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ABSTRACT 

We present a general, unified theoretical analysis of 

the role of scattering in photothermal spectroscopy. We 

show that while the photothermal Signal is significantly 

affected in the case of highly scattering media, it is 

independent of scattering for optically thin samples. 

Numerical estimates of the scattering contribution and com­

parison with experimental results are given. We also eluci­

date the relationship between photothermal and diffuse 

reflectance spectroscopies. 
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Introduction 

Insensitivity to scattering has generally been assumed to be an 

1 inherent characteristic of photoacoustic spectroscopy since the pho-

toacoustic signal is proportional to the fraction of energy absorbed 

which is converted to heat. Consequently, even for a highly scattering 

medium, the photoacoustic Signal is presumed to be a direct measure of 

its absorption cross-section. However, it is well known that the 

reflectance of such a medium, which is conventionally studied by diffuse 

reflectance spectroscopy, is a complicated function of its scattering 

properties2,3 as well as its absorption. The total absorbed energy, 

while proportional to the absorption cross-section, aa' is also a func-

tion of the intensity distribution in the sample, which can deviate sig-

nificantly from Beer's law when multiple scattering is important. 

Therefore, in principle, the thermal signal generated is affected by 

scattering. This has first been discussed by Helander ~ ale 4 , who 

considered the special case of a semi-infinite (optically and thermally 
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thick) and isotropically scattering sample. 

In this paper. we present a general unified analysis of the effects 

of light scattering in most common photothermal (photoacoustic and pho-

5 to thermal deflection ) spectroscopies (PTS) for arbitrary sample 

thicknesses and scattering characteristics. By simultaneously analyzing 

the heat diffusion equation and the radiative transport equation. we 

determine the photothermal signal. S. in terms of the optical and ther-

moelastic constants of the sample. We thereby rigorously establish the 

relationship between (1) photothermal spectroscopies and (2) optical 

transmission and reflectance spectroscopies. We show that. in general, 

PTS is Significantly affected by strong scattering. 

For low modulation frequencies such that ! h»! or ! h»! , where 
t t op 

9., !th' and iop are the sample, thermal, and optical lengths , respec-

tively, (i.e., when energy is deposited in a distance much shorter than 

the thermal length), we determine exactly that S ~ [l-(R+T)] where R(T) 

is the diffuse and specular reflectance (transmittance) of the sample. 

For an optically thick sample (T=O), this expression implies that S ~ 

(l-R) and, therefore. that the photothermal spectrum ofa sample is in 

principle equivalent to its diffuse reflectance spectrum in this limit. 

As the modulation frequency is increased, we show that S varies from. S ~ 

[l-(R+T)] to S ~ aa [1+2R( l+ro)/(l-ro)] (where ro is the sample surface 

reflectance for internally incident diffuse light), depending on the 

optical properties (scattering, absorption) and the thermal diffusivity 

of the sample. This variation of S occurs because of the dependence of 

the heat flow on modulation frequency. Hence, we stress that PTS can 

yield important information unavailable by optical methods which, com.-
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bined with optical measurements, can be very useful for the determina-

tion of the optical constants of highly scattering media. 

Using the above results, we also show that, 

for optically thin media, S is independent of scattering when 

as! S 0.1.( as - scattering coefficient). This independence is in 

significant contrast to an optical measurement which would be dominated 

In Section II, we derive the general expression for S for the most 

commonly encountered cw PTS experimental configurations. In general, 

the PTS sigilal is given by a weighted average of the sample temperature 

distribution, which we determine in terms of. an arbitrary intensity dis-

tribution in Section II(A). In Section II(B), utilizing the equation of 

radiative transfer for diffuse photons, we solve for the integrals of 

the sample intensity distribution which appear in the temperaturesolu-

tions. In Section II(C), we determine the low frequency, high fre-

quency, and semi-infinite sample limits. The results in Sections II(A-

C) involve the measurable (external) optical properties of the sample R 

and T. These can be determined in terms of the intrinsic optical parame-

ters (e.g. aa' as ) from the equation of radiative transfer by approx­

imate analytical methods or nUmerically. The approximate expressions for 

Rand T using a 3-flux calculation are given in Section II(D), and S is 

evaluated in the limits of Section II(C). 

In Section III, we evaluate our theoretical results for some spe-

cial cases, and compare our theoretical findings with the experimental 

measurements of Helander et ale --
4 We discuss the implications of our 

results for the photothermal spectroscopy of highly scattering media. 
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11. Theory 

A. General Solution ~ the Photothermal Signal in Terms of the Photon 

Distribution in the Sample 

We consider media with isotropic and homogeneous thermoelastic and 

optical properties but which may be porous (see Table I). Porous media 

are taken into account by effective values of these properties6,7 which 

may also be complex and frequency dependent (see Table II). We neglect 

fluorescence, thermal radiation, energy migration etc. 

