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I. INTRODUCTION

Thirty years ago in the early fifties whiie at the University of
Il1linois I enjoyed a fruitful period of close collaboration with Francis Low,
and ideas uncovered in my work with Francis started me on a lifelong quest
for a theory that in the late fifties came to be described by the term
"bootstrap". The general bootstrap idea is that all aspects of nature are
determined by the requirement that they be consistent. No aspect is
arbitrary; no aspect is "fundamental'; the combination of all aspects is
self determining. Because of human limitations the bootstrap idea can
never be pursued in its full sense. Compromise‘is unavoidable; certain
assumptions must be accepted\in any human contemplation of comsistency,
but since the early fifties the starting assumptions have shifted. At that
time it was difficult to do without the Newtonian-Cartesian idea of objects
moving in a space-time continuum. Quantum mechanics, even with its emphasis
on the discrete, was formulated within a continuous space-time. I have come

to see this assumption of an underlying continuum as the root of the



celebrated paradoxes surrounding quantum mechanics. I believe that space-
time--as we experience it through our classical sense of a continuous world
made of real objects--should emerge from a discrete quantum world. In this
view continuous space~time is an approximation--like the continuous ther-
modynamic notions of tempeiature and entropy--useful only in enviromments of
appropriately gfeat complexity. I shall in this talk describe an approach
to the bootstrap idea in which local space~time is not a conceptuél starting
ingredient.

IThe starting idea is a notion of "elemgntary event", with a past and a
future but not embedded in continuous space time. One does not know at the
beginning the precise meaning of a physical event; bootstrap theory must
generate its own physical interpretation. We shall see that a physical event
is a superposition of infinitely-many patterns of correlated elementary
events.

It is possible to make contact with two familiar notions by thinking of
an elementary event aé a collision between elementary particles or as an
elementary-particle decay, both processes being "sudden"--that is to say,
discrete. Mathematical meaning for the adjective "elementary" is provided
by the concept of graph. The term "elementary event' is to be understood
as synonymous with a graph vertex and the term "elementary particle" is to
be used synonymausly with a graph line. The theory must generate a meaning
for physical particles as well as for physical events.

° The relation between correlated elementary events is assumed to be that

between the vertices of a connected graph, as in Fig. 1. The vertices can

be assigned a sequential order, but there is no metric--no meaning for

distance between adjacent elementary events. A discrete notion of distance



between nonadjacent elementary events is nevertheless achieved by counting
the minimum number of vertices along any comnecting path. For large dis-
tances such a measure becomes approximately continuous, as suggested by
Fig. 2.

A postulate of topological bootstrap theory is that certain clusters
of correlated elementary events are not to be distinguished from single
elementary events. That is, the theory considers certain graphs as equi-
valent by a contraction process to a graph with a smaller number of vertices
and lines. Strong interactionsand strongly-interacting particles (hadrons)
will be distinguished from weak‘inperactions by the contraction aspect of
bootstrap theory. The rules for contraction relate to a notion of graph
complexity, the idea being that contraction should not alter complexity.

I shall indicate to you how, by methods of combinatorial topology,
one can associate a precisediscrete measure of complexity to appropriately-
embellished event graphs. There are present at the same time consistency
requirements on the definition of complexity, and out of these requirements
flow constraints on elementary particles. Overali consistency of complexity-
carrying event graphs not only controls the spectrum of elementary particles
but determines physical masses and coupling constants. I shall sketch the
so-far recognized consistency requirements and show how, in meeting these
demands, there arise topological embellishments whose properties allow
description by such terms as 'quark", "gluon'", "color" and "flavor"--terms
occupying niches in the pheﬁomenology of particle physics. Within the
topological bootstrap such entities are not arbitrarily postulated; they
emerge together with their properties as attributes of a consistent pattern

of discrete causal connections. As immediate illustration of nonarbitrariness



but also to forestall misunderstanding, let me aﬁticipate that topological
quarks and gluons do not correspond to event-graph lines and thus do not
emerge in the role of elementary particles; they are event-graph embellish-
ments needed for consistency of the contraction principle.

