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ABSTRACT 

Spin is incorporated into the hadronic topological 

expansion scheme. Spin analogs of Chan-Paton factors are 

introduced in a way t,hat avoids the troubles encotmtered in 

earlier attempts. Those troubles, at the meson level, were, 

first, the occurrence of twice the wanted munber of pseudo­

scalar and vector mesons; second, the occurrence of parity-

doublet partners of the pseudo-scalar and vector mesons; and 

third, the occurrence of these parity-doublet partners as 

particles of negative metric, called ghosts. These troubles 

are all avoided by introducing a new topological level, called 

zero- entropy, that lies below the ordered level. At the zero­

entropy level quarks of opposite chirality are treated as 

distinct particles. The theory has been extended to all hadrons, 

and the basic particles are exactly those of the constituent quark 

model, which for baryons start with the (56+) and (70-). The 

theory is fonnulated in the M-function framework, where the 

"quarks" are represented by two-component spinors, and it entails 

SU(6)w symmetry of the hadronic vertices at a low level of the 

topological expansion. 

11" 
This work was s\~ported in part by the Director, Office of 
Energy Research, Office of High Fnergy and. Nu~lear Physics, 
Division of High Energy Physics of the U.S. Department of 
Fnergy tmder Contract No. W-740S-ENG-48. 
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1. INTRODUCTION 

A scattering amplitude can be represented. as a sum of contributions 

from all ways in which the process can occur. Each contribution has 

a phase factor, and the scattering amplitude between randomly chosen 

states tends to be small due to an averaging-out of these phase factors. 
I 

The dominant transitions are between states in which the clements of 

order characterizing, the initial state are carried into the final 

state in some "direct" way. 

This tendency of the the dominant transitions to preserve order 

is particUlarly important in hadron physics, due to the inherent 

complexity of the hadrons and'their interactions. Indeed, this 

order-preserving tendency has been made the basis of a successful 

approximation procedure for meson physics. This procedure is based 

not on the smallness of any coupling constant but rather on the 

smallness of contributions that do not preserve order. Order is 

defined so that it is preserved by contributions to the scattering 

amplitude that correspond to sequences of scattering events 

represented by graphs that can be drawn in a plane with no lines 

crOSSing. Contributions from non planar graphs generally have phase 

factors that tend to av~rage to zero in high-energy regimes. 

This topological approach to hadron dynamics,which originated 

in some works by Venezianol , and has been pursued by many workers, 

has been recently reviewed by Chew and RosentJteii. They show how 

the topological expansion procedure, combined with the requirements of 

unitarity, analyticity, duality, and Lorentz invariance, organizes and 

predicts many of the dominant features of meson physics. 
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The successes achieved in meson physics by 

this topological approach have motivated efforts to 

develop it into a comprehensive basis for particle 

phys.ics. The most obvious deficiency of earlier 

work is its restriction to mesons. Accordingly, one 

major aim of the present two-part work is to exteLd 

the theory to baryons. Paper 11 3 is devoted to that 

task. 

But beyond this problem of baryons, there lie 

other problems of equal importance. To provide a 

satisfactory basis for particle physics, the theory 

must, first of all, provide a practical method of 

determining, through the nonlinear bootstrap condi­

tions, the magnitudes of all coupling constants 

that occur in particle physics. Phenomenological 

analyses indicate that the ratios of the hadronic 

coupling constants satisfy SU(6)w symmetry to a 

degree unlikely to be purely accidental. 4 It is 

therefore probably essential to the practical via­

bility of the topological approach, considered as 

a general basis for particle physics, that it be 

constructed so as to exhibit SU(6)w symmetry at a 

low level of topological complexity. Accordingly, 

a second major aim of this work is to construct a 

topological bootstrap framework that treats the 

spin degrees of freedom in a way that ensures SU(6)w 

symmetry at the lowest level of the topological 

~ Il 
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expansion. 

Historically, this SU(6)w property emerged, 

within the present work, as an unexpected by­

product of the effort to generalize the Chan-Paton 

factors S from isospin to ordinary spin. These 

original Chan-Paton factors enjoy the following 

important property: every product of amplitudes 

that contributes at the lowest topological level 

to any given amplitude has the same Chan-Paton 

factor. This product property ensures the exist­

ence, at the lowest topological level, of a solu­

tion to the isotopic spin part of the dual topolo­

gical bootstrap dynamical conditions. 

It is not obvious that this solution is unique. 

However, it is a·simple solution that is quite 

possibly unique. For, a priori, the infinite num­

ber of dual bootstrap conditions need have no solu­

tion at all. 

To ensure the solubility of the spin part of 

these dynamical conditions, the following require­

ment is here imposed: the spin-generalization of 

the Chan-Paton factors are required to satisfy the 

direct generalization of the product property en­

joyed by the original Chan-Paton factors. This 

demand determines the basic character of the spin 

formalism described in this paper. 

.. 
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The problem of extending the Chan-Paton factors 

to ordinary spin was 'considered by Mandelstam in 

the late sixties. Mandelstam's work,6 like the 

- . 7 h f present work, was based on M funct10ns. T ese unc-

tions have the_ combined advantage of possessing' 

simple crossing properties and a minimal number of 

spin components: crossing is represented by analytic 

continuation alone, and the redundant components that 

arise from describing spin-~ particles by four-com­

ponent wave functions are avoided. Using these 

functions, one finds that the required product pro­

perty (of the spin-generalizations of the Chan-

Paton factor) cannot be reconciled with the demand 

of invariance under parity. Thus, Mandelstam, pro­

ceeding in the straight-forward way, summed two 

parity-reflected contributions, each of which in-

dividually satisfies the product. property, in order 

to obtain a parity invariant form. However, this 

procedure of simply summing two separate terms, each 

of which enjoys also simple factorization properties, 

led first to a parity-doublet partner for each of the 

observed mesons 'Ti'J JJ ~ .• w, and then to a second' 

doubling of this set of mesons. 

The procedure followed here differs from that of 

Mandelstam by its strict enforcement of the product­

property requirement described above. The present 

procedure, originally introduced to ensure the 

-; -. 
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the solubility of the spin part of the dynamical 

conditions, generates a number of important further __ 

consequences. First, by keeping the treatment of 

spin closely parallel to the successful Chan-Paton 

treatment of iso-spin, it leads automatically to 

SU(6)w symmetry of the hadronic coupling constants, 

at the lowest topologic<;il leveL Second, it auto-

matically produces a basic set of mesons that 

.~ accords exactly to the phenomenologically observed 

set ('iT', :5 J ~ J LV ): there is no parity doubling, or 

any other doubling, of the meson spectrum. Third, 

when combined with certain assumptions about the 

number of flavors, it leads to a super symmetry 

connection between the meson-me son-meson coupling 

constants and the meson-baryon-baryon coupling 

constants. This connection is in good agreement-

with experiment. Fourth, when supplemented by a 

plausible universality requirement, it leads to 'a 

value of the ratio of the strong-interaction coupling 

constants to the electromagnetic coupling constant. 

This ratio is also in satisfactory agreement with 

experiment. S 

The technical basis of these achievements is 

the. fact, recognized and exploited already in the 

work of Chew and Rosenzweig, that different levels 

of the topological expansion can act in different 

Hilbert spaces. In the paper of Chew and Rosenzweig, 
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the lowest level of the topological expansion was 

the "ordered" level, and each ordered amplitude 

was associated with a corresponding ordered Hilbert 

space. These ordered amplitudes were summed to 

form "planar" amplitudes, which were ass~ciated 

with new "planar" Hilbert spaces. Approximate cor-

respondence to physical amplitudes was possible only 

at the planar and higher levels of the topological 

expansion. Yet, the ordered amplitudes were import­

ant, for the topological expansion concentrated all 

nonlinear aspects of the original unitarity equa-

tions in the ordered unitary equations satisfied by 

the ordered amplitudes. These ordered unitarity 

equations were much simpler than the original unitarity 

equations because they involved only planar Landau 

diagrams. Thus, the critical problem of determining 

the overall strength of the couplings was greatly 

simplified. Moreover, the represention of physical 

amplitudes by low-order terms in the topological 

expansion allowed many aspects of meson physics to 

be understood even without solving the nonlinear 

equations. 2 

The product-property requirement on the spin­

generalization of the Chan-Paton factors places 

severe conditions on the theoretical structure. 

These conditions can be satisfied by introducing a 

new topological level, called zero entropy, that 

~ , 
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lies below the ordered level. The individual zero-

entropy amplitudes are not invariant under parity, 

and, like the ordered amplitudes, they cannot be 

regarded as approximations to the physical ampli­

tudes. It is the planar amplitudes, which do con­

serve parity, that are again to be considered as 

the first approximation to the physical amplitudes. 

In the work of Chew and Rosenzweig, the planar 

amplitudes were formed as finite sums of the ordered 

amplitudes. In the present framework, the planar 

amplitudes are formed as infinite sums of zero­

entropy amplitudes. These infinite sums create new 

technical problems. But they also create the pos­

sibility, and', in fact, the necessity, of calculating, 

for example, the 7i - X mass difference. For at zero­

entropy, these two masses are equal. 

The present work is part of a long-term colla­

borative effort with Geoffrey Chew to construct a 

practical basis for particle physics based on dual 

topological bootstrap dynamics. Chew's ideas are 

woven into it in many ways. However, this paper 

deals only with certain spinor, topological, and 

group theoretic aspects of the whole theory; other 

important aspects are left untouched. 

One problem not considered in this paper itself 

is the extension to all hadrons of the formalism 

developed herein for mesons. An extension is 

-. 
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des"cribed in paper II. It incorporates also the 

group-theoretic properties of the constituent-

quark model. The whole work is formulated completely 

within the S matrix framework, and hence involves no 

microscopic description in terms of quark wave func­

tions. Hence, it provides, in principle, the founda­

tion of a Lorentz covariant approach to particle 

physics that has a basic set of particles that agrees, 

as far as spin, parity, and other group-theoretic 

properties are concerned, with those of the consti­

tuent-quark model, yet has no confinement problem. 

Moreover, it incorporates SU(6)w symmetry, at the 

lowest topological level. 

The present paper is associated with a recent 

paper by Chew and poenaru;9 it describes technical 

results that have been used in the development of 

their ideas. However, the aims of Chew and Poenaru 

i are broader than those of the present work, which 

simply accepts the group-theoretic structure of the 

constituent-quark model on the basis of its empirical 

success. Chew and Poenaru seek to derive the group­

theoretic structures from topological considerations 

and consequently need a·richer topological structure 

than the one used here. Their topological structure 

contains, in addition to the quark-particle graphs of 

the present theory, and surface upon which these graphs 

are imbedded,also a second surface, called the quantum 

" 
'j 
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surface, in which the group-theoretic relations 

associated with flavor and other symmetries reside. 

In the present work, flavor is an unconstrained 

variable. The flavor structure may, in fact, be 

determined by the nonlinear dynamical equations, but 

it is not determined within the present framework by 

topological considerations alone. 

Proposals for extending the theory to electro­

weak interactions have been made recently by Chew, 

Finkelstein, McMurray and PoenarulO ,ll,l2 

A crucial problem not addressed in any of these 

works is t:h:! development of reliable methods for 

solving the nonlinear conditions. These conditions 

should determine the overall strength of the hadronic 

and electroweak interactions. However, several 

calculations have been performed,l3 and they all 

yield values that differ from the empirically ob­

served overall strength of the hadronic-electroweak 

interaction by a factor of roughly two. This result 

seems significant, particularly because the spinor, 

topological, and group-theoretic considerations intro­

duce as many as twenty different factors of two into 

this result. These theoretical factors were calcu­

lated prior to the calculation of the the approximate 

solutions to the nonlinear equations. 

A second major problem not addressed in any of 

the published works is the development of reliable 
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methods for constructing the planar amplitude from 

zero-entropy amplitudes. This construction must 

yield, for example, a first approximation to the -nr-j' 

mass difference. Some calculations of this difference 

have been made, with encouraging results, but the 

work is still in a developmental stage. 

Much of the work contained in this paper was 

completed several years ago,14 but was not submitted 

for publication because of the above-mentioned 

elements of incompleteness of the whole theory. 

8-12 However, a number of recently-published papers 

are based directly on the spin formalism developed 

in that earlier work. This fact, in conjunction 

with the encouraging character of works in progress, 

makes publication of this expanded version now appro-

priate. 

The theory developed here is based on the M-

function formalism. Since the original description 

of that formalism7 was very brief, the key points 

are described here in Section 2, with particular 

emphasis on the results that are important in the 

context of the present work. The main body of the 

paper is contained in Section 3. The results are 

summarized in Section 4. Appendix A shows that 

discontinuity equations, though usually considered 

in S-matrix theory as being derived from unitarity, 

are actually more basic than unitarity. Appendix B 

<. t 
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explains the failure of unitarity at the zero-

entropy level. The planar discontinuity equations 

nevertheless continue to hold. Appendix C describes 

the connection of the two-component formalism used 

in the body of the paper to the four-component 

formalism based on Dirac matrices. 

2. SPIN 

2.1. Lorentz Transformations in Spin Space 

Let ° represent the Pauli spin-matrix four-vector 
~ 

° ~ (°0' °1'°2' °3) (1, ~), (2.1) 

where 00 is the two-by-two unit matrix and 01' 02' and 03 are 
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the three Pauli matrices: 

( 0 1) (0 -i) (1 0 ) 0 1 1 0 ' O2 = i 0 ' 0 3 = 0 -1 . (Z.2) 

Let A and B be any two-by-two matrices with determinant one. 

Then the Lorentz transformation matrix L)J (A,B) is defined by 
\! 

Au B )J 
\! 

a\! L )J (A,B) - (0· L) )J (Z.3) 

(Repeated vector and spinor indices are always to be summed.) 

Let a)J represent the Pauli spin-matrix four vector 

0)J (1, -0). (Z.4) 

Then 

1 -.".Troo = 
<. )J \! ~\! ' 

(Z.S) 

where ~\! is the Lorentz metric tensor with diagonal elements 

(1, ~l. -1, -1). 

Let e = - i Oz = - eTr be the (charge) conjugation matrix, 

and let M be any tlVo-by-two matrix. Then the Pauli identity 

e-1 MTre M def M. (Z.6) 

entails that 

-1 Tre = a -e 0lJ lJ (Z.7) 

and that 

B-lo A-I 
)J 

14 

o\! L \! JA ,B) 

_ (&.L) 
)J 

(Z.8) 

To specify four different ways of applying transforms to spin 

indices four different types of spinor indices are introduced. The 

spin transformation A = A(A,B) 'acts on the different types of 

spinor indices according to the rules: 

A (<pa) 

A (<pa) 

-, A (cpS) 

A (cpa) 

, 
A a <P' = (A<p) a a a 

<p BB' = (CPB). ., • B 
B B 

(B-l)S S' 
B'CP 

cpa' (A-I) a 

a ' 

(B-l<p)S 

(cpA_l)a 

(2.9) 

Thus the transformation to be applied is determined by the location 

of the index (upper or lower) and whether it is dotted or undotted. 

The operator A acts like the identity on any sum of the form 
a B 

cP Wa or <PSW For example, 

A (cpaWa ) (Acpa.) (AWa) 

(cpa'A-~a)(A a"w
a

,,) 
a a 

cpa1j!(Y. (Z.lO) 
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Let aI' aZ' ... , aZn be any set of Zn four-vectors. Then 

1 T -! r ~oo aZoo a3
0 0 .,. a 00 Zn (Z .11) 

is a Lorentz-invariant function of the four-vectors al ,··· aZn . To 

see this let the indices on 0 and a be specified always in the 
~ ~ 

following way: 

o + 0 0 

~ ~a8 

Then (Z.3) and (2.8) become 

AO
ll 

(ooL) 
11 

o + 0 Ba 
~ ~ 

Ao 
11 

(o·L) . 
11 

(Z.IZa) 

(Z.lZb) 

Application of the operator A leaves invariant the trace 

(Z.l1), due to (2.l0). It gives, alternatively, by virtue of (Z.12), 

} Tr (ooLal ) (ov 0 LaZ)'" (oZn' LaZn)' (Z.13) 

Thus the trace is invariant under any Lorentz transformation of all 

the vectors ai . 