The signal, S, generated in the most common cw photothermal experi-

5 8-10 ments can be written as ' 

S(w) = Te(w) III G(r)T(r)d3r 
Vs 

where T (w) = T (w)T (w), T (w) is a thermoelastic transduction factor, 
e r t t 

Tr(w) is the transducer response (including a possible Helmholtz reso-

~ nance response), T(r) is the temperature distribution in the sample, V 
s 

is the sample volume, and wis the frequency. ~ G(r) is a geometrical 

weighting factor describing the relative contributions of the sample 

temperature distribution in the thermoacoustic conversion. In Table I, 

the expressions for T (w) and G(r) are given for the four major groups e 

of cw PTS configurations (see Fig. 1), and the various material parame-

ters are defined. 

In the case of resonant fluid-transducer (FT) detection, we con-

sider cylindrically symmetric, zero order longitudinal and low order 

radial modes, for which the laterally diffused beam diameter is much 

~ 

smaller than the mode diameter. Hence, G(r)~l. (This assum~tion may 
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not be valid for high order modes excited by large diameter beams in 

highly scattering fluids). Thus, FT detection (resonant and nonresonant) 

is a special case of sample-fluid-transducer (SFT) detection with a 

fluid sample completely filling the cell • 

Photothermal deflection spectroscopy (PDS) is also a special case 

of SFT detection. The equation in Table I for PDS has a somewhat res-

tricted validity. When the scattering length is much less than the beam 

diameter, this equation is exact. Using the photon diffusion equation 

or intuitive argtunents, we find that, when the scattering length is much 

larger than the beam diameter, the scattering contribution to the PDS 

signal is reduced by the scattering length divided by the beam diameter 

when compared to the scattering contribution to SFT. 

Cw solid-transducer (ST) detection is not widely applicable to 

highly scattering media due to scattered light incident directly on the 

transducer. However, for completeness, we derive the fundamental equa-

tions pertaining to this technique in the Appendix. 

Since the SFT case is general, we write 

1 Ss t 
5(00) = T (00) [k "T(O) + - X J T(Z) dz] (1) 

e f Sf 0 

- l('-" 2 .. where T(Z)=), T(r)d p 
S 

is the average sample temperature in the 

transverse plane at z. The first term in the brackets in Eq. (1) gives 

the Signal contribution due to the heat diffusion from the sample into 

the fluid. The form r(o) implies that only the energy deposited near 

(within a thermal length) the surface contributes to the signal. How-
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ever, the contribution of the second term, which is due to the thermal 

expansion of the sample, depends on all the energy deposited in the sam-

pIe. We assume that the contribution due to the buckling of a solid 

sample is negligible. For FT detection, only the second term contri-

butes with X-l and for PDS only the first term contributes. 

In Figure 2, the sample geometry is sketched. We have assumed that 

the incident beam size « transverse sample dimensions and that the 

media on either side of the sample are thermally thick. We have also 

assumed that the cell boundaries are perfectly rigid and that the pres-

sure within the sample equalizes with the pressure in the fluid. For 

porous media this condition may be violated since the sample may be 

larger than the pressure diffusion length. 6 

Integrating the heat equation over the transverse plane in the sam-

pIe, and using the condition that no heat flux reaches the sample sides, 

the average temperature at plane z in the sample (oscillating at fre-

quency w) satisfies 

d2 2 (2 - k ) T{z) = 
dz 

--IC 

with the boundary conditions 

efT 
IC -dz 

, 

P{z) 

z=t 

(2) 

(2a) 

P(Z) = .r~ l(~) d2p is the power distribution in the sample (oscillat-

i f ) k2 . 2 ~2 C/ d ng at requency w, = ~WPCp/1C , k = illlnC /~, = :i;wp IC
b

, an 
f >'f f f . -- b b 

IC, ICe IC b " thermal conductivity and PCp' PfCe PbCb ... heat capacity/unit 

volume at constant pressure of the sample, fluid and backing, respec-

tively. 

-, 
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The general solution of Eq. (2) subject to Eq. (2a) is 

T(Z) = ;!k {Co[(1+9)ekZ+(1-9)e-kZj + e-kz f: p(~)ek~d~ - okz f: p(~)e-k~d~} 
(3) 

where 

[{I_b)e-k1 f~ P{z)ekzdz + {1+b)ek1 f~ p{z)e-kZdz] 

Co = [{I+b){I+g)ek1 _ (1_b){I_g)e-k1] 

and 

Integrating Eq. (2) over O<z~l and using Eq. (2a), we find 

in which, from Eqs. (3) and (3a) 

"T{O) = 

"T{ 1) = 

aa [{1_b)e-k1 f~ p{z)ekz dz + {1+b)ek1 f~ P{z)e-kZdz] 

Kk [{I+b){I+g)ek1 - (1_b){I_g)e-k1 ] 

aa [(1+g) f~ P{z)ekzdz + (I-g) f~ P{z)e-kZdz] 

Kk [{1+b){1+g)ek1 - (1_b){I_g)e-k1 ] 

The terms in Eq. (4) have a simple physical interpretation. The 

(3a) 

(4) 

(5) 

(6) 

first term is the total energy/sec deposited in the sample. The second 

and third terms are the heat flux/sec out of the back and front surfaces 

of the sample, respectively. Hence, the terms within the brackets give 

the net energy increase/sec of the sample. The multiplication factor 

converts the energy increase/sec into a temperature rise/cycle. 

