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ABSTRACT 

The theory of circular intensIty differential scattering (CIOS) 

of light by a solution of randomly oriented molecules of arbitrary geo

metry has been derived. The molecules are treated as a set of polar

izlng tensors. The CIOS as a function of scattering angle is obtained 

in closed form. The C I OS depends on the di stances and angle between 

all the polarizabilities in the molecule. Numerical calculations 

of hel ices made up of uni-axial polarizabil ities, di rected along the 

tangent to the hel ix, are shown as a function of hel ical geometry. 

The ca 1 cuI ated va 1 ues of the C I OS ind icate that they shoul d provi de a 

useful, new experimental technique to determine the structures of 

bi6molecular aggregates. 

iii 
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INTRODUCTION 
'.~ 

The theory of the circular intensity differential scattering (CIOS) of 
. 1-4 

oriented chiral molecules has been published recently. Measurement of 

the CIOS as a function of scattering angle can give structural information 

about chiral macromolecular systems. The CIO scatte·ring patterns contain more 

detail and information than the corresponding total scattering patterns; 

the sign of the CIOS signal is directly related to the handedness of the 

chiral scatterer. While the traditional chiroptical methods, such as 

circular dichroism and optical rotatory dispersion give information about 

the short range structure of the optically active speci"es (less than approx-
. o. 

imately 20A) , the CIOS contains structural information about molecular dimen-

sions of the order of the wavelength of 1 ight used in the scattering experiment. 

CIOS is not restricted to wavelengths of 1 ight within the absorption band 

of the chromophoresin the scatterers; different wavelengths can thus probe 

different critical dimensions in the macromolecules. 

In this paper we will consider the case of randomly oriented molecules. 

A molecule is represented by an arbitrary set of polarizability tensors, 

and the scattering pattern is averaged over all orientations of the molecule. 

The organization of the paper is as follows: In part I the spatial averagings 

of the CIOS equations will be presented, in part II the resulting expressions 

will be applied to a helical scatterer, and in partlll, numerical computations 

of the CIDS vs. the scattering angle will be presented. 



I. The Spatial Averaging of CIDS Equations. 

The circular intensity diffe~ential scattering (CIDS) is defined by:5 

CIOS 

where IL.R(~'X) is the intensity of light scattered in the direction 

(~.X) in space when left or right circularly polarized light is incident 

upon the sample. For a homogeneous solution of scatterers.the scattered 

intensities in a chosen direction are measured to provide,6 alternatively, 

<IL-I R> and <IL+IR> • The measured signal is <CIOS> = <IL-I R> / avo avo avo avo 

<IL+I-> • We must therefore find the average of the numerator and the R avo 

denominator of the CIOS ratio. Instead of deriving the averaged total 

scattered intensity for right and left circularly polarized light (IL+I R), 

we will derive <11I+11>av. where III and 11 are the intensities scattered in 

a given direction, when the incident light is polarized parallel and per-

pendicular to the scattering plane. The total scattered intensity is 

independent of the orthogonal states used to characterize the incident 

radiation, but the derivation is simpler this way. 

Theory 

2 

Let the scatterer be described by a set of point polarizabil ity tensors. 

The field scattered by this array, due to field. ~O' is given by: 

E( r') 
-ikr ' AA i~k.r' =Ce (I-kk)·re __ Ja.·E· 

- --. -J -0 J 

(1) 

~ 

where j labels each polarizabil ity in the scattererj k and k are the modulus 

and a unit vector along the scattered wave-vector of the radiation; r. and a. 
-J -J 

are the position and the polarizabil ity tensor for each j, respectively; 
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rl is the position of observation in space, ~k = ~-~O. and C is a propor

tionality constant containing some inverse distance factors. Next we define 

the incident circular polarizations of the radiation: 

EO L = A + iB -, -
E . = A - iB _O,R 

with A and B two arbitrary orthogonal vectors, both perpendicular to the 

direction of incidence of the I ight. Similarly, the polarizability tensor 

can be written in terms of its components along principal axes e .. 
-J 

(2) 

a. = a. e.e. (3) . 
-J J -J-J 

where in general there will be three components for each tensor. From (1) 

and using (2) and (3), we can write the difference in sc~ttered intensity 

for incident left and right circularly polarized 1 ight at a given direction 

in space, as: 

= 2iC2rrei~~o(~j-~i)a.a:[(AxB) o(e.xe.)] [(e.oe.)-(e. ok) (e. ok)] 
i j J 1 - - -J -I -J -I -J - _1_ 

Equation (4) is the expression in the numerator of the CIDS ratio that must 

" be averaged; it involves the product between space fixed (A, B, ~k, k) and - - -
molecule-fixed quantities (e., e., r., r.). In order to do the averaging, 

-J -I -J -I 

we must define space and molecule-fixed frames, in terms of whose axes the 

correspond i ng quanti t i tes can be wr i tten. 

