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Abstract 

Many problems of physical interest have solutions wlvch are generally quite 

smooth in a large portion of the region of interest, but have local phenomena 

such as shocks, discontinuities or large gradients which require much more 

accurate approximations or finer grids for reasonable accuracy. Examples are 

atmospheric fronts, ocean currents, and geological discontinuities. 

In this thesis we develop and partially analyze an adaptive h t e  difference 

mesh refinement algorithm for the initial boundary value problem for hyperbolic 

systems in one space dimension. The method uses clusters of uniform grids 

whch can "move" along with pulses or steep gradients appearing in the calcula- 

tion, and whch are superimposed over a uniform coarse grid. Such refinements 

are created, destroyed, merged, separated, recursively nested or moved based 

on estimates of the local truncation error. We use a four-way linked tree and 

sequentially allocated deques (double-ended queues) to perform these opera- 

tions efficiently. The local truncation error in the interior of the region is 

estimated using a three-step Richardson extrapolation procedure, which can 

also be considered a deferred correction method. A t  the boundaries we employ 

dfferences to estimate the error. Our algorithm was implemented using a port- 

able, extensible Fortran preprocessor, to whch we added rkcords and pointers. 

The method is applied to three model problems: the f i s t  order wave equa- 

tion, the second order wave equation, and the inviscid Burgers' equation. For 

the f i s t  two model problems our algorithm is shown to be three to  five times 

more efficient (in computing time) than the use of a uniform coarse mesh, for 

the same accuracy. Furthermore, to our knowledge, our algorithm is the only 

one which adaptively treats time-dependent boundary conditions for hyperbolic 

sys tems. 

v 
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CHAPTER 1 

Introduction 

In t h s  chapter we will give a justification and motivation for developing a 

k i t e  difference mesh refinement algorithm, and then give a brief history of 

adaptive methods for numerical computations. Next, we review some other 

adaptive algorithms for time-dependent partial differential equations. Finally, 

we will summarize what is contained in the rest of the thesis. 

1.1. Statement of the Problem 

Many problems of physical interest have solutions whch are smooth in a 

large portion of the region of interest, but have local phenomena such as shocks, 

discontinuities or large gradients whch require much more accurate approxi- 

mation or finer meshes for reasonable accuracy. Examples of t h s  are atmos- 

pheric fronts, ocean currents, geological discontinuities, and storm surges. 

When the positions of the gra&ents are known apriori,  and are independent 

of time, one can use coordinate transformations, a technique used extensively in 

aerodynamic computations, e . g . ,  Steger and Chaussee [1980]. 

In more detail, the coordinate transformation technique is as follows. Sup- 

pose one wishes to  study the two-dimensional flow around an airfoil, viewed in a 

coordinate system fixed to the airfoil. It is known that steep gradients exist 

near the surface. Hence a mesh is designed whch follows the contours of the 

airfoil, and in which the mesh size grows exponentially smaller as the surface of 

the airfoil is approached. This irregular mesh is then mapped (sometimes con- 

formally) onto a rectangular region with uniform mesh. The differential equa- 

tions governing the flow are similarly transformed. The transformed differential 



equations are then solved on the uniform mesh. Finally, the results are 

transformed back to the original coordinate system. 

For a problem in which the position of the gradients is known, and fixed for 

all time, this method is obviously advantageous. And, if the position of the gra- 

dients changes as an a priori function of time, the mapping function can change 

with time (e .g . ,  flow past a helicopter blade). However, when the manner in 

whch the gradients move is not known in advance, this technique cannot be 

used. 

In such a case, one procedure is to use a fine mesh throughout the entire 

calculation region. But such an approach usually requires too much computer 

time and/or storage. An alternative method is to use an underlying coarse 

mesh for the entire region, and to superimpose a fine grid, or grids, on the 

region(s) where the solution is varying rapidly. The crucial difficulty is that the 

refined region(s) must then move along with the rapidly varying portion of the 

solution, at  all times enclosing this portion. 

The necessity for t h s  is illustrated in Figure 1.1, taken from Browning, 

Kreiss and Oliger [1973]. The figure illustrates the numerical solution of the ini- 

tial boundary value problem 

where g ( t )  is a rapidly oscillating sine wave. In Figure 1.1 we see the result of 

the computation on a mesh which is divided into a coarse region on the interval 

-1 I x I 0.495 and a fine region in the interval 0 .495s  x 5 1. The mesh width 

(0.01) in the coarse region is five times the width in the fine region. The figure is 

plotted after a time in which the influence of the initial condition has almost 

completely "washed downstream". 





It can be seen that the wave is accurately represented in the fine region (30 

points per wave length) but has been mutilated in the coarse region (6 points 

per wave length). From this it is clear that the rapidly varying part of the solu- 

tion must not be allowed to escape the refinement region. 

1.2. Brief History of Adaptive Methods 

We see, then, that the mesh must "adapt" itself to the character of the solu- 

tion. This is very much in the spirit of recent trends in numerical analysis. A 

brief, but necessarily incomplete, history of adaptive methods for the solution of 

numerical problems is therefore in order. 

An early and widely used type of algorithm employing adaptive principles 

was the 0.d.e. solver, whch solves the initial value problem for a first order sys- 

tem of ordinary differential equations. T l s  was perhaps due to the needs of the 

U. S ,  space program in the late 1950's and early 1960's. The first such algo- 

rithms used a fixed step size throughout the interval of integration. It was later 

realized that such a technique was wasteful, and the step size should be finer in 

regions where the solution varies more rapidly, and conversely. The next step in 

these programs was the incorporation of a mechanism to halve and double the 

step size. Such a mechanism required a careful estimation of the local trunca- 

tion error, together with certain heuristics. Then, to gain further efficiency, 

integration formulas of varying orders were incorporated, since, for smooth 

solutions, higher order methods are more efficient than lower order ones. A 

widely known program of t h s  type is Gear's [I9711 DIFSUB. 

Still further refinements were the programs of Krogh (DVDQ) [1969] and 

ODE/DE/STEP of Shampine and Gordon [1975], which allowed truly variable step 

size, and allowed still hgher order integration formulas. 



Another area of numerical analysis to use the adaptive approach was qua- 

drature. The first published program of t h s  type, whch was written in Algol 60 

and recursively subdivided the integration interval, was given by McKeeman 

[1962]. A more sophisticated analysis by Lyness [I9701 led to the program 

SQUANK (using an  adaptive Simpson algorithm) whch was in turn superseded by 

de Boor's CADRE [1971a, 197 lb] (using "cautious" adaptive Romberg integra- 

tion). These methods obtain a sequence of approximations on finer and finer 

meshes (whch need not occupy the entire interval of integration) and use some 

form of linear extrapolation to determine whch parts of the interval to  refbe 

further. Also of interest in de Boor's routine is the use of a nontra&tional (for 

numerical analysis) data structure--a stack. This has been carried one step 

further in QUADPACK [de Doncker, 19781, as typified by routine DQAGS. The 

Gauss-Kronrod scheme is used, but with n o n l i n e a r ,  rather than linear extrapola- 

tion, using Wynn's epsilon algorithm. This enables the routine to handle some 

singularities in the integrand. 

A related area using the adaptive approach is multi-dimensional quadra- 

ture. Although other workers have proposed adaptive algorithms in this area, 

the one of greatest interest for our purposes was given by Kahaner and Wells 

[1979]. The region of integration is divided into finer and finer simplices (not 

rectangles) and as usual a linear extrapolation is performed to estimate the 

error. The new ideas that enter here are the use of sophsticated data struc- 

tures ( i . e . ,  heaps, queues, hashmg) and programming language. Similar ideas 

are used in our own algorithm. 

An area with a more recent beginning is the adaptive approach to the 

numerical solution of two-point boundary value problems in ordinary differential 

equations, as typified by Ascher, Christiansen and Russell's COLSYS [1979] and 

Lentini and Pereyra's PASVA3 119771. Here again, an attempt is made to place 

more mesh points where the solution varies more rapidly. In order to 



implement PASVA3, Pereyra and Sewell [I9751 introduced the concept of an 

e q u i d i s t r i b u t i n g  mesh, and t h s  idea, or a slight alteration of it, underlies many 

of the adaptive algorithms for two-point boundary value problems and elliptic 

and parabolic partial differential equations. In Section 4.4 we use t h s  idea to  

justify our own algorithm. The method of deferred corrections was used in 

PASVA3 to estimate the local error, and in Section 5.2.3 we also use it (in a 

somewhat disguised form) for the same purpose. 

A fifth area using the adaptive approach is elhptic partial differential equa- 

tions. One adaptive algorithm for t h s  problem was developed by Bank and Sher- 

man [1979] and incorporated in the package PLTMG. This package uses (two- 

dimensional) triangular finite elements. To decide where to refbe,  it uses a cri- 

terion of Babushka and Rheinboldt [1978]. Ths  criterion requires that a (com- 

putable) estimate of the (global) error in the energy norm is approximately 

equal for all elements. A tree is used to represent the refinement structure. 

Another adaptive algorithm for elliptic equations is the rnultigrid (finite 

difference) method of Brandt [1977a, 1977bl. Here the differential equation is 

discretized in the usual manner, but on a sequence of ever-finer grids. Instead 

of solving the approximations by relaxation independently on each grid, the 

computation can proceed from one member of the sequence to another in a 

complicated manner, and the results of one "level" are used to help in the solu- 

tion at other levels. Although this scheme in its original form did not ~ ~ u t o m a t i -  

cally insert more points in regions where the solution changes rapidly, Brandt 

has indicated how to modify the method (using estimates of the local truncation 

error) to make it adaptive. 

The last area in which adaptive methods are being used is our own of time- 

dependent partial differential equations. 



1.3. Other Adaptive Methods for Time-Dependent Problems 

Let us now comment on some other adaptive methods for the initial boun- 

dary value problem for time-dependent problems. As in the previous section, 

this survey is certainly incomplete. 

Two other finite difference methods similar to our own are those of W. Gropp 

[I9801 and M. Berger [to appear]. Both of these are for hyperbolic equations in 

two space dimensions. 

Gropp calculated a shock satisfying the two-dimensional inviscid Burgers 

equation. He used a uniform coarse mesh: with one uniform refinement (which 

could "move" with time) superposed on it. All meshes were parallel to the coor- 

dinate axes. The time step in the refinement was allowed to be smaller than in 

the coarse mesh. He estimated the error by approximating spatial gradients. 

Unfortunately, it is difficult to generalize this criterion to other situations ( e . g . ,  

smooth solutions). (See Section 5.1.) But h s  results showed the feasibility of 

this approach. We previously noted that the local truncation error criterion that 

we use can also locate shocks (although it is probably not the best way to do 

this). 

Berger's algorithm is similar to ours, and is proceeding parallel to our own. 

(However, she is not handling boundary conditions.) Like us, she uses a tree 

structure, but her data structure is of necessity more complicated. Her 

refinements need not be aligned along coordinate axes, but are free to rotate. 

Her error estimation is the same as ours. 

Another finite difference method was developed by Dwyer, Kee and Sanders 

[198O] for parabolic problems in one and two space dimensions. In two dimen- 

sions, they perform a coordinate transformation in one of the spatial variables, 

and adapt in that variable only. As a criterion for mesh placement, they use an 

integral of one plus a constant times the absolute value of the first derivative of 



the solution. In one space dimension they successfully compute solutions with 

severe boundary layers. 

Brackbill and Saltzman [to appear] have proposed another finite difference 

method for parabolic problems in two and three dimensions. I t  also uses coordi- 

nate transformations. The criterion for mesh placement is based on a con- 

strained variational formulation. The constraints enforce orthogonality and 

smoothness of the coordinate transformation. The variational form contains the 

squared lengths of the gradients of the transformation variables and of the gra- 

dient of the (desired) solution. Forming the Euler equations (from the varia- 

tional formulation) then produces a coupled, time-dependent set of difference 

equations for the solution and the coordinate transformation, which are then 

solved. The authors have actually computed ( e . g .  , the convective-transport- 

reaction-diffusion equation) with this method in two and three space dimensions. 

The method of Rai and Anderson [1982] is for one and two dimensional para- 

bolic and hyperbolic equations. Once again, coordinate transformations are 

used. Mesh points are considered to attract or repel each other; the former 

where the local truncation error is high, and conversely. The authors then 

determine the coordinate transformation by laws resembling Newton's laws, with 

particles replaced by mesh points, charges (or masses) replaced by truncation 

errors, and the resulting force replaced by the coordinate in the computational 

plane. The number of mesh points is fixed during the duration of the computa- 

tion. The authors compute the laminar boundary layer over a flat plate, and flow 

past a cylinder in a supersonic free stream with associated bow shock (the Euler 

2-D gas dynamic equations). They use low order difference methods, and esti- 

mate the truncation error by higher order differences. They state that they 

would like more accurate error estimates. 



A striking feature of these adaptive difference methods, and many others, is 

the wide variety of criteria used to determine the placement of mesh points. We 

discuss t h s  further in Section 5.1. 

Other adaptive approaches use finite elements. Some of these are Gannon's 

[1980], in two space &mensions for parabolic problems, Davis and Flaherty's 

[I9821 method in one space dimension, also for parabolic problems, and Miller's 

"moving mite element" method [Gelinas, Doss and Miller, 19811, [Miller and 

Miller, 19821, in one space dimension for parabolic and hyperbolic problems. 

Davis and Flaherty's method is different from the other two. Instead of 

expandmg the solution in spatial basis functions with time-dependent 

coefficients 

as the other methods do, they use a f h t e  element Galerkin method on tra- 

pezoidal space-time elements. The time step is uniform and constant. The 

number of trapezoids is fixed for all time. Given two partitions of the interval 

[ a ,  b ]  at times t ,  and t,,,, respectively, each of which contains the endpoints a 

and b and consists of n points, the trapezoids h.ave as their vertices adjacent 

members of the two partitions. The main problem, then, is choosing a partition 

at time t,,, when one is known at  time t , .  The authors do this by approxi- 

mately equihstributing the projection error, and hence the global error. Since 

the partition can be nonuniform, this involves at  each step solving a nonlinear 

system of equations whose Jacobian is block tridiagonal. This method strikes us 

as quite expensive. However, no computer times are given. 

Gannon's Galerkin method uses the standard expansion (3.15), and is based 

on the results of Babushka and Rheinboldt for elliptic problems. He uses time 

steps which are variable but uniform in space, and elements which are piecewise 



uniform and always parallel to the coordmate axes. The number of elements is 

not fixed. Unlike ours and Berger's approach, the finer elements are not con- 

sidered to "overlay" the coarse elements. He proceeds as we do in that an ele- 

ment structure is kept until error estimation is performed; then the elements 

are adjusted. To estimate error, elements are chosen as in Babushka- 

Rheinboldt so that an approximation to the (global) error (in energy norm) is 

approximately equidistributed on elements. At the next time the error is 

checked, the elements are adjusted if the estimates deviate "too m u c h  from 

equality. As is usual for Galerkin methods, one uses a stiffly stable 0.d.e. solver 

to step forward in time. One needs to solve a system of equations at each time 

step, but unlike the Davis-Flaherty method, the system is linear when the 

&fferential equation is linear. A tree-type data structure is used to keep track 

of refinements. 

In Miller's moving h t e  element method, again the standard expansion (1.1) 

is used. Instead of choosing the coefficients aj and fixing the basis functions pi, 

the pj (which are, for example, piecewise linear "hat" or "chapeau" basis func- 

tions) are allowed to have their centers vary (in space) as well. This leads to a 

mo&fied Galerhn method. Again, a stiffly stable 0.d.e. solver is used to step for- 

ward in time. Thus, a system of equations is solved at each time step, whch is 

(in general) nonlinear even when the differential equation is linear. The matrix 

of the system may become singular, so further parameters ("spring constants") 

are introduced to regularize it. Furthermore, the minimization problem that 

the Galerkin method solves is replaced by a weighted minimization problem, so 

the weights must be chosen. The time step is variable but uniform in space. 

Gelinas, Doss and Miller illustrate their algorithm with a number of interest- 

ing problems. One of them is similar to our P2 (the second order wave equation 

with counter-streaming Gaussian pulses). Instead, they use square waves. Their 

squares are resolved almost perfectly. The boundary conditions of t h s  problem 



are zero (and in fact disagree with the exact solution at t = O), and we believe 

their method cannot handle time-dependent boundary conditions (2.3),  (2.4) for 

hyperbolic problems. In contrast, our ("open") boundary conditions for this 

problem are time-dependent, and neither purely inflow or outflow. They allow 

the pulses to pass in or out of the region. 

Let us summarize a few features common to all these finite element 

methods. All use a time step whch is the same a t  every spatial point at a given 

time. (Recent work of T. Dupont [to appear] is an exception.) Ths is largely due 

to the use of an  0.d.e. solver to advance in time (in two of the methods). All use 

implicit time-stepping methods. Since we use explicit methods, it is essential to 

allow finer time steps in refinements than in the coarse mesh. (Otherwise, sta- 

bility would force us to use tiny time steps throughout the region.) So for hyper- 

bolic systems, the time step in our method is limited by accuracy, not stability. 

A significant difference between our method and Miller's, Davis and 

Flaherty's, Dwyer, Kee and Sander's, and Rai and Anderson's (but not Gannon's) 

is that we allow a variable number of refinement points as needed. Refinements 

can be created or destroyed. In contrast, in the other methods, the number of 

basis functions or mesh points is fixed for all time. In Miller's method, the basis 

functions do indeed "bunch up" around steep gradients or shocks, as desired. 

But suppose one started with one steep gradient, and then two or three others 

developed. In this case, the fixed number of basis functions would either be 

insufficient or else excessive (and hence wasteful), at  some times, but not oth- 

ers. 

Thus it is clear, even from this incomplete survey, that adaptive algorithms 

are playing an increasingly important role in numerical computations, and will 

continue to do so. Somewhat less clear but still discernible is a trend toward 

more complicated data structures than vectors and matrices (such as deques, 



heaps, stacks and trees), and the need for more flexible programming languages 

to implement them. 

1.4. Summary of Results 

We now summarize what is contained in the rest of t h s  study, and point out 

what we believe to be new and significant. 

In Chapter 2 we describe our adaptive mesh-refinement algorithm in detail. 

The general phdosophy and methodology was given in Oliger [I9781 and Budnik 

and Oliger [1977], but we contributed some ideas not in these papers, such as 

the necessity for recursive refinements and the choice of data structure. We 

believe t h s  is the first detailed description of the algorithm, and that ours was 

the first implementation. We f i s t  describe the continuous problem, the usual 

first order hyperbolic system on a strip in one space dimension. Next we 

describe our mesh structure. We give two descriptions of this; the first is used 

in the theoretical work in Chapters 3 and 4, and the second is used in describing 

the algorithm in Chapters 2 and 5. In t h s  second description we define a 

refinement, and introduce the idea of recursive refinements. Next we state the 

chfference approximations we use. The fundamental restriction is to explicit 

difference methods. For convenience in implementation and error estimation, 

we also insist on two-(time) level schemes. A detailed description of the algo- 

rithm is then provided, including techniques at boundaries and interfaces 

between coarse and fine meshes. One part of the algorithm description--the 

estimation of the local truncation error--is deferred until Chapter 5. 

In Chapter 3 we give a brief discussion of stability. We show why the stabil- 

ity definition of Gustafsson, Kreiss and Sundstrom [1972] cannot be used, and 

state the stability definition of Berger, Gropp and Oliger [to appear]. We then 

prove (Proposition 3.10) that,  if a difference scheme is stable on one horizontal 



strip in the x-t plane, then it is stable for any number of strips, under a few 

weak assumptions (such strips are described i.n Section 2.2). We did not prove 

that our algorithm was stable according to t h s  definition, but there is good rea- 

son to believe that  it is. 

Chapter 4 treats convergence of the difference scheme, and relates bounds 

on the global truncation error to bounds on the local truncation error. We first 

state (but do not prove) a proposit~on on the rate of convergence of difference 

approximations to the solution of the differentia1 equation. 7 h s  Proposition 4.1 

is the analogue of one given by Gustafsson [1975], but for a difference scheme 

whch is stable accordmg to the new stability d e h t i o n  mentioned above. Using 

this proposition, and the theory of Pereyra and Sewell on equidistribution of 

meshes arising in approximations to two-point boundary value problems, we 

prove a relation between the global truncation error and the local truncation 

errors (Proposition 4.2), which can be said to provide a theoretical justification 

for our algorithm. This proposition is new, but it is an analogue of a similar 

theorem for the Cauchy problem given by Oliger [1978]. 

Chapter 5 discusses the estimation of the local truncation error, which is 

crucial to the success of the algorithm. We first discuss alternatives to the local 

truncation error in placing mesh refinements. Then four methods of local trun- 

cation error estimation are described. One is totally impractical; another 

(differences) is marginally successful, and the other two are successful. Only 

the last one (three-step Richardson extrapolation), however, is general, and con- 

venient to implement for interior approximations. (It was suggested by Oliger.) 

For this method we prove a theorem (Theorem 5.1) which indicates that this 

method is valid under quite general circumstances. This theorem is new. The 

proof of t h s  theorem shows that this algorithm is simultaneously a deferred 

correction method. ?Ye then give a very simple method for error estimation at 

coarse/fbe interfaces which do not abut boundaries. For boundary 



approximations, we can sometimes use a modification of the Richardson 

method. But the most convenient procedure is to rewrite the time derivatives 

appearing in the local truncation error as spatial derivatives (using the 

&berentid equation), and approximate the result by &fferences. 

We believe that our work on adaptive boundary conditions (which can be 

time-dependent) is not only new but unique. That is, no other algorithm of whch 

we are aware gives a systematic method for adaptively treating time-dependent 

boundary conditions in hyperbolic systems. 

Chapter 6 describes the data structure we used to implement the algo- 

rithm. The data structure has two parts--a four-way linked tree of records to 

hold structural information about refinements, and an array of sequentially allo- 

cated deques to hold solution values for the hyperbolic system. W e  describe our 

repacking strategies for the deques. The deque structure is a modification of a 

similar structure for stacks in Knuth [1973]. M. Berger [Ph.D. thesis, to appear] 

has earlier devised a similar tree structure. In a certain sense a tree structure 

is "obvious" when recursive refinements are used, and other adaptive methods 

also use them ( e . g . ,  Gannon [ I  9801, Rheinboldt and Mesztenyi [1980]). In each 

case the tree is modified to suit the application at hand. However, our choice 

and implementation of the sequentially allocated deques is new, and cannot be 

generalized to more space dimensions. 

Chapter 7 discusses the language used to implement our algorithm. 

Because Fortran lacks both control structures and data structures, we rejected 

it. But because of the portability and wide use of Fortran in scientific computa- 

tion, we had to reject other languages as well. The compromise we chose was 

Mortran, a macro preprocessor for Fortran [Cook and Shustek, 19751. Because 

Mortran is extensible (unlike many other Fortran preprocessors), we were easily 

able to add records and pointers to it, whch made implementation of the data 



structures quite convenient. We believe we were the first to use a macro pre- 

processor to develop adaptive mesh refinement algorithms; recently Gropp [to 

appear] has done a much more systematic development of a language for these 

algorithms. 

Chapter 8 provides computational results of our algorithm. We first 

describe three model problems: the first order wave equation (color equation) 

with traveling pulse; the second order wave equation (rewritten as a first order 

system) with two oppositely-traveling and interacting pulses, and the inviscid 

Burgers equation with a shock. In particular, the refinements do properly 

enclose the pulses or shock a t  all times. These calculations also show that 

refinements properly merge, separate, move, and are created and destroyed. 

( W e  believe that the only other adaptive algorithm that can track c r o s s q  

pulses is that of M. Berger, who uses an approach similar to ours in two dimen- 

sions.) 

Section 8.4 contains the most important result of t h s  thesis, namely, the 

efficiency of our algorithm. Our model problems show decreases in execution 

times of factors of 3 to 5 for smooth solutions (compared with using a uniform 

mesh whch achieves the same level of accuracy). Storage savings are acheved 

as well, but the gains are not so dramatic. 

Section 8.5 experimentally shows the rate of convergence of the method as 

the step size approaches zero, and thus confirms Proposition 4.1. Section 8.6 

compares three methods for estimating the interior local truncation error. Sec- 

tion 8.7 compares different boundary approximations and methods for estimat- 

ing the error of these approximations. 

Chapter 9 gives our conclusions and suggestions for further research, and 

the appendix gives a program listing for one of our model problems. 



CHAPTER 2 

Mesh Structure and Solution Algorithm 

In this chapter we will state the class of partial differential equations to be 

considered, together with assumptions about the behavior of the solution of the 

equations. Next we describe, in two different ways, the mesh structure on which 

we will compute the difference approximation. We then introduce a scalar model 

problem and describe our algorithm for advancing the solution in time. Finally, 

we discuss the modifications necessary for systems of equations. The underlying 

approach throughout is that of Budnik and Oliger [1977] and Oliger [1978]. 

2.1. The Continuous Problem 

Let R denote the spatial interval a 5 x I b .  We will assume given a linear 

first order, one (space)-dimensional, n x n hyperbolic system 

on a "vertical" strip R x I t  r O j ,  with initial condition 

Here A and B are n x n matrices and F is an n-vector. We have, as usual, 

assumed that A has already been transformed into diagonal form by a nonsingu- 

lar uniformly bounded similarity transformation T(x , t ) ,  so that 



with T(x , t )  and T(x,t)-' uniformly bounded, and 

By far the most important restriction is that our problem has only one 

space dimension. The problem even for two space dimensions has severe addi- 

tional &fficulties, such as irregular geometries, orientation of refinements, pat- 

tern recognition, the need for more complicated data structures, and boun- 

daries. (M. Berger's thesis [to appear] is treating this problem.) The restriction 

to hyperbolic behavior insures that we can use explicit time steps. Ths assump- 

tion greatly simplifies both the error estimation and the manipulation of moving 

meshes. However, many computational problems in fluid dynamics and else- 

where are of this type. 

The assumption that the matrix A is in diagonal form is not necessary in 

practice, as shown by computations on problem P2 in Chapter 8. Ths assump- 

tion makes it easier to develop the theory, and to write down boundary condi- 

tions (2.3)-(2.4) which yield a well-posed problem. 

For the theory in Chapters 3,  4 and 5, we will assume that (2. I ) ,  (2.3)-(2.4) 

have constant coefficients. But in practice, the type of problem can be consid- 

erably more general than (2.1)-(2.4). For example, the system of equations can 

be nonlinear. In Chapter 8 we will show computations for the inviscid Burgers' 

equation 



whch even has shocks. Furthermore, the problem need not necessarily be 

hyperbolic. For example, we can treat  the Korteweg-de Vries equation 

The important restriction is to equations whch allow explicit difference approxi- 

mations for their efficient solution. Thus the heat equation is excluded. (Our 

algorithm can accurately approximate the heat equation, but we doubt that it 

would be more efficient than using an implicit method on a uniform grid.) 

We next assume that the overall phenomena being studied are such that, 

except for relatively small regions, a coarse uniform mesh is sufficient to resolve 

them. We further assume these small regions change with time in a way which 

cannot conveniently be determined a priori. 

We also assume that these small regions are the same for all solution com- 

ponents. In other words, if the differential equations describe velocity and pres- 

sure, then large pressure gradients occur in approximately the same regions 

where large velocity gradients occur. (The assumptions in this paragraph are 

necessary only for efficiency. The method will work without them, but it might 

refine too large a portion of the region.) 

We assume that we have smooth solutions. This means, first of all, that 

there are no corner discontinuities, i. e . ,  

u1 (a,O) = f ( a )  = S I I ( O ) ~ ~ ( ~ , O )  + g l(0) 

and 

u n ( b  , O )  = f ( b )  = SI (0)ul ( b  ,0) + gz(0). 

Furthermore, it means there are no shocks present. These assumptions enable 

us to estimate the local truncation error using hgher  derivatives of the solution 

of the differential equation. In practice, our algorithm will work even for shocks 







whose endpoints are among the xj, 

'i 

u I: = [ a ,  b ] ,  
v=1 

any two It intersect in at most one point, and the xj contained in any I t  are 

equally spaced. Furthermore, all the kj occurring in I: X [ti-' , t i ]  must be 

equal. Such a grid is uniform over rectangles In the x - t  plane. For conveni- 

ence, we shall assume that for each i the I t ' s  constitute a minimal set of inter- 

vals with these properties. (That is, any other such set describing the same 

mesh has more than vi members.) 

To make this grid structure even easier to implement, we will make still 

further restrictions. Since there are only a finite number of rectangles in the 

region R ,  let h,, h2, . . . , hA be a list of all the distinct space steps h!, listed in 

descending order. Corresponding to each hj is a kj. We will then obtain a 

corresponding list k,, k,, . . . , kA which we will also assume has distinct 

members in descending order. We then require 

where N and M are integers greater than one. This restriction is not crucial, 

but makes implementation easier. 

Let us examine one of the decompositions (2.6). With each I ;  is now associ- 

ated an hj. If 1; is adjacent to I ; ,  we shall call their intersection a coarse/j?ne 

in ter face ,  and will require that h; = Nh; or ht = Nh;. That is, the transition in 

spatial mesh size should be "smooth". No su-ch restriction is made in time. In 

Figure 2.1 we have illustrated this for N = 3, M = 2. 

We now modify the time steps at the coarselfine interfaces. In the i-th 

strip Si, i = 1, 2,  . . . , s ,  we add grid points to any coarse/fine interface where a 

fine mesh lies to the right of a coarser mesh. That is, let I, be any interval adja- 

cent to, and to the left of, interval I,, such that h; = ~ h b .  Accordiw to our 



definition, the time steps kf on the interface are the same as those in I; ,  not I t  

( i e . ,  they are "coarse" rather than " h e " ) .  We add more points to this interface 

so that the time steps k; on the interface are the same as those in 1;. 

A t  the time division points t i ,  i = 1,2 ,  . . . ,s-1, there are two sets of spatial 

mesh points: those belonging to Ai and those belonging to Ai+,. This is because 

we readjust the (spatial) mesh at these times. We will introduce two sets of spa- 

tial grid points at t o  = 0 also, by letting A. denote the initial uniform coarse 

mesh 

where h, = ( b  - a ) / N o .  We immediately readjust this mesh, getting the mesh in 

A,. Therefore, we will ignore A. in our theory, and measure quantities (such as 

the initial error) with respect to the mesh points in A, with t = 0. 

A n  alternative implementation would allow fully variable hj, as is done in 

programs for two-point boundary value problems for ordinary differential equa- 

tions ( e . g . ,  PASVA3 and COLSYS, mentioned in Chapter l . )  However, there are 

several compelling reasons for usmg our approach. The first is ease of imple- 

mentation. The second is storage, although this is not as serious. One would 

need to store a vector of xf's. In our method only a few indices are used. The 

third reason is that with such a general mesh, the only difference schemes that 

can be used in two-point boundary-value problems are Keller's box scheme and 

the trapezoidal rule (if second-order accuracy is desired). Although there do 

exist second order approximations for the initial boundary value problem (par- 

ticularly for conservation laws) on a nonuniform spatial mesh, this would 

severely restrict our choice of available difference schemes. (As we shall see, 

our method already imposes some other restrictions on the difference scheme.) 

The final reason is that a general mesh would make analysis and estimation of 

the local truncation error much more difficult. 



2.3. Mesh Structure-Second Description 

We will now provide an alternate description of our grid structure. The 

above description is more suited to the theory; the following one is more suited 

to implementation and allows slightly more generality than the first description. 

We will proceed recursively by "levels of refinement". The word level in this 

context refers not to the time level, but to how fine a grid spacing is. Finer grids 

will have higher levels. We will use different notation for gridpoints (x ,  t ) than in 

the previous description. We regret the necessity for this, but certain formulas 

( e .g .  , norms) which are natural in one notation become extremely cumbersome 

in the other. 

On each level l  = 0 ,  1, . . . , A-1 we will introduce a finite number of space- 

time r e f i n e m e n t  rec tangles  or boxes BI contained in rectangle R .  (All such rec- 

tangles will be solid, that is, they include both interior and boundary.) Each such 

rectangle will have sides parallel to the coordinate axes, and for 1 r 1 each 1-th 

level rectangle must lie entirely in an l  -1-st level rectangle. Furthermore, no 

two 1-th level rectangles can overlap. The boundary of each I-th level rectangle 

will be the boundary of a uniform 1 + 1-st level (space-time) grid. All I + 1-st level 

grids will have the same space and time steps. Loosely speaking, an 1 + 1-st level 

refinement is one of these grids viewed at  a fixed time. 

To prime the recursive pump, we will define the zero-th level  q )a t ia l  divi- 

s ion  points  of the interval [ a ,  b ]  as the sequence of points < x t  = a ,  x p  = b >. 

Similarly, the zero-th level  t i m e  diwision poin ts  of the interval [0, T] comprise 

the sequence <tt = 0, tp = T>. Let ho = b - a and ko = T  be the zero-th Level 

space and t i m e  s t eps ,  respectively. We define U O  as the set of four corner points 

of the rectangle R .  

For 1 = 0, 1 ,  . . . ,A -1  we now proceed recursively by levels of refinement. 

We form the 1-th level  par t i t ion  Pl of [ 0 ,  T ] ,  which is a subsequence of the tlme 



division points <th>:  

Notice that the subsequence <mi> depends on 1; this dependence is omitted 

from the notation. For 1 = 0, Po is identical to the sequence <tA> of time divi- 

sion points. Thus so = 1 and ml(0) = 1. For 1 r 1, Pl must contain as a subse- 

quence the points in the partition Pl-l. 

This partition divides the region R into l-th level horizontal strips 

s:, i = 1, 2, . . . , sl. For 1 = 0 the only such strip S? is identical to the rectangle 

R .  For 1 r 1 each of these strips is contained in an 1-l-st level strip, since Pl_, 

is a subsequence of Pl. The partition points are the times when we adjust the 

mesh. (The partitions and strips for 1 > 1 could be dispensed with if we never 

adjust the mesh between coarse time steps.) 

We will now introduce a set of zero or more nonoverlapping 1-th level (solid) 

refinement rectangles 

(If gl = 0 the recursion ends.) There is only one zero-th level rectangle B:, and 

it is identical to the rectangle R. For 1 r 1, each rectangle BL is required to lie 

entirely in some L -1-st level refinement rectangle ~ 4 ; '  . The latter will be called 

a parent of the former. Each such rectangle Bb will have horizontal sides whose 

t -coordinates are required to be adjacent members of the partition PL (2.7). 

That is, the horizontal sides of the rectangle are the same as the the horizontal 

sldes of the L-th level strip in which it is contained. Since Plpl is a subsequence 

of PL for 1 r 1, we are guaranteed that B L  is "vertically contained" in its parent. 

For l r 1, the x-coordinates of the vertical sides of rectangle B; can be any 

l- th level spatial division point, so long as BL is "horizontally contained" in its 

parent. In other words, let its parent Bi--' have left and right vertical sides with 



coordinates 

respectively. (Here a (n )  and w(.rr) are  nonnegative integers.) Then for the coor- 

dinates x & ~ )  and xi(,) of the left and right vertical sides of rectangle B; ,  we 

require 

For I r O ,  let  N(' )  and M( ' )  (the I- th  level spatial and time 

refinement rat ios)  be integers greater than one. (For N ( O )  we shall take the N o  

of the last section.) Let h1+, = h 1 / N ( l )  and k1+,  = k , / ~ ( ' )  be the l+l-s t  level 

siDace tiTixe sfeps,  i-especti-vely-, '"- -- 3-'- vr e r l u w  ueuile tile sequences of (iillif~i=i~i) 

I+ I-st level spatial and time division points 

and 

of the intervals R and [O, T I ,  respectively. They a re  respectively N( ' )  and M ( ' )  

times as  h e  as the 1 -th level ones. The set of all points 

occupies the entire rectangle R = R x ( 0 ,  T I .  The subset of these points con- 

tained in the (solid) refinement rectangle B; is defined to be the (l  +l)-st  Level 

(space-time) g r i d  GF' occupying B L .  More specifically, if B; occupies the I-th 



level horizontal strip S:, then Gpl consists of that subset of ul+l whose x com- 

ponents have subscripts 

j = cc(v)~( ' ) ,  cc(v)~( ' )+l ,  . . . , w ( v ) ~ ( ' ) ,  

and whose t components have subscripts 

(Recall that the subsequence <q> depended on the level 1 .) This completes our 

recursive definition. 

Now we come to the most important definition of t h s  thesis. 

