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INTRODUCTION 

T'e study of the properties of elementarv magnetic excitations— 
spin waves or magnons—an the neighborhood of surfaces, ^disconti
nuities, defects, and impurities' is an active field of solid-state 
magnetism. These modes are of interest for understanding relaxation 
phenomena8 as well as chemical reactions catalyzed by magnetic sub
strates. 9 

In this contribution we would like to report two different 
results* (1) some spectra of the spin-wave modes associated with 
clean and stepped surfaces of a ferromagnet1°—the clean and a 
stepped (001) surface of a face-centered-cubic solid; and (2) the 
unusual and yet unresolved difficulties encountered when similar 
procedures are attempted on antiferromagnetic surfaces and steps 1 1. 

MODEL, FORMULATION, AND CALCULATION FOR A FERROMAGNET 

The main idea behind our model is to generate in the surface 
of a solid (a face-centered-cubic solid) steps that repeat periodic
ally but such that, on the average, the surface is parallel to a 
low-Miller-index plane [the (001) plane in our case]. If these con
ditions are satisfied, the three-dimensional problem to be solved 
can be factorized into a two-dimensional periodic part, to be treated 
in the k representation, and a one-dimensional aperiodic part, which 
can be treated in the transfer-matrix approach method 1 2' 1 3 to the 
Green's-function formalism. 1 4* 1 5 In addition, since the surface runs, 
on the average, parallel to a (001) plane, a transfer matrix can be 



2 
easily obtained—by means of a simple canonical transformation—from 
the very simple transfer function for the (001) nickel surface.12 

Our model for the stepped (001) nickel surface is obtained by 
removing periodically rows of atoms parallel to the [010] direction 
from the (001) surface layer. This is shown in Fig. 1. The steps 
thus formed have a depth of one layer, cr half the cubic lattice para
meter CL3 as is the case in real materials. 1 5' 6 

The two-dimensional unit cell describing the stepped surface is 
a supercell of the primitive (001) cell which contains L2 atoms (see 
Fig. 1). In the terrace (top) layer, atoms 1 and 7 are symmetrically 
located at the step edges and have a coordination number of six. 
Atoms 8-12 are missing. In the second layer, atoms 1 and 7 have a 
coordination number of 11 (i.e., only one nearest neighbor is missing), 
atoms 2-6 have a full coordination number of 12, equal to that of a 
bulk atom, atoms 8 and 12 have a coordination number of nine, and 
atoms 9, 10, and 11 are once again equivalent to (001) surface atoms 
with a coordination number of eight. All atoms in the third and sub
sequent layers are fully coordinated, i.e., have a coordination number 
of 12. 

The Heisenberg Hamiltonian we use in our calculations is of the 
nearest-neighbor-only type: 

H = -T Y, JS(n) • S(n+A) , (1) 
n A 

whce J is the nearest-neighbor exchange and S(ft) is the spin operator 
at site n. The sum over A corresponds to nearest-neighbor positions. 
The introduction of the raising and lowering operators 

S±(n)=Sx(n)±iS (n) (2) 

leads to the more convenient form 
H = -T\ £ J[S U)S (n+A)+S+(n)S~(n+A)] . (3) —̂̂  , z z n A 

We work only in the one-magnon approximation and for that pur
pose we introduce a complete set of one-spin-deviation states \n>, 
where \n) denotes a quantum state in which only the spin at the ion 
site n deviates by one unit from the perfectly aligned ferromagnetic 
state. 

Following the standard Zubarev technique, l 3 > 1 1 ( » 1 7 the local 
density of spin-wave states at each atom in the crystal is given by 

D£ (i»)= -Tr_ 1Im J^Uiv\G(u)\&\i> , W 
k" 
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Fig. 1. Model-stepped surface. The surface unit cell contains 12 
atoms in each plane, except in the surface layer, where five 
rows (atoms 8-12) have been removed. The unit cell vectors 
tj and t 2 are indicated. Open circles indicate atoms in the 
terraces (surface layer) and shaded circles atoms in the 
second layer. 

where < £k*u |G(ID) |£'I<\J ' > is a matrix element of the Green's function. 
In (4) I indicates the layer of atoms (1=1 is the surface), k is a 
two-dimensional wave-vector within the corresponding two-dimensional 
Brillouin zone and u=l,2,...,12 labels the atoms in the unit cell of 
Fig. 1. It should be noted that for the stepped surface of Fig. 1 
there are no atoms for t=l and u=8,9,...,12. If thosi atoms were 
present we would obtain an ordinary (001) perfect suri ice. 