First we define a molecule-fixed coordinate system, with orthogonal 

unit vectors ii, jl and kl. We orient this frame so that without loss of 

(4) 



generality, e. is chosen to· lay in the plane i',k', while e. is completely 
-I -J 

arbitrary with components along the three orthogonal axes. Furthermore, 

the k' axis of the molecular frame is oriented along the distance vector 

R •. between polarizabil ities i and j in the scatterer, with R .. = r.-r .. 
_IJ -IJ -J-I 

The space-fixed frame with axes labeled a, band c is oriented so that one 

of its axes (the c axis) is along the momentum transfer vector of light, 

~k = ~-~o; the scattering plane defined by ~ and ~o coincides with the 

c,b plane. We can now express the space-fixed quantities in terms of the 

axes of this frame: 

~k = (4~/A) sinS c 
A 

k = cosS b + sinS c 
A 

~o = cosS b - sinS c 

" " 

4 

(5) 

wnere k and ~o are uhit vectors along the scattered and incident wave-vectors; 

S is one-half of the scattering angle subtended between these two vectors. 

Having definedthis space-fixed coordinate system we can now rewrite 

the polarization vectors of light (2) as: 

E= A±iB _O,L,R 
. 1 

= --
If 

[a±i (s inS b + cosS c)] - -

where the +. sign must be used for L and the - sign for R. Similarly we can 

write, from (6): 

A x B = 1 (sinS c - cosS b) 
2 

(6) 

(7) 
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Equations (5) - (]) together with the corresponding expression of e., e., 
-I -J 

e. x e. written in terms of the molecular frame, can be replaced in Equation 
-I -J 

(4). The resulting expression will contain the dot products between the 

axes of the two frames. Not i ce that because of our particular choice in 

ori ent i ng these two frames, the exponent ial i~k-R· . be written as e __ IJ can 

i(c-k ' ) e _ _ , i . e. , in terms of the dot product between just one axis or each 

frame. Indeed, the product (c-k ' ) in the exponential is a constant for 

any orthogonal transformation between the two coordinate systems, with the 

exception of the transformation involving the angle e between c and k'. This 

greatly simplifies the derivations. 

To relate the space-fixed vectors to the molecule-fixed vectors, we 

use the Euler transformation matrix7 to express any product between space-

fixed and molecule-fixed basis-vectors, in terms of the three Euler angles 

(e,x,cp) (see Figure 1). The spatial averaging of any function f(e,X,cp) 

of the Euler angles 'involves the spatial integrations over the three Euler 

angles: 

1T 21T 21T 1T 21T 21T 
<f(e,X,cp» = f f f f(e,x,cp)sinededxdcplf f f sinededXdCP 

000 000 
(8) 

Using the Euler matrix, it can be shown that the only terms that survive the 

averaging process (see Equation 8) are the combinations of dot products 

between the. molecule and space-fixed frames, such that the integrat ion with 

respect to the polar anglee: 

'ir 
e iq cose 

:: \1T Rij f f(e)sinede with q sinS (9) 
0 
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is a purely imaginary number. This is related to the fact that Equation (9) 

is the Fourier transform of f(e)sine in the q-space, and a necessary and 

sufficientcondition8 for this result is that f(e)sinS be an odd function 

of its argument, i.e., f must be an even function of e. The imaginary result 

of the averaging integrations is of course necessary for Equation (4) to 

be real. Here we will just give only' the results of the integrals that 

appear in the averaging of 'L-'R: 

1T. e 
! el qcos coses inede = 2 i j I (q) 
a 

1T. e 3 
! elqcos cosesin ede = 4i j2(q) 
o 

11'. e 3 
1 qcos . ( () (» ! e cos eSlnede = 2i jl q - 2j2 q /q 

o 

where jl(q) and j2(4) are the first and second order spherical Bessel 

functions, respectively, defined by:9 

j 1 (q) = sin q 
2 

q 

cos q 

q 

sin q - ~ cos q 
q 

The resulting averaged expression for "L-'R in terms of (to) and (11) 

is then: 

= 
* CL.CL. 

