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A FRONT TRACKING METHOD APPLIED TO BURGERS' EQUATION
AND TWO-PHASE POROUS FLOW
Per Litstedt
Lawrence Berkeley Laboratory -
University of California
Berkeley, California 94720
~ Abstract
- A method isvpresented.that is capable of following discontinuitiés
in the Sol@tion_of hyperbolic paftial differéntial equations. At eVéry
time-step3fo} eéch cell in the neighbérhoéd of the discontinﬁity the
fraction of the cellilying behind the discontinuity curve is updated..
From.this data the frént iS reconstructed. The method is.applied tdy.
three'differentiél equétions:inviscid Burgers' equation, the Buékley-'
Leverett equation for immiscible porous flow and the equation for»tﬁd—

phase miscible flow in a porous medium.



1. Introduction

Discontinuities in the solutionvof hyperbolic partial differential
equations appear in many physical applications, e.g., gas dynamics,
flame propagation and petroleum reservéir simulation. Methods to follow
these time-dependent fronts in two space dimensions haye been described
bvaiqhtmyer and Morton [17] and more recently by Noh and.Woodward (151,

Chorin.t3], Glimm, Isaacson, Marchesin and McBryan E1i] and Hirt and
.Niehois {14]. The last reference cdntains a review.of several front
tracking techniques. In Refs. [17] and [11] the discontinuity curve is
approximated by a number of poinﬁs. The front is advanced in time by
moving the points,ﬁith the front speed, either in the direction normal
to the front [17] or along the characteristics [11]. Another way of "

. representing the front is suggested in Refs. [151, t14] and [3]. For
each mesh cell covering ﬁhe domain of the-solution tﬁe fraction F of the
cell ﬁhat lies behind the front is stored. F satisfies 0 < F < 1 and
consequently, 1 - F is the fraction of the cell that lies ahead of the
front. Using this information an approximate line of discontinuity can
be constructed. The fractions are transported by a velocity field v =
(vx,vy) determined by the position of the front and the particular
hyperbolic equation to be solved. The fractions are moved in two steps:
one in the x-direction using Ve and one in the: y-direction using vy.»-At
each step the part of the volume behind the front in every cell that
flows over a grid line ﬁo an édjacent cell is determined. Then the
fractional values are updated. The approach taken here is a development

of these latter ideas presented in Ref. [15] and [31.



The front tracking method is applied here to the numerical solution
of three examples of scalar hyperbolic partial differential equations

(PDEs) ,

(1.1 u o+ velaf@) =0,
with discontinuous initial data on the domain (x,y) €Q = [Q,1j x [0,1].
The front speed is given by thé Rankine-Hugoniot condition and the
vélocity field q = (qx,qy). The three hyperbolic PDEs are inviscid
Burgers' equafion, the Buckley-Leverett equation and the equation for o
porous,’two-phase,.miscible flow:
1. Inviscid Burgers' Eqﬁation

u, + V(172 qu2)_= 0 .
(1.2) -

q(x,y) = (1,1) .

2. The Buckley-Leverett Equation

Ue + Ve(gf(w) =0 ,
(1.3a)

gu/on = 0 on 3R, the boundary of , u(t,0,0) = 1,



g = =x(u) vp ,
(1.30)

VeAw) Vp) =g , 9p/3n =0 on Q.

The fractional flow function f(u) and the total mobility A(u) .are taken

" to be

£lu) = u2/ W+ all - wd) , Q€ (0,11 ,

(1.3¢).

n

A = w2+l - we .

3. The equation for porous two-phase miscible flow,
u, + V-(qu)‘z 0 .
(1.4a)
du/dn = 0 on o ,u(t,0,0) = 1 .

The value of q satisfies Eq. (1.3b) and A (u) has the definition
(1.45) AW = (w+BG —ud® . g0 .

The initial data’for Burgers' equation is such that the solution
contains both shocks and rarefaction waves. The saturation u for the

flow of two immiscible, incompressible fluids through a homogeneous

porous medium satisfies the Buckley-Leverett equation if the effects of



gravity and capillary pressure are negligible. The quantity p is the
pressure and o is the viscoéity ratio between the two phases.' There
holds g(x,y) = O except for a source at (0,0) and a sink at (1,1),,both'
of unit strength. Equations (1.3) and (1.4) are of importaﬁce in the
simulation of petroleum reservoirs; see Peaceman [16].