) 
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Eqs. °(4), (5), and (6) substituted into Eq. (1) yield the phototh-

ermal signal in terms of weighted averages of the optical power distri­
R. 

bution itl the sample of the form fa p(z)exp(±kz) dz. In the next sec-

tion, these integrals are determined for a sample which has both absorp-

tion and scattering. 

B. Solution ~IaR.p(Z)eXP(kz) dz 

Assuming that a collimated beam of power, P , incident on the sam­o 

pIe at z-O, the optical power distribution in the sample, P(z), is the 

sum of diffuse and collimated components 

1 
P(z) = J P d(z,lJ)dlJ + Po exp(-az) 

-1 

where Pd(z,lJ) is the diffuse power (diffuse intensity distribution 

integrated over the transverse plane) at z, propagating at an angle e 

(lJ=cos e ) relative to the z-direction (Fig. 3). The collimated beam 

decays by the total attenuation coefficient a = a + a • a s 

(7) 

Assuming macroscopically homogeneous and "isotropic media, assuming 

incoherent and elastic scattering, and neglecting depolarization 

effects, the diffuse power distribution ~atisfiesll-13 

where s(P,l.!) = s( a-e) 

S(lJ,lJ')Pd(Z,lJ')dlJ ' + asPn exp(-az)s(lJ,l) 

(8) 

is the indicatrix of anisotropic scattering 

describing the angular distribution of scattered photons (relative 

amount scattered from the cone a to e). s(lJ,~) is symmetric 
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j l .. 
and normalized ( s (~,~) d ~ = 

_1 

It is a function of the diameter, d, relative to wavelength, A, and of 

the shape of the refractive index inhomogeneities; it is specified as a 

mean over a distribution of sizes and shapes. For isotropic scattering 

S (1l,lJ"')=l/2. For AId ~ 1 (Mie scattering) s(ll,ll"') is elongated in 

the forward direction (1l=1l1. For AId > > 1 (Rayleigh scattering) 

S{ll,ll"') = rcos~e-e"')+f]3/8 • 

Eq. (8) is the radiati~e transfer equation describing the energy 

balance for the net change of Pd(z,ll) per unit length in the propagation 

direction. It states that the diffuse light Pd(z,ll) at z propagating in 

the II direction is decreased by absorption and scattering (first term), 

increased by the diffuse light scattered in the II direction from the 

diffuse photons propagating in all other directions (second term) and 

increased by photons scattered diffusely into the II direction from the 

collimated beam propagating in the 1l=1 direction (third term). For sim-

plicity, we have neglected the specular reflections of the collimated 

beam at the boundaries. These reflections, which are generally small, 

can be taken into account by a simple modification of the last term in 

Eq. (8). The boundary conditions for diffuse light are to be taken into 

account by defining the relevant reflection coefficients at the boun-

daries. 

It is not possible to ~btain exact analytical solutions of Eq. (8) 

for arbitrary S (ll,ll"') and sample length. A simplification follows, how­

ever, since only integrals of the form ~tp(z)exp(+kz)dz are needed for 

the determination of S from Eqs. (1) and (4-6). We multiply Eq. (8) by 

exp(kz) and integrate over o<z~~ obtaining 
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a 
+ (a~k) Po (l-exp(-a+k)t) s(~,l) 

R. 
- J Pd(z,~)exp(kz)dz • 

o 

a 
~-(x) = -J Pd(x,~)~d~ 

-1 

(9) 

and adding and subtracting the integrals of the above equation over 

o ~ ~ ~ 1 and -1 ~ ~ ~ 0, we obtain 

1 A a A A+ A a 
= k[J ~P(k,~)d~ + J ~P(k,~)d~] - a (Pd+Pd-) + ~ PO[l-exp(~a+k)R.] a -1 a \ a-k, 



" . 

~.11 ..... 

as ] 
+ (a-k) Tl Po [1 - exp(-a+k)! 

o 
where Tl = 1 - 2 f s(~,l)d~ 

-1 
( 10) 

Then we apply the Schuster-Schwarzchild (Kubelka-Munk) approxima­

tion commonly used in radiative transfer theory12 by setting 

(11 ) 
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Note that A and n are parameters that take in account the aniso-

tropy of scattering. A describes the ratio of the backscattered to the 

forward scattered diffuse photons and n describes the difference between 

the relative number of photons diffusely scattered from the collimated 

beam into the forward and backward directions. In general, O!. n.~ 1, 

o ~ A ~ 1 and A= 1, n=o for isotropic scattering. Eq. (11) becomes exact 

if the diffuse light is uniformly distributed in each of the forward and 

backward hemispheres. Using Eq. (11), we obtain 

as ] 
+ (a-k) Po [l-exp(-a+k)t 
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,,+ ,,-
which can be solved simultaneously for P

d 
+ P

d 
,giving the result 

R. "+" Po 
JOP(z)eXP(kZ)dZ = Pd + Pd + (a-k) [l-exp(-a+k)R.] 

= 

+ (":~) [k
2 
-4,,( "a +asA)-2n"sk ](l-exp( -a+k) t l} 

(12) 

