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ABSTRACT
Spin is incorpbrated into the hadronic topological
expansion scheme. Spin analogs of Chan-Paton factors are
introduced iﬁ a way that avoids the troubles encountered in
eérlier attempts. Those troubles, at the meson level, were,
first, the occurrence of twiée the wanted mumber of pseudo-
scalar and vector mesons; second, the occurrence of parity-
doublet partners of the pseudo-scalar and vector mesons; and
third, the occurrence of these parity-doublet partners as
particles of negative metric, called ghosts. These troubles
are all avoided by introducing a new topological level, called
zero- entropy, that lies below the ordered level. At the zero-
entropy level quarks of opposite chirality are treated as
distinct particles. The theory has been extended to all hadrons,
and the basic particles are exactly those of the constituent quark
model, which for baryons start with the (56') and (707). The
theory is formulated in the M-function framework, where the
"quér " are represented by two-component spinors, and it entails
SU(6)W symmetry of the hadronic vertices at a low level of the

topologicai expansion.
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1. INTRODUCTION

A scattering amplitude can be represented as a sum of contributions
from all ways in which the process can occur. Each contribution has
a phase féctor, and the scattering amplitude between randomly chosen
states tends to be small due to an averaging-out of these phase factors.
The dominant transitions are between states in which the elgments of
order characterizing the initial state are carried into the final
state in some ''direct" way.

This tendency of the the dominant transitions to preserve order
is particularly important in hadron physics, due to the inherent
complexity of the hadrons and ‘their interactions. Indeed, this
order-preserving tendency has been made the basis of a successful
approximation procedure for meson physics. This procedure is based
not on the smallness of any coupling constant but rathér on the
smallness of coﬁtributions-that do not preserve order. Order is
defined so that it is preserved by contributions to the scattering

amplitude that correspond to sequences of scattering events

represented by graphs that canbedrawn in a plane with no lines

crossing. Contributions from non planar graphs genmerally have phase
factors that tend to avgrage to zero in high-energy regimes.

This topological approach to hadron dynamics,which originated
in some works by Venezianol, and has been‘pursﬁed by many workers,
has been recently reviewed by Chew and Roserm\eigz. They show how
the topolqgical'expansion procedure, coﬁbined with the requirements of

unitarity, analyticity, duality, and Llorentz invariance, organizes and

predicts many of the dominant features of meson physics.



The successes achieved in meson physics by
this topological approach have motivated efforts to
develop it into a comprehensive basis for parficle
physics. The most obvious deficiency of earlier
work is its restriction to mesons. Accordingly, one
major aim of the present two-part work is to exterd
the theory to baryons. Paper II3 is devotea to that
task.

But beyond this problem of baryons, there lie
other problems of equal importance. " To provide a
satisfactory basis for particle physics, the theory
must, first of all, provide a practical method of
determining, through the nonlinear bootstrap condi-
tions, the magnitudeé of all coupling constants
that occur in particle physics. Phenomenological
analyses indicate that the ratios of the hadronic
coupling constants satisfy SU(6), symmetry to a
degree uﬁlikely to be purely accidental.4 It is
therefofe probably essential to the practical via-
bility of the topological approach, considered as
a general basis for particle physics, that it be
constructed so as to exhibit SU(6),, symmetry at a
low level of topological complexity. Accordingly,

a second major aim of this work is to construct a
topological bootstrap framework that treats the
spin degrees of freedom in a way that ensures SU(6),,

symmetry at the lowest level of the topological

expansion.

Historically, this SU(6),, property emerged,
within the present work, as an.unexpected by-
product of the effoft to generalize the Chan-Paton
factors5 from isospin to ordinary spin. These
original Chan-Paton factors enjoy the following
important property: every product of amplitudes
that contributes. at the lowest topological level
to any given amplitude has the same Chan-Paton
factor. This product propefty ensﬁres the exist-
ence, at the lowest topological level, of a solu-
tion to the isotopic spin part of the duwal topolo-
gical bootstrap dynamical conditions.

It is not obvious that this solution is unique.
However, it is a simple solution that is quite
poséibly unique. For, a pfiori, the infinite num-
ber of dual bqotstrap conditions need have no solu-
tion at all.

To ensure the solubility of the spin part of
these dynamical conditions, the following require-
ment is here imposed: the spin-generalization of
the Chan-Paton factors are required to satisfy the
direct generalization of the prbduct property en-
joyed by the original Chan—Paton factors. This
demand determines the basic character of the spin

formalism described in this paper.



The problem of extending the Chan-Paton factors
to ordinary spin was ‘considered by Mandelstam in
the lete sixties. Mandelstam's werk,6 like the
present work, was besed on M funetions.7 These func-
tions have the combined advantage of possessing'
simple crossing properties and a minimal number of
spin_components: cfossing is represented by enalytic
continuation alone, and the redundant components that
arise from describing spin?% particles by four-com-
ponent wave functions are avoided. Using these
functions, one finds that the required product pro-
perty (of the spin-generalizations of the Chan-
Paton factor) cannot be reconciled with the demand
of invariance under parity. Thus, Mandelstam, pro-
ceeding in the straight-forward way, summed two
parity—reflected contributions, each of which in-
dividually satisfies the product property, in order
te obtain a parity invariant form. However, this
procedure of simply summing two separate terms, each
pf,which enjoys also simple factorization properties,
led first to a parity~doublet partner for each of the
observed mesons W, §,n.,«, and then to a second’
doubliné of this set of mesons. ‘

The procedure followed here differs from that of
Mandelstam by its strict enforcement of the product-
property requirement described above. The present ‘

procedure, originally introduced to ensure the

the ‘solubility of the spin part of the dynamical
conditions, generates a number of important further .
consequences. First, by keeping the treatment of
spin closely parallel to the successful Chan-Paton
treatment of iso-spin, it leads automatically to
SU(G)Q symmetry of the hadronic coupling constants,
at the lewest topological level.  Second, it auto-
maticaliy produces a basic set of mesons that
accords exactly to the phenomenologically observed
set (ﬁ]j' M, W ): there is no parity doubling, or

any other doubling, of the meson spectrum. Third,

‘when combined with certain assumptions about the

number of flavors, it leads to a super symmetry

connection between the meson-meson-meson coupling

constants and the meson-baryon-baryon coupling
constants. This connection is in good agfeement
with experiment. Fourth, when supplemented by a
plausibie universality requirement, it leads to a
velue of the ratio of the strong-interaction coupling
constants to the electromagnetic coupling'coﬁ;tant.
This ratio is also in satisfactory agreement with
experiment,8

The technical basis of these achievements is
the.fact, recognized and exploited already in the
work of Chew and Rosenzweig, that different levels

of the_topological expansion can acﬁ in different

Hilbert spaces. In the paper of Chew and Rosenzweig,



the lowest level of the topological expansion was
the "ordered" level, and each ordered amplitude

was associated with a corresponding ordered Hilbert
space. These ordered amplitudes were summed to

form "planar" amplitudes, which were associated
with new "planar" Hilbert spaces. Approximate cor-
respondence to physical amplitudes was possible only
at the planar and highef levels of the topological
expansion. Yet, the ordered ampliﬁudes were import-
ant, for the topological expansion concentrated all
nonlinear aspects of the original unitarity equa-
tions in the ordered unitary equations satisfied.By

the ordered amplitudes. - These ordered unitarity

eqﬁations were much simpler than the original unitarity

equations because they involved only planar Landau
diagrams. Thus, the critical problem of determining
the overall strength of the couplings was greatly
simplified. Moreover, the reﬁresention of physical
amplitudes by low-order terms in the topological
expansion allowed many aspects of meson physics to
be understood even without solving the nonlinear
equations.2

The pr&duct—property requirement on the spin-
genefalization of the Chan-Paton factors places
severe conditions on the theoretical structure.
These conditions can be satisfied by introducing a

new topological level, called zero entropy, that

iies below the ordered level. The individual zero-
entropy amplitudes are not invariant under parity,
and, like the orxdered amplitudes, they cannot be
regarded as approximatiohs to the physical ampli-
tudes. It is the planar amplitudes, which do con-
serve parity, that ére again to be considered as
the first approximation to the physical amplitudes.

In the work of Chew and Rosenzweig, the planar
amplitudes were formed as finite sums of the ordered
amplitudes. In the present framework, the planar
amplitudes are formed as infinite sums of 2zero-
entropy amplitudes. These infinite sums create new
technical problems. But they also create the pos-
sibility, and, in fact, the necessity, of calculating,
for example, theTTvX mass difference. For at zero
entropy, these two masses are equal.

The present work\is part of a long-terﬁ colla-

borative effort with Geoffrey Chew to construct a

‘practical basis for particle éhysics based on dual

topological bootstrap dynamics. Chew's ideas are
woven into it in many ways. However, this péper
deals only with certain spinor, topological, and
group theoretic aspects of the whole theory; other
important aspects are left untouched.