The hyperbolic equations (1.2), (1.3a) and (1.4a) are solved by
operator splitting. Glimm's method or the upstream difference method
combined with Godunov's méthod is used for the.integration of the
continuous parts of the solution. The solutién to the elliptic
equation (1.3b) for the porous flow exémples is obtained at each time-

step by a finite difference approximation.'



2. The Front Tracking Method

Place a uniform Square grid of mesh spacing h in the x- and y-
direction over the doméin 2 of interest. Suppose that a value of v is
available everywhere in Q.b For eaéh mesh cell (i,J) define the value
Fij tb be the fractionvof the cell that is behind the.front; ‘ihe dis~
cussion is simplified if the region behind the front henceforth iS
ideﬁtified_as'the "blaék fluid" and the regiqn.éhead of the front is
identified as the "white fluid."

At eadh'time-step the fractiqns in the mesh cells are moved using v
in two‘one-dimensional steps, first in the i-direction and then in the
. y-direction. A local‘approximatiqn of the interface between black and-
white _fluid'is performed in each cel; (i,j) for which 0 < Fij <1
before the fluid in the cell is moved in a coordinate direction. . This.
approximation is based onvF in the neighboring ceils and is not nec-
essary_forvthe majority of the cells for which Fij =0 or Fij = 1. The
interpretation bf the‘front in the x-direction may be different from |
that in the y-direction.

.In order to construct a local front in a cell (i,j) for a step in
the horizontal direction it is sufficient to. consider the three cases in

Fig. 1. The conditions on F in the neighboring cells in each case are:
Case 1 (Fig. 1.1): F, £ 0 and F_ = O

((F2 £ 0or F, #£0) or (F7 2 0or F, £ 0)) ,

3 8



Case 2 (Fig. 1.2): ((F, # 0 and Fg £0) or F = Fg = 0)

and -

Case 3 (Fig. 1.3): F, #0

The other nine possible configurations satisfy conditions that are
éasiiy derived by moving the triangle in Case 3 to the otﬁef thrée
corners and by inﬁercbanging the role of black and white. If none of
the cases above applies thén CaSé 1 iS choéen-if F4 2> FS,_and if FS > F
. the opposite case is chosen. |
. The slope of -the interface is determined as follows: -
_Case:1:  The_upper and lower'édge,lxu and xa,,of the trapezoid are

and F .

proportlonalvto:F2 7

F

2.1) W [Fa\ |
: - =\ ’ Z e [091] ’
7 .

and satisfy the area condition

_ .2
(2.2) O.Sh(xu + xd) = h Fij



If Eqs. (2.1) and (2.2) imply thgt'xu >h (xd > h) then solve“Eq. (2.2)
for x, (xu) with x = h (xd = h). | |

. Case 2: This case is equivglent.to.Case 1 with F2 and F7 in Eq.
(2.1) replacéd by Fu and FS?V |
| Case.3: Let a right triahgle T have its two perpendicular sides on
the grid lines and the rigﬁt angle at the lower left corner of the cell

(i,3). ‘Let x., and Yo be the lengths of the sides in the x- and y-

T

direction, respectively. Compute x

' X F z
2.3) - L. <-F—7> ,
T iy

(2.4) | 005 XTY = h F . .

T and Yo such thaF»v

If x, < h and yT_i h then take x ., and ¥y o the left edge'of the triangle

T
in Fig. 1.3, to be x

d
T and»yT. Otherwise, determine T such that |
Eq. (2.3) is satisfied and the area of T inside the cell is thij" This
polygonal area contains the black fluid.

| The value of z in Egs. (2.1) and (2.3) is 0,0.5 or 1.0 in the
numerical examples. Noh.and Woodward [15] allow only interfaces
parallel to the grid. Chorin [3] introduces black and white rectanéles

inside the mesh cells to increase the accuracy. With z = 0 the local:

front line in Cases 1 and 2 is parallel to the mesh.



When the interface between the black and white fluid has been
established, the fluids in a cell are advected with the velocity
vx(x,y). ‘The timestep taken at time tn to advance thé front is k.

Case 1: Let vu and vd be the vaiues of vx'at tn along the upper

and lower mesh line, respectively. Then

xu(tn.+ k) xu(tn) + vuk .

_xd(tn + k) xd(tn) + vdk .