Definition. Let GV', 1 = 0 ,  1, . . . , A-1, be an l+ l - s t  level grid, occupying an 1- 

th  level rectangle B L ,  whose mesh points are as given above. Let t be any time 

such that 

and let t g l  be the greatest l + l-st level time division point not exceeding t . An 

I+ l-st level refinement at time t , corresponding to  B: or ~ t f '  , is a sequence of 

ordered pairs 

RG+' ( t )  = <(zj+', wj+l(tkl)):  j = R(V)N('), CX(Y)N(~)+I ,  . . . , w(v)N(')>; 

the first components comprise the sequence of 1 +1-st level spatial division 

points contained in the horizontal sides of the refinement rectangle Bb 

(equivalently, the sequence of x components of the grid points in GL"); the 

second components are the approximate solution values (if any) evaluated at 

these spatial points, but a t  time t g l .  Here v f f l ( t )  is an approximation to the 

vector u (x f+ ' ,  t ) .  

An important property of our definition is that an Z+l-st level refinement 

exists not only at l +l-st level time division points T"', but also at "finer" time 

division points T1+2, . . . , T~ satisfying (2.9). (Alternatively, we could have 



defined refinements only for times T" satisfying (2 .9 ) . )  However, solution values 

for an  L +l-st  level refinement are only updated at L +1-st level time division 

points. In the next section we will see why we defined a refinement as a 

s e q u e n c e  rather than a set. 

For L 2 1 let Bb be any refinement rectangle, and RP1 its corresponding 

refinement. A vertical side of BL whch does not lie on the boundary of the 

region R will be called a c o a r s e / ' n e  i n t e r f a c e .  Similarly, the left or right end- 

point of Rlf' will also be called a coarse/fine interface if it does not lie on the 

left or right boundary of the region R .  

The first level (or coarse) space-time grid occupies the whole rectangle 

BY = R .  Hence, the first level, or coarse, refinement is present at  all times, and 

hgher  level refinements are considered to be superimposed on it. (Strictly 

speahng, we should not call this a refinement, since it doesn't refine anything. 

We use this terminology to avoid special cases.) We will assume as given the larg- 

est wave propagation speed. This is usually known by the problem originator, 

and determines the spacing of the coarse refinement. 

Another factor which must determine the spacing of the coarsest 

refinement is the wavelength of any "background disturbances" to  the 

phenomenon of interest (see our model problem Pi later in this chapter for an 

example). This too is assumed known; for guides to the number of mesh points 

needed per wave length, see Kreiss and Oliger [1972]. 

We will now discuss some further restrictions imposed on our refinement 

rectangles. We will require that no two L-th level refinement rectangles in the 

same 1 -th level horizontal strip can intersect or abut. (But 1 -th level rectangles 

in adjacent strips may abut.) Assume an I-th level strip contains two L-th level 

rectangles B6 and Bb, having left and right vertical sides with x coordinates 



respectively. Without loss of generality, assume that the left side of the former 

is to the left of the left side of the latter, a ( p )  < cc(v). Then 

Ths  is no restriction in practice; if two such rectangles overlap or abut, we sim- 

ply consider them to be one rectangle. 

In the last section we mentioned that the mesh should vary "smoothly" in 

space -- L e . ,  an 1-th level refinement can abut a l+ l - s t  or I-1-st level 

refinement, but not a refinement of any other level. Ths restriction is enforced 

by inequality (2.8a or b), which says that the rectangle B L  is properly "horizon- 

tally contained" in the parent rectangle B k l .  Actually, this restriction is too 

severe because of boundaries. In (2 .8 )  we allow the leftmost inequality to 

become "5" when the parent rectangle abuts the left boundary, i . e . ,  a ( n )  = 0.  

1-2 
Similarly, when the parent BL-' abuts the right boundary (w ( l r )  = ~ N ( P ) ) ,  we 

p=O 

allow the rightmost inequality to become %". In particular, if an I-1-st level 

refinement occupies the whole spatial region and is too coarse over the whole 

region (according to our error estimates), then the I-th level refinement will 

occupy the entire region. 

Let hl = kl /h l .  Then our construction ensures that hl = constantl. For 

simplicity, our implementation restricts the refinement ratios for 1 r 1 to be the 

same, i e . ,  N(')  = N and M(') = M ,  for I = 1, 2 ,  . . . , A-1. This condition is not 

essential, but it poses no real restriction, as we will see in Section 8.3. For con- 

vergence studies, we shall in addition assume that M = N ,  so that hl = constant, 

independent of 1 .  

Suppose we want both descriptions to characterize the same mesh points. 

How must we modify these descriptions to achieve this? Let us consider the 



situation in time f i s t .  We claim that the second description is more general 

than the first. To see why this is so, consider the blackened rectangle in Figure 

2.1. If this rectangle contains no interior mesh point, the mesh of Figure 2.1 

satisfies the first description. The time division points t o ,  t ' ,  t Z ,  t 3  are shown. 

These points also comprise the partition PI  of the second description. 

However, if the blackened rectangle contains six subrectangles, then this 

mesh satisfies the second description but not the first. Ths illustrates the cri- 

terion for the first description to coincide with the second: 

Proposition 2.1. In the second description of the grid structure, choose a first- 

level partition P1 of the interval [0, T I :  

O =  to' < t &  < t &  < . . .  < tk1 = T. 

If all succeeding partitions Pl ,  L = 2,3, . . . , A-1 (2.7) consist of exactly the same 

points as P 1 ,  then the partition P1 of the second description coincides with the 

partition (2.5) of the first description. 

For, the first description requires the t coordinates of the horizontal sides 

of all refinement rectangles to be adjacent members of the partition (2.5) of the 

f i s t  description; this will be the case for the second description only if no new 

points are introduced when constructing partition Pl from Pl-l, 

1 = 2, 3 ,  . . . , A-1. By the assumption in the first description that there are only 

a finite number of step sizes k l ,  k z ,  . . . , k A  whch are multiples of each other, 

the partition points (2.5) are a subsequence of a set of equally spaced points, 

just as P1 is. 

Our theory will assume the two descriptions coincide, and thus will use only 

the first level partition, in the notation of (2.5). In this case, all horizontal strips 

S: of the second description coincide with the first level strips Sil. Henceforth, 

we shall drop the superscript 1 for strips, whch is the notation used in the first 

description. Also, s,, the number of strips, is shortened to s .  



In practice, when we choose partitions as in t h s  equivalence proposition, we 

usually check the local error every 6 coarse time steps, where $ is a small posi- 

tive integer. Thus every partition Pj,  j 2 1 is of the form 

In Section 8.8 we use the capability to check the error, and adjust refinements, 

between coarse time steps. For the model problem studied there, we find that 

this is no more efficient than using the partitions as above with d = 1, (But t h s  

conclusion may not be generally true; see Section 8.8.) 

The partitions Pi must be chosen a priori, before the solution of the prob- 

lem. 

Now consider the situation in space. We modify the second description as 

follows. Let (x , t )  E Si be any point which is a grid point of more than one grid 

BEfl , each such grid (and its associated refinement rectangle BL) lying entirely 

in strip Si . We shall say that the point (1: , t )  is covered by more than one mesh 

point. Then all such grids (resp. refinement rectangles) must be at different lev- 

els of refinement. At such a point, delete all but the grid. point on the finest 

level. Then, except possibly for times t = t i ,  each point ( x , t )  E N is covered by 

at most one grid point. 

Since the first definition allows no overlapping mesh points except possibly 

for times t = t i ,  the grid points of the first and second descriptions now coin- 

cide. But how do the rectangles of the two descriptions relate? In strip Si, 

i = 1, 2, . . . , s ,  let the highest. level refinement rectangle be R J .  (Note that y 

depends on i.) Then BJ is identical to one of the rectangles 15 x [ti-' ,  t i ]  in the 

first description. If B,Y-' is a refinement rectangle in this strip with the next 

highest level, it will correspond to the union of three, two or one adjacent rec- 

tangles /2, x [ti- ' ,  t i ]  of the first description (three if Bz abuts no boundary, two 

if it abuts one boundary, and one if it occupies the whole strip Si). 



In general, if no rectangle in the i- th strip abuts a boundary, the I-th level 

rectangle (of the second description) corresponds to the union of 2(y-L)+1 adja- 

cent rectangles of the first description. If some rectangle (of the second 

description) abuts a boundary, then the number of rectangles in the union will 

be fewer. Thus, it is quite inconvenient to define refinements in the first 

description. 

2.4. Operations on Refinements 

In the last section, we observed that I-th level refinement rectangles in the 

strip Si may not intersect or abut, but those in adjacent strips Si and Si+l may 

abut. Ths leads to interesting consequences for refinements. For simplicity, we 

shall assume that all partitions PL are the same for I r 1, and use the notation 

(2.5) for P,. 

We shall say that two refinements are equivalent when their first com- 

ponents (x coordinates) are the same, regardless of the time or the solution 

values. Thus, for all times (2.9) encompassed by the refinement rectangle B I ,  
the refinements RF' ( t )  corresponding to Bt are equivalent. In this sense, we 

can say that to each rectangle B I  or grid G:' there corresponds one 

refinement. This equivalence concept is useful for describing refinement mani- 

pulations which do not depend on the differential equation calculations. Clearly, 

only refinements with the same level can be equivalent. 

Suppose first that there is an I-th level refinement rectangle B; (I > 0 )  con- 

tained in the strip Si = R x [ti- ' ,  t i ] .  Assume that the horizontal sides of 0; 

occupy the interval 

x;@) 5 x 5 x ; ~ ) .  

Also assume that no part of any I-th level refinement rectangle in strip SiPl lies 

in this interval. Then we will say that the refinement RF1 corresponding to B; 



has been created at time t  = ti-'. Similarly, if we replace SiPl by Si+, and ti-' 

b y  t i ,  we say that R;' has been deleted at time t i .  

Now suppose there are two I-th level refinement rectangles BLCS,  and 

B ~ C S ~ + , .  According to our definition, the refinement R:' corresponding to B; 

only exists for ti-' I t  I t i  , and the refinement R r '  corresponding to Bb only 

exists for t i  5 t 5 ti+'. We will now examine the possible relationships between 

these refinements. 

Suppose the rectangles B; and B I  have the same left and right sides, 

a(p)  = a(v) and w ( p )  = w(v). Then the first components of the refinements 

corresponding to these rectangles are the same. By our definition, the 

refinements corresponding to B; and B L  are equivalent. In this sense we may 

say that a single refinement now exists for times ti-' 5 t  I ti+'. 

Now suppose that the refinement rectangles are situated as before, but 

(with at  most one equality), and no part of any other I-th level refinement rec- 

tangle in strip Si+, lies in the interval 

x ; ~ )  < x XL@). 

Then we will say that the refinement RF' has contracted at t  = t i  to form the 

refinement R p l .  By interchanging refinement rectangles and strips, respec- 

tively, an analogous definition can be given for an expanding refinement. 

If B; and B\ are situated as before, but 

and no part of any other I-th level refinement rectangle in strips Si or Si+, 

occupies the interval 



then refinement R r l  has moved right at t = ti to become the refinement Rtf l .  

Analogously, we can define what it means for a refinement to move Left. 

Finally, suppose rectangle B; is in strip Si as before, but strip contains 

two (disjoint) 1 -th level refinement rectangles BL and 3; , with the former to the 

left of the latter. Assume that 

and that no part of any other 1-th level refinement rectangle in strips Si or Si+l 

lies in the interval 

Then the refinement R;,+' is said to separate or split into refinements RV' and 

Rpl  . Analogous definitions can be given for two refinements to merge into a 

third. 

The above are typical operations on refinements, but they do not exhaust 

the possibilities (for example, a refinement could split into three refinements, 

although this is quite rare).  Fortunately, however, an exhaustive listing is not 

needed. A11 that is required is an algorithm whch takes a set of L-th level 

refinements (1 > 1) a t  time t = t i ,  i = 0, 1, . . . , s -1 and produces a new set of 

such refinements. For each 1, once the left and right edges of the new 

refinements are determined (by local error estimates), t b s  readjustment can 

be done in a single left-to-right scan of the existing 1 -th level refinements. 

One might ask why all t h s  is necessary. The answer was given in Section 

1.1, where we noted that we must not allow the information in "fine" refinements 

to escape into "coarse" ones. Thus, we cannot throw away any "information" 

(the second components of refinements) from "fine" refinements (unless the 

error estimates allow it). 



In Section 2.6 we will see how these operations fit into our overall algorithm. 

In Chapter 6 we will explain how these operations are implemented. 

2.5. merenee Approximation 

Having described the grid structure, we can now define our difference 

approximations. We will first describe the general form of difference schemes 

allowed, then give our first model problem, and finally specify the particular 

&fference schemes used on this problem. We will use the notation of Section 2.3 

throughout. 

In general, we will compute with explicit two (time)-level difference approxi- 

mations to (2.1) in the interior of refinements, 

where t = t,&, 

q and T are nonnegative integers, ub(t)  is an approximation to u ( x b ,  t ) ,  and 

F$ ( t  ) = F(xL, t ). (By the interior of a refinement, we mean all its points except 

the T leftrnost and q rightmost ones.) As initial condition we use 

vJ(0)  = f (a + vh,), v =  0, 1, . . . , N o .  (2.11) 

The coefficients Aj are assumed to depend smoothly on their arguments. 

The restriction to two-level schemes is necessary to simplify manipulations 

with refinements. (When the spatial mesh is adjusted at time 

t', i = 0, 1, . . . , s -1, it would be awkward, and require more storage, to adjust 

the mesh at previous time levels too.) Ths also simplifies error estimation. If a 



three-level scheme were used with Richardson extrapolation-type error estima- 

tion (to be discussed in Chapter 5), then several additional past time levels 

would have to be saved. Ths  would be hghly impractical in multi&mensional 

problems. Other than this storage limitation, there is no difficulty with error 

estimation for multi-level explicit schemes. (Th~s restriction does not exclude 

two-level schemes with fractional time steps, such as two-step Lax-Wendroff.) 

The restriction to explicit schemes is more fundamental. As we have 

observed, this is no restriction for purely hyperbolic problems, but can be a res- 

triction for more complicated problems ( e . g .  , coupled heat and sound). As we 

will see, our algorithm calculates solutions a t  a given time level piecewise in 

various parts of the interval a S x 5 b .  Obviously, then, the restriction to  expli- 

cit schemes is not merely for convenience. 

In order to use the most convenient form of error estimation given in 

Chapter 5 (three-level Richardson extrapolation), we shall make an additional 

restriction on the interior approximation: The l o c d  truncat ion error (per unit 

t i m e  s tep)  mwf have the s a m e  order in both space and t ime .  If this restriction 

does not hold, or the approximation is implicit, we must use difference approxi- 

mations to high-level derivatives, whch is less convenient. Since we will most 

often use interior approximations which are second order in space and time, 

ths restriction is not too severe. 

At  coarse-fine interfaces (between level 1-1 and level 1 refinements) we use 

the same scheme as above on 1-1-st level spatial mesh points, but with an 

L-1-st level spatial step and (an integer multiple of) an 1-th level tim.e step. This 

will be explained in more detail in the next section. 

Finally, boundaries are treated the same as with a uniform mesh; at  the left 

boundary, 



where 

m 

t  = th, r S r ,  and c$)+,,-, = 0. The approximation at the right boundary is 

analogous. 

Once again we have restricted ourselves to two time levels, for the same 

reasons as before. We allow ourselves implicit boundary conditions here 

( ~ 2 )  # 0) since we can first solve for the points on the right hand side of (2.12) 

using the explicit interior approximation. 

Notice that the boundary formulas apply on any refinement level. If a level 

1 refinement abuts the left or right boundary, all the subscripts and operators 

refer to  the I-th refinement level, not the &st level. 

If we assume that the boundary approximation is explicit, and that its local 

truncation error (per unit time step) has the same order in space and time, 

then once again we can estimate the error using 3-level Richardson extrapola- 

tion. But we do not do make t b s  assumption, not only because it excludes too 

many boundary approximations, but also because differences are less incon- 

venient here. 

We wdl now introduce our first model problem. It will be used both in our 

computations in Chapter 8, and to help describe our algorithm in the next sec- 

tion. I t  is the first order wave equation ("color equation") 

with exact solution u ( x , t )  = g (x-ct) .  We take a = 0,  b = 4, and c = 1. The 



function g is taken to be a Gaussian pulse, traveling to the right with speed c ,  

superimposed on a sinusoidal background, 

with cx = 200. The parameter n control the steepness and thckness of the pulse. 

For a = 200, the pulse occupies about 8 percent of the interval [O, 41. Figure 2.2 

gives an illustration of the trajectory of the pulse. This models more realistic 

problems such as an atmospheric front or storm surge. 

We will consider two different h t e  difference approximations to t h s  prob- 

lem. In the first method we use a second order method (Lax-Wendroff) on all 

refinements. In the second method, we use a fourth-order approximation 

(Oliger, 119741) on the coarsest refinement, and a second-order method (Lax- 

Wendroff) on all other refinements. Ths  is to better resolve the sinusoidal back- 

ground. 

We will need to define the forward, backward, and centered difference 

operators D t  , DL, and DL, operating on 1 -th level refinements: 

where we have omitted the superscript 1 on v . More generally, 

D L  (j&)vv(t) = (2jhl)-'(Ei - E-j ) ~ v ( t )  = ( ~ v + ~ ( t )  - ~ v - ~ ( t ) ) /  Z j h l ,  

for j = 1 ,2 , .  . . Also, for1 = 1, 2 , .  . . ,A1ethl =k l /hL .  

The Lax-Wendroff approximation to our model problem in the interior of a 

refinement (with t = tA - dl) is 

We use the prescribed values 
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at the left boundary; and upwind differencing 

at  the right boundary. 

The formulas (2.14) and (2.15) are only used if a refinement abuts a left or 

right boundary, respectively. We will explain later what to do a t  interfaces 

between refinements. 

The fourth order approximation (with k = k ,  and omitting the superscript 

1 o n u )  is 

= uj(t-k) - C A ~ ( U ~ - ~ ( ~ )  - &viP1(t) + B ~ j + ~ ( t )  - ~ j + ~ ( t ) ) / 6  

in the interior of the coarse refinement. By using a four-point one-sided 

difference approximation to %, we obtain the (thrd-order in space, second 

order in time) approximation at the right boundary (with j = No)  

We use (2.14) a t  the left boundary, with L = 1. In addition, we have to use special 

approximations for points which are a distance h l  from the left and right boun- 

daries. Again, these approximations result from using four-point uncentered 

difference approximations to x. They are 

for points a distance of h1 from the left boundary ( i . e . ,  j = 1); and 



+ 2vi+,(t))/ 3 

for points at &stance h, from the right boundary (i. e .  , j = No-1) 

2.6. Solution Algorithm 

We now describe our algorithm on the model problem. We will explain the 

method which uses the Lax-Wendroff approximation on all refinements. For con- 

creteness, assume we have the underlymg coarse refinement 1, on which is 

superimposed one finer refinement 2. (Usually the spatial region covered by 

refinement 2 is a proper subset of the region covered by the coarse mesh.) 

Superimposed on refinement 2 (but covering only a part of the region occupied 

by it) is a still finer refinement 3. This is an example of a recursive refinement. 

The general case, in whch  there can be several refinements superimposed on 

refinement 1, and even further recursive refinements, will then be clear. 

As in the initial value problem for ordinary differential equations, we will 

need to give a tolerance 6 on the local truncation error, which will be used to 

decide where t o  refine the mesh. (We have only used absolute error since all of 

our example problems vary between 0 and 1. In general, one should use a com- 

bination of relative and absolute error, as in Shampine and Gordon [1975].) 

For the initial value problem for o.d.e.'s, Stetter [1979], and others, have 

shown how to estimate (but not control) the global error while the solution is 

being computed. This requires only a small amount of additional computation 

and storage for that case. Further investigation would be needed to apply t h s  

to the initial boundary value problem. But even if were done, one would still 

need to prescribe a local error tolerance. 

We have implemented the algorithm, and estimated the error for this model 

problem in a way whch applies to more complicated problems. For example, in 

our model problem P1 one boundary is an inflow boundary and the other is an 



outflow boundary. Our difference schemes and error estimation do not take 

advantage of t h s  fact. The difference schemes on refinements use the same 

treatment a t  the left and right coarse/fke mesh interfaces (except when a 

refinement abuts the left or right boundary of the region). A later model prob- 

lem (P2 in Chapter 8) will show that our algorithm is indeed insensitive to the 

drection of characteristics. 

Assuming we have a solution on all mesh points at  time t = nk,, we proceed 

to time t = (n +l)k by advancing on the hghest level refinements f i s t ,  then the 

next hghest,  etc. Ths can be described as working "inside out". (One can also 

proceed from the coarsest level to the finest, and this may be advantageous for 

some types of problems.) 

1. If the time t is a member of the partition P,, we f i s t  estimate the local 

truncation error that would be made if we took one forward time step in the 

level 1 refinement for 1 = 3, 2, 1 ( t h s  estimation is discussed more fully in 

Chapter 5), but we do not actually take the step. Mesh points whose advance- 

ment would exceed the (absolute value of the) local error tolerance are marked 

as needing refinement. These points are grouped into intervals. Several extra 

"buffer" mesh points are added to both ends of each such interval. Ths will be 

explained later. 

For our discussion here, we will assume that the level 3 refinement pro- 

duces n o  level 4 intervals, and levels 2 and 1 produce exactly one level 3 and 

level 2 interval, respectively. 

In general, there may be more than one refinement at  each level (except 

the first). In that case, the operations are done for all refinements on a given 

level, starting with the leftmost refinement. 

2. For 1 = 3, 2 compare the intervals produced in step 1 with the existing 

refinements. If these are not identical, refinements may have to be "moved, 



created, deleted, merged or separated. If refinement 1 moves into a region 

formerly occupied only by refinement 1-1, we may need solution values that do 

not yet exist at  mesh points in refinement 1 .  These are obtained by linear or 

quadratic interpolation in space from solution values on the next coarser 

(parent) I -1-st level refinement. 

Creation of a new refinement is done the same way, by spatial interpolation 

from its parent refinement. At any mesh adjustment time, an I-1-st level 

parent refinement can give birth to any number of I-th level refinements, but no 

hgher level ones. An exception is made at t = 0. If refinement(s) of the coarse 

mesh are needed at  that time, we obtain the new solution values directly from 

the initial function f rather than from interpolation. Ths allows us to add as 

many levels of refinement as are necessary. Thus, the method performs prop- 

erly even when the initial mesh is "too coarse". 

If a refinement occupies a spatial interval I, it can be deleted when it has 

no children, and the local error estimate of its parent in interval I is below the 

tolerance. 

3. Advance the solution at interior points of the finest refinement 3  from 

t = nk to the next level 3  time level t = nkl + k3 ,  using (2 .13)  with I = 3. 

4. At the interfaces between refinements 2 and 3 use a hybrid method, the 

c o a r s e  /fine a p p r o x i m a t i o n  correspondmg to (2.13) : 

with I = 3, where the spatial operators act on the 1 -1-st refinement. We are 

using the Lax-Wendroff formula with space step h,-, and time step k,.  This 

amounts to using the Lax-Wendroff method on mesh 1-1 but replacing hl- ,  by 

k t /  hl-,. Ths method was used by Ciment [1971]. Figure 2.3 shows the stencil in 

the case when L = M = 3 so that the t h r d  level space step h3 = h 2 / 3  and the 

third level time step k 3  = k z / 3 .  Points A, B, and C are used to advance to point 
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For a difference scheme (2.10) whose stencil is more than three mesh 

points wide, we will need to  use the coarse/fine approximation r times in Figure 

2.3 (and correspondingly q times at the right end of a refinement). Ths is done, 

e . g . ,  for r = 2, by using the stencil illustrated in Figure 2.3 to get point D, then 

shfting the stencil one finer mesh point to the right to get the point to the right 

of D. (This involves a spatial interpolation in the coarser mesh, whlch is done as 

in Step 2). 

5. Repeat steps 3  and 4 until the next time level in refinement 2  is reached. 

(In Figure 2.3, thw would be M = 3  times.) In formula (2.16), the quantity 

k l ,  1 = 3, must be replaced successively by 2k1 (A, B ,  and C in Figure 2.3 are used 

to obtain the value at E), 3kl (A,  B ,  and C produce the value at F) 

, . . . , Mkl = kl-1. 

6. At level t = n k ,  + M k 3  = n k ,  + k,, certain points (x ,  t )  are covered by 

both a second and third level mesh point. We already observed in our second 

description of the mesh structure that we allow t h s ;  it is done for simplicity. 

For these points, copy the solution values from refinement 3  to the appropriate 

positions in refinement 2. 

7. For all points which are in the interior of refinement 2, but not in 

refinement 3, advance the solution one time step k ,  from t = n k ,  to t = n k ,  + k 2  

using (2.13) with 1 = 2. (We are proceeding "outward" by starting to advance on 

coarser refinements.) 

8. Now advance the solution one k 2  time step at the interface(s) between 

refinement 1 and refinement 2 using the coarse/fine approximation (2.16) with 

1 = 2. T h s  takes us from t = n k ,  to t = n k ,  + k 2 .  

9. We now have all solution values on refinements 2 and 3  for t = n k ,  + k 2 .  

If the partition P2 of [0, TI contained the time level t = nkl + k 2 ,  it is time to 



check refinements 2 and 3 for possible adjustment. We repeat steps 1 and 2 ,  but 

only for refinements with level greater than or equal 2. (Usually partition Pz 

contains the same time division points as P I ,  so this step is omitted.) 

10. Repeat steps 3 and 4, advancing successively M (= 3 in Figure 2.3) k3 

time levels in the interior of refinement 3, from t = nkl + k2  to 

t = n k ,  + kz +k3 ,  then to  nk,  + k z  + 2k3,. . . , finally to t = n k ,  + kz + Mk3 

= nk, + 2k2. Next we repeat step 6 a t  level t = nk,  + 2k2 by copying solution 

values from refinement 3 to refinement 2 here. Then we repeat step 7 to 

advance at points whch are in the interior of refinement 2 but not in refinement 

3 from t = nk,  + kz to t = nk + 2kz. Finally, we modify step 8 on the interface 

between refinements 1 and 2 to advance one step from t = nk,  to nk,  + 2kz. 

This uses formula (2.16) with 1 = 2, but with k2 replaced by 2kz. 

11. We now have all solution values on refinements 2 and 3 at time 

t = nk l  + 2kz. If it is time to adjust the spatial mesh (ie. , if partition Pz con- 

tains this time level), repeat step 9. 

12. Apply steps 10 and 11 M-2 more times. At the end of the first applica- 

tion of step 10, we will have reached t = nk + 3kz (from t = nk , + 2kz). We 

then successively reach t = nkl + 4kz, . . . , nkl  + Mkz = (n+l )k l .  

13. At level t = ( n+ l )k l  certain points (z, t )  are covered by both a point of 

refinement 2 and a point of refinement 1. Copy the solution values at such 

points from refinement 2 to refinement 1. 

14. For points whch are in the interior of refinement 1, but are not in 

refinements 2 or 3, advance the solution one coarse (kl) time step from t = n k l  

to ( n+ l )k l .  

15. Finally, if refinement 2 does not abut the left boundary, advance the 

solution at the left boundary using (2.14) with 1 = 1. If refinement 2 does not 

abut the right boundary, advance the solution at the right boundary using (2.15) 



with 1 = 1. If some refinement (with level greater than one) abuts a boundary, 

we treat t b s  a t  the same time an interface is treated in the above steps, but 

instead of the coarse/fine approximation, we use (2.14) or (2.15) as appropriate, 

with the appropriate level 1. 

An extremely important feature of this method is the use of a buffer on 

either end of any refinement (except the coarsest one), as mentioned in Step 1. 

If we are estimating the truncation error for the refinement lxjj and the error 

tolerance is exceeded between j = oc and j = w ,  then we instead refine from 

j = a - bl to j = w + b l ,  where bl is the buffer length for refinements of level 

1 + 1. That is, both ends of the I + 1-st level refinement are padded with bt extra 

cells of width hL. In general, if our I-th level refinement requires several inter- 

vals of I + 1-st level refinement (accordmg to the error estimate), then each such 

interval is padded as above. (Tbs may cause some I +1-st level reflnem.ents to 

merge.) 

How do we choose b l ?  From Figure 2.3 on the use of the coarse/fine 

approximation, it is clear that b, should be at  least one. For safety we make it 

two. Another consideration is, How often do we check the local truncation error 

(how fine is the partition Pi-,) and what is the largest wave speed? (As we said, 

we are assuming the largest wave propagation speed is known. In our model 

problem it is c .) For simplicity we shall assume that all partitions Pi, 1 2 1, are 

the same, and that we check the error every d coarse time steps. Therefore, in 

time k l  a wave could travel left or right a distance of cdk,  = cdXlhl = 

c z ~ h ~ ~ ~ - ' h ~ ,  or cfihlN1-' cells of width h,. (Here the 1-1 is an exponent, not a 

superscript.) So we take b, = 2 + [cdhlN1-'1, where 1x1 is the ceiling function 

(the least integer greater than or equal to x).  (For difference approximation 

(2. lo), bl must be modified by replacing 2 by q + 1 at  the left end of a refinement, 

and by r+ l  at  the right end.) Obviously, hgher level refinements have larger 

buffers. 



The buffer mechanism has several beneficial consequences. First, and most 

important, it insures that the rapidly varylng part of the solution does not 

escape into the coarser region. As we saw in Chapter 1, this is absolutely essen- 

tial to the success of the algorithm. Secondly, this policy allows us to use 

difference approximations at coarse/f?ne interfaces whch would otherwise not 

be accurate enough in the fine mesh. We can also estimate the local truncation 

error at  coarse/fine interfaces in a very simple manner (see Section 5.3). Thwd, 

it allows "smooth" transitions in mesh width, as mentioned in Section 2.3. That 

is, a level 1 refinement can abut a level L + 1  or 1-1 refinement, but not others. 

This is important when using recursive refinements. Fourth, it keeps the 

refinements from splitting into tiny pieces, because level L +1 level refinements 

whch are closer than 2bl level 1 cells apart (before buffering) are joined 

together. (If the local truncation error were large in absolute value but sud- 

denly changed sign, this might cause splitting into pieces.) We make tlvs condi- 

tion even more stringent by joining together any level L t 1 refinements which are 

less than 2 b L + 2  level I cells (of length hl) apart (before buffering). Fifth, 

buffering allows us to specify a priori the times to check the local error (and 

adjust the mesh). In particular, we need not check the error at every time step 

(Chapter 8 shows that this is very expensive). We can instead check a t  every 

coarse  time step, or even every 29 coarse time steps, where 29 is a small positive 

integer. Sixth, buffering contributes greatly to the robustness of the algorithm. 

Buffers make the algorithm relatively insensitive to small inaccuracies in the 

local error estimation. 

Let us comment on the storage required for this algorithm. If we use a 

two-level method and perform the operat~ons in the order given, then we need 

two levels of solution values, just as for a uniform mesh. As soon as all the solu- 

tion values in a refinement at a new time level are known, we can overwrite them 

on the old solution values. (This would not have been quite the case if  we had 



advanced the coarsest mesh first, because of the use of the coarse/fine approxi- 

mation. But even in this case, only a slight amount of additional storage would 

be required.) Thus the storage requirement for solution values is no greater 

than for a uniform mesh with a similar number of solution values. A slight 

amount of additional storage is needed for pointers and indices; t h s  is minus- 

cule, compared to space for solution values. Next, free space is needed to 

separate the solution values on rehements .  The amount is variable, but c m  be 

chosen quite small. (This will result in more memory repacking; see Chapter 6.) 

Finally, storage is needed for error estimates; but these can be done a 

refinement at  a time, so we only need two vectors (when solving a scalar equa- 

tion), each the size of the largest refinement. We should note that we did not 

implement our algorithm in a way which minimizes the amount of storage. 

So far we have described the algorithm for a single equation. What are the 

modifications necessary for an n x n (coupled) system in one space variable? 

For many problems that occur in applications, sharp gradients of different 

components of the vector u tend to occur in approximately the same place, and 

travel together. For such problems, a simple modification of the above scheme 

will suffice. A refinement, instead of consisting of a scalar set of solution values 

evaluated at  1 -th level mesh points fvj(th)j is now a vector set of solution values 

evaluated at these mesh points. So we simply store n times as many solution 

values. Importantly, the refinements are the same for each component, so the 

manipulation of refinements (creating, destroying, merging, separating, moving) 

is unchanged. Furthermore, evaluating the difference equations for any mesh 

point a t  spatial position x poses no difficulty, since all components of the 

approximate solution will also be available at x .  To decide where to refine, we 

estimate the error a t  a position x for each component, and then compare the 

maximum (absolute value) of these estimates to our tolerance. 



When the components of the solution u, have steep gradients at different 

positions, we can use our algorithm, but it may refine regions whch are not 

necessary for some components, and t h s  may affect the efficiency of the algo- 

rithm. To ameliorate t h s ,  two modifications would be needed in the algorithm. 

The most important is that at a position x where LJ needs to be evaluated, not all 

components of v will be available, since x may be in a refinement for one com- 

ponent, but not in a refinement for another component. One must then interpo- 

late (in space) to find u at x for the missing components. By assumption, this is 

justified, because the missing components do not have large gradients at x .  

The other modification is the need to account for n sets of refinements. 

The amount of extra storage required (beyond space for solution values) would 

be very small. But considerable additional complexity would be introduced into 

the mesh manipulations. So we &d not implement tlvs extension. 



CHAPTER 3 

Stability 

In t h s  chapter we will examine the stability of our scheme. We will need the 

stability of our scheme to justify computing with it, and also to use in conver- 

gence results (stability plus consistency implies convergence). 

The usual stability definition is Definition 3.3 of Gustafsson, Kreiss and 

Sundstrom [I9721 (hereafter referred to as the GKS definition). We show that 

this defimtion does not lend itself to proving convergence on our refined mesh 

system, and following Berger, Gropp, and Oliger [to appear] propose a new sta- 

bility definition which does lend itself to proving convergence. We then show 

that under mild assumptions, a method which is stable for a mesh consisting of 

one strip (in the sense of Section 2.2), is also stable for any number of strips. 

We then state a stability proposition for our mesh refinement scheme. 

3.1. Preliminaries 

Ths section introduces some notation and definitions in what follows. We 

will assume the coefficients A ,  B are constant. We will also use the notation of 

Section 2.2 instead of Section 2.3 for mesh points and difference approxima- 

tions. 

We assume that there is an upper bound K on the ratio of spatial step sizes: 

Let hi  = maxi hj, and assume hi / mini h j  5 K. (Ths is automatically ensured by 

our scheme because we select a maximum refinement level in advance. In fact, 

K = N ~ - ' . )  This will ensure that all h, have the same asymptotic order as h -, 0. 

Let h = h ,  = maxi h i ,  and k = k = maxiej kf .  We denote an approximation to 

u ( x j ,  tf.m) by uf(tf.,). 



We can specify a uniform mesh by specializing our notations. Specifically, 

there is only one horizontal strip, S1 = [a, b ]  x [ 0 ,  T I ,  all hj are equal, and 

denoted by h ,  all mj = 1, and all k; are equal, and denoted by k . The mesh point 

(xj, t jam) is abbreviated to (xj, t,). The approximation vj(tj,,) is abbreviated to 

vj(trn). 

We will now rewrite our difference approximations in the new notation. Our 

t,,,, k = k; = k;, left boundary approximation (2.12), with f = t;, = ' 
i = 1 , 2 , . .  . , s , m  = 0 ,  l , . .  . , m j , i s  

where 

(The shift operator E tacitly depends on i and r also. Furthermore, sP) 
depends on i  as well.) We assume c%)+ , - ,  = 0, p = 0,1,  . . . , T-1.  Note that all 

the coefficients are the same as before (except we have assumed they are con- 

stant); only the numbering of the solution values has changed. 

Similarly, the right boundary approximation, with i, m as before, 

t = thi-,,,, k = k& i-,, is 

0 

vkiPp(t +k) = ~ ~ - ~ - ' ) v ~ ~ - ~ ( t  -5k) + g<,-l ( t ) ,  p = 0.1, . . . , q -1. (3.2) 
o=-1 

where 

Here q and r are nonnegative integers and t l  q . If we had introduced "ficti- 

tious" boundary points as Gustafsson, Kreiss, and Sundstrom did, we could have 

written our boundary conditions in their form, or in the form of Gustafsson 



[1981]. We did not do so because it simplifies our analysis in the next chapter. 