Two important special cases are 

1 T -'Z r al oo aZoo 

which follows from (Z. 5). and 

.. .~. 

alo aZ • (Z.14a) 

16 

1 -! Tr aloo aZ°<.r a300 a 00 
4 

(al ' aZ) (a3 . a4) + (al ' a4) (aZ . a3) - (al . aj~.a~ 

+ i [aI' aZ' a3, a41 , (Z.14b) 

where 

[aI' aZ' a3, a41 ~ v 0 c5 E: 
alaZa3a4 ~voc5 (Z.lS) 

Here E: is the fully antis~tric matrix with EOlZ3 = 1. 

Z.2 Covariant Spin-Projection operators 

Let P = mv be the momentum-energy of a freely moving 

particle, as measured in some general Lorentz frame ~ .. Let s. 

be a spin vector that satisfies s· p = O. Let ~(v) be 

the particle-rest-frame obtained by applying a "boost" to :E. 

This boost is a Lorentz transformation that leaves unchanged any 

space component that is perpendicular to ;. The vectors v and 

5 as measured in ~(v) are 

and 

vr = (vr~) = (vro,;r) 

r r _ ro +r 
5 = (5) = (5 ,"5) 

(1, 0,0,0) 

r r r) (0,sl,sZ;S3 

TIle rest-frame projection operator is 

.l '. 

(Z .16a) 

(Z.16b) 
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-r 1 +r + 
p (s) = ~ (1 + s • q) 

I ( r r)p_ I (r r)_ T v + s 0p = T v + s • o· (2.17) 

This operator proJects onto the spin state in which the spin is 

directed along sr = (O,;r) as measured in ~r(v), and hence 

along s as measured in ~. 

-r r 
The operator P (s) refers to the rest frame ~ (v). To 

eliminate this frame dependence one may apply the boost A(A,B) 

that 'converts pr from its form in ~r(v) to its form in the 

general coordinate frame ~: 

pres) + A(v) p(r)(s) 

B-1p(r) (s) A-I 

1 _ r 
T a • (Lv + Lsr) 

I -Z" a • (v + s) 

I T (v + s)· a 

_ pes, v) (2.18) 

Real Lorentz transformations are-generated by matrices A and 

B that satisfy A = Bt , where dagger denotes hermitian conjugation. 

10 
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For'rotations A is, unitary, but for boosts A is hermitian. The 

boost A(A,B) that converts the rest frame form pr into the general 

coordinate system form P is 

A(v) B t (v) A·r (v) =.('T"':(j 

A-I(v) Bt-I(v) B-I(v) 

where 

.('T"':(j = exp ~ ra. it) h a ~.." °nh a cos T + n • (J S1 T 

and 

v • a 

Note that 

and 

exp act . ;) 

v·a v·a 

cosh a + it • t sinh a 

vpo 
p 

o ">' + 
V + V • a 

o + + 1+ :: v + n • a vi 

I 

,;v--:a rv;cr I 

(2.19a) 

(2.19b) 

(2.20) 

(2.21) 

(2.22a) 

(2.22b) 
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Another useful form is 
• 

rv;a 
-> .... 

vO+l+v'rJ 

(2vO + 2);' 
(2.23) 

The operator 

P(s,v) 
--- 1 1:T ..., Iv . rJ 2" (1 + s • rJ) ;v-;-o (2.24) 

. 1 (_ _) = ~ v • rJ + S • rJ 

is called a covariant spin operator. The vectors v and s 

occurring in P(s· v) have components ~ and s~ that refer to 

the general frame of reference ~. 

-1 Because the boost operators A and B-1 are hermitian, 

rather than unitary, the operator pes, v) is not a true projection 

- 2 - .... operator: pes, v) f pes, v) for v f o. 
The covariant spin operators are Lorentz invariant spinor 

functions in the sense that 

~ -1 -1 AP(L s, L v) pes, v) . (2.25) 

Here A A (A, B) and L = L(A,B). This result follows directly 

from (2.12). 

2.3 M Functions 

Consider first a scattering process involving one spin-~ 

particle in the initial state and one spin-~ particle in the final 

state, and an arbitrary number of spinless particles. Let 

p = (Pa' t a ;I\'\;'Pc,tc ;···;Pd' t d), where Pa is the 

mathematical momentum-energy of the final spin-~ particle, Pb 

-. :t 

,;, 
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is the mathematical momentum-energy of the initial spin-~ particle, 

and Pc' ... ,Pd are the mathematical momentum-energy vectors of 

the spinless particles. The mathematical momentum-energy vectors are 

equal to plus or minus the physical momentum-energy vectors for 

final and initial particles respectively. Thus Pa = ma va and 
o 0 

Pb = - ~vb' where va> 0 and vb> O. 

The t. are the mathematical type labels. They are related 
] 

to the physical-type labels ~ t3hyS by the relation tj = t3hYS/Sign P~ 

where t. and -to label relative antiparticles. These type 
] ] 

variables are sometimes suppressed. 

According to quantum theQ~y the probability for a scattering 

specified by (p, sa' sb) is proportional to 

} Tr pr(sa) S(P) pr(sb) stp) , (2.26) 

where S(p) is the S matrix. This can be written equivalently as 

1 - ? t 
~ Tr P(sa' va) M(p) r(sb' Vb) M (p) 

where, as in §2.2, 

and 

P(sa' va) .;v-;a pr (s) .;y--:-a 
a a a 

-, -. - "'r 
P(sb' Vb) = I Vb' a P (sb) I Vb • cr 

M(p) 

Mt(p) 

.;v;r; S(p) 
a 

'r ~ S (p) 

~ 
.;v;r; 

a 

(2.27) 

(2.Z8a) 

(2.28b) 

(2.29a) 

(2.29b) 

The physical probability is assumed to be Lorentz invariant. This 

." 
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physical invariance ensures that if the spin indices of M(p) and 
\ 

rl (p) are assigned spin-index type according to the rules 

and 

M(p) -+- MaS (p) 

t t 
M (p) -+- M • (p), as 

(Z.30a) 

(Z.30b) 

then the spinor functions M(p) and M t (p) are Lorentz invariant: 

for all proper (det L = 1) real Lorentz transformations 

AM(L-l(p)) M(P) (Z.3la) 

and 

AM\L -1 (p)) M(p) , (Z.3lb) 

with 

L -l(p) -1 -1 -1 
- (L Pa' L ~, L Pc' . .. , -1 

L Pd)' (Z.3lc) 

These invariance properties entail that if roP(p) and mt)J(p) are 

defined by 

M(p) ::: mll(p) all == m(p) • a (Z.3Za) 

and 

Mt(p) == mt)J (p)a == 
.1. 

m' (p) • a 
, ]l (Z.3Zb) 

then the quantities mll(p) and mt)J (p) are vector functions of 

the set of vectors p: 

mll (L(p)) 

m t]l (L(p)) 

Lll mV(p) 
v 
tv) Lll vID (p 

(lm(p)) 
, .1. . 

(Lm' (p))Jl 

CZ.33a) 

(Z.33b) 

ZZ 

Consequently, by virtue of (Z.lZ),the spinor functions 

and 

M(p) == mll(p)o = m(p)·o 
II 

-t - tll - t -M (p) = m (p)Ou = m (p)'a 

are also Lorentz invariant spinor functions: 

AM(L-l(p)) M(p) 

and 

AM teL ~l (p)) M(p)' 

(Z.34a) 

(Z.34b) 

(Z.35a) 

(Z.35b) 

These simple transformation properties do not hold for the S-matrix 

S(p). ' 

The foregoing discussion can be immediately extended to processes 

in which there are n initial spin} particles, n final spin i 
particles, and n' spinless particles. In this case the ,M 

function can be written in the form 0i.lth type labels suppressed) 

M(Pal,al ; Pbl,Sl; PaZ' aZ; ~Z' SZ; ... ; Pan' an; ~n' Sn; Pl,· .. ,Pn') 

n 
lllllZ ... lln(p) x = m IT a " lll",aS, 

1=1 11 

(Z.36) 

lll" .lln 
where m (p) is a tensor function of the vectors 
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p (Pal,Pbl, ... , Pan, ~n, PI' "', Pn,): 

Ill" 'Iln(L(p)) m (
n Ili) vI'" vn 
IT L V· m· (p). 

i=l 1 
(2.37) 

The way in which the n initial spin-~ particles are associated 

with the n final spin-~ particles is immaterial: (2.37) holds in 

any case. 

2.4 Parity 

Let S(p) be written as S(p) = S+(p) + SJp)', (2.38) 

where 

S± (p) = ± S± (p) (2.39) 

Here 

p = (PI' P2' ... , PN) , 

(r}j) o ... 
(PL' - Pi)' (2.40a) 

and 

(pI~) (p?, p.) 
1 ·1 

(2.40b) 

Let an intrinsic parity Ej be assigned to each particle j, and 

define the parity operator ~ by 

~ (S(p)) 
N 
IT E' S(P) . 

j=l J 

'l 

(2.41) 
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The product of £:i' s for allowed processes must be + 1 or -1. 

Invariance under parity is then expressed by the equation 

~(S(p)) S(p). 

If this equation is satisfied then 
N 

be zero unless E = IT E .• 
j=l J 

(2.42) 

S defined in (2.38) must 
£: 

Consider a process in which n initial spin-~ particles, 

i 1, ... ,n, are scattered into n final spin-~ particles. Let 

p. and Pb' denbte the final and initial mathematical momentum-erergies 
al 1 

oftre i th particle. Let (PI" .. , %,) denote the momenta of n' 

spinless particles that also participate in the reaction. Then 

as already mentioned, the M matrix can be written 

M(Pal' tal; Pbl' t bl ; Pan' tan; ~n' tbn; PI' t l ; ···;Pn" tn~ 

Il III ... n(p, t) m 
n (i) 
IT a)l" 

i=l 1 

(2.43) 

where the matrix elements of a~~) are all.a.S. The connection 
1 111 

of M(p) to S(p) can be represented by the equation 

M(p) (II rv.-:~IJ) S(p) (~/vbio all)) 
i al 1 

-.;v;;:a S(p) ~. (2.44) 

Define now 

M±(p) (~ rvai ° (J(l.J) S+ (p) (~ ~i:~ ). 
1 - 1 

(2.45) 
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Then 

M (1')) 
± ( t:r/vaio Ji)) S+(p) (n/vbio q(I)) 

1 - i 

= ± (n~' .0Ji)) s+ (p) (n4 0 (1)) 
\ i al - i bi 0 

± ( _(i))M ()( n .. (n t:I vaioO + p . vbi 0 0 ). 
1 - 1 

(2.46) 

This equation can be inverted to give 

M (p) = ±( n v .0 o(i)) M+(p)(IT vb.o o(i)). 
± i al , - i 1 (2.47) 

The parity transformation applied to the M functions is defined 

to be 

.q>(M(p)) == ( ~ E.) (n v . ° o(i)) M(p) (IJ Vb. 00(i)).(2.48) 
j=l ] i alII 

Then (2.48) and (2.47) ensure that the condition 

9' (M(p)) = M(p) (2.49) 

N 
is equivalent to the condition that Nt be zero unless E = n Ej' 

j =1 

which is equivalent to the parity invariance condition .q>(S(P)) = S(p). 

For n distinguishable spin-~ particles the no-scattering part 

of the S matrix has the form 

So(p) ~r,(O(i)) (2n) 363 (p . + Pb.) 2w. ] 
i=l L 0 alII 

(2. SO) 
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The corresponding M function is 

MO(p) 
n (i) 3 3 n [v 00 (2n) 6 (p . + Pb·)2w·j . 

i=l i alII 
(2.51) 

In order that this no-scattering part be invariant under parity 

(for each particle i separately) we must take Eai £bi 1 for' 

all i. But then (~.48) gives 

.q>(p ° 0 ) a (- Pb ° c) • (2.52) 

This relationship, which stems from the condition that the no­

scattering part be nonzero, is used later. 

. 2.5 Crossing 

Analysis of the pole singularity15 shows that the analytic 

continuation of M(p) along 'an awro~iate path from an original 

. 0 . h 0 <0 . th reglOn where p . > 0 to a regIon were p . gIves e al al 
function that .describes a process in which the final particle of 

type tai is replaced by an initial particle of type, -tai , i. e., 

by the antiparticle of the original particle of type tai' If the 

final particle t . carries q units of any conserved quantity al 
out of the reaction then the antiparticle -t . nrust carry -q units 

al . 

into the reaction. This holds both for the total momentum-energy 

Pai' for the components of spin, and for any quantity that is 

conserved by virtue of invariance under a p-independent transformation 

property. Consequently, the mathematical momentum-energy vector Pai' 

the mathematical spin.vector sai' and the mathematical type label 

tai are equal, after the continuation, to, minus their physical values: 
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Pai 
Q phys /sign Pai Pai 

sai 
0 phys /sign Pai sai 

tai 
0 phys /sign Pai tai 

:'\ similar argument gives 

Pbi 

Sbi 

tbi 

o _phys /sign Pbi fT"bi ' 

o phys /sign Pbl = - sbi 

o t PhYS /sign Pbi . bi 

(Z.53a) 

(Z.53b) 

(Z .53c) 

(Z.53d) 

(2.53e) 

(Z.53f) 

The minus sign in (Z.53e) arises from the fact that sbi characterizes 

tIle physical spin of the initial particle bi, not minus the physical 

spin. The Pbi and tbi were defined originally to be minus the 

physical momentum-energy vector and minus the physical particle-type 

of the incoming particle (bi), and hence the equations for these are 

the same as those for p. and t .. al al 

The quantitites occurring in the transition probability fonnula 

Tr i (va + s~.cr M(Pa,ta ; Pb' t b) 

x i (Vb +, sbl· (j Mt (Pa , ta; Pb' t b) (Z.54) 

are to be interpreted with the aid of (2.53). Thus, for example, if 

(' 

Z8 

P~ and P~ are both positive then the sa and sb in (Z.54) 

are sPhys and ~sphys 
a b' respectively, and the particle types ta and 

tb and ~lif.;are tbhys . In this way we can use the same expression 

(Z.54) in all the different channels. 

The parity transfonnation [J' was defined to be . 

[J'a-l(p) ) ( ~ E) (~ v .• 0) M(p~ (~ vb·· 0) 
j=l .y i=l al L=l 1 . (Z.55) 

In the original (direct} channel (P~i > 0, P~i <0) the parity 

invariance equation~M(p)) = M(p) can be written as 

H(p) = n E. n ~ M(p) n 1 ( 
N )( np .•. 0) (n -Pb·· 0) 

j=l J i=l mai i=l ~i 

(
nt, J (n p ai • 0) _ (n -Pbi· OJ = n £. n ' ,M(p) n ._- , 

j=l J i=l mai i=l ~i 
(Z.56) 

where use has been made of the direct-channel result EaiEbi 1, 

derived from forward scattering. (See (Z.51)). 

Analytic continuation to the crossed channel avoids all 

singularities of M(p) and MCP). !Pus equation (Z.56) must hold 
n' 

in all channels, with the factor n E. from the spinless 
j=l J 

particles defined as in the original direct channel. This 

equation gives 

M(p) = ( ~t E .)( ~ sign pO .)f,~ sign P~i) 
j =1 J i=l al \i=l 

x (.~ vai ' a\ M(p) (.~ vbi• 0) 
1=1 ~ 1=1 (Z .57) 
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It will be shown presently that the parity transfonnation is 

defined in all channels by (2.55). Thus one can conclude that the 

for the spinless particles is channel independent and that Ej 

E ai Ebi 
. 0 . 0 

s~gn p ai s~gn Pbi (2.58) 

This means, in particular, that the intrinsic parity of each spin-~ 

particle must reverse under continuation to a crossed channel and 

that the intrinsic parity of a particle-antiparticle pair is _(_l)t. 

The product of the intrinsic parities of the particles of a 

parity conserving process is physically well defined: it ts equal 
Et. 

to the sign E in SCP) = ES(p), and hence to (-1), J The 

argument leading to the equivalence of BPCS(p) = S(p)) to 

~I(P)) = M(p), with BP as defined in (2.55), was made explicitly 

in the direct channel. However, it holqs equally well in all channels, 
N 

provided the same factor n E. occurs in both BPCS(p)) and 
j=l J . 