One problem not considered in this paper itself
is the extension to all hadrons of the formalism

developed herein for mesons. An extension is



described in paper II. It incorporates also thé
group-theoretic properties of the constituent-

quark model. The whole work is formulated completely
within the S§ matrix framework, and hence involves no
microscopic description in terms of quark wave func-
tions. Hence, it provides, in principle, the founda-
‘tion of a Lorentz covarianf,approach to particle
physics that has a basic set of particles that agrees,
as far as spin; parity, and other_group—theoretic
properties are concerned, with those of the consti-
‘tuent-quark model, yet has no confinement problém.
Moreover, it incorporates SU(6)w symmetry, at the
lowest topological level.

The present paper is associated with a recent
paper by Chew and Poenaru;9 it describesrtechnical
results that have been used in the development of
their ideas. However, the aims of Chew and Poenaru
are broader than those of the present work, which
simply accepts'the group~-theoretic structure of the
Constituent-quérk model oﬁ‘the basis of its.empirical
sucéess.‘ Chew and Poenaru seek to derive the group-
theoretic structures frqm topological considerations
and consequently need a~ficher.topological étructure
than the one used here. Their topological structure

contains, in addition to the quark-particle graphs of

the present theory, and surface upon which these graphs

are imbedded, also a second surface, called the quantum
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surface, in which the group-theoretic relations
assoéiated'with flavor and other symmetries reside.

In the present work; flavor is an unconstrained
variable. The flavor structure may, in fact, be
determined by the nonlinear dynamical equations, but
it is not determined within the present framework by
tobological considerations aléne.

- Proposals for extending the theory to electro-
weak interactions have béen made recently by Chew,
Finkelstein, McMurray and Poenarulo’ll’12

A crucial problem not addressed in any of these
works is the development of reliable methods for
solving the nonlinear conditions. These conditions
should determine the overall strength of the hédronic
and electroweak interactibns. However, several
calculations have been performed,13 and they all
yield values that differ from the eméirigélly ob-
served overall strength of the hadronic-electroweak
interaction by a factor of roughly two. This result
seems significant, parﬁicularly because the spinor,
topological, and group~-theoretic considerations intro-
duce as many as twenty different factors of two into

this result. These theoretical factors were calcu-

"lated prior to the calculation of the the approximate

solutions to the nonlinear eqhations.
A second major problem not addressed in any of

the published works is the development of reliable
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methods for constructing the planar amplitude from
zero-entropy amplitudes. This construction must
yield, for example, a first approximation to the 'n‘—j>
mass difference. Some calculations of this difference
have been made, with encouraging results, but the
work is still in a developmental stage.

Much of the work contained in this paper was

14

completed several years ago, but was not submitted

©2.1.

12

explains the failure of unitar%ty at the zero-
entropy level. The planar discontinuity equations
nevertheless continue to hold. Appéndix C describes
the conﬁection of the two-component formalism used
in the body of thé'paper to the four-component

formalism based on Dirac matrices.

2. SPIN

‘Lorentz Transformations in Spin Space

for publication because of the above-mentioned
elements of incompleteness of the whole theory.
However, a number of recently-published papersa_12
are based directly on the spin formalism developed
in that earlier work. This fact, in conjunction
with the encouraging character of works in progress,
makes publication of this expanded version nﬁw appro-
priate. | ‘

The theory developgd here is based on the M-
function formalism. Since the original description
of that formalism7 was very brief, the key points
are described here in Section 2, with particular
emphasis on the results that are important in the
context of the present work. The main body of the
paper is contained in Sec;ion 3. The results are
summarized in Section 4. Appendix A shows that
discontinuity equations, though usually considered
in S-matrix theory as being derived from unitarity,

are actually more basic than unitarity. Appendix B

where o is the two-by-two unit matrix and

Let o, represent the Pauli spin-matrix four-vector

0, = (09s 01,05, 05) = (1, 3), (2.1)

O1s Ogs and 05 are



the three Pauli matrices:

01 {0 - {10
o = (1 o>’ °2‘(i 3) "3‘(0 -1>‘ (2.2)

Let. A and B be any two-by-two matrices with determinant one.

Then the Lorentz transformation matrix L“v(A,B) is defined by

- v - ‘
Ao, B = o, L° (AB) = (o°L) (2.3)

{(Repeated vector and spinor indices are always to be summed.)

Let Su represent the Pauli spin-matrix four vector

Su = (1, - ). 2.9
Then

lTroo = g (2.5)

7% T By y

where .y is the Lorentz metric tensor with diagonal elements
(1’ "1’ _13 _1)'
Let C=-1ig,= -»CTr be the (charge) conjugation matrix,

and let M be any two-by-two matrix. Then the Pauli identity

¢l MTeM = det M. (2.6)

entails that

¢ Te= 5 . 2.7

and that

-5 LY (@4,B) o (2.8)
Y H

"
—
ae
£
=

To specify four different ways of applying transforms to spin

indices four different types of spinor indices are introduced. The

spin transformation A = A(A,B) -acts on the different types of

spinor indices according to the rules:

A (g) = Aa“' 9y - (Ad% - (2.9)
Ao = o BE = (4B):
g g é 8
N BN o LT Rk

_— L a
pY = e h Ye @l
a

Thus the transformation to be applied is determined by the location
of the index (upper or lower) and whether it is dotted or undotted.'

The opé}ator A acts like the identity on any sum of the form

¢a¢& or ¢éw8 . For example,

NOM ) = ey

[+

Vo)

a'  -la
0" A" @,

- a/ . v
= oY, . : (2.10)

¢
i
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Let ayy 8y, -eny 3y be any set of 2n four-vectors. Then
1 - . -
Z-Tr ap+0 8,°0 850 ... ay,°G (2.11)

is a Lorentz-invariant function of the four-vectors aps--- To

.

see this let the indices on o and au be specified always in the

following way:

. 5 Bo . 2.12
% * Ok S, ouBa o« a)
Then (2.3) and (2.8) become
Acu = (0°L)u Acu = (O'L)u.‘ (2.12b)

Application of the operator A leaves invariant the trace

(2.11), due to (2.10). It gives, alternatively, by virtue of (2.12),

3T Gelap G lag.. Gyrlay).  (2.13)

I

Thus the trace is invariant under any Lorentz transformation of all
the vectors a,.

Two important special cases are

%-Tr aj.0 3,5 = ay- a, (2.14a)

which follows from (2.5), and

16

1 ~ oL
Z-Tr a.°0 a,*0 a,0 a4~0

1 2 3

=(ar 8z - a) + (3~ a)(a, - a;) - (a) - ajgeya)

+1 [al, ay, az, a4] . (2.14b)
where
= MV 0.8 ey
[al, ay, az, a4] aja,3:3, Suvoa (2.15)

Here ¢ is the fully antisymmetric matrix with 1.

€123

2.2 Covariant Spin-Projection Operators

Let P =mv be the momentum-energy of a freely moving
particle, as measured in some general Lorentz frame Z=. Let s
be a spin vector that satisfies s »p= 0. Let Z?(V) be
the particle-rest-frame obtained by applying a '"boost' to Z.
This boost is a‘Lorentz transformation that leaves unchanged aﬁy

space component that is perpendicular to V. The vectors v and

s as measured in ZF(V) are

V= ™Y = 70,90 = (1, 0,0,0) (2.16a)
and
T _ Ty - oTO 2Ty _ r r _r
s = (Su) = (S » S‘) = (09-513 52, 53) (2.16b)

The rest-frame projection operator is
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) 3T _1 ST >
Pi(s) =3 (Q+5-q)
= % e sr)“a11 - %— o'+ sh. 5. (2.17)

This operator projects onto the spin state in which the spin is

T (o, ;r) as measured in Zr(v), and hence

directed along s
along s as measured in "Z. .

The operator f’_r(s) refers to the rest frame Er(v). To
- eliminate this frame dependence one may appiy the boost A(A,B)

that converts P° from its formin Z'(v) to its form in the

general coordinate frame Z: ‘
B(s) » Aw) BT (s)

B 1p(M) sy a1

%-6 c (W + LsT)

= 25-(v+s)

It
Ny
<
+
7]
L
Q

"
o

~~
n
<

g

(2.18)

Real lorentz transformations are’generated by matrices A and

B that satisfy A =VBT, where dagger denotes hermitian conjugation.

18

For rotations A is unitary, but for boosts A is hermitian. The

boost A(A,B) that converts the rest frame form BY into the general

coordinate system form P is

A(WV)

I C))

Atwyy = 8wy -
where

Vg = expg—(". #) = cosh
and

Veo= expo@ -7

n

Note that

and

cosh g

R . & sinh g

a+

) = afw) = /s

(2.19a)

(2.19b)

(2.20)

(2.21)

(2.22a)

(2.22b)
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Another useful form is

5> >
vyt 1l +veo

SN e . (2.23)
vy + 0)*

The operator

1+3.3 /{,"‘3— (2.24)

>
Q
o} =

P(s,v)
=7 @-F+s -0

is called a covariant spin operator. The vectors v and s
occurring in P(s « v) have components v and s that refer to
the general frame of réference z.