The application of combinatorial topology to particle physics was
initiated by Feynman in 1947 with his famous graphs whose lines carry
energy-momentum---graphs introduced for photons and electvons but later
recognized, especially by Landau,1 as having more general significance..
Feynman graphs constitute the event graphs of topological bootstrap theory
even though not part of a rule for deducing the consequences of a local
space-time Lagrangian; there is no Lagrangian in the topological bootstrap.

Unembellished Feynman graphs are not adequate for dealing with

graph contraction, an idea which emerged in 1969 through diagrams invented

independently by Harari and by Rosner.2 Harari-Rosner diagrams when added
to Feynman graphs allow a contraction rule--often characterized as "duality'--
that is essential to the topological bootstrap. Harari-Rosner and Feynman
diagrams are simultaneously indispensable to the theory I am describing.
Also important are diagrams invented more recently by Finkelstein.

Bootstrap thinking in the late fifties and early sixties already recog-
nized particles as "interevent connections’ rather than as Newtonian-
Cartesian "objects". Until contraction entered the game, however, there

was no recognition that a complexity hierarchy is essential to consistency.

Two decades ago bootstrappers spoke of a '"nuclear democracy" in which all

hadrons enjoy equal status. Today's topological bootstrap has uncovered a

finite set of "elementary hadrons"--associated with a base level of



% topological complexity that we call "zero entropy". But even though an

5 aristocracy, zero-entropy elementary hadrons are not arbitrarily assignable;
they are determined by the demands of interevent consistency, and the con-
traction principle implies that each is a "composite'"--built from other

elementary hadrons.




II. ENTROPY AND THE TOPOLOGICAL EXPANSION

In 1973 Veneziano3 identified the notion of "topological entropy",
so~called because this attribute of a complexity~carrying event graph
cannot decrease when one graph is combined with another to form a new
graph, as in the first step of Fig. 3. The second step of Fig. 3 illustrates
how contraction represents the equivalence to a single event of certain
clusters of causally-connected elementary events. Uncontrolled cluster
contraction evidently undermines meaning for 'distance" within an event chain,
but Veneziano (following Virasoro, Sakita and others) realized that embedding

the Feynman graph in an oriented 2-dimensional surface, which cyclically

orders the lines incident on each vertex, allows a notion of complexity that
controls contraction--as illustrated in Fig, 4 where an intermediate line
remains unerasable. (Embedding graphs in manifolds of more than 2 dimensions
is not useful for complexity theory.) Veneziano furthermore found that a
suitably-defined complexity never decreases under graph addition followed
by contraction. The intermediate line in Fig. 4, for example, cannot be
removed by adding further event graphs and then contracting. When spin as
well as momentum is topologically represented it turns out, as I shall explain,
that certain graph vertices as well as lines are unerasable. No vertex in-
volving a photon, for example, can ever be removed by contraction.

The discovery of topological entropy through Feynman-graph 2-dimensional
"thickening" opened the door to the notion of "topological expansion" for
a physical-event amplitude--a complex number which according to quantum
theory gives through its absolute value squared the probability for the
event to occur. If M., designates the amplitude for a physical event where

fi

a collection of i ingoing particles leads to a collection £ of outgoing
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particles, Veneziano's topological expansion reads

5 Y
Meg = = Mgyo
Y
where each value of the index y--associated to a particular topological
object--carries an entropy g(y). It is tacitly assumed that for some Mfi

the expansion converges rapidly; i.e. that low entropy is more important
than high entropy. Low energy emerges as essential to rapid convergence.
Where no contractions are possible, as turns out to be the case when
hadrons are not involved, the idea of a topological expansion is essentially
that of Feynman4--where the index y refers to a Feynman diagram and the total
number of graph vertices (minus 1) is an entropy index. Harari-Rosner con-
tractions may change the number of vertices but they never alter the value
of a legitimate entropy index. Finding such indices is the topological
bootstrap game.

Implicit in the definition of entropy is that zero-entropy topological

components cannot be built by addition from components with nonzero entropy.
Most of the latter may be built from simpler (lower-entropy) components by a
linear additive process, but'éero—entropy components must be nonlinearly
self-building. Herein lies the first bootstrap stage: The spectrum of

elementary hadrons is postulated to be determined by zero-entropy consistency,

and strong interactions are generally defined as those topological-expansion
components generated by '"connected sum'" of zero-entropy components. I shall
explain later how, in a second stage, electroweak components enter the boot-

strap.