~(M(P)). Any extra sign or phase factor e~CP, that one might 

introduce into the connection between S (p) andM(p) , in any 

given physical region, would be the same throughout that physical 

region and would drop out of (2.47), and hence not affect the 

argument that demonstrates the equivalence between BP(S(P)) = 'S(P) 

and BPO,f(P)) = M(P), with ~(M(P)) defined as in (2.48) or (2.55). 

Thus this definition is applicable in all channels, and the result 

(2.58) on the intrinsic parities of spin ~ particles holds~6 

2.6 Antiparticle Conjugation 

Consider a process in which po. and Pbo . are both positive, 
a~ ~ 

so that the two associated particles are both final particles. 
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Suppose that tai= -tbi' so that these two final particles are relative 

antiparticles. 

Consider now an original value of (Pai' pti) and an analytic 

continuation that stays in the physical region of the process, but 

interchanges Pai and Pbi 'leaving all other p'S unchanged. Suppose 

we interchange also s~hYs and sbhys Then the original process and 

the second one are physically the same except for the interchange 

tai ++ tbi' which is just tai ++ - tai· 

-- Suppose that the transition probabilities for these two processes 

were the same. Then the process would be invariant under the 

transformation tai ++ - tai. Antiparticle conjugation invariarice 

is invariance under the analogous change t at"* - t ai for all i. 

If we keep only one particle-antiparticle pair, for notational 

simplicity, the antiparticle conjugation invariance condition 

described above is 

phys - phys) - -:-Tr(va + sa )0 0 M(Pa' Pb) (Vb - sb 00 M (Pa' pt) 

= Tr (v~ + s~PhYs)oO M(p~, Pb)(vb - sbphy~o6' M{p~, Pb) ,(2.59) 

where (2.53) and (2.54) are used, and 

p' a Pb 10> 0 Pa 

Ph Pa Pb
o 

> 0 

s,phys phys 
a Sb 

,phys sPhys (2.60) Sb a 
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To see the consequences of this condition define 

~M(Pa' t; Pb' -t) = ua • 0 M(Pb' t; Pa -t) ~ • 0 (2.61) 

where u = P 1m and ub = a a a Pb/~. Define also 

M(±) = ~ (1 ±rl) M. (2.62) 

Then M = M(+) + M(_l)' and the property (rl)2 = I gives 

~ M(+) - M(_) . (2.63) 

Hence if M = M(+) or M(_) then M = ± rl~, 

Insertion of this condition M = ±rlM into the LH side of 

(2.59) gives 

phys -Tr (v + s ).a u·o M(Pb' Pa) ub ' rJ a a a -

x (vb - sbhys ).6 ub'o Mt (~, Pa)ua'o 

Tr (va - s~hyS ).0 M (Pb' Pa) 

x (vb + sbhys 
)'0 Mt (~, Pa) 

phys _ phys 
Tr(vb+sb )'0 M(Pb,Pa)(va-sa )'0 

(2.64) 

x Mt (Pb' Pa) , 
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where in the second line the relations 

and 

ua' 0 ua' 6 I 

s·6 u·o a a 
- u ·6 a 

s • 0 for s 
a a 

are used, and in the last line the equations 

o = C- l aTrC 

and 

a = C- l oTrC 

(2.65·a) 

u = 0 a 
(2.65 b) 

(2.66a) 

(2.66b) 

are used. Comparison of (2.64) to the RH side of (2.59), with the 

substitutions (2.60) made, shows that the conditionM =± ~M 

implies antiparticle conjugation invariance. 

Notice that 

rlpa' 0 = Pa' 0 (2.67a) 

and 

rlPb'O= Pb' o. (2.67b) 

Thus both Pa ' 0 and ~. rJ, and any superposition of them, are 

invariant under rl. 
2.7 CPT Invariartce 

The physical t~fbrmation corresponding to CPT is 

phys -+ phys phys -+ _ phys t Phys-+ tPhys I +-+ Out. p. p. s. s. . '. n 
J J J J J J 

(2.68a) 
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The corresponding mathematical transformation is, by virtue of (2.53), 

Pj ~ - Pj' Sj ~ Sj' tj ~ t j . (2.68b ) 

Thus CPT invariance is eqUivalent to invariance of transition proba-

bili ties under the transformation p. ~ - p. (all.j). 
J J 

Any Lorentz invariant spinor function M(p) is invariant, up to a 

sign, under the transformation p .. ~ - p. 
J J 

(all j). For the Lorentz 

invariance condition 

. fIM(L-l(P)) M(p) (2.69 ) 

applied for the case A 1, B - 1 gives,-by virtue of (2.3) 

and (2.9), 
N 

M(-p) = (-1) <\rep), (2.70 ) 

where Nd is the number of dotted spinor indices (1 mean here dotted 

two-valued spinor indices: Dotted (undotted) spinor indices for 

spin ~ particles can be constructed trivially by combining 

n + 2m dotted (undotted) two-valued spinor indices by means of the 

usual Clebsch-GOrdan coeffieients .. Thus a dotted spin n spinor '2 
index contributes a term n to Nd ) 

The matrix B = - 1 can be continuously connected to B 1 

by the matrix 

B(1jJ ) t:" , -~TI.) / (2.71) 

which satisfies B( 0) 1 and B(l) = - 1. 
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Since all Lorentz invariants are invariant under all real and complex 

Lorentz transformations the transformation L(A,B) = L(l, B(1jJ)), with 

o .;;;; 1jJ';;;; 1, must generate complex values of the Pj' since no real 

mass-shell vector p.(1jJ) can interpolate p. ~ - p .. 
] ] ] 

The matrices M(p) and MI(p) have been assigned the transformation 

properties indicated by the indices M. (p) and Mt. (p). For as as 
real p the matrices M(p) and ~l (p) are related by hermitian con-

jugation: 

Mt. (p) as 
'* 

(MSa (p)) . (2.72a) 

Thus if Mis transformed by a real Lorentz transformation to 

AMB then M* is transformed to A'*M*B* and Mt is transformed 

~o BtMtAt = AMtB, as indicated by the indices on M:a 

For complex Lorentz transformations the condition A = Bt does· 

not hold. However, (2.72a) is then inappropriate: the appropriate 

definition is 

M~S (p) 
'* M (P)_ 
Sa 

'* 
(MSa. (p )) 

'* 
(Z.72b) 

This quantity is an analytic function of p, whereas the function 

'* on the RH side of (2. 72a) is an analytic function of p; The 
... 

fUnction M' defined in (2. 72b) will continue to satisfy the 

Lorentz invariance condition 

C~l A (i~ MT (L -1 (A,B)(P))C~l B(i)) 

Mt(p) (2.73) 
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for complex Lorentz transformations. 13 Thus in the formula for proba­
Nd 

(-1). from (2.70) will be cancelled by the same bilities the factor 
Nd 

factor (-1) from 

Mt (-p) 
N 

(-1) ~t(p) (2.74) 

Hence probabilities will be invariant under CPT. 

2;8 Statistics 

The order of writing the variables is important. If the variables 

in the set of arguments p = (PI' t l ; P2' t 2; .•. ; Pn' t n) is such 

that all variables referring to initial particles stand to the right 

of all variables referring to final particles then one may write 

p = (Pfin; Pin)' By convention 

S(Pfin; Pin) :: < Pfin I S 1Pin > (Z.75) 

where p. is obtained from p. by reversing the signs of all 
m l.n 

energy vectors Pj and all type variables tj' and reversing the 

order of the variables. Thus if 

Pin (Pm' t m; Pn ' tn) (2.76a) 

then 

Pin (-Pn ' - t n ; ... - Ik' - t m)· (Z.76b) 

The diagram representing < Pf' I sip· > l.n l.n is generally 

drawn by ordering the lines from top to bottom in the sequence in 
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which the corresponding arguments of Pf' and p. appear. The . l.n l.n 

lines correspondi~gto Pin are on the right-hand side; those 

corresponding to Pfin are on the left-hand side. The variables in 

(2.50) are in the order (PIa' PZa , ... PZb, Plb) , so that each 

particle line goes straight thro~gh, without a change in order. 

The functions S(p) and M(p) are assumed to be anti symmetric 

under the interchange of any two spin-~ particle variables (Pi' t i ) 

and (Pj' t j ). Analytic continuation Pai ... Pbi in (2.Sl) changes 

the sign of (Z.5l). This sign change is cancelled by the change of 

the order of variables required to bring the variables back into the 

form (Pfin; Pin)' Thus (2.50) and (Z.5l) hold in all channels, for 

P = (Pfin; Pin)' with the corresponding variables of Pfin and 

Pin occurring in the same order. 

With these ccnventionS the relationship (Z.45) between M(p) 

and S(p) holds in all channels. 

Combinatoric factors lin! are discussed in Appendix A of 

~f. 17. 

3. MESONS 

3.1 TheZeto-Entropy Amplitudes 

The basic building blocks of the topological expansion are the 

zero-entropy amplitudes. In the meson sector: each zero-entropy amplitude 

is represented by a simple quark diagram D of the kind shown in 

Fig. 1, or by the equivalent quark graph G 

1 

)~5 
2 ~ J Quark Oiagr= D 

{ . 

also shown there. 

~~"~5 
j , 

2' , , ; 

~/{ Quark Graph G (D) 

Figure 1 A zero-entropy quark diagram D and the equivalent quark 

graph G = G(D). 



( 

37 

The quark diagram D is converted to the equivalent quark 

graph G = G(D) by simply connecting to a vertex the ends of the two 

quark lines at each opening of D. Thus each vertex of a meson 

quark graph G corresponds, at some level of approximation, to 

an initial or final particle of a scattering process. The zero­

entropy amplitude corresponding to a process with n particles is 

represented, therefore, by a. direct.ed circular graph with n vertices. 

The n' directed edges that connect these vertices all run in the same 

direction, as illustrated in Fig. 1. 

The quark graphs are not abstract graphs, but are graphs placed 

on an oriented surface. The orientation of the boundary of the 

oriented circular disc bounded by the quark line is indicated by a 

second arrow, as shown in Figs. Z and 3. The two graphs of Fig. Z 

are equivalent to each other, and the two graphs of Fig. 3 are· 

equivalent to each other. But those of Fig. Z are not equivalent 

to ,those of Fig. 3. 

,0 
(a) 

Fig. Z. Two equivalent "ortho" graphs . ~ 

l'---~ zU, 
3 4 

(a) 
Fig. 3. Two equivalent ''para'' graphs GP 

zOr4 
1 5 

(b) 

C
' 4 

'/ ~) 
(b) 

" 
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The circular graphs in which the directions of all the quark 

lines agree with the direction of the boundary of the enclosed 

oriented disc, as in Fig. Z, are called "ortho" graphs. The 

circular graphs in which the directions of all the quark lines are 

opposite to the direction of the boundary of the oriented disc, as 

in Fig. 3, are called ''para'' graphs. 

For each ortho or para graph G there is a corresponding 

amplitude. If G has n vertices then this amplitude has a set 

~) (111' .•• , lln) of n vector indices. The amplitude corresponding 

to G has the form 

A(l-a (G, p) F (11) (G, p)f(G, p) , (3.1) 

where f(G, p) is a function of the scalar products of the 

mathematical momentum-energy vectors Pj appearing in the set 

of arguments p = (PI' t l ;···; Pn' t n)· For any ortho graph 

G = GO the function F(I1)(~' p) is given explicitly by 
o n Z -~ 

F ( ) (G , p) = - II (Zm.) 
11 i=l 1 

x Tr (j Pl'a (j PZ'a·.. (j Pn'a 
III 12 I1n 

(3.Z) 

This factor F(I1)(~' p) is minus the trace of a matrix formed 

from right_to left by following the sense of the quark arrows in 

~ and replacing each vertex i by (j I IT and each edge by 
l1i . 

the ortho quark "propagator" P .• a 1m. = u. • a, where 
a] a] - a] 

Paj is the mathematical momentum-energy vector associated with 
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the vertex that lies on the leading end of that quark edge. 

If GP is the para graph obtained from ~ by reversing the 

orientation of the disc then 

A(~)(GP, p) = BPA(~)(Go, p)). (3.3a) 

Thus the function A(G, p) is invariant under the parity operation, 

in the sense that if9PGo = GP and BPGP = GO then 

BPA(~) (BPG, p) A(Jl) (G, p). (3.b) 

The action of !!I on any A is given by (Z. 48) . Thus 

tjJf(G, p) f(G, p), (3.4a) 

and, by virtue of (Z.5Z), 

F(\.I) (GP, p) 
n 
IT 

i=l 

Z -~ 
(Zm.) 

1 

x Tr(-Pl • a) a (-PZ' a) a ••• (-Pn.;a) aJl (3.4) 
\.11 \.Iz n 

This spinor part of the para amplitude is minus the trace of a 

matrix formed from right to left by following the sense of the 

quark arrows in GP and replacing each vertex i of GP by 

a / 12 Jl. 
1 

== - lbj" 

and each edge by the para quark "propagator" - Pbj • a/~j 

a, where Pbj is the mathematical momentum-energy 
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vector associated with the vertex that lies on the trailing end of the 

quark edge. 

Notice that in both the ortho and para cases the orientation of 

the disc points from each edge to the vertex whose momentum appears 

in the propagator corresponding to that edge. 

Each vertex i is associated with a spin four-vector s· . 
1 

For 

a vector particle So' p. = 0 and s~ = - 1. For a pseudo scalar 
1 1 1 

particle s. = u ., and s ~ = 1. The vector (is.) is the ''wave function" 
1 1 1 1 

. of particle i in spin space. The ortho and para amplitudes them-

selves are therefore 

0 
ri 

A(G , p,s) - (.i) Tr(s'au'a 
.;r 1 1 

s·o \.I '0) 
n n. 

0 
x f(G , p) (3.58) 

and 
n 

A(GP, p, 5) ( ~ i ) Tr (Ui a 51 '0 
Il 

uria sri0) 

x f(GP, p) (3.5b) 

·3.Z Parity 

Let GO and GP be ortho and para graphs related by disc 

reversal. Since A(Go) and A(cf) are related l:y A(GP) = ~(G'), tIE 

sum A(GP) + A(Go) is invariant under parity. To see this 

explicitly use 

ui •a Si' a ± si' a U i ' a 

{
' + for spin 

.. - for spin 
o 
1 

(3.6) 

~ 



to obtain 

A(GP, p ,s) 

~ 
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, n 
( ~) (_l)no. of spin l's 

n 

x Tr sl'o Ul ' a sn' 0 Un' a 

x fP(p) 

., n 
_ ( ..!...) (_l)no. of spin O's 

IZ 

x Tr s 'CJ u '0 
1 1 

x fP(p) , 

sn' O un' 0 

where fP(p) = f(GP,p) and fO(p) = f(Go,p). 

(3.7) 

Any trace Tr aI' a aZ' CJ a3' a.;. aZn' CJ is a sum of a scalar 

part that is unchanged by ai -+ ai .... and . a pseudoscalar part that 

changes sign. Since fP(p) = fOup) = fO(p) the equations (3.Sa) 

and (3.7) imply ~ith AO = A(Go), AP = A(<f)) that 

AO + AP 

AO + AP 

ZX scalar part of A 0 

if no. of spin zero's is even 

Zx pseudoscalar part of A 0 

if no.of spin zero's is odd. 

(3.8a) 

(3.8b) 

This means that AO 
+ AP conserves parity, provided the spin-zero 

particles are identified as pseudoscala.r particles and the spin-one 

particles are identified as vector particles. 

4Z 

3.3 AntiparticleC6rtjugation 

The ortho and para propagators are (p J. , o)/m, and . . a aJ 

(-Pbj , o)/~j' respectively. According to (Z. 67) these forms 

are invariant under the antiparticle conjugation operation r6. This 

result suggests that ula ortho and para amplitudes should be 

se~arately invariant under antiparticle conjugation. This invariance 

would, in fact, be strictly implied if the quarks could be considered 

separate entities, each with its own initial and final momenta Pbj 

and p '. It was the analytic continuation p ,++ Pb' of these 
aJ aJ J 

momenta into each other that was the basis of the discussion of 

antiparticle conjugation in §Z.6. In that context antiparticle 

conjugation was equivalent (up to a sign) to reversing the directions 

of all the quark arrows. This reversal was accomplished by an 

equivalent analytic continuation. In that continuation the vector 

p in the propagator p'o/m continues to be the momentum associated 

with .~. fixed· end of the quark line. Thus an ortho pIlopagator 

is transformed into an orth<? propagator, and para goes' into para. 