If ku(tn + k) >hor xd(tn + k) > h then determine the volume of black

fluid AFij that has entefed the right cell and updatevFij and Fi,j+1'

F..(t. +k) =F, (t) -AF,., |,
ij 'n ij 'n ij

Fi,j+1(tn + k) = Fi,j+1(tn) +'AFij .
Proceed in a similar manner if xu(tn + k) <0or xd(tn + k) <0. If
v2 = O.S(Vu + vd) < 0 then the contribution to the left cell is -vzk.
If Fi,j—1 = 1 and vy > 0 then the cell (i,J) receives AFij = v,k from
its left neighbor.

Case 2: Let vy and Vi be the values of vx at the left and right
boundaries of the cell. Depending on the signs of vz'and Vi the»
original trapezoid is stretched or contracted and advected. The

parallel edges remain constant. Then the possible contributions to the

cells (i,j-1) and (i,j+1) are computed.



Case 3: Stretch or contract the triaﬁgle with Vu at the. left edge
and vy at the lower right corner. Then decide if any black fluid hasb
moved into the left or right cell.

For each cell Fij must fulfill O S-Fij < 1. Hence, if
Fyj(ty + k) > 1 then F, (t + k) = 1 and if Fij(tvn + k) < 0 then
Fij(tﬁ + k) = 0. .To prevent the black fluid in a cell from flowing in
one direction into more than one heighboring cell, k must satisfy the

restriction
(2.5) k <h/|v] .

The domain § of the.solution in the numerical experimgnts is
[0,1] x4[0;1] with Neumann boundary conditions or with the directional
derivative dJu/ds = 0 on o), S = x - Y. The grid on Q is augmented by
ext?a rows and columns so that'the area [~h,1+h] x [-h,1+h] is covered.
When one sweep in a coordinate direction is completed, the values of F
in the extra cells outside of Q are determined by reflection. Thus, all
" cells in  have a left and right neighbor as'required by the algorithm,

In order to compﬁte the solution of the differential equation using
the information on the front available from the front traéking method,
the position of the discontinuities on the grid lines must be calcu-
lated. If the frontAcrosses a horizontal line with black fluid to the
left and white fluid to the right, two possibilities are distinguished,

see Fig. 2.
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Case 1 (Fig. 2.1): F3 = F6

discontinuity point on line j is approximated by

= 0, Fk £0, k =1,2,4,5. The

(2.6) X = xi'+.0.5h(F2.+ F5) .

- Case 2 (Fig. 2.2): F_ =0, Fk £0, k = 1,2,4,5,6. The

3

approximation 6f the discontinuity pointvon line j is

(2.7) X = X +'0.5h(F2 + F5 + F6)- .

By using Eq..(2.7). a mesh point lying behind the front in the
coordinateidirection will also do that in the other direction. When the
order of black and white at the front is reversed the formulas (2.6) and
(2.7) are modified éorrespondingly.

The coordinates of the discontinuities and their character (black-
left or black-right) are stored,forreach line in the horizontal and
vertical directions in vectors for later use when the differential
equation is solved. The coordinates are connected to form the front
curve in the graphical output. Knowledge of the character of a dis-
continuity on a line simplifies the task of following its path in time.

It is possible that e.g. a previous shock wave is replaced by a
rarefaction wave due to a reversal of the flow or, as in two of the
examples, that an initiai discontinuity develops into a rarefaction
wave. Whether such a wave starts in a cell (i,j) or not is determined

by the hyperbolic PDE and the normal to the constructed front line. The
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contributions to neighboring cells AFij are computed as before but Fij
is held constant.

Theffront tracking method requires extra memory to store the
0(1/52)'components of Fij’ Cémputatiopal'experience (ef Fenimore [81])
-indicates-that the zone of cells at the front for which 0 < Fij'< ivis
seldom more than two cells wide. Thus,bthe number of front cells for
which-éalculations are necéssary at each time—sﬁep is 0(1/h). Evidently
“the formulas (2.6) and (2.7) for.computing_the points of discontinuity
on a grid line are at least O(h) acéurate for exact values Fij‘ How—
ever, for straight lines the error is sometimes proportional to h.
Hencé, the accuracy of Eqs. (2.6) and (2.7) is O(h). Fenimore [81
demonstrates that thé errors introduced in Fij by Noh and Woodward's
method.[15] in a spgcial case are of first order.