Veneziano's topological expansion, formalized by Rosenzweig and me,5 is
how called "classical DTU"--these initials standing for "dual topological
unitarization".6 Each value of vy corresponds to a single-vertex Feynman
graph embedded in a 2-dimensional oriented bounded "classical" surface whose
boundary divides into "particle pieces" dual to the external lines of the
graph. A zero entropy topological component corresponds to a disk, such
as illustrated in Fig. 5a. (The disk topology is usually called "planar".)
"addition" of two different components corresponds to an orientation-
preserving conneéted sum along the boundary, those particle pieces of
boundary being identified and erased that correspond to intermediate
particles--as shown in Fig. 6 and Fig. 7.

In classical DTU two adjacent Feynman vertices contract to a single
vertex and two "parallel' Feynman lines contract to a single line. There

are two (nondecreasing) entropy indices: g, = genus or twice the handle

number and gy = number of (noncontractible) closed loops
=b-1+ 8y

where b is the number of boundary components. As illustrated in Figs. 6 and 7
these two indices record the complexity of intermediate thickened Feynman-graph
lines involved in building up a given topology starting from zero entropy
("planar" in classical DTU)--zero entropy being uniquely characterized by
8) = 8y = 0. The full (infinite) topological expansion contains components
belonging to all possible values of g1 and Bye

The boundary of the classical sﬁrface inherits the surface orientation
and constitutes a closed graph—-if cut open at the Feynman-graph ends we

have the globally oriented Harari-Rosner graph. (See Fig. 5b) The Harari-
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Rosner graph, that is to say, is the boundary of the oriented thickened
Feynman graph.

The general rules for determining a topological amplitude Mgi are
based on S-matrix principles such as unitarity together with the graphical
Landau prescription for the singularities of S-matrix connected parts.7
Corrections to zero-entropy turn out in many cases to be expressible

through Feynman-~like rules.
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III. SPIN AND ELECTRIC CHARGE
In classical DTU the Feynman graph is recognized as carrying momentum-
energy and the topology vy of the classical embedding surface correlates with
the Riemann surface that carries the momentum singularities of the amplitude -

5
MY .” But no recognition is given in classical DTU to spin. Now momentum

fi
and spin are both "direct" classical observables; both emerge from the
Poincaré group and both are needed to define an S matrix in a Hilbert space
of asymptotic quantum states. To make contact with experiment topological
pa;tic1e theory requires an S matrix. Ultimately one hopes to explain as

a manifestation of highvcomplexity the notion of "measurement" which gives
meaning to asymptotically-observable momentum and spin, but presently'the
possibility of momentum and spih measurement is a starting assumption.
Topological bootstrap theory, in exploring requirements of consistency within
the S-matrix context,.takes for granted both momentum and spin as particle
characteristics. So where does spin reside on the classical surface?

As revealed by the work primarily of Mandelstam8 and Stapp9 but with
clarification by Finkelstein,10 spin flows along the classical-surface
boundary; that is, the Harari-Rosner graph is the carrier of spin in the
sense that the spin-dependence rules for M;i are expressible through Harari-
Rosner lines. Although I shall not here state the Mandelstam-Stapp rules,
they employ the notion of chirality and are unambiguously determined by the
consistency demands of zero entropy. The rules depend on the classical
surface containing locally-oriented patches which at zero entropy are de;
fined by the Feynman (momentum) graph together with the boundary (Harari-

Rosner) graph. Additional patch-boundary lines may be generated by mismatch

of local orientations in connected sums and constitute an ingredient of
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complexity which blocks contraction of vertices. See Fig. 8. I shall

explain later that within strong-interaction topologies these added patch
lines are appropriately called "topological vector gluons'; the number of

such "gluons" is an entropy index g3 which augments the 8y and g9 of

Veneziano. I return later to further discussion of spin in connection with
the quantum-mechanical notion of "fermion" but pass now to the final

classical (asymptotic) observable--electric charge--whose measurement inevitably
intertwines with that of momentum and spin.

