r) = a P ? - — f udu Ezm(u,O) + - 2 ¢m(r 0)} (A.b)‘
o .

In solving (2.31), one first has to allow an arbitrary solution Y/r of

the homogeneous equation, in Region II. The requirement that the fields



~55-

" satisfy ail four Maxwell equations then determines y to be zero.
After an application of the continuity condition at r = a the fields

in Region I1 take the form
© ik z

z [Amlo(xmr) - xmaSO(xmr,Xma) + Gm(r)]e m ,‘(A.7)

M=

11
EZ (r,z)

I, . _ v [%P
H¢ (r,z) = z [—— A1 (xmr) - ¢ pS (xmr,xma)F

m= =00

2 ] ikmz
+ Lm(r) + Kma /2] e . (A.8)

In Region III we now have k= 0 (infinite end-wall conductivity),
and the functions fs of (3.43) reduce for all s to cos as(z + g). We

solve (3.15) by variation of parameters and then solve (2.31) to

obtain
111 I ~
- T
(r,2) = SZO[DSRO(I‘Sr, rd) + D! (I r,l d)+6_(r)]cos o (z+g),
(A.9)
III(rz)=e' J (DR (T _r,r_a) + 'S, (T_r,; T _d)
ops=o sl s > s s"1's? "s
+ zs(r) + E;az/Zt]cos(é(z +g), (a.10)
wheré
~ T . o
Gs(r.) =fb udug_(WR (P r, T u), (A.11)
()= -2 E (.0 11—°—a—(rH (r,0)) (a.12)
ggir) = - c2_ 25 * r or ¢s ? ’ .

[~y
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~ 2
~ €5 3G ag fr _ b .
Ls(r) =5 |P 3T o UdU_Ezs(u, 0) + 7 H¢s(r,0.) , (A.13)
T o . €C :
s ©
~ "(lsq "o i _
Ky = 5 f-mts(v,o)dv. (A.14)
Ty

Here fs(v,O) is the coefficient in a development of f(z,v,0) in the

functions sin as(z + g). Ihderivingﬁill from (2.31), one again has

to allow a term y/r, and this time vy is not zero (for the choice of

' particular solution of the inhomogeneous equation that we have found

convenlent). The requirement that the two Maxwell equations (2.29),

(2.30) give.the same érs determines y. The field Er(r,O) is eliminated
through PoiSsén'svequation, as in (3.6).

Given.the series (A.7)—(A;10), the remaining calculations for
continuity and boundary conditions can be dome in pfecise analogy
to Seétion 3. The general form of the boundary condition is derived in
Appendix B. On the cavi;§'wall r =4 the boundary condition stated

in terms of Fourier components is

(A.15)

where the term A__ arises from the initial-value term of (B.12).

Similarly, on the tube wall r = b,

1/2

L qup . _ .
E_ (b) (] )t Hyp(®) + 2, (A.16)

In place of (3.28) the condition (A.15) gives.
L o i
D (nc/FSb)Ds +J, (A.17)
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1/2
J_ =rad {(?)

: 2
~ a2~ ~ ]
s - T ), (L@ + 53 K] +6.(D) - Asc‘. (4.18)

The continuity and boundary conditions at r = b now lead to our

previous equations (3.66), (3.67) for A and D, specialized tok = 0

(o) (o)

and augmented with terms A" and RD , respectively, on their right
- hand sides. With the argument p of all functions indicated explicitly,

the latter terms have the form

(©) s = 4F . ~
4% (p) = aszoumsus(p)so(rspb,rspd> + G (b,p)] - G (b,p)

0 1/2 ' 2 ,
5 - _({up - :
* n=§w(°mn avmn) [ (0 )t (Ln(b’p) + 2b Kn(p)) + Al’)t(p)] *

(A.19)

2
(o) - 2 1 a_
Rs(p)Ds (@ = Rs(p) {1 + € pb j' Nﬂms(Lm(b’p) + 2b Kﬁ(p))
: CUso of meee
2 'Js(p)
T;;E Sl(FSpb, Fspd)]. - (A.20)

1 .~ a_ 3z )
- ;;Eg L (b,p) + 35 K(P)] -

The initial-value term in the Vlasov equatioh (2.22) must also

)

be accounted for. 1Its effect is to modify the expression (4.10) for
Fn by addition of a term

. | (5) » .
a+w)  r, _ (.21)

where

(0) : ;¥L ® pv + iknc2
Fn (p) = 5 f dv fn(v,m

Xap =

ST iR v (A.22)
LAY
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To see the implicafions of initial values for the rise time of
instabilities, we must look at the p-plane analyticity properties of
initial-value terms in the '"self-consistent" equation (either equation

(&;12)'for the axial field or (4.24) for the cavity field). The complete
=(o0) '

inhomogeneous term of (4.24).is RSDS , where -
5(0) = D(O) + of N I.m + . 1 (3)2 Ilgxma) w\'n

s s L "ms{l-n1 2 b 2 l+g W | °

=—c2 t'm (1—nth) xmaIO(xmb) m m

(o) (o)
. [Am + ant(NvD )m] .