+ of 
In Eq. (12) ,the fluxes at the boundaries 1>-(0) and ~-(J!.) can 

be written in terms of the total reflected and transmitted fluxes from 

the sample using the boundary conditions 

(13) 

and definitions 

(14) 
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In Eqs. (13) and (14), ro and r 1 are the effective reflection coeffi­

cients for internally incident diffuse light at the sample boundaries, 

r is the coefficient for diffuse reflection of the collimated flux at 
c1 

z=1, and Rand T are the reflectance and transmittance of the sample, 

respectively. Due to total internal reflection for incidence angles 

greater than the critical angle, ro and r
1 

have values substantially 

higher than for normal incidence. (For isotropically diffuse light r n o,)\' 

~ 0.6 for a refractive index ratio of 1.5.) In some experiments, the 

backing medium may be a high diffuse reflector14 for which r 1 and rc1 

assume values close to unity. 

Substituting Eqs. (13) and (14) into Eq. (12), we obtain 

t 
J P(z)exp(kz)dz = 
a [k2_4a (a +a A)] a a 5 

2R[2(a +a A)-k(----l )] + 2Te [2(a +asA) + k(l_r )] 
{ 

l+rO kR. l+rR. 
a s -rO a R. 

[k2-4a(aa+asA)-2nask] 
+ ( a-k) 

(15) 

• 
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For isotropic scattering (./\.= 1 n =0) and r =0, Eq. (15) reduces to , ct . 

t Po 
J P(z}exp(kz}dz = ---:::2:----
o (k -4aaa) 

- f:::b [2a-k(1+eXP(-a+k)11} 

C. Special Cases 

Eq. (15) substituted into Eqs. (1) and (4-6) yields the photother-

mal signal in terms of the modulation frequency and the optical proper-

ties of the sample. Of particular interest are the limiting cases as 

~ 0, W+Q) , and R,-+ Q) which are treated in this section. 

This is the case when the energy is deposited in a region much 

shorter than the thermal length (see Fig. 4). We can set f%P(z)exp(kz)dZ 

which, by direct integration of Eq. (8) and 

using Eq. (4), is given by . . 
t 

a f P(z}dz = [I-(R+T)] Po 
a 0 

Using the above in Eqs. (1) and -(4-6) implies that in this limit 

(16) 

(I5a) 

S --. T ( ) Po F(w) [l-(R+T) ] e w K'ki< 
(17) 

f 
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as kf 2bas kf [(1-b}exp{-kt}+{l+b}exp{kt)] [1 + r Xi<] - ---s- x k 
F{w) =-------n~~~~~~--r.r~f~~~~Tf __ ___ [(l+b)(l+g)exp(kt) - (l-b)(l-g)exp(kt)] 

Note that in this limit, Eq. (17) is independent of the Schuster-

Schwarzchild approximation (Eq. (11» introduced for the general solu-

tion Eq. (15). Eq. (17) is always valid for FT detection (since thermal 

diffusion can be neglected and the signal is given in general by 

~1; P(z)dz ). Eq. (17) formally proves the intuitive result that S is 

proportional to the absorptance of the sample. The expression 

15 S ex [1- (R+T)] is also valid for pulsed FT detection of optically thin 

liquids in which the first peak of the transient PZT response yields the 

photoacoustic signal. 

From Eq. (17) one can see by the following simple example that S is 

quite insensitive to scattering for optically thin media. For an iso-

tropically scattering, optically thin medium (all.« 1 ) (Fig. 5), R::! 

Cls t(l-ro)/2 and T:l-at+Clsll.(1+ro)/2 (See Eqs. (22a,b». 

Hence ~ S ex [ l-(R+T)] '" all. ,whereas Rand T measured alone are dominated 
a 

by scatteri~g. 

On the other hand, for an optically thick medium for which T~O, S 

ex (l-R) , and hence, the photothermal signal is, in principle, 

equivalent to a reflectance measurement in t~limit. This result is in 

good agreement with the experimental findings of Ref. 16. These conclu-

sions will be further elucidated by the results of Section III. 
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2.1th«1 ,1 
-- -op_ 

From Eq. (15), it follows in this limit of very short thermal 

length that 

(18) 

The first term is the signal contribution from the heat diffused into 

the fluid (within a thermal length) at the sample-fluid boundary. The 

heat is proportional to aa times the total power in that region which 

has increased by the factor. [1+ 2R(l+ro)/(l-ro)] due to scattering. 