One expects classical partiqle topology to contain some feature related
to electric charge. An embellishment consistent with classical electromag-
netism as well as with S-matrix requirements is a set of nonintersecting
directed lines on the classical surface, eéch'of which begins and ends on
a different boundary subpiece without crossing a momentum line. Figure 9
provides an example by embellishing Fig. 5a with 4 charge arcs. With n
charge lines the boundary then divides into 2n subpieces. Belonging
to each particle is a boundary portion consisting of several subpieces
while on each subpiece lies the end of exactly one charge line. Electric
charge is quantized and conserved if the charge carried by each subpiece
is zero when charge and boundary directions disagree and *1 when there is
agreement of direction. Charge lines are indispensable for electromagnetism,
but they turn out to be needed already for strong interactions. Their
principal architect has been Jerry Finkelstein, although the papers describing
this embellishment have included other authors because of correlated additional

topological features.11
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IV. THE QUANTUM SURFACE

The major further feature is the gquantum surface, originally proposed

by me and developed in detail through a lengthy, still-continuing, collabor-
ation with Po‘énaru.12 The primary question to be answered through the
quantum surface is how many boundary subpieces attach to each elementary
particle. It was shown by Weissmannl3 from the zero-entropy contraction
aspects of classical DTU fhat the conditions for zero-entropy joining of one
boundary pérticle-piece end to the end of a different particle piece must

be independent of other ends. Because a particle piece of boundary has at
least 2 ends, there must be for each particle at zero entropy at least 2
subpiecesl4--each with its own attached charge line. The number of subpieces
per particle may, however, be larger than 2. The ambiguity is resolved
through a closed oriented "quanéum" surface, transverse to the classical
surface and "thickening" the boundary thereof. Thickening means that the
boundary graph is embedded in the quantum surface.

The quantum surface divides into oriented particle areas, one for each
ingoing or outgoing elementary particle in the event; each particle area
houses the corresponding particle piece of the classical-surface boundary."*
Division of a particle'béundary piece into subpieces corresponds to a
division on the quantum surface of the particle area into subareas inside
each of which there ends one charge line, and consistency conditions on
particle subdivisions flow from the requirement that at zero entropy the
total quantum surface closes into a sphere. Certain coﬂserved "internal"
quéntum numbers are thereby implied, together with zeré-entrbpy symmetries

that become broken at higher levels of the topological expansion.
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Connected sums along boundaries of classical surfaces are accompanied
by quantum-surface connected sums in which corresponding particle areas are
identifiedband erased in such fashion as to preserve surface orientation.
The orientation of the classical surface boundary (the Harari-Rosner graph)
is inherited from the quantum-surface orientation--the latter providing the
distinction between ingoing and outgoing particles or between particles and
antiparticles.

The search for a consistent pattern of zero-entropy particle areas on
the quantum surface has been lengthy and laden with surprises. Numerous
patterns have been proposed and subsequently discarded. The pattern now to
be described, found by Poénaru and me, has been stable for more than one
year and has survived many consistency'tests. Although no uniqueness proof
has been achieved, we are aware of no satisfactory alternative.

Our pattern divides the quantum surface into triangles of alternating
orientation, each triangle being "mated'" to exactly one other triangle of
opposite orientation--mating being defined as a sharing of all 3 vertices.
The mate of a triangle in one particle area at zero entropy always lies in
another particle area. Particle areas are triangulated disks; each subpiece
of the classical-surface boundary thickens into exactly one quantum triangle.

‘Only three forms of particle area on the quantum surface are allowed
at zero entropy--those shown in Fig. 10 where two types-of triangle occur.

A '"peripheral" triangle contributes two edges to the particle-disk perimeter
while a "core" triangle contributes no edges, although all triangle vertices
lie along the perimeter. Figure 11 shows how the classical-surfage boundary

(or "belt", for short) cuts all triangles and at zero entropy always enters



15

and leaves particle disks at trivial vertices, which uniquely belong to
peripheral triangles. Also shown in Fig. 1l are the ends of charge lines,
one for each triangle. Finally, éach edge along a particle perimeter is

- oriented, as shown in Fig. 12; these qrientations must match when particle
disks are fitted together on the quantum surface.