I t  is important, both theoretically and practically, to c o n h e  the dependence 

between strips Si and Si+l to the points with t = t Z .  

A t  the r leftmost fine points a t  the left end of a refinement (whch does not 

abut the left boundary), and at the q rightmost fine mesh points at the right end 

of a refinement, we use the coarse/fine approximation, as described in Section 

2.5. A t  all other points our interior approximation (2.10),  (with t = tt,,), 

becomes 

vt ( t  + k t )  = ( t )  + k t F ;  ( t  ) , 

As initiaI conditions we will prescribe 

where the values f are arbitrary. 

We next need to define discrete 12 norms. This cannot be done exactly as 

for a uniform mesh. The discrete l z ( x )  norm can only be defined at coarse grid 

points ( more generally, if we did not use an underlying coarse mesh, only at the 

time division points t i  of the strips Si). For, as is evident in Figure 2.3, if a point 

in a level L refinement has coordinates ( x ,  t ) ,  and is not a coarse mesh point, 

there may exist no other grid points in other refinements with the same coordi- 

nate t .  

A similar difficulty occurs with the Lz(t)  norm. This can be defined for all 

strips 0  l t I T only on coarse grid points. If we did not use an underlying 

coarse grid, the L2(t) norm could be defined for 0 %  t  I T only at the boun- 

daries. However, the l z ( x ,  t )  norm can be defined in a natural manner, by 

adding I z ( x ,  t  ) norms on each strip. 



Defmition 3.1. For i = 1, 2,  . . . , s the discrete l , ( x )  inner product of two 

vector grid functions v  and w defined on our grid at a time division point t = t i  

in strip Si is 

where we have defined hi = h i .  The discrete 12(x) norm is given by 

(There are two spatial meshes at  the time division points t = t i ;  the definition 

above was for the mesh obtained before adjustment. The norm for the mesh 

obtained a f t e r  adjustment is Ibifl(ti)ll,.) As usual, ' denotes the conjugate tran- 

spose of a vector. 

For certain purposes we will need an alternative definition of the 1 2 ( x )  

norm. If u(xj , t )  is an approximation to v f ( t ) ,  the above definition is the rectan- 

b 

gle rule O ( h )  approximation to J lu ( x ,  t i ) I2dz .  We could also have approxi- 
a 

mated t h s  integral by the trapezoid rule, which provides an O ( h 2 )  approxirna- 

tion. 

Definition 3. la. In the formula (3.5) for the l z ( x )  inner product of two gridfunc- 

tions, replace hj by (hj)', where 

f o r j  = O o r j  = N i ,  

+ hj+l ) at coarse/ fine interfaces xj, 

otherwise. 

The norm corresponding to this inner product, called the trapezoidal L2(x) 

n o r m ,  will be denoted by 1 ) )  - ) I ) ,  . 

I t  is well-known that, for uniform grids, both norms are equivalent, that is, 

there exist constants c and c,, such that 
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Definition 3.2. The discrete Lz( t )  inner product of two vector functions v and w 

on the strip Si = [ a ,  b ]  x [ t ip ' .  t i ]  is given by 

The discrete Lz(t) norm on the i-th strip is given by 

Definition 3.3. The discrete Lz(x ,t  ) inner product of two vector functions v and 

w on the strip Si is 

The discrete L2(x, t ) norm on the i - t h  strip is 

I I ~ ( ~ ) I I ~ , ~ t i - ~ , t i l  = ( ~ 1  v)x,t,i , 

The discrete Lz(x, t )  inner product for the entire region R = [ a ,  b ]  x [0, T] is 

then given by 

and the discrete 1 2(x ,t ) norm for the region is 

For certain purposes we will need a grid defined for -m < x < a, SO on the 

i - t h  strip Si ,  we extend our grid uniformly to the left of x = a ,  with space and 

time steps hf and k : ,  respectively. On Si we similarly extend the mesh to the 

right of x = b using space steps hhi and khi . These extensions produce no new 

coarse / h e  interfaces 



3.2. Need for a New Stability Dehition 

As we mentioned a t  the beginning of t h s  chapter, to relate the local trunca- 

tion error to the global truncation error, we need to use a variety of other 

results. One such result is Gustafsson's [1975], work on the convergence rate 

for approximations to the initial boundary value problem. 

This work was based on the Gustafsson-Kreiss-Sundstrom ( G K S )  [1972] 

definition of stability. As usual, Gustafsson showed stability plus consistency 

implied convergence on a uniform mesh. In this section, we show why the GKS 

stability definition cannot be generalized for our refined grids, and present the 

alternative stability definition of Berger, Gropp and Oliger [to appear]. 

In order to give our generalization of the GKS definition, we will need to 

extend our integration to t = m .  To do t h s ,  we can add additional strips Si 

beyond t = T. We require that the "width" ti+' - t Z  ' of these strips for t i  2 T be 

the same. Then the following is a direct generalization of the GKS definition 3.3 

for the right quarter plane [0, m )  x [0, m), rather than our vertical strip 

[a, b ]  x [0, m ) .  (We set a = 0, remove the right boundary condition, use the 

extended mesh for 0 S x < m ,  and define the L z ( x , t )  norm on the extended mesh 

in t h s  d e h t i o n  only.) 

Definition 3.4. Assume that the initial data f (3.4) in the difference approxima- 

tion are zero. Let h = k l / h l  = constant, independent of 1 .  The approximation is 

stable if there are constants KO > 0 ,  a. r 0 such that,  for all a > ao, for all k ,  all 

mesh spacings of the type described, all left boundary functions g@, and all inho- 

mogeneous terms F, 



This definition seems plausible on the surface. We have merely applied the 

GKS defimtion on each horizontal strip, and added. (We have tacitly assumed 

that on each strip, the GKS definition applies even though our mesh is nonuni- 

form. We will discuss this later.) But there are several problems with t h s  

approach, if we wish to use this definition to prove convergence. 

The first is the assumption that the initial data f are zero. This may be 

acceptable for t = 0, but after we integrate over the strip S,, we in effect start a 

new initial boundary value problem at t = t l ,  and now the "initial" data is not 

zero. It is difficult to incorporate a nonzero f into the GKS d e h t i o n ,  since it 

was derived using Laplace transform. However, it is necessary if we wish to use 

it to prove convergence. For, in an  interval 0 I t I T the nurnber of strips Si 

becomes unbounded as h -, 0. The solution at  tS = T depends on the values of 

the solution ("initial data") at  all previous strips, but this dependence on values 

at times ts-l, to tSP2, , , . , t l ,  has to be removed if we want to prove conver- 

gence. Ths  can only be done If f appears explicitly. 

A second difficulty is related to the first. The GKS definition assures us that 

exp(-at) times the solution is in L2(x,t), but for any fixed t does not assure us 

that the solution is unconditionally in lz(x) .  (Compare Theorem 3.1, GKS). In 

order to integrate over a new strip Si, we wish to treat the solution values at 

t = ti-1 as "initial" values, and this requires that they be in Lz(x). 

A third (less important) difficulty is the Laplace transform parameter. 

(Recall that a is the real part of the Laplace transform parameter s = a + i w ,  

and the right half-plane in which the transform and its inverse converge abso- 

lutely is ts: Re s > aoj .  Call a. the "abscissa of convergence".) If we apply the 

GKS definition "stripwise" and add, we would need to be assured that the abscis- 

sas of convergence a. for each strip were uniformly bounded. (If  we were deal- 

ing with a quarter plane problem with constant coefficients and no 



undifferentiated terms, we could take a. = 0. Otherwise, a. may not be expli- 

citly computable.) 

The above remarks should not be taken as a criticism of the GKS definition; 

only as pointing out that their definition is unsuitable for our purposes. 

Motivated by these considerations, Berger, Gropp and Oliger [to appear] 

have given a new stability definition. It applies to approximations in any number 

of space dimensions, and is the discrete analog of the following well-posedness 

condition for differential equations. 

Defkition 3.5. Let R be a region in real Euclidean n-space R n .  Let R be the 

space-time region R x [ O ,  T I .  In R ,  consider the differential equation 

where L = at + P(x , t  ,a,), together with initial condition 

and boundary conditions 

Bu(x,  t )  = g ( t ) ,  x E an, 

where a R  denotes the boundary of 0. Let 1 1  -Iln, 1 1  -llanxlo,T], and 1 1  -J lnx[o,T~ denote 

the usual L2 norms in space, time (evaluated at  the boundary), and space-time, 

respectively. Ths  problem is said to be w e l l p o s e d  if for any T 2 0 there exists a 

constant K; > 0 such that,  for all f , g and F, the estimate 

holds. 

The analog for the discrete approximation (3.1)-(3.4) with for a uniform 

mesh is then obvious. 

Definition 3.6. Let X = k ,/ h, = constant. The difference approximation (3.1)- 

(3.4) on a vertical strip [ a ,  b ]  x [ 0 ,  T ]  is s tab le  for a uniform mesh if for any 



T > 0 there exists a constant KT > 0 such that,  for all F, g p ,  and f , and for all 

k ,  > 0 such that T = m k , ,  m integer, an estimate 

holds. (It is well-known that KT can be replaced by Klexp(aT) for some constant 

K,  > 0 and some a,) 

It is not too difficult to extend this definition to our refined mesh scheme so 

that it can be used to prove convergence. We proceed in two steps: (1) Extend 

this definition to our refined mesh on one strip; (2) extend it to several strips. 

To extend the definition to one strip, it is only necessary to examine the 

coarse/fine interface between two refinements. The question is whether such an 

interface introduces any additional terms into the stability definition given 

above. The answer is no. The reasoning follows the work of Ciment [1971] and 

Oliger [1976]. To consider the stability near t h s  interface, one extends the 

mesh on the left side to -M (in space) and on the right side to M. Thus, one has 

two quarter-plane problems. The left quarter plane is folded along the 

coarse/fine interface, resulting in a right quarter plane problem for a coupled 2 

x 2 system. The interface concbtions become h o m o g e n e o u s  (coupled) boundary 

conditions. Since only i n h o m o g e n e o u s  boundary conditions enter the stability 

definition, the latter stays the same when a uniform mesh is replaced by one 

strip of our refinement scheme. 

(This discussion has assumed that the time steps in the two quarter planes 

are equal. If  they are not, then there is no analysis to support our discussion. 

However, computations by Oliger, Ciment, ourselves, and others seem to indi- 

cate the truth of the assertion even in this case.) 

Next, we need to extend this definition to several strips. Before doing this, 

we need to introduce an additional complicating factor for our refined grids. 



Recall that at  times t i ,  i = 0, 1, . . . , s -1 we adjust the spatial mesh by interpo- 

lation. Ths produces an interpolation error, which we will need to account for in 

our analysis. (Note that this error arises even if we ignore the differential equa- 

tion we are approximating.) We will examine its magnitude in the next chapter. 

For i = 0, 1, . . . , s -1 we will define this error / ( t i )  by 

I/ui+'(ti)llZ = Ilvi (ti)llz + / ( t i ) .  (3.6) 

We will now extend the stability definition to two horizontal strips; the gen- 

eral case then follows by induction. For i = 1,2, . . . , s and any grid function w 

we first define the boundary sum of w at the left and right ends of the strip Si 

as 

(A similar definition holds for the 12(t) norm of w on St.) Then for the strip S ,  

and similarly, on the strip t ' 5 t S t = T,  using v2(t  ') as initial data, 

Adding these, using (3.6) for i = 1 and then subtracting Ilvl(tl)llx from both sides 

gives 

We wish to eliminate the dependence on v l ( t l ) ,  so we use inequality (3.7) to 

replace that term on the right of (3.8), use (3.6) again with i = 0, and use (3.4) 



to obtain 

where 

I t  is now clear what the stability definition should be for any number s of strips: 

Definition 3.7. Let h = k l / h l  = constant, independent of 1 .  The difference 

approximation (3.1)-(3.4) on a vertical strip [ a ,  b ]  x [0 ,  T ]  is stable for a refined 

mesh (as described in Section 3.1) if for any T > 0, there exists a constant 

KT > 0 such that, for all positive integers s ,  all sets of time division points 

all kl > 0, 1 = 1, 2, . . . , A ,  satisfymg our restrictions for refined meshes, and all 

F, g,, I, and f ,  anestimate 

holds. 

Our extension to several strips, then, will be complete if we show that KT is 

uniformly bounded, independent of the number of strips s .  For the general case 

of s strips (3.9), the corresponding KT will be a maximum of s expressions of the 

form 



for i = 1, 2,  . . . , s .  If all (positive) powers of K,  are bounded by a uniform 

bound M3, then this maximum will be bounded uniformly for any number of 

strips s  in the interval 0 I t I T by &f3eaT if a 2 0, and M 3  if a < 0. 

The following assumption will ensure the uniform boundedness of the 

powers of K,: 

Assumption 3.1. There exists a k ;  > 0 so that, for 0 I k l  S k ;  and 0 I t  S T ,  

(a) K,  = 1 + O ( k l ) ,  that is, there exists M i  > 0 so that K1 S 1 + M l k l ;  

(b) s k ,  = constant = C,. 

Assumption (a) is natural if one defines the solution operator E ( t z ,  t , ) ,  

whch  takes a solution at time t ,  and produces a solution at time t z  > t ,. When 

t z  = t  ,, E is the identity operator. Assumption (b) is only a very slight restric- 

tion. I t  says that as the largest time step k ,  becomes small, the number of 

strips s  (in the same fixed time interval 0 S t  I T )  becomes large. In practice, 

when we halve hl (and hence k , ) ,  we can either keep the division points ti the 

same, or use twice as many division points. To control the local truncation 

error, we do the latter, and t h s  fulfills the assumption. (This assumption is an 

analog of our restriction on spatial step sizes in Section 3.1, but is a milder res- 

triction.) If we check the local truncation error every d coarse time steps (with 

19 fixed), this will automatically fulfill the assumption. 

If assumptions (a) and (b) are satisfied, then the product of any number of 

factors K1 is bounded. For, 

We have shown 

Proposition 3.1. If the difference scheme (3.1)-(3.4) is stable in the sense of 

Definition 3.7 for one horizontal strip of a refined mesh, and if Assumption 3.1 

holds, then it is also stable in the sense of Definition 3.7 for any number of 

strips. 



We believe the GKS stability definition does not lend itself to a proposition of 

this kind. 

3.3. Stability of Refinement Algorithm 

In this section we shall outline results whch we believe are true for our 

mesh refinement algorithm. 

For a uniform mesh, a scheme is stable in the sense of Gustafsson, Kreiss, 

and Sundstrom if it is stable in the sense of Definition 3.6, either for a quarter- 

plane or strip problem. We believe that the converse is not true in general; that 

is, the new definition is stronger. 

This means that each individual difference scheme must be proved stable 

ab i n i t i o .  Certainly, however, a dissipative difference scheme such as we have 

been using will be stable under almost any (reasonable) definition, for a uniform 

mesh. In order to prove this for the new stability definition, one cannot use the 

normal mode analysis as in the GKS approach. Instead, the energy method is 

appropriate. 

For a refined mesh, we showed in the last section that we need only con- 

sider one horizontal strip. Then a question which arises naturally is stability 

along a coarse/fine interface. This question already has been examined (using 

the GKS definition) in Ciment [1971] and Oliger [I9761 for the case of equal time 

steps on both sides of the interface. Oliger found that if leap-frog was used on 

both sides of the interface, certain restrictions on the refinement ratio needed 

to be made. But if the difference scheme was dissipative on one side of the 

interface, all stability problems vanished. Since we are using refinements 

throughout the region, and possibly recursive ones, this suggests using a dissi- 

pative scheme throughout the region. 



Still to be examined is the stability (in the sense of either GKS or Definition 

3.6) along a coarse /fine interface for unequal time steps. 

Even though our analysis is far from complete, we believe that our scheme 

is indeed stable in the sense of Definition 3.7. 



CHAPTER 4 

Error Analysis 

I t  is clear from Chapter 2 that the success or failure of our algorithm will 

hmge on the reliability and efficiency of the local error estimation process, 

because t h s  is what decides where to locate refinements. And in the next 

chapter we will see that estimating the local error in turn demands a knowledge 

of the behavior of the global error. Thus, this chapter will answer the following 

questions, which are of interest not only in their own right, but also for the suc- 

cess of the algorithm: 

How does the order of accuracy of the interior, boundary and coarse/flne 

interface approximations, and the interpolation affect the global error? 

Does mesh refinement increase the (global) order of accuracy of a 

difference approximation (compared to using a similar approximation on a 

uniform mesh)? 

If not, can some theoretical arguments be given to justify mesh refinement? 

Since our algorithm has two basic convergenc e-inducing pararne ters (the 

maximum step size h, and the local truncation error tolerance 6) instead of one, 

we first discuss different modes of convergence. Next we prove a theorem relat- 

ing the pointwise interpolation error to its Lz(x) norm. 

The chef result giving the rate of convergence for difference approxima- 

tions to the initial boundary value problem is due to Gustafsson [1975]. It 

bounds a weighted Lz(z,t) norm of the global error in terms of the local errors. 

We restate (but do not prove) his result for a scheme whch is stable with 

respect to the new stability definition introduced in the last chapter (Proposi- 

tion 4.1). Ths  proposition bounds the L2(x) norm of the global error in terms of 



the local errors 

Based on this proposition, we prove another proposition, whch assures us 

that the same rate of convergence obtains even when we economize on mesh 

points by placing fewer in regions where the solution is not changing rapidly. 

This result (Proposition 4.2) is based on the approach of de Boor [1973] which 

was applied by Pereyra and Sewell [I9751 to solve boundary value problems for 

ordinary differential equations: at each time t i  choose a mesh which (approxi- 

mately) equidistributes the local truncation error. This result provides the 

required theoretical justification for our method and also suggests where to 

place refinements. 

In order to obtain a practical algorithm, still further compromises must be 

made. Although some numerical algorithms for boundary value problems in 

o.d.ePs actually do use the equidistribution criterion more or less directly 

(Lentini-Pereyra [ 19771, White [1979]), this process is much too expensive to 

implement at every time step of a time-dependent calculation. Furthermore, 

for the reasons given in Section 2.2, we want to use piecewise uniform meshes. 

By doing so, and by using recursive refinements, we can achieve the effect of 

equidistribution. 

A final compromise involves getting bounds for the local truncation error. 

de Boor [1975a, b] has given bounds for derivatives in terms of differences, and 

in principle we could use these for our local error estimation. However, we shall 

show in Chapter 5 that these bounds are hopelessly conservative. We are forced 

to estimate, rather than bound, the local truncation error, and even then, we 

estimate only leading terms of the asymptotic expansion of the local error. 

Having made all these compromises, we then implemented four methods for 

estimating the local truncation error. These are explained in Chapter 5. We 

apply three of these methods to our model problems in Chapter 8. 



4.1. Modes of Convergence 

Let us first discuss what we mean by convergence. In all cases we let 

h = k l /  h, = constant, independent of 1 .  Throughout this chapter we shall 

assume the exact solution is sufficiently smooth. We shall also make Assumption 

3.1 of the last chapter. There are several possibilities. 

(a) We could hold our refined mesh and the local error tolerance 6 (Section 

2.6) fixed, and let the maximum possible refinement level h increase without 

bound. This will not produce convergence, since (for smooth solutions) increas- 

ing A beyond a certain point will introduce no further actual refinements (as we 

will see in Section 8.3). We recommend computing with a large enough level of A 

(say 10) so that the algorithm can refine as much as it pleases. In the rest of 

this chapter we assume t h s  has been done. 

(b) Keep the local error tolerance 6 and the maximum refinement level A 

fixed, and let the largest spatial step h ,  approach zero. If we take a sufficiently 

large value for A as  above, then the algorithm will r e h e  as much as it needs to. 

Furthermore, (for smooth solutions) our method then has a property which 

leads to simplified analysis: For s u j g i c i e n t l y  s m a l l  h,, o u r  r e f i n e d  m e s h  b e c o m e s  

a u n i f o r m  m e s h .  This is because of our local error tolerance. If it is held fixed 

and h ,  approaches zero, then so do all h,. Hence, our local error estimates (to 

be discussed in the next chapter) will ultimately become less than the tolerance 

6 at  every mesh point on every refinement level. Thus, no refinements will ulti- 

mately be introduced in the first level (coarse) mesh. This type of convergence 

is not desirable, since the advantages of refinement are ultimately lost. 

(c) One might object to the above procedure, on the grounds that the local 

error tolerance 6 should not be held constant. After all, to study convergence in 

0.d.e. initial value solvers, one gives a decreasing sequence of local error toler- 

ances, and (until the round-off level of the machine is reached) this produces a 



decreasing sequence of maximum mesh sizes. But our algorithm is dfferent. 

Decreasing the tolerance does not directly decrease the largest mesh spaclng 

h,.  However, for any refinement level 1 and any fixed time, we can choose a 

sufficiently small tolerance 6 so that the entire spatial region will be covered at 

that time by one 1 -th level refinement. Thus, the effect is as though the the larg- 

est spatial mesh size has been reduced from h ,  to hl at  that time. However, the 

same 6 may not work for all times; this makes the method difficult to analyze. 

In addition, t h s  method does not satisfy Assumption 3.1, since the number of 

strips s remains constant (instead of increasing) as 6 is decreased, if we adjust 

the mesh every .19 coarse time steps. To overcome these problems we need to let 

h depend on 6 .  

(d) A fourth method would let h1 -, 0 and choose 6 as a function of h, ,  so 

that 6 -, 0 also. (Alternatively, we could let 6 -, 0 and choose h, as a function of 

6.) If one knows the order of the global error, one could choose 6 = C(h,p for 

some constant C.  This is certainly the theoretically most appealing method, and 

we shall use it in our analysis of this chapter, and in our numerical experiments 

in Section 8.5. If  we use this method, then the grid does n o t  approach a uniform 

coarse grid as h1  -, 0, as in method (b). Rather, the ratio of the width of any 

refinement to the width of its parent should approach a constant as h1 -, 0. 

However, for checking the asymptotic behavior of the program in Section 8.5 we 

shall also use method (b), since it does not beg the question by assuming the 

behavior of the global error. 

4.2. Interpolation k o r  

As we mentioned in the last chapter, In addition to the usual truncation 

errors, for a refined mesh we have another source of error-the interpolation 

error /(ti) at the time division points t i ,  i = O , l ,  . . . , s -1. How does the tra- 

pezoidal norm IIlvi(ti)lll, change when we readjust the mesh to produce 



III~i+l(ti)lllz? 

Theorem 4.1. Let our refined mesh be as in Section 2.2, with horizontal 

strips Si , i  = 1, 2, . . . ,s. At time division points t i ,  i = 0, I , .  . . ,s-1, obtain 

new approximate solution values vi+'(ti) from the old ones v i ( t i )  by (a) linear or 

(b) quadratic interpolation in space. Then for the method (d) of convergence, 

Illvi"(ti)lll: = Illvi(ti)lll: + O(hZ) as h -, 0, 

regardless of the (two-level) difference scheme used. Here h is the maximum 

mesh size, and X = h,/ k, = constant independent of 1 .  

Proof. It is sufficient to  assume we are dealing with one level 1 spatial inter- 

val a t  time t = t i  for case (a) ,  or two for case (b), in (each of) which are interpo- 

lated N-1 (resp. 2N-2) new level L +  1 approximate solution values. ( N  is the 

spatial refinement ratio.) For, as described in Chapter 2, we are allowed to insert 

only one level of refinement at  each t i ,  except a t  t = 0.  (At  t = 0 we can use the 

initial condition directly, producing no interpolation error.) We are allowed to 

delete more than one level a t  a time, but in that case we can prove our theorem 

recursively a level at a time. Without loss of generality, we shall assume that 

new points are introduced but not removed. 

Let us now examine linear interpolation. We will use a simplified notation. 

O n  one level L interval [xo, xN] the contribution to the trapezoidal sum lllvlllz is 

Z1 = jLLhl[u$ + u j ]  = ) $ ~ h ~ + ~ [ v z  + ~ $ 1 .  

(The 2's are now exponents, not superscripts.) For N 2 2, we use linear interpo- 

lation to obtain approximate solution values v , ,  v2,  . . . , vN-,, and we form the 

new contribution 

to the trapezoidal rule sum. We msh to compare this to the previous sum C1. We 



use the formula for linear interpolation 

and substitute in Cz. Let u be the exact solution. Since the method is conver- 

gent, we can assume that the global error e = u - v is O(h@) as h -, 0, for P r 1. 

Therefore. 

After some elementary manipulations we obtain 

Since vovN = %(v$ + v j )  + 0(h2), the last sum becomes C1 + 0(h3). 

Now let v be the number of level 1 intervals in which we interpolated. Then 

the O(h3) term is multiplied by v. If we use method (d) of convergence, then 

ultimately v is a fixed fraction of the region a I x II b (i.e., v/ No = constant as 

h -, 0). So vh = (v/ No)(b -a) and one power of h is lost. Ths proves the first 

assertion. (If we had instead used method (b) of convergence, then v -, 0 as 

h -, 0, and one power of h is not lost.) 

For quadratic interpolation on two intervals [xo, xN], [xN, xZN] of the level 1 

mesh, the contribution to the trapezoid rule sum is 

We wish to compare it to the sum 

where v ,, w 2 ,  . . . , U N - ~ ,  U N + ~ ,  . . . , v 2 ~ - 1  result from quadratic interpolation 

As before, v~ - vo  = O(h2), and v, - 2vN + U Z N  = 0(h2) ,  so our sum 2, becomes 



After simple manipulations, this becomes 

hl+1[@," + ( Z N - 1 ) ~ $  + )$J&] + 0(h3).  

Using 

we obtain C3 + 0(h3). By the same arguments as before, we lose one power of h 

If we use the rectangle rule for the 12(x) norm ( 1 1  .I/,), a similar proof shows 

that we obtain O(h) instead of 0(h2) for either type of interpolation. This latter 

norm is more suited for our analysis to follow. 

4.3. Rate of Convergence. I 

Before deriving our main convergence result (Proposition 4.2) we will state, 

but not prove, the anaIogue of Theorem 2.1 of Gustafsson [1975],  on the rate of 

convergence of difference approximations to the initial boundary value problem 

for hyperbolic systems in one space dimension. Our analogue uses the stability 

definition given in Chapter 3 instead of the GKS definition. Thus the result is in 

terms of the L2(x) norm of the solution instead of the weighted L2(x,t) norm. 

Aside from this, the only differences in our proposition are the change from the 

quarter plane to strip, the inclusion of interpolation error, and the compatibility 

assumption (4.1), which is a weakening and generalization of a similar assump- 

tion of Gustafsson's. 

As an application of this proposition, suppose that one uses an 0(h2) inte- 

rior approximation and O(h) boundary approximations. Also suppose that we 

use linear interpolation (0(h2))  to obtain solution values on 1 + 1-st level 



refinements from I-th level refinements, and an O(h2) approximation at 

coarse/fme interfaces. Finally, suppose that this scheme is stable in the sense 

of Definition 3.7. Then, subject to certain compatibility and smoothness assump- 

tions, t h s  proposition says that the global error is ~ ( h " .  

For simplicity, we shall eliminate the initial error at  t = 0 by absorbing it 

into the interpolation error there, since we are using a one-step (two time level) 

method. 

We now state the analog of Gustafsson's convergence result. 

Proposition 4.1. Consider the differential equation (2.1)-(2.3) on the strip 

[ a ,  b ] x [0, T I .  Approximate it by the difference scheme (3.1)-(3.4) on a grid as 

described in Section 3.1. Suppose that Assumptions 3 . l (a)  and (b) hold, and 

that the approximation is stable with respect to Definition 3.7. Assume that the 

boundary conditions (3. I),  (3.2) can be solved boundedly for the left-hand side. 

We assume the local truncation error per unit time step is O(hP) in the 

interior and at interfaces, the local truncation error is O(hP-') for the initial 

function and a t  the boundary, and the (pointwise) interpolation error is O(hP), 

where p 2 1. Thus, on the i- th strip, i = !,2, . . . , s ,  with the global truncation 

error e = u - u , and t = ti,,, , 

in the interior (v = r ,  r + 1, . . . , Ni - q ) .  We also assume the error at coarse/fine 

interfaces is O(hP); if we use the coarse/flne approximation mentioned in Sec- 

tion 2.6, this can be subsumed in d l .  At the boundaries 



For the interpolation error, let u = v at the "old" mesh points (xj-',ti-'), 

and let vI(x,ti-') be the (continuous) function obtained from interpolation at 

these points. Given any "new" point x i ,  find its nearest surrounding "old" points 

2-1 .= x a  4 xx-l  xj - ,, - +, . Then we assume the Lagrange interpolation error 

where xj-' 5 ( 5 xj:ii;:. Since 6 is a function of x t ,  we have rewritten d4 in the 

alternate form d,. We assume d l ,  d,, d 3  are uniformly bounded, and that 

k t / h t  = X = constant, independent of i and v. 

On the extended mesh described in Section 3.1, we assume that the 

difference approximation is stable for the Cauchy problem, i. e . ,  for F, ( t  ) = 0, 

there exist constants K2 > 0, a ,  r 0 such that for i = 1,2, . . . , s 

Finally, for compatibility between interpolated values at t = t i  and boundary 

approximations, we require for v = 0, 1, . . . , r-1, i = 1, 2, . . . , s ,  

(with a similar condition at  the right boundary) where d,(xi,ti-l+kt) is defined 

on the extended mesh (for the Cauchy problem) by 

(At times t = ti we extend the function d3 smoothly to the left of x = a so that 

d 3  = 0 for x i a - l / h l .  Similarly, we extend d 3  smoothly to the right of x = b so 

that d 3  = 0 for rx: r b + l / h , . )  Then for any T > 0, there exists a constant K; > 0 

such that, for all positive integers s ,  all sets of time division points 

all k, > 0, 1 = 1, 2, . . . , A ,  satisfying our restrictions on refined meshes, and all 



Hence the convergence rate is O(hp) as h 4 0. 

4.4. Rate of Convergence. I1 

In this section we shall derive the result of Section 4.1 under somewhat 

different assumptions. Proposition 4.1 told us the rate of convergence acheved 

when the local truncation errors were uniformly bounded. However, t h s  result 

did not tell us how many mesh points are required, or where they should be dis- 

tributed, in order t o  obtain a given bound on the local truncation error. 

Proposition 4.2 asserts the same rate of convergence as in Proposition 4.1 

when we economize on the number of mesh points. More specifically, we shall 

assume that at each time division point t i  the mesh is approximately equidistri- 

buted. We shall follow the approach of Oliger [I9781 for the Cauchy problem, and 

use the results of Pereyra and Sewell [1975] on equidistribution of the local 

truncation error. Proposition 4.2 in a sense gives a theoretical justification for 

our algorithm. 

For our local truncation errors d l  and d z  we shall assume 

where x = xf, t = tj,,, v = 1,2, a, and P, are positive integers, and T ,  and U ,  are 

uniformly bounded. (I f  U z  = 0 then p2 = M . )  We then assume 

p = min(al, pl, az,  P2)  As before, we assume d 3  is also uniformly bounded. 



We also assume that the time steps kf are chosen small enough so that the 

spatial truncation error dominates the time error, that is, 

We will now define the hybrid local truncation error for x = x;, t = t! 1.m as 

(It is a hybrid of the boundary local truncation error and the interior local trun- 

cation error per unit time step.) We define the interior error dl(xf, t)  as zero for 

j = O , l , . . . ,  r -1, Ni -q + 1, . . . , Ni , and similarly define other functions as zero 

outside their range of definition. We will then attempt to choose the mesh points 

xf to minimize spatial errors, and assume that the time steps kf are chosen so 

that temporal errors are no larger. 

It has been suggested by de Boor [I9731 that the (spatial) mesh be chosen 

in such a way that at the i-th time division point, i = 1, . . . , s , 

h;l?xi, 3 ti-l)I2 = constant = Ei, j = 0,1,2, 

and such a mesh is called equidistributing. As we noted in Section 1.3, this 

approach has been applied to boundary value problems for ordinary differential 

equations by Pereyra and Sewell [1975]. Since t h s  expression depends on the 

mesh, Pereyra and Sewell introduced the idea of an approximately equidistribut- 

ing mesh. 

Let 

and E = M ~ /  K1'" where a = 2/ (2p+l ) .  ( K  relates the largest and smallest 

values of hj.) Let 



and yf(ti-') = ( h f y z  (xj,ti-I). A mesh is said to be approximately equidistribut- 

ing over a I x I b  at t = ti-' if 

for a 1 x$ I b .  The E has the effect of chsallowing excessively large step sizes h j  

in the Pereyra-Sewell development. Our use of a uniform coarse mesh precludes 

the (spatial) step size from exceeding h,. 

Pereyra and Sewell show that if a mesh is equidistributed with respect to 

then such a mesh is also approximately equidistributing with 

where Ni-,+l is the number of mesh points a t  time ti-' in the interval 

a I x I b .  

Our theoretical strategy, then, would be to assume the spatial mesh is 

"approximately equidistributed" a t  time t = ti-', i = 1,2, . . . ,s, compute for- 

ward in time until t h ~  is "nearly violated" at time t = t i ,  and then approxi- 

mately equidistribute again. In practice, it is probably more work to discover 

when t h s  is "nearly violated" than it is to simply approximately equidistribute 

again, so we usually choose our "equidistribution" times a p o r i  as some integer 

multiple of the coarsest time step k ,. A somewhat similar strategy has been 

used by Gannon [I9801 for parabolic problems with finite elements in two space 

dimensions. 

Let us now make precise what we mean by "nearly violated". That is, the 

mesh shouldn't deviate too far from (approximate) equidistribution between 



times t i  when we check the local truncation error and adjust the mesh. W e  shall 

assume that,  for i = 1,2,.  . .  ,s, m = 1,2 , . . . ,  mj, and x  = xj, 

here v = 1,2; j = O , l ,  . . . ,  r - l , N i - q + 1 ,  . . . ,Ni for v = 2; j = r , r + l , r + 2 ,  . . . , Ni-q  

for v = 1; and C2 is a nonnegative constant independent of the mesh spacing and 

the d,. 

Next, we define sets where the truncation error is excessive. For 

i = 0 ,1 , .  . . , s -1 let MLi(ti) = tx:Iz  (x, t i) l  2 4, a 5 x  I b { ,  where Li is chosen so 

that 

We let , u ( ~ ~ ~ ( t ~ ) )  be the measure of the set M L , ( ~ ~ )  and p,, = maxip(MLi( t i ) ) .  

According to Pereyra and Sewell's Lemma 3.1 ,  since the mesh is approxi- 

mately equidistributed at  time t = ti- ' ,  i = 1,2, . . . , s ,  

where C3 is a constant. Note that the norm for z is the cont inuous  L z ( x )  norm 

on the interval R = [ a ,  b 1. 

We need to eliminate the hf factor on the left. We can do t h s  by modifying 

the Pereyra-Sewell argument, treating boundary and interior terms separately. 

We use our assumption that the smallest step size is a bounded fraction of the 

largest step size. We obtain 

]Idl(  - ,t"-')11: + Idz(xj , t i - l ) lz  -L: C3(1 + 
j =a 

This gives us an estimate a t  each time 

lzontal strips. Then on the i - th  strip Si 

division point ti-' between adjacent hor- 

we obtaln 



where G is the Lipschitz function: G(a, t)  = (ezp(at)  - l ) / a ,  a > 0, and 

G(a , t )  = t when a = 0. 

We now apply the equidistribution inequality (4.6) to (4.7) for each 

i = 1,2, . . . , s and add together the results. Then we assume the hypotheses of 

Proposition 4.1, in particular, that the number of strips is O( l /k l )  as k 1  -, 0. We 

shall also assume that the interpolation error is O(hPfl) rather than O(hP). 

Applying Proposition 4.1, we obtain the principal result of this chapter: 

Proposition 4.2. Under the assumptions of Proposition 4.1, together with the 

assumptions that (a) the spatial truncation error dominates the time error; (b) 

the mesh is approximately equidistributed at times t i ,  i = O,l, . . . ,  s-1; (c) 

assumption (4.5) on the growth of the error inside a strip Si; and (d) the inter- 

polation error is one order hgher than the interior error; we obtain a conver- 

gence rate of order p ,  and the following estimate holds for the global truncation 

error e at t = t S  = T :  

where K t T  is a constant independent of the number of strips s ,  the mesh spac- 

ing, and the local truncation error functions d l ,  dz  and dS; it may depend on T ,  

however. Here z is defined in (4.4). 