L L 1 J 

i j 

'" (e. Xe. ) • R •• 
-~ -I -IJ ([{e.·e.) (j2/q - jl) 

-I -J 

- (e •• R .. )(e .• R .. )(Sj2/q - jl)](sinS +'sin3S)} 
-I -IJ -J -IJ 

(10) 

(11) 

( 12) 



where the argument of the spherical Bessel functions, q (see Equation (9», 

has been omitted for simpl icity. In Equation (12) the geometry of the 

scatterer has been left completely general. The whole expression is multi-

plied by the factor: 

" 
(e. x e.)<·R •• 
-J -I -IJ 

Clearly this form-factor vanishes for any two groups in the scatterer whose 
.' 

relative orientation possesses So center of symmetry, .i .e. 

for nonchiral arrays of point dipoles in space. Expression (13) can be 

rearranged to yield: 

" (e. x e.)-R •• 
-J -I _I J 

" _ (e. x R •. ) -eo = m. -eo 
-I -IJ -J _I-J 

7 

( 13) 

(14) 

which resembles the ~xpression for the rotational strength in optical activity 

10 theory: indeed, m. = e. x R .. is the transition magnetic dipole associated 
-I -I -IJ 

with electronic transition eo. The last expression in (14) shows that the 
-I 

factor (13) is the product of an axial and a polar vector. Axial or pseudo-

vectors do not change sign when an inversion of their coordinates is carried 

out; as a result, expression (12) will have the same value, but opposite sign 

for a chiral molecule and its mirror image. This chiral discrimination 

appearing if! the averaged equations makes CIDS much more sensitive than 

regular light scattering to the structure of optically active molecules. Only 

a (equal to one-half of the scattering angle) appears in Equation (12); this 

simple dependence gives the differential scattering pattern the "ring structure" 

of constant intensities similar to those observed 
11 47TR. 0 

crystallography. For small values of q = ~ 

in powder patterns in 

sinS ,( i 0 e . , for A » R .. ), 
1 J 

we can expand the spherical Bessel functions in terms of powers of their 



arguments to obtain: 

and 

I lim j I (q) = - q 
q+0 3 

8 

(1 Sa) 

(1Sb) 

From these expressions,an asymtotic equation for <IL-IR>av can be obtained: 

I im 
q-+O 

2'ITR. .... '" 2 4 
=. AIJ L L <l:'<l.(e.xe.) oR ... (e.oe.}(sin 8+sin 8) 

i j I J -J -I -I J -I -J 

Clearly, in the forward direction (8 = 0, q = 0) <IL-IR>av and therefore 

(16) 

the CIDS ratio, vanishes. This conclusion is only valid within the first 

Born approximationl2 to the local field, used in deriving the above equations. 

Now we must obtain the spatial averaging for the total scattering. The 

scattering intensity due to a collection of polarizable points in space, each 

characterized by a polarizabil ity tensor <l. = <l.e.e., is: 
:::.1 1-1-1 

. a A. . A ~~ A~ A 
~ ~ I qcos * [.. E· E·" k·k E·] = ~ L e a.a. EO·e.e. -e.e.· 0 - O·e.e... .e.e.· 0 
• • ·1 J - -1-1 -J-J - - -1-1 -J-J-
I ,J 

(17) 

A 

where <l., <l., e., e., _k, q, and a have the same meaning· as. oefore. _EO is· 
I J -I -J 

the incident electric unit vector. For I ight polarized perpendicular- to the 

scattering plane 



.. 

" .. 

~o = a 

and for light polarized parallel to the scattering plane: 

E = cosS b + sinS c _0 

9 

( 18a) 

(lab) 

The scattered intensity for 1 ight perpendicular to the scattering plane is then: 

i qcos8 * [ ( ) () () "') ('" ) 1: 1: e a..a.. a-e. a-e. t.-t. - a-e. (!J.-k e".-k)(a-e.] 
" 1 J - -I - -J _I -J - -I -I - -J - --J i j 

(19 ) 

and the scattered intensity of 1 ight Incident parallel to the scattering plane 

is gi ven by: 

In 
~ = c 

i qcos8 *'" '" 2 1:1: e a..a..[(e.-e.)-(e.-k)(e-k)]{sin S(b-e.)(b-e.)+ 
• • 1 J _I -J -I - - - - _I --J 
1 J 

cos
2

S (c -e. ) (c -e.) +s i nScosS [ (b -e.) (c -e. )+ (c -e.) (b -e. )]} 
- - 1 - -J- - 1 - -J - - 1 --J 