- Looking at an individual fully-embellished peripheral triangle,
as in Fig. 13, we see a two-fold electric charge degree of freedom and a
4-fold edge orientation degree of freédom, all of which must be matched at
zero entropy by the mate of this peripheral triangle. These quantum numbers
we associated with "flavor" and thus predict 8 flavors. The 4 edge flavors,
usually called "generatioms", will be separately conserved on any orientable
quantum surface with trivial vertices, although nonorientable surfaces allow
generation mixing. Continuity of charge-line direction assures that electric
charge is always conserved.

Each peripheral triangle not only mates with an "anti'-peripheral triangle
but shares a trivial vertex therwith. The Mandelstam-Stapp rule for spin
dependence at zero entropy centers on-the-quantum-triangulation trivial
vertices that connect adjacent particle pieces on thg classical-surface
boundary. The rule effectively attaches spin 1/2 to each quantum triangle
sharing such a trivial vertex. Since the latter are always peripheral,
fermion number is the number of clockwise peripheral triangles minus the

; anticlockwise number.
The full collection of peripheral-triangle attributes makes "topological

quark" appropriate as a descriptive name for this type of triangle. It must

be remembered, however, that topological quarks do not carry momentum; they
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are not elementary particles, even though they carry spin, electric charge
and flavor.

The quantum surface is not built entirely from topological quarks.
Already at zero entropy there appear core triangles, which carry no spin or
flavor but which are electrically charged and each of whose edges, corres-
pondingly, can be said to carry one of 3 different "topological colors''--
as shown in Fig. 14. Equivalently one may say 3 differently-colored sheets
of the classical surface meet at a "junction line" that ends inside a core
triangle.l2 The sheet colored #1 carries the Feynman graph. Color
may be attributed to a quark according to the classical sheet on which it
lies and each topological color is separétely conserved even though
topological quarks.of a given flavor may change color in -
connected sums that increase entropy. Each exchange of color

between a pair of quarks builds a link between corresponding

sheets of the classical surface, the number of such links being an entropy
index B+ Topological color, unlike QCD color, admits only discrete trans-
formation (permutations) and color #1 is evidently not symmetric with respect
to colors #2, 3.

The number of clockwise core triangles minus the anticlockwise number
is conserved and, for strong-interaction topologies, may be identified wifh
the negative of baryon number B. At this stage we are able to associate
the disk of Fig. 10a with "elementary meson"--quark plus antiquark with B = 0.
The disk of Fig. 10b is an felementary baryon"--3 quarks and one anticore
triangle, so B = 1. The disk of Fig. 10c is an "elementary baryonium'--2
quarks, 2 antiquarks, one core triangle and one anticore triangle, so B = 0., The

quantum numbers of low-mass mesons and baryons agree with topological bootstrap
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theory. The experimental failure to observe baryonium is discussed below.

Because all requirements for smooth joining of particle quantum disks
must reside on disk perimeters (Weissmann),13 the direction of a core charge
arc is not variable. In fact zero-entropy consistency conditions require
agreement between core charge and boundary (Harari-Rosner) orientations,
so a clockwise (anticlockwise) hadron core triangle Egggvhave electric
charge Q = + 1(-1), a point first noted by McMurray. Because topological

quarks carry Q = 1, 0, the total electric charge of a hadron disk is

charged
- B
quarks

Q=N

At the same time, for any hadron, (see Fig. 10)

_ 1 _ 1 . .charged neutra
B = 3 Nquarks 3 (Nquarks + Nquarks ’
so
2 .charged _ 1  neutral