A comparison of the above result with Gustafsson's [I9751 theorem for a 

uniform mesh shows that our algorithm does n o t  provide any increase in the 

order p of convergence, and our results in Section 8.5 confirm this. Instead, our 



algorithm introduces the factor 

into the estimate. Loosely speaking, our method does not increase p but 

instead multiplies the coefficient of hp in the global error by t h s  factor. When 

the solution has rapid variations only in a small part of the (spatial) region, then 

the local truncation error is small over most of the region, and p,,, is therefore 

small. Thus our algorithm can use fewer mesh points in regions where the local 

truncation is small (compared to using the same difference scheme on a uni- 

form mesh which acheves the same level of accuracy) and t b s  produces 

significant economies, as shown in Section 8.4. 

Proposition 4.2 depends on Proposition 4.1, which we have not proved. We 

believe it can be proved at  least when the interior approximation is O(hP), the 

initial and boundary approximations are O(hP), and the interpolation error is 

pointwise O(hPf l)  (hence, O(hP) in L,(x)) ,  using the energy method. Our results 

of Sections 8.5 and 8.9 show that the claimed rate of convergence (even with the 

less accurate initial and boundary approximations) is indeed acheved. Ths 

experimentally confirms Propositions 4.1 and 4.2. 

Let us now comment on some of the assumptions used in deriving these 

results. Many of these, such as the assumption that the number of strips s is 

O ( l / k , )  as k, -, 0, are quite natural. The assumption (4.5) on the growth of the 

truncation error between adjustments of the spatial mesh is natural but not a 

p r i o r i  verifiable. We try to enforce this assumption by allowing enough "buffer" 

at either end of a refinement (see Section 2.5). We believe that the assumption 

on the order of the interpolation error is unnecessary and can be relaxed. 

The most tenuous assumption is (4.3) that the local truncation errors are 

such that the spatial error dominates the time error, for both interior and boun- 



dary approximations. For our interior scheme, Lax Wendroff, it is well-known 

that the truncation error decreases (in general) as h = k,/ h, increases to the 

upper stability limit. So this assumption is probably not satisfied in our model 

problem P1 (the first order wave equation) for h = 0.8. Naturally, for fixed h, we 

could in theory choose a h small enough so that the assumption was satisfied, 

but this might entail wastefully small time steps. 

It is clear that the reason for t h s  assumption is technical convenience. 

Without it, we would have to consider equidistributing in both space and time 

simultaneously. If we used uniform time steps throughout a horizontal strip Si, 

we might be able to do t h s  analysis by considering space-time rectangles with 

horizontal sides lying on the lines t = ti-' and t = t i ,  the division points between 

strips. As we mentioned earlier, however, it is necessary to use different time 

steps in different parts of the spatial region. 

Even when the assumption is not true, the qualitative result that follows 

from it still is. We are looking for sets ML where the local truncation error is 

much larger than that of the surrounding region. Even if the assumption is not 

satisfied, it is likely that both time and spatial truncation errors are much 

larger in this set than outside it. At isolated points of ML the spatial and time 

errors may cancel, but this is dealt with by the buffer mechanism. 

We should emphasize that we do not approximately equidistribute in prac- 

tice, as it would be too expensive. Our use of recursive refinements achieves a 

primitive form of approximate equidistribution at much less cost. 

It may be easier to prove Proposition 4.1  if we do not write our boundary 

approximations as in (3.1)-(3.2), but instead use fictitious points outside the 

region. Then we can assume the boundary approximations are all on one (time) 

level and of extrapolation type. This form was used by Gustafsson [1981]. But 

this form would have complicated our equidistribution analysis because we 



would have had to introduce constraints on the mesh points, so that two of them 

were a t x  = a andx  = b .  

Having related the global to the local error, we next examine ways to esti- 

mate the local error. 



CHAPTER 5 

Estimation of the Local Truncation Error 

In Chapters 2 and 4 we saw that we needed a way to obtain estimates for the 

local truncation error made in advancing the solution of the difference equation 

one time step. In this chapter we study several methods for obtaining these 

estimates in the interior of the region, at  coarse/f?ne interfaces whch do not 

abut boundaries, and at  boundaries, In Chapter 8 we will use numerical experi- 

ments to illustrate the accuracy and efficiency of these methods. 

We first examine methods for the placement of mesh points which do not 

rely on the local truncation error. Next we describe our first three methods on 

model problem P1 (the first order wave equation; see section 2.4), using Lax- 

Wendroff in the interior of the region. These methods are differences, two-step 

Richardson extrapolation, and bounding derivatives in terms of differences. 

(The last is not practical.) We then explain the three step Richardson method, 

and prove Theorem 5.1, which states that this procedure is justified under quite 

general conclztions. The fundamental restrictions are that the difference 

approximation (interior or boundary) must have the same order of accuracy in 

both space and time, and be explicit. The proof also shows that t h s  method is 

simultaneously a deferred correction method. Then we propose a simple 

scheme for estimating the error at coarse/fine interfaces whch do not abut 

boundaries. Next we examine our methods at  the boundaries. The three-step 

Richardson algorithm applies here only with modifications, but its range of appli- 

cability is more limited, and it is considerably less convenient to use than 

&fferences. Finally, we explain the modifications necessary for n x n systems 

of equations. 



The first important conclusion of t h s  Chapter (and of the numerical results 

in Chapter 8) is that several methods can be used to estimate the error, both in 

the interior and a t  boundaries. Thus our algorithm is quite general as well as 

robust. The second important finding is that for both interior and boundaries, 

one of the methods is more convenient and general than the others. In the 

former case this is three-step Richardson extrapolation, and in the latter it is 

differences. 

For simplicity, we shall write all approximations as occurring on a uniform 

mesh, then consider modifications at  coarse/fine interfaces and boundaries. We 

will always assume that A = k / h  = constant, and that the solution of the 

hfferential equation has sufficiently many derivatives. When we speak of asymp- 

totic estimates and leading terms, we shall always mean "as h -, 0". 

5.1. Methods not Using Local Truncation Error 

Many other methods have been suggested for adaptive placement of mesh 

points. A good survey of such methods for two-point boundary value problems is 

given in Russell and ChrlsLiansen [I9781 This paper gives many references, 

most of which d l  be omitted here. 

Most of the alternative methods for two-point boundary value problems in 

effect try to approximately equidistribute a lower derivative of the solution than 

that occurring in the expression for the local truncation error. For example, if a 

second-order finite difference method is used, then the local truncation error 

for a first order system usually depends on the t h r d  derivative. Alternative 

methods attempt to equidistribute the first or second derivative. A variation of 

the first derivative method is to use arc length. An early method, used among 

others by Pearson [1068], attempted to eqludistribute the variation in the solu- 

tion (for monotone solutions), and t h s  can be considered as attempting to 



equidistribute an approximation to the first derivative. 

A method which does not fall into any of these categories is that of White 

[1979]. He introduces a new variable and considers the mesh distribution as a 

function of it. The equidwtributing mesh and the solution are computed simul- 

taneously by solving the nonlinear equations using a finite difference method 

with equal mesh spacing. We believe this approach is too expensive to use in our 

context, where we deal with explicit methods. 

Russell and Christiansen state that, in their context, when one frequently 

has a very crude first approximation to the solution, equidistribution using a 

lower order derivative frequently produced a better mesh. But they conclude (if 

one excludes methods such as Whte's) "If h g h  accuracy is required, the [mesh 

selection] strategy should ... incorporate the asymptotic form of the error." In 

our situation, where we (in principle) must find a spatial mesh whch approxi- 

mately equidistributes the error that would be made in taking the next time 

step, we have a very good approximate solution a t  the current time. We agree 

w i t h  Russell and Christiansen, because Proposition 4.2 shows that significant 

economies can be acheved by controlling the local truncation error. T h ~ s  

analysis also shows that we should control &fferent order derivatives in the inte- 

rior and a t  the boundary (if, as usual, we use f i s t  order boundary approxima- 

tions and second order interior approximations). Additionally, the use of the 

truncation error (third derivatives) in a sense contains the information of the 

lower derivatives, but not conversely. Furthermore, the existing programs for 

ordinary differentla1 equations (both initial value problems and boun.dary value 

problems), as well as our own results in Chapter 8, suggest the efficacy of t.his 

approach in practice. 



5.2. Four Methods 

To motivate what d l  be entailed in producing an error estimate for the ini- 

tial boundary value problem, let us examine a procedure for the initial value 

problem for a first order system of ordinary differential equations. For a p-th 

order linear p-step method on a uniform mesh with step size h ,  the local trunca- 

tion error is 

where CP+, is a known constant, y is the exact solution, and 

xm-,, LC,-,+,, . . . , LC, are the gridpoints involved in the method [Henrici, 19621. 

Direct use of divided differences to approximate the first term of (5.1) generally 

produces a poor estimate. 

Instead one performs an extra  computation to estimate the local truncation 

error. We assume that the local truncation error (5.1) is for an implicit mul- 

tistep method called the corrector. Then we use another (explicit) linear mul- 

tistep method called the predictor, which has the same form of local truncation 

error, but with a different constant C i + l .  (We assume the order p is the same, 

for simplicity.) 

If one makes reasonable smoothness assumptions about the solution (and 

even if the corrector is not iterated to convergence), one obtains an estimate 

for the first term in the asymptotic expansion of the local truncation error (5.1) 

by subtracting the pre&cted and corrected values y; and y, at  x,: 

[Henrici, 1962, p. 2571. This is called Mdne's device. I t  obviates the need to 

approximate the h g h  order derivative in (5.1). 

For the initial boundary value problem, we will also need extra computa- 

tions to estimate the leading term of the asymptotic expansion of the local 



truncation error. Consider the interior of a refinement, where the mesh is uni- 

form. Later we will consider boundaries and coarse/fine interfaces. The local 

truncation error for the Lax-Wendroff approximation to Pl on a urvforrn mesh 

with stencil centered at (x ,  t ) is 

where k = At is the time step and h = Ax is the space step. 

We will now consider four methods for estimating the dominant terms of 

this error. 

5.2.1. Differences 

We use the differential equation to replace t derivatives by x  derivatives in 

the expression (5 .2 )  for the local truncation error. We then obtain 

h 
c k p m ( x . t ) ( ~ Z ~ Z  - I) + 0 ( h 4 ) .  (5 .3 )  

We may now approximate uzz by a five-point divided difference at points in 

the interior of a refinement. Specifically, with t dependence omitted, 

u,,(x) = ( - 2 u ( x - 2 h )  + 4u(x-h) - 4 u ( x + h )  + 2 u ( x + 2 h ) ) / 4 h 3  

- h2uzzzz.T (W 48 

where x  -2h < ( < x  +2h. 

5.2.2. Estimating an Interpolant with 'Small' Derivative 

The second method is based on a theorem of Favard [de Boor, 1975a, b]. 

Glven a function defined on mesh points, how large can the k- th  der~vative of a 

"smooth" interpolant to k + l  of these function values be? Favard gives this 

bound in terms of certam divided differences. de Boor's contribution was to  

greatly reduce the constant appearing in t h s  inequality. 



More specifically, let lxi jFfk be a sequence of strictly increasing mesh 

points in the interval [a, b 1, and let tgi j be the given grid function values at 

these points. We can certainly find an interpolant f to the gridfunction which 

has k -1 continuous derivatives on the interval [ a ,  b ] ,  whose k -1-st derivative is 

absolutely continuous, and whose k-th derivative is in & [ a ,  b ] .  Favard's 

theorem states that among such interpolants there exists one for which 

where [ . . . ]g denotes the k-th divided &fference of g at  the indicated points. 

(The norm indicates that the supremum is taken for the interval xi :i x 5 xi+l.) 

Ths provides us with a method for boundmg the k-th derivative of some interpo- 

lant to the gridfunction in terms of (computable) divided differences. 

We can use this to estimate the local error by again replacing t derivatives 

by x derivatives to obtain (5.3). We assume that the t h r d  derivative of the 

interpolant approximates the third derivative of the exact solution u .  Using the 

theorem, we then estimate u at  a point xi by taking the maximum of the three 

thrd-ord-ich ''Lhc&&-pe 
. . -- i-rrt q, a- 

Ko(3), which is 6.854. 

Table 5.1 gives a typical result of t h s  procedure. The computation was per- 

formed on PI (the first order wave equation), with parameters as in Table 8.1 

(Chapter 8), except that the maximum number of refinement levels was 5, and 

the refinement ratios M = N = 4. The values given were at time t = 3.6, at loca- 

tions x = 3.10, 3.15, 3,20, 3.25. Clearly, the bounds so obtained are hopelessly 

conservative. (Bounds at  other x  were also typically off by factors of eight to 

ten.) Therefore, t h s  procedure was abandoned. 



Thlrd Derivative of u 

Estimated (Bound) 3891 1 38848 22928 12842 
Actual -24.8 9680.9 -2185.4 -1614.3 

Table 5.1 Estimating Interpolant with 'Small' Derivative 

5.2.3. Two-step Richardson Ektrapolation 

In this method we again replace t derivatives in the expression for the local 

truncation error with z derivatives. Next we take a step forward in time, using a 

stencil centered at ( z , t )  with spacing k and h ,  and obtain expression (5.3) for 

the local error. 

We then perform a separate step forward in time, using a stencil centered 

at  (x ,t ) with spacing 2h and k , whch has local error 

By subtracting these two estimates and multiplying by (c2h2 - 1)/ 3 ,  we obtain 

an estimate for the local truncation error of the first calculation. This method, 

illustrated in Figure 5.1 (with stencils not overlayed for clarity), uses values at 

only the time levels t and t + k .  It should be noted that the difference scheme 

used for this method (and the next method to be discussed) must have the same 

order of accuracy in both space and time. Excluded are schemes such as 

Oliger's [1974] O(h4 + k 2 )  method. This is a mild restriction, as we usually take 

second order methods anyway. 

5.2.4. Threestep Richardson Ektrapolation 

This error estimation method is much more general than the preceding 

ones. Here we do n o t  rewrite t derivatives in the local truncation error in terms 

of x derivatives. We shall apply it not only to our model problem, but to our 
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linear hyperbolic operator 

In the interior of a refinement we approximate t h s  system by any linear multi- 

(time) level explicit difference scheme whose local truncation error per unit; 

time step has the same order p in space and time: 

the A,, are matrix coefficients, and E is the shift operator. We shall write (5.4) 

symbolically as Lhv (x , t  ) = k F ( x  ,t ). If both the differential and difference equa- 

tions have constant coefficients, we shall prove the validity of t h s  method. In 

practice, our interior difference approximation will always be two-level (p  = 0). 

The local truncation error is given by 

where T I  and U, are sufficiently smooth functions of x  and t . Symbolically, 

In fact, we will define the local truncation error k -r for any sufficiently smooth 

function w by 

(For this purpose we assume that the difference approximation is defined for all 

( x , t ) ,  not only at mesh points.) For the global truncation error 

e ( x  , t )  = u ( x , t  ) - v,(t)  we obtain the expansion 



by subtracting (5.4) from (5.6) 

In the three-step Richardson method, we take one (time) step of the 

approximation (5,4) with x = x,, t = t,, using mesh spacing h in space and k in 

time. (See Figure 5.2 for a two-level scheme, with stencils shifted horizontally 

for clarity.) We then repeat the step using (5.4) with t, replaced by t,+, and the 

same mesh spacing. (Before performing t h s  second step, we will need to gen- 

erate more points on level t = (m+l)k  by applying (5.4) with (x,,t,) replaced 

by ( ~ , + ~ , t , ) ,  j = -r ,-r+l,  . . . , O , l ,  . . . , q .  Thus in practice this estimation is 

done for all interior points of a refinement a t  once.) We obtain the approxima- 

tion v .(t +2k) with error 

Next, we take a step using (5.4) with (x , t )  = (x,,t,), but with spacing 2h 

and Zk (i. e .  , replace jh by 2jh and k by 2k in (5.5)). This difference approxima- 

tionwill be ca l l edv~2) ( t+2k) .  The error e(*)(x,t+2k) =u (x , t+Zk)  -vL2)(t+2k) 

(The superscript 2 denotes a double stencil.) Here we see that using a multi-level 

scheme will entail storing many previous time levels of the solution. We also see 

why the order of the method must be the same in both space and time. 

In (5.0), we can change the arguments of T I  and U1 to ( x , t )  (by Taylor 

expansion) at the cost of an O ( h p + 2 )  error. We subtract the result from (5.9) t o  



obtain the computable quantity 

We now need an expression for 0. ( I t  is tempting to suppose that 

O = O(hp+'), but this is not quite true.) If the undifferentiated term Bu, in the 

differential equation is zero, we can assume that the coefficients & o  are 

independent of h .  But if 3 # 0, we shall assume that the Aj,(h) are sufficiently 

smooth functions of h .  Substituting the deftcution (5.5) of Q, in the expression 

for O ylelds 

We now expand the  e 's  in a Taylor series in h and k about the point (x, t ) ,  and 

the coefficients about h = 0. In the product we keep only terms up to (and 

including) the first order in h and k .  Since e is O(hP), the neglected terms 

h2e,, hke,, , and k2e,, , h2e ,  etc., are ~ ( h p ' ~ ) .  After an elementary computation 

we obtain 

By consistency, CA,-,(O) = r ,  
cr.j 

and 

A(( + C ~ A ~ ~ ( O ) ) A  = CjAjo(0), 
j . 0  o.j 

where I is the identity matrix. (These relations are obtained by expanding both 

sides of (5.6) in the same manner as above, replacing u, by using the differential 

equation, equating coefficients of u and u,, and finally equat~ng coefficients of 



h0 and h1 in the result.) Substituting these in B yields 

Using (5.7) ,  we canwrite -kLe = k - r ( e )  - L h e .  But 

(These are the equations for the method of deferred corrections. Thus our 

three-step Richardson method could also be considered as a deferred correction 

method. See Pereyra [I9731 or Keller [1968].) Therefore, O becomes 

Now e is O(hP) ,  and, since the difference method is convergent, ~ ( e )  is O(hP+' ) .  

We can therefore substitute O into (5 .10)  and obtain 

We have shown 

Theorem 5.1 Approximate the hyperbolic operator (2 .1 )  by the consistent mul- 

tilevel explicit interior difference scheme (5 .4) .  Assume that both operators 

have constant coefficients. If the undifferentiated term Bu in (2.1) is nonzero, 

assume that the coefficients (5.5) in the difference operator are smooth func- 

tions of h .  Assume that the local truncation error per unit time step T (5.6) has 

the same order p in space and time, that the solution u of the differential equa- 

tion and the global error e = u - v are sufficiently smooth functions of x and t , 

and that A = k /  h = constant. Also assume e is of order p .  (For the initial boun- 

dary value problem (2.1)-(2.4) Gustafsson [I9751 or Proposition 4.1 gives 

sufficient conditions for the latter to hold.) Then we can estimate the (lowest 

terms of the asymptotic expansion of the) local truncation error k ~ ( u  ,x ,t ) at 



the point ( x , t )  = ( x , , f , )  in the interior of a refinement using the three-step 

Richardson method, and 

where T ,  and U ,  are sufficiently smooth functions of x and t ,  v , ( t  +2k) is the 

approximation obtained by applymg one step of (5.4) with t replaced by t,,, 

and mesh spacing h and k ,  and vS2) ( t  +Zk) is the approximation obtained by 

applymg one step of (5.4) with ( x , t )  = (x , , t , )  and mesh spacing 2h and 2k. 

In Chapter 9 we suggest possible generalizations of this theorem 

We have called these methods "Richardson extrapolation" and have men- 

tioned that three-step Richardson is also a deferred correction method. How- 

ever, we are using these methods in a non-traditional way. Both our method and 

the traditional approaches (for 0 . d . e . ' ~  and elliptic p.d.e.'s) improve the accu- 

racy of the appr0ximat.e solution by estimating the local truncation error. But 

we use the estimate to decide where to r e h e ;  the traditional approaches add 

the estimate to the approximate solution. (Doing the latter would not be useful 

to  us, since our estimation is not being done at  every time step.) As a conse- 

quence, the trachtional approaches improve the order of accuracy of the basic 

difference scheme; as we pointed out in Section 4.4, our method does not. 

In all three methods, the quantity we control in the interior is not the local 

truncation error, but the local truncation error per unit time step 

where 6 is the local error tolerance supplied to the program. Ths was shown in 

the last chapter; one power of h in accuracy is lost in going from the local trun- 

cation error of the interior approximation to the global error [Gustafsson, 19757). 



Our numerical results in Chapter 8 show that for our model problem P i ,  any 

of the three methods produces approximately equally accurate estimates of the 

local truncation error in the interior. Thus it is clear that three-step Richardson 

is more expensive to compute than two-step Richardson. However, we recom- 

mend the exclusive use of three-step Richardson in the interior of refinements 

because of its greater generality and convenience. The other two methods 

required us to write the t derivatives as x derivatives. This frequently can be 

done, but it may be extremely cumbersome. For example, the Lax-Wendroff 

method applied to the inviscid Burgers' equation 

has (after replacing t derivatives by z derivatives) local truncation error 

This effectively excludes the use of differences; the situation could be much 

worse for a system of equations. Even with the use of the symbol-manipulation 

program MACSYMA, the codmg of the expressions for the local truncation error 

could be very tedious. 

The great advantage of the three-step Richardson method is that we need 

not rearrange or even calculate (by hand or by MACSYMA) the local truncation 

error of the difference scheme; one need only know the order p of the method 

and the factor Xpf '-2 used to divide the difference v, - vL2) of the two approxi- 

mations at  time t +Zk. 

5.3. Coarse/Fine Interfaces 

Let us now dtscuss the modifications needed for coarse/fine lnterfaces 

whch do not abut boundaries For concreteness, assume that an I-th level 

refinement Rl has a descendant I +1-st level refinement RL+, which does not abut 



the left or rlght boundaries r = a or x = ?I. Thls introduces two coarse/fbe 

interfaces, namely, the ends of (See Figure 2.3 for the left end of RL+,.) 

Recall that, the last time we estimated the error, we added enough padding or 

buffering (see Section 2.6) to both ends of Kt+, to ensure that waves could not 

escape it, plus two extra level 1 (spatial) cells. TZLls guarantees that we will not 

need to refine the ends of refinement Rl+l (unless they abut boundaries) and 

assures "smooth mesh transitions. Since our local truncation error estimates 

are used only to  decide where to refbe, we can safely set our estimate at the 

ends of R1+l to zero. 

As a less attractive alternative, we could set the estimate at the ends of 

Rt +, to the corresponding estimate at  the same spatial position in Rl.  This would 

require us to estimate the errors from the coarsest mesh to the finest, which is 

somewhat inconvenient. But we implemented t h s  and found it produces the 

same results as the easier method given above. 

The next question is the choice of estimator at mesh points which are one 

(spatial) mesh point on the "fine" side of a coarse/fine interface, or one mesh 

point away from a boundary. (This is for the case of a stencil with three adja- 

cent spatial points, i.e., q = r = 1 in (2.10) or (5.4). In the case where q or r is 

greater than one, similar considerations apply to the q or r points on the "fine" 

side of the interface.) Figures 5.1 and 5.2 show that neither of the Richardson 

methods yields an  estimate here. W e  also set the estimate to zero here, for the 

same reasons as before. 

5.4. Boundaries 

Let us consider local error estimation at  boundaries. On the left boundary, 

there are J boundary conditions specified for the differential equations (2.1)- 

(2.4). W e  can approximate these in the obvious way with no local truncation 



error. We will call these "exact" boundary approximations. 

When r 2 1 in the interior &fference approximation (2.10) or (5.4), then we 

need n -J "extra" boundary conditions at the left boundary, 

where sP) is as given in (2.12), but with the appropriate time level. If r > 1, we 

also need n ( r  -1) additional boundary conditions of type (5.12) for p = I , .  . . ,r -1. 

(Similar statements hold at the right boundary, with J replaced by n-J and r 

replaced by q .  We will only l s cus s  the left boundary; the right is similar.) We 

will first consider the extra conditions; at the end of the next section we shall 

examine the "exact" boundary approximations. 

The local truncation error k? of (5.12) is 

For a restricted class of boundary approximations, it is tempting to recycle 

Theorem 5.1 to produce the followmg false proposition. 

Proposition 5.1. Assume that the hypotheses of Theorem 5.1 apply instead to 

the boundary approximation (5.12). That is, the centered difference operators 

Q, are replaced by the uncentered difference operators s ; ) ;  and T I ,  U,, kdl, p 

and T are replaced by TZ, UZ, dz, 6 and ?, respectively. Assume that the boun- 

dary approximation is consistent with the differential equation, explicit (s!$) = 0 

for all p), and its local truncation error per unit time step has the same order 6 
in space and time 

In ad l t ion ,  assume the global error e is smooth and of order p ,  where p = or 

p = g t l .  Then the local truncation error of the boundary approximation may 

be estimated by three-step Richardson as in Theorem 5.1, using in place of p 



For the "proof" we first note that Theorem 5.1 did not require that the sten- 

cil be centered. Next we must examine the magnitudes of the terms y(u) and - 
~ ( e )  in (5.11). If the order of the boundary approximation is greater than p ,  

then the term ? ( e )  has the same order as Y ( u )  and cannot be neglected. If the 

order of the boundary approximation is less than p -1, then it is known that 

Gustafsson's theorem [1975] does not hold, and the global error e is not O(hp). 

So even though t h s  corollary holds here, this is of no interest. 

Unfortunately, the proposition fails because the boundary operator was not 

the only operator used to produce solution values a t  previous time levels. For 

example, if we use the f i s t  order upwind boundary approximation and the Lax- 

Wendroff interior approximation on our problem PI (the first order wave equa- 

tion), then, to obtain a boundary estimate, we apply upwind three times, and 

Lax-Wendroff once. Nevertheless, the proposition can sometimes be used in 

practice. A detailed calculation shows that, for problem PI, with Lax-Wendroff 

and upwind differencing, we should divide the difference of the two estimates at 

the boundary not by 2gf1-2 = 2, but by 2 + Al instead. Since the use of buffers 

makes our method robust, this small change produces almost no difference in 

practice. A similar change from 2 to 2 + At is needed at both boundaries in 

Problem P2, (the second order wave equation), to be introduced in Chapter 8. 

Thus, t h s  Richardson method is not very useful at  boundaries for several 

reasons. First, we must do a tedious calculation of the local truncation error for 

each different problem. Second, there are relatively few boundary approxima- 

tions which have the same order spatial and time error. Thrd, we doubt that 

this method works for implicit approximations. 

Since two-step Richardson suffers from the same restrictions, differences 

must be used for all other boundary conditions. In contrast to the interior 

approximation, it is usually practicable to write down the local truncation error 



for the boundary approximation. (Furthermore, the boundary approximation is 

usually of lower order accuracy than the interior one, so we can use lower order 

differences.) Then we must rewrite x derivatives in terms of t derivatives. For 

example, in our model first order wave equation, if we use upwind &fferencing at 

the right boundary 

v,(t+k) = v,( t )  - c h(v,(t) - v,-,(f)), 

the local truncation error is 

replacing t derivatives by x derivatives yields 

If we are using differences, we simply replace the %x term by a one-sided finite 

difference. If we are using the two-step Richardson method, we obtain (5.13) for 

the truncation error when using the stencil with spacing h and k .  We obtain 

when we use the stencil centered at  the same point but with spacing 2h and k .  

We can then subtract these and multiply the result by ( c  h-1) to obtain an esti- 

mate of the local truncation error at the boundary. 

The local truncation error for extrapolation boundary conditions 

(hD+)jvo(t fk) = 0, for fixed j r 1 

can only be estimated by dserences.  For j = 2, we simply estimate the trunca- 

tion error 

h2u,, + O(h3) 

by using four-point one-sided d~fferences (since the three-point estimate yields 

zero.) 



In Section 8.7 we numerically compare different methods of error estima- 

tion at  boundaries. 

Gustafsson's [1975] analysis and our own Proposition 4.1 show that the 

order of accuracy of the boundary approximation may be one order lower (but 

not less) than that of the interior approximation, in order to preserve the global 

order of accuracy, whch is then the same as the order of the local error per 

unit time step for the interior approximation. T h s  means that when we are exa- 

mining the truncation error at boundary points to see if refinement is neces- 

sary, we should n o t  control the local error per unit time step, but instead the 

local error. 

where 6 is the local error tolerance input to the algorithm. O u r  computations in 

Section 8.5 confirm that we can indeed use one less order of accuracy at the 

boundaries, and still obtain the desired order for the global error. 

So far our discussion has proceeded as though we were estimating the error 

for a slngle differential equation. For a system, we simply estimate the error in 

each component and take the maximum absolute value at each spatial mesh 

point. Then we base refinement decisions f o r  a l l  s o l u t i o n  c o m p o n e n t s  on this 

maximum. Thus, the refinements are the same for all solution components. 

This procedure is quite conservative, and will result in refinements not 

being inserted in unnecessary regions if the assumption of Section 2.1 is 

fulfilled: that steep gradients occur in approximately the same positions for all 

solution components. Ths  procedure also results in a simplification for our  data 

structures, as described in Section 6.3. 



One final detail concerns the difference approximations corresponding to 

boundary con&tions in the afferential equation (the so-called "exact" boundary 

approximations). Using the obvious difference approximation for these condi- 

tions yields zero local truncation error. But there is a difficulty with using zero 

in our error estimation procedure. Ths  can be seen in our problem P1 (Section 

2.5), the first order wave equation. The left boundary condition contains a forc- 

ing (inhomogeneous) term g whch results in the wave entering the region. 

Clearly, we want to put refinements around any "large" wave entering the 

left as soon as possible. If we set the truncation error estimate to zero a t  the 

boundary, we will not detect the entering wave until it has already entered the 

region, Ths  can be remedied by treating the forcing term g l  or g 2  of ( 2 . 3 )  or 

(2.4) as generating a local truncation error. For our first order wave equation, 

where u ( 0 , t )  = g ( t ) ,  we write down the local truncation error (5.2) for the inte- 

rior approximation, then replace x derivatives by t derivatives, using the 

&fierentid equation. Since uttt (0, t)  = gtt t ,  we can analytically differentiate g to 

arrive a t  the result. This procedure was actually used in our computations with 

PI in Chapter 8. (Notice that we used an interior error for a boundary approxi- 

mation, and then controlled the local error per unit time step. We could equally 

well have used the boundary error, whch depends on u,, and controlled the 

local error. In either case we would control the same power of h.) For a system 

of equations, the procedure is very simple if we use our assumption that gra- 

dients occur at  approximately the same positions in different solution com- 

ponents. Suppose that at no boundary do we use only "exact" boundary approxi- 

mations. (This is not true for our first order wave equation, nor would it be true 

when all components are prescribed by inflow boundary conditions on the same 

boundary, as in supersonic inflow.) Then. some of the components of the 

difference approximation have nonzero local truncation error, and our usual 

error estimates for these component(s) will detect any incoming wave. This 



technique was used in our problem P2 (the second order wave equation) in 

Chapter 8. 

If the boundary conditions are of the supersonic inflow type in dl com- 

ponents, then we may assume our problem (2 .1 ) - (2 .4 )  is in diagonal (characteris- 

tic) form, and the left boundary condition 

has S = 0 (since un has no components, i.e., u = u l ) .  In tlvs case, we can 

proceed as in our first order wave equation. For a local truncation error of the 

form 

we analytically differentiate g to obtain the second term. The f i s t  term can be 

approximated by one-sided spatial differences or else rewritten in terms of t 

derivatives using the differential equation, 

In practice, this rewriting may be cumbersome. (The right boundary is treated 

similarly.) 

The h a 1  case is for systems where gradients do not occur in the same posi- 

tions in &fTerent solution components. We again need to estimate (5.14), with u 

replace by uT. We approximate the first term by one-sided spatial differences. 

To get the second term, we differentiate the boundary condition, obtaining 

and use the differential equation to replace u& by u,, . Then we use analytic 

&fferentiation for (g and one-sided differences for u,, . (We have tacitly 

assumed that S was constant, but a nonconstant S introduces no additional 

&fficulties.) 



CHAPTER 6 

Data Structures 

In this chapter, we discuss the choice of data structures appropriate for our 

mesh refinement algorithms. The data structures used are not nearly so irnpor- 

tant to our algorithm in one space dimension as are the other details, such as 

estimating the local truncation error. However, this choice becomes much more 

important in two space dimensions. 

We will see that the data structure has two parts: a structure to show the 

relationships between refinements (a  four-way linked tree of records), and a 

mechanism for storing solution values (second components) of refinements 

(sequential allocation of deques). Then we will discuss alternative irnplementa- 

tions. We will describe the deques first. 

6.1. Deques 

Let us examine the operations to be performed on the solution values. 

First, it is convenient to keep all the points in a single refinement together. We 

also need to be able to "move" a refinement to the left or right. This is accom- 

plished for a wave moving right by deleting points from the left of the mesh and 

adding points on the right. Similarly, we need to be able to delete points from 

the right and add them on the left. We also need to merge two refinements, and 

to split them apart. (These operations are needed when two pulses "cross" each 

other, that is, they are waves traveling in opposite directions.) Finally, w e  may 

need to create a refinement or delete it. 



The key operations are adding or deleting points from the left or right end 

of a refinement. Points are never inserted in or deleted from the middle. A data 

structure having these properties is called a "deque", or a double-ended queue 

[Knuth, 19731. We are then faced with the problem of storing a collection of 

de que s. 

A natural way to store the solution values for refinements is sequentially, as 

shown in Figure 6.1. Here we see a region with two refinements, and one of the 

refinements itself contains a refinement. The solution values for the coarsest 

mesh occupy a fixed region at  the lower end of a vector which we will call v. The 

refinements occupy contiguous sections of the remaining available memory, 

with variable-width gaps of free space separating the memory occupied by 

refinements. The gaps allow us to expand or contract refinements (to a limited 

degree) without moving the function values in memory. The solution values 

correspondmg to refinements are ordered as follows. 

The coarse mesh is labelled refinement 1, and its solution values always 

occupy the lowest end of the vector v. It is followed in v by the "second level" 

refinements (labelled 2 and 3 in Figure 6. I),  which are ordered in v in the same 

order as the refinements are encountered in proceeding from left to right in the 

computational region. Following these are the "third level" refinements (as is 

refinement 4 in Figure 6.1), again in the same order as they occur in a left-to- 

right scan of the computational region, and ignoring the positions of any coarser 

(second level) refinements encountered in the computational region. Then 

would appear all fourth level refinements, and so forth. Thls scheme duplicates 

certain solution values in the vector v, namely the ones whch correspond to 

mesh points whch lie on different level refinements. However, doing t h s  makes 

the program much simpler. 
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6.2. Trees 

Next we will describe the (four-way linked) tree of records, which is neces- 

sary to show relationslvps between refinements. Each node (record) 

corresponds to a refinement. Trees are natural in this context, since we use 

recursive refinements, and are used in all adaptive solvers for elliptic equations 

described in Chapter One. In the following, we will identify a refinement with its 

node (record), and use the term "refinement" to mean "the node corresponding 

to a refinement". We will sometimes call the coarsest mesh a "refinement" for 

uniformity. 

Obviously, a node has as many branches (descendants) as it has 

refinements. The coarsest mesh corresponds to the root of the tree. The root 

has level 1, its immediate successors are a t  level 2,  their successors have level 

3, and so forth. Each node contains all the information about a refinement, 

except its solution values. We will now describe some of this information. We 

first need to know where in the vector v the solution values for a refinement are 

located. Tlvs is done by using two indices base and top. This is shown in Figure 

6.1 for the fourth (level 3) refinement, but omitted for the other refinements to 

avoid clutter. Also needed is a pointer to the parent of a refinement (shown in 

Figure 6.1 as the field coarse). Furthermore, we need pointers to all 

refinements of a refinement. We can avoid using a variable number of pointer 

fields for t h s  by using the usual device. We use one pointer to the leftmost des- 

cendant (called f ine  in Figure 6.1) and then chain together all immediate des- 

cendants (siblings) using the "right" pointers, called rlznk in the figure. A 

refinement other than the root also needs indices to denote its endpoints within 

its parent, that is, which part of its parent it refines. These are not shown in the 

figure. 



Since we will often be adding or deleting nodes, we decided to implement 

the record structure as a linked list. Up to t h s  point our records form a triply 

linked tree,  exactly as in Knuth [1973, p. 3521. However, additional links are 

needed. 

The solution is advanced in time, and the error is estimated a level at a 

time. Because we already have the d i n k  pointers, we can chain together all 

refinements on the same level (not just those with a common parent) using 

rlink.  Then we introduce an array of pointers pointing to the leftmost 

refinement on each level. (These are shown in Figure 6.1.) Ths  is related to the 

level-order representation of a tree [Knuth, 1973, p. 3501. 