Equations (19)· and (20) must be spatially averaged. the derivation follows 

closely along the lines shown for IL-I
R

, We wi;11 omit the details and will 

(20) 

~resent only the results. The spatially averaged total scattered intensity 

is: (details of the derivations can be found elsewhere)13 



<11 +111 > 8 2 2 2 * '" A· 

2 = -I 5 1: I a. I ( I - sin S co s S) + 1:a . a . {( t . • R .. ) ( t . e R .. ) 
C i I .. 1 J -I -IJ -J -IJ 

1 J 

{[(jo-jl/q) + sin
2
S(3jl/q - jO)](_t·1e_t

J
.) - 2(t. eR .. )(t. eR .. ) 

-I -IJ -J -IJ 

(t.xR .. ) e(t.xR .. ){~[(jO+jl/q) + sin2SUo-3jl/q)](t.et.) -
-I -IJ -J -IJ -I -J 

'" '" . 2 2 2 
~(t.·R •. ) (t. eR .. )[(16J 2/q - 3jl/q + jO) + sin S(4j 2/q -

-I -IJ -J -IJ 

3jl/q + jO) - 4sin48(jl/q - 3J2/q2)]} - (I - ~«R .. xt.)2 + 
. -IJ-I 

3j2/q2)] - «t.XR .. )-(t.XR .. »2[(I/S)(-9j2/q2 + 2jl/q + jO) -
-I -IJ -J -IJ 

'" 2 • 2 2 
3jO)] - (t.-(R .. xt.» [(I/S) (5J 2/q + 2jl/q - jO) + ~sin S 

-J -IJ-I 

10 

where' = sin q 
J O q is the first order spherical Bessel function. Equation (21) 

gives the total scattering as a function of the scattering angle (28), due to 

an ensemble of scatterers (each described by a set of point polarizable groups), 

adopting all possible orientations in space. In this expression only three 

sperical Bessel functions contribute: jo' jl and j2' All the Bessel functions 
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in this equation appear in the form, jn/qn, which is always symmetric in 8. 

This together with the fact that only the Oth, 2nd and 4th power of sin 8 

are present means that the scattering pattern must be symmetric aqout the 

direction of incidence of I ight. Equation (21) is an extension of the 

spatially averaged scattering of a collection of point polarizable groups, 

14 originally derived by Oebye for the case of spherically symmetric point 

polarizabil ities. A somewhat different form of Equation (21) has been derived 

by Horn l5 for polymers which are rigid rods or Gaussian chains. 

II. CIOS of an Ensemble of Randomly Oriented Hel ices. 

Here we will apply the results of the last section to the case of a 

helical scatterer made up of uniaxial point polarizable groups which are 

evenly spaced. The position of the' jth group in the helical scatterer with 

respect to an arbitrary coordinate system (see Figure 2) can be written: 

with a, the radius of the hel ix; T, the winding angle of the helix groups 

in radians; :and P, the pitch of the hel ix. Next we assume that the single 

principal axis of each polarizabil ity (t.) is tangential to the hel ix, 
-J 

where M is a normal ization constant: M = (a2 + p2/41T2)112 . From Equations 

(22) and (23) and using the 

distance between groups ith 

corresponding definition for the unit vector 

. d . th "'R / I I . an J , •. = r. -r.r. - r. , we can write 
IJ -J -I -J-I 

(22) 

(23) 



Equation (13) for the case of a hel ical scatterer. Due to the symmetry of 

the helix, the result is that both the total (1
11

+ 11 ) and the differential 

scattering (IL-I
R

) can be written in terms only of the angular distance ~ij 

b • th d· th ( - (. .) ) etween groups I an J , T .. = J-I TO : 
I J 

with: 

By exploiting the helical symmetry, Equation (24) can be greatly sim-

pI ified for the purpose of calculations, allowing us to write it in terms 

of a single summation. The result is similar 

G .. = Gk, and the two summations replaced by 
IJ 

to (24) with Tij = Tk and 
N-l 

l: (N-k) . 
k=l 

An equivalent expression for the denominator of the CIDS ratio can be 

obtained for the helix, but we will not write it here to save 

space. 

111. Numerical Calculations. 

We have carried out calculations using Equation (24) and its 

equivalent for the total scattering, for an ensemble of randomly oriented 

helices in solution as a function of the hel ix parameters and the wave-

length of 1 ight. Figure 3 shows the polar plots of CIDS (labeled CIDS AV) 

12 

(24) 
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and total scattering (labeled SCAT AV) vs. the'scattering angle, for 

three different 'values of pitch (p), radius (R) and wavelength of light. 