Q=3 quarks 3 “quarks

Thus if hadron core triangles are ignored it appears that quarks carry charge
= %3 - %u For pure strong-interaction topologies a bookkeeping has been
devised that makes no reference to core triangles--keeping track only of
quarks--although this device does not work for electroweak interactions.
With such bookkeeping the familiar fractional quark charges are appropriate.
I remark here that the complexity growth recorded by the two entropy
indices g, and g, (now added to Veneziano's gy and gz) can appropriately be

described. in quark-gluon language. One may'speak of "vector gluons"

emitted by topological quarks because, when a classical patch boundary line
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ends at a trivial vertex, the effect on quark spin is similar to that in
perturbative field theory at a quark-gluon vertex. On the other hand a
color switch between two topological quarks is as if a "color-carrying
gluon" were exchanged. Gluoné in either sense are absent at zero entropy;
conversely, large values of g3 and g4 correspond to large numbers of

topological gluons.
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V. TOPOLOGICAL SUPERSYMMETRY
It was pointed out by Gauron, Nicolescu and Ouvry15 that zero entropy

(where g8 =8, =83 =8, = 0) is characterized by a "topological supersymme-

2
try"--all elementary mesons, baryons and baryoniums sharing a single
(nonvanishing) mass m, even though the spin values 0,'%, 1, %3 2 occur.
The zero-entropy S-matrix conditions allow a completé factorization of spin,
flavor, color and chirality degrees of freedom, so that only momentum remains
in the nonlinear bootstrap equations representing unitarity. It is plausible
that these equations admit no more than one solution and determine, among
other things, a unique value for the zero-entrépy 3-hadron dimensionless
coupling constant go.l6 (The mass m, simply sets ﬁhe energy scale for the
topological expansion.)

By variety of approximations, Balazs, Finkelstein and Espinosal
have attempted to calculate the zero—entropy.coupling constant and have
found that

gO'S 2e

The smallness of g here derives from the large multiplicity f of closed
3

elementary-hadron loops at zero entr0py.16 It turns out that f = 32(31) =10

2
while g§/16n ~ 1/f. The number 32 is the total number of distinct zero-

entropy topological quarks:

2 spins x 2 charges x 4 generations X 2 chiralities = 32

. Each closed momentum loop is accompanied by either 1 or 2 closed quark loops.
Hence the net factor is -32 + (—32)2 = 32 (31). The minus sign is that

originally discovered by Feynman for any closed fermion loop and
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rediscovered by Stapp9 as part of the topological spin rules. One con-
sequence of the minus sign is that a consistent zero-entropy (hadron)
spectrum cannot terminate with elementary mesons; elementary baryons and
baryoniums must be included.

Gluonic (g3, ga) corrections to zero entropy break topological super-
symmetry. A mechanism breaking spin degeneracy is qualitatively understood,
calculations by Levinson being underway to see whether such observed
splittings as m -~ p = N-A can be semiquantitatively achieved through
leading topological components with nonvanishing g3~ A tentative color-
switch (ga) mechanism for breaking generation symmetry has also been
uncovered, based on topological-color asymmetry, but so far there is no
visible strong-interaction mechanism to break charge-doubling symmetry (e.g.
interchange of charmed and strange quarks). We anticipate that charge
symmetry is first broken by electroweak interactions.

An argument can be made that dimensionless hadron coupling constants
are less affected than hadron masses by corrections to zero entropy.
Finkelstein, Levinson and 118 accordingly have calculated elementary 3-
hadron physical coupling constants in the zero-entropy approximation where
each is a simple multiple of g9 and found that SU(6)W ratios emerge, as
reported earlier by Mandelstam8 on the basis of a less complete but compatible
version of zero entropy. But topological supersymmetry goes further and
correctly gives the measured ratios of baryon-meson to meson-meson couplings.
Thus all measured elementary-hadron coupling constants are explained by a
single assignment of 8p* This value predicts enormous baryonium coupling

constants and correspondingly large widths, so the experimental failure to
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find narrow baryonium states is understandable. 2
: &xiv
The most accurately measured hadronic coupling constant ( Eﬂ ) = 14.3

) implies to within a few percent that g, ~ 2¢.19

Could there be a reason
. why g is exactly equal to 2e? Here we must consider how electroweak

interactions enter topological particle theory.
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VI. ELECTROWEAK INTERACTIONS
From a bootstrap standﬁoint why should there be anything beyond hadrons
“and strong interactions? One reason for electromagnetism relates to the
high entropy limit correspondihg to the classical world of real objects
embedded in space-time. I shall argue later that soft photons constitute
the key to such a limit--which is needed for the measurements defining an
S matrix. Topological representation of photons has been achieved through
the ingredients already described11 and brings along in a natural fashion
3 other electroweak vector bosons.10 (A quartet of scalar bosons--charge
doublet plus antidoublet--is also natufal.) But why leptons?