With a'simplified procedure fof computing the local interfaces the
methodvcan be extended to problems in three spatial dimensions; The
discontinuity point on a grid line is then determined by.the valués of F
in the four surrounding rows of grid cubes.

The épproximate values of u and q in Eq. (1.1), u” and qn. are
known at grid points and on grid lines as displayed in Fig. 3. For the
equatioh (1.1) the vélocity field v for advection of the front cells is
given by q and the Rankine—Hugdniot condition. In each of the three

cases in Fig. 1 vy is computed as follows:

Case 1 (Fig. 1.1): Let u and u, be the values of y° surrounding

the closest discontinuity on the upper grid line. Furthermore, let qs

be the value of q, on the upper edge of the cell (i,j). Then



12

(2.8) vy = G (flu)) - fu )/ (g = u )

vy is determined in a similar way.

Case 2 (Fig. 1.2): Let uo-and u, be the values of u surrounding
the closest discontinuity on ﬁhe left grid line. Létvq* be the value of
qx on.ihe.lower edge:of the ééll."Then V) is given by the same ex-
preésion as_.'vu in Eq. (2.8). vr.is calculated from u_ and u, on the
right gfid iine andvd*. | |

Case 3 (Fig. 1.3): <Case 3 is equivalent to Case 1.
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3. Time-Inﬁegration-of the Differential Equations

The values of.ph, qn = (qnx,qny) and un at the points depicted in
Fig.‘3,are calculated by the following proéedures;

pn in the - two-phase flow equations satisfies a finite difference
appr&ximation'of the elliptic equation (1.3b). The derivative

B(K(u)'ap/ax)/ax is replaced by

. ’ | 2
(3.1 Qiv1/2,35P1e1,5 = Pij) = Aio1y2,5Piy ~ Piog,300/00
n n . . . . .
where Ai+1/2,j = O.S(A(uij) + A(ui+1'j)) or if u is discontinuous
: v n _ n n 7 -
between x, and x. . then let u’y = max(uij,ui+1,j) and Ai+1/2,j

X(u?*). This choice of un* is particularly suitable here since a

thin finger of the least viscous fluid with width less than h containing
the point (i,j) will have influence on A and p. Ai-1/2,j is defined in
a similar manner and the counterpart of Eq. (3.1) in thé y-direction is
derived analogously. The résulting system of linear eduations is solvéd
by the preconditioned conjugate gradient method, as described in

Albright and Conéus [T]. The values of qnx and qny are approximated by
standard difference formulas. _
Assume that un'and qd are known at tn' At tn+1 = tnv+ k, un+1 is

obtained in two steps by operator splitting, see Ridhtmyer and Morton

[171.. First solve

9 -
(3.2) u + q 5?'<f(u>) =0 .
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followed by

9
(3.3) U+ 3y (f(u)) = 0 .

dy
The algorithm for computing un+1/2 from Eq. (3.2) in a sweep in the
horizontal direction is:
(i)nDetermine the old points of discbntinuity on all the lines in the
horizontal direction.
(ii) Tranéport the black and white fluids using v, and the method
described in the previous section.
(iii) Determine the new points of discontinuity on all the lines in the
horizontal direction.
(iv) Compute the continuous parts of un+1/2 6n each line by a temporal
one—sﬁep method, taking both the old and neﬁ points of
discontinuity into accounﬁ.

n+1/2

With u as input in Eq. (3.3), u™'

is computed in a sweep in
the vertical direction. In three space dimensions an additional step in
the z-direction is taken.

The last step above requires further comments. The methods chosen
in the examples are the upstream difference method combined with
Godunov's method, Richtmeyer and Morton [17], Colella [5], and a modi-
fied Glimm's method (or piecewise sampling method, random choice method,
uniform sampling method) without a staggered grid due to Colella [5].
The random choice method for the solution of the Buckley-Leverett
equation (1.3) was first used by Concué and Proskurowski [7]. The
upstream difference formula used here for advancing the solution of

Eq. (1.1) one time-step in the x-direction is
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. n+1/2 _ n k n PPN n :
(3.4) uij = uij -5 qi-1/2r,j(f(uij)b_ f(ui—r,j)) ’
L4y ip o0 n , ' .
. . n n . . n+1/2
(negative). If.qi-1/2,j and qi+1/2,j have different signs then uij-

is computed with Godunov's method. The upper bound for the stepsize k

for stgbility iq Eq. (3.4) and Godunov's method is
(3.5) , kﬁh/»qu"(u)l‘- y

and in Glimm's”mgthoq

(3.6.) k < AO».Shv/qu’r(u)I .