1 s
are hermitian,

Because the boost operators Al and B
rather than unitary, the.operator F(s, v) is not a true projection
operator: P(s, v)2 #P(s,v) for V# 0.

The covariant spin operators are lorentz invariant spinor

functions in the sense that
P F N
AP(L™'s, Lv) = P(s, V). (2.25)

Here A = A(A, B) and L = L(A,B). This result follows directly

from (2.12).

2.3 M Functions

Consider first a scattering process involving one spin-%
particle in the initial state and one spin-} particle in the final
state, and an arbitrary number of spinless particles. Let
P = (P, T3 PptyisPes tos..os Py ty), where p is the

mathematical momentum-energy of the final spin-% particle, Py,

© 20

is the mathematical momentum-energy of the initial spin-% particle,
and Pes +-- » Py are the mathematical momentum-energy vectors of
the spinless particles. The mathematical momentum-energy vectors are
equal to plus or minus the physical momentum-energy vectors for
final and initial particles respectively. Thus p, = myv, and
Pp = - MV where vg >0 and Vg > 0.

The tj are the mathematical typerlabéls. They are related
to the physical-type labels ’t?hys by the relation tj = t?hys/sign pg
where tj and -tj 1abe1 relative antiparticles. These type
variables are sometimes suppressed.

According to quantum theory the probability for a scattering

specified by (p, Sy sb) is proportional to

L1 BGs,) s Fesy) Sty ., (2.26)

where S(p) 1is the S matrix. This can be written equivalently as

FTr Bs, v) M®) Blsy, ) M () (2.27)

~ vhere, as in $§2.2,

P(s,, v,) = /va_-c?ﬁr(sa) R (2.28a)

P(sy, Vi) =V v 8 P (sy) /v +5 © (2.28b)
and _ '

M(p) = /va- o S(p) Vo (2.29a)

W) - Ao sTe) AL (2.29b)

The physical probability is assumed to be Lorentz invariant. This
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physical invariance ensures that if the spin indices of M(p) and

Al
M (p). are assigned spin-index type according to the rules
M(p) - Maé (®) N (2.30a)

F ! 2.30b
M ®) - ML), (2.300)

* then the spinor functions M(p) and M+(p) are lorentz invariant:

for all proper (det L = 1) real Lorentz transformations

™ML ) = ME) (2.31a)
'and
A |
AM (L 7)) = M) , (2.31b)
with ‘ ‘
L) = (L'lpa, L'lpb, L'lpc, cee L'lpd).(z.slc)

These invariance properties entail that if o (p) and nH (p) are

defined by

M(p)

m

) o, m(pj - o . (2.32a)
and

m+(p) 0 - (2.32b)

Mp) = n™ o,

then the quantitie_s ! (p) and m-h‘l (p) are vector functions of

the set of vectors p:
n'(LE) = M m’p)
ey = e

(Lm(p)) (2.33a)
(Im' (¥ . (2.33)

22
Consequently, by virtue of (2.12),the spinor functions

Mp) = n¥ ()5, = m(@)-d '  (2-342)

and

e = nM@g = n'eyes D
are also Lorgntz invariant spinor functions:

AL p)) - i) (2.352)

and

wla ey - e . (2.35b)

These simple transformation properties do not hold for the S-matrix

S). -

‘The foregoing discussion can be immediately extended to processes
in which there are n initial spin%— particles, n final Spin%—
particles, and n' spinless particles. In this case the M -

function can be written in the form (with type labels suppressed)

M(P,15075 PpyoB15 Pags 095 Ppgs Bps «+3 Pans Ops Pyps Bps Ppy-osPpye)

. n
My ool

= m'1 2 n(p) x T % a8,

i=1

(2.36)

g ool .
where m 1 'n(p) is a tensor function of the vectors
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P = (PypPpy, ==+ » Py, Py, Pp» -5 P

Ul"‘u n s V-V .

m L)) = (.nl L lvi) m 1 R, (2.37)
i=

The way in which the n initial spin-% particles are associated

with the n final spin-% particles is immaterial: (2.37) holds in

any case.
2.4 Parity
Let S(p) be written as S(p) = S,(p) *+ S_(p); (2.38)

where

S,(P) =S, () - (2.39)
Here

p = (51’ 52’ R ] ’f)N) 3

®) = &, - B> (2.40a)
and

= o >
@) = 05, D) . (2.40b)

Let an intrinsic parity €5 be assigned to each particle j, and

define the parity operator » by

Psm) =

=5
-

e SO (2.41)
j

24

The product of ei‘s for allowed processes must be + 1 or -1.

Invariance under parity is then expressed by the equation

Psm) = Sm). o (2.42)

If this equation is satisfied then S defined in (2.38) must

N €
be zero unless € = I €. .
s
Consider a process in which n initial spin-}% particles,
i=1, ... ,n, are scattered into n final spin-% particles. Let
Pai and Ppi denote the final and initial mathematical momentum-energies

ofthe i th particle. let (p), ... , B, ) denote the momenta of n'
spinless particles that also participate in the reaction. Then
as already mentioned, the M matrix can be written

M(pal’ tal; Pp1» tbl; e 5 Paps tan; Py tbn; P1» tl; "';pn"tna

My ... H n (i)
=0l e, 0 Moy, (2.43)
i=1 '
where the matrix elements of 0(1) are Ou o8 The connection
Vi i%31P1

of M(p) to S(p) can be represented by the equation

M(p) = (2 v/ vai-o[ ]) S(p) (2 N4 Vbi' O(I))

‘/Va. o1 S(p) ﬂ?b- o . (2.44)

Define now

M) = 1/ v 000 S, @) (1 ;o0 ). (2.45)
- 1 - i
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Then

L) - 7 The corresponding M function is
M+(f5) (H Vit @ ) S+(ﬁ)(1'l/vbi- g ) P "
= i = i

A - n

- . - (i) 33
> . M = . 2 . . L] . .
(f.‘/v‘fai'é”.) sicp)(ﬂm) S P by Om TS Ry Ry (@.51)
1 1 1

n
"+

In order that this no-scattering part be invariant under parity

=e (v M @D v, .- 5. (2.46) |
1 - 1 (for each particle i separately) we must take €i i - 1 ‘ for
This equation can be inverted to give sl 1. But then (2.48) gives
M®) = +(Dv,. sy M, () (1 v - o)y P, -0) = p-9 . | ‘ (2.52)
+ 1 R (2.47) '
This relationship, which stems from the condition-that the no-
The parity transformation applied to the M functions is defined scattering part be nonzero, is used later.
to be ' ' ‘2.5 Crossing _
N : . h Aﬁalysis of the pole si}ngularityl5 shows that the analytic
P = ( o Ej) ( Ill Vit o)) M@®) ( IlI Vit 0(1))-(2-48) continuation of M(p) along an appropriate path from an original
: : region where pg.l_> 0 to a region where pg.l <0 gives the
Then (2.48) and (2.47) ensure that the condition-" N function that ,descfibes a process in which the final particle of
v o ' ‘type tii is replaced by an initial particle of type. "t i. e.,
.@fM(P)) = M(p) : (2.49) by the  antiparticle of the original pax:ticle of type tai If the

N £i . . . .
. N . inal particle t_. carries units of any conserved quantit
is equivalent to the condition that N{: be zero unless e = [I ’ P ai a Yy q Y

J=1Ej’

out of the reaction then the antiparticle -tai must carry -q units

which is equivalentto the parity invariance condition P(8(p)) = S(p). into the reaction. This holds both for the total momentum-energy

For n distinguishable spin-! particles the no-scattering part Pyis for the components of spin, and for any quantity that is

of the S matrix has the form conserved by virtue of invariance under a p-independent transformation

. property. Consequently, the mathematical inomentum-energy vector p
- (i) 353
SO(p) - ir—Il [(00 )(2m)”8 (pai * pbi) Zwi] . (2.50) the mathematical spin.vector s

tai are equal, after the continuation, to minus their physical values:

ai’

ai? and the maﬁhematical type label
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PYS /si gnp (2.53a)

Pai

Sy * WS /sign pY; (2.53b)
. .bhys , . 0 . =

toi tyy /signpg; . (2.53¢)

A similar argument gives

h .

Pyp; = Phy /signpp; (2.53d)
Sp; = - ShaYS /sign g {2.53e)
Sbi “bi. 80 Pp; 2.

t tPh)’s /51 ’ 2 sz)
bi en pbl .

The minus sign in (2.53e) arises from the fact that Spi characterizes

the physical spin of the initial particle bi, not minus the physical
spin. The Ppi and ty; were defined originally to be minus the
physical momentum-energy vector and minus the physical particle-type
of the incoming particle (bi), and hence the equations for these are
the same as those for Pui and toir

The quantitites occurring in the transition probability formula

Tr 7 (v, + -5 M(P,.t,; Py ty)

x 3 Op*s)ed M, tp, t) (2.54)

are to be interpreted with the aid of (2.53). Thus, for example, if
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py and pg are both positive then the s, and s, in (2.54)

are Sphys and _Sghys , Trespectively, and the particle types t, and

t, and tp are phys_ In this way we can use the same expression
(2.54) in all the different channels.