The last operation needed on our data structure is a repacking of the v 

array, to be discussed shortly. This requires us to sweep through the v array in 

both directions, as will be seen. Thus we also require our rlznk pointers to point 

from the rightmost refinement (node) on level 1 to the leftmost refinement on 

level l + l .  To enable a leftward sweep, we introduce "left" pointers llink, which 

are inverse to the rlink pointers. That is, if node p has right pointer rlink point- 

ing to node q , then q has left pointer llink pointing t o p .  

The result of using all these pointers is a four-way linked tree: a triply 

linked tree with the additional property that all the leaves (nodes) are linked 

together in a doubly linked list. The linked list starts a t  the root and proceeds 

to the leftmost refinement of level 2, then through all the refinements of level 2 

(in left-to-right order), next to the leftmost node of level 3, and so forth. This 

structure is similar to one that Knuth [1973, p. 3561 suggests for manipulating 

multi-variable polynomials. The difference is that in his scheme, the direct des- 

cendants of any node are doubly linked together; this means that if level 1 has k 

direct descendants, each descendant in turn having descendants, then level 1 + 2  

has exactly k such doubly l~nked lists. In our scheme, all the nodes are linked in 



o n e  doubly linked list in level-order. 

Because the space devoted to records is small relative to the space con- 

sumed by solution values, the space for all the pointers in our scheme is incon- 

sequential. 

We now examine how the operations on refinements are effected using this 

data structure. Advancing the difference approximation (in time) can be done a 

level at a time, starting with the hghest (most refined) level, using the Llznk and 

dink pointers and the leftmost pointers on each level. Here we also use the 

"ancestor" or coarse  pointers to copy solution values from finer meshes to 

coarser meshes for points x which lie on more than one refinement. The error 

estimation is done in the same manner. 

Similarly, we adjust the refinements level by level, starting with the hghest 

(finest) level. The mesh adjustment operations can be effected using four ele- 

mentary operations, which are natural for a deque. They are shorten left, shor- 

ten right, extend left, and extend right. Shortening either end of a refinement is 

a trivial operation, accomplished by moving a b a s e  or t o p  index. Deleting a 

refinement is the same, but also involves removing a record from the tree. If 

there is enough space available, extending either end of a refinement involves 

changing an index, copying solution values from the parent refinement, and 

flling in new solution values using linear or quadratic interpolation in space. 

Creation is the same, plus the operation of inserting a new node in the tree. 

Separation of a refinement into two refinements involves changing indices and 

inserting a new node. Finally, merging two refinements is easy because we 

tnsisted on the left-to-right ordering of refinements in the solution value vector. 

We move left the solution values of the right refinement, if necessary, then 

extend the left refinement to the right, change some indices, and delete the 

right node. Complicating the last two operations is the need to adjust pointers 



to descendant refinements. 

6.3. Memory Repacking 

A problem occurs during an "extend" operation when there is insufficient 

expansion room between refinements. Ths calls for a repacking of memory, and 

two algorithms for doing this are given by Knuth [1973, pp. 245-61 for the case of 

a sequence of stacks (rather than deques). We will therefore describe the 

modifications to these algorithms for our data structure. 

When a refinement runs out of room in the v vector, moving only the adja- 

cent refinement will probably cause another repacking to occur soon, so it is 

better to reallocate all available memory when a refinement runs out of room. 

Knuth breaks t h s  into two parts: Algorithm G ,  which decides how to allocate the 

free memory to the refinements, and Algorithm R ,  whch actually moves the 

refinements into the positions dictated by Algorithm G.  It is Algorithm R which 

requires the forward and backward sweep of the v vector in order to avoid 

overwriting any mformation. 

Our Algorithm R differs from Knuth's only in that our refinements are 

indexed from zero rather than one. So only Algorithm G is of interest. Knuth's 

main idea is to share ten percent of the free memory equally among the 

refinements, and the other ninety percent is divided proportionately to the 

amount of increase in refinement size since the previous repacking. Ths idea is 

not useful in our case. For a traveling wave, all refinements stay about the same 

size, but "move". However, we can modify this rule by awarding the ninety per- 

cent of available memory proportionately to the amount each refinement has 

moved since the last repacking. We discover whether a refinement has moved 

primarily left or right (in memory) since the last repacking, and award its share 

of the ninety percent to its left or right, respectively. 



This change to Knuth's algorithm greatly reduces the number of repachngs 

compared to more naive allocation methods. Since the coarse mesh doesn't 

move it receives none of the ninety percent allocation. Furthermore, the higher 

level refinements move further (measured in number of mesh points, not physi- 

cal distance) than the lower level ones, so they are awarded more free space by 

this scheme. 

So far we have discussed the case of a single scalar equation. If we are 

instead solving a system of n equations in one space dimension, only slight 

mo&fications are needed, given our crucial assumption that the refinements for 

all solution components are the same. We simply use the same tree-like record 

structure, and store the solution values in a matrix with n rows. Each row has 

exactly the same structure of solution values for refinements separated by gaps, 

as illustrated in Figure 6.1. Now we repack memory whenever one (hence all) of 

the components needs repacking. 

An advantage of this organization is that the mesh-adjusting mechanism is 

separated from the differential-equation-advancing and error-estimating 

mechanism; to solve a different system of equations requires changes only in the 

differential equation advancement and error-estimation calculations. 

6.4. Alternative Data Structures 

Having described the data structures we actually used, we will attempt to 

justify our choice by examining some alternatives that we rejected. 

One alternative that suggests itself is to store solution values in a matrix 

(for the case of one differential equation) of dimensions p x v (where p is the 

maximum number of refinements, and v is the maximum number of mesh points 

in a refinement), instead of using deques. This is inconvenient, wasteful of 

storage space, and inefficient in execution speed. I t  is inconvenient because the 



size of refinements is unpredictable, and if one refinement exceeds v in size, the 

computation stops, even though there may be much memory available for other 

refinements. It is wasteful of storage space, for the same reason. In qddition, 

the maximum number of refinements is also unpre&ctable, and thus a great 

deal of space is wasted for nonexistent refinements. (In our scheme, one 

specifies the maximum number of refinements to be much larger than neces- 

sary. The sequentially allocated deques and the repacking algorithm then 

assure that all the memory allocated to solution values is used efficiently. The 

only wasted memory is occupied by records corresponding to nonexistent 

refinements, and t h s  is small compared to the space occupied by solution 

values.) 

Finally, use of this scheme probably implies that a wave that moves left or 

right is being implemented (in at  least one direction) by moving (in memory) all 

the solution values in a refinement. ' h s  is inefficient, because on many 

machines (e.g., the CDC 7600) it costs almost as much to move an item as to add 

two items. Furthermore, we then need a three-dimensional array for a system 

of differential equations, and this, too, will lead to inefficiencies. If one decides 

to avoid excessive memory moving by adding points to the left or right of a 

refinement, one might as well abandon the array entirely, and use our scheme. 

An alternative to our tree readily suggests itself -- a threaded tree [Knuth, 

1973, pp. 332 ff.]. A threaded tree has links pointing back to ancestors, similar 

to our coarse links, but only from rightmost descendants. But as Knuth [1973, p. 

3521 points out, finding ancestors of nodes is not as convenient with such a 

scheme; a triply-linked tree is more convenient. Furthermore, we use the links 

that are used for "threads" instead to chain together refinements on the same 

level. 



Another alternative involves the method of storing solution values. Our 

method is the one Knuth suggests for storing a sequence of stacks. But Knuth 

suggests a different scheme for storing a sequence of deques [Knuth, 1973, p. 

2491. As before, base and top point to the bottom and top, respectively, of the 

memory available to the refinement in question. But this time the actual left of 

the refinement is pointed to  by front, which may be between base and top (Fig- 

ure 6.2a). Similarly, the actual right of the refinement is not at top, but at rear,  

whch is initially between front and top. Suppose now this refinement "moves" 

right, but does not expand in area ( t h s  is the case for a traveling pulse). Then if 

there is not enough room to the right of rear (between rear and top), the 

refinement is stored in its available memory using circular wraparound, as illus- 

trated in Figure 6.2b. Now the refinement has been split into two parts in its 

available memory, with the free space intervening. A refinement always has one 

of the two forms shown. 

This scheme has the virtue of reducing the number of memory repackmgs, 

since we repack memory only when the space available to an inlvidual 

refinement has run out, and not when a refinement "moves" too far left or right. 

Thus, with a traveling pulse we need never repack memory. Despite this, how- 

ever, we decided not to use the wraparound scheme. It greatly complicates the 

differential equation calculation, in effect introducing still another interface, in 

addition to all the coarse/fine interfaces. We instead were willing to allow extra 

memory repackings, which occur infrequently anyway. 

In sum, our data structures seem well-suited to manipulating refinements 

in one space dimension. For two or more space dimensions, the situation 

becomes much more complicated. A tree structure to exhibit the relationship 

between refinements is usually used; and additional structures may be neces- 

sary. The storage of solution values cannot be generalized from our scheme. 

See, e.g., Rheinboldt and Mesztenyi [1980], Gannon [1900], Berger, Gropp, and 
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Oliger [1980]. 



CHAPTER 7 

C h o i c e  of Programming Language 

In this short chapter, we explain and justify our choice of implementation 

method for the programs used in our computations. 

Possible alternatives include Algol W, PL/I, Algol 60, Algol 68, Pascal, For- 

tran, and Fortran with preprocessor. The arguments against the first four are 

lack of availability of a compiler and/or lack of portability. Raw Fortran (even 

Fortran 77) is cumbersome to use because of the lack of control and data struc- 

tures, both of whch are crucial for our task. However, most numerical software 

is written in Fortran, and if one uses another language, there must be an inter- 

face to Fortran. It was with some regret that we were unable to use Pascal, 

despite its excellent data and control structuring facilities. It does have a For- 

tran interface, but it can be very awkward to use [Mohilner, 19771. Further- 

more, earlier versions of Pascal compilers required array bounds to be known at 

compile time -- a restriction even more severe than Fortran imposes. Finally, 

we are interested in portability, and using a Pascal/Fortran interface does not 

lend itself t o  this. 

Due to the desire for portability, two other approaches were rejected. The 

f i s t  is Feldman's [I9791 EFL, whch is a Fortran preprocessor specifically 

designed for numeric computations. It requires the writing of a sizable two-pass 

translator. Ths  translator is written in the language C,  which is acheving wider 

use, but cannot be said to be portable. The other approach is Grosse's [1978] 

language T. T is implemented as a preprocessor which generates PL/I output; 

unfortunately PL/I is far from portable. Both of these languages did merit con- 

sideration, though, since their respective authors have devoted considerable 



thought to the problem of appropriate language constructs with which to 

express numerical algorithms. 

The two portable Fortran preprocessors we examined were Kernighan's 

[I9751 Ratfor and Cook and Shustek's [I9751 Mortran. Although we believe the 

former is more widely used, we chose the latter because it is far more general 

and flexible. Brandt 119771 has also decided to use a macro preprocessor for 

Fortran to implement his software for the multigrid method. 

The term Mortran, like Fortran, has several meanings. It can mean a struc- 

tured source language, a translator for that language, or a macro-processor. 

The structured language is implemented as a set of macros whch are used by 

the Mortran macro processor to translate the language into Fortran. The result- 

ing Fortran program is then run like any other Fortran program. Figure 7.1 

shows the mechanics of running a Mortran program. 

In contrast to most other Fortran preprocessors, the Mortran preprocessor 

is written in a portable subset of ANSI (standard) Fortran. Hence the Mortran 

preprocessor, and, more importantly, Mortran source programs, are portable 

between different machines. Furthermore, Mortran source and Fortran source 

can be intermixed, so the Mortran user has access to all existing Fortran 

software. 

We felt that there was one property of Mortran whch made it especially 

desirable for this project: extensibility. This means that new data structures, 

operations on data structures, and control structures can be added to the 

language (at  rather small cost in implementation time) by adding additional 

macros to the language. 

Let us contrast this situation with other languages such as Fortran or Pas- 

cal. Fortran is completely inextensible. Pascal is extensible only in the sense 

that one can add additional data types. For example, Pascal has no complex 
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data type. But one can be added to the language by defining records consisting 

of two real fields. However, one is unable to extend Pascal by defining new 

operations for data types, e.g.,  complex addition or multiplication. One is forced 

to use subroutine calls instead. Furthermore, in Pascal one is unable to define 

new control structures, such as a loop with premature exit. By contrast, Mor- 

tran (but not T or EFL or Ratfor) permits all of these thmgs. 

Two applications of this extensibility are important to our algorithm. From 

our description of the data structures (four-way linked trees and deques) it is 

obvious that we need records and pointers, in order to operate conveniently and 

efficiently on refinements. Mortran allows us to define these new data types and 

to define operations (such as following the pointer) on these data types. We did 

this using a modification of the method in Zahn [1975]. Pascal-like notation is 

used [Jensen and Wirth, 19741. 

A second application of extensibility is to defining new control structures. 

In contrast to many of the traditional numerical algorithms (such as linear 

equation solvers or eigenvalue routines) where operations with loops predom- 

inate, in our programs (especially the sections involving merging, separating, 

creating, destroying, and moving refinements) the use of decisions is extensive. 

Mortran has adequate decision (or "conditional") statements (like if... then, 

if.. .then. ..else), indefinite looping constructs (while ... do, repeat.. .until. etc.) 

and (nested) block structure within subroutines. The lack of these features in 

Fortran would have resulted in code whose correctness would be exceedingly 

difficult to verify by visual inspection. 

Additional features of Mortran whch are helpful but not essential are addi- 

tional control structures (such as next and exit to prematurely exit a loop), 

alphanumeric statement labels (however, most labels disappear because of the 

rich supply of control structures), free field format (column and card boun- 



daries ignored), comments inserted anywhere in the text, conditional (alterna- 

tive) compilation, and variable names of arbitrary length. 

Of course, some of the restrictions of Fortran remain. Among these are 

lack of dynamic storage allocation, lack of arrays with arbitrary subscripts, and 

recursion. Although our refinements are nested recursively, we almost always 

operate on them in "level order" (one level at  a time). The only exception is 

when we are graphing solutions. Then we need to search the tree in preorder, so 

we need to simulate recursion. The subscript problem is harder to solve, and 

requires modifying the Mortran preprocessor to accept macro-time expressions. 

We did not do this. Instead, since we needed only zero array subscripts, we used 

an extra dummy element preceding the array in common to achieve this effect. 

The dynamic storage limitation is impossible to overcome, but is not crucial. 

Another aspect of the macro preprocessor is the kind of (Fortran) code it 

produces. For the while ... do, repeat ... until, if . . .  then, and if . . .  then ... else con- 

structs, the Fortran code produced is as efficient as possible without using glo- 

bal flow analysis. The only problem is with for loops. The macro processor has 

two stacks to allow nesting of loops, but there is no stack to remember symbols, 

such as loop indices. Therefore, all testing and incrernenting for for loops are 

done at  the top of the loop, and this is not quite as efficient as testing and incre- 

menting at  the bottom. Mortran does, however, (correctly) test the loop condi- 

tion before initially entering (unlike the Fortran do). Mortran allows the Fortran 

do (with all its restrictions and generation of efficient code) so we compromised. 

We kept the existing Mortran for statement, but redefined the do statement to 

check the loop limits once before entering the loop (to test for a null loop) and 

then generate the usual (efficient) Fortran do. 

In sum, we felt that the use of Mortran greatly aided the development of the 

programs for t h s  project. For further details on Mortran, refer to Cook and 



Shustek [I9751 and Zahn [1975]. Reading Mortran programs is quite easy for 

those familiar with modern block-structured languages. The only tlxngs to note 

are that left angle bracket means begin and right angle bracket means end, as 

in Algol or PL/I. Other notation (especially that dealing with records and 

pointers) is similar to that of Pascal [Jensen and Wirth, 19741. In particular, the 

notation (p?. field) or (p-. field) denotes the field of the record pointed to by 

the pointer p . 

We finally remark that portability was indeed acheved by t h s  method, 

since our programs were run on an IBM 370/168, a CDC 7600, and a DEC VAX with 

minimal conversion problems between them. 



CHAPTER 8 

Computational Results  

In ttus chapter we answer the following questions about the method 

described in the preceding chapters: 

Does our method "work", i.e., does it "follow" or "track" steep gradients? Is 

it fooled by background effects? 

Is the algorithm sufficiently general to allow refinements to be created, des- 

troyed, merged, separated, moved, and to abut boundaries? 

Is the algorithm sensitive to the direction of characteristics, or dependent 

on knowing that certain boundary conditions are inflow or outflow? 

Will the method handle nonlinear problems? 

How well will the method follow discontinuities or shocks? 

Are recursive refinements worthwhile? 

How should one choose the refinement ratios X and M? 

How efficient is the method, both in execution time and memory? 

Does the global error behave according to the theory of Chapter 4 as 

h , k  -,0? 

How do the three methods of interior local error estimation of Chapter 5 

compare in accuracy and efficiency? 

How do different boundary approximations and methods of estimating their 

error affect the solution? 

Iiow often should one monitor the local truncation error (and adjust 

refinements)? 



8.1. Model Problems 

Since we believe it is impossible to answer these questions analytically, we 

resort to numerical experiments on model problems. We now introduce several 

such problems. Problem PI,  the first-order wave equation, was introduced in 

Section 2.5. (We again use a = 200.) 

P2 is the second order wave equation, written as a 2 x 2 first order system, 

with "open" boundary conditions ( i e . ,  the boundaries are "transparent" to trav- 

eling waves). As exact solution we use two counter-streaming Gaussian pulses, 

superimposed on a sinusoidal background. The differential equation is 

ut = Auz , a r x t . b , O I t , O < c ,  

where 

with initial conditions 

u l ( a , t )  = u 2 ( a , t )  + 2f (a - c t )  

u l ( b  , t )  = -u2(b  , t )  + 2g ( b  + ct )  

As in PI, we choose a = 0,  b = 4, c = 

u l ( x , t )  = f (x - c t )  + g (x + c t ) ,  

u 2 ( x , t )  = -f (x - c t )  + g ( x  + c t )  

t r 0 .  

1. The exact solution is 

To produce our interacting pulses, we take f (x) exactly as in PI, and 



g (x)  = -exp(-a(x -4.5)'), 

where a = 200 as before. Once again, each pulse occupies about 8 percent of the 

region a 5 x II b .  Ths  problem decisively answers questions 2 and 3 above, 

since the pulses start out outside the computational region (only the sinusoid 

being present). They then enter the region, and two sets of recursive 

refinements are set up. The pulses eventually cross, so the sets of refinements 

must merge and then separate. Finally, the pulses exit the region, so all 

refinements (except the coarse mesh) are destroyed. Note that both boundaries 

act as inflow boundaries at some times and as outflow boundaries later on. This 

problem thus shows that nothng we have done depends on the direction of wave 

motion. I t  also shows that the method works for a system. 

The difference approximation in the interior is again Lax-Wendroff 

with coarse / h e  approximation 

~ ; - l ( t + k J  = ( r  + ~ k ~ ~ k - l  + ~ A ~ ~ ~ ~ D ~ , - ~ D L - ~ ) U ; - ~ ( ~ )  

at interfaces, the obvious initial condition, and obvious boundary approxima- 

tions for v,. For v2, we need extra boundary conditions at both x = a and x = b , 

and we use either 

(a) upwind / downwind differencing : 

where ujz(t) denotes an approximation to u2 (x , t )  at  x = a + jh, on an I-th level 

refinement; or 

(b) firs t-order extrapolation 



(The first 2 in each line is an exponent, not a superscript.) Gustafsson, Kreiss 

and Sundstrom [I9721 showed that both approximations (a) and (b) are stable 

with Lax-Wendroff, according to their stability definition. 

Let H(x) denote the Heaviside unit function, w l c h  is 0 for x < 0, and 1 for 

x r 1. Our third problem is again a scalar equation, the inviscid Burgers equa- 

tion 

with boundary condition 

and initial condition 

The exact solution is 

a shock traveling to the right with speed %. We approximate this using the usual 

two-step Lax-Wendroff method, as given in Richtmyer and Morton 11967, p. 3021 

with F(u) = &'. Naturally we modify this by adding subscripts and super- 

scripts L in the appropriate places. The only dissipation in our scheme is that 

inherent in the method itself. Since our previous calculations used tirne- 

dependent boundary conditions, we use constant ones here. (Of course, at 

coarse/flne interfaces, we make modifications as in P1 and P2.) 

8.2. Qualitative Results 

Figures 8.1 (a) to 8.l(i) illustrate our algorithm when applied to problem PI, 

the first order wave equation. We used a coarse mesh of 81 points, with 
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refinement ratios N = M = 4 and maximum number of refinement levels = 4. 

(Only three levels were actually used in the calculation.) The local error toler- 

ance was 0.01, hl = 0.8, and the wave speed c = 1. Each graph plots the approxi- 

mate solution u(x) versus x (at a fixed time) as a solid line, together with a 

separate calculation done with no refinement (maximum refinement level = I) ,  

shown as a dotted line. Since the maximum error in this calculation was about 2 

percent, the refined solution may be taken as the exact solution on the graph. 

In Figure B.l(a) we see that the solution consists solely of the sinusoidal 

background--the pulse has not yet entered. (Ths graph is taken a t  t = 0.04 

rather than t = 0 since we use the exact solution a t  t = At = 0.04 so we can 

compare with the hybrid method later. This is true in all calculations.) In Figure 

8. l(b)  the pulse has started to enter the left boundary, and refinements have 

been created at the second and third levels. (The small numbers at the top are 

the level numbers of the refinements. Both refinements abut the left boundary.) 

In Figure B.l(c) the pulse has fully entered and the refinements have moved 

right. 

Figures 8.l(d) and (e) show the pulse moving across the region, and the 

refinements following it. Note that the unrefined solution has become a very 

poor approximation to the pulse--the unrefined peak has only half the height it 

should. Note also that behmd the pulse, the unrefined solution has a large 

undershoot. 

In Figure B.l(f) the pulse has neared the right boundary, and the 

refinements now abut this boundary. In Figure B.l(g) the pulse is leaving the 

region--this again shows the time-dependent boundaries at work. In Figure 

8 . l (h)  the pulse has left the region, but the unrefined solution has developed a 

phase error. Finally, Figure B.l(i) shows that the second and third level 

refinements have been deleted. Only the background sinusoid is present, but 



there is still some "backwash" left in the unrefined solution 

These calculations show that the method is not fooled by background oscil- 
i 

lations, and that the refinements do follow the steep gradients. Furthermore, 

this problem and the next one show that our method is able to adapt to time- 

dependent boundary conditions. 

Figures 8.2(a) through 8.2(0) show our algorithm applied to the second- 

order wave equation with counter-strearnmg pulses. Ths  conclusively answers 

questions 1 to 3, and shows that our method works on a system of differential 

equations. I t  also shows the necessity for good data structures, since there are 

from one to seven refinements, and, as we shall see, they interact in compli- 

cated ways. In this calculation we again used 81 mesh points in the coarse 

mesh, with refinement ratios N = M = 3 and maximum number of levels = 5. 

(Only four levels were actually used.) The local error tolerance was again 0.01, 

hl = 0.0, and the wave speed c = 1. The same conventions about unrefined and 

refined solutions, and the labeling of refinements are used. We usually show the 

first component v , (x , t )  versus x ,  but in a few instances we show vz(x , t )  versus 

x (all at a fixed time). 

Note that the graphs are plotted at the end of a time step, before the 

refinements are adjusted in preparation for the next time step. Hence the 

pulses will appear a t  one side of the fourth level refinements. 

In Figure 8.2(a) the pulses have not yet entered the region and we see only 

the sinusoidal background. In Figure 0.2(b) both pulses have entered and 

refinements on levels 2, 3 and 4 abut both boundaries. In Figure 8.2(c) both 

pulses have left the boundaries and are moving towards each other. Already we 

can see that the peak of the unrefined solution has decayed substantially. 

In Flgure 8.2(d) the second-level refinements are about to merge, and in 

Figure 8.2(e) they have merged; however, the third and fourth level refinements 



have not yet merged. In Figure 8.2(f) the third level refinements have merged. 

Figure 8.2(g) shows the second component of the solution at  the same time. In 

Figure 8.2(h) the fourth level refinements have merged. Figure 8.2(i) shows the 

second component of the solution at the same time. 

In Figure B.Z(j) the pulses have crossed, and the third and fourth level 

refinements have separated. (Note that the pulses cross, but the refinements do 

not.) In Figure 8.2(k) the second level refinements have separated as well. Note 

the degradation in the unrefined solution at this point. Figure 8.2(1) shows the 

pulses approaching the boundaries. Now the unrefined solution has phase errors 

as well as amplitude errors. In Figure B.Z(m) the pulses are leaving the region, 

and the refinements "bunch up" against the boundary. Figure 8.2(n) shows that 

the fourth level refinements have been deleted. Finally, Figure 8.2(0) shows that 

all refinements have been deleted. Only the sinusoidal background remains. 

Figures 8.3(a) to 8.3(e) show the algorithm applied to Burgers' equation 

(P3). The purpose of t h s  calculation is to show that our method can "follow" 

shocks. Ths also shows that our method can handle a nonlinear problem. One 

would not necessarily expect the former, since we monitor the local truncation 

error, which requires a continuous third derivative. We do not suggest this as a 

practical method for computing with shocks. (But by modifying the error esti- 

mation, we believe we can develop a viable method for doing this, which will be 

described in a later paper.) We used 41 points on the coarsest mesh, with ratios 

N = M = 3, and maximum number of levels = 4. (In contrast to the smooth solu- 

tion case, the estimate of the local truncation error does not decrease on finer 

meshes; hence our method will always use the maximum number of levels in this 

case.) The local error tolerance was 0.01, and the wave speed input to the pro- 

gram was 0.5 (which is the shock speed). Again, XI = 0.8, and the dotted line 

shows the unrefined calculation. 



Figure 8.3(a) shows the shock at t = A t  = 0.08, given as the exact solution. 

Figure 8.3(b) shows the shock later, at time t = 1.6. Notice that our method has 

eliminated all the wiggles, leaving a very sharp shock, except for the Gibb's 

phenomenon (whose height is 1.33). Ths can be eliminated by addmg a small 

amount of dmipation, but only on the highest level of refinement. 

Later graphs (Figures 8.3(c), (d), (e)) show nothing new, except that the 

refinements are following the shock, as desired. 

We now proceed to more quantitative questions. 

8.3. Choosing Refkement Ratios and Maximum Levels 

Having answered the first five questions posed at the beginning of t h s  

chapter, we now proceed to the questions of how to choose the refinement ratios 

N and M (described in Chapter 2), and whether to use recursive refinements. 

We used problem P1 (the first order wave equation) for tlvs study. We chose 

81 points for the coarse mesh, so h1 = 0.05. We took hl = h l / k l  = 0.8, c = 1, and 

recorded all errors a t  time t = 3.6. Ths is the time just before the pulse leaves 

the computational region 0 r x 5 4. As usual, the Lax-Wendroff method was 

used. 

If the exact solution is denoted by u and the approximation by v ,  then the 

global truncation error is e = u - v .  The L2(x) norm of v is given in Deh t i on  

3.1 of Chapter 3, in the notation of Section 2.2. The 12(x) norm of e is analogous. 

The maximum norm of e is (in the same notation) 

I l  ei(ti)ll, = max lvf(ti)l,, i = o , l ,  . . . , 
0s j<Ni 

where I - 1 ,  denotes the maximum absolute value of all the components of the 

vector (for an n x n system). 



In our tables, a maximum mesh level of 1 signifies that only the coarse 

mesh is present (no refinement), 2 signifies one additional level of refinement, 

and so forth. The times reported are CPU seconds on a CDC 7600. (Since this 

machine runs only in batch, these times are highly reproducible between runs, 

and we did not need to take average times.) The storage used is for solution 

values only, and is the maximum storage used at the (refinement) level listed, 

for all times. Since the coarse mesh is static, it always uses 81 locations. The 

total listed is the sum over all levels. 

Tables 0.1 and 0.2 show the results using three-level Richardson extrapola- 

tion. Table 8.1 uses a local truncation error bound of 6 = 0.01 and Table 8.2 uses 

6 = 0.001. Before examining the results, let us state our expectations regarding 

the global truncation error. Let 6 be the pointwise local truncation error bound, 

and E ( t )  = Ile ( t  )ll, be the L2(x) norm of the error a t  time t . 

Propositions 4.1 and 4.2 contain constants KT1, KT1' which depend only on 

the (time) interval of integration 0 I t S T. It is well-known that these can be 

replaced by Kzexp(a2t), K3exp(a3t), for some positive constants K2, K3, and 

some constants a%, a3, respectively. When the interior local truncation error per 

unit step h p d , ,  the boundary error h P d z ,  and the interpolation error h p d ,  are 

all bounded (pointwise) by 6, then these propositions assert that the E(T)  is 

bounded by C4exp(ai T)b[(b -a) T I % ,  where C4 is constant and i = 2 or 3. Compu- 

tational evidence strongly suggests that for our problems there is no exponen- 

tial growth, ai = 0. (For the corresponding differential equation there is no 

growth either. It is also well-known that the interior approximation alone for the 

Cauchy problem produces no growth.) By examination of our results, we deter- 

mined that C, 2 0.5. Therefore, for an input tolerance of 6 ,  we would expect 

E ( T )  at  T = 3.6 not to exceed 0.5-(4-3.6)% 8 26. Hence we expect the L2(x) 

norm of the error not to exceed 0.02 in Table 8.1 and 0.002 in Table 8.2,  if 

enough levels of refinement are used. 
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Table  8 . 2  Same a s  Table 8 .1 ,  b u t  w i t h  Loca l  E r r o r  To le rance  = 0.001 



Table 8.1 illustrates one of the important features of our algorithm. I t  

shows what happens when the refinement process is (recursively) carried as far 

as possible on smooth solutions. Compare N = M = 4, maximum refinement lev- 

els 3 and 4, or N = M = 3, maximum refinement levels 4 and 5. In these cases, 

allowing an additional level of refinement has resulted in no increase in memory 

used, and no decrease in error. This illustrates that, for smooth solutions, when 

the algorithm has satisfied the local error tolerance, it refuses to refine further, 

as it should. 

In many of the cases shown, our expected L2 error of 0.02 was not attained. 

But in all such instances (and even in some instances where t h s  error was 

attained-- ie., the program is slightly over-conservative) the program gave a 

warning that the local error tolerance was not attained at some point. Thus, for 

smooth solutions, we should always choose a large value for the maximum level 

number (say 10) and let the program r e h e  as much as possible. So choosing 

the maximum number of levels is not a problem. 

Choosing the refinement ratios N and M is more problematic. It appears 

from the table that the most efficient combination of ratios which attains our 

desired l 2  error of 0.02 is N = M = 4, maximum level = 3 (or 4). However, a very 

close competitor is N = M = 16, maximum level = 2. Either one would do in this 

case. However, there is a reason to prefer the former. This can be seen by look- 

ing at  the case N = M = 10, maximum level = 3. We see that the time goes up 

drastically for "relatively large" (8 or more) refinement ratios as the number of 

levels actually used goes up. Since we recommend using as many levels as 

necessary, if we ran the case N = M = 16, we couldn't be sure (in advance) that 

it would use only two levels. (Indeed, the case N = M = 12 wants to use 3 levels, 

but N = M = 13 uses only two.) Therefore, as Table 8.2 will also show, we recom- 

mend N = M = 4, 5 or 6 in general, with lower factors for coarser local error 

tolerances, and conversely. Using N = M = 3 is generally inefficient, because it 



requires too many levels, and the cost goes up quickly with the number of levels, 

until no further levels are used. 

At the end of Table 8.1 we showed that we are not confined to taking ratios 

N and M equal. However, there is no advantage to choosing N # M .  For exam- 

ple, one of our entries has N = 9, M = 8. Since A, = k,/h, = 0.8, this implies 

hz = kz/hz = 0.9. If we took another level of refinement, we would have 

h3 = 1.0125 and our difference scheme would be unstable on the third level. 

Thus we will in the future take N = M.  

Table 8.2 shows results similar to Table 8.1, but with a smaller tolerance. 

Note that in Table 8.2 the second refinement level is the whole region. (This was 

not the case in Table 8.1.) Taking only two refinement levels with large N and M 

(N = M = 20) does not produce the desired l 2  error 0.002. And the maximum 

error for t h s  case is greater than 0.01, about ten times higher than desired. 

Comparing the cost with case N = M = 6, maximum level = 3 shows conclusively 

the necessity for recursive refinements. It furthermore affirms our policy of 

choosing N and M between 4 and 6. 

We next come to the most important question of this chapter (and perhaps 

t h s  thesis). 

8.4. Efficiency of the Method 

In Section 8.2 we showed that our method was able to resolve steep gra- 

dients, and even shocks, in the solution. We showed this by comparing the solu- 

tion obtained by our method with one obtained on a uniform coarse mesh. This 

clearly showed the qualitative superiority of our "refined" solution over the 

"unrefined" one. 

However, the "unrefined" solution cost far less to compute than the 

"refined" one. For example, in Figures 8.1(a) to (i), it cost 1.17 seconds to 



compute the "refined" solution up to time t = 3.6 (without graphic output, etc.) 

us. 0.04 seconds to compute the "unrefined" solution up to the same time, as 

shown in Table 8.1. This is a factor of 29 more expensive. But the unrefined 

solution is worthless. 

Thus, to study the efficiency of our method, we need to compare the com- 

puting time taken by our method with the computing time taken to produce 

(approximately) the same error on a uniform (fine) mesh. As a by-product, we 

will also be able to compare the memory taken in the two approaches. 

Because this is probably the most important result in this thesis, we made 

this study on two of our model problems: PI, the first-order wave equation, and 

P2, the second-order wave equation. The result is the same for both, and gives 

us confidence in extrapolating this to larger systems. 

Our method is simple. Instead of comparing a "refined" solution C with a 

solution computed on only its coarsest mesh, we compare C with a solution com- 

puted on a uniform fine mesh whose spacing is the same as the spacing of the 

C's finest mesh. If these two produce approximately the same error, then we 

have a valid comparison. 

Table 8.3 shows the results. In this table we have used two different 

difference schemes: the first (LW) is Lax-Wendroff on all refinement levels; the 

second (4th) is a hybrid method which uses the fourth order method (see Sec- 

tion 2.5) on the coarsest mesh, and Lax-Wendroff on all others. For the LW 

method, we used hl = 0.8, but because of stability considerations, we had to use 

A, = 0.6 for' the hybrid method. We used three-level Richardson extrapolation 

for the LW method, but had to use differences for the hybrid method. As usual, 

the errors are at t = 3.6 and all other parameters for the refined examples are 

as in Table 8.2. For P2, the maximum error is the maximum over both com- 

ponents of the solution, and the l 2  error is the maximum of the L 2  errors of 



No. I n t e r v a l s  Maximum Work 
Problem on Coarses t  Refinement 2 Maximum Time Memory p e r  

No. Method h Mesh Leve l  L  M E r r o r  E r r o r  ( s e c . )  Used P o i n t  

- - 

Table  8 . 3  E f f i c i e n c y  of t h e  Method 



either component. The memory given is the memory per solution component. 

We used upwind/downwind boundary conditions (see Section 8.1). 

We see that in terms of computer time our method using LW is 3 to 5.5 

times as efficient as using a uniform fine mesh which produces the same error. 

In terms of memory, a factor of 1.7 to 2 .2  is gained. At first it might seem 

surprising that our method could be more efficient, since it requires much 

greater overhead than the uniform mesh method. The overhead is needed to 

estimate the local truncation error and adjust the refinements. TIUS is compen- 

sated for, however, by being able to take large time steps in unrefined regions. 

Using a uniform mesh, we must take fine time steps everywhere. 

An additional aspect of efficiency that should be mentioned involves the 

work per mesh point. Our mesh refinement algorithm reduces the (maximum) 

number of mesh points needed to  achieve a given accuracy, and this naturally 

reduces the amount of work, but does the amount of effort per  mesh point 

decrease? 

Table 8.3 also gives this figure, obtained by dividing the computer time by 

the maximum number of mesh points used. I t  is clear that in all cases the work 

per mesh point is decreased by a factor of two (the notation n-m means 

n - lom) .  

Our results also show that the hybrid LW/4th order method is not competi- 

tive in efficiency with pure Lax-Wendroff. We also tried using the hybrid method 

with hl  = 0.2, all other hi = 0.8. Though improved somewhat, the results still 

were not competitive with pure Lax-Wendroff. In addition, the hybrid method 

was quite cumbersome to implement. 