This factor can be derived from a simple argument. The total power at 

1\- 1\+ 1\_ 1\+ 
, the boundary 4s given by P (0) + P (0) + P where P (0) and P (0) are 

o 

the backward and forward propagating diffuse photons/sec, respectively. 
1\+ 1\_ 1\_ 1\+ . 1\_ 

But P (0) = rOP (0), and P (0) = 2RP /(l-r). Hence, P (0) + P (0) + P 
000 

~ [1+2(1+r )/(l-r )R]P. The second term in Eq. (18) (thermal expansion 
o 0 0 

8 of the sample) can be significant at this high frequency limit or for 

porous media. 

1. Semi-infinite sample (1+ GO ) 

In this limit, it is observed from Eqs. (5) and (6) that 
aa 

'T(O) ;:: Kk(l+g) 
the above and Eq. 

00 

J o 
P(z)exp(-kz)dz and 'T(1) ~ 0 

1+00 
• Using 

(16) in-Eqs. (1) and (4), we derive 

l+r 
a [2R(2(a +a A)+k(~»(a+k)+k2-4a(a +a A)+2nask] a a S l-rO a S 

S(w) 

(19) 
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Note that setting k»2~ in Eqe (19) leads to the limit in Sec. II(C)2 

(Eq. (18) with T-O), and k«~ yields the limit in Sec. II(C)! (Eq. (17) 

with T-O). 

D. Reflectance and Transmittance 

The solution for the photothermal signal in terms of the m'easurable 

optical properties of the sample (R and T) can be employed in either of 

two ways: (1) photoacoustic measurements can be combined with optical 

measurements to provide information on sample properties, such the 

internal reflectance (r ), which is otherwise experimentally inaccessi­
o 

ble; or (2) the radiative transfer equation (Eq. (8» can be solved for 

Rand T in terms of the intrinsic optical properties of the sample 

(~a • ~s ' scat.tering indicatrix and boundary reflectances). Substituting 

these expressions for Rand T into the general solution for the phototh-

ermal signal, one obtains the dependence of the PTS on the scattering 

and absorption of the sample. 

The well-developed numerical techniques of radiative transfer 

theory2,1l,13 can be utilized for an accurate determination of Rand T 

to be employed in Eqs. (15) and (17-19). However, the widely used 

three-flux (four-flux if the specular reflectiOn at the z=t boundary is 

non-negligible) calculations based on Eq. (11) have been observed and 

accepted to be sufficiently accurate. 17 USing this approach, we deter-

mine 

.-
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[2r e(r2_a2)_a «a -a )(1-n)+2a A eN s as· s 

-r t ((3aa +as )(1 +")+2asA)) l} 

+ e-(a-r)t(l_roR~) [as(1-rl)«3aa+as)(1+n)+2asA(l-R~) 

- Rm(aa-as)(I-"))+2Po(r2-a2)(I-rct+Rm(rct-rt))1} 

r = 2/a (a +a A) 
a a s 

, R = (2a +a A-r)/a A 
~ . ass 

(20) 

(21) 
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III. Results and Discussion 

In Eqs. (15), (20), and (21), which determine the photothermal sig-

nal, there are five optical constants, r o ' r
t

, r
ct

' A, and n, in addi­

tion to the fundamental constants a and a • The values of these five 
a s 

constants can be judiciously chosen from theoretical considerations. 17 

The boundary reflectances ro and r
t 

can be set equal to their theoreti­

cal values for perfectly diffuse light using the refractive index of the 

material. 17 In general, r -0, but the diffuse reflectance characteris-
ct 

tics of the backing medium must be taken into account. 

the backing medium is a highly diffuse reflector,14 r ::: 
t 

For example, if 

r
ct

::: 1 (also 

T=O). The parameters A and n take into account the anisotropy of 

scattering and can be deduced from the scattering indicatrix. For a 

given Aid, one can determine s(tIJ) = s( e - e') from Hie formulae lS (spher-

ical particles) and evaluate its Legendre expansion coefficients 
1 

at = (2t+l)ll s(tIJ)Pt(CostIJ)d(CoSIjJ). Then from Eqs. (10) and (11), one 

can set n:::(a1-a3/4+aS/S)/2 and A:::1-a1/4-a3/64 with good accuracy. Thus, 

the only unknown parameters remaining are the important optical con-

stants a and a • 
a s 

In Fig. 6, the dependence of PTS on the optical thicknesses of the 

sample a R. and a R. is given for the low frequency and high frequency 
a s 

limits (Eq. (17) and (IS». Eqs. (20) and (21) are used with isotropic 

scattering ( A-I, n =0). It is seen that the photothermal signal is not 

significantly affected for a £ « 1 
s 

Eqs. (20) and (21) that for at «1 

s ~ 
w+O 

In fact, it can be shown from 

a [l+(l+rO)Aa 1] a s 

(22a) 

(22b) 
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Therefore, Fig. 6 and Eqs. (22a,b) demonstrate that, for the wide range 

o( techniques considered, PTS is independent of scattering for asR. ~ 

0.1. This result is not evident from the analysis of Helander n &. 

who only considered semi-infinite, and therefore optically thick, sam-

pIes. They found that PTS was very sensitive to scattering when 

as~ aa. For larger asi, it is seen from Fig. 6 that S is signifi­

cantly affected, initially increasing with asi, and eventually decreas­

ing for very large asi. 