W~ therefore define antiparticle conjugation ·to be the operation 

of reversing the direction of each quark edge, with the orthocpara 

type left unchanged. Thus antiparticle conjugation interchanges 

the two graphs (a) and (b) of Fig. 4. 

2lt~ 30 
(a) 

1 ... ··_··· 

"C) 
(b) 

C
--.... 

Z t "'j 
1 f i n 

(c) 

Fig. 4 Graphs (a) and (b) are related by antiparticle conjugation. 

Graph (c) is graph (b) turned over. 
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The scalar functions f(p) are assumed to be unchanged by anti­

particle conjugation. Thus the amplitudes associated with graphs 

(a) and (b) are 

and 

AO 
a 

. n 
(l) (Tr sl '0' ul'o 

12 
s '0' n u '0) fO(p) 

n 

o . n 
~ = - (2..) (Trsn'O' un '0 ... slu '1'0) ~(p) . 

IT . 

Then use of (2.65) and (2.66) gives 

~ 
3.4 ISospin 

L (Spin). 
.1 

(_1)1 AO 
a 

(3.9a) 

(3.9b) 

(3.10) 

Quark flavors have not yet be~n discussed. Introduction of the 

up and down quarks yields the 1T! p, n, and w mesons. To get 

the amplitude corresponding to a graph with these mesons as the 

external particles one includes for each vertex the isotopic spin 

factor fi defined in Fig. 5: 

\u 
\d 

\u 

. + emlts P 

emits p 

+ or 'IT 

or 1T 

emits neutral meson 

• 

fi - 1 

fi + 1 

1 
fi = .fl 

Figure continued 
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\- ~ 
0 pO 

(d 

1T , 

emits neutral meson f. 
1 

+~ 0 0 n , w 
.fl 

Figure 5. The isotopic spin factors. The full zero-entropy 

amplitude for any process involving a set of n of these mesons 

is the sum of the amplitudes corresponding to all the ways in which the 

particles of the reaction can be identified with the vertices of 

ortho and para graphs w~th n vertices. 

G-parity is conserved for the ortho and para amplitudes 

separately. To see this note that for each ortho (para) graph 

contributing to a process there is another one in which the u and 

d quarks are interchanged and the cyclic order of the particles is 

reversed. The t\vO associated ortho graphs are related as the two 

graphs (a) and (c) of Fig.4 apart from flavor labels. Sihce (c) is 

equivalent to (b) one obtains the factor (3.10) together with 

the isospin factors £ .. shown in Fig.S. These factors £. combine to 
1 1 

give factors for the graphs (a) and (c) that differ by the factor 

IT(-l) (Isospin)i. Thus the sum of the two contributions is 
i 

where 

A
O 

+ A
O 

a c 
A

O 
(1 + (-l)g) 

a 

g ~ (spin)i + (Isospin)i 
1 

(3.11a) 

(3.11b) 

The factor (-l)g is G parity. Hence G parity is conserved 

for the ol'tho and para parts separately . 
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. 3. 5 Products 

The discontinuity formulas involve products of amplitudes 

. d· h wn in Fig. 6, hs of the km so.. 1
7

'''". 6 represented by grap f /' \ 

, J 

{):~O:5 ,t)/():o~o: 
(a) (b) (c) 

Figure 6. Diagrams representing products of amplitudes. The 

wiggly lines represent the intermediate mesons. 

For each wiggly· line there is a sum over the single pseudoscalar 

meson and the three vector mesons. When this sum is performed the 

spinor parts of these products are just the spinor parts of the 

functions associated \"ith ·the diagrams of Fig. 7. 

zl(lf.)5 
3 " 14 

/' 

1·,7 

l( 
..... -.~ ..... ' 

(a) (b) 

,/.~ 

/f 
\ 

' ........... 

"'. 

.4 

" .3 
,if:;;\ 
3~ 

(c) 

Figure 7. Alternative representation of the spinor parts of the pro­

ducts represented in Fig. 6. A circle with no vertices represents 

-Tr 1 = - Z. 
In other words, the spinor parts satisfy the diagrammatic equations 

of Fig. 8. 

}}-(t -------'l> 
---> 
+--

~,--,--

Fig. 8. Spinor Identities 

1)-,,« <--= 
-> 
~--
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To obtain this result, and also a more general one, let the four 

orthogonal vectors si associated with particle i be labelled by 

e E (0, 1, Z, 3), with s~ = v~ for e O. To get the correct 
1e 1 

normalization we return to the level of the S matrix. Then the 

four amplitudes Se are defined by 

Se 
sr ° 0 

Tr _e_· S 
.rz 

= 1 r _as -s °0 So 
i7. e Sa 

/ 

(3.lZ) 

where the irrelevant indices on S have been suppressed.· The 

arguments of §Z.3 then show that 

Se 
se ° 0 

Tr M. 
I'l 

Consider therefore a product of the form 

3 
k 

e=O 
S S' 

e e 

3 see 0 see 0 , 
k (Tr -- M)(Tr --M) 

e=O 12 12 

(3.13) 

(3.14) 

To evaluate it introduce into the second trace the identity 

s ·0 e 
- e -voo s °0 Voo (3.15) 

~, 

where v is the velocity ±p/m of the relevant particle and 

o 1 2 3 . 
s = sO,s = - sl' s = - sZ' s = - s3' (Each se 1S a four vector). 
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3 
} ~ (Tr Ms. o)(Tr se. a V' 0 M' v·0).(3.l6) 

e=O e 

3 
~ 

e=O 

3 
~ 

e=O 

(se)\l (se)v 

5 5' 
e e 

If v 

i (Tr M 0)J) glV (Tr ~v·o M' v '0)' 

. 
1 ~B 

- g)lV a ~ 
2" all vyo 

0(J.. oB o y 

3 
~ 5 5' 

e=O e e 

3 s·o s·o 
~ (Tr M _e __ )(Tr _e __ M') 

e=O 12 12 

Tr M v·a M' v.a 

(3.17) 

(3.18) 

(3.19) 

This result says that summing over all four exchanged particles 

is equivalent to cutting the-two quark lines at the vertices and 

reconnecting them in the way shown in Fig. 9, with a metric factor 

v • a placed at each reconnect ion point. 

.. 
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3} ( (se' v). :J;; ,,~ .... 
v a 

... ,. 
v • a 

L 

I " 

Figure 9. Diagrammatic representation of (3.19). 

Consider one of the two reconnect ion points in Fig. 9 and its 

Issociated factor v·a. This point connects two line segments that were 

Jriginally parts of the two loops connected by the meson line shown on 

the left-hand side of Fig. 9, and also in Fig. 6. Each of these two line 

;egments is associated with a propagator, in accordance with the formulas 

Jf (3.5). One of these two propagators is of the form ±v'a , and will 

:ancel the factor v·a associated with the reconnect ion point, up to a 

Jossible sign. Now the meson .line connects two vertices. One is 

lSsociated with an initial particle, the other with a final particle. 

[bus the signs of the corresponding vectors u. will be opposite. 
1 

:on~equently, the signs of the two factors ±v'a that cancel against the 

two factors, v·a of Fig. 9 will be opposite, and the cancellation of the 

two factors v·a will leave a residual minus sign. This minus sign 

:ancels one associated with closed quark loops. (This closed-loop sign 

Ippears explicitly in front of the trace symbol in (3.5).) For the 

transformation between the two sides of Fig. 9 changes the number of 

luark loops by one. 

The two factors of i associated with the quark wave functionS (isi) 

)f the two particles that are contracted out compensate in the case of the 

;pin-one particle for the fact that the physical spin-vector se occurring 

~ 
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in the derivation of (3.19) is related to the mathematical one occurring 

in (3.5) by sPhys = smath sign uO, and in the case of the spin-zero 

particle by the fact that the physical vector se = v occurring in the 

derivation of (3.19) is related to the mathematical vector s. = U. 
1 1 

occurring in (3.5) by this same relationship,. Thus the relationship 

illustrated by Fig. 9 reduces to the simpler, one illustrated by Fig. 8, 

from which follows the equality of the spin factors associated with 

the corresponding diagrams of Figs. 6 and 7. 

An explanation of the signs and factors of i in (3.5) is in order .. 

The minus sign in front of the trace comes from considering the quark wave 

function to be antisymmetric under the interchange of variables: an odd 

number of permulations is required to take the quark variables from their 

normal order (see Ref. 7) in which the propagators are ua·a = - ub·a for 

forward scattering to the cyclic order associated with the closed loop. 

The imaginary unit is included in the wave function in order to allow the 

wave function to be folded into the basic unitarity equation for M 

functions, Eq. (7.1) of Ref. 7, without disrupting either the relative 

signs of the two terms on the left-hand(side or the relationship 

phys math. ° s = S Slgn U . 

~ 
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3.6 Topological Classification 

Each circular quark graph G corresponding to a zero-entropy 

ortho or para amplitude can be transformed by the rule illustrated 

in Fig. 10 into a particle graph g = g(G) with one internal vertex. 

.16>-...• 5 l~' 5 
2 +'1' v 2 --_... , 

).:; I ) , 
3,~4 . 
~ 3 4 IX....,. 5 

2 ... --.. ··_ .... _. ' 

3 4 

)", 5 

'0, ---~ 

Figure 10. Transformation of circular ortho and para quark graphs G 

into the corresponding basic particle graphs g(G). 

If G is a circular graph with n vertices then g(G) is a 

tree graph with n edges, n external vertices, and one internal 

vertex. This internal vertex of g(G) is classifie,d as ortho or para 

according to whether G is ortho or para. These two ~nds of 

internal vertices can be distinguished in the way' illustrated in 

Fig. 10. The arrow near each internal vertex shows the direction of 

rotation of the quark line around that vertex. These graphs g are 

called basic particle graphs. 
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A product of basic particle graphs gl' g2' . .. is f~d by identifying 

oertainpairs of the external vertices, as illustrated in Fig. 11. 

'"'. ~ ~'.." ~ ,....../. b 

L. 

<~--~--' 
, • .",r , . ~ 

/'" --...... ......... ~." 

3 
- ... ~-

- .. -.~-. 
'>' 

Figure 11. A product g of 5 basic particle graphs g .. 
1 

Each product graph g has a well defined genus and boundary 

structure. These can be calculated by the Edmond's rule. One first 

draws all the orbits of g. An orbit of g is a path in g formed as 

follows: one picks any point p on any edge of g and a direction 

d(p) at that point. Then one traces a path in g by a moving point 

p' that starts from p in the direction d(p). At each nontrivial 

vertex the moving point p' shifts to the 'next" line, with the order 

of the lines specified by the arrow that indicates the quark-line 

direction. The orbit is completed when the moving point p' returns 

to the original point p moving in the original direction d(p). 

Some of the orbits may pass through vertices that lie at the 

ends of single (external) edges. These vertices correspond to the 

"external particles" associated with the graph. An orbit that passes 

through at least one external-particle vertex is called a boundary. 

The boundary structure consists of the collection of boundaries, each 

.identified by the sequence of external-particle vertices through which 

it passes. Each external-particle vertex appears on exactly one boun­

dary. Graphs with only one boundary are called one-boundary graphs. 

The number of different orbits of g--sometimes called faces 

,~ 4 
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of g- - is denoted by f (g) . The numbers of edges and vert ice,s of 

g are denoted by e(g) and v(g), respectively. Then the genus 

of g-- sometimes called the handle number--is given by the Euler 

formula 

h(g) e (It) - v (g) - f (It) + 2c (g) 
2 (3.20) 

where c(g) is the number of connected components of g. The graph of 

Fig. 11 has one orbit, which is the boundary (8, 6, 5,9, 7,4, 3, 2,~, 

and its genus is two. 

The zero-genus one-boundary graphs are the planar graphs. They 

are the graphs that can be drawn on a plane'with no lines crossing 

and all external vertices identified with a single point at infinity. 

An important characteristic of a graph g is its Betti 

number B(g), which is the number of independent closed loops that 

can be drawn in the graph. Itsvalue is given by 

B(g) e (g) '- v (g) + c (g) . (3.21) 

Let the number of boundaries of g be beg). The orbits that 

are not boundaries are caVed windows, and their number is 

w(g) = f(g) - beg). The most important topological characteristic 

of g is the topological index 

y(g) 2h(g) + b (g) - c(g) 

(3.22) 

B (g) - w (g) . 

i 
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This is the number of independent closed loops in g minus the 

number of windows. For connected graphs with at least one bOlmdary the 

topological index y(g) is zero if and only if the graph g has 

zero-genus and exactly one boundary, i.e.,ifandmlyif g is planar. 

This topological index y (g) enj oys the following "entropy" 

property: if glgZ is some connected product of two connected graphs 

gl and gz then 

y(glgZ);;;;' y(gl) + y(gZ) - 1. (3.Z3) 

To prove this let n be the number of vertices at which gl 

and gz are joined. Then (3.Z1) gives 

B(glgZ) B(gl) + B(gZ) - 1 + n. (3.Z4) 

On the other hand, 

w(glgZ) w(gl) + w(gZ) + w'(gl,gZ) (3.Z5) 

where w'(gl,gZ) is the number of windows of glgZ that lie 

partly in gl and partly in gZ. 

Each of these windows that lies partly in each subgraph must 

pass at least twice through the n junction points. And each junct\on 

point lies exactly twice on the set of orbits. Thus one has the 

inequality 
w'(gl,gZ) .;;; n, (3.Z6) 
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which combines with (3,Z4) and (3.ZZ) to give (3.Z3). 

The entropy property (3.Z3) shows that the topological index 

Y(glgZ) of a product graph glgZ is greater than either component, 

provided one of them has y{gi) > 1. This means that the topological 

complexi ty, as measured by y (g) , increases in general. The' 

special case y(gi) = 1 allows the complexity to remain unchanged. 

If one of the graphs has y(gi) = 0 then (3.Z3) would allow 

for a decrease in complexity. However, if y(gl) = 0 and the 

product glgZ is such that at least one external vertex of gl 

is an external· vertex also of the product graph glgZ then the RH 

side of (3.Z6) can be replaced by n - 1, since then at least one 

boundary of glgZ niust pass twice through the set of junction 

points, and y(glgZ);;;;' y(gl) + y(gz1. 

The graphs corresponding to physical-region singularities can 

always be constructed by taking successive products gl' gZgl' 

g3gZgl' .•. so that the final exteI11ll particles of each newly 

added graph are also final external particles of the new product 

graph. 18 If the product graphs are built in this way then the 

topological index y(g) can never decrease. 

The product graphs g are classified by their overall 

boundary structure and genus, and by their decomposition intoortho 

and.para parts. This decomposition is made as follows: The trivial 

two-edge vertices at which two graphs are joined are called junction 

vertices. Each junction vertex that lies on a line joining an ortho 

vertex to a para vertex is cut. This cuts the graph into a set of 

graphs g. such that the internal vertices of each graph g. are all of 
1 1 

the same kind, either ortho or para. Each of these graphs g: has a 
1 
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boundary structure and genUs. The complete topological classification 

of the graph _ g is given by specifying the boundary-structure and 

genus of each part gi' and the set of pairs of external vertices of 

the graphs gi that are equated to form the junction vertices of g. 

These specifications determine the overall boundary structure 

and genus of g itself. However, these overall characteristics 

are nevertheless included, redundantly, in the complete topological 

specification of g. 

Graphs g that have the same topological specifications are 

said to lie in the same topological class. The zero-entropy graphs 

are the graphs g with a single (ortho or para) part gi = g and 

topological index y(g) = O. The simplest of these are the basic 

graphs g of the kind illustrated in Fig. 10. 

The discussion of topological classification -given above was 

made completely in terms of the particle graph g. It is sometimes 

useful to combine the particle graph g(G) and the quark graph G into 

a single quark-particle graph g(G), in the way illustrated in Fig. 12 

:0: 1. 