Upstream differencing and Godunov's method are first order accurate [17]
and the order Qf*Glimm's method approaches first order, Colella [4].
Eqs. (3.2) and (3.3) specify a first order splitting scheme.

Consider a part of a grid line in Fig. 4 with two discontinuities

’ *
at tn between which the solution is continuous. A value u 5 is
extrapolated from un3 and unu,
(3.7 u* =ut, o+ W - " )
5 4 4 3 *

*
The values uni. i=1, ..4, and u 5 are then used by one of the above

mentioned methods to produce u2+1/2, i=1, ...5. u2+1/2, i=6,7... are '

determined by uni, i=5,6,... . The modified Glimm's method does not
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always provide solution values at boundary points or mesh points close
to a discontinuity. The missing values are calculated with Eq. (3.4).
At a discontinuity point q is assumed to have constant sign so that

Eq. (3.4) can be used. For the equation

u, + vu = 0 . v=constant .

n+1/2
5

to following the characteristics, along which u is constant. If a

computing u by extrapolatiohi(Eqs. (3.7) and (3.&)5'15 equivalent
rarefaction wave starts in a front cell then ﬁhe point- of discontinuity
in the cell is ignored. -There has been no indication of ihétability in .
the front values in the numerical test runs.

Let Qo(t) € Q be the set such that if (x,y) € Qo(t) then
u(t,x,y) = 0. Moreover, 1et-Q1(t) be the set 91 = Q\Qo. The initial

data for Egs. (1.2), (1.3) and (1.4) is such that Q,(0) £ 8. The

hyperbolic PbEs have the following propefty: ~if uij = 0 and the point
(i,j) is not reached by the front at t then u?f1/2 = 0. Hence, no
n+1/2 ij
n+1/2

computation is required to update many values of uij . 91(t) grows
with the expansion of the shock front. There is no wave interaction

between the advancing front and the material ahead of the front.
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4, Numerical Résults

The numerical solutions to Egs. (1.2), (1.3) and (1.4) with.
discontinuousvinitial data obtained by»;he methqd’deseribed‘in the.
previous two sections are presentéd and'diséussed heré. Ali the ex-
amples are solved on a square grid withrh = 1/40 and k fuifills |
Eq. (2.5) apd Eq. (3.5) or (3.6). Glim@;s method was uséd fbrl
~ Egs. (T-Z)Aand the upstream difference method for Egs. (1.3)
and (1.%): In the>fi§ures'the developmént of aﬂg, ﬁhe approximation of
the contour of 91(tn), is drawn for evér& examplé. The initial 901 =
91(0)'13 in the‘lower; left_corner. At is the difference in time
between the contours. Only non-zero values:of un_are printed.

The exact solution to Burgers' eqﬁation~(1.2) is easily derived -
also in twd spatial diménsions.  Aftef ajsimble'tranSformation of the
independent variables,_Eq.v(1.2)vbecomes a. one dimensional problem with -
known solution. Recently, Eq. (1.2) with'disgontinuous initial data has
been solved numericallj by Gropp [12] with a method based on ﬁésh
refinement. |

The initial data for Eq. (1.2) in the numerical experimeﬁts is
u(O.x,y) = 1, (x,y) 6.91(0). Thé boundary conditions are of Neumann
type du/dn = 0 except for Fig. 6 where du/ds = 0, s = x - y. Different
random numbers in-Glimm's method are used in the two fractional steps
Eqs. (3.2) and (3.3). In Figs. 5 and 6 the’initial front line retains
its shape where the line is straight and‘the corners are rounded
slightly. Part of the rounding effect, at least initially, is caused by