4 

Physically, for as! « 1, the effective light path length within 

the sample is equal to its thickness, and the PTS is not affected. When 

asi'" 1 the mean path length of light increases and so does the absorp­

tion. At still higher scattering, the signal saturates as a function of 

a~since all the light is scattered without further increase in the 

effective path lengths. For very high scattering samples (T= 0), the 

reflectance becomes larger as asi is increased leading to a decrease in 

the light intensity within the sample. Hence, the signal decreases. 

For the thermally thick case, the signal rises as asi increases 

above 0.1 since scattering increases the flux at the surfaces (increases 

R). For a z»1, R = 1 (the surface flux can no longer increase), and s 

the Signal saturates at the level a i(1+2(l+r )/ (l-r ». 
a o· 0 

Note that,in the region a i "'l,S monotonically increases as a func­
s 

tion of asi -for a fixed aai (up to a factor of IV 5 for aai < 0.1). The 

scattering coefficient a is a decreasing function of A /d forA /d~ 1. s 

(The dependance of a on 'A./d is given by the Rayleigh and Mie scattering s 

formulae. 18) Hence, for a fixed mean particle diameter and absorption 

coefficient, S may increase significantly as A is decreased to approach 
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>.. -d, if 0.1 ~ a 1~ 10. For submicron particle sizes, this implies that 
s 

there may be a monotonic increase in S as >.. is decreased towards the UV 

if (l 1 '" 1. s 

In Figs. (7) and (8), the ratio RO - Sea ~O)/S«l =0) is plotted as s . s 

a function of a 1 for varying a 1, assuming isotropic scattering and 
a s 

neglecting the mechanical expansion,in the low and high frequency lim-

its. The results of Fig. 7 can be explained as follows: (1) for low 

scattering (a 1>0.1) and low absorption, the mean path through the sam­s 

ple is slightly increased, giving light a greater chance of being 

absorbed and resulting in RO>I; (2) when the absorption increases suffi­

ciently, the light is absorbed regardless of whether it scatters, so 

RO -+ 1; (3) for very high scattering and low absorption, the light is 

more likely to be scattered out of the sample than to be absorbed, giv-

ing, RO<I; (4) as the absorption becomes larger than the scattering, the 

light absorption probability increases, giving RO -+ 1. For Fig. 8, 

scattering increases the surface intensity up to a point, but for very 

high absorption the surface intensity decreases. Another important 

observation evident from Figs. 7 and 8 is that the general effect of 

scattering on a spectrum is to lower the peaks and raise the valleys. 

In Fig. 9 and 10, curves of ex 1 (measured) versus (l 1 (actual) are 
a a 

given for the low frequency and high frequency limits (isotropic 

scattering). The physical interpretation is the same as in Figs. 7 and 

8. These curves are useful for correcting spectra for the effects of 

scattering. 

In Figs. (11-13), we c~pare our results with the experimental and 

theoretical results of Helander ~ ale 4 RO is computed psing the 

"-
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thermal properties of water and air from Eq. (19) and Eq. (20) 

( 1-+00 , T=O). We use the theoretical value of r - 0.4 (valid for uni­
o 

formly diffused light incident on an interface with index ratio of 

n-1.33) which is more realistic17 than the smaller value (r -0) used in 
o 

Ref.4. Our curves for r -0 and isotropic scattering are very similar to 
o 

those in Ref. 4 but are in better agreement with their data. Since the 

mean particle diameters used in Ref. 4 are comparable to the wavelength, 

the scattering indicatrix is likely to be peaked in the forward direc-

tion. Since we do not know the exact value of A /d, we estimate A III 0.5, 

n .. 0.5. Our results are in reasonably good agreement with their exper-

imental measurements. In Fig. 11, the data 

.may involve the changing of A and n as a is varied. This may explain s 

the small discrepancy. A curve with A III 0.2, n" 0.5 agrees well with 

the data. In Figs. 12 and 13, the scattering properties are not being 

changed, and we obtain better agreement. Noting that the realistic value 

of r =0.4 is used, the agreement is remarkably good. One reason is that o 

the mechanical expansion term is also included in our analysis and is 

not entirely negligible in their experiment. 

In these computed curves, we made no attempt for a numerical fit-

ting of parameters. FollOwing the discussion at the beginning of this 

section, we chose reasonable values based on theoretical considerations. 

". If more accurate values of the parameters were available, better agree-

ment could be obtained. 

The above theoretical results suggest the following ways to optim-

ize PTS of scattering media. First, the scattering properties of the 

solid should be kept constant, and hence, the particle size must not 
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change drastically from sample to sample. Second, because scattering 

flattens out spectral features, it should be minimized by keeping the 

particle size small or by immersion in a liquid. Third, one can attempt 

to estimate the scattering length and use Figs. 9 and 10 to correct the 

signal. The curves may not be appropriate for every experimental confi-

guration since the curves were generater neglecting the mechanical term 

and assume isotropic scattering. Forth, if aa~ >.01 and the sample is 

optically thick, diffuse reflectance measurements give equivalent 

results and may be more convenient than PTS; for weakly absorbing sam-

pIes, PTS gives better results. 