S" 

'f 

G g(G) 

Figure 12. A graph G and the quark-particle graph g(G) formed 

from G. The particle lines of g(G) are drawn as dotted lines in 

g(G) . 

-. 
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The orbits of g(G) can be considered to be the independent 

closed loops on the quark lines of g(G). Those closed quark-line 

loops that pass through vertices are boundaries. Those that do 

not are windows. The number of vertices and edges that oc.curs in 

the Euler formula (3.20) for the genus is the number of vertices and 

edges of the particle graph g(G), which is a subgraph of g(G). 

3.7 Topological Expansion 

Each physical-region singularity of the S matrix is associated 

with a Landau graph gL' A formula for the discontinuity around 

the singularity associated with graph gL is obtained by replacing 

each vertex of gL by the corresponding scattering function15 ,16 

This scattering function is specified by the set of edges incident 

upon the vertex to which it corresponds. These edges can be 

identified with the external edges of the particle graphs g 

constructed above. 

The topological expansion is the assumption that each scattering 

function can be expressed as a sum of terms, one corresponding to 

each of the different topological classes specified in the preceding 

subsection. This expansion is required to be compatible with the 

discontinuity formulas, in the sense that if the full expansion is 

introduced into each of the scattering functions that occur in any 

discontinuity equation, and the full equation is then decomposed 

into terms of differellt topological class then the terms of each 

class separately satisfy the equation: there is no cancellation 

among the terms in the equation that have different topological 

character. This assumption that the contributkns·Danydiscontinuity 
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equation corresponding to graphs of the same topological character 

should cancel among themselves has been discussed extensively before, 

, "h h d' , f h d' "f 1 19 20 21 1n connectlon W1t t e er1vat1on 0 t e 1scont1nu1ty orrnu as ' , . 

3.8 The Zero-Entropy Functions 

The validity of the topological expansion is assumed. Then the 

zero~entropy component of any discontinuity equation can be examined. 

Each scattering function is the sum of a pure ortho part plus a 

pure para part plus higher-order terms formed from products of ortho 

and para paTts. These higher-order parts do not contribute to the 

zero-entropy component of the discontinuity equation. Thus the zero­

entropy component separates into two parts, an ortho part and a 

para part, each of which must separately be satisfied, since each 

belongs, according to our classification scherne
1

to a separate 

topological class. 

By virtue of the entropy property the zero-entropy terms can 

·be formed only from zero-entropy factors. Thus the scattering 

function associated with each vertex of the Landau graph is replaced, 

in the ortha (para) zero c entropy component of the full discontinuity 

equation. simply by the zero-entropy ortho (para) amplitude. Consequently 

all the discontinuity equations for the zero-entropy ortho (para) 

amplitudes are identical to the discontinuity equations for the full 

scattering function with two exceptions: (1) the discontinuity 

is zero unless the Landau graph is planar; and (2) the full scattering 

amplitudes are replaced everywhere .in the discontinuity equation by the 

corresponding ortho ( para) amplitudes. 

By virtue of the occurrence of only those singularities that 

correspond to planar Landau graphs the analytic structure of the 

ortho and para functions is much simpler than that of the full 
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scattering function. It is expected that these functions should have 

moving Regge poles but no Regge cuts. They should. in a first 

approximation. be similar to the Veneziano dual-resonance model 

fun · 22 23 'h h add" f . fl f' . ct1ons. ' W1tt e 1t1on 0 a sp1n- avor structure, 1n1te 

widths, and a planar singularity structure in momentum space. 

3.9 Regge Recurrences 

The property represented in (3.19) and Fig. 9 says the spinor factor 

in the zero entropy functions AO or If has the pole-factorization 

property indicated in Fig. 13 
3 

L 0:0-' 2.. 

--
()'n. fY" . .... 1 

e=o 

Figure 13. Pole factorization property, 

Thus if fO(p) has a factorizable 

pole corresponding to a certain value ~ ~ 1 af angular momentum 

transferred between (1, ... ~ m) and Cm + 1 •...• n) then the full 

function AO has factorizable poles corresponding to a set of four 

intermediate states, having total angular momentum values J ~ 

and ~ + 1, ~. ~ - 1. 

If fOCp) has Regge behavior of the kind exhibited by the 

Veneziano dual-resonance function 2~ then for each factorizable pole 

of fD(p) corresponding to orbital angular momentum ~ ~ 1 there 

will be a quartet of factorizable poles of AO(p) corresponding to 

total angular momentum £ and C~ + 1. ~. ~ - l)~ 

The function £O(p) is assumed to have a Regge pole with the 

lowest Ji, = 0 pole identifiable with OUT external set of sixteen 

mesons (TI.p.w.n), which are assumed to be degenerate in the zero-

entropy level. The higher values of ~ will then generate recurrences 
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of the set (TI,p,w,n). 

If the flUlctions lCp) and fP(p) are now generalized to 

represent the cases where the external particles are recurrences of the 

~ = 0 mesons then one must include24 for each external particle i 

of angular momentum ~i a set of ~i 
., d. (i) (i) 

that are such that p .• f°(p) 
1 

vector ln lces, ~1 ... ~~. 
1 

p .• fP(p) = 0 when the inner 
1 

product is formed with anyone of the indices ~i~) ) Consequently, 
J 

the earlier equation 

fP(p) = ~(fo(p)) = fO(p) fO(p) C3.27a) 

becomes replaced by 
n 

.L
l 

~. 
fP(pl = ~(~(p)) = (~1)1= l fO(p) (3.27b) 

When nonzero values 'of the ~. are allowed there is also an 
a. 1 

extra factor of (-1) 1 in the charge conjugation equation (3.10). 

This comes from a consideration of, for example, the two definitions 

of pt and p implicit in Figs. l4a and l4b. 

y­
f .... 

?~I-t:: 
( a.) 