In general, of course, one will not get a factor of three or any other specific 

efficiency factor. This depends primarily on the fraction of the region needing 

refinement, and other factors such as the local error tolerance, when (for which 



t )  we are doing the comparison, the wave speed, and so forth. 

I t  might be argued that we obtained our results only by adjusting or tuning 

the parameters N ,  M.  To refute this charge, we have shown several different 

values of N and M .  This shows that although we cannot easily determine the 

optimal N,  M ,  even suboptimal choices still yield a significant savings in execu- 

tion time. 

8.5. Behavior as h -, 0 

As we pointed out in Chapter 3, we can study two types of convergence. (In 

all cases we hold the refinement ratios N and M fixed.) In the first, we hold the 

local error tolerance S fixed and let h ,  + 0. In the second, we let h ,  -, 0 and let 

6 = ~ ( h , ) ~ .  

We first keep the maximum number of refinement levels constant, and less 

than necessary (for the method to refine as much as possible), and study the 

first type of convergence. Table 8.4 shows these results on P1 using pure Lax 

Wendroff, hl = 0.8, N = M = 4, three-level Richardson extrapolation, and local 

error tolerance = 0.001. For the smaller values of h ,  the 0(h2) behavior of the 

errors (both maximum and 1,) is apparent. 

Next we do the same test,  but choose the maximum number of levels large 

enough so that the method refines as much as possible. The maximum level is 5 

here. The convergence is 0(h2) for the maximum error with the coarse mesh 

size going from N o  = 80 to 160. But as we saw in Chapter 3 ,  the grid is approach- 

ing a uniform mesh as h -. 0 and this slows down the convergence. As h -. 0 the 

number of levels used approaches 1. 

Finally, we let h -, 0 and let 6 = 0(h2). Here we see the convergence is fas- 

te r ,  and the maximum error is finally 0(h2).  The l 2  error does not behave as 

well. 



No. of R -norm 
Intervals Maximum Local 2 Maximum Storage 
on Coarse Refinement Error '2 Maximum o f Time by Levels 
Mesh Level L M Tol. Error Error Solution (sec. ) 1 2 3 4 Total 

Table 8 . 4  Behavior of Global Error as hl =+ 0 



8.6. Estimating the Local Truncation Error in the Interior 

In t h s  section we will consider the other ways of estimating the interior 

local truncation error that we examined in Chapter 5: differences and two-level 

Richardson extrapolation. In all other tables in t h s  chapter we used three-level 

Richardson estimation (except on the &st level of the hybrid method) in the 

interior of the region. 

Table 8.5 shows these results for problem PI. As usual, the parameters not 

listed in the table are the same as in the computations for Table 8.1 or 8.2. R3 

signifies 3-level Richardson extrapolation, R2 is two-level Richardson extrapola- 

tion, and D signifies differences. Omitted entries are the same as the entries 

above them. 

We see that there is very little difference in efficiency between these 

methods for problem PI. The use of differences seems to be slightly more 

efficient. But in our opinion, the greater convenience of three-level Richardson 

for interior approximations far outweighs any small efficiency differences. 

8.7. Estimating the Local Truncation Error at Boundaries 

In this section we will fix our problem (P2), and our interior approximation 

and error estimation methods (Lax Wendroff and three-step Richardson, respec- 

tively). Then we will vary our boundary approximation and our method of error 

estimation at  the boundary. 

We will use upwind/downwind differencing and first-order extrapolation (see 

Section 8.1). For the former we will estimate the error both by using the 

modified Richardson 3-step method (Section 5.4) and by replacing t derivatives 

by x derivatives in the truncation error and using differences. For extrapolation 

we can only use differences. The results are shown in Table 8.6. In all cases, the 

number of intervals on the coarsest mesh is 80, the maximum. number of 



blaximum 
Re f inemen t 

Loca l  
E r r o r  P2 

Maximum 
Time 

Level L M To le rance  Method E r r o r  E r r o r  ( s e c .  ) 

Table  8.5 Using D i f f e r e n t  Methods t o  E s t i m a t e  t h e  Loca l  T r u n c a t i o n  E r r o r  



refinement levels is 5, and the refinement ratios L = M = 4. In all cases the fifth 

refinement level was not used. U / D  sgnifies upwind/downwind differencing, and 

Rich. signifies the modified 3-step Richardson method. The memory occupied by 

solution values is the maximum total over all refinement levels for m e  com- 

ponent of the solution. As usual, all other parameters not shown are the same 

as in the computation for Table 8.1, except that we use Problem P2 rather than 

P1. 

Clearly, the different boundary approximations and error estimation 

methods produce approximately the same results. Ths supports our claim that 

our method of adaptively handling boundaries is quite general. 

8.8. How Often Should the Local Truncation Error Be Checked? 

In Chapter 2 we used subsequences to describe the times at  which we esti- 

mate the local truncation error (and possibly alter refinements). In this section 

we shall show that for Problem P1 it is unwise to monitor the local truncation 

error more often than every coarse time step. 

Table 8.7 shows the results of these computations for Problem PI .  ,411 

parameters not mentioned are the same as in the computations for Table 8.1. 

The meaning of (a) under "tolerance frequency" in Table 8.7 is how many coarse 

Boundary Error Local 17 Maximum Time Memorv 

Approx. Estimation Error ~ r r o r  Error (sec.) used* 
Tolerance 

U /D Rich. .0 1 1.20-2 2.18-2 3.84 630 
U /D diff. .01 1.21-2 2.  i8-2 3.87 630 

extrap. diff. .O1 1.18-2 2.18-2 3.93 642 
U /D Rich. ,001 8.02-4 i .34-3 42.3 1774 
U /D diff. ,001 8.02-4 1.34-3 41.9 1774 

extrap. diff. ,001 8.00-4 1.34-3 42 .6  181-1 

Table 8.6. Error Estimation at Boundaries 



Maximum Maximum S t o r a g e  
Refinement To l .  F req .  Q2 Maximum Time by L e v e l s  

Leve l  L M Tol .  (a) (b) E r r o r  E r r o r  ( s e c . )  2 3 4 T o t a l  

- - 

Table  8 . 7  How Often Should t h e  Local  Trunca t ion  E r r o r  Be Checked? 



time steps occur between checks of the local error. The column (b) has two 

different meanings, depending on column (a). If column (a) is 1 then we check 

the truncation error at  any time a refinement whose level is less than or equal to 

(b) is about to be advanced. Thus, in these cases we check more often then 

every coarse time step. Table 8.7 shows that t h s  is very costly and produces no 

benefits whatever. 

If (a) in Table 8.7 is greater than one, a one in column (b) signifies that we 

check all refinements every (a) coarse time steps. If column (a) is greater than 

one and (b) is greater than one, we check refinements with levels greater than 

or equal to (b) every coarse time step, and all others every (a) coarse time 

steps. Of course, in all cases in this table, the buffers mentioned in Section 2.6 

have to be modfied, in a way analogous to the argument given there. 

Our results for these cases show very little difference from checking every 

coarse time step, until the checking frequency becomes too seldom (as in case 

(a) = 6, (b) = 1). Then the accuracy starts to deteriorate, because a pulse may 

enter the boundary before it is enclosed in refinement(s). (The algorithm could 

easily be modified to check the boundaries at  every coarse time step, but we did 

not do this.) 

We conclude that for t h s  problem we may as well check the local error 

every coarse time step, although this may depend on factors such as the spacing 

of the coarse mesh, the wave speed, and the presence of forcing functions 

(terms k F  in (2.1)). Also, the results may be radically different in more than 

one space dimension (M. Berger, Ph.D. thesis [to appear]). 

8.9. Linear vs. Quadratic Interpolation 

One final implementation detail we considered is whether to use linear or 

quadratic interpolation when a level 1 refinement moves into a region formerly 



occupied only by a level 1-1 refinement. (This is relevant to the statement of 

Propositions 4.1 and 4.2.)  Table 8 .0  shows that there is practically no difference. 

(AU parameters not mentioned are as in the computation for Table 0.1. As usual, 

omitted values are the same as the ones above.) We used quadratic interpolation 

elsewhere in t h s  chapter, but linear interpolation would be preferred because 

it is easier to program. 



Maximum Local Linear o r  i? 
2 

Maximum Time 
Refinement L M Error  Quadratic 

Error 
Level Tolerance In te rp .  Error  (sec.  ) 

Table 8 .8  Linear vs .  Quadratic In te rpo la t ion  



CHAPTER 9 

Conclusions and Extensions 

In this thesis we have developed and partially analyzed an adaptive finite 

difference method for hyperbolic systems in one space dimension. It is intended 

for problems wbch are smooth in most parts of the spatial region, but which 

have large gradients which require "moving" refinement(s) for accurate approxi- 

mation. The algorithm was described in Chapter 2.  

Although our method was originally developed for problems with smooth 

solutions, and the analyses hold only for that situation, we found in Section 8.2 

that our method also works for problems with shocks, in the sense that the 

refinement(s) follow the shock. However, the method is not yet efficient for that 

case. 

The most important result of t h s  thesis is that our method can be much 

more efficient (for a given level of accuracy) than using a uniform grid. 

Specifically, in Section 8.4 we found that our method was 3-5 times more 

efficient (in computing time). Work by W. Gropp [1980] and M. Berger [to 

appear] in two spatial dimensions confirms t h s .  We believe the efficiency of the 

shock calculation mentioned above can be greatly improved by changing the 

method of error estimation, and we will do t h s  in the future. 

Our method also provides efficiencies in storage, but these are not as 

dramatic as the execution time savings. We expect the savlngs to be greater for 

more space dimensions. 

Our algorithm is the only one of whch we are aware which adaptively treats 

time-dependent boundary conditions for hyperbolic systems (as was shown by 



problem P2 in Section 8.7) in a systematic and general way. This is obviously 

important for limited area weather forecasting, among other problems. 

We saw that our algorithm does indeed accurately "track" moving pulses, 

even when they merge, separate, or pass through boundaries, without being &s- 

tracted by background "noise" (as appeared in our problems P1 and P2). 

As explained in Chapter 3, our method of mesh refinement requires the use 

of a stability definition different from the usual Gustafsson-Kreiss-Sundstrom 

[1972] definition. In Chapter 4 we stated but did not prove a convergence propo- 

sition analogous to Gustaf sson's 119751 result, but using the new stability 

definition. Using t h s ,  and the results of Pereyra and Sewell, we proved a result 

(Proposition 4.2) which gives insight into why our algorithm can be expected to 

produce economies. Our algorithm does not increase the order of convergence, 

but, loosely speaking, it can greatly decrease the constant multiplying hP in the 

global error. Our computations in Section 8.5 confirm the rate of convergence 

given in Proposition 4.2. 

In Chapter 5 we examined methods for estimating the local truncation 

error. For interior approximations we found that the three-step Richardson 

extrapolation method was the most versatile and easy to use. We proved that 

this procedure was valid for a large class of explicit difference schemes (namely 

th.ose whose local truncation error has the same order in both space and time). 

We found that this scheme can sometimes be applied (with modifications) at  the 

boundaries, but that differences provide the most versatile method here. 

In Chapter 6 we discussed the data structures necessary for an efficient 

implementation of the algorithm. The nested structure of recursive refinements 

was indicated by a four-way linked tree of records, and the solution values were 

contained in sequentially allocated deques. We used a macro preprocessor for 

Fortran to implement this, since Fortran lacks convenient facilities for data and 



control structures. 

Many additional areas for research suggest themselves. The first is the 

completion of the theoretical results using the new d e h t i o n  of stability in 

Chapter 3. Although it is well-known that our difference scheme when applied to 

problems P1 and P2 on a uniform mesh is stable according to the Gustafsson- 

Kreiss-Sundstrom definition, we have not proved that it is stable according to 

the new def%wtion. For refined meshes with nonuniform time steps, the only 

known stability result has recently been given in M. Berger's Ph.D. thesis [to 

appear] for the GKS stability definition. Still needed is a similar result for the 

new stability definition. Proposition 4.1 of Chapter 4 on the rate of convergence 

also needs to be proved. 

We believe Theorem 5.1 is true in more general circumstances although 

whether it can be proved then is an open question. The first is variable 

coefficients in one space dimension. The second is linear hyperbolic systems in 

more than one space dimension (but here a theorem like Gustafsson's is lacking 

to guarantee the order of the global error). Another generalization is to 

&fference schemes that depend nonlinearly on approximate solution values. We 

believe that Theorem 5.1 holds for some of these cases, although we are unable 

to state which ones. Evidence for this was provided by our shock calculation for 

the inviscid Burgers' equation in Chapter 0. On the other hand, we doubt that 

this theorem generalizes to implicit methods, or to some other types of equa- 

tions (such as parabolic equations). 

In proving Theorem 5.1, we assumed that not only the solution, but also the 

.global error was sufficiently smooth. That is, we assumed the existence of an 

asymptotic expansion for the global truncation error. To our knowledge, the 

best result for the initial boundary value probIem is Gustafsson's [1975] 

theorem, which only gives the size of the global error, but says nothng about its 



smoothness. We believe t h s  theoretical gap will be very difficult to overcome. 

In the realm of implementation in one space dimension, the method of local 

error estimation needs to be altered (for efficiency reasons) in shock calcula- 

tions. It also needs to be extended to implicit difference schemes ( t h s  1s more 

difficult) and possibly to conservative difference schemes. On the other hand, 

we believe our algorithm applies without change to moving boundary layer prob- 

lems. 

In two space dimensions there are many more problems, but these are 

being considered in M. Berger's Ph.D. thesis [to appear]. Some of the new prob- 

lems are: more complicated data structures, orientation of refinements, and 

clustering analysis. 
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APPENDIX A 

Appendix: Program Listing 

The following is the listing of the mesh refinement program for problem P2 

(the second order wave equation with counter-streaming pulses). We include it 

both to resolve any small details whch had to be omitted from the text, and to 

show the advantages of using a preprocessor language for this type of algorithm. 

As described in Chapter 7, the language used is an extension of Mortran [Cook 

and Shustek, 19751. 



MORTRAN 2.0 (VERSION OF 6 / 2 4 / 7 5 )  PROCESSOR VERSION OF 06/24/75 

$U5 
0 
0 " PROGRAM TO SOLVE THE INITIAL BOUNDARY-VALUE PROBLEM FOR THE ONE- 
0 DIMENSIONAL SECOND ORDER WAVE EQUATION 
0 
0 2 
0 U - C U  = O ,  C.GT.0, 
0 TT XX 
0 
0 
0 REWRITTEN AS THE 2 BY 2 FIRST ORDER SYSTEM, WITH V = CxDU/DX, AND 
0 W = DU/DT, 
0 
0 v = C W  
0 T X 
0 
0 W = C W  
0 T X 
0 
0 IN  THE STRIP A .LE. X .LE. B, T .GE. 0, WITH AUTOMATIC INSERTION 
0 OF MESH REFINEMENTS IN  REGIONS WHERE THE SOLUTION IS CHANGING 
0 RAPIDLY. INITIAL CONDITION V(X, 0) = F(X) + G(X), W(X, 0) = 
0 -F(X) + G(X), WHERE F AND G ARE GIVEN BY SUBROUTINE EXACT.SOLUTION. 
0 BOUNDARY CONDITIONS V(A, T) = W(A, T) + 2F(A - CV) ,  
0 V(B, T) = -W(B, T) + 2G(B + CXT). 
0 EXpCT SOLUTION V(X, T) = F(X - CXT) + G(X + C V ) ,  
0 W(X, T) = -F(X - CxT) + G(X + CXT). 
0 
0 REFERENCE: 
0 BOLSTAD, JOHN H., 'AN ADAPTIVE FINITE DIFFERENCE METHOD FOR 
0 HYBPERBOLIC SYSTEMS IN ONE SPACE DIMENSION', LBL-13287 AND 
0 STAN-CS-82-899, JUNE, 1 9 8 2 .  
0 
0 " 

0 " SHORTEN IOENTI FI ERS" 
$ 'INITIALIZE' = 'INITIA' 
$ 'ADVANCE.SOLUTION1 = 'ADVSOL' 

0 
0 REAL TIME; 
0 INTEGER HANDLE, MILSEC; 
0 LOGICAL RUNNING; 
0 
0 HANDLE = 0; 
0 C M L  L I S I  N I T J I  MER(HANDLE); 
0 RUNNING = .TRUE.; 
0 WHILE RUNNING < 
1 CALL INITI ALIZE(RUNN1NG); 
1 IF (.NOT. RUNNING) EXIT; 
1 CALL ADVANC E.SOLUTION; 
1 CALL LIB$STATJIMER(Z, MILSEC, HANDLE); 
1 TIME = 0.OlxMILSEC; 
1 OUTPUT TI ME; (' ELASED TIME = ', F9.3, ' SECONDS'); 
1 CALL LIB$INIT_TIMER(HANDLE)> 
0 STOP; 
0 END; 
0 
0 "MORTRAN MACROS" 
0 

$ '0NE.TIME.STEP' = 'ONETIM' 
$ 'EXACT.SOLUTION1 = 'EXTSOL1 
$ 'INITIAL.CONDITI0NS' = 'INITCN' 
$ 'EXTEND.LEFT1 = 'EXTLFT' 
$ 'EXTEND.RIGHT1 = 'EXTRGT' 
$ 'DETERMINE.REFINEMENTS' = 'DETREF1 
$ 'ADJUST.MESH1 = 'ADJMES' 



$ 'FILL.IN1 = 'FILLIN' 
$ 'SEPARATE.REF' = 'SEPRAT' 
$ 'I NTERPOIATE' = ' I  NTRPO' 
$ 'ESTIMATE.ERROR' = 'ESTERR' 
$ 'TOLERANCE' = 'TOLRNC' 
$ 'TOL.ACHIEVED1 = 'TOLACV 
$ 'TOL.FREQ1 = 'TOLFRQ' 
$ 'DIFFERENCES' = 'DIFRNC' 
$ 'DIFFERENCESP1 = 'DIFRN2' 
$ 'RICHARDSON2' = 'RICHA.2' 
$ 'RICHARDSON3' = 'RICHA3' 
$ 'LEFTMOST' = 'LFTNIST' 
$ 'ESTERROR' = 'ESTRRR' 
$ 'MAXLEVEL' = '5 '  "MAXIMUM NUMBER OF LEVELS OF REFINEMENT'' 
$ 'MAXLEVELP 1 ' = ' 6 '  "MAXLEVEL + 1 " 
$ 'MAXRFINE' = ' 1  5 '  "MAXI MUM NUMBER OF REFINEMENTS. THIS NUMBER 

0 MUST BE GE. MAXLEVEL + 1 ." 
$ 'MEMAVAIL' = ' 3 0 0 0 '  "MEMORY AVAILABLE FOR V AND REFINEMENTS" 
$ 'HEIGHT' = ' 1  6' "VERTICAL HEIGHT OF CRUDE PLOTS" 
$ 'HEIGHTP 1 ' = ' 1  7' "HEIGHT + 1 " 
$ 'PAGEWIDTH' = ' 120 '  "NO. OF CHARS. ON LINE OF OUTPUT" 
$ 'EMPTY' = ' - I1  'SIGNAL FOR RIGHT END OF EMPTY MESH" 
$ 'NCOMP' = '2 '  "NUMBER OF EQUATIONS AND COMPONENTS IN 

0 SOLUTION VECTOR" 
0 

$ 'USE SOLN;' = 'COMMON /SOLN/ ZVNEW, VNEW, ZV, V; 
0 REAL ZVNEW(NCOMP), VNEW(NCOMP, MEMAVAIL), ZV(NCOMP), V(NCOMP, 
0 MEMAVAI L); ' 
0 "ZVNEW = VNEW(l,O), ZV = V(1,O). 
0 THIS SIMULATES V(l :NCOMP, 0:MEMAVAIL) IN ALGOL NOTATION." 
0 ARRAY RFIN(MAXRFINE) OF RECORD < 
1 POINTER TO RFIN: LLINK, RLI NK, COARSE, FINE; 
1 INTEGER: BASE, TOP, OLDBASE, OLDTOP, LEFT, RIGHT; > 

$ 'USE LFTMST;' = 'COMMON /LFTMST/ LEFTMOST; 
0 POINTER TO RFIN: LEFTMOST(MAXLEVELP 1 );' 

$ 'USE COM3;' = 'COMMON /COM3/ A, B, N; 
0 REAL A, B; INTEGER N;' 

$ 'USE C O W ; '  = 'COMMON /COM4/ C, FACTOR, SCALE, TWOPI; 
0 REAL C, FACTOR, SCALE, TWOPI;' 

$ 'USE COM5;' = ' 
0 COMMON /COM5/ NLEVEL, NPTSM, POWER, RIGHTB, BUFFER; 
o INTEGER NLEVEL, NPTSM(MAXLEVELPI ), POWER(MAXLEVELPI ), 
0 RIGHTB(MPXLEVEL), BUFFER(MAXLEVEL);' 

$ 'USE STEPSZ;' = ' 
0 COMMON/STEPSZ/ HO, H, K, LAMBDA; 
0 REAL HO, H(MAXLEVEL), K(MAXLNEL), LANIBDA(MAXLWEL);' 

$ 'USE COM7;' = 
0 'COMMON /COM7/ C l , C 2 ,  C3, L2, L3, L6, NM1, NM2, NM3; 
0 REAL C1, C2, C3, L2, L3, L6; 
0 INTEGER N M l  , NM2, NM3;' 

$ 'USE ZERO;' = 'COMMON /ZERO/ ZERO; l NTEGER ZERO;' 
$ 'USE XRATIO;' = 'COMMON /XRATIO/ XRATIO; INTEGER XRATIO;' 
$ 'USE COUNT;' = 'COMMON /COUNT/ NSHRT, NSHL; 

0 INTEGER NSHRT, NSHL;' 
$ 'USE DEBUG;' = 'COMMON /DEBUG/ DEBUG; INTEGER DEBUG;' 
$ 'USE COM12;' = 'COMMON /CON11 2 1  TOLERANCE, NTIME, SKIPPR, TRATIO, 

0 QUADRAT, PRINT, RICHSN, TOLCHK, TOL.FREQ, 
0 TOL.ACHIEVED, BDRY; 
0 REAL TOLERANCE; 
0 INTEGER BDRY, NTf ME, RICHSN, SKIPPR, TOL.FREQ(P), TRATIO; 
0 LOGICAL QUADRAT, PRINT, TOLCHK, TOL.ACHI EVED;' 

$ 'USE METHOD;' = 'COMMON /METHOD/ METHOD; INTEGER METHOD;' 
$ 'USE COM14;' = 'COMMON /COM14/ C6, C7, C8, C lO ;  

0 REAL C G(MAXLEVEL), C7(MAXLEVEL), C 8 (MAXLEVEL), C 1 0 (MAXLEVEL);' 
$ 'USE ERROR;' = ' 

0 COMMON /ERROR/ ZESTER, ESTERROR; 
0 REAL ZESTER(NCOMP), ESTERROR(NCOMP, MEMAVAIL);' 



0 "THIS SIMULATES ESTERROR(1 :NCOMP, 0:MEMAVAIL)" 
0 
0 SUBROUTINE I NITIALIZE(RUNN1NG); 

USE SOLN; USE LFTMST; USE COM3; USE COM4; USE COM5; USE STEPSZ; 
USE C O W ;  USE ZERO; USE XRATIO; USE COUNT; USE DEBUG; USE COMl2 ;  
USE METHOD; USE COM14; USE ERROR; DEFINE RFIN; 
REAL S; 
INTEGER I, J, L, NLEVPI ; 
POINTER TO RFIN: P; 
LOGICAL RUNNING; 
C HARACTER"9 DAY; 
DATA ZERO /of ;  

INPUT NLEVEL, XRATIO, TRATIO, DEBUG, RICHSN, BDRY, TOL.FREQ, METHOD, 
N, SKIPPR, NTIME, QUADRAT, TOLCHK, LAMBDA(l), SCALE, TOLERANCE, C; 
(912, 314, 2L1,4F7.3); 
IF N .LE. 0 < 

RUNNI ffi = .FALSE.; 
GO TO :EXIT:> 

IF N L W L  .LE. 0 .OR. NLEVEL .GT. MAXLEVEL < 
OUTPUT NLEVEL; (' INCORRECT INPUT, NLEVEL = ', 15); 
RUNNI NG = .FALSE.; 
GO TO :EXIT:> 

IF MAXRFINE .LT. M M L E M L P l  < 
OUTPUT; (' MAXRFINE TOO SMALL'); 
RUNNING = .FALSE.; 
GO TO :EXIT:> 

IF TRATIO .LT. 2 .OR. XRATIO .LT. 2 < 
OUTPUT XRATIO, TRATIO; (' XRATIO, TRATIO :', 2 14, ' TOO SMALL'); 
RUNNI NG = .FALSE.; 
GO TO : EX1 T: > 

TOL.ACHIEVED = .TRUE.; 
NM1 = N -  1; 
N M 2 = N - 2 ;  
NM3 = N - 3; 
A = 0.; 
B = 4.; 
H(ZER0) = 1 .; 
H(l) = (8 - A)/ N; 
TWOPI = 6 .2831853071796 ;  
L2 = CxLMIIBDA(l ) / 2.; 
~3 = C~LAMBDAO ) / 3 .; 
L6 = CXIAMBDA(l ) / 6.; 
K(1) = H(l)XLAMBDA(l ) / C; 
C1  = 1 . - L2 ;  
C 2  = 1. + L2; 
C3  = l.+ 1 1.XL6; 
FACTOR = 1 .; 
NSHL = 0; 
NSHRT = 0; 

"SET UP A PERMANENT EMPTY (NIL) REFINEMENT ON LEVEL NLEVEL+l." 
MAKEAVAJL RFIN; 
NLEVP1 = NLEML + I ;  
NEW(P); 
LEFTMOST(NLEVP 1 ) = P; 
WITH P < 
-BASE = MEMAVAIL + 1 ; 
-TOP = -BASE + (EMPW); 
-LEFT = 0 ;  
-RIGHT = EMPTY; 
+LINK = NIL; 
-COARSE = NIL; 
-FINE = NIL: 

"SET UP COARSE (1 ST LEVEL) REFINEMENT." 



NEW(P); 
LEFThAOST(1) = P; 
-LEFT = 0; 
-RIGHT = 1; 
-TOP = N; 
-OLDTOP = -TOP; 
-BASE = 0; 
-0LDBASE = -BASE; 
-LLINK = NIL; 
-RLINK = NIL; 
-COARSE = NIL; 
-FINE = NIL; 
(LEFTMOST(NLEVP1 )-.LLINK) = P> 

RIGHTB(1) = 1 ; 
POWER(1) = 1 ; 
S = CXLAMBDA(l ); 
BUFFER(1) = METHOD + 2 + TOL.FREQ(1 )"S; 
DO J = ZERO, MEMAVAIL < 

DO I = 1, NCOMP < 
VNEW(1, J) = 0 .; 
ESTERROR(1, J) = O.>> 

DO L = 2, NLEVEL < 
IF L .EQ. 2 <RIGHTB(2) = N> 
ELSE <RIGHTB(L) = XRATIVRIGHTB(L-I)> 
H(L) = H(L-1 )/XRATIO; 
K(L) = K(L-l)/TRATIO; 
LAMBDA(L) = (LAMBDA(L-l)xXRATIO)/TFiATIO; 
LEFTMOST(L) = NIL; 
S = XRATIOXS; 
IF (TOL.FREQ(1) .EQ. 1 .AND. L .LE. TOL.FREQ(2)) 

S = S /  TRATIO; 
IF TOL.FREQ(1) GT. 1 .AND. L .LT. TOL.FREQ(2) .OR. 
TOL.FREQ(2) .EQ. 1 < 

BUFFER(L) = 3 + S'CTOL.FREQ(1 )> 
ELSE < 

BUFFER(L) = 3 + S> 
> 

DO L = 1, NLEML < 
C6(L) = CXH(L)X*2*(1. - C*CxLAMBDA(L)mZ)/6.; 
C7(L) = (1. - CXCXLAMBDA(L)XX2)/(3.XK(L)); 
C8(L) = 1 ./(6.XK(L)); 
C 1 0 (L) = 0.5*CxLAMBDA(L)xH(L)XXZ ; 

NPTSM(L+l) = 0; 
POWER(L+I) = POWER(L)XTRATIO> 

OUTPUT;('lSOLUTION OF SECOND-ORDER WAVE EQUATION WITH OPEN ', 
'BOUNDARY CONDITIONS USING LAX-WENDROFF MESH REFINEMENT'); 
IF METHOD .EQ. 2 < OUTPLIT;(' FOURTH ORDER (SPKE)  ON COARSE MESH1)> 

ELSE <OUTPUT;(' LAX-WENDROFF ON COARSE MESH1)> 
IF RICHSN .EQ. 1 < 

OUTPUT; (' ERROR ESTIMATION USING DIFFERENCES')> 
ELSE IF RICHSN .EQ. 2 < 

OUTPUT; (' ERROR ESTIMATION USlNG 2-LEVEL RICHARDSON ' 
'EXTRAPOLATION')> 

ELSE < 
OUTPUT; (' ERROR ESTIMATION USING 3-LEVEL RICHARDSON ' 
'EXTRAPOLATION')> 

IF BDRY .EQ. 1 < OUTPUT; (' EXTRAPOLATION BOUNDARY CONDITIONS')> 
ELSE IF BDRY .EQ. 2 < 

OUTPUT; (' UPWIND B.C. WTH ESTIMATION BY DIFFERENCES1)> 
ELSE < 

OUTPUT; (' UPWIND B.C. WTH ESTIMATION BY RICHARDSON EXTRAP.')> 
OlrrPUT N, H(1). K(l), LAMBDA(1 ), C; (/ ' NO. OF I NTERVALS ON ', 
'COARSE MESH', 16, ' HCOARSE ' ,  F8.5, ' KCOARSE ', F8.5, ' LAMBDA ', 
F8.5, ' C',  F10.2); 



0 OUTPUT NLEVEL, XRATIO, TRATIO, TOLERANCE; (' HIGHEST LEVEL ' ,  
0 'REFINEMENT', 14, ' H RATIO ', 13, ' K RATIO ', 13, 
0 ' LOCPL TRUNCATION ERROR BOUND', 1 PE15.7); 
0 OUTPUT SKIPPR, DEBUG, NTIME, SCALE, QUADRAT, TOLCHK, TOL.FREQ; 
0 ( I  SKIPPR = I ,  14, ' DEBUG =', 14: ' NTIME = I ,  15, 
0 ' SCALE =', E15.7,' QUADRATIC INTERPOLATION =', L2, 
0 ' CHECK ERROR =', L2 / ' TOL FREQUENCY =', 213); 
0 CALL DATE(DAV); 
0 OUTPUT DAY; (' DATE = ', A!); 
0 OUTPUT (BUFFER(J), J = 1, NLEVEL); (' BUFFER ', 2015); 
0 DO L = 1,  NLEVEL < 
1 LANIBDA(L) = C W B D A ( L ) >  
0 :EXIT: 
0 RETURN; 
0 END; "INITIALIZE" 
0 
0 
0 SUBROUTINE INITIAL.CONDITIONS(BASE, V, VNEW); 
0 
0 "FIND EXACT SOLUTION AT FIRST TWO LEVELS" 
0 
0 USE COM3; USE STEPSZ; USE ZERO; 
0 REAL TEMP(NCOMP), V(NCOMP, l), VNEW(NCOMP, I), X; 
0 INTEGER BASE, I; 
0 
0 DO J = ZERO, N < 
1 X=A+JW(I); 
1 CALL EXACT.SOLUTION(X, O., TEMP); 
1 DO I = 1, NCOMP < 
2 VNEW(I , BASE+J) = TEMP(I)> 
1 CALL EXACT.SOLUTION(X, K(1), TEMP); 
1 DO I = 1, NCOMP < 
2 V(I, BASE+J) = TEMP(I)>> 
0 RETURN; 
0 END; "I NITIAL.CONDITIONS" 
0 
0 
0 SUBROUTINE EXPI)T.SOLUTION(X, T, TEMP); 
0 USECOM4; 
o REAL PHASE, T, TEMP(NCOMP), X; 
0 PHASE = X - C T  + 0.5; 
0 F = FPCTORXEXP(-SCALPPHASEXx2)+0.1XSIN(TWOPIXPHASE); 
0 PHASE = X + CXT - 4.5; 
0 G = -FACTORxEXP(-SCALEXPHASEXX2); 
0 TEMP(1) = F + G; 
0 TEMP(2) = G - F; 
0 RETURN; 
0 END; 
0 
0 
0 SUBROUTINE UXX(X, T, TEMP); 
0 USECOM4; 
0 REAL F, G, PHASE, SP2, T, TEMP(NCOMP), X; 
0 PHASE : X - C T  + 0.5; 
0 SP2 = SCALExPHASExPHASE; 
0 F = 2.XSCALExFACTORXEXP(-SP2)X(2.XSP2 - 1 .) 
0 - 0.1X(TWOPIxx2) SIN(TWOPI~PHASE); 
0 PHASE = X + CxT - 4.5; 
0 SP2 = SCALExPHASEXPHAcSE; 
0 G = -2.%SCALEXFACTORXEXP(-SP2)X(2.XSP2 - 1 .); 
0 TEMP(1) = F + G; 
0 TEMP(2) = G - F; 
O RETURN; 
0 END; 
0 
0 
0 SUBROUTINE UXXX(X, T, TEMP); 



0 USECOM4; 
0 REAL PHASE, SP2, T, TEMP(NCOMP), X; 
0 PHASE = X - CXT + 0.5; 
0 SP2 = SCALExPHASExPHASE; 
0 F=FACTORxEXP(-SP2)V .XSCPLExSCALEXPWEx(3 .-2 ."SP2) 
o - 0.1 X(TWOPIXX~) COS(TV\~OPIXPHASE); 
0 PHASE = X + CxT - 4.5; 
0 SP2 = SCALExPHASExPHBSE; 
0 G = -FACTORxEXP(-SP2)V.xSCALEXSCALExPHASEx(3.-2.xSP2); 
0 TEMP(1) = F + G; 
0 TEMP(2) = G - F; 
0 RETURN; 
0 END; 
0 
0 
0 SUBROUTINE ADVANC E.SOLUTI ON; 
0 
0 "ADVANCE THE SOLUTION IN TIME. USE THE EXACT SOLUTION AT 
0 THE FIRST TIME LEVEL (NECESSARY FOR THE FOURTH ORDER METHOD, BUT 
0 NOT NECESSARY FOR LAX WENDROFF, EXCEPT FOR COMPARISON PURPOSES)" 
0 
0 USE SOLN; USE LFTMST; USE COM5; USE STEPSZ; USE COUNT; USE DEBUG; 
0 USE COM12; DEFINE RFIN; 
0 REAL T, TIME; 
0 INTEGER BOTTOM, HLEVEL, L, LM, LT, M, NTIMEl, NEWHIL, SUM, TLEVEL, 
0 TOP, TOTPTS, TOUT; 
0 POINTER TO RFIN: P; 
0 
0 CALL INITIAL.CONDITIONS(0, V, VNEW); 
0 T = K(1); 
0 PRINT = SKIPPR .EQ. 1 ; 
0 IF (DEBUG .GT. 0) CALL PLOT(1, T); 
0 IF TOLCHK <TOP = NLEVEL> ELSE <TOP = NLEVEL - 1 > 
0 L =  1; 
0 WHILE L .LE. TOP .AND. LEFTMOST(L) .NE. NIL < 
1 P = LEFTMOST(L); 
1 TOTPTS = 0 ;  
1 REPEAT < 
2 c a ~ ~  ESTIMATE.ERROR(P, L, I, T); 
2 CALL DETERMINE.REFINEMENTS(P, L, 1, TOTPTS); 
2 P = (P-BLINK)> 
1 UNTIL P .EQ. LEFTMOST(L+l); 
1 NPTSM(L+~) = MAXO(NPTSM(L+I), TOTPTS); 
1 L = L + l >  
0 "FIND LEVEL OF FINEST MESH'' 
0 HLEVEL = L - I ; 
0 IF (LEFTMOST(L) .NE. NIL) HLEML = L; 
0 N T I M E l = N T I M E - 1 ;  
0 DOTLEVEL=l ,NTIMEl  < 
1 "ADVANCE THE SOLUTION FROM T = K(1)VLEVEL TO K(l)X(TLEVEL+l), 
1 STARTING WITH THE HIGHEST LEVEL (FINEST) MESH." 
1 PRINT = MOD(TLEVEL+l , SKLPPR) .EQ. 0 .OR. TLEVEL .EQ. NTIMEl; 
1 M =  I ;  
1 REPEAT < 
2 L = HLEVEL; 
2 REPEAT < 
3 LT = M/POWER(HLEVEL+l -L); 
3 LM = MOD(LT-1, TRATIO) + 1 ; 
3 TIME = T + LTxK(L); 
3 P = LEFTMOST(L); 
3 REPEAT < 
4 CALL ONE.TIME.STEP(P, L, LM, LAMBDA(L), TI ME, 1, .FALSE., 
4 V. VNEW); 
4 P = (P-.RLINK)> 
3 UNTIL P .EQ. LEFTMOST(L+I); 
3 CALL MOVE(L); 
3 L = L - I >  



UNTIL MOD(M, POWER(HLEVEL+l -L)) .NE. 0; 
L = L + l ;  
IF L .EQ. 1 < 

TOUT = TLEVEL + 1 ; 
IF (PRINT) CALL PLOT(TOUT, TIME); 
IF (TLEVEL .EQ. NTIMEI) GO TO :FIN/:> 

ELSE <TOUT = TLEVEL> 
IF TOL.FREQ(1) .EQ. 1 .AND. L .LE. ToL.FREQ(~) .OR. 
TOL.FREQ(1) .GT. 1 .AND. L .EQ. 1 .AND. (MOD(TLEVEL, 
TOL.FREQ(1)) .EQ. 0 .OR. TOL.FREQ(2) .NE. 1) < 

"CHECK TRUNCATION ERROR INSIDE OR AT COARSE TlME STEP" 
IF TOLCHK .AND. TOLACHIEVED <TOP = NLEML> 

ELSE <TOP = NLEVEL-1 > 
TOP = MINO(TOP, HLEVEL); 
IF (TOL.FREQ(I) .GT. 1 AND. MOD(TLEVEL, TOL.FREQ(I )) 
.NE. 0) L = TOL.FREQ(2); 
IF L .LE. TOP < 

BOlTOM = L; 
L = TOP; 
WHILE L .GE. BOTTOM < 

P = LEFTIWOST(L); 
TOTPTS = 0; 
REPEAT < 

CALL ESTIMATE.ERROR(P, L, TOUT, TIME); 
CALL DETERMINE.REFINEMENTS(P, L, TOUT, TOTPTS); 
P = (P-BLINK)> 

UNTIL P .EQ. LEFTMOST(L+l ); 
NPTSM(L+l ) = WO(NPTSM(L+l) ,  TOTPTS); 
L = L - 1 >  

"FIND LEVEL OF FINEST MESH" 
NEWHIL = BOTTOM; 
UNTIL LEFTMOST(NEWHIL+l ) .EQ. NIL < 

NEWHIL = NEWHlL + 1 > 
IF NEWHIL GT. HLEVEL < 

M = M X TRATIOX*(NEWHIL - HLEVEL)> 
ELSE IF NEWHIL .LT. HLEVEL < 

M = M / TRATIOxm(HLEVEL - NEWHIL)> 
HLEML = NEWHIL> 

> 
M = M + l >  

WHILE M .LE. POWER(HLEML); 

T = K(1) (TLEVEL+I ); 
> "END OF ONE COARSE TlME STEP" 

0 :FIN[: 
0 OLTPUT; (I' MAXIMUM STORAGE FOR SOLUTION VALUES (PER COMPONENT) '); 
0 SUM = (LEFTMOST(1)-.TOP) + 1 ; 
0 D O L  = 2, NLEML < 
1 TOP = NPTSM(L); 
1 SUM = SUM + TOP; 
1 OUTPUT L, TOP; (' LEVEL', 216)> 
0 OUTPUT SUM; (' TOTAL', 15); 
0 OUTPUT NSHL, NSHRT; (' MESH SHIFTED LEFT', 14, ' TIMES, RIGHT', 
0 14, ' TIMES'); 
0 RETURN; 
0 END; "ADVANC E.SOLUTI0Nr' 
0 
0 
0 SUBROUTINE ONE.TINIE.STEP(P, L! LM, LAMBDAL, T, STENCIL, EXTRAP, V, 
0 VNEW); 
0 "ADVANCE THE SOLUTION ONE LEVEL L TlME STEP ON A LEVEL L REF1 NE- 
0 MENT. THESE REFINEMENTS ARE CHAINED TOGETHER USING THE RLlNK 
0 POINTERS. W I L E  ADVANCING REFINEMENT P, WE SKIP OVER ANY 
0 REFINEMENTS OF P. IF METHOD .EQ. 1, USE LA% WENDROFF, WlTH FIRST 
0 ORDER ACCURATE BOUNDARY APPROXIMATION, WHILE IF METHOD .EQ. 2 ,  
0 USE OLIGER'S FOURTH ORDER METHOD IN SPACE (LEAP FROG IN TIME) WlTH 



THIRD ORDER ACCURATE BOUNDARY CONDITIONS. AT INTERFACES, USE THE 
'COARSE-FINE' LAX-WENDROFF APPROXIMATION. THlS ROUTINE IS  ALSO 
USED TO ESTIMATE THE LOCAL TRUNCATION ERROR USING RICHARDSON 
EXTRAPOLATION." 