A conjectured reason is motivated by standard Lagrangian perturbation
theory which, at least for photon-lepton interactions, has the samé content
as a topological expansion. (A source of such equivalence is the fact that
electroweak bosons have attached ingredients of topoiogical complexity that
block contraction.) Now Lagrangian electroweak perturbation theory has
uncovered consistency problems which require quarks and leptons to be
paired--one lepton matching each distinct quark but carrying opposite
electric charge. We conjecture that topological theory will encounter a
similar problem: A consistent interaction between electroweak vector bosons
and quarks would then require quarks to be paired with leptons.

The present leading candidate for a lepton quantum-surface area is a
(nonorientable) M&bius band built from one peripheral triangle and one
neutral core triangle, with two edges of the latter identified. The spin
and flavor content is the same as that of a quark, since the perimeter is

built from the two oriented peripheral-triangle edges. There is, however,
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a momentum line ending inside the lepton area so, unlike a topological quark,

a lepton area corresponds to an elementary particles. Each eléctroweak boson
corresponds to a closed quantum surface covered by 2 triangles. Vector-boson
triangles are like that of Fig. 13 but without edge orientations, while scalar-
boson (Higgs) triangles are like that of Fig. 14.

The topological similarity between strong an& eléctréweak interactions,
together with the close relation between Lagrangian perturbation methods and
corrections to zero entropy, suggests that the comnections between coupling-
coﬁstants characteristic of gauge-invariant Lagrangian theories may arise
in topological bootstrap theory as necessary to overall consistency. Among
these connections may be &g = 2e. If indeed the bootstrap demands a single
universal dimensionless coupling constant, the small but not extremely small
value of the constant is seen, as I have explained, as being related to the
number (32) of different quarks, this multiplicity in turn emerging from
zero entropy consistency.

Strong-interaction topology has been deVeloping for more than 10 years
and electroweak topology for less than 2; the structure of the former is
correspondingly more secure. So far our electroweak topologies have been
guided as much by quantum electrodynamics (Q.E.D.) and the Weinberg-Salam
extension thereof as by consistency considerations. It is reassuring that
the full content of Q.E.D. is embeddable in topological particle theory,
but we hope eventually to understand from consistency considerations not
only the raison d'étre for electroweak interactions but the zero photon mass
together with other arbitrary aspects of Weinberg-Salam theory and eventually

CP violation. It is possible that certain aspects of Weinberg-Salam theory
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will not be duplicated.
The breaking of CP invariance, as well as Cabibbo quark-generation

mixing and proton decay, is related to nonorientable quantum and classical

surfaces. We have a tentative understanding of why lepton generation mixing
is weaker than Cabibbo quark mixing and why baryon-lepton transitions are

extremely weak but perhaps not impossible.
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VIII. SPACE-TIME

At this point of the story we are often asked about gravitons.. But
before that question we should first be asked about spacé-time and the classi-
cal world of real objects embedded in space time. Our viewpoint is that
objective reality and its accompanying spacetime acquire meaning through
event patterns of high complexity. Gravitation, as an aspect of space-~time,
will correspondingly be meaningful only in such a classical limit--where
quantum effects have been smoothed away. We therefore do not anticipate
significance for gravitons.

It appears that soft phpton emission and absorption is the unique type
of quantum event "gentle enough" to allow development of classical objectivity.
Any photon event, no matter how soft, is noncontractible and contributes to
growth of the chiral entropy index 843 electromagnetism becomes recognized
as thé key to compatibility between the real world of classical measurement
and the quantum world of elementary events. If so, "real" space-time and
gravitation are meaningful only in a photon-dominated environment.