J- f+ 

~~~ 
lb> 

Figure 14. The normal quark structures of p+ and p is shown in . 

(a), whereas (b) shows the definition induced by reversing the quark 

lines. If the quark wave flUlction has angular momentum~. then the 
R.. 1 

difference is represented by a factor (-1) 1 

In the discussion in ~.4 of isospin invariance there was no 

,. 
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change in the definitions of p+ and p of the kind shown in 

Fig. 14. However, the flUlction fO(p) was changed due to a reversal of 

the order of the arguments. (See Fig. 4(c)) In the dual-resonance 
L~. 

amplitude 7 this change induces a change (-1) 1, and we assume 

that this property holds also for our flUlction fO(p): 

L~. 

fO(Pn'··· ,PI) 1 0 ) (·1) f (Pl' ... ,Pn. (3.28) 

a. 
The fact that one gets the same factor (~1) 1 by either rever-

sing the direction of the quark arrow, as in Fig. 4, (a) + (b), (or 

Fig.14, (a) + (b)) or by reversing the cyclic order of the vertices, 

as in Fig. 4, (a) + (c), means that the amplitude corresponding to 

a graph does not depend on how this graph is placed on the paper: 

the operation of turning over or reflecting a graph, as in Fig. 4, 

(b) + (c), does not alter the amplitude corresponding to it. Thus 

the equivalence of the two graphs of Fig. 2, or of Fig. 3, is 

maintained also for \ >0. 
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4. SUMMARY AND CONCLUSIONS 

Spin can be incorporated into the meson topological expansion by 

doing the following four things: 

(1) Adopt the M-Function formalism and associate the leading 

(resp. trailing) end of each quark line .with a lower undotted 

(resp. dotted) index. 

(Z) Introduce into the topological expansion a "zero-entropy" 

level that lies below the "ordered" level of Chew and' RosenzweigZ. 
-

(3) For each cyclically ordered set of n mesons (of fixed 

flavor content) form the various possible zero-entropy M functions. 

Each of these is a product of a scalar function fn(PI' PZ' ... , Pn) 

of the scalar products of the momentum-energy vectors p. of the n 
J 

mesons, times a spin factor. This spin factor is minus the 

product of n spin factors, one for each of n quark lines. The spin 

factor associated with any given quark line is either the ortho­

quark factor u a • or the para-quark factor -ub a " .where a is the 
a as '. aB . 

spinor index associated with the leading end of the quark line, S is 

the spinor index associated with the trailing end of the quark line, 

ua is the mathematical covariant velocity Palma of the physical 

particle associated with the vertex lying on the leading end of the 

quark line, and ub is the mathematical covariant velocity Pb/~ 

of the physical particle associated with 

the ,vertex lying on the trailing end of the quark line. (The minus 

sign associated .with the spin factor comes from the odd number of 

permutations of the quark variables required to take them from 

their normal order associated with the no-scattering part, for which 

6Z 

each spin factor is v • a • = vb • a " to the order in which the a as as 
two indices a. and S· associated with physical particle j stand together 

J J 

and in the order (Sj' aj)). (4) Institute invariance under the parity 

operation by adding together the Zn zero-entropy functions that arise 

from the association of each of the n quark lines .with, alternatively, 

either the ortho-function or the para-function. 

The zero-entropy amplitudes discussed in the earlier sections are 

only those two special cases in which all of the n quark lines 

represent ortho-functions or all represent para-functions. A 

restriction to functions of these two special types .would be unnatural: 

it would correspond to imposing parity invariance only globally for 

the entire process, rather than locally for the separate contribution 

from, each individual quark line. All Zn independent choices of the 

ortho-para character of each of the n quark lines should be included. 

A quartet of amplitudes corresponding to one pseudo scalar meson 

and one. three-component vector meson is obtained by folding the four 

wave functions ia
S
" • 
·a· 
J ] 

function. Here Sjl,SjZ' 

u. and ia. 
J B·a. 

, J J 
and Sj3 are 

(Sje)Z = - 1 and Sje Vj O. 

Sje (e = 1, Z, 3) into the M 

three vectors that satisfy 

The theory obtained in this way from the two-component formalism 

can be directly transcribed into four-component notation by the methods 

of Ref. 7. This transcription is carried out in Appendix C, and the 

results are described here. The use of the four-component,notation 

facilitates comparisons to earlier works. 

For each cyclic ordering of n mesons (of fixed flavors) there are 

Zn different zero-entropy amplitudes, one for each combination of 

choices of the.ortho-para character of the n quark lines that cyclically 
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join the n vertices corresponding to the n mesons. The basic property 

of the zero-entropy amplitudes is that the spin-factors can be 

completely factored out of the associated discontinuity equations. 

Thus the nonlinear integral equations for the scalar factors fnCp) 

are the same for all Zn zero-entropy functions. These equations are 

relatively simple, and should determine Lhe coupling constants at the 

zero-entropy level. They also ensure that the same scalar factor 

fn (p) occurs in all Zn zero-entropy functions. Hence the sum ~n of' 

the Zn zero-entropy functions is simply the sum of the spin factors, 

times the common factor fn(p). 

This sum ~ of the Zn zero-eritropy functions is expressed in 
n 

the 4-component formalism as 

~n = - (Trr llll (ul)rZ]Jz(uz)···rn]Jn (un)fn(Pl"'" Pn)' (4.1) 

where the pseudo-scalar particle is associated with the factor 

r·s(u.) 
J J 

iYS(l + Y • llj)' (4.Za) 

and the three components of the vector particle are associated with 

the four factors 

r. (u.) 
JU J 

P 
Y]J - (uj)llYp uj 

. P 
- HI U .• 

liP J 
(4.2b) 

Here ]J and P range over the set (0, 1, 2, 3), there is a sum over the 

repeated vector index P, and u~r. (u.) = o. 
J JP J 

.. 
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The individual zero-entropy nIDctions are obtained by choosing 

an ortho or para character for each quark line, and then inserting 

1 1 after each factor rj]J. (uj ) of (4.1) a factor of 2 (1 + yS) or 2(1 - yS) 
J 

according to whether the quark line that leads into vertex j has 

ortho or para character. These two operators project the onto states 

of opposite chirality. 

Each quintet of factors rj~(uj) in (4.Z) defines a representation of 

the non-chiral group (U(Z) x IJ(2) . That is, in a rest frame of 
u· 

J 
particle j, where uj is pure ti.melike and l'j 0 (uj ) = 0, one has 

- +_ V - + 
A·r· (u.)B. -~r· (u.) A (A., B.). 

J J]J J J v Jv J 11 J J 
(4.3) 

Here the indices ]J and v range over the set (0, 1, 2, 3, S), and A: 
, J 

+ and Bj are 

- 0 
A. = exp i (1- BU.) (T °a 

J J 
(4.4a) 

and 

+ . ( . 0) b + B. = exp 1 1 + Bu. a 0 • 

J J 
(4.4b 

where a-and b + are two real four-vectors, and the a are the 4 x 4 
)J 

matrices with two 2 )( 2 a]J's in the diagonal corners. The two other 

operators 

and 

A~ 
J 

. ( 0) + exp ]. ,1 + i3Uj C1' a (4.Sa) 



B~ 
J 

• 
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exp i(l - flU?) a 0 b 
J 

(4. Sb) 

acting on the r. (u.)'s from the left and right, respectively, act 
J" J 

as unit operators. (See (C.72) and (C.48)). Hence (4.3) holds also 
- + 

if A. and B. are replaced by 
J J 

A(a, a') exp(ia °a + ill a °a') (4 .6a~ 

and 

B(b, b') exp(ia 0 h + i8a 0 b'), (4.6b) 

respectively. 

The invariance of the fj,,(uj ) under the transformations (4.5) 

is a consequence of the use of the 2-co!1iponentM-function formalism, 

or, equivalently, of the Dirac equation for the corresponding four­

component quantities. It eliminates the possible scalar and axial 

vector particles, and fixes the couplings of the pseudo-scalar and 

vector particles to be precisely those shown in (4.2). 

The transformation properties shown in (4.3) and (4.4) do 

not in general entail corresponding invariance properties of the 

S-matrix. This is because the velocities u. of the various particles 
J 

are generally different, and hence the transformations shown in (4.3) 

act, for different p'lrticles, in different frames of reference, which 

are related by Lo:rentz transformations. 

One subgroup of the group generated by the transformations 

(4.6) is of particular interest. This is the subgroup SU(2)w formed 

hy imposing the following restrictions on the coefficients in (4.6): 
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a3 
- b3 , (4.7a) 

a' 
1 - bi, (4.7b) 

a' 2 - bz, (4.7c) 

al = aZ = bI = b2 = a3 = b3 = 0, (4.7d) 

and 
i 

aO = ae = bO = be (4.7e) 

These conditions entail that B = A-I, and that the transformations 

correspondjng to (oai, oaZ' oa3) are generated by the triad of 

generators 

(WI flal ; Wz = 8CZ; W3 = (3)· (4.8) 

These three generators enjoy the same commutation realtions as the 

generators (aI' (JZ' (J3) of 9J(2). 

In the rest frame of particle j the quintet of factors r. (u.) 
J IJ J 

occurring in (4.2) reduces to a quartet. If these four factors 

are identified with four factors X in the following way 
1;1 . 

Y3(1 + BUJ) = XC' 

iYS(1 + 6Uf) = X3, 

o - YICI + BU.) = X7, 
J -

(4.9a) 

(4.9b) 

(4.9c) 
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YZ(I.+ f3U~) = Xl' 

the~·for all i, j, and k in the set (I, Z, 3), 

and 

[Wi' XOl 

[w., X.J 
1 J 

o 

ZitijkXk· 

(4.9d) 

(4.l0a) 

(4.l0b) 

Thus Xo transfoI1!lS as a W-spin singlet, and the set (Xl' XZ' X3) 

transforms as a W-spin triplet. 

If all particles are at rest then the flmction ~ defined in 
n 

(4.1) is invariant tmder SU(Z)w- The Lorentz transfonnation that 

boosts f. (u.)from its. rest frame fonn r?(u.) to its fonn f· (u
J
.) 

JIl J JIl'J> JIl 

in the standard coordinate system is given by 

(
rv;cr 0) - J . f· (u.) - c-:::. 

JIl ] 0 >'V.-cr 
J 

~). 
J 

fjll(U
j

) (/V~.cr 

(4.11) 

If v lies in the 0 -3 plane then the boost transfonnations appearing 

in (4.11) commute with the generators of SU(Z)w; since both Y3 and 
7 

Yo = f3 are invariant imder SU(Z)W- Thus if the three-velocities Vj 

of all n particles are directed along the third coordinate axis then 

the Lorentz transfonnations in (4.11) do not· disrupt the invariance 

of (4.1) under SU(Z)w: th! function ~n remains invariant. 

If quarks of three flavors are allowed and the 4 x 4 matrices 
, s (u.) are expanded to the corresponding lZ x lZ matrices r. (u.) , 

II j J JIl j OJ J 
then these new lZ x 1Z matrice~ will define a representation of 
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SU(6)W' and the new function ~~, fonned as in (4.1) but with fj in 

place of fj' will he invariant under SU(6)W-

A comparison with several earlier works may he helpful. 

Bardacki and Halpern26 also· introduce spin factors analogous to 

Chan-Paton factors, but arrive at a l6-particle multiplet in place 

of our 4-particle multiplet. They find in addition to P and V, the 

associated parity doublet partners S and A, which occur, moreover, 

as ghost (negative metric) particles. They find also a second set 

of eight particles (S', P', V', A') that couple differently to the 

quarks. These sixteen particles correspond to the sixteen independent 

matrices needed to span the space of 4 x 4 (Dirac) matrices. 

The present work is based on the two-component fonnalism and 

consequently gives in place of the 16 particles of Bardakci and 

Halpern only four particles. Considered from the four-component 

viewpoint the two Dirac equations (C.48) reduce the multiplicity 

of particles by a factor of four; they reduce the 16 particles of 

Bardakci -Halpern to the {our independent ones coupled in accordance 

with (4.Z). 

Bardakci and Halpern introduce the spinor solutions U(Pj) and 

OCp·) of the Dirac equation, but their way of using these spinor J . 

solutions does not give them the crucial Dirac equations (C.48). 

The present approach enforces the usual discontinuity equations, 

including pole factorization, at the zero-entropy level. But parity 

invariance is not maintai.ned at that level. Parity invariance, and 

also SU(6)W invariance for spatially linear processes, is maintained 

for the sum ~n of the Znzero-entrqpy functions, but. pole-factorization 

does not hold for these sums. 
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The tenns needed to restore pole-factorization at the physical 

level come from higher-order terms in the topological expansion. To 

obtain an approximate representation of a physical amplitude near a 

singularHy one can insert into dispersion relations the discontinuity 

functions obtained from the planar amplitudes of Chew and Rosenzweig 

These amplitudes are built out of the zero-entropy functions. The aim 

of the construction of these zero-entropy amplitudes is not to 

obtained jmmediately a good approximation to the physical amplitudes. 

It is rather to define and detennine the basic building blocks of the 

theory. 

The results obtained here are fonnally similar to those obtained 

by Delbourgo et a1.27 from considerations of the group U (lZ). 1hey 

use a four-component spin formalism, but impose the Dirac (i.e., Bargmann­

Wigner) equations in a way that yjelds results similar to (C.48). The 

princjpal difference is that they interprete their analogs of our 

functions ~n as jnteraction tenns of a local field theory, rather 

than as low-order amplitudes of a topological expansion. Thus the 

fun5=tion f 1 (PI' PZ' ... , Pn) would, in their approach, presumably be 

an undetermined constant whereas in the present approach it would be 

constrained ( and, it is hoped, detennined) by the nonlinear zero­

entropy equations. It sh6uld also enjoy, for example, Regge asymptotic 

behavior. The full amplitude would be 'constructed in their theory by 

essentially a power series expansion, but in the present theory by 

including the remaining terms in the topological expansion.. The 

crucial question is whether the self-consistent structure of the 

functions f (PI' ... , P ) determined by the zero-entropy equations, n n . 

.' 
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in conjunction with the topological expansion procedure, will 

eliminate the divergences of field theory associated with both 

renormalization and the divergence of the perturbation series expansion. 

Before these questions can be addressed it is necessary to include 

baryons into the theory: Chew has found that the topological expansion 

scheme with mesons alone is not soluable, due to the minus sign 

associated with the closed.loop. Inclusion of baryons (and baryonium) 

leads to a soluable system that gives a predicted ratio of the meson 

and hadronic coupling con~tants that is good agreement with experiment.S 

Preliminary results indicate that the overall magnitudes of the strong-

ihteraction coupling constants, as detennined by the nonlinear 

integral equations for the zero-entropy functions, agrees with 

experiment at least in order of magnitude. 9 
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APPENDIX A: ORIGIN OF DISCONTINUI1Y FORMULAS 

Discontinuity formulas are derived in S matrix theory nominally 

f 1 · d' . 28 , . d 1 rom macrocausa Ity an unItarIty. However, It was recognIze ong 

ago that unitarity is not essential. What is directly used in the 

derivations is not unitarity, but rather the property that the inverse 

of the S matrix possess theanti-nannal analytic structure. This anti­

normal analytic structure is the same as the normal analytic structure 

derived for the S matrix from macrocausality, except that the plus 

ie: rule is replaced by the minus ie: rule. It is the property that the 

singularities in the real region of definition be confined to the 

positive-a Landau surfaces, and that the function near these singu-

larities be defined by the minus ie: limiting procedure. That the 

inverse of Sshould possess this anti-normal analytic structure can 

be derived from unitarity and the fact that S possesses the normal 

analytic structure. But the property should hold regardless of 

, whether S is unitary or not. 

To see the essential point in the simplest way consider first the 

formal perturbative solution. Then the S matrix can be written in the 

f 29 orm 

where 

< p' Islp > = < p' Ip > - 21TiIi(E - E ,)lim < p'IT (E+ie:) Ip > 
p p e:+0 

(A.l) 
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III 
T(E) = V + VE-i-I V + VE-H VE_H V + ... 

o 0 0 
(A.2) 

If one defines R± by 

-21TiOCE - E ,)lim<p'ITCE ± ie:) Ip>=<pl IR±lp >, 
p P dO P 

(A.3) 

then it is easy to verify, formally, that 

+ - + - - + R-R=RR=RR. (A.4) 

Thus the definitions 

+ + 
S- = I ± R- (A.S) 

allow one to write 

S+S- - + SS'=1. (A.6) 

Hence the operator S defined by (A.S) is the inverse of S = S+. 
+ -Consequently, the operators R and R defined by the plus ie: and minus 

ie: limiting procedures on the same function T(E) define formally the 
. -1 

operators (S - 1) and - (S - J), respectively. 

These relationships are usually derived from unitarity. But the 

above derivation does not depend on the Hermitian character of V: 

it goes through, formally at least, even if S is not unitary. 
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In S-matrix theory the anti-normal analytic structure of S-l 

is usually derived from unitarity and the normal analytic structure 

of.S. However, it can be derived, alternatively, directly from the 

anti-macrocausality property of S-l This latter property is the 

same as the macrocausality property except that the sign of time is 

reversed, so that physical particles carry positive energy from 

later times to earlier times, rather than vice versa. 28,30 

If Ssatisfies macrocausality then S-l; if it exists,should satisfy 

anti-~acrocausality. This will not be proved here, but the following 

argument makes it very plausible. 

Consider a normalized initial state ¢ that represents a system 

of incoming particles each of which is represented by an incident wave 

packet with fairly well defined momenta and trajectory region. The 

action of Stakes ¢ to S¢ =~. And the action of S-l on ~ takes it 
-1 . back to ¢ = S ~. The two reClprocal processes ¢ ... ~ and ~ .... ¢ are 

thus closely related. If S is unitary then ~ is normalized. If S 

is not unitary then~ need not be normalized. But in any case the 