USE C O W ;  USE COM4; USE C OMS; USE STEPSZ; USE COM7; USE ZERO; 
USE XRATIO; USE COM12; USE METHOD; DEFINE RFI N; 
REAL UMBDAL, LAMBCF, LCF2, LF2, MULT, PHASE, T, V(NCOMP, I ) ,  
VNEW(NCOMP, 1); 
INTEGER BASE, BJ, I, J, L, LAST, LEFTR, LM, NPTSP2, OFFSET, PBASE, 
RIGHTR, S, STENCIL, TOP, TS; 
POINTER TO RFIN: P, PARENT, UP; 
LOGICAL EXTRAP; 

IF STENCIL .EQ. 2 <MULT = 1 .> ELSE <MILT = O.> 
S = STENCIL; 
TS = 2xSTENCIL; 
LF2 = WVIBDALXOS; 
LAMBCF = LMXLAMBDAL/XRATIO; 
LCF2 = LAMBCFX0.5; 
OFFSET = XRATIO~P-.LEFT); 
BASE = (PA.BASE); 
TOP = (P-.TOP); 
NPTSP2 = TOP - BASE + 2; 
LAST = TOP - BASE - S; 
UP = (P-.FINE); 
IF UP .EQ. NIL .OR. EXTRAP < 

LEFTR = NPTSP2> 
ELSE < 

LEFTR = (UP-.LEFT) - 1 - OFFSET; 
RIGHTR = (UPA.RIGHT) + 1 -OFFSET> 

PARENT = (P-.C OARS E); 
PBASE = (PARENT-.BASE) - XRATIOX(PARENT-.LEFT); 

"FOURTH ORDER METHOD - COARSEST MESH ONLY" 
"NOT IMPLEMENTED FOR THIS PROBLEM" 

"USE A SECOND ORDER LAX-WENDROFF METHOD IN THE INTERIOR 
OF REFINEMENT P." 
J = MINO(S, LEFTR+l ); 
GO TO :L2:; 
REPEAT < 

BJ = BASE+ J; 
WEW(1 ,W) = V(1 ,BJ) + LF2 ((V(Z,BJ+S) - V(2,W-S)) 
+ LAMBDALX(V(l ,BJ+S) - 2.'KV(l ,BJ) + V(1 ,BJ-S))) - M U L V  
VNEW(1 ,a); 
VNEW(2,E-J) = V(2,BJ) + LF2 ' ((V(1 ,BJ+S) - V(l ,EJ-S)) 
+ LAMBDALX(V(2,BJ+S) - 2.XV(2,BJ) + V(2,BJ-S))) - MULT": 
VNEW(2 ,W); 
J = J + I ;  

1 :L2: IF J .EQ. LEFTR+l < 
2 'THE FOLLOWING SKIPS OVER ALL REFINEMENTS OF THIS 
2 REFINEMENT." 
2 J = RIGHTR; 
2 UP = (UP-BLINK); 
2 IF (UP-.COARSE) .EQ. P < 
3 LEFTR = (UPA.LEFT) - 1 - OFFSET; 
3 RIGHTR = (UP-.RIGHT) + 1 - OFFSET> 
2 ELSE <LEFTR = NPTSP2>>> 
0 WHlLEJ.LE.LAST; 
0 
0 "IF THE LEFT EDGE OF REFINEMENT P TOUCHES THE LEFT BOUNDARY OF 
0 THE REGION, USE REFLECTION FOR \/AND UPWIND DIFFERENCING FOR W. 
0 OTHERWISE, USE LAX-WENDROFF WITH COARSE SPACE STEP AND FINE 
0 TIME STEP." 
0 IF (P-.LEFT) .EQ. 0 < 
1 IF BDRY .EQ. 1 < 



2 VNEW(2,BASE) = Z.VNEW(Z,BASE+l) - VNEW(~,BASE+~)> 
1 ELSE < 
2 VNEW(2,BASE) = V(2,BASE) + LAMBDALY(V(l ,BASE+S) - V(l ,BASE)) 
2 - MULTYVNEW(2 ,BASE) > 
1 PHASE = A - CKT + 0.5; 
1 VTUEW(1 .BASE) = VNEW(2,BASE) + 2 .XFACTORxEXP(-SCALEXPHASEXx2) + 
1 0.2XSIN(TWOPIXPHASE)> 
0 ELSE < 
1 J = PBASE + (P-.LEFT); 
1 VNEW(1 ,BASE) = V(l ,J) + LCFZY((V(2,J+1) - V(2,J-1)) + 
1 LAMECFx(V(l,J+l)-2."V(l,J)+V(l,J-I))); 
1 VNEW(2,BASE) = V(2.J) + LCFZx((V(l ,J+1) - V( l  ,J-1)) + 
1 LAMBCFX(V(2,J+1) - Z.XV(2,J) + V(2,J-I)))> 
0 
0 "IF THE RIGHT END OF REFINEMENT P TOUCHES THE RIGKT EDGE 
0 OF THE REGION, USE REFLECTION FOR VAND DOWNWIND DIFFERENCING 
0 FOR W. OTHERWISE USE COARSE-FI NE LAX-WENDROFF." 
0 IF (P6.RIGHT) .EQ. RIGHTB(L) < 
1 IF BDRY .EQ. 1 < 
2 VNEW(2,TOP) = Z.WNEW(2,TOP-1) - VNEW(2,TOP-2)> 
1 ELSE < 
2 VNEW(2,TOP) = V(2,TOP) + LAMBDALx(V(l ,TOP)-V(l ,TOP-S)) 
2 - MULTXVNEW(2 ,TOP) > 
1 PHASE 2 B + C'CT - 4.5; 
1 VNEW(1 ,TOP) = -MUEW(2 ,TOP) - 2.XFACTOR'EXP(-SCALEXPHASEYX2) > 
0 ELSE < 
1 J = PBASE + (P-.RIGHT); 
1 WEW(1 ,TOP) = V ( l  ,J) + LCF2X((V(Z,J+1) - V(2,J-1)) + 
1 ~ B C F x ( V ( 1 , J + 1 ) - 2 . X V ( l , J ) + V ( 1 , J - l ) ) ) ;  
1 VNEW(Z,TOP)=V(2,J)+LCF2X((V(l,J+l)-V(1,J-l))+ 
1 LAMBCFX(V(2,J+1) - 2.XV(2,J) + V(2,J-1)))> 
0 IF S .EQ. 2 < 
1 DO I = 1, NCOMP < 
2 VNEW(1 ,BASE+1) = 0.; 
2 VNEW(1,TOP-1) = O.>> 
0 
0 RETURN; 
0 END; "0NE.TI ME.STEPrr 
0 
0 
0 SUBROUTINE MOM(L); 
0 "MOVE SOLUTION VALUES FROM REFINEMENT(S) ON LEVEL L+l  (IF ANY) TO 
0 THE CORRESPONDING POSITIONS ON LEVEL L. ALSO MOVE SOLUTION VALUES 
0 ON LEML L FROM VNEW TO V IN PREPARATION FOR NEXT TIME STEP." 
0 
0 USE SOLN; USE LFTMST; USE XRATIO; DEFINE RFIN; 
0 REALTEMP; 
0 INTEGER BC, BF, I, J. L, LEFT, PEASE, RIGHT, TOP; 
0 POINTER TO RFIN: P, PARENT; 
0 
0 PARENT = LEFTMOST(L); 
0 REPEAT < 
1 PBASE = (PARENT-.BASE); 
1 TOP = (PARENT6.TOP); 
1 P = (PARENT-.FINE); 
1 WHILE (P-.COARSE) .EQ. PARENT < 
2 LEFT (PA.LEFT); 
2 RIGHT = (P-.RIGHT); 
2 BC = PBASE - XRATlOm(PARENT-.LEFT) + LEFT; 
2 BF = (P-.BASE); 
2 DO J = LEFT: RIGHT < 
3 DO 1 = 1, NCOPJP < 
4 VNEW(I, BC) = V(I, BF)> 
3 BC =BC + I ;  
3 BF = BF + XRATIO> 
2 P = (P-.RLINK)> 
1 



1 "SHIFT MESH VALUES FOR NEXT TIME STEP" 
1 DO J = PBASE, TOP < 
2 DO I = 1, NCOMP < 
3 V(I,J) = VNEW(I,J)>> 
1 
1 PARENT = (PARENT-BLINK)> 
0 UNTIL PARENT .EQ. LEFTMOST(L+l); 
0 
0 RETURN; 
0 END; "MOVE" 
0 
0 
0 SUBROUTINE ESTI MATE.ERROR(P, L, TLEVEL, T); 
0 "ESTIMATE LOCAL TRUNCATION ERROR." 
0 
0 USE COM1 2 ;  REAL T; 
0 INTEGER L, TLEVEL; 
0 POINTER TO RFIN: P; 
0 
0 GO TO (:DIFF:, :RICHZ:, :RICH3:), RICHSN; 
0 :DIFF: CALL DIFFERENCES(P, L, TLEVEL, T); 
0 GO TO :OUT:; 
0 
0 :RICH2: CALL RICHARDSONZ(P, L, TLEVEL, T); 
0 GO TO :OUT:; 
0 
0 :RIC H3: CALL RICHARDSON3(P, L, TLEVEL, T); 
0 
0 :OUT: RETURN; 
0 END; 
0 
0 
0 SUBROUTINE DIFFERENCES(P, L, TLEVEL, T); 
0 "ESTIMATE LOCAL TRUNCATION ERROR USING DIFFERENCES" 
0 
0 USE COM3; USE COM5; USE STEPSZ; USE ZERO; USE DEBUG; USE COM12; 
0 USE COM14; USE ERROR; DEFINE RFIN; 
0 REAL EXACT(lO), T, TEMP(NCOMP), XLEFT; 
0 INTEGER BASE, I, J, L, M, NM1, NPTS, TLEVEL, TOP; 
0 POINTER TO RFIN: P, PARENT; 
0 LOGICAL XPRINT; 
0 
0 W T H P  < 
1 XPRINT = PRINT .AND. MOD(DEBUG, 4) /2 .EQ. 1 ; 
1 CALL Dl FFERENCESZ(P, L); 
1 PARENT = -COARSE; 
1 BASE=-BASE; 
1 TOP = -TOP; 
1 NPTS = TOP - BASE; 
1 N M l  = NPTS - 1; 
1 XLEFT = A + H(L-l)X-LEFT; 
1 "COMPONENTS OF ESTIMATED ERROR ARE INTERCHANGED." 
1 D O J = l , N M l <  
2 DO I = 1. NCOMP < 
3 ESTERROR(I,BASE+J) = CG(L)YESTERROR(I,BASE+J)>> 
1 IF -LEFT .EQ. 0 < "LEFT BOUNDARY'' 
2 ESTERROR(1 ,BASE) = C1 O(L)X(LAMBDA(L)*ESTERROR(Z,BASE) 
2 - ESTERROR(I ,BASE)); 
2 ESTERROR(2,BASE) = O.> 
1 ELSE < 
2 DO1 = 1,NCOMP < 
3 ESTERROR(1,BASE) = O.>> 
1 IF -RIGHT .EQ. RIGHTB(L) < "RIGHT BOUNDARY" 
2 ESTERROR(1 ,TOP) = C1 0(L)X(LPMBDA(L)XESTERROR(2,TOP) 
2 + ESTERROR(1 ,TOP)); 
2 ESTERROR(2 ,TOP) = O.> 
1 ELSE < 



DO I = 1, NCOMP < 
ESTERROR(1,TOP) = O.>> 

IF XPRINT < 
DO I = 1, NCOMP < 
OUTPUT I, TLEVEL, P, L; ( / '  ESTIMATED LOCAL TRUNCATION ', 
'ERROR OF V(', 11, ') AT T =', 15: ' DELTA T, REFINEMENT', 
13, ' LEVEL', 14); 
OUTPUT (ESTERROR(I,J), J = BASE, TOP); (1 X, 1 PlOEl2.4); 
OUTPUT; (' LOCAL TRUNCATION ERROR USING EXACT DERIVATIVES'); 
DO J = ZERO, NPTS < 

M = MOD(J, l o )  + 1 ; 
CALL UXXX(XLEFT + JxH(L), T, TEMP); 
EXACT(M) = C 6  (L)XTEMP(3 -I); 
IF J .EQ. 0 < 

IF I .EQ. 1 <EXACT(M) = 0 .> 
ELSE < 

CALL UXX(4 T, TEMP); 
EXACT(M) = C 1 O(L)*(LAMBDA(L)'TEMP(Z) - 
TEMP(1 ))>> 

IF M .EQ. 1 0  .OR. J .EQ. NPTS < 
IF J .EQ. NPTS .AND. -RIGHT .EQ. RIGHTB(L) < 

IF I .EQ. 1 <EXACT(M) = O.> 
ELSE < 

CALL UXX(B, T, TEMP); 
EXACT(M) = C10  (L)X(LAMBDA(L)XTEMP(2) + 
TEMP(l))>> 

OUTPUT (EXACT(M2), M 2  = 1, M); (1 X, 1 PlOE12.4)>>>>> 

RETURN; 
END; "DIFFERENCES" 

SUBROUTINE DIFFERENCES2(P, L); 
"COMPUTE A DIFFERENCE APPROXIMATION TO UXXX AT EACH INTERIOR POINT 
ON THE LEVEL L MESH, AND TO UXX AT BOUNDARIES." 

USE SOLN; USE COM5; USE STEPSZ; USE ERROR; DEFINE RFIN; 
REAL D3VDX(NCOMP, I ) ,  HCUBE4, HSQ; 
INTEGER BASE, BASEP2, BJ, I, L, TOP, TOPM2; 
POINTER TO RFIN: P; 
EQUIVALENCE (ESTERROR, D3VDX); 

HSQ = H(L)XX2; 
HCUBE4 = 4.XH(L)m3; 
BASE = (P-.BASE); 
BASEP2 = BASE + 2; 
TOP = (P-.TOP); 
TOPM2 = TOP - 2; 
DO1 = l , N C O M P <  

DO BJ = BASEP2. TOPMZ < 
D3VDX(I,BJ) = 2.X(-V(I,BJ-2) + 2 .X(V(I,BJ-l) - V(I,BJ+l )) 
+ V(I &+2))/HCUBE4 > 

IF (P-.LEFT) .EQ. 0 < 
D3VDX(I,BASE) = (2.YV(I ,BASE) - 5 ."V(I,BASE+l) + 4." 
V(I ,BASEP2) - V(l ,BASE+3))/ HSQ; 
IF (L .GT. 1) D3VDX(I,BASEP2) = O.> 

D3VDX(I,BASE+1) = 0.; 
DSVDX(I,TOP-1) 0.; 
IF (P-.RIGHT) .EQ. RIGHTB(L) < 

D3VDX(I,TOP) = (-V(I,TOP-3) + 4 .W(I,TOPM2) -5.XV(I ,TOP-1 ) 
+ 2 .V(I ,TOP))/ HSQ; 
IF (L .GT. 1) D3VDX(I,TOPM2) = O.>> 

RETURN; 
0 END; "DIFFERENCES2" 
0 



SUBROUTINE RICHARDSON2(P, L, TLEVEL, T); 
"ESTIMATE LOCAL TRUNCATION ERROR USING RICHARDSON EXTRAPOLATION. 
THIS METHOD USES TWO TIME STEPS OF LENGTH DELTA T AND IS  SUITABLE 
ONLY W E N  T DERIVATIVES IN THE DIFFERENTIAL EQUATION CAN BE 
REWRITTEN IN TERMS OF X DERIVATIVES." 

USE SOLN; USE COM3; USE COM5; USE STEPSZ; USE ZERO; USE DEBUG; 
USE COM12; USE COM14; USE ERROR; DEFINE RFIN; 
REAL EXACT(1 O), NEXTT, T, TEMP(NCOMP), XLEFT; 
INTEGER BASE, I, J, L, M, M2, NM1, NPTS, TLEVEL, TOP; 
POINTER TO RFIN: P, PARENT; 
LOGICAL XPRINT; 

WITH P < 
NEXTT = T + K(L); 
CPLL ONE.TIME.STEP(P, L, 1, LAMBDA(L), NEXTT, 1,  .TRUE., V, 
ESTERROR); 
CPLL ONE.TIMESTEP(P, L, 1, 0.5xLAMBDA(L), NEXT,  2, .TRUE., V, 
ESTERROR); 

XPRINT = PRINT .AND. MOD(DEBUG, 4 ) / 2  .EQ. 1 ; 
PARENT = -COARSE; 
BASE = -BASE; 
TOP = -TOP; 
NPTS = TOP - BASE; 
NM l  = N P T S - 1 ;  
XLEFT = A + H(L-1)-LEFT; 
DO1 = l ,NCOMP < 

D O J  = 1 ,NM l  < 
ESTERROR(1 ,BASE+J) = C7(L)xESTERROR(I ,BASE+J)>> 

IF -LEFT .EQ. 0 < "LEFT BOUNDARY" 
ESTERROR(1 ,BASE) = 0.; 
ESTERROR(2,BASE) = ESTERROR(2,BASE)/3.> 

ELSE < 
DO1 = 1,NCOMP < 

ESTERROR(1,BASE) = O.>> 
IF -RIGHT .NE. RIGHTB(L) < 

DO I = 1, NCOMP < 
ESTERROR(1 ,TOP) = O.>> 

ELSE < "RIGHT BOUNDPRY" 
ESTERROR(I ,TOP) = 0.; 
ESTERROR(2,TOP) = ESTERROR(2 ,TOP)/3 .> 

IF XPRINT < 
DO I = 1, NCOMP < 
OUTPUT I, TLEVEL, P, L; (/ '  ESTIMATED LOCAL TRUNCATION ', 
'ERROR OF V(', 11, ') AT T =', 15, ' DELTA T, REFINEMENT', 
13, ' LEVEL', 14); 
OUTPUT (ESTERROR(I,J), J = BASE, TOP); (1 X, 1 P10E12.4); 
OUTPUT; (' LOCAL TRUNCATION ERROR US1 NG E X K T  DERIVATIVES'); 
DO J = ZERO, NPTS < 

M=MOD(J, l o ) +  1; 
CALL UXXX(XLEFT + JW(L), T, TEMP); 
EXACT(M) = CG(L)TEMP(3 -I); 
IF J .EQ. 0 < 

IF I .EQ. 1 <EXACT(M) = O.> 
ELSE < 

CALL UXX(4 T, TEMP); 
EXACT(M) = C 1 O(L)X(LAMBDA(L)xTEMP(2) - 
TEMP(1 ))>> 

IF M .EQ. 1 0  .OR. J .EQ. NPTS < 
IF J .EQ. NPTS .AND. -RIGHT .EQ. RIGHTB(L) < 

IF I .EQ. 1 <EXACT(M) = O.> 
ELSE < 

CALL UXX(B, T, TEMP); 
EXACT(M) = C 1 0 (L)x(LAMBDA(L)XTEMP(2) 
+ TEMP(?))>> 



OUTPUT (EXACT(M2), M 2  = 1, M); ( lX ,  1 PlOE12.4)>>>>> 

RETURN; 
END; "RICHARDSON2" 

SUBROUTINE RICHARDSON3(P, L, TLEVEL, T); 
"ESTIMATE LOCAL TRUNCATION ERROR USING RICHARDSON EXTRAPOLATION. 
THIS METHOD USES TWO TIME STEPS OF LENGTH DELTA T (ON THE 
APPROPRIATE MESH) AND ONE OF LENGTH 2 DELTA T. IT  I S  THUS SUITABLE 
FOR ANY SYSTEM OF EQUATIONS." 

USE SOLN; USE COM3; USE COM5; USE STEPSZ; USE ZERO; USE DEBUG; 
USE COM12; USE COM14; USE ERROR; DEFINE RFIN; 
REAL EXACT(1 O), NEXTT, T, TEMP(NCOMP), XLEFT; 
INTEGER BASE, I, J, L, M, M2, NM1, NPTS, TLEVEL, TOP; 
POINTER TO RFIN: P, PARENT; 
LOGICAL XPRINT; 

WlTH P < 
NEXTT = T + 2.XK(L); 
CALL ONE.TIMESTEP(P, L, 1, LAMBDA(L), T+K(L), 1, .TRUE., V, VNEW); 
CALL ONE.TIMESTEP(P, L, 1, LAMBDA(L), NEXTT, I, .TRUE., VNEW, 
ESTERROR); 
CALL ONE.TIME.STEP(P, L, 1, LAMBDA(L), NEXTT, 2, .TRUE., V, 
ESTERROR); 

XPRINT = PRINT .AND. MOD(DEBUG, 4 ) / 2  .EQ. 1 ; 
PARENT = XOPRSE; 
BASE = -BASE; 
TOP = -TOP; 
NPTS = TOP - BASE; 
N M I  = NPTS - I; 
XLEFT = A + H(L-1)"-LEFT; 
D O J = l , N M l  < 

DO1 = 1,NCOMP < 
ESTERROR(I,BASE+J) = C8(L)xESTERROR(I,BASE+J)>> 

IF -LEFT .EQ. 0 < "LEFT BOUNDARY" 
ESTERROR(1 ,BASE) = 0.; 
IF BDRY .NE. 3 < 

ESTERROR(2 ,BASE) = 2."/(2 ,BASE) - 5.xV(2,BASE+1 ) + 4.* 
V(2,6ASE+2) - V(Z,BASE+3)> 

IF BDRY .EQ. 2 < 
ESTERROR(2 ,BASE) = 0 .SXLAMBDA(L)"(LAMBDA(L)~ESTERROR(Z ,BASE)- 
Z.XV(1 ,BASE) + 5."/(1 ,BASE+I) - 4.W(1 ,BASE+2) + V(l ,BASE+3))> 

ELSE IF BDRY .EQ. 3 < 
ESTERROR(2,BASE) = EsTERROR(Z,BASE)/(~.+LMIIBDA(L))> 

IF L .GT. 1 < 
ESTERROR(1 ,BASE+2) = 0.; 
ESTERROR(2 ,BASE+2) = O.>> 

ELSE < 
DO1 = 1, NCOMP < 

ESTERROR(1,BASE) = O.>> 
IF -RIGHT .NE. RIGHTB(L) < 

DO I = 1, NCOMP < 
ESTERROR(1,TOP) = O.>> 

ELSE < "RIGHT BOUNDARY" 
IF L.GT. 1 < 

ESTERROR(1 ,TOP-2) = 0.; 
ESTERROR(2,TOP-2) = O.> 

ESTERROR(1 ,TOP) = 0.; 
IF BDRY .NE. 3 < 

ESTERROR(2,TOP) = 2.'KV(Z,TOP) - 5."V(Z,TOP-1) + 4 .* 
V(2 ,TOP-2) - V(2 ,TOP-3)> 



ELSE IF BDRY .EQ. 3 < 
ESTERROR(2,TOP) = ESTERROR(2,TOP)/ (2 .+LAMBDA(L)) >> 

IF XPRINT < 
DO I = 1, NCOMP < 
OUTPUT I, TLEVEL, P, L; ( / '  ESTIMATED LOCAL TRUNCATION ', 
'ERROR OF V(', 11, ') AT T =', 15, ' DELTA T, REFINEMENT', 
13, ' LEVEL', 14); 
OUTPUT (ESTERROR(I,J), J = BASE, TOP); (1 X, 1 PlOE12.4); 
OUTPUT; (' LOCAL TRUNCATION ERROR USING E X K T  DERIVATIVES'); 
DO J = ZERO, NPTS < 

M = MOD(J, 10) + 1 ; 
CALL UXXX(XLEFT + JW(L), T, TEMP); 
EXACT(M) = CG(L)rEMP(3-I); 
IF J .EQ. 0 < 

IF I .EQ. 1 <EXACT(M) = O.> 
ELSE < 

CALL UXX(4, T, TEMP); 
EXACT(M) = 2.W 1 O(L)XTEMP(2)>> 

IF M .EQ. 1 0  .OR. J .EQ. NPTS < 
IF J .EQ. NPTS .AND. -RIGHT .EQ. RIGHTB(L) < 

IF I .EQ. 1 <EXACT(M) = O.> 
ELSE < 

CALL UXX(B, T, TEMP); 
EXACT(M) = 2 . X 1  O(L)"TEMP(2) >> 

OUTPUT (EXACT(M2), M2 = 1,  M); (1 X, 1 PlOE12.4)>>>>> 

RETURN; 
END; "RIC HARDSON3" 

SUBROUTINE DETERMINE.REFINEMENTS(PARENT, L, TLEVEL, TOTPTS); 

"DETERMINE WHERE TO REFINE THE LEVEL L REFINEMENTS. 
REFINE THEM WHENEVER THE INTERIOR LOCAL TRUNCATION ERROR 
PER UNIT TIME STEP, OR THE BOUNDARY LOCAL TRUNCATION ERROR 
(BOTH PROPORTIONAL TO HYH) IS  GREATER THAN TOLERANCE. 
THE DESIRED I NTERVAL(S) OF REFINEMENT WILL EXTEND FROM THE 
LEFTN(J)-TH MESH POINT TO THE RIGHTN(J)-TH POINT (RELATIVE TO 
THE LEFT SIDE OF THE REGION) ON THE PARENT REFINEMENT, 
J = 1, ..., NRFIN." 

$ 'MAX.INTERVALS1 = ' 10 '  
USE COM5; USE XRATIO; USE DEBUG; USE COM12; USE ERROR; DEFINE RFIN; 
INTEGER BASE, GAP, I, J, L, LEFT, LEFTN(MAX.INTERVALS), LP l  , N, 
NRFIN, OFFSET, RIGHTN(MAX.INTERVALS), RT, TLEML, TOTPTS; 
POINTER TO RFIN: P, PARENT; 
LOGICAL COND; 

GAP = BUFFER(L) + 2; 
L P l  = L + l ;  
OFFSET = XRATIOX(PARENT-.LEFT); 
BASE = (PARENT-.BASE) - OFFSET; 
N = (PARENT-.TOP) - BASE; 
NRFIN = 0; 
LEFT = OFFSET; 
WHILE LEFT .LE. N < 

REPEAT < 
COND = .FALSE.; 
DD I = 1, NCOMP < 

COND = COND .OR. ABS(ESTERROR(I,BASE+LEFT)) .GT. 
TOLERANCE> 

IF (COND) GO TO :BEGIN INTERVAL:; 
LEFT = LEFT + 1 ;> 

WHILE LEFT .LE. N; 
EX IT: 

1 :BEGIN INTERVAL: 
1 RT = LEFT; 



IF NRFIN .GE. 1 <IF RIGHTN(NRFIN) + GAP .GE. LEFT< 
LEFT = LEFTN(NRFIN) + BUFFER(L); 
NRFIN = NRFIN - 1 >> 

REPEAT < 
COND = .FALSE.; 
M)I = 1,NCOMP < 

COND = COND .OR. ABS(ESTERROR(I,BASE+RT)) .GT. 
TOLERANCE> 

IF (.NOT. COND) EXIT; 
R T =  R T + l ; >  

UNTIL RT .GT. N; 
R T =  R T -  1; 
NRFIN = NRFIN + 1 ; 
IF NRFIN .GT. MAX.INTERVALS < 

OUTPUT T L M L ,  LP1; (' TOO MANY REFINEMENTS', 217); 
STOP> 

LEFTN(NRFIN) = MAXO(OFFSET, LEFT - BUFFER(L)); 
IF (LEFTN(NRF1N) .EQ. OFFSET + 1) LEFTN(NRFIN) = OFFSET; 
RIGHTN(NRF1N) = MINO(N, RT + BUFFER(L)); 
IF (RIGHTN(NRF1N) .EQ. N-1) RIGHTN(NRFIN) = N; 
LEFT = RT + 2 >  

IF DEBUG GT. 0 < 
IF NRFIN .EQ. 0 < 

OUTPUT n M L ,  L, PARENT; 
(' TLEVEL, LEVEL, REF, NO REFINEMENTS ', 15, 213);> 

ELSE < 
OUTPUT TLEVEL, L, PARENT, (LEFTN(J), RIGHTN(J), J = 1,  NRFIN); 
(' TLEVEL, LEVEL, REF, N(LEFTN, RIGHTN)', 15,213, 1215);>> 

IF NRFIN .EQ. 0 < 
IF ((PARENT-.FINE) .NE. NIL) GO TO :ALPHA:> 

ELSE < 
IF ((LEFTN(1) .EQ. OFFSET AND. (PARENT-.LEFT) .NE. 0 )  .OR. 
(RIGHTN(NRF1N) .EQ. N .AND. (PARENT-.RIGHT) .NE. RIGHTB(L))) 
OUTPUT TLEVEL, LP l  , PARENT; 
(' TLEVEL', 15, ' DANGER, LEVEL1, 14, ' REFINEMENT ABUTS ' 
'LEFT OR RIGHT SIDE OF REFINEMENT', 14); 
IF L .EQ. NLEVEL < 

OUTPUT T L M L ,  PARENT; (' TLEVEL', 15, ' REFINEMENT', 
13, ' DANGER, LOCAL ERROR TOLERANCE NOT ACHIEVED.'); 
TOL.ACHIEVED = .FALSE.> 

ELSE < 
:ALPHA: CALL ADJUST.MESH(PPRENT, NRFIN, LP1, TLEVEL, LEFTN, 

RIGHTN, TOTPTS)>> 

RETURN; 
END; "DETERMINE.REFINEMENTS" 

SUBROUTINE ADJUST.MESH(PARENT, NRFIN, L, TLEVEL, LEFTN, RIGHTN, 
TOTPTS) ; 

"IF THE DESIRED L-TH LEVEL INTERVALS PRODUCED BY DETERMINE. 
REFINEMENTS DIFFER FROM THE EXISTING REFINEMENTS OF THE 
(L-1)-ST LEVEL PARENT, WE MUST ADJUST THE REFINEMENTS. 
THlS IS DONE IN A SINGLE LEFT-TO-RIGHT SCAN OF THESE 
REFINEMENTS. THlS MAY INVOLVE CREATION, DELETION, SEPARATING 
OR MERGING OF REFINEMENTS. USUALLY, HOWEMR, IT  
INVOLVES ONLY THE MANIPULATION OF THE INDICES LEFT, RIGHT, 
BASE, AND TOP BELONGING TO A REFINEMENT. ONLY SELDOM ARE 
SOLUTION VALUES ACTUALLY MOVED IN MEMORY." 