The parity transformation g was defined to be -

. N n . n
Pup)) - (jgl €> (121 Vai® )pr)(r:ll Vpi® 0) . (2.55)

In the original (dlrect) channel (p > 0, pb <0) the parity

invariance equation .%4(1;)) = M(p) can be written as

N n. p P ] n ‘pb' g
M(p) =< n >( n -2 )Mr) < __1_>
j=1 ] i=1 Mai P i=1 Mbi

n' )( D Py C °> < D Py ")
n ej{ln 2 Jupln =2—- ], (2.56)
<j=1 Y\i=1 Mai i=1  Mpi

=1,

where use has been made of the direct-channel result € 2i%hi

derived from forward scattering. (See (2.51)).

Analytic continuation to the crossed channel avoids all
singularities of M(p) and M(). Tl'tus equation (2.56) must hold
in all channels, with the factor ﬁ Ej from the spinless

i=1
particles defined as in the original direct channel. This

-equation gives

n' n

/ n
. ) . 0
M(p) =< I e)( Il sign p )(H sign py.
i=1 Y\ji=1 al\i=1 bi

n N n
x <i§1 Vai® 9 M) <iI=ll Vbi® ") _ (2.57)
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It will be shown presently that the parity transformation is
defined in all channels by (2.55). Thus one can conclude that the
€ for the spinless particles is channel independent and that

€, 6p; = - Siem p); sign pp; - (2.58)

This means, in particular, that the intrinsic parity of each spin-%

particle must reverse under qontinuation to a crossed channel and

that the intrinsic parity of a particle-éntiparticle pair is -»(_1)2.
The product of the intrinsic parities of the particles of a

parity consérving process is physically well defined: it 1s equal

to the sign € in S(p) = €S(p), and hence to (-1)~mj. The

a_rgumen’t leading to the equivalence of Q(S(p) = S(p)) to

Pou)) = M), with P as defined in (2.55), was made explicitly

in the direct channel. However, it holds equally well in all channels,

N
provided the same factor n ej occurs in both g(S(p)) and

g’(M(p)). Any extra sign orJ;}:gase factor ei(.b, that one might
introduce ini:o the connection between S(p) and M(p), in any
given physical region, would be the same throughout that physical
region and would dmﬁ out of (2.47), and hence not affect the .
argument that demonstrates the equivalence between g e = «S(p)
and ) = M), with PM(p)) defined as in (2.48) or (2.55).
Thus this definition is applicable in all channels, and the result
(2.58) on the intrinsic parities of spin % particles holds.16

"'2.6  Antiparticle Conjugation

Consider a process in which pgi and pgi are both positive,

so that the two associated particles are both final particles.
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Suppose that tai= - tb'

i» SO that these two final particles are relative

antiparticles.

Consider now an’original value .of (pai, pbi) and an analytic

continuation that stays in the physical region of the process, but

interchanges P,i and Ppi "leaving -all other p's unchanggd. Suppose
we interchange also Sghys and Sghys . Then the original process and
the second one are physically the same except for the interchange

i< i which is just tie -t

ai ai®

. Suppose that the transition probabilities for these two processes
were the same. Then the process would be invariant under the -

transformation tye -t Antiparticle conjugation invariance

ai-

is invariance .under the analogous change tyj> -ty for all i.
If we keep only one particle-antiparticle pair, for notational

simplicity, the antiparticle conjugation invariance condition

described above is

hys |5 hysy .z ' re
Tr(v, + s50° )-8 Mlp,,py) (v, - sEV%) M (p,, py)
= 1 hys, ~ . he x oy
= Tr (v + PV MGy, b)) (v, - spPY 98 M), py) s (2.59)

where (2.53) and (2.54) are used, and

0
Pa = Pp P, =0
- 10
Pp = Py Py 0
o phys S,phys . .
a b .

,phys “_ _phys ) .
Sy Sy . (2.60)
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To see the consequences of this condition define
Erw,, tipy, ) =u, - oM, t5p, ) v o (2.61)

- where u, = pa/m&1 and u, = pb/mb. Define also

M =7 0@ M (2.62)

Then -M = M(+) + M(-l)’ vand the property (@2 =1 | gi\vres
€V = My - Moy - _ (2.63)

i = M hen M = .
Hence if M M(+_) or ) then + %M,, (
Insertion of this condition M =1%M into the LH side of
(2.59) gives
Tr (v, + S};hys )+8 u_ o IT/I(pb, p,) e 0
| x (v - sghys ). 8 -0 M (P> P, u o

- _Phys o
= Tr (v, - sy 70 )0 M (p, p,)

x (vb + sghys )+0 M’ (pb’ pa)

h
= Tr (Vb + sghys) o5 M(pb, pa) (va - SI; yS ) e

(2.64)

M (py, B,)
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where in the second line the relations

U, 0 u-g-= 1 (2.65a)
and
S8 uro= - ua-a S0 0 for,sa T Uy =0
(2.65b)
are used, and in the last line the equations
o=ct T (2.66a)
and
§=c1 ol (2.66b)

are used. Comparison of (2.64) to the RH side of (2.59), with the
substitutions (2.60) made, shows that the conditionM =+ &M

implies antiparticle conjugation invariance.

Notice that
@r,0= v 0 (2.67a)
and
€r, 0= p, 0. v (2.67b)

Thus both P, 9 and Py 9 and any superposition of them, are

‘invariant under %

2.7 CPT Invariarice

‘The physical transformation corresponding to CPT is
pBIYS o Bhys | phys By ophys, GBSy o gue,
J ] ] J ] J
(2.68a)
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The corresponding mathématical transformation is, by virtue of (2.53),
D, -»—pj, s, +8,, t,>t,. (2.68b)

Thus CPT invariance is equivalent to invariance of transition proba-
bilities under the transformation Py > - Dy (al1.j).
Any Lorentz invariant spinor function M(p) is invariant, up toa

sign, under the transformation pJ. > - pJ. (all j). For the Lorentsz

invariance condition

R(LHp)) = M(p) (2.69)
applied for the case A = 1, B = -1 gives,.by virtue of (2.3)
and (2.9),
o N
M(-p) = (-1) M(p), (2.70)

where N a is the number ofldotted spinor indices (I mean here dotted
“two-valued spinor indices: Dotted (undotted) spinor indices for
spin % particles can be constructed trivially by combining ‘

n + 2m dotted ( undotted) two-valued spinor indices by means of the
usual Clebsch-Gordan coeffieients. Thus a dotted spin % spinoi‘
index contributes a term n to Nd)

The matrix B = - 1 can be continuously connected to B =1

by the matrix

eimb 0 .
B(Y) = . - . (2.m)
which satisfies B(O) = 1 and B(1) = - 1.
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Since all Lorentz invariants are invariant under all real and cofnplex

Lorentz transformations the transformation L(A,B) = L(1, B(y)), with

0< Y < 1, must generate complex values of the pj , Since no real

mass-shell vector pj (y) can interpolate pJ. +>-p i

The matrices M(p) and NF‘(p) have been assigned the transformation
properties indicated by the indicesv Mo;é (p) and M:B (p). For A
real p the matrices M(p) and Mt (p) are related by hermitian con-

jugation:

My @ = 0, 0" (2.72a)
Thus if M 1s transformed by a real Loréntz transformation to
AMB then M* is tfapsformed to A*M"‘B"e and M' is transformed
to BiMfaT = M'B, as indicated by the indices on MZB
. For complex Lorentz transformatioﬁ_s the condition A = BY does
not holq. }_{owever, (2.72a) is fhen inappropriate: 1_:he_. appropriate
definition is ' |
* : .
M @) = M @) = 0 @) (2.72b)
oB éoc B& . .
This quantity is an analytic function of p, whereas the function-
on the RH side of (2.72a) is an malﬁic functibn of p*-. The
function M+ defined in '(2.72b) will continue to satisfy the
Lorentz invariance condition ‘

. . n .
( .Hl A(”> ML @,B) (p))( o 3(1))
1= =

i=]1

= M) (2.73)
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for complex Lorentz transformations.13

N
bilities the factor (-1).d from (2.70) will be cancelled by the same

Thus in the formula for proba-
N
factor (-1) from
+ N +
wiep) = 1 Mo . (2.74)

Hence probabilities will be invariant under CPT.
"'2.8 Statistics

The order of writing the variables is important. If the variables
in theset of arguments p = (pl, tys Py tps -er 5 P tn) is such
that all variables referring to initial particles stand to the right

of all variables referring to final particles then one may write

P = (Pgyys Pyy)- BY convention
S(Pgini Pin) = <Pgip | S [Py >, @279

where ﬁin is obtained from Pin by reversing the signs of all
energy vectors pj and all type variables tj’ and reversing the

ofder of the variables. Thus if

Pin = (Pps ty s s Pp» ty) | (2.76a)_
then

Pin

(-Pps = tps woe 5 " Bys Tt (2.76b)

The diagram representing <pg.. [S | ﬁin > is generally

drawn by ordering the lines from top to bottom in the sequence in
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which the corresponding arguments of Pein and Ein appear. The
lines corresﬁonding.to 5£n are on the right-hand side; ;hdse
corresponding to pfi; are on the left-hand side. The variables in
(2.50) are in the order (pla, pZa, . pr’ plb)’ so that each
particle line goes straight through, without a change in order.