If we organize the elements of (4) into a set of (12x12) ma
trices £p»,(u),k) labeled by t , V , k, and m and with rows and columns 
labeled 6y u,u',=1,...,12, the Green's function satisfies Dysonrs 
equation: 

<uG =I+H G +H G -11 11-11 -12—21 
«G21-Ji2 A !+H 2 2£ 2 !+H2 3 £ 3 1 

(5) 

a-n\~\i(«-i)-(«-!) i +^iAii +^i(n+i )-(n+i) i ' 
The solution of the infinite system (5) can be o tained by the 

transfer matrix technique. 2~ 1 1 4 A matrix T_, independen of n is 
defined by 

<Wi)rfl<W "22 (6) 



Fig. 2. Bulk and surface states along various lines of the square 
Brillouin zone of the perfect (001) surface. The shaded 
area corresponds to the bulk states. Surface states are 
indicated by the thick line. 
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Fig. 3. (a) Local density of states for a bulk atom, integrated 
over the whole Brillouin zone. (b) Surface local density 
of states for a perfect (001) surface. 
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which, substituted in (15), yields 
H , , ,T T+(H -uI)T+H , .=0 —n(n+i) —nn — n(n-i) (7) 

If the 12x12 T matrix is known, the first two equations in (5) yield 
(8) C 1 1-[o.I-H 1 1-H 1 2(a.I-H 2 2-H 2 JT)- 1H 2 ]r 1 

from which the seven nonvanishing local density of states D (ID) can 
be obtained. 

With a similar formulation, we obtain 
(9) 

from which the twelve D (ID) are easily derived. 2U 
Our results for the perfect (001) surface are shewn in Figs. 2 

and 3. 
Results for various local densities of magnon states of the 

stepped surface (at terrace and step-edge sites) are shown in Figs. 
4 and 5. 

| 

Fig. 4. (a) Local density of states at atom 4 on the surface 
(terrace) layer of Fig. 1. (b) Local density of states at 
atom 4 of the second layer. 
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Fig. 5. (a) Local density of states at the edge atom, 7, on the 
surface (terrace) layer of Fig. 1. (b) Local density of 
states at the inner edge, atom 7 of the second layer. 

The influence of the local spin-wave spectra on the local mag
netic properties of the structure can be better understood by looking 
at the results of Fig. 6. There we have plotted, as a function of 
temperature, the quantity 

M=M 0[l-(n £ y(T)>] (10) 

d i r e c t l y r e l a t e d to the magnetizat ion, where, for each atom (l,v) 
in the s t r u c t u r e , 

%™ Jo 
Dj, (ui)du 

exp(w/feT)- l (11) 

As seen in Fig. 6, all atoms close to the surface are "softer" 
•aarnetically than bulk atoms. it ds easy to understand Liiat atom 7 
ir. the terrace, the edge atom, is appreciably softer than all others. 
Tr.is is due to its low coordination number, which manifests itself 
in the spectrum of Fig. 5(a) by the strong dominance of the u>*5 
localized node. 

Atoms in the middle of the terrace and in the middle of the 
inside step, on the other hand, are practically indistinguishable 
from those on a plain (001) surface. 

The results we have found here show how sensitive is the mag-
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Fig. 6. Low-temperature local magnetization of various atoms as a 
function of temperature. (a) For bulk atoms. (b^ tor atom 
7 of the second layer (the inner edge). (c) Tor atom 8 of 
the second layer (the side of the inner step). (d) For a 
surface atom in a perfect (001) surface, for atom 4 of the 
first layer (the middle of the terrace) and for atom 10 of 
the second layer (the middle of the inner step). (e) For 
the edge atom, atom 7 on the terrace layer. 

netic structure of a solid surface to its atomic structure and geom
etry. We have to remark that our conclusions are based on a Heisen-
bfrg Hamiltonian model, with exchange restricted to nearest neighbors 
r-nly, and with no inclusion of any reconstruction, pinning, or mag
netic anisotropy. 1 _ 3 Our calculation is also restricted to a well-
defined model surface and to a reasonable sampling of the Brillouin 
zone. We believe, however, that we have uncovered some important 
points and that we have determined qualitatively the salient features 
of the spin-wave spectrum of stepped magnetic surfaces. 

ANTIFERROMAGNETISM, PROJECTED DENSITY OF STATES AND THE 
B0G0LIUB0V TRANSFORMATION FOR BOSONS 

We report now some surprising difficulties which are encountered 
in the study of an antiferromagnetlc surface, when standard Green's 
functions techniques are used. l In fact we show that the procedure 
described above for ferromagnets, which is usually followed for anti-
ferromagnets, 1 8 does not yield the wanted information or, if improp
erly used, may lead to unacceptable negative weights of the local 
spectral density of magnon states. 



The starting point of our calculation is the usual Heisenberg 
Hamiltonian given by 

H= £ £ J ^(n)-?(n+fl)-2uBHA £ S z(n) 
n L n 

+2uBHA £ SzU) 
(12) 

where u is the Bohr magneton and H >0 is a fictitious magnetic field, 
which simulates the crystal anisotropy. The anisotropy field tends 
to align spins in the predominantly up-sublattice (ne"up") in the 
(+z) direction and spins in the down-sublattice (£e"down") in the 
(-Z) direction. The vector A connects each atom with its nearest 
neighbors on the magnetic lattice. 