the technique for constructing front curves. The error in the speed Qf
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the flat parts is on the level of the round-off errors. vThe analytical
solution satisfies u(t,x,y) = 1, (x,y) € 91(t). t > 0, and the computed
solution is u? = 1 in Qn1 and u” = 0 in Qno = Q\Qn1. The solution of
the rarefaction wave example ih Figs. 7 and 8 on x=y is compared with
the analytical solution in Fig. 9. The agreement is very good.‘ Another
example with a rarefaction wave iS displayed in Fig;.'10 and 11. The
original method by Noh and Woodward [15] was tested on the initial data
of Fig. 5 but was found to be too inaccurate at the cornérs of the
front. 1In the absence of round-off errors Chorin's method in [3] yields
the exact answer for the problem in Fig. 5. The solution to the problem
in Fig. 6 obtained with that method had oscillations in the front in the
vicinit& of the corners. |
Numerical solutions td the Buckley-Leverett equation (1.3) invtwo
| spacé dimensions have been obtained by a nﬁmber of authors [1,2,9-11,181].
They use the same f(u) and A(u) as in Eq. (1.3c) althoughvother cﬁoices-
are possible. In"the five-spot oil flow teSt problem,Collins (6], water:
,is.injected into the sburce at (0,0) and oil is recqvered from the sink
at (1,1). u is the saturation of water. A shock front where u is
discontinuous propagates from (0,0) toward (1,1). For certain values of o
in Eq. (1.3¢) the front is stable to small perturbations but for other
values the front is unstable and "fingering" of the front occurs.
Whether the front is stable.or not depends on ﬁhe mobility ratio M

[6,13,9,10]. M has the definition

(4.1) M= A(up)/A(u)
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where us is the value of u immediately behind the front and u, is the
value ahead of the front. 1In the examples u, = 0. The solution of the

Riemann problem at thg front yields
(4.2) u = (a/(1 + a))1/2 o

and therefore,

4.3)  M=201 - @ +an’?

The front is stable if M < 1 and unstable if M > 1.

The normal component of q at the front qﬁ is continuous but the
tangential_component 9 is discontinuous. When the fractions of_black
fluid at the front are transported in the horizontal direction by Vo
only Vi the component normal to the front, actually moves the ffbnt.»
Eurve. Even if vt and qt advect the fractions of black fluid, they have
little effect on a moderately curved front and no effect on a sﬁraight

front line.

In Figs. 12 and 13, Eq. (1.3) is solved with Mu) = constant = 1

for comparison with the exact solution in [2] for a = 0.5, uy = 0.577,

M = 0.845. 1In this case q is independent of t and is computed only

' 2
initially. 91(0) is a quarter of a circle and u(0,r) = 1 + ar + br,

u(O,ro) =u = 0.577, where r ='(x2 + y2)1/2. The front is -stable for
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a = 0.5. The initial data for the example in Fig. 14 is computed
starting from the same initial data as in Fig. 12. Then a small dis-
turbance is created on the front. The perturbation disappears in
accordance with théory. This is in contrast to the results with o =
0.1,'ub

small perturbation develops into a finger in Figs.-15 and 16, - The shock

= 0,302, M = 1.397. The initial data is prepared as above. A

profiles are compared in Fig. 15 and 16 for two different values of z in
Egs. (2.1) and (2.3). The most significant difference is the shape of
the finger when-the front is close to breakthrough at (1,1). Two small
perturbations on the front develop into two fingers in Figs. 17 and 18.
However, no spontaneous formation of fingers has beeﬂ observed from an
initially smooth front. This is probably due to the fact that M is not
sufficiently large and the inaccuracy of the solution to the elliptic
equation (1.3b) ﬁear the front. Note that M in Eq. (4.3) satisfies

MFG (2 -/2,2). 1In the last example another model for.flow is used
allowiné a larger M.

‘ The equations of miscible flow (1.4) have been solved in
Ref. [11] using a front tracking technique. The initial data here is
such that u(0,x,y) = 1, (x,y) € 91(0). It follows fromvK. (1.4) that
u(t,x,y) = 1 wheﬁ (x,y)€591(t),tlz 0. The mobility ratio is M = 1/84.
Fig, 19 displays the solution of Eq. (1.4) with M = 2. The front is
unstable and a "fingering" effect is clearly visible. The computed
solution u” fulfills u" = 1 in Qn1 and u" = 0 in Qno. The solution of
the same problem in Ref. [11] with the front tracking method described

there was depicted as having a stable front curve and no fingers.
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The typical CPU time required by a VAX-11/780 under VMS to compute

the results in Figs. 7, 16 and 19 is presented in Table I.
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5. Conclusions