The functions S(p) and M(p)_are assumed to be anti symmetric
under the interchange of any two spin-% particle variables (?;» ti)
and (pa, tj). Analytic continuation Pgi * Ppi in (2.51) changes
the sign of (2.51). This sign change is cancelled by the change of
the order of variables required to bring the variables back into the
form ﬁpfin; pin)' Thus (2.50) and (2.51) hold in éll channels,rfor
P = (Peip pin), with the corresponding variables of pg;., and
ﬁin occurring in the same order.

With these ccnventions the relationship (2.45) between M(p)
and S(p) holds in all channels. .
Combinatoric factors 1/n! are discussed in Appendix A of

Pef. 17.

3. MESONS
3.1 The Zero-Entropy Amplitudes

The basic building blocks of the topological expansion are the
zero-entropy amplitudes. In the meson sector: each zero-entropy amplitude
is represented by a simple quark diagram D of the kind shown in

Fig. 1, or by the equivalent quark graph G also shown there.
/r‘.'\,l
1 5 . Ls w
)\../ ' 4 ‘

2¢
Quark Diagram D

. %
2= 8, Quark Graph G(D)

Figure 1 A zero-entropy quark diagram D and the equivalent quark
graph G = G(D).
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The quark diagram D is converted to the equivalent quark
graph G = G(b) by simply connecting to a vertex the ends ofthe two
quark lines at each opening of D. Thué each vertex of-a meson
quark graph G corresponds, at some level of approximation, to
an initial or final particle of a scattering process. The zero-
entropy amplitude corresponding to a process with n particles is
reﬁresented, therefore,bya.directed circular graph with n vertices.
The n° directed edges that connect these vertices all run in the same
direction, as illustrated in Fig. 1.

The quark graphs are not abstract graphs, but are graphs piaced
on an oriented surface. The orientation of the bouhdary of the.
oriented circular disc bounded by the quark line is indicated by a
second arrow, as shown in Figs. 2 and 3. The two graphs of Fig. 2
are.equivalent.to each other, and fhe two graphs of Fig. 3 are
equivalent to each other. But those of Fig. 2 are not equivalent

tolthose of Fig; 3.

, (b)

Fig. 2. Two equivalent "ortho' graphs - c®
1-(/»\.\5 .

3 g

(a)
Fig. 3. Two equivalent "para' graphs P

2
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The circular graphs in which the directions of all the quark
lines agree with the direction of the boundary of the enclosed
oriented disc , as in Fig. 2, are called "ortho" graphs. The
circular graphs in which the directions of all the quark lines are
opposite to the direction of the boundary of the oriented disc, as
in Fig. 3, are called '"para" graphs. v

For each ortho or para graph G there is a corresponding
amplitude. If G has n vertices then this amplitude has a set
) = ULl,..., W,) of n vector indices. The amplitude corresponding

to G has the form

A(u)(G, p) = F(u)(G, p)(G, p) , . (3.1

where £(G, p) is a function of the scalar products of the
mathematical momeﬁtum-energy vectofs pj appearing in the set
of arguménts pP= (pl, ti; a3 Pps tn). _For any ortho graph
G = d’ "the function F(u)(ﬁb, p) 1is given explicitly by

0 n 2%
F =- I .
(u)(G » P) =1 (Zml )
5 Pio0 § Doegees T Poo : 3.2
Tr oulpl o qé py*o Gun ?n o (3.2)

This factor F(u)(GO, p) is minus the trace of a matrix formed -
from righf,to left by following the sense of the quark arrows in

G® and replacing each vertex i by 8,/ VT and each edge by
i .
;he ortho quark 'propagator Py;t.0 /mz1j 2 Uyt 0, where

paj is the mathematical momentum-energy vector associated with
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the vertex that lies on the ‘leading end of that quark edge.
If & is the para graph obtained from ® by reversing the

orientation of the disc then
(6P = °, p)). .
Ay @ ) = Fa (& pD) (3.32)

Thus the function A(G, p) is invariant under the parity operation,

in the sense that ifg,GO =P and ng = ¢° then

Pr Fo, p) = K6 . (3.5)
The action of 9’ on anyv A is given by (2.48). Thus
P:6, p) = £(6, P), (3.4a)

and, by virtue of (2.52),

n -1
P = - 2y
F(u)(G > P) _1;11 (2m3)

x Tr(-p; * ) Gul(-pz > 0) SUZ---(-pn-'c) a“n (3.4)

This spinor part of the para amplitude is minus the trace of a
matrix formed from right to left by following the sense of the
quark arrows in 6® and replacing each vertex i of P by
ou_/ V2 and‘each edge by the para quark ."propagator' " Ppj " c/mbj

i
= - ubJ o, where pbj is the mathematical momentum-energy
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vector associated with the vertex that lies on the trailing end of the
quark edge.

Notice that in both the ortho and para cases the orientation of
the disc points from‘each edge to the vertex whose momentum appears
in the propagator corresponding to that edge.

Each vertex 1 1is associated with a spin four-vector Si- For
) .

a vector particle s;* p; = 0 and s; = - 1. For a pseudo scalar
. 2 s .
particle S; TUis and 8y = 1. The vector (isi) is the "wave function"

- of particle i in spin space. The ortho and para amplitudes them-

selves are therefore

. n
A, p,s) = - (J;i_) Tr(sy8 upo ... 2T u0)
(o] ‘ .
x £(G”, p) (3.5a)
and
. n
AP, b, s) = - (-Zi_) Tr(up 0 533 ... uro s5:8)
x £(P, p) . , (3.5b)
"'3.2 Parity

tet G° and P be ortho and para graphs related by disc
reversal. Since A(Go) and A(Gp) are related by A(Gp) = @\(GO), the
sun AGP) + A(@G®) is invariant under parity. To see this .

explicitly use

. «0 e J =T £5.°C0 .o O
Ul 51 g i Ul g

{'+ for spin 0 (3.6)

- for spin 1
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to obtain

P -i n no. of spin 1's
AG, pss) =- (=) (-1

x Tr Sq°0 u;- G .en Sy O U led

1

£p)

- ('j;_)n(_l)no. of spin 0's
x_Tr_sl'o Ut ...os e0 e

x @) (3.7)
where fP(p) = £(6°,p) and £°(p) = £(¢°,p).

Any trace Tr a* g ay* 0 3° G... a,_* o is a sum of a scalar

2n
part that is unchanged by a; > ﬁith_and_a pseudoscalar part that
chénges sign. Since fp(p) = fo(ﬁ) = fo(p) the equafiqns (3.5a)
and (3.7) imply fwith A° = A(GC®), AP E A(GP))  that
A® + AP = 2xscalar part of A° A (3.8a)
if no. of spin zero's is even
A+ AP = 2x pseudoscalar part of A°

if no.of spin zero's is odd. (3.8b)
This means that A° + AP conserves parity, provided the spin-zéro
particles are identified as pseudoscalar particles and the spin-one

particles are identified as vector particles.
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3.3 Antiparticle Corijugdtion

The ortho and pafa propagators are (paj . 0)/maj and
(-pbj . c)/mbj, respectively. According to (2.67) these forms -

are invariant under the antiparticle conjugation operation €. This

result suggests that thé ortho and para amplitudes should be

separately invariant under antiparticle conjugation. This invariance
would, in fact, be strictly implied if the quarks could be considered
separate entities, each with its own initial and final momenta Ppj

and p_.. It was the analytic continuation paj > pbj of these

aj’

‘momenta into each other that was the basis of the discussion of

antiparticle . conjugation in  §2.6. In that context antiparticle
conjugation was equivalent (up to a sign) to reversing the directions
of all.ﬁhé quark arrows. This reversal was accomplished by an
equivalent'anaiytic continuation. 'In that continuation the vector
p in the propagator ‘p-o/m continues to be -the momentum associated
with o fixed - end of thevquark line. Thus an ortho propagator
is transformed into an_ofthq prdpégator, and para goes- into para.

We therefore define antiparticle conjugation to be the operation
of revefsing the direction of each quark edge, with the ortho-para
type left unchanged. Thus antiparticle éonjugation interchanges

-the two graphs (a) and (b) of Fig. 4.

(a) (b) ' (©)
Fig. 4. Graphs (a) and (b) are related by antiparticle conjugation.