+ .E N - - 1 (§§ I1(Xma) 1 [mezo _ F(o)]

=’ S l-ntIin b xmalo(xmb) +8 Wl p m

(A.23)

Despite the complicated appearance of (A23) if is not too difficult
to be convinced that it is analytic in the right half p-plane and
conseqﬁenfly'does‘pot affect the rise time of an instability. It does
have singularities on the imaginary axis, wﬁich appear to reflect the
circumsténce mentioned in Section 2; namely, ﬁhat oﬁe canﬁot expect
the field pefturbations to vanish in the course of time.

To check analyticity of kA.23) we note thaf the required analytiéity

(o) (0} (o)

of the ingredients D", A , and F

follows easily from their
s m m

definitions. It tﬁen remains to show that 1 - ntIm and 1 + emwm
have no zeros in the right half plane. A zero of the former would,
by (4.19), imply a pole of (S which has.aléeady‘been ruled out.
Analysis of 1 + emwm for particular choices of fo(v) (see Part II)
suggests that its zeros are all in'Rep=< 0, but a general proof may

: -1
be difficult. We needn't be concerned, however, since (1 + 9mwm)
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also occurs in the kernel of (4.24). A pole of (1 + emwm)'l in
(A.23) would be cancelled by a similar pole from the kernel, and
would not appear in the solution D. The same argument applies to

the factor Rs in (4.24).

—60~

APPENDIX B

RESISTIVE WALL BOUNDARY CONDITIONS FOR THE LAPLACE TRANSFORM

We adapt the standard treatmentzzof resistive wall boundary
conditions to accomodate the Laplace transform. We suppose that the wall
is planar, obeys J = oE; D = ¢E, B = ug; and is substantially thickef
thaﬁ the skin depth for penetration of fields at the‘frequencies of

interest. The unit normal pointing away from the wall is denoted by

n. We analyze fields inside the wall, supposing that they have

relativeiy little variation in directions parallel to the wall; this
is theessential assumption. Then if £ is the distance from the surface
to a point inside the wall, the gradient acting on any field may be
written as'vV = - gé/ag. Laplace transforﬁation of the Maxwell equations

involving curls yields

oE . ,
Bxgr=wH- WH(0) , _ ’ (B.1)
M o
moxgE - (o + ep)E + €E(0). -~ (B.2)
Elimination of E gives ‘
e o .
—5 —uplo + ep)H = g, : : (8.3)
13 )
2
VS () 3E(0)
g=-n—5—Jn - (o + ep)H(0) -~ en X TRET- (B.4)
P 3e g ; - £

By variation of parameters we find the general solution of (B.3)

having gxponentiél decrease for increasing £.' It has the form
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H(g) = a e-i/&_ % e‘r’/‘sg;_(x)e_x/%x —-% e—g/‘sf&(x)ex/sdx, (8.5)
where
5= [ub+ ep)b]_llé, | T e

~

and a is an arbitrary constant vector. The branch of the square root
in (B.6) is such that Re5_1>0 when Rep ~> 0. Equation (B.5) implies

that H satisfies the relation

Qﬁ/ag = - %—é - eglsf gﬁx)e—x/édx. (B.7)
. £ '

Substitution of (B.7) in (B.2) and evaluation of the resulting equation

at £= 0 yields the relation between-é and E that must hold at the

surface:
R 1/2 . .
E= [_—ELG+ 5l BxE+a, €=0, (B.8)
where
A= E(0) +n xfm ek dx]'
"% o +ep| — - 0& £E=0
-1 - = = -e/s
= [egco,m n x.{,[egx e e sp)ﬁ(o,a]e_ ag|.

(8.9)
The component of Eq.(B.8) in vthe direction of n is of no interest,
since it merely coincides with the corresponding component of (B.2).
We may then write the tangential part of (B.8) as

1/2

. rwp 1 X
E _[0 + p] 2 By + Ay _ (B.10)
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where, through an integration by parts,_l// may be cast in the form

]

= Q& g - x -&/&
i//‘fo[g+ap£//(°,i) un E//(O,a)]e de. (8.11)

For the vaiue_s of p of interest it is an excellent approximation to
drop the displacement current by pﬁtting € = 0. We then have the form

of thée boundary conditionused in the foregoing work,
N .

1/2

£ - mup P -&/
E, =B nxi, ufog.g,/(o,e)e

6dg. (B.12)

By using cylindrical coordinates and the appropriate Bessel functioms,

‘one can find a similar relation for a cylindrical surface. That

refinement involves little extra effort; we have avoided it only to

simplify notation.
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FIGURE CAPTION

1: Cross-section of model vacuum chamber. The quantities

o, O

: » 0, are conductivities of various portions of

e

the walls.
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