What about the "short-distance parton' concept so valuable to the
phenomenology of hadron events with large transfer of momentum? Here
again as the key to significance we see high complexity, although not a

complexity generated by gentle photons. Quite the contrary, here events

are violent and large values for the classical-DTU entropy indices 81 and

g, become important. We must suppose that '"partons at short distance" will
acquire approximate meaping for sufficiently large average values of 81 and
€y

Related field-theoretical ideas are those of "asymptotic freedom" and

"grand unification" in violent events. I have spoken of topological



26

unification corresponding to gy = 2e, but g is a low energy parameter.
Physical elementary-hadron coupling constants are big multiples of

Sgo, 27g0, 29go)18 because of coherent (same phase) addition

g0(23%’ 2
of many different zero-entropy topological compoents. But in events with
large momentum transfer, zero-entropy components are small and the more
important topological components have high complexity. Phase differences
there occur, and coherent addition to a large magnitude for physical
amplitudes is not to be expected. Topological theory thus antiqipates

a weakening of strong interactions in violent events, suggestive of asymptotic
freedom in field theory. So far, however, we have identified no topological
parallel to the idea of strong-electroweak unification at large momentum

transfer. It is possible to speak of "topological grand unification” but

the meaning depends on low energy.



27

IX. ACCESSIBLE AND INACCESSIBLE DEGREES OF FREEDOM

Looking back over topological bootstrap theory one distinguishes
3 categories of topological features. First there are the graphs
invented by Feynman, Finkelstein and Harari-~Rosner that record,
respectively, the flow of the direct observables: fmomentum, electric
charge and spin. Next there are the quantum-surface orientations that
distinguish different types of elementary particle and that correspond
to internal quantum numbers--revealed indirectly through evenf selection
rules. The first category of topological feature is directly accessible
to experiment and the second category is indirectly accessible. Finally
there is a 2-dimensional classical surface which embeds both momentum
and charge graphs and which has for boundary the spin graph. It is
the intergraph relation through the classical surface that generates

entropy from inaccessible features of the topology.

The momentum-entropy indices 81 and g, emerge from the cyclic
ordering of momentum lines incident on Feynman-graph vertices, an
ordering without physical significance. The chirality-entropy index
g3 stems from oriented classical-surface patches defined by the
momentum and spin graphs; the patch orientations are not accessible to
experiment. The color-entropy index 8, emerges from the location of
Finkelstein's charge graph on the classical surface, a location also

without physical meaning.
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For a given event--specified by sets i and f of initial and
final particles-~the topological superposition building the event

amplitude
_ Y
Mfi_ngi

runs over inaccessible degrees of freedom, all accessible topological
features being fixed by i and f. One may feel uneasy about the -
theory's dependence on physically-unmeasureable variables, but it
should be remembered that quantum mechanics, as formulated more than
half a century ago, depends on an inaccessible but essential
mathematical feature: the phase of a complex Hilbert-space vector.

So topological bootstrap theory may be seen as an extension of quantum
theory's.complexnumbers-—to a broader domain of mathematical structures
inaccessible to objective measurement but essential to overall
consistency. Objective measurement promises itself eventually to
"emerge in a larger bootstrap as a necessary component of a consistent

nature.
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FIGURE CAPTIONS
A connected graph representing a cluster of correlated elementary events.
Graphs that illustrate the meaning of discrete interevent ''distance".
A connected sum of two single-vertex Feynman graphs that leads to a
contractible 2-vertex graph.

A connected sum of graphs with cyclically-ordered vertices where an

.intermediate line remains uncontractible.

(a) Classical surface for a 4-meson zero-entropy event.
(b) The corresponding Harari-Rosner diagram.

Connected~sum of two zero-entropy classical surfaces that leads to a zero-

‘entropy surface (g1 =g, = 0).

Connected sum of two classical surfaces that leads to a surface of
nonzero entropy (gl =0, 8, = 1).

Example of classical surface with one unit of chiral complexity.

An example of charge lines on a zero-entropy classical surface.

The allowable zero-entropy elementary-particle areas.

Intersection of belt with zero-entropy particle areas. Ends of charge
lines are also shown.

Edge orientations along perimeters of elementary-particle areas.

The peripheral triangle or '"topological quark'; also called I-triangle.

The core triangle; also called Y-triangle.
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a~~~~~~ Finkelstein charge arc

X end of belt particle piece
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