Graph (c) is graph (b} turned over.
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The scalar functions f(p) are assumed to be unchanged by anti-
particle conjugation. Thus the amplitudes associated with graphs

(a) and (b) are

' U

A= - ( i) (Tr 5,8 w0 ... 5.5 we-o) £2) - (3.9)
and

o .y .m ) ) P

Ay = - (f—z-_) (Trs & Wweo ... s;& l)l~0) (@) - (3.9b)

Then use of (2.65) and (2.66) gives

z (Spin)_i .
A = (17 N : _ (3.10)
"'3.4 " TIsospin |
Quark flavors have not yet been discussed. Introduction of the
up and down quarks yields the m,p,n, and « mesons. To get
the amplitude corresponding to a graph with these mesonscas the

external particles one includes for each vertex the isotopic spin

factor f; defined in Fig. 5:

d
emits o+ or m fi = -1
u ;
u . - .
emits p or = f. +1
\d 1

u
g\ emits neutral meson £, L
) 1 /Z
u

Figure continued
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d
k emits neutral meson fi =
d .

Figure 5. The isotopic spin factors. The full zero-entropy

amplitude for any process involving a set of n of these mesons

~is the sum of the amplitudes corresponding to all theways in which the

particleé of the reaction can be identified with the vertices of
ortho and para graphs with n vertices.

G-parity is conserved for the orﬁho and para amplitudes
separately. To see this note that for each ortho (para) graph
cohtributingbtb a process there is another one in which the u énd
d quarks are interchanged and the cyclic order of the particles is

reversed. The two associated ortho graphs are related as the two

~graphs (a) and (c) of Eig.4 apart from flavor labels. Since (c) is

equivalent to (b) one obtains the factor (3.10) together with

the isospin factors f; shown in Fig.5. These factors f; combine to

~give factors for the graphs (a) and (c) that differ by the factor

H(—l)(1505p1n)i. Thus the sum of the two contributions is
i

o ) '
A, + AZ = A A+ (DB (3.11a)
where
g = Z (Spin)i + (Isospin)i . (3.11b)

1

The factor (-1)® is G 'parity. Hence G parity is conserved

for the ortho and para parts separately.
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‘3.5 Products

The discontinuity formulas involve products of amplitudés : . . ’
- To obtain this result, and also a more general one, let the four

represented by graphs of the kind shown in Fig. 6.

1 ‘2;“”H‘6 o - orthogonalzveétors S associated with particle i be labelled by
N _ ' ee (0,1, 2, 3), with S?e = vg for e = 0. To get the correct
: 5 . normalization we return to the level of the S matrix. Then the

four amplitudes Se are defined by

4 .
(c) . ) ‘ ST <&
: . e C
S = Tr S
¢ V2
Figure 6. Diagrams represeniing products of amplitudes. The ,
wiggly lines represent the intermediate mesons. . 1 r 08
. C o . . . '; 5 g SBG ’ (3.12)
For each wiggly line there is a sum over the single pseudoscalar - 4

meson and the three vector mesons. When this sum is performed the . o
: i where the irrelevant indices on. S have been suppressed: The

spinor parts of these products are just the spinor parts of the
P P pr ) P P arguments of §2.3 then show that

functions associated with the diagrams of Fig. 7.

1 .
./‘*-\\ >, > -
. q\ ] / ] 2 ¢ S, = Tr. M. (3.13)
7% 7 4o T
44 N N 3
~ AN .
. : Consider therefore a product of the form
(a) (b) o (c) _
‘ 3 3 Se* g Se* g ,
Z sS8' = I (Ir M) (Tr M). (3.14)
es0 °©° e=0 V2 V2 -

Figure 7. Alternative representation of the spinor parts of the pro-

ducts represented in Fig. 6. A circle with no vertices represents To evaluate it introduce into the second trace the identity
Tr1=- 2. ' '
In other words, the spinor parts satisfy the diagrammatic equations - - e -
. S G = ve§ S 0 Ve§F , (3.15)
of Fig. 8. ) e
. N - .
4. - > > ) ;,,n.»‘ { <__; . ~
) e ( = ':;:“ . v -—-> where v is the velocity *p/m of the relevant particle and
<____,_________,__ < . .
0 1 2 3 .
. . .. s =s,,8 =-5s,,8=-5s5,,s =-35,. (Bach s_ 1is a four vector).
Fig. 8. Spinor Identities 0 1 2 37 e )
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Thus : .
3
t -
eEO SeSe )
3 .
1 (TrMs, - 3)(Tr s®eg ved M V3 (3.16)
e=0
Use of
3 e .
oG ey = gv (3.17)
e=0 :
gives
3 : 1
%’ (Tr M au) é‘lv (Tr q\)v-a M' V+§)-
Use of .
1, % - o8, o 3.18
7 ou. gu\) cwé [ 3 S v ( )
gives
3 3 Se* G Se ° g
Z §8 = X (TrM ) (Tr — M")
e=0 °°€ e=0 V2 /2
=Tr Mved M ve§ . ' ) (3.19)

This result says that summing over all four exchanged particles
is equivalent to cutting the two quark lines at the vertices and
reconnecting them in the way shown in Fig. 9, with a metric factor

v « & placed at each reconnection point.
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veg
- >t
;0 u(i%.’...g:f V.o
- EEEEED

Figure 9. Diagrammatic representation of (3.19).

Consider one of the two reconnection points in Fig. 9 and its
1ssociated factor v-o . This point connects two line segments that were
>riginally parts of the two loops connected by the meson line shown on
the left-hand side of Fig. 9, and als.o in Fig. 6v. Each of these two line
segments is associated with a propagator, in accordance with the formulas
>f (3.5). One_of these two propagators is of the form *v.c , and will
:ancel the factor v-o associated with the reconnection point, up to a
Jossible sign. Now the meson line connects two vertices. One is
associated with an iniiial particle, the other with a final particle.
Thus the signs of the corresponding vectors uy will be opposite.
Jonsequently, the signs of the two factors sv-o that cancel against tb'e
two factors, v-¢ of Fig. 9 will be opposite, and the cancellation of the
two factors v-d will leave a residual minus sign. This minus sign
:ancels one associated with closed quark loops. (This closed-loop sign
ippears explicitly in front of the trace symbol in (3.5).) For the
transformation between the two sides of Fig. 9 changes the number of
juark loops by one.

The two factors of i associated with the quark wave functions (isi)
>f the two particles that are contracted out compensate in the case of the

spin-one particle for the fact that the physical spin-vector.se occurring
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in the derivation of (3.19) is related to the mathematical one. occurring
in (3.5) by sphys = smathksign uo, and in the case of the spin-zero
particle by the fact that the physical vector Se = v occurring-in the

’

deriyation of (3.19) is related to the mathematical vector Si = ug
" occurring in (3.5) by this same relationship. . Thus,fhe relationship
illustrated by Fig. 9 reduces to the simpler one illustrated by Fig. 8,
ffom which follows the equality of the spiﬁ factors associated with
the corresponding diagrams of Figs. 6 and 7.

An explanation of the signs and factors of i in (3.5) is in order. -
The minus sign in front of the trace comes from considering the quark wave
function to be antisymmetric under the interchange of variables: an odd
number of permulations is required to take the quark variables from their
normal order (see Ref. 7) in which the propagators are u o = - ubFo for
forward scattering to the cyclic order associated with the closed loop.
The imaginary unit is included in the wave function in order to allow the
wave function to be folded into the basic unitarity equation for M
functions, Eq. (7.1) of Ref. 7, without disrupting either the relative
signs of the two terms on the left-hand‘side or the relationship

sphys _ Smath sign uO'
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3.6 Topological Classification

Each circular quark graph G corresponding to a zero-entropy
ortho or para amplitude can be transformed by the rule illustrated

in Fig. 10 into a particle graph g = g(G) with one internal vertex.

1 '>-~'~;»,_‘ 5
3 \{/’ 4

' e

Figure 10. Transformation of circular ortho and para quark graphs G

into the corresponding basic particle graphs g(G).

If G is a circular graph with n verticeS'then g(G) is a
tree graph with n edges, n external vertices, and one iﬁternal
vertex. This internal vertex of g(G) 1is classified as ortho or para
according to whether G 1is ortho or para. These two kinds of
internal vertices can be distinguished in the way- illustrated in
Fig. 10. The arrow near eaéh internal vertex shows the'direction of

rotation of the quark line around that vertex. These graphs g are
called basic particle graphs.
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A product of basic particle graphs 815855 is formed by identifying

certain pairs of the external vertices, as illustrated in Fig. 11.

e 7

s AP

4

Figure 11. A product g of 5 basic particle graphs g;-

Each product graph g has a well defined genus and boundary
structure. These can be calculated by the Edmond's rule. One first
draws all the orbits of g.  An orbit of g is a path in g formed as
follows: one picks any point p on any edge of g and a direcfion
d(p) at that point. Then one traces a path in g by é moving point
p' that starts from p in the direction d(p). At each nontrivial
vertex the moving point p' shifts to the "next" line, with the order
of the lines specified by the arrow that indicates the quark-line
direction. The orbit is completed when the moving point p' returns
to the original point p moving in the original direction d(p).