For the infinite, perfectly periodic case, the standard Holstein-
Primakoff and localized-to-running-wave transformations 9 yield for 
the Hamiltonian (12) the form 

H= -2NZ J S 2 - 4Nu f lH AS + H Q + H x , (13) 

where 

k k 
E = 2(JzS+y BH A) , (15) 

Tfc = 2J S I e1 t m t . (16) 

The vector k .Ls in this case a three-dimensional one. From now on 
we restrict our interest to the one-magnon Hamiltonian H„, neglecting 
H which is of fourth-order in the {a, ,b,} operators. 

The usual procedures to handle the Hamiltonian H_ are: a) to 
perform a Bogoliubov transformation, or b) to use Green's functions. 
The former method is suited only to treat the translationally invar
iant case, while the latter, more general and more cumbersome, has 
to be invoked to solve non-uniform problems. 

(17) 

(18) 

The Bogoliubov transformation 

% ~ Vfe -
, t 

B t s ukbk - Vfe • 
where ufc and \i, axe. real parameters which satisfy 



4-Vf t - 1 , (19) 
y ie lds 

V Wft + B f e B f e EJ-.( afe afc + BfcBi,) + c o n s t . (20) 

where E, = V<= 2-T? > 0. ft ft 

Spectral weights are obtained through the imaginary part of the 
corresponding Green's functions. The density of antiferromagnetic 
magnon states in our case is related to 

¥ ^ O f e l a f e * ' 2f ,, ^ ,2 
- u • • 

w+io"1" 
= u£ ufeS(u)-Efe)-vfe6(ai+Efe) 

+ 

-2u^[6(a)-E f e)-5(a 1+E f e)| (21) 

Mi^ [î cS (a)-Efe)-a^6 (ai+Efe) ] 

= 6(u-E f e) . 

Since the form of H n as written in (20) implies that 

DM = 2 I 6(o)-Efe) , (22) 

where the factor of 2 takes into account both the a, \0> and BL10) 
states, we find that the end result of (21) is indeed correct. Mow-
ever, in obtaining this result negative spectral weights related to 
some terms had to be incorporated, which in itself is a cause of 
concern. 

But moreover, when we related out results with what can be 
found in the literature, we do find additional difficulties. In 
fact, the local density of magnon states has been obtained 1 8 using 

n;M = - ̂  imhv; M + G7; M\ , (23) 
where 

G±+ M = -Jlr^<S*\sj»n . (24) 
2<S-> 

In the uniform (translationally invariant) case, relation (23) 
is equivalent to 

D^(ID) = - - Tr f e Im(<<a f e | a f e »+<<fa f e i b f e >>) . (25) 
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If, for the sake of clarity and to keep the algebra as simple 
as possible we restrict ourselves to one dimension, then (24) leads 
to 

M»> • hf^=T fe «(-E) - ^ T *«*-E) 1 f cfe 2V+E 
" N~2^2 2 E 

4. 2 V ~ E */• „1 2V+E ,, .,.,. 
+ 2F ° ( U 1 - E ' 2E - *( I U + E) 

(26) 

where we have defined V = 2JS. 

Carrying out the trivial integration in (26) yields the expres
sion 

which is not the correct density of states. However, if the phase 
of the square root for the two last terms of the integrand in (26) 
are chosen to be negative then the correct density of states 

D ( U ) = 1 1 (28) 
\ V 

.IE is obtained. While this is the choice followed by some authors1 

it does not constitute a formally correct procedure to obtain the 
density of magnon states. 

It is important to emphasize that the correct choice of signs 
is that of (26), which leads to (27) i.e. to the conclusion that 
D-(co) ̂  D(u>). In other words, D • (to) is not a projected density of 
states. 

The incorrect choice of signs, which produces (28) and appears 
formally correct, is in fact completely wrong and leads to very ser
ious problems in the non-uniform antiferromagnet. In fact when the 
spectral density of a non-uniform one-dimensional antiferromagnetic 
chain is evaluated on the basis of (23), with the incorrect choice 
of signs which yield (28) in the uniform case, unphysical negative 
weights of states localized at iu=0 are obtained. In addition, if 
one carries out an analogous calculation for a Bethe lattice with 
coordination Z>2 (the one-dimensional chain can be pictured as a 
Bethe lattice with 2=2), then not only localized, but also extended 
states with negative spectral weight are obtained. This fact vio
lates the fundamental rule 1 7 that D.(u))>0, obtained from hermiticity 
considerations. 

These results [in particular D^(w) 4 D(u)] constitute a clear 
indication that relation (24), which exactly or with slight varia-



11 
tions is always used in the literature, does not provide the correct 
way to project magnon states onto a localized basis set. On the 
other hand, there seems to be no tri>/iaj. way to generalize the expres
sion (25) to allow the treatment of non-uniform antiferromagnetic 
svstems. 
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