USE SOLN; USE COM5; USE XRATIO; USE DEBUG; USE COM12; DEFINE RFIN; 
INTEGER BASE, I, J, L, LEFTN(l), M, NPTS, NRFlN? RIGHTN(l), TLEVEL, 
TOP, TOTPTS; 
POINTER TO RFIN: P, PARENT, Q, UP; 
LOGICAL COND; 



WITH P < 
P = (PARENT-.FINE); 
FOR J = 1 TO NRFIN < 

UNTIL LEFTN(J) .LE. -RIGHT .OR. -COARSE .NE. PARENT < 
CALL DELETE(P, L); 
P = -RLINK;> 

IF RIGHTN(J) .LE. -LEFT .OR. -COARSE .NE. PARENT < 
CALL CREATE(PARENT, P, L, LEFTN(J), RIGHTN(J): 0 ,  P)> 

IF RIGHTN(J) .LT. -RIGKT < 
Q = -+LINK; 
IF (Q-.COARSE) .EQ. PARENT .AND. J .NE. NRFIN < 
IF LEFTN(J+1) .LT. -RIGHT AND. RIGHTN(J+l) .GT. (Q-.LEFT) < 

"THE REF1 NEMENT Q TO THE RIGHT HAS MOVED LEFT." 
CALL FILL.IN(P, Q, L, TLEVEL); 
CALL SEPARATE.REF(P, Q, RIGHTN(J)); 
(QA.BASE) = (QA.BASE) - XRATIOX((Q^.LEFT) - LEFTN(J+l)); 
(Q-.LEFT) = LEFTN(J+I )>> 

IF J .NE. NRFIN < 
IF (RIGHTN(J+I) .LT. (@.LEFT) .OR. (Q-.COARSE) .NE. PARENT) 
AND. LEFTN(J+l) .LT. -RIGHT < 

"SEPARATE REFINEMENTS" 
BASE = -BASE + XRATIOX(LEFTN(J+l) - -LEFT); 
CALL CREATE(PARENT, Q, L, LEFTN(J+l), -RIGHT, BASE, Q); 
(Q-.RIGHT) = -RIGHT; 
(Q-.TOP) = -TOP; 
CALL SEPARATE.REF(P, Q, RIGHTN(J))>> 

"DELETE RIGHT END OF REFINEMENT P" 
-RIGHT = RIGHTN(J); 
+TOP = -BASE + XRATIOX(-RIGHT - -LEFT)> 

IF LEFTN(J) .NE. -LEFT < 
IF LEFTN(J) .GT. -LEFT < 

"DELETE LEFT END OF REFINEMENT P." 
-BASE = -BASE + XRATIOx(LEFTN(J) - -LEFT); 
-LEFT = LEFTN(J)> 

ELSE 
<CALL EXTEND.LEFT(P, LEFTN(J), L, TLEML)>> 

IF RIGHTN(J) .GT. -RIGHT < 
Q = -RLINK; 
WHILE (Q-.COARSE) .EQ. PARENT .AND. RIGHTN(J) .GT. 
(Q-.LEFT) < 

CALL FILL.IN(P, Q, L, TLEVEL); 
-RIGHT = MINO(RIGHTN(J), (Q-.RIGHT)); 
-TOP = -BASE + XRATIOm(-RIGHT - -LEFT); 
IF -RIGHT .EQ. (Q-.RIGHT) < 

CALL MERGE(P, Q); 
Q = (QA.RLINK)> 

ELSE < 
IF J .NE. NRFIN <COND = LEFTN(J+l) .GT. (Q-.RIGHT)> 

ELSE <COND = .TRUE.> 
IF COND <CALL MERGE(P, Q)> 
ELSE < "REFINEMENTS P AND Q HAVE MOVED RIGHT. CHECK 

IF SOME OF Q'S REFINEMENTS NOW BELONG TO P." 
UP = (QA.FINE); 
IF UP .NE. NIL < 

WHILE (UP-.COARSE) .EQ. Q .AND. (UP-.RIGHT) .LE. 
XRATIOX -RIGHT < 

(UP-.COARSE) = P; 
UP = (UP-.RLINK)> 

IF (UP .NE. (Q-.FINE) .AND. -FINE .EQ. NIL) 
-FINE = (Q-.FINE); 
IF (UP-.COARSE) .EQ. Q <(Q-.FINE) = UP> 

ELSE <(Q-.FINE) = NIL>>> 
GO TO :EXIT:>> 



3 
3 CALL EXTEND.RIGHT(P, RIGHTN(J), L, TLEVEL, .TRUE.) > 
2 :EXIT: 
2 NPTS = XRATIOm(-RIGHT - -LEFT); 
2 -TOP = -BASE + NPTS; 
2 TOTPTS = TOTPTS + NPTS + 1 ; 
2 
2 IF PRINT .AND. DEBUG18 .GE. 1 < 
3 OUTPUT REVEL, P, L; (1' TLEVEL', 15, ' REFINEMENT', 14, 
3 ' LEVEL', 14); 
3 BASE = -BASE; 
3 TOP = -TOP; 
3 OUTPUT +LINK, -LLINK, -FINE, -COARSE, BASE, TOP, -LEFT, 
3 -RIGHT; (' RLINK, LLINK, FINE, COARSE, BASE, TOP, LEFT, ', 
3 'RIGHT' / 815); 
3 DO1 = 1,NCORRP < 
4 OUTPUT I; (' V(', 11, I ) ' ) ;  

4 OUTPUT (V(I, M), M = BASE, TOP); ( lP8E15.7)>> 
2 P = -RLINK;> 
1 
1 UNTIL -COARSE .NE. PARENT < 
2 CALL DELETE(P, L); 
2 P=-RLINK;> 
1 > 
0 RETURN; 
0 END; "ADJUST.MESHr' 
0 
0 
0 SUBROUTINE SEPARATE.REF(P, Q, PRIGHT); 
0 "GIVEN TWO REFINEMENTS P AND Q, WITH P TO THE LEFT OF Q, WHICH MAY 
0 HAVE MOVED OR BEEN SEPARATED. CHECK IF SOME OF P'S REFINEMENTS NOW 
0 BELONG TO Q." 
0 
0 USE XRATIO; DEFINE RFIN; 
0 INTEGER PRIGHT; 
0 POINTER TO RFIN: P, Q, UP; 
0 
0 UP = (P-.FINE); 
0 IF UP .NE. NIL < 
1 WHILE (UP-.COARSE) .EQ. P AND. (UP-.RIGHT) .LE. XRATIOmPRIGHT < 
2 UP = (UP-.RLINK)> 
1 IF (UP .EQ. (P-.FINE)) (P-.FINE) = NIL; 
1 IF ((UP-.COARSE) .EQ. P) (Q-.FINE) = UP; 
1 WHILE (UP-.COARSE) .EQ. P < 
2 (UP-.COARSE) = 9; 
2 UP = (UP-BLINK)>> 
0 
0 RETURN; 
0 END; "SEPARATE.REF" 
0 
0 
0 SUBROUTINE MERGE(P, Q); 
0 "MERGE TWO ADJACENT REFINEMENTS POINTED TO BY P AND Q. THE P 
0 REFINEMENT IS ASSUMED TO BE SPATIALLY TO THE LEFT OF Q." 
0 
0 USE DEBUG; DEFINE RFIN; 
0 POINTER TO RFIN: P, Q, R, UP; 
0 
0 "CHAIN TOGETHER THE REFINEMENTS OF P AND THE REFINEMENTS OF Q." 
0 UP = (Q-.FINE); 
0 IF UP .NE. NIL < 
1 IF ((P-.FINE) .EQ. NIL) (P-.FINE) = (Q-.FINE); 
1 WHILE (UP-.COARSE) .EQ. Q < 
2 (UP-.COARSE) = P; 
2 UP = (UP-.RLINK)>> 
0 
0 "UNCHAIN THE RECORD FOR THE Q REFINEMENT." 



0 R = (Q-.RLINK); 
0 (P-BLINK) = R; 
0 (R-.LLINK) = P; 
0 DISPOSE(Q); 
0 
0 W l T H P <  
1 IF (DEBUG .GT. 0) OUTPUT Q, P, -LEFT, -RIGHT, -FINE, -BASE, -TOP; 
1 (' DELETE', 14, ' MERGE', 14, ' LEFT, RIGHT, FINE, BASE, TOP', 
1 515);> 
0 RETURN; 
0 END; "MERGE" 
0 
0 
0 SUBROUTINE FI LL.1 N(P, Q, L, TLEVEL); 
0 "FILL IN M E  AREA BETWEEN TWO REFINEMENTS P AND Q, BY INTERPOLATION." 
0 
0 USE SOLN; DEFINE RFI N; 
0 INTEGER BASE, DELTA, I, J, L, TLEVEL, TOP; 
0 POINTER TO RFIN: P, Q; 
0 
0 CALL EXTEND.RIGHT(P, (Q-.LEFT), L, TLEVEL, .FALSE.); 
0 BASE = (Q-.BASE); 
0 IF BASE .NE. (P-.TOP) < 
1 "SHIFT Q MESH VALUES DOWN." 
1 TOP = (Q-.TOP); 
1 DELTA = BASE - (PA.TOP); 
1 DO I = 1, NCOMP < 
2 DO J = BASE, TOP < 
3 V(I, J-DELTA) = V(I, J)>> 
1 (Q-.BASE) = (P-.TOP); 
1 (Q-.TOP) = (Q-.TOP) - DELTA> 
0 
0 RETURN; 
0 END; "FILL.INU 
0 
0 
0 SUBROUTINE CREATE(PkRENT, Q, LEVEL, LEFTN, RIGHTN, BASE, NEW); 
0 "CREATE A NEW REFINEMENT AT LEVEL LE'XL, WlTH PARENT POINTED TO EY 
0 PARENT. INSERT I T  TO THE LEFT OF REF1 NEMENT Q. RETURN THE POINTER 
0 'NEW TO IT." 
0 
0 USE LFTMST; USE XRATIO; USE DEBUG; DEFINE RFIN; 
0 INTEGER BASE, LEVEL, LEFTN, RIGHTN, TOP; 
0 POINTER TO RFIN: L, NEW, P, PARENT, Q; 
0 
0 P = Q ;  
0 IFP.EQ.NIL< 
1 "PARENT HAS NO DESCENDANTS; FIND THE FIRST REFINEMENT TO THE 
1 RIGHT OF PARENT WHICH HAS A DESCENDANT." 
1 P = (PARENT-BLINK); 
1 WHILE (P-.FINE) .EQ. NIL .AND. P .NE. LEFTMOST(LEVEL) < 
2 P = (P-BLINK)> 
1 IF P .NE. LEFTMOST(LEVEL) <P = (P-.FINE)> 
1 ELSE <P = LEFTMOST(LEML+l)>> 
0 L=(P-.LLINK); 
0 NEW(NEW); 
0 WlTH NEW < 
1 IF BASE .EQ. 0 < 
2 "BASE NOT SPECIFIED, FIND IT." 
2 TOP = (L-.TOP) + 1 ; 
2 -BASE = TOP + MAXO(0, ((Pe.BASE) - TOP - XRATIOX(RIGHTN - LEFTN)) 
2 /2);> 
1 ELSE< 
2 -BASE = BASE> 
1 
1 IF (P .EQ. LEFTMOST(LEVEL)) LEFTMOST(LEVEL) = NEW; 
1 IF ((PARENT-.FINE) .EQ. P .OR. (PARENT-.FINE) .EQ. NIL) 



(PARENT-.FI NE) = NEW; 
"INSERT IN HORIZONTAL DOUBLY LINKED LIST." 
(L-.RLINK) = NEW; 
(P-.LLINK) = NEW; 
-RLINK = P; 
-LLINK = L; 
-LEFT = LEFTN; 
-RIGHT = LEFTN; 
-TOP = *BASE; 
-OLDBASE = -BASE; 
-0LDTOP = -BASE; 
-COARSE = PARENT; 
-FINE = NIL; 
IF (DEBUG .GT. 0) OUTPUT NEW, -BASE, -0LDTOP; (' CREATE', 14, 
' BASE, TOP', 215);> 

RETURN; 
END; 'CREATE" 

SUBROUTINE DELEfE(P, LEVEL); 
"CHECK TO SEE IF REFINEMENT P HAS ANY CHILDREN. IF NOT, DELETE IT." 

USE LFTMST; USE DEBUG; DEFINE RFIN; 
INTEGER LEVEL; 
POINTER TO RFIN: L, P, PARENT, R; 
EQUIVALENCE (PARENT, L); 

WlTH P < 
IF -FINE .EQ. NIL < 

PARENT = -COARSE; 
R = -RLINK; 
IF (PARENT-.FINE) .EQ. P < 

"SEE IF P HAS ANY SIBLINGS, OR IF THERE ARE ANY OTHER 
REFINEMENTS TO THE RIGHT OF P ON THlS LEVEL." 
IF (R-.COARSE) .EQ. -COARSE < 

(PARENT-.FINE) = R> 
ELSE < 

(PARENT-.FI NE) = NIL> 
IF (P .EQ. LEFTMOST(LEVEL)) LEFTMOST(LEVEL) = R> 

"UNCHAIN REFINEMENT P." 
L = -LLINK; 
(L-.RLINK) = R; 
(R-.LLINK) = L; 
DISPOSE(P); 
IF (DEBUG .GT. 0)  OUTPUT P; (' DELETE', 14)>> 

RETURN; 
END; "DELETE" 

SUBROUTINE EXTEND.RIGHT(P, NEWEND, L, TLEVEL, LASTPT); 
"EXTEND THE REFINEMENT POINTED TO BY P TO THE RIGHT. IF LASTPT IS  
TRUE, DO NOT FILL IN THE EXTREME RIGHTMOST POINT. THlS IS  
IMPORTANT TO AVOID MEMORY REPACKINGS DURING A MERGE." 

USE XRATIO; USE COUNT; DEFINE RFIN; 
INTEGER EXTENT. L, NEWEND, RIGHT, TLEVEL; 
LOGICAL LASTPT; 
POINTER TO RFIN: P, PARENT, Q 

WlTH P < 
Q = -RLINK; 
RIGHT = -RIGHT; 
EXTENT = XRATIOX(NEWEND - RIGHT); 
IF (.NOT. LASTPT) EXTENT = EXTENT - 1 ; 



IF -TOP + EXTENT .GE. (Q-.BASE) < 
IF -BASE .EQ. -TOP < 

"A PREVIOUSLY EMPTY REFINEMENT IS  A SPECIAL CASE." 
EXTENT = EXTENT + 1 ; 
-TOP = -TOP - 1 > 

CALL REALLOC(P, EXTENT); 
IF (-BASE .GT. -TOP) -TOP = -TOP + 1 ; 
NSHL = NSHL + 1 > 

PARENT = -COARSE; 
CPLL INTERPOLATE(PPRENT, -TOP, RIGHT, NEWEND, L, TLEVEL, LASTPT); 
-RIGHT = NEWEND; 
-TOP = -BASE + XRATIOX(-RIGHT - ALEFT)> 

RETURN; 
END; "EXTEND.RIGHTn 

SUBROUTINE EXTEND.LEFT(P, LEFTN, L, TLEVEL); 
"EXTEND THE REFINEMENT POINTED TO BY P TO THE LEFT" 

USE XRATIO; USE COUNT; DEFINE RFIN; 
INTEGER EXTENT, L, LEFT, LEFTN, TLEVEL; 
POINTER TO RFIN: P, Q; 

Q = (P-.LLINK); 
LEFT = (P-.LEFT); 
EXTENT = XRATIOX(LEFT - LEFTN); 
IF (P-.BASE) - EXTENT .LE. (QA.TOP) < 

CALL REALLOC(P, -EXTENT); 
NSHRT = NSHRT + 1 > 

(PA.WSE) = (PA.BASE) - EXTENT; 
CALL INTERPOLATE((P-.COARSE), (P-.BASE), LEFTN, LEFT, L, TLEVEL, 
.TRUE.); 
(P-.LEFT) = LEFTN; 

RETURN; 
END; "EXTEND.LEFTr' 

0 SUBROUTINE INTERPOLATE(PARENT, BFINE, LEFT, RIGHT, L, TLEVEL, LASTPT); 
"COPY SOLUTION VALUES IN LOCATIONS LEFT TO RIGHT-1, INCLUSIVE. OF THE 
REFINEMENT POINTED TO BY PARENT, TO ITS (DESCENDANT) REFINEMENT. 
IF LASTPT = TRUE, DO THE SPME FOR THE RIGHT POINT. THEN 
INTERPOLATE SOLUTION VALUES BETWEEN THE COPIED VALUES IN THE 
DESCENDANT." 

USE SOLN; USE COM3; USE STEPSZ; USE XRATIO; USE COM12; DEFINE RFIN; 
REAL FRAC, TEMP(NC0MP); 
INTEGER BC, BF, BFINE, I, J, L, LEFT, M, RIGHT, RMI ,  T L M L ,  XRMI;  
POINTER TO RFIN: PARENT; 
LOGICAL LASTPT: 

R M l  = RIGHT - 1; 
XRM1 : XRATIO - 1 ; 
BC = (PARENT-.BASE) - XRATIOX(PARENT-.LEFT) + LEFT; 
BF = BFINE; 
DO J = LEFT, R M l  < 

DO I = 1, NCOMP ( 
V(I, BF) = V(I, BC)> 

BF =BF  + 1; 
D O M = l , X R M l  < 

FRAC = FLOAT(M)/XRATIO; 
IF TLEVEL .EQ. 1 < 

CALL EXACT.SOLUTION(A + (XRATIOXJ + MlXH(L), ~(l), TEMP); 
DO1 = 1,NCOMP < 

V(I, BF) = TEMP(I)>> 
ELSE IF QUADRAT < 



3 "QUADRATIC INTERPOLATION, USING TWO CLOSEST COARSE MESH 
3 POINTS AND ONE TO THE LEFT, EXCEPT AT LEFT BOUNDARY" 
3 DO I = 1, NCOMP < 
4 IF J .NE. 0 < 
5 V(I,BF) = V(I,BC) + FRACX(V(I,BC) - V(I,BC-1) + 0.5' 
5 (FRAC + 1 .)X(V(I,BC+l) - Z.XV(I,BC) + V(I,BC-7)))> 
4 ELSE < 
5 V(I,BF) = V(I,BC) + FRACX(V(I,BC+l ) - V(I ,BC) + 0.5X 
5 (FRAC - 1 .)'(V(I,BC+2) - 2.W(I,BC+l) + V(I,BC)))>>> 
2 ELSE < "LINEAR INTERPOLATION" 
3 DO1 = 1, NCOMP < 
4 V(I,BF) = V(I,BC) + FRACX(V(I,BC+l ) - V(I,BC))>> 
2 B F = B F + l >  
1 e c = E + ~ >  
0 
0 IFLASTPT< 
1 DO1 = 1,NCOMP < 
2 V(I,BF) = V(I,BC)>> 
0 
0 RETURN; 
0 END; "INTERPOLATE" 
0 
0 
0 SUBROUTI NE REALLOC (Q, EXTENT); 
0 "THE REFINEMENT POINTED TO BY POINTER Q HAS RUN OUT OF ROOM ON 
0 ITS RIGHT (IF EXTENT .GT. 0) OR ITS LEFT (IF EXTENT .LT. 0). 
0 REALLOCATE MEMORY. SEE D. E. KNUTH, THE ART OF COMPUTER PROGRAM- 
0 MING, VOL. 1, PP. 240 -249 .  THIS IS  A MODIFICATION OF ALGORITHM G, 
0 P. 245. WE AWARD THE AVAILABLE FREE SPACE TO THE REFINEMENTS AS 
0 FOLLOWS. APPROXIMATELY 10 PERCENT OF THE AVAILABLE MEMORY WILL BE 
0 SHARED EQUALLY AMONG THE REFINEMENTS. THE OTHER 9 0  PERCENT IS  
0 AWARDED PROPORTIONATELY TO THE AMOUNT OF MOVEMENT SINCE THE LAST 
0 REPACKING. IF THE RIGHT END OF A REFINEMENT HAS MOVED RIGKT SINCE 
0 THEN (COMPME TOP AND OLDTOP), THE AWARD IS TO THE RIGHT OF THAT 
0 REFINEMENT. IF THE LEFT END HAS MOVED LEFT SINCE THE LAST 
0 REPACKING (COMPARE BASE AND OLDBASE), THE AWARD IS TO THE LEFT." 
0 
0 USE LFTMST; USE C O W ;  USE DEBUG; DEFINE RFIN; 
0 REAL ALPHA, BETA, SIGMA, TAU; 
0 INTEGER D(MAXRFINE), EXTENT, FREESP, INC, LEFT, NEWBASE(MAXRFINE), 
0 NRFINE, RT; 
0 POINTER TO RFIN: LAST, P, Q; 
0 EQUIVALENCE (NEWBASE, D); 
0 
0 W T H P  < 
1 LAST = LEFTMOST(NLEVEL+l); 
1 IF DEBUG GT. 0 < 
2 OUTPUT Q, EXTENT; (' REPACK; REF. NO', 15, ' EXTENT ', 15 
2 / ' REF. NO, BASE, TOP '); 
2 P = LEFTMOST(1); 
2 REPEAT < 
3 OUTPUT P, *BASE, -TOP; (3 16); 
3 P = -RLINK;> 
2 UNTIL P .EQ. LAST;> 
1 
1 IF EXTENT .GT. 0 <(Q-.TOP) = (Q-.TOP) + EXTENT> 
1 ELSE <(Q-.BASE) = (Q-.BASE) + EXTENT> 
1 FREESP = MEMAVAI L + 1 ; 
1 INC = 0 ;  
1 NRFINE = 0;  
1 PZLAST ;  
1 D(LAST) = 0;  
1 REPEAT < 
2 NRFINE = NRFINE + I; 
2 P = -LLINK; 
2 D(P)=O; 
2 FREESP = FREESP - (-TOP - -BASE + 1 ); 



RT = MAX0 (0, -TOP - -0LDTOP); 
LEFT = MAXO(0, -OLDBASE - -BASE); 
I NC = I NC + MAXO(RT, LEFT): 
IF RT .GT. LEFT <D(-RLINK) = D(-RLINK) + RT> 

ELSE <D(P) = LEFT>> 
UNTIL P .EQ. LEFTMOST(1); 

IF  FREESP .LT. 0 < 
OUTPUT; (' MEMORY OVERFLOW. PROGRAM ENDED. '); 
STOP> 

IF INC .GT. 0 < 
ALPHA = (0.1 XFREESP)/NRFINE; 
BETA = (0 BXFREESP)/INC > 

ELSE < 
ALPHA = FLOAT(FREESP)/NRFINE; 
BETA = O.> 

P = LEFTMOST(1): 
NEWBASE(P) = -BASE; 
SIGMA = 0.; 
UNTIL -RLINK .EQ. LAST < 

TAU = SIGMA + ALPHA + D(-RLINK)*BETA. 
NEWBASE(-RLINK) = NEWBASE(P) + -TOP - -BASE + 1 + INT(TAU) 
- INT(SIGMA); 
SIGMA = TAU; 
P = -RLI NK; > 

IF EXTENT .GT. 0 <(Q-.TOP) = (Q-.TOP) - EXTENT> 
ELSE <(Q-.BASE) = (Q-.BASE) - EXTENT; 

NEWBASE(Q) = NEWBASE(Q) - EXTENT> 
CALL REPACK(NEWBASE); 
P = LEFTMOST(1); 
REPEAT < 

-0LDBASE = -BASE; 
-0LDTOP = -TOP; 
P = -RLINK; > 

UNTIL P .EQ. LAST; 

IF EXTENT .GT. 0 <(Q-.OLDTOP) = (Q-.OLDTOP) + EXTENT> 
ELSE <(Q-.OLDBASE) = (Q-.OLDBASE) + EXTENT> 

IF DEBUG .GT. 0 < 
OUTPUT; (' REF. NO, BASE, TOP = I ) ;  

P = LEFTMOST(1); 
REPEAT < 

OUTPUT P, -BASE, -TOP; (316); 
P = -RLI NK; > 

UNTIL P .EQ. LAST;> 
> 

RETURN; 
END; "REALLOC" 

SUBROUTINE REPACK(NEWBASE); 
"RELOCATE SEQUENTIAL TABLES. THIS IS  ALGORITHM R OF KNUTH, VOL. 
1 , P. 246. THE ONLY CHANGE IS BECAUSE OUR ARRAY V STARTS FROM 0 
INSTEAD OF 1 ." 

USE SOLN; USE LFTMST; USE COM5; DEFINE RFIN; 
INTEGER BASE, DELTA, I, J, NEWBASE(MAXRFINE), TOP; 
POINTER TO RFIN: LAST, P, SECOND; 

WITH P < 
SECOND = LEFTMOST(2); 
LAST = LEFTMOST(NLEVEL+l ); 
P = SECOND; 
UNTIL P .EC. LAST < 



"SHIFT DOWN." 
BASE = -BASE; 
TOP = -TOP; 
DELTA = BASE - NEWBASE(P); 
DO J = BASE, TOP < 

DO1 = 1, NCOMP < 
V(l, J-DELTA) = V(I, J)>> 

-BASE = NEWBASE(P); 
-TOP = -TOP - DELTA> 

P = -RLINK; > 

"FIND START OF SHIFT." 
P = LAST; 
UNTIL P .EQ. SECOND < 

P = -LLINK; 
IF NEWBPSE(P) .GT. -BASE < 

"SHIFT UP." 
DELTA = NEWBASE(P) - -BASE; 
FOR J = -TOP BY -1 TO -BASE < 

DO1 = 1,NCOMP < 
V(I, J+DELTA) = V(I, J) >> 

-BASE = NEWBASE(P); 
-TOP = -TOP + DELTA>>> 

RETURN; 
END; "REPACK" 

0 
$ 'USE COM16;' = 'COMMON /COM16/ LZNORM, MAX, MIN; 

REAL L2NORM(NCOMP,2), MAX(NCOMP,Z), WIIN(NC0MP);' 

SUBROUTINE NORM(T): 

"COMPUTE MAXI MUM AND MEAN SQUARE ERROR AT ONE 
TIME LEVEL. COMPUTE L2 NORM OF SOLUTION" 

USE SOLN; USE LFTMST; USE COM3; USE STEPSZ; USE XRATIO; USE COM16; 
USE ERROR; DEFINE RFIN; 
REAL Dl FF(NCOMP, 1 ), EX ACT(NCOMP), MAXREAL, T, TEMP(NCOMP,2), 
XLEFT; 
INTEGER BASE, I, J, L, LEFTR, M, NPTS, NPTSP2, OFFSET, RIGHTR; 
POINTER TO RFIN: P, UP; 
EQUIVALENCE (ESTERROR, DIFF); 

MAXREAL = 1 .E3O; 
DO1 = 1, NCOMP < 

D O M =  1 ,2  < 
LZNORM(I. M) = 0.; 
W(I, M) = - MAXREAL> 

MIN(I) = MAXREAL> 
L =  1; 
P = LEFTMOST(1); 
REPEAT < 

REPEAT < 
BASE = (P-.BASE); 
NPTS = (P-.TOP) - BASE; 
NPTSP2 = NPTS + 2; 
OFFSET = XRATlOx(P -.LEFT); 
XLEFT = A + H(L-I)Y(P-.LEFT); 
UP = (P-.FINE); 
IF UP .NE. NIL < 

LEFTR = (UP -.LEFT) - OFFSET; 
RIGHTR = (UPe.RIGHT) - OFFSET> 

ELSE < 
LEFTR = NPTSP2> 

J = O ;  
GO TO :L3  :; 



REPEAT < 
CALL EXACT.SOLUTION(XLEFT + JxH(L), T, EXACT); 
DO1 = 1,NCOMP < 

TEMP(I,l ) = V(I, BASE+J); 
EXACT(I) = EXACT(!) - TEMP(I,l); 
IF L.EQ. 1 < 

DIFF(I,J) = EXACT([)> 
TEMP(I ,2) = PBS(EXACT(1)); 
MIN(I) = AMIN1 (MIN(I), TEMP(I,l )); 
D O M = 1 , 2  < 

L2NORM(I,M) = L2NORM(I,M) + H(L)xTEMP(I ,M)=2; 
Nlnx(I,M) = AMAXI (MM(I,M), TEMP(/ ,M))>> 

J = J + l ;  
:L3: IF J .EQ. LEFTR < 

J = RIGHTR + 1 ; 
UP = (UP-BLINK); 
IF (UP-.COARSE) .EQ. P < 

LEFTR = (UPA.LEFT) - OFFSET; 
RIGHTR = (UP-.RIGHT) - OFFSET>>> 

WHILE J .LE. NPTS; 
P = (P-.RLINK) > 

UNTIL P .EQ. LEFTMOST(L+l); 
L = L + l >  

UNTIL (PACOARSE) .EQ. NIL; 

P = LEFTMOST(2); 
WHILE (P-.COARSE) .EQ. LEFTMOST(1) < 

FOR J = (P-.LEFT) TO (P-.RIGHT) < 
CALL EXACT.SOLUTION(A + JmH(l ), T, EXACT); 
DO I = 1, NCOMP < 

DIFF(I,J) = EXbCT(I) - V(I,J)>> 
P = (P-.RLINK)> 

DO1 = l ,NCOMP < 
D O M = 1 , 2  < 

L2NORM(I,M) = SQRT(L2NORM(I,M))>> 

RETURN: 
o END; "NOR* 
0 

$'USE COM17;' = 
0 'COMMON /COM17/ ZZPAGE, ZPAGE, PAGE, BLANK; 
0 INTEGER ZZPAGE, ZPAGE(HEIGHTPl), PAGE(HEIGHTP1, PAGEWIDTH), 
0 BLANK;' 
0 
0 SUBROUTINE CLEAR; 
0 USE COM3; USE ZERO; USE COM17; 
0 DOI=ZERO,HElGHT< 
1 DO J = ZERO. N < 
2 PAGE(I, J) = BLANK>> 
0 RETURN; END; 
0 
0 INTEGER FUNCTION ROUND(X); 
0 REAL X; 
0 IF X .GE. 0.  <ROUND = X + 0.5> ELSE <ROUND = X - 0.5> 
0 RETURN; END; 
0 
0 
0 SUBROUTINE PLOT (TLEVEL, T); 
0 "PRINT AND PLOT SOLUTION AND ERROR MEASURES." 
0 
0 USE SOLN; USE LFTMST; USE COM3; USE STEPSZ; USE ZERO; USE XRATIO; 
0 USE DEBUG; USE COM16; USE COM17; USE ERROR; DEFINE RFIN; 
0 REAL DIFF(NCOMP, l), RANGE, T, XJ, XLEFT, XRIGHT; 
0 INTEGER BASE, I, J, L, LEFTR, M, NCUT, NPTS, NPTSP2, NRF, OFFSET, 
0 RIGHTR, ROUND, TLEVEL, TOP, TOTPTS; 
0 INTEGER PERIOD, ZEROCH, LABEL(NC0MP); 
0 POINTER TO RFIN: P, UP; 



EQUIVALENCE (ESTERROR, DIFF); 
DATA BLANK / 1  H /, PERIOD /1  H./, ZEROCH / 1  HO/, LABEL / 1  HV, IHW/; 

CPCL NORM(T); 
OUTPUT T, TLEVEL; (/' T =', 1 PE15.7, ' =', 15, ' DELTA T'); 
DO I = 1,  NCOMP < 

OUTPUT I, ENORM(I,l), MAX(I,l), MIN(I); (' NORM OF V(', I 1  , 
') =I. 1PE15.7, ' MAX =', lPE15.7, '  MlN =', lPE15.7)> 

DO1 = 1,NCOMP < 
OUTPUT I, L2NORM(I ,2), MAX(1,Z); (' V(', I 1  , ') MEAN SQUARE' 
' ERROR', 1 PE15.7, ' MPXlMUM ERROR', 1 PE15.7)> 

IF TLEVEL .ME. 1 .AND. MOD(DEBUG, 2) .EQ. 1 < 
DO I = 1, NCOMP < 

OUTPUT I, T; ( / '  V(', 11, ') ERRORS AT T =', 1 PE15.7); 
OUTPUT (DIFF(I,J), J = ZERO, N); (1 X, 1 PlOE12.4)>> 

"PRINT SOLUTION AT NEW T-LEVEL" 
IF MOD(DEBUG, 8 ) / 4  .EQ. 1 < 

L = l ;  
P = LEFTMOST(L); 
REPEAT < 

REPEAT < 
BASE = (P-.WE); 
TOP = (P-.TOP); 
DO I = 1,  NCOMP < 

OUTPUT I, P, L; (/ ' V(', 11, ') REFINEMENT ', 14, 
' LEVEL', 14); 
OUTPUT (V(I,J), J = BASE, TOP); ( lX ,  1 P8El5.7)> 

P = (P-BLINK)> 
UNTIL P .EQ. LEFTMOST(L+l ); 
L = L + l >  

UNTIL (P-.COARSE) .EQ. NIL; 
> 

IF DEBUG .GT. 0 < 
"COUNT NUMBER OF DISTINCT MESH POINTS. ALSO COUNT NUMBER OF 
(NONEMPTY) REFINEMENTS, EXCLUDING THE COARSEST MESH." 
P = LEFTMOST(2); 
TOTPTS = 0; 
NRF = 0; 
WHILE (P-COARSE) .NE. NIL < 

TOTPTS = TOTPTS + (P-.RIGHT) - (P-.LEFT); 
NRF = NRF + 1 ; 
P = (Pe.RLINK)> 

TOTPTS = N + 1 + TOTPTSX(X RATIO - 1); 

"PLOT SOLUTION ON PRINTER AND GRAFPPC" 
NCUT = MI NO(N, PAGEWIDTH); 
DO1 = 1,NCOMP < 

CALL CLEAR; 
RANGE = MAX(I,l) - MIN(I); 
IF RANGE .EQ. 0.  < RANGE = 1 .> 

"INSERT DOTS ON PRINT PLOT TO DENOTE REFINED REGION" 
P = LEFTMOST(2); 
WHILE (P-.COARSE) .EQ. LEFTMOST(1) < 

DO M = ZERO, HEIGHT < 
PAGE(M, (PA.LEFT)) = PERIOD; 
PAGE(M, (P-.RIGHT)) = PERIOD> 

P = (P-.RLINK)> 

IF ROUND(MIN(1)) .LE. 0 .AND. 0 .  .LE. W ( 1  ,I) < 
"INSERT A LINE OF ZEROES INTO THE V PLOT" 
M = ROUND(-MIN(I) * HEIGHT/ RANGE); 
DO J = ZERO, NCUT < 

PAGE(M. J) = ZEROCH>> 
DO J = ZERO, NCUT < 



M = ROUND((V(I,J) - MIN(I)) HEIGHT / RANGE); 
PAGE(M, J) = LABEL(I)> 

OUTPUT; (1 H ); 
FOR M = HEIGHT BY -1 TO 0 < 

OUTPUT (PAGE(M, J), J = ZERO, NCUT); (1 X, 
PAG EWI DTHAI )> 

"PUT OUT NUMBERS FOR GRAFPAC" 
WRlTE (7, :FORM1 :) TOTPTS, I; 
WRITE (7, :FORM2:) T; 
WRlTE (7, :FORM2:) A, B, -1 .l, 1 .l; 
WRlTE (7, :FORM1 :) NRF; 
"PLOT REFINEMENT BOUNDARIES" 
P = LEFTMOST(2); 
L = 2 ;  
WHILE (P-.COARSE) .NE. NIL < 

REPEAT < 
XLEFT = A + H(L-1 )"(PA.LEFT); 
XRl GHT = A + H(L-1 )'(P-.RIGHT); 
WRlTE (7, :FORM3:) L, XLEFT, XRIGHT; 
P = (P-.RLINK)> 

UNTIL P .EQ. LEFTMOST(L+l ); 
L = L + l >  

"PLOT ALL POINTS ON ALL LEVELS IN STRICT LEFT-TO-RIGHT ORDER 
BY USING A DEPTH-FIRST SEARCH OF THE TREE." 
P = LEFTMOST(I); 
L = 1;  

:RECURSE: 
J 3 0 ;  
UP = (P-.FINE); 
REPEAT < 

OFFSET = XRATIOX(P-.LEFT); 
XLEFT = A + H(L-1)X(PA.LEFT); 
BASE = (PA.BASE); 
NPTS = (P-.TOP) - BASE; 
NPTSP2 = NPTS + 2; 
IF (UP-.COARSE) .NE. P < 

LEFTR = NPTSP2> 
ELSE < 

LEFTR = (UP*.LEFT) - OFFSET; 
RIGHTR = (UP-.RIGHT) - OFFSET> 

GO TO :L4:; 
REPEAT < 

X J = XLEFT + JXH(L); 
WRlTE (7, :FORM2!) XJ, V(I,BASE+J); 
J = J + l ;  

:L4: I F  J .EQ. LEFTR < 
P = UP; 
L = L + 1 ;  
GO TO :RECURSE:>> 

WHILE J .LE. NPTS; 
UP = P; 
P = (P-.COARSE); 
J = (UP-.RIGHT) + 1 - XRATIO"(P-.LEFT); 
UP = (UPA.RLINK); 
L = L - 1 >  

UNTIL L .LT. 1 ;>> 

:FORMl: FORMAT (15, 12); 
:FORM2: FORMAT (4E15.7); 
:FORMS: FORMAT (1 1,2E15.7); 

RETURN: 
0 END; "PLOT" 

$$ 
$3 

0 MORTRAN ERRORS ENCOUNTERED 