action of S-l on ~ is closely connected to the action of S on ¢: S 

-1 constructs ~ from ¢, and S reconstructs 4> from ~. 

Onecanimagine~ to be decomposed into components ~i corresponding 

to various combinations of outgoing particles with fairly well defined 

momenta and trajectory locations. Then the wave functions ¢ and ~i 

can be wave functions of the kind used in the macrocausality arguments 

of reference 3Q If S satisfies macrocausality then in various dilated 

situations of the kind discussed in that reference the dominant con-

tributions to the process ¢ ... ~ will correspond to physical scattering 

.' 
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processes. If S-l should fail to satisfy anti-macrocausality then 

for some process ¢ ... ~ there \\UIld be contributions to ~ .... 4> that do not 

corresponding to temporally reversed physical processes, yet do not 

falloff in the way demanded by macrocausality for the corresponding 

direct process that contributes to 4> ... ~. But then the dominant 

contributions to 4> ... W and ~ ... ¢ would not be temporal inverses of 

each other, and the close reciprocal connection of these two processes 

would have to be maintained via an intricate interplay of contributions 

that are not naturally related via temporal inversion. 

Although such a situation is perhaps conceivable, it will almost 

surely not be achievable in situations having the complexity of 

relativistic particle physics. Thus I think it safe to assume, 

. in the general S-matrix context, that S-l, if it exists, should be 

anti-macrocausal regardless of whether the S matrix is unitary or not: 

the anti-macrocausality property of S-l is a more primitive and basic 

property than unitarity. From this anti-macrocausality property one can 

deduce immediately from the arguments of Ref. 30 the anti-normal 

analytic structure of S-l needed in the derivation of the discontinuity 

formulas. 

Further insight into the connection between discontinuity 

equations and the inverse of S can be obtained by considering the S 

matrix from the point of view of the "in" and "out" parts of the wave 

functions in radial coordinates. Separating out the center-of-mass 

mO,tion of an n particle system one is left with a function of various 

relative coordinates (xl' ... , xn- l ). An alternative set of coordi-

nates consists of R (r l' ... rn- l ) and n = (nl' ... , nn-l)' 

where (ri , ni ) are the radial and angular coordinates associated with 
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the relative motion of some pair of subsystems. If 1jJ(R, n) is a steady 

state solution and K = (kJ, .,. , kn_l) is a set of n - 1 scalars 

defining momentum magnitudes then one may define the asymptotic 

amplitude 

where Pi 

A(K,n) ~. d 1 1 
'" 11m r· -:::=::-r n-l~ fa> ik.r. 

i=l Ci +0 0 1 (2IT) 

-i(k.-ic.)(r.-P.) 
1 1 1 1 

x (S(r. - p.) e 
1 1 

-i (k. +i c.)(r. -p,))] 1jJ(RP ,n) 
1 1 1 1 

+ S(p. - r.)e 
1 1 

- e:i 2, and RP :: (ri - Pi , ... , rn-l - Pn-l)' 

(A. 7) 

n-l 
This definition is such that if 1jJ is a plane wave ~exp i ;. • k? , 

i=l -1 1 

and the directions and magnitudes of the n - 1 three-vectors ~ are 

specified by the sets of coordinates nO = (S~, <P~, S~_l' <P~-l) and 

KO = (kO
I , ..• , kO 1)' where k~ > ° for all i, then the corresponding n- 1 

A(K,n) is 

Aa(K,n; KO,n~=o(K, KO)o(n, nO) + o(K, KO)o(n,fio), (A. B) 

where 
n-l 

o(K, K') II o(k. - k.~), 
i=11 .1 

(A.9) 

n-l 

O(n, n') II 0 (cos s. - cos e ~ ) 0 (<P. - <P ~ ) • 
i=l 1 1 1 1 

(A.IO) 

K= (- k1' ... , - ~-l), (A. 11) 
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and 

n (IT - S1' <PI + IT, .. , , IT - Sn~l' <Pn-I-IT)' (A. 12) 

If, on the other hand, 1jJ represents the solution to the 

scattering problem with the incident or incoming state given by 
n-l 70 

the same plane wave exp ~ i k .• ;. that was used in (A.B), 
i=l 1 1 

then the amplitude A(n, K) can be written as 

where 

Here 

A(K, n; KO, nO) 

+ 0 (K, RO)o(n; 

° ° S(K, n; K , n ) 

fiO) , 

° ° ° ° S(K)S(K,n; K ,n ) = S(K, n; K , n ). 

n-l 
S (K) = II S (k.) , 

i-I 1 

(A.l3) 

(A. 14) 

(A.IS) 

and S(ki ) is zero or one according to whether ki is negative or 

non-negative. Equation (A.14) expresses the condition that the 

incoming part of the asymptotic wave (i. e. the part having the 

behavior (exp - i~.r.) is the same as that of the incident plane 
1 1 . 

wave. F4uation (A.13) defines the S-matrix in these variables. 

The k? in KO all satisfy k? > O. Substitution of the argument 
1 1 

-0 -0 ° ° (K , n ) for (K , n ) in (A.l3) gives 

-0 -0 -0 -0 ° ° A(K,n; K, n) = S(K,n; K, n) + O(K, K )Ii(n, n). (A.16) 
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The condition, analogous to (A.14), that the two tenns in (A.16) 

represent separately the asymptotic incoming and outgoing parts 

of IjJ is 

- -0 -0 8(K)S(K, n; K , n ) 
. -0-0 S(k, n; K , n ). (A.17) 

where th~ k? in KO always satisfy k? > 0. 
1 1 

The wave functions IjJ corresponding to the asymptotic amplitudes 

defined in (A.l3) and (A.16) represent solutions that have incoming 

·,and outgoing parts equal, respectively, to the incoming and outgoing 

parts of the plane wave whose asymptotic amplitude is given in (A.8). 

We now invoke two general principles. The first is the super­

position principle, which asserts that a linear superposition of solutions 

IjJ is a solution IjJ I. The second is the causality principle that the incoming 

parts of a solution should detennine uniquely the outgoing parts. 

Using the superposition principle one can fonn a solution 1jJ' by 

k ' I' , , '1 f (0 ° h ta Ing a Inear superposItIon over varIous va ues 0 K, n ) t e solu-

tion IjJ that correspond to the amplitudes A(K, n; KO, nO) of (A.13). 

The weight factor will be chosen to be S (KO , -0 -0 -0 n ; K1, nl)' for some 

fixed (K~, n~). Thusthe asymptotic amplitude corresponding to 1jJ' 

will be 

I 

A (K,n) 

l! 
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° ° ° ° -0 -0 -0 -0 JdK Jdn A(K ,n; K ,n )S(K , n ; Kl ; nl ) 

° 0 ° ° -0 -0 JdK Jdn (S(K , n; K ,n ) + o(K, K )o(n, n ) 

cO -0 -0 -0 
x S(K , n ; Kl , nl ) 

JdKOJdn°S(K,n; KO,nO)S(KO, -rP; K~, Q~) 

-0 -0 
+ S(K,n; Kl , nl ). (A.18) 

The conditions (A.14) and (A.17) entail that the incoming part of 

A'(K,n) is the same as the incoming part of the solution whose 

asymptotic amplitude is given in (A.16), with (KO,nO) set equal to 

(K~,n~). Thus, by virtue of the causality principle, the asymptotic 

outgoing parts of these two solutions must also be the same: 

-..:~ 

o 0 ° ° -0 -0 -0 -0 JdKl Jd[2l S(K, n; KI' [2l)S(Kl , nl ; K , n) 

° 0 o(K,Kl ) o(n, nl ) . 

But then the introduction of the notation 

-0 -0 -0 -0 
S(K , [2 ; Kl , '1) - 0 0 ,0 0 - S(K ,n; Kl ,'1) 

(A.19) 

(A. 20) 
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allows one towrite CA.19) in CA.20) in the fonn 

5S = 1. (A.2l) 

Consequently the transfonnation of shifting to the barred coordinates 

takes 5 to its inverse. The transfonnation that takes (K,O) to 

CR, n) reverses both the signs of all momentum magnitudes and the 

directions of all the vectors. Hence the associates sets of vectors 

~. are transfonned into themselves. Thus when the functions 5 and 5-1 
1 

are expressed in terms of these vector arguments one needs two 

separate coverings of the physical region, one for 5 and one for 5-1. 

On the other hand, the points CK,O) and CR, n) lie in two separate 

regions of Ck,O) space. These regions are joined at the point where 

all ki = o. 

The fonnal manipulations given above suggest that there might be 

some sort of analytic connection between the functions 5CK, 0; K', 0') 

defined above in the two disjoint regions k., k~ > 0 and k., k· < O. 
1 1 11. 

One may examine this question in specific models, and in particular 

in nonrelativistic models with real or complex (and local or nonlocal) 

potentials. If the potentials are short ranged, so that the singularities 

near the transition point where all ki = 0 arise exclusively from the 

singularities in the propagators,then the singularity structure near 

the transition point should be correctly represented by perturbation 

theory. 

I 
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Near the two-particle threshold in a theory with one kind of 

-1 particle the propagator (E - HO) becomes, when the overall center-

of-mass motion is factored out, just a one-particle propagator. This 
+ propagator, as it occurs in the functions < p' 1 R-Ip > defined in 

( ) 
. 31 

A.3 , 1S 

m exp±ikr 
- p 
21T r CA.22) 

where 

kp 1 (2m E )1/21 P . CA. 23) 

. . + -
Consequently the functions < plR Ip' > and < plR Ip'>, when expressed 

in terms of the variables CK,O; K' ,0'), will be analytically 

connected, regardless of whether the potential is real or not. This 

analytic connection entails a corresponding connection between 

5CK,0; K' ,0') and 5- l (K,0; K' ,0') = 5CR, Q' R', Q'). 

These questions can be discussed in greater depth within the 

context of various special models. However, the point of the above 

discussion is to note that very general considerations, which lie 

deeper than particular models, strongly indicate that the familiar 

analytic connection between 5 and 5-1 should be maintained indepen­

dently of unitary. 
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APPENDIX B: FAILURE OF UNITARITY FOR ORTHO AND PARA AMPLITIJDES. 

Let the M function be decomposed into its ''unit" part plus the 

remainder: 

M(P'; PII) = Mu(P'; P") + Mr(P'; PII) (B. 1) 

Then the basic discontinuity equation has the form 7 

M;(P'; P") - M;(P'; P") 

jM;(P'; P) V • cr M~(P; PII)dP, (B.2) 

where V • cr stands for the product of factors vi· iJ. Continuation 

around the leading threshold is supposed to take the connected part of 
+ -

Mr (P'; PII) =' Mr (P'; PII) into the connected part of Mr (P'; P"). 

The basic topological assumption is that the separation of 

M+ (P'; P") and r,( (P'; P") into parts having different topological r . r 

characters separates the discontinuity equation into parts having 

different topological characters. This entails that the ortho and 

para parts satisfy an equation of the form (B.2), but with only planar 

singularities. 
+ -The ortho and para parts of Mr(P'; PII) and Mr(P'; P") have 

polynomial factors that are specified by the rules given in the text. 

These polynomial factors have no singularity at the the threshold. 

Thus they are the same for the ortho (resp. para) parts of 

+ -M (P' ; P") and M (P'; PII). Moreover, they are the same also for the 
r r 
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ortho (resp. para) part of the right-hand side of (B.2). This 

consequence of our rules leads to an important simplification of the 

discontinuity equations: the polynomial spin factor is the same for 

each term, and hence can be factored out. Thus the discontinuity 

formula at the ortho or para level becomes, essentially, a discontinuity 

equation for the residual scalar function. 

The, polynomial spin factor in the ortho part of M;(P'; PII) is 

built of factors u • 0, one for each quark line. For example, a 

quark line whose leading end lies at a vertex associated with a 

variable p. contributes a factor u .• a .• , where u. = p./m., and a. 1 1 aiu
j 

1 1 1 1 
and a. are spinorindices associated with the leading and trailing ends 

J 

of the quark llne, respectively. 

The polynomial spin factor associated \'lith r,( (P'; P") gets from . r 

this same quark line an identical factor u.·o • . However, the 
1 a·a· 

t * 1 J 
function M (P' . P") = M (P'" P') gets a factor -u.· a • for real u .. 

r' r' J a a. ' J 
Th · . 1 t' 1 t J . IS IS not equa to u··o • ,nor even prop or 10na to It, smce u· 

1'1'j 1 
and u. are generally non parallel. 

J . 

On the other hand, the contribution u··o • from any given 
1 ~~ 

quark line to the ortho amplitude M (P'; PII) is the same as the 
r 

contribution u· • a • from this same quark line to the H.ermitian 
1 ai a

j 
conjugate of the para contribution to M (P'; PII). Thus the sum of 

-- r 

the ortho and para amplitudes satisfies 

- - t 1-MrO + Mrp = - (MrO + Mrp)' (B.3) 
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Hence when the ortho and para parts are combined one recovers the 

familiar Hermitian analyticity relation, generally derived from 

(extended) unitarity •. 

Since Hermitian analyticity fails for ortho and para amplitudes 

one cannot expect unitarity to hold for them. 
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Appendix C: Four-Component Fonnalism 

This appendix transcribes the results obtained above in the 

two-component fonnalism into the more familiar four-component 

fonnalism. 

The connection between the two-component and four-component 

fonnalisms is most easily expressed by using the Weyl representation 

for the four-by-four Dirac matrices. In this representation 

(

0 a) 
CllJ" all alJ 

, .(: :) 
y = t! Cl = (~ alJ) 

lJ II alJ 0 

y = (I 0) 
5 0 I 

(

a. a' 
ai = 1 ) Ci 

a a i 

1, -2, 3) 

The two-by-two charge conjugation matrix is 

and gives 

C . (0 -1). 1 a = 
2 1 a 

C a C- l 
II 

- Tr a 
lJ 

(C.l) 

(C.2) 

(C.3) 
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where a = (aD, -0). Thus 

E • G-1 :) . (: ~) (C.4) 

-1 Tr t * satisfies E ~ E E = E E, where Tr, dagger, and star 

represent transpose, Hermitian conjugation, and complex conjugation, 

respectively. The important properties of E are 

Et 8E = _ 8Tr (C. S) 

t aTr E a E = 
)J )J 

(C.6) 

and 

E t a .E = - a Tr 
1 i (C.7) 

The free-field operator for Dirac particles of type t is 

-J d
4
p Z Z 0 ~a(x) - ~ Zno(p - m )e(p ) x 

, (Zn) 

E-i .. 
. :>..=I,Z(Ua(p,:>..)e PXa(p,:>..,t)+Va(P,:>..)elPxbt(P,:>", -t) 

(C.8) 

where 

* V(p,:>") = EU (p,:>..) (C.g) 

and 

* U(p,:>..) =EV (p,:>..) (C.IO) 
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The charge conjugation operator C is defined so that 

ct~(X)C = E~t(x) = ~c(x) . (C.lI) 

The interchange ~(x) +4 ~c(x) is equivalent to the interchange 

a+4b. 

Parity is represented by the operator P, which satisfies 

ptlji.(X) p = £.8 ~.(X) == ~I?(x), 
'1 1 ' 1 1 

where £i is the intrinsic parity associated with ~i. 

The time reversal matrix Q is 

n{' :) 
and it satisfies 

and 

t T' Q 8Q= 8 r 

t n ain = - a~r 
1 

t n a.Q Tr 1 a. 
1 

8 E , 

J 

"\ 

(C.IZ) 

(C.l3) 

(C.14) 

(C.IS) 

(C.16) 

The Wigner complex conjugation operator K satisfies, for 

all states ~ and $, and all complex numbers a and S, 
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* <K'I'IK<I»= <'1'1<1»= <<1>1'1'>, 

* * K(IlI'l' > + 131<1») = Il IK'I' > + 13 IK<I> > , 

and 

K2 = 1. 

Defining the operator AK by 

<'I'IAKI'I'>=<K'I'IAIK'I'> (all'!') 

, 

(C.17) 

(C.18) 

(C.19) 

(C.20a) 

one obtains from application of (C.17), (C.18), and (C.19) to 

< Il'l' + 13<1>IAKIIl'l' + 13<1> >, (C.20b) 

with Il 1 and 13 1 and i, the result 

< <I> IAKI 'I' > = < K'I'IAIK<I> > (C.21) 

for all 'I' and <1>. The definition of K is completed by taking 

IKx>= Ix> (C.2Za) 

and 

IKp > = 1- p> (C.22b) 

in first quantized theory, and by taking 

KWop(X)K = wop (x) (C.23) 
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and 

Klo > = 10 > (C.24) 

in second quantized theory. That is, the ket Ix> , the field 

operator W (x), and the vaCUlUll are considered real i Thus in 

first quantized theory if 

< xlw > = f(x) (C.25) 

then 

* * < xl Ky =<Kx!w> = f (x) , (C.26) 

whereas in second quantized theory if 

<ol1J(x) 1'1'>= f(x) (C.27) 

then 

< °lw(x)IK'I' > 

= < Olw(x)K'I' > 

* = < K 01 K1jJ(x) K'I' > 

* = < 0lw (x) 'I' > 

* f (x) . (C.28) 

The time reveral operator is then 

T= UKT (C.29) 



", 
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where 

Ttlji(x)T = lji(xt), (C.30) 

with xt = (- t, x), and 

Utl/i(x)U = (n lji(x) . a ' a (C.3l) 

For any operator A one may define At by 

< TljiIAIT'I' > = <'!'jAtl'l' > (C.32) 

for all'!'. Then arguments similar to those leading to (C.2l) 

give 

At = TtKUtAtUKT. (C.33) 

The current and spin operators 

J]J(x, t) = } [lji t (t, x), al(t, x)l (C.34) 

and 

; 1 [ t 1 0i(x, t) = z 1jJ (t, x), 0i 1jJ (t, x) (C.3S) 

then satisfy 

t - ->-J
1J
(t, x) = J

1J
(-t, x) =: (JO(-t, x), - J(- t, x) (C.36) 

and 

t -0i(t, x) = 0i(- t, x) = - 0i(- t, x) • (C.37) 

,OJ 
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Thus the time reversal operation on the states generates the 

change in expectation values demanded by the physical meaning 

of the operation of time reversal. 

Suppressing the dependence on all other particles one may 

write the S operator for the scattering of a Dirac particle as 

~ 4 4 
Sop = f lji'(XI)G(XI; x)lji(x)d x'd x. (C.38) 

The operators a(p, A,' t) and b(p, A, t) are normalized by 

<a(p,A, t)at(pl,A I , tl) >0 =<b(p,A, t)bt(p',A' , tl) >0 

3 3 '->- ->-1) 
2w(2rr) ° (p - P 0UIOttl (C.39) 

where w =: (p2 + m2) 1/2, and A and t are the spin and particle-type 

labels. Then the S matrix for the scattering of a Dirac particle 

of type t is 

S(pl,AI, t: p,A, t) = <a(pl;AI, t) Sop at(p,A, t) >0 

= Ut(pl,AI)G(pl, - p) U(P,A) (C.40) 

where the type label on G is suppressed. 
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The spinors in (C.40) are 

( 1/2 ) (v· cr) CPA 
U (p, A) 1/2 

(v.o) $A 

( 1/2 ) CPA (v·cr) 
Ut(p,>.) = (0)1/2 

cp>. V.cr , 

~ ( )1/2 ,C) v·cr >. 
V(p,A) 

= (_)(v.O)1/2 CP~ 

and 

( 1/

2

) 
cpc (v.cr) 

Vt(P,>.) = cp~(v.cr)l/2(_1) (C.4l) 

c 
where v = p/m, PO> 0, cp = Ccp, CPAa = QAd and 

«(v.cr )1/2cp) = ~(vocr • )1/2cp (cp (v. a) 1/2..13 = ~ cp (v. ;f'S)1/2 
>. S a Sa >.a' A ) a >.a 

etc. 

The M function for the ?cattering of the Dirac particle is 

defined by 

M(p',t; - p, - t) (v'.cr)l/2 S(p', t: p, t) (v.cr)1/2. 

(C.42) 
The insertion of (C.40) and (C.4l) gives 

Mep.', t; - p, - t) = (v'· cr)%o(p', - p) (v ocr) 

+ (v'.cr)%L(P',-P)+GLU(P', - p)v·cr + GLL(P', - p), 

(C.43) 

where the four-by-four matrix'G is written as 

(
%0 

G -
GLU 

GuL) 
GLL . 

(C.44) 

~ 
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In teYW$ of the mathematical momentum-energy vectors k' and 

k, and the associated vectors u' k'/m and u = k/m, Eq. (C.43) 

can be written 

M(k', t; k, -t) (u'·cr)%o(k', k)(- u·cr) 

+ (u'·cr)%L(k', k) 

+ GLU(k', k)(- uocr) 

+ GLL(k', k) 

The four-by-four M function is defined by 

(~ __ (k" k) ~-L(k', k)) 
M(k', k) = -W -1] 

MLUCk', k) ~h(k', k) 

'( 1 u,ooj (1 = G~' ~ . 
u'·cr 1 '(-u·,o) 

(-u.a~ 
1 

(C.45) 

(C.46) 

where the type variables t are now suppressed. The original two-