Some of the orbits may pass through vertices that lie at the
ends of éingle (external) edges. These vertices correspond to the
"'external parficles" associated with the graph. An orbit that paéses
through at least one external-particle verfex is called a boundary.

The boundary structure consists of the collection of boundaries, each

didentified by the sequence of external-particle vertices through which -

it passes. Each external-particle vertex appears on exactly one boun-
dary. Graphs with only one boundary are talled'one-boundary gfaphs.

The number of different orbits of g--sometimes called faces
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of g-- 1is denoted by f£(g). The numbers of edges and vertices of
g are denoted by e(g) and v(g), respectively. Then the genus
of g-- sometimes called the handle number--is given by the Buler

formula

h(g) = e(g')"-‘v(g)z-' £(g) + 2c(g) , (3.20)

where c(g) 1is the number of connected components of g. The graph of

Fig. 11 has one orbit, which is the Boﬁndary (8, 6,5,9,7,4,3,2,0,

and its genus is two.

| The zero-genus one-boundary graphs are the planar graphs. They

are the graphs that can be drawn on a plane with no lines crossing

and all external vertices identifiéd with a single point at infinity.
An important characteristic of a graph g is its Betti

number g(g), which is the mumber of independent closed loops that

can be drawn in the graph. ItSvalﬁe is given by
B(g) = e(g) -vig) + c(g). (3.21)

Let the mumber of boundaries of g be b(g). The orbits that
are not boundaries are called windows, and their humber is
w(g) = f(g) - b(g). The most important topological characteristic

of g is the topological index

v(g) 2h(g) + b(g) - dg)

(3.22)

B (g) - w(g



53

-This is the number of independent closed loops in g minus the ’
number of windows. For connected graphs with at least one boundary the
topological index +y(g) is zero if and only if the graph g has
zero-genus and exactly one bbundary, i.e.,ifand mly if g is planar.
This topological index vY(g) enjoys the following "entropy’
prdperty: if £,8; is some connected product of two connected graphs

g and g; then
v(g18)2 v(gp) + v(g) -1. = (3.23)

To prove this let n be the number of vertices at which 8

and g, are joined. Then (3.21) gives

B(g;g,) = 8(g) + 8(gy) -1 +n. (3.24)

On the other hand,
wigigy) = wig)) + wigy)) + w'(g;,e,) (3.25)

where w‘(gl,gz) is the number of windows of g8, that lie
partly in g; and partly in 8y

Each of these windows that lies partly in each subgraph must
pass at least twice through the n junction points. And each junction

point lies exactly twice on the set of orbits. Thus one has the
inequality
w'(g;.g) < n, (3.26)
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which combines with (3,24) and (3.22) to give (3.23).

The entropy property (3.23) shows thét the topological index
Y(glgz) of a product graph 8,8 is greater than either component,
provided one of them has y{gi) 2’17 This means that the topological
complekity, as measured by vy(g), increases in general. The
special case y(gi) =1 allows fhe complexity to remain un;hanged.

If one of the graphs has Y(gi) = 0 then 7(3.23) would allow
for a decrease in complexity. However, if y(gl)v= 0 and the
product 8,8, is such that at least one external vertex of g
is an external vertex also of the product graph 8,8, then the RH

side of (3.26) can be replaced by n - 1, since then at least one

" boundary of 818, must pass twice throﬁgh the set of junction

points, and y(gg,) > v(g;) + v(gy).

The graphs corresponding to physical-region singularities can
always be con$tructed by taking successive products 81> 881>
838,815 --- SO that the final exterml particles of each newly
added graph are also final external particles of the new product

graph.18

If the product graPhs are built in this way then the
topological index .y(g) can never decrease. ) .

The product graphs g are classified by their oyerall
boundary structure and genus, and by their decomposition into ortho
and para parts. This decomposition is made as follows: The trivial
two-edge vertices at which two graphs are joined are called junction

vertices. Each junction vertex that lies on a line joining an ortho

vertex to a para vertex is cut. This cuts the graph into a set of

~ graphs g; such that the internal vertices of each graph g; are all of

the same kind, either ortho or para. Each of these graphs 84 has a
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boundary structure and genus. The complete topological classification
of the graph g is given by specifying the boundary structure and
genus of each part 8;» and the set of pairs of external vertices of
the graphs 8; that are equated to form the junction vertices of g.

These specifications determine the overall boundary structure
and genus of g itself. However, these overall characteristics
are nevertheless included, redundantly, in the complete topological
specification of g.

Graphs g that have the same topological specifications are
said to lie in the same topological class. The zero-entropy graphs
are the graphs g with a single (ortho or para) part g; = g and
topological index v(g) = 0. The simplest of these are the basic
graphs g of the kind illustrated in Fig. 10.

The discussion of topological classification given above was
made completely in terms- of the particle graph g. It is sometimes
useful to combine the particle graph g(G) and the quark graph G into

a single quark-particle graph g(G), in the way illustrated in Fig. 12

! <
T
- .
G 2(6)

Figure 12. A graph G and the quark-pérticle graph g(G) formed
from G. The particle lines of g(G) are drawn as dotted lines in

g(G).
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The orbits of g(G) can be considered to be the independent
closed loops on the quark lines of g(G). ‘Those closed quark-line
loops that pass through vertices are boundaries. Those that do
not are windows. The number of vertices and edges that occurs in
the Euler formula (3.20) for the genus is the number of vertices and

edges of the particle graph' g(G), which is a subgraph of g(G).

"~ 3.7 Topological Expansion

Each physical-region singularity of the S matrix is associated
wi;h a Landau graph g - A fonnula for the discontinuity around
the singularity associated with graph g, is obtained by replacing
each vertex of 8L, by the corresponding scattering function15’16.
This scattering function is specified by the set of edges incident
upon the vertex to which it corresponds.- These edges can be

identified with the external edges of the particle graphs g
constructed above.

The topological expansion is the assunption that each scattering
function can be expressed as a sum of terms, one corresponding to
each of the different topological classe8 specified in the preceding
subsection. This expansion is required to be compatible with the
discontinuity formulas, in the sense that if the full expansion is
infroduced into each of the scattering functions that occur in any
discontinuity equation, and the full equation is then decomposed
into terms of different topological class then the terms of each
class separately satisfy the equation: there is no cancellation
among the terms in the equation that have different topological

character. This assumption that the contributims“cany discontinuity
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‘equation corresponding to graphs of the same topological character
should cancel among themselvés has been discussed extensively before,
in connection with the derivation of the discontinuity formulas

3.8 The Zero-Entropy Functionms .

The validity of the topological expansion is assumed. Then the
zero-entropy component of any discontinuity equation can be examined.
Each scattering function is the sum of a pure ortho part plus a
pure para part plus higher-order terms formed from products of ortho
and para parts. These higher-order parts do not contribute to the
zero-entropy component of the discontinuity equation. Thus the zero-
entroﬁy component eeparates into two parts, an ortho part and a
para part, each of which must separately be satisfied, since each
belongs, according to our classification scheme, to a separate
topological class.

By virtue qf the entropy property the zero-entropy terms can
‘be formed only from zero-entfopy factors. Thus the scattering
function associated witﬁ each vertex of the Landau graph is replaced,

in the ortho (para) zero-entropy componént of the full discontinuity

equation, simply by the zero-entropy ortho (para) amplitude. Consequently

all the discontinuity equations for the zero-entropy ortho (para)
amplitudes are identical to the discontinuity equations for the full

scattering function with two exceptionsi (1) the discontinuity

is zero unless the Landau graph is planar; and (2) the full scattering

amplitudes are replaced everywhere in the discontinuity equation by the

corresponding ortho ( para )} amplitudes.
By virtue of the occurrence of only those singularities that
correspond to planar Landau graphs the analytic structure of the

ortho and para functions is much simpler than that of the full

19,20,21
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Scattering function. It is expected that these functions should have
moving Regge poles but no Regge cuts. They should, in a first
approximation, be similar to the Veneziano dual-resonance model -

functions,zz’23

with .the addition of a spin-flavor structure, finite
widths, and a planar singularity structure in momentum space.

‘3.9 Regge Recurrences

The property represented in (3.19) and Fig. 9 says the spinor factor

in the zero entropy functions A° or AP has the pole-factorization

property indicated in Fig. 13
3 Il «m m=1

Ty =0 OA
e=0

rm Ve Satl

Figure 13. Pole factorization property.

.Thus if fo(p) has a factorizable
pole corresponding to a certain value 2 2 1 of angular momentum
transferred between 1, ...,m)and (m+ 1, ..., n) then the full
function A° has factorizable . poles corresponding to a set of four
intermediate states, having total angular momentum values J = &
and £ +1, %, 2% -1, ' -7

if fo(p) has Regge behavior of the kind exhibited by‘the
Veneziano dual-resonance function 2% then for each factorizable pole
ofb fo(p) corresponding to orbital angular momentum & = 1 there
will be a quartet of factorizable poles of AQ(p) corresponding to
total angular momentum § and F(Q +1, 2,4 - 151

The function fo(p) is,assumed to have a Regge pole with the
lowest £ = 0 pole identifiable with our external set of sixteen

mesons (T, p,w,n), which are assumed to be degenerate in the zero-

entropy level. The higher values of & will then generate recurrences
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of the set (m,p,w,n).