The frbnt tracking method described in Sections 2 and 3 has been
tested on three scalar hyperbolic-PDEs'with.discontinuous initial data.
The numerical solution of inviscid Burgers' equation agrees very well
with the analytical'séluﬁion.for shock waves and rarefaction waves. The
same holds true also for the Buckley-Leverett equation with o = 0.5 and
A(u) Ei in Eq. (1.3b), when cdmpared with the analytically derived
soluﬁion. _WHen é'small'perturbation is introduced oﬁ the front curve in
the geﬁeral system (Eq. (1.3)) it grows in the unstable casé, o = 0.1,
and di#appears in the stable case, o = 0.5. Fingers deveiop Spontane-
ously whén the mobility ratio is unfavorable in the two-phase, miscible
‘flow eqdation. The method is able to resolve and follow unstable irreg-
ularitiés in the interface.between shocked and unshogked‘fluid. The
computer time required for the front tracking is comparable to the time

used fok the solution of the differential equations.
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Table I.
_ Percentage of total CPU-time
Total CPU-time ' ‘ ‘
Example CPU-time' per step a) b) c) d)
Fig. 7 191s 1.27s 14.3 58.3 2.5 25.0
Fig. 16 516s  4.13s 3.7 16.7 63.6 16.0
Fig. 19 - 2153s - H4.49s 6.3 14.9 68.7 10.1

a) Computation of points of discontinuity, front curve-and
rarefaction squares.

b) Computation of ng.
c¢) Computation of qn.

d) Computation of'un.
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Figure Captions

Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

. Fig.

1.

10.

Three different cases in the procedure for transportation of
the fréctional volumes.

Two different cases for determination of the point of
discontinuity on grid line j.

The'approximate values of u, p and q are éomputed at mesh
points and grid lines.

A discontinuity mers bn a grid line when time increasés; A

mesh point is marked by a vertical line and a discontinuity by

a cross.

Burgers' equation, z = 0.0, k = 0,01, At = 20 k. The spurious

wrinkles at Some of the corners are partly caused by the

routine for constructing the front line. The best

0.0.

approximation in the corners is achieved with z

Burgers' equation, z = 0.5, k = 0.01, At = 20 k.

.Burgers' equation, rarefaction wave, z = 0.5, k = 0.01,

At = 15 k. The initial configuration 91(0) is the square in
the lower left corner.

u(1.5,x,y) for the problem in Fig. 7.

The exact solution (marked by ——— ) on the diagonal x-y=0

is compared with the computed values (marked by o) and the
computed front (marked by - - - ) in Fig. 8. |
Burgers' quation, rarefaction wave, z = 0.5, k = 0.01,

At =20k. The initial configuration 91(0) is the square in the

lower, left corner. N
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u(1.05,x,y) for the problem in Fig. 10. The top of the front-
curve is rounded and is about 3% slowef than the exéct solu-
tion. The exact u at the top is approximately 0.83.

The Buckley-Leverett equation (Eqs. (1.3a) and (1.3b)),vﬁith
AC(u) = 1 and @ = 0.5, z = 0.5, k = 0.005. Between the first

11 lines At = 40 k and between the last 3 lines At = 10 k.

-u(2.125,x,y) for the problem in Fig. 12 immediately before

breakthrough. Breakthrough occurs aﬁ t = 2.13, about 1-2%
later than the analytical solution. u is in good agréement
with the saturation contours in [2] when the difference in
initial_conditions.has been taken into account.

The Buckley-Leverett equation as in Eq. <1.3) with.a = 0.5,

z = 1.0, k = 0.005. At = 40 k between the first 6 lines and
At = 10 k between the last 5 lines. The initial perturbation
disappears.

The Buckley-Leverett equation as in Eq. (1.3) with a = 0.1,

z = 0.5, k = 0.004. At = 50 k between the first 3 lines and
At = 32 k between the last 2 lines. The initial perturbation
grows.

For comparison, the problem ih Fig. 15 is rerun with z = 1.0.
The difference between the two solutions is not great
considering the unstable nature of the problem.

The Buckley-Leverett equation as in Eq. (1.3) with ¢ = 0.1,

k = 0.004, z = 0.5. At = 50 k between the first 3 lines and
At = 32 k between the last 2 lines. The two initial

perturbations grow.
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Fig. 18. u (0.528,x,y) is plotted for the last profile in Fig. 17.
Fig. 19. The equations for two-phase, miscible flow, M = 2.0,
k = 0.005, z = 1.0. At = 40 k except for the last 2 lines
where At = 20 k. o

-Fig. 20. q (2.5,x,y) is displayed for the last profile in Fig. 19.
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