by-two M function is MLL(k', k). The other three two-by-two parts 

are trivially related to MLL(k', k). In particular, one has 

( 
(u,·o)M(k', k)( - u·o) 

M(k', k) = _ 
M(k', k)( - uocr) 

u'oo M(k' , k)) 
M(k', k) 

(C.47) 

where the two-by-two aIld four-by-four M functions are represented 

by the same symbol. 1bese relationships, or (C.46), entail the 

,j 
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Dirac equations 

(u' oy) (j3M) (j3M) (SM)(- uoy) . (C.48) 

The two-by-two M-function given in (C.42). refers explicitly 

to the physical process involving an outgoing dirac particle of 

type t and an incoming Dirac particle of type t. The function 

G(x', x) in (C.38) describes also. the three related processes in 

which the incoming particle is changed to an outgoing antiparticle 

or the outgoing particle is changed to an incoming antiparticle, or 

both. If, for example, the outgoing particle is changed to an 

incoming antiparticle then (C.40) is replace by 

S(:p' ,A' ,-t; p, A, t) 

= <S bt(p' ,A', -t)at(p,A,t)·>o 
~ 

- (Vt(p' ,A')G(-p', -p)U(p,A) 

~~, [(V'00)1/2(-1)<lut(-P', _p)(v oo)1/2 

1/2 1/2 
+ (v' 00) (-l)GuL(-P', -p)(voG) 

1/2 1/2 
+ (v' oG) Gill ( -p', -p) (voo) 

1/2 1/2 
+ (v'oG) GLLC-P', -p)(voG) H A . CC.40') 
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The charge conjugation operator in ~c arises from the convention 

whereby A' is to be contracted ~nto.the right-hand index of the spin 

operator if the particle is an initial particle but onto the left­

hand index of the spin operator if the particle is a final particle. 
I . 

The convention for M functions is that the contraction rule is 

independent of whether the particle involved"is initial or final, 

but that the sign of the mathematical rest-frame spin vector sr 

occurring in the spin operator sroo is tied to the sign of the 

associated energy component in the manner specified in (2053). 

Then (C.3) allows the c on ~c in (C.40') to be absorbed into the 

definition of the spin operators. The S matrix corresponding to the 

M function is thus the quantity in the brackets in the last line of 

(C.40'). It is converted to the M function of the process, namely 

to M(-p', t; -p, -t), by multiplying it by the factors (v'00)1/2 

and (voo)1/2, just as in (C.42). This gives 

M( -p', t; -p, -t) = 

- v' 00 Guu( -p', -p) Voo 

- v'oo <lut(-p', -p) 

+ GillC -p', -p) Voo 

+ GLL ( -p " -p) (C.43') 

For initial particles v = - u. Thus 
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this equation is a special case of (C.45). Thus the two different 

processes are described by the one function M(k', t; k, -t) defined 

in (C.45), evaluated in different regions in (k', k) space. The 

function G(k', k) in these different regions is obtained from the 

Fourier transformation of the single function G(x', x). 

The third case is that in which the original incoming particle is 

changed to an outgoing particle. Then (C.40) is replaced by 

S(p',>..', t; p,>.., -t:) 

= < a(p' ,>..', t)b(p,>..,-t)Sop >0 

- U+(p',>..')G(p', p)V(p,>..) 

<p>..,[(V'oo)1/2Guu(p', p)(voo)1/2(-1) 

+ (v'oo)1/2 %L(P', p) 

+ (v' ocr) 1/2G
LU

(p , , p) (v oo)1/2( -1) 

+ 
1/2 1/2 c 

(V'oa) GLL(p',p)(vocr) ]cp>..o (C.40") 

The S matrix corresponding to this M function is the quantity in the 

bracket in the last line of (C.40"). It is converted to the M 

function by multiplying it by (v'.oo)1/2 imd (Voo)1/2, just as in (C.42). 

This gives 
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M(p', t; p, -t) 

v'oo Guu(p', p)(-voo) 

+ v'oo GUL(p', p) + GLU(p', p)(-voo) + GLL (C.43' ') 

Since both particles are final one has u = v and u' = v'. Thus 

this is also a special case of the function defined in (C.45). 

The fourth and final case is similar. The order in which the 

arguments of the M function are placed is the same as the order of the 

operators that create or annihilate the corresponding particles from 

the vacuum. (See (C. 40), (C. 40'), and (C.40"), and the corresponding 

equations (C.43), (C.43'), and (C.43").) Then the fourth case gives 

-M(p, -t; -p', t) M(-p', t; P. -t) 

(-v'oo) GUU(-p', p)(-Voo) + (-v'oo) GU1(-p', p) 

+ GLU(-p', p)(-Voo) + GLL(-P', p), (c.43 " ) 

I where the antisymmetry of M under the interchange of spin-I variables 

is used. The second part of (C.43' ') is equivalent to (C. 45), and. 

hence the one function M(k ' , t; k, t) describes all four processes. 

The formulas given above refer to a single SPin-~ particle. But· 

they immediately generalize to the ~ase of n spin-} particles: one 

treats each such particle in the marmer shown above. 

The parity transformation P defined in (C.12) induces in G(k', k) 

the change 

G(k ' , k) -> £(,,0Il.)G(k', k) ( IIi €le.), 
~ ~ 

(C.49) 
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where E is the product of intrinsic parities at the fields, and 

i runs over the particle-antiparticle pairs. A little algebra 

shows that this transformation on G induces the same trans-

formation on the M function defined in (C.46): 

M(k', k) + d U<&S. )M(K", 1<) ( ~ 0 st) . 
1 1 

(C.SO) 

,i)" .. 
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Consideration of the no-scattering part entails that the product 

of the intrinsic parities of w·(x) andw:(x) is unity. Thus the 
.11 

intrinsic parities of the spin-} fields drop out of E, as in (2.56). 

Then (2.58) allows (2.55) to be written as 

PM(k', t; k, -t) = du'.o)M(K', t; K, -t)(-u·o), (C. 51) 

where E is the product of the intrinsic parities of the scalar 

particles. The parity transformation (C.49) on the function G 

occurring in the expression (C.4S) for the two-by-two M function induces 

the transformation M + fM, with fM defined by (C.SI). 

The antiparticle conjugation operation w(x)++i(x).defined in 
(C. 11) replaces S by op 

S~p = j«(wc(x,))t G(x' x)wc(x)d4x'd4x 

j(Eljit(x,) G(x', x) Ewt(x) d4x'd4x 

jwt(X)(-EtG(X', X)E)Trw(x) d4x'd4x. (C. 52) 

Comparison to (C.38) shows that the antiparticle conjugation operation 

is equivalent to the operation 

G(x', x)++ GC(x', x) 

(-EtC(x, x')E)Tr 

- E GTr(x, x')E , (C. 53) 
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where Tr means transpose in spin space. 

The momentum-energy space version of CC.53) is obtained by 

replacing x and x' by k and k', respectively. This transformation 

on GCk', k) induces on the four-by-four M function defined in CC.46) 

the transformation 

MCk', t; k', -t) ++~(k', t' k, -t) 

~ 1 u,., j( 1 -u.o) = " -E GTrCk, k')E _ 
U'O 1 -u'O 1 

- E MTrCk, t; k', -t)E . Cc. 54) 

It induces on the two-by-two M function defined in (C.45) the 

transformation M(k', t; k, -t)-CM(k', t' k, -t), where CM is 

defined by (2.61). 

The parity (or antiparticle conjugation) operation acting on M 

converts it to the M function that describes processes in a conceivable 

world in which the amplitude for any process P is equal to the 

amplitude that the parity inverse Cor antiparticle conjugate) of P has 

in the actual physical world. The analogous timereversal operation on 

the four-by-four M function is obtained by making the substitution 

Sop ++s~p' defined by (C.38) and·CC.33): 

... 

s ++ st 
op op. 

= TtKUtSt UKT 
op 
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t 
= TKU JwtCx) GtCx' , x) wCx') d4x'd4x UKT 

= JK(Ul/itCxt)U) Gt Cx', x) utWCx,t)UK d4x'd4x 

JKWtCxt)nTrGtCxi, x)nwcx,t)K d4x'd4x 

JKwtcx')nTrGtcxt, x,t)QwCx)K d4x'd4x 

Jw t cx')nt GTrCxt, x,t)Q w(x} d4x'd4x. (C .55) 

Thus the time-reversal operation on the states or. fields is equivalent 

to the operation on G 

G(x', x)++ Gt(x' , x) 

ntGTr ext, x,t) n , (C.56) 

or equivalently 

GCk', k)++ Gt(k', k) 

~/GTr (-k, -k) n . (C. 57) 

This transformation induces in the four-by-four M function defined 

by (C.46) the analogous transformation 



~, 
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M(k', k)++Mt(k', k) = ntMTr(_k, -k')n. (c. 58) 

The transfonnation (C.57) induces in the two-by-two M function 

defined by (C.45) the transformation 

M(k', t; k, -t) -t"+ TM(k', t; k, -t) 

= M(-k, t; -k', -t) (C.59) 

In a model where all particles are constructed from spin-} 

particles the intrinsic parity factor E is unity. Then the product 

of parity inversion, antiparticle conjugation, and time reversal on 

the four-by-four M function gives, by virtue of (C.50), (C.54), 

(C.58), and (C.13), 

M(k', t; k, -t) ->- TCPM(k', t; k, -t) 

- M(-k', t; -k, -t) (G.60) 

The same result holds for the two-by-twosubmatrix MLL = M. 

The two-by two M function has one dotted and one undotted index. 

Thus, by virtue 6f (2.70), the change of the sign of all-of its 

vector argtmlents changes its sign. Thus the two-by-two M function 

is transfonned into precisely itself by the product of the T, C, and P 

" " 
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transfonnations. 

The fonnula (C.60) refers to a situation involving only one 

. 1 . 1 
SPlll-Z partlc e. For the case of n such particles the variables 

k', k, and t are 4n~vectors, or n-vectors,. and.the minus sign in 

front of M should be (_l)n. Thus the product of the transformations 

T,C, and P again leaves M invariant. 

In carrying out the calculations whose results are summarized 

above it is helpful to recall that the two-by-b~o function M can be 

expressed as C- l MTT C. If M is a product of Pauli matrices then M 
is obtained from M by transposing the order of these matrices and 

replacing each ai (i = 1, 2, 3) by -ai . 

The Lorentz transfonnation properties of the two-by-two M 

function is ,indicated by assigning spinor index types according 

to the rule 

M(K-', t; k, -t) = MLL(k', t; k, -t) ->-

MaB(k', t; k, -t) = M(k' ,a, t; k,B, -t) (C.6la) 

The transfonnation properties of several other two-by-two functions 

are indicated by the following assignments: 

M(k, t; k', -t) ->- ~a(k t· k' -t) , , , 

M(K', t; K,-t) .... M~S(k' t· k -t) , , , 

Muu(k' t· k -t) ->- ~(k' t· k -t) . J , , , , , 

Mur,(k', t; -k,-t) ->- ~LS(k" t; k, -t) 

MLU(k', t'; -k, t) ->- MLUaS(k', t; k, -t) (C.6lB) 
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In these equations one may inteTprete the variables k' and k as 4n 

Vectors, the variables t as D-vectors, and the variables a and S as 

n-spinors: e.g., 11 '= (al"" an)' Our convention is that the spinor a 

goes with k' and the spinor S goes with k. The quantities on the 

right-hand sides of (C.61) are invariant under the simultaneous action 
-1 -1 of the spinor transformation (2.9) and (k', k) + (L (A)k', L (A)k). 

Comparison of (C.61) to (C.47) shows that one may interprete 

(u'·~) and (-u·~) actingonthe left and right, respectively, as 

operators that simultaneously raise and dot (or undot) the indices a 

and e, respectively. Then the subscripts U and L on the two-by-two 

functions M(k', t; k, -t) can be dropped and the four-by-four M 

function written as 

M(k', t; k, -t) 

"(,,"' (k', t; k, -tJ .f'(k' t· k -tJ) S ' , , 

M S(k' t· k -t) MaS(k', t; k, -t) (C.62) a ", 

In formulas (3.5a) and (3.5b) for the ortho and para amplitudes 

corresponding to quark closed loops the (quark) M functions are just 

-the products ~(ui'o) and ~(-ui'o) respectively. In both cases the 

individual uio-by-two M functions are MtL and their spinor index types 

are as in Mae' However, it is possible to use different choices of 

index type, provided one makes compensating changes in the spin 

operators that occur in (3.5). One convenient choice is to use M" e 

for the ortho propagators and M fl for the para propagators. Comparison a . 

of (C62) to (C.47) shows that the ortho propagator is then aas arid the 

para progator is a S. 
a 

~ 
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The propagators can be considered the analogs of the functions 

G of field theory. Thus we write 

o (0 oa. ) 
G = S 

o 0 

and 

~ =c 
0 

S :). 
(l 

The associated spin factors are 

1 • O . ~ 0 
Fi =jf (si.oui.o)(lS ~ ) 

and 
(i U.·O s .• O) S) 

1 1 a 

o 
. (0 FI? = ~ 

1 rz \ 0 

Then one may write, in place of (3.5), 

o A(G , k, s) 

and 

A(GP , k, s) 

(Tr IT (F~GO)) f(k). 
i 1 

(Tr IT (Fl?GP)) f(k). 
i 1 

The sum of the u~o amplitudes is then 

where 

AO 
+ AP = - (Tr n(F!G)) f(k) 

. 1 
1 

G = GO + GP and F~ = F? + F~. 
~ ~ ~ 

(C.63a) 

(C.63b) 

(C.64a) 

(C.64b) 

(C.65a) 

(C.65b) 

(C.66) 
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~quation (C.40) shows that the four-by-four matrix G occurs in 

t - - t the form U GU. The matrix BG occurs in UBGU, where U = U B. 

Correspondingly, (C. 66) may be written in the alternative form 

where 

and 

AO + AP = - (Tr IT (F~B)(BG)f(k) 
i ]. 

BG = 

t. 

FiB = 

(or/ 
o o~) 

B 

( 

-u 00) (5' 00) tl 
iii B 

o 
,0 ) 

(s oa)(u.oa)13 o 
i ]. n 

(C.67) 

(C .(8) 

(C.69) 

Then the contributions AO and AP come from the lower left-hand and 
, 

upper right-hand two-by-two sectors, respectively. 

If the meson corresponding to vertex i is a spin-zero meson then 

si u i ' and (C.67) becomes 

F~B = i (- uioa)(uio~) 
(u

i 
.~) (u

i 
00) 

iys (C.70a) 

On the other hand, if the meson associated with vertex i is a spin-one 

meson then u's 0 and 

FiB 

where 

i CSi 00-: (u 1 0(1} 

"" 
ila uP 

s IJp 

(s. o~:(u. 00)) 
]. ]. 

(C.70b) 

," -4. 
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a~p = i (y~yP - YvYp). (C. 71) 

Thus the coupling of the spin-zero particle to the ortho and para 

quarks are via the matrices iYS(l + YS)/2 and iYS(l -YS)/2 respectively. 

The couplings of the spin-one particle to the ortho and para quarks 

are via the matrices s~a~v uV(l + YS)/2 and s~a~vuv(l - YS)/2, 

respectively. 

This separation of the ortho and para contributions into the two 

orthogonal parts of spin space means that at the zero~entropy level 

the ortho and para quarks are, in effect, distinct entities: they 

are represented by orthogonal states. The rules shown in Fig. 8 

mean· that there are also, in effect, two different kinds of mesons, 

one composed of a, quark and antiquark of ortho type the other 

composed of a quark and antiquark of para type. 

The close analogy at the zero-entropy level between the ortho­

para types and the flavor types suggests that one should allow, at 

the zero-entropy level, also the mesons built from an ortho quark and 

a para antiquark, or from a para quark and an ortho antiquark, The 

coupling of these two new types of mesons will be obtained by filling 

the two empty spaces in the coupling matrix FiB of (C. 69) • Indeed, 

if one goes back to the two-component formalism, and follows the 

normal and natural practice of imposing parity invariance on each 

quark propagator individually, rather than on the process as whole, 

then the function FiB becomes 

r. 
1 FiS 

. (U-ui ea)(s.i 'O)SCl 
1 • -en 

S. '0 
1 

«(-UiOa)Si .. a(UiOa~)B~) (C. 72) 

{(si 00) (ui oa))B~ 
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For the case of a spin-zero meson, where si ui ' the two new 

terms reduce to 

" FiS 
i (0_ -ui'o ) 

ui'a 0 
iys(Y ·u~) II 1 • (C. 73a) 

For the case of a spin-one meson, where u i si = 0, the two new terms 

reduce to 

Fi S = i (0_ Si'
O

) = 
si'a 0 

. II 
lYll'si (C.73b) 

The explicitly appearing spin vector Sll in (C.70b) and (C.73b) 

can be eliminated, since the index II against which it is contracted 

can play an equivalent role. Recall that the summation over the 

three physical spin-one states is represented, as in (3.19), by 

3 
~ sPhys II s~hys v 

e=l e e 

(_ gllV + vllVV) 

3 
~ (i smath J.I) ( is ,math v 

e=l e e ) 
(C.74) 

Thus the vectors is:ath llin (C.70b) and (C.73b) can be omitted and 

the index II of 0IlP or Yll contracted directly onto the metric tensor 
llV II v 

(-g, +vv). 

The result can now be compared to the results of Bardakci and 

Halpern,26 who use the standard four-component formalism. The 

complete coupling of the spin-zero meson is via the factor 
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r. 
J 

iYS(l+Y'llj ), (C.7Sa) 

whereas the complete coupling of the spin-one meson is via the 

factor 

r. 
J 

(y - i a if.). 
II llP J 

(C.7Sb) 

where u. = k./m = v.sign u~, and v· is the four~velocity of the meson j. 
J J J J J . 

The sum of all of the zero-entropy amplitudes corresponding to 

a fixed cyclic order of the meson variables is the common scalar 

factor f(k) times the trace of the cyclically ordered product of 

factors r. : 
1 

A(kl , ... ~) =-Tr(rl z' ... rn)fn (kl , ... , kn), (C.76) 

These coupling are the coupling associated with positive metric pseudo-

scalar and vector mesons. These mesons are the mesons that are the 

basic particles of the ordered Hilbert space, and thus of the physical 

Hilbert space. 

- The factorization property does not hold for the sum of zero-

entropy amplitudes discussed above. It holds rather for the 

individual zero-entropy amplitudes. An individual zero-entropy 

amplitude is obtained by assigning to each quark line segment of the 

closed loop of, say, Fig. I an ortho or para label, and inserting 

an associated factor of (1 + YS)/Z or (1 - YS)/Z, respectively, 

between the corresponding factors r i and ri+1 of the trace in (C.76). 

... 
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Notice that when a meson is coupled to a zero-entropy function only 

one or the other of the two terms of (C.7Sa) or (C.7Sb) will 

contribute, and this term will be the same at the vertices lying 

on the two ends of the meson connection line, by virtue of the 

identity represented in Fig. 8, and the two similar identities 

associated with the two other ortho-para type mesons. Thus the only 

coupling matrices that enter are those associated with positive 

metric pseudo-scalar and vector mesons. 

The present theory thus resolves simultaneously four serious 

difficulties that have long plagued this kind of approach. These 

problems are6,26 first the apparent necessity for a doubling of 

the pseudo-scalar and vector particles; second, the apparent necessity 

for a parity doublet partner of each of the above mentioned particles; 

third the apparent demand that each of these parity doublet partners 

have the wrong metric (i.e., be a ghost), and fourth the lack of 

any rationale for the empirically observed SU(6)w symmetry of 

vertices. This latter symmetry emerges automatically in the present 

theory for the amplitudes formed as the sum of zero-entropy amplitudes, 

provided all momentum vectors p. are parallel to the third coordinate 
J 

axis. 

-? 

'. 
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