If the functions fo(p)_ and fp(p) are now generalized to
represent the cases where the external particles are recurrences of the
2= 0 mesons then one must include?® for each external particle i
of angular momentum L aset of JLi vector indices, u{i)...uﬁ)
that are such that p; ° fo(p) = p;° fp(p) = 0 when the inner
product is formed with any one of the indices ugli') .j Consequently,

the earlier equation

Pp) = PE@) = £6) = £°p) . (3.27a)
becomes replaced by
n
p if Yo .
) = PEEE) = (-1 £2) (3.27b)

When nonzero values of the R’i are allowed there is also an

ZR,i
extra factor of (-1)

in the charge conjugation equation (3.10).
This comes from a consideration of, for example, the two definitions

of pi and p implicit in Figs. 14a and 14b.

N
o " 3 \//‘rj'l—<+-
et 2T
“ (@) . (b)

Figure 14. The normal quark structures of .p+ and p is shown in "~
(a), whereas (b) shows the definition induced by reversing the quark
lines. If the quark wave function has angular momentum % then the
difference is represented by a factor (-1) 21

In the discussion in 8.4 of isospin invariance there was no
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change in the definitions of o and , of the kind shown in
Fig. 14. Howevef, the function fo(p) was changed due toa reversal of
the order of the argumenfs. (See Fig. 4(c)) In the dual-resonance
ampli'cude7 this change induces a change (—l)mi, and we assume
that' this property holds also for our function fo(p):

L. .
£2(py,---5p) = (-1) £ (ps--0uD) (3.28)

L.
1

_The fact that one gets the same factor (jl) by either rever-

sing the direction of the quark arrow, as in Fig. 4, (a) ~ (b), (or

Fig.14, (a) » (b)) or by reversing the cyclic order of the vertices,

as in Fig. 4, (a) + (c), means that the amplitude corresponding to

* a graph does not depend on how this graph is placed on the paper:

the operation of turning over or reflecting a graph, as in Fig. 4,
(b) »~ (c), does not alter the amplitude corresponding to it. Thus
the equivalence of the two graphs of Fig. 2, or of Fig. 3, is

maintained also for R’i >0.
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4. SUMMARY AND CONCLUSIONS

Spin can be incorporated into the meson topological expansion by>

doing the following four things:

(1) Adopt the M-Function formalism and associate the leading
(resp. trailing) end of each quark line with a lower undotted
(resp. dotted) index.

(2) Introduce into the topological expansion a "zero-entrbpy”
level that lies below the "ordered" level of Chew and‘Rosenzweigz.

(3) For each cyciically ordered set of n mesons (of fixed
flavor content) form the various possible zero-entropy M functions.
Each of these is a product of a scalar function fn(pl’ Dys =o- s pn)
of the scaiar products of the moméﬂtum4enérgy vectors pj of the n
mesons, times a spin factor. This spin factor is minus the
product of n spin factors, one for each of n quark lines. The spin
factor associated with any given quark line is either the ortho-
-quark factor u, Sui or the Para-guark'factor -ubgdgxwhere a is the
spinor index associated with the leading end of the quark line, g is
the spinor index associated with thé trailing end of the quark line,
ua'is the mathematical covariant velocity pé/ma of the physical
particle associated with the vertex lying on the leading énd of the
quark line, and Uy is the mathematical covariant velocity p];/mb
of the physical particle associated with
thé.vertex lying on the trailing end of the quark line. (The minus
sign associated with the spin factor comes from the odd numBer of
permutationé of the quark variables required to take them from

their normal order associated with the no-scattering part, for which
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each spin factor is v_ - o
P a af

two indices o5 and éj associated with physical particle j stand together

= v, « g to the order in which the
b aR

and in the order (éj, aj)). (4) Institutg invariance under the parity
operation by adding together the v zero-entropy functions that arise
from the association of each of the n quark 1ines.with, alternatively,
either the ortho-function or the para-function.

The zero-entropy amplitudes discussed in the earlier sections are
only those two spetial éases in which all of the n quark lines
represent ortho-functions or all represent para-functions. A
réstriction to functioﬁs of these two special types would be unnatural:
it would cérrespond to imposing parity invariance only globally for
the entire pfocess, rather than locally for the separate contribution
fromveach individual quark line. A11 2% independent choices of the
ortho-para character of each of the n quark lines should be included.

A quartet of amplituées corresponding to one pseudo scalar meson

and one. three-component vector meson is obtained by folding the four

wave functions is- '« u. and ig, +s. (e=1, 2, 3) into the M
O ] Bj uj Je
function. Here sjl’xst’ and sj3 are three vectors that satisfy
2 _ . -
(sje) = -1 and sje . V.j 0.

The theory obtained in this way'frbm the two-component formalism
can be directly transcribed into four-component notation by the methods
of Ref. 7. This traﬁscribtion is carried out in Appendix C, and the
results are described here. The use of the four-component notation
facilitates comparisons to earlier works.

For each cyclic ordering of n mesons (of fixed flavors) there are
2™ different zero-entropy amplitudes, one for each combination of

choices of the ortho-para character of the n quark lines that cyclically
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join the n vertices -corresponding to the n mesons. The basic property The individual zero-entropy functions are obtained by choosing

of the zero-entropy amplitudes is that the spin-factors can be -an ortho or para character for each quark line, and then inserting

completely factored out of the associated discontinuity equations. ' after each factor T (uj) of (4.1) a factor of % (1+ vg) or %(1 - ¥5)

Thus the nonlinear integral equations for the scalar factors f (p) according to whether the quark line that leads into vertex j has

n . .
are the same for all 2" zero-entropy functions. These equations are ortho or para character. These two operators project the onto states -

relatively simple, and should determine the coupling constants at the of opposite chiraiity.

zero-entropy level. They also ensure that the same scalar factor | Each quintet of factors ’rju(uj) in (4.2) defines a representation of
fn(p) occurs in all 2% zero-entropy functions. Hence the sum En of’ the non-chiral group (U(2) x U(i))u-' That is, in a rest frame of
the 2" zero-entropy functions is simply the sum of the spin factors, _ particle j, where uj is pure timelike and Fjo(uj) =0, one has
times the common factor f n(p).
This sum En of the 2" zero-entropy funétions is expressed in AT (u.)BT =3r. () AV(A:, BT). (4.3)
BT A N L T

the 4-component formalism as

Here the indices y and v range over the set (0, 1, 2, 3, 5), and AJT

z =- (Trrml(“l)rz;xz(“z)'"rnun(“n))fn(pl”'v" p), (4.1 and B; are
where the pseudo-scalar particle is a;sociated with the factor : | AJj =expi (1- Bu;)) o ra” (4.4a)
Pigluy) = ivgl v v u), | @ and
and the three components of the.vector particle aré associated with ' B;.' =exp i(1+ B'u?)g .bt. . - (4.4b

the four factors
where a~ and b* are two real four-vectors, and the o, are the 4 x 4
_ _ o p . . i R ) :
Fiuluy) = vy, - (w3, up - e puy (4.2b) : matrices with two 2 x 2 ¢ 's in the diagonal corners. The two other
operators
Here v and p range over the set (0, 1, 2, 3), there is a sum over the
J3e

. o _
repeated vector ‘1ndex o, and u.Tl. (uj) = 0. A;.' = exp ifl + Bug)a .al (4.5a)

and



65
- i 0 -
Bj = exp i(l - Buj) o-b (4.5b)
acting on the Fju(uj)'s from the left and right, respectiVely, act

as unit operators. (See (C.72) and (C.48)). Hence (4.3) holds also

if A; and B; are replaced by

A(a, a') = exp(ic-a + 1B o -a'") (4.62a)
and

B(b, b') = exp(io * b + iBo - b'), (4.6b)
respectively.

‘Thg invariance of the rju(uj) under the transformations (4.5)
is a consequence of the use of the 2-component M-function formalism,
or, equivalently, of the Dirac equation for the corresponding four-‘
component quantities. It eliminates the possible scalar and axial
vector particles,.and fixes the couplings of the pseudo-scalar and

~vector particles to be precisely those shown in (4.2).
The transformation properties shown in (4.3) and (4.4) do

not in general entail corresponding invariance properties of the

S-matrix. This is because the velocities U of the various particles -

are generally different, and hence the transformations shown in (4.3)
act, for different particles, in different frames of reference, which
are related by Lorentz transformations.

One subgroup of the group generated by the transformations

{(4.6) is of particular interest. This is the subgroup SU(2),, formed -

by imposing the following restrictions on the coefficients in (4.6):
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= - 4.7
a by | (4.7a)
ai - - bi, . (4.7b)
aé = - bé, - 4.7¢)
a = a, = b1 =‘b2 = aé = bé =0, (4.7d)
and
, .
ag = aé = b0-= bb (4.7¢)
These conditions