Positive values of the CIDS are depi~ted with light lines and negative 

values with dark lines (see figure caption for details). The first thing 

to notice in this figure is how much more sensitive CIDS (left column) 

is to a change in the helical parameters, when compared to the total scat-

tering (right column). It is also remarkable that even for ratios of 

PIA close to 0.5 and RIA - 0.3 the CID scattering pattern shows at least 

one zero. The CID and total scattering values have been normalized for 

the purpose of the plotting; the order of magnitude of the CIDS ratiO 

calculated ranged between 102 and 107 (see figure caption for maximum 

values obtained). Such values are commonly measured in the typical CD 

experiment, and thereforefromth~se calculations we can predict that the 

CIDS effect corresponding to helical molecules of this size could in 

principle be detected. 

Figure 4 shows the dependence of the magnitude of the CtD and 

total scattering on the length of the helices in solution. The pitch of 
o o 

the h~lices is 34 A and the radi~s 11 A The lengths are given in 

number of turns as follows: upper plate - 500 turns, middle = 73 and 

lower plate = 7.3 turns. Notice that while the total scattering becomes 

more spherically symmetric for smaller hel ices, the CIDS:)pattern does 

not change much. The plots have been normalized for comparison, since 

both CIDS and total scattering values decrease with the decreasing 

length of the hel ix. The independence of CIDS to the length of highly 

symmetri c and periodi c chi ral scatterers, frequent 1 y found in b io I ogi ca 1 

aggregates, indicates the sensitivity and uniqueness of the CIDS signal. 

It will characterize the chiral nature of certain elements of an object, 

but it will not respond to other elements. 
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CONCLUSIONS 

In this paper the theory of circular intensity differential sca-

ttering presented earl ier l - 4 has been extended to include the general 

case of chiral scatterers of arbitrary geometry which are randomly oriented 

in space. The relevant equations are equations (12) and (21) whose 

ratio give the spatially averaged CIDS. It can be seen that in the 

process of averaging, the phase relationship between two point-polarizable 

groups in the scatterer is lost. This result formalTy means that an 

inverse Fourier transformation of (12) and (21 r, or thei r ratio, cannot 

be done to obtain direct geometric information from the measured CIDS 

signal. This is not different from any other spatially averaged op-

tical signal, therefore the use of equations (12) and (21) to interpret 

CIDS in terms of structure is necessarily restricted to the comparison of 

model-structures w~th experimental data. On the other hand, the equa

tions derived here, and the calculations performed, show that CIDS is 

much more sensitive than averaged total scattering to the geometry and 

structure of chiral molecules. In all numerical computations shown 

here, the absolute values of the CIDS ratio obtained were found between 

10-2 to 10-7, a range accessible to the measuring devices of current 

CD spectropolarimeters. 
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FIGURE CAPTIONS 

Figure 1. The three Euler angles be~ween the space-fixed and the 
molecule-fixed coordinate system, are shown. In the text £ and ~I 
are the polar axes of these frames. 
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Figure 2. A helix of polarizabil ities. The polarizabil ities are shown 
as ellipsoids of revolution whose symmetry axes are directed along the 
vectors .tJ' t 2 ,·····etc, shown in the figure to be tangential to the helix. 
In our ca cuTations the other two axes of the polarizabil ity were taken 
equal to zero. lO is the angular distance between the dipoles; a is the 
radi us of the he) ix "and p its pitch. 

F-igure 3. Polar plots of total scattering(left column) and CIOS(right column) 
for ramdom·ly oriented helices, for different values of pitch P, radius A 
and wavelength of light W.The angular distance between the polarizabilities 
is 0.682 radians. The maximun cros value was obtained for the top case and 
was 2.81 x 10-3.The thick lines indicate negative lobes whereas the thin 
ones correspond to positive tros values. 

Figure 4. Polar plots of CIDS (left column) and total scattering (right 
column) for randomly oriented hel ical scatterers. Three different lengths 
are shown with the other parameters of the helix kept constant.(top) length 
= 500 turns, (middle) length = 7~ turns and (bottgm) length = 70 3 turns. 
The wavelength of light is 4442 A, radius = 11 A, pitch = 34 A. Notice 
that.in the bottom figure the total scattering of the helix is like the 
scattering from a point, with the scattering intensity at right angles 
equal to one-half of that in the forward direction. 
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