In conclusion, we have shown that while photothermal spectroscopy 

is independent of scattering for optically thin media, it is signifi-

cantly affected by scattering in general and is equivalent to diffuse 

reflectance spectroscopy in some limits. However, the general phototh-

ermal signal contains information which is not available by optical 

means and which can be measured by variation of th~ chopping frequency. 

By parameter fitting our theoretical curves to the frequency dependent 

photothermal data, a and a can be numerically estimated. Optical a s 

measurements of Rand T can be used to supplement this procedure. Util-

ized in this manner, photothermal spectroscopy can be an important tool 

for the determination of optical constants for highly scattering media. 
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Appendix: Solid-Transducer (ST) Detection 

From the expression G(r) - 1 ± 3 (1 - 2z/i) for the ST (PZT)10 scheme, 

it follows that 

! ! 
Spzr{w) = Te{w) [f "T{z)dz + 3 f (1 - iz )"T{z)dz] o - 0 

(AI) 

The first teDD in brackets represents the thermal expansion of the sam-

pIe and is given by Eq. (4) in the main text. To evaluate the second 

term, which represents the sample buckling due to the average tempera-

ture gradient along z, we multiply Eq. (2) by z and integrate, obtaining 

2! a ! Kk 
k f z"T{z)dz = -! f zP{z)dz - (1+! ~)"T{!) + "T{O) o K 0 K 

Using the above and Eq. (4) in (AI), we obtain 

SpZT{w) = ~ (1±3)a f P{z)dz + 7 aa f zP{z)dz 
T_f I.,' { ! . 6! 

Kk a 0 0 

where, 

! 
f zP(z)dz 
o 

Multiplying Eq. (8) by z and integrating over -1 SllSI and OS;zS;i 

gives 

(A2) 

1 ! 
f ~d~ f Pd{z,~)dz 
-1 0 

R. 1 
= -a f zP(z)dz + - PO[l-(l+aR.)exp(-aR.) ] 

a O. a 
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Applying the Schuster-Schwarzchildapproximation (Eq.(ll» and 

using Eq. (14), the above equation can be written as 

1 1 + Po 
aa f zP(z)dz = 2 (Pd - Pd) + -a [(l-exp(-al»-alT] 

o 
(A3) 

where 

and 

From the equations following Eq. (11), we obtain 

a 
(aa+aslI.)(P~-Pd) = ~+(O)+~-(O) - (~+(1}+~-(.~.»)+ Tl as PO(l-exp(-aR.» 

which, using Eq. (13) and Eq. (14), can be rewritten as (rct m 0) 

Substituting into Eq. (A3) gives 

R. Po ] 
aa J zP(z)dz = - [(l-exp(-al»-aR.T 

o a (A4) 

Po [as (l+rO)R _ (l+rR.) (T-exp(-aR.) 0 
+ 2{a +a 11.) Tl-a (l-exp(-aR.) + l-ro l-r t IJ 

a s 

Using Eqs. (A4), (5), (6), (15) and (16), Eq. (A2) yields the PZT 

signal in terms of the chopping frequency and the thermal and opti-

cal properties of the sample. 
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Figure Captions 

Fig.l The cw photothermal techniques considered in this paper: 

(a) Sample-Fluid-Transducer (SFT) Technique (non-resonant). 

If the fl·uid is a gas; this describes the Sample-Gas-

Microphone (SGM) technique. If the fluid is a liquid, the 

transducer (hydrophone) is usually a PZT. (b) Fluid-

Transducer (FT) technique (resonant or non-resonant). For 

a gas, it describes the Gas-Microphone spectrophone. For a 

liquid, the transducer is generally a PZT. (c) Solid-

Transducer (ST) Technique (non-resonant). The sample is 

epoxied to a flat PZT transducer which has a hole at the 

center to minimize the scattered light directly hitting the 

transducer. The beam can be incident from either side. lO 

(d) Transverse-Photothermal Deflection (PDS) technique. 

The pump beam of radius, w , is normally incident on the 
o 

sample. A probe beam of much smaller radius propagates 

parallel to the sample a distance zo away from the surface 

and through the center of the pump beam. The deflection of 

the probe beam is given by the average temperature gradient 

along its propagation path. S 

Fig.2 The typical sample geometry. ~ is the length of the sample. 

The fluid and backing regions are assumed to be thermally 

thick. 

Fig.3 Diffuse photons/sec at position z, propagating in directions 

e (cos e =~ ) and e' (cos e' = ~') relative to the z-axis. 
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Fig.4 Description of the special cases (1) and (2). (a) and (b) 

describe the case in Sec. II(C)1 (c) is the case in Sec. 

II(C)2. 

Fig.S An optically and thermally thin (a.t«l) medium with the 

internal reflectances r ~ 0, rt-O and isotropic scattering. o 

The photothermal signal is given by Sa: [ 1-(R+T) ] ~ 0.1. 

Fig.6 Relative photothermal signal versus scattering, a.st, for 

Fig.7 

various absorptions, a.a t • ro - 0.6, rt -rctO and A= 1, n = 

o (isotropic scattering). Theor~ (thermally thin), 

Theory (thermally thick). Note the independence of 

scattering for a.st ~ .2 

R (ratio of signal with scattering to signal without) vs. 
o 

absorption (ca 1) for various values of CYs 1. The curves apply 

for the thermally thin limit (Eq. 17), isotropic scattering 

( 11. = 1, n = 0) and r 0 = 0.6, r tar ct= O. 

Fig.8 Ro versus absorption, a.a t, for various values of a.s t. The 

thermally thick limit (Eq. (18» with the mechanical expan-

sion term neglected. Isotropic scattering (A - 1, n = 0) 

Fig.9 <Ya t (measured) (neglecting scattering) versus a.a t (actual) 

for various values of '\ t for the thermally thin limit (Eq. 

17). IsotropiC scattering (A =1, n = 0) and ro = 0.6, ~ = 

r
ct 

=0. 

.~ 
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Fig.lO aaR, (measured) (neglecting scattering) versus aa R,(actual) 

for various values of as R, for the thermally thick limit (Eq. 

U8 >with X - 0). Isotropic scattering (A -' 1, n ... 0) and r 
o 

.. o. 6, rR,'" r &= O. 

Fig.ll RO versus chopping frequency for different absorption coef­

ficients.- present theory,- -- theory from Ref.4, 

-1 -1 
!J. - aa'" 69 em data, Xl - aa = 138 cm data,. 

-1 -1 
cm data. Data is from Ref. 4. as" 1145 cm , r .... 4, 

o 

A = 11 = 0.5 and the thermal properties of water were used in 

the calculations. 

Fig.12 RO versus absorption coefficient. - present theory, 

- - theory (Ref. 4) • 

... • 4, f .. 150 Hz, A ... n =.5. Thermal properties of water 

were used in the calculations. 

Fig.13 RO versus scattering coefficient. 1 - theory ( aa= 34.5 

-1 A -1 A cm , = n .... 5), 2 - theory ( a == 69 em , = n= .5), 3 a 
-1 A - theory (aa ... 34.5 em , =.2, n .... 5). 4 - data (Ref.4, 

a ... 34.5 em-I), 5 - data (Ref.4, a = 69 cm- 1) 6 - theory a a 

(Ref.4) a ... 34.5 em-I, 7 - theory (Ref.4) a = 69 cm-1 
a a 

The other parameters are f= 150 Hz, r ... 0.4 and thermal 
o 

properties of water and air. 



Method 

Sample-Fluid 
-Transducer 

(SFT) 

Fluid­
Transducer 

(FT) 
(a) Non-resonant 

(b) Resonant 

Solid­
Transducer 

(ST) 

Transverse 
Photothermal 
Deflection 

( PDS) 

" 

TABLE I Definition of Parameters for Various PTS Methods 

TR(IiI) 

(Transducer 
sensitivity) 

Volts/dyne/cm2 

Tt(liI) 

af 

VK.rf 

Volts/dyne/cm2 __ f3 __ 

Volts/ 

K.rV 

12a 

QlVK.rJ O(1fClj ) 

unit strain a (1+ v) 

Volts/radian LdnTr 
n dTfif 

o 

2 k z xt.·,efo 
"'f -W­

o 

G(z,p,~) 

6(z) 
--+ 
'k 

f 

1 

as -x 
·a f 

JoC! ajP)~ 1 

1±3(1~) 
l' 

6(z) 

k f 

Description of parameters (f-fluid, s-sample) 

Kr-isothermal compressibility 

a - coefficient of thermal expansion 

k 
. ~ 

- (l+i)(liIpC /2K)' ,K - thermal conductivity p 

iii - modulation frequency 

pC - heat capacity/unit volume at constant pressure 
p 

V - cell volume 

P - density 

y - ratio of specific heats 

a - cell radius 

~ J (1Ta) I = 0 
d

a 
0 a=a

j 

Qj = cavity Q(jth mode) 

1 - sample length 

v - poisson's ratio 

w - pump beam radius o 

I 
W 
N 
I 

L dn - relative change of refractive index with temp. 
n dT 

o 



." 

Parameter 

B 

K 

pC 
P 

x 

v 

p 
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TABLE II Effective Parameters for Porous Media ( 7 ) 

Effective Parameter 

K 
e 

Q~::p) 

V~~Qj 

Remarks 

n - Volume fraction of fluid (porosity) 

Accounts for thermal and mechanical 
properties of the fluid sample system 

$ - flow resistance (the ratio of 
the pressure drop across sample 
to velocity flow within sample) 

Includes effects of fluid flow from 
sample 

Includes viscosity effects and 
particle motion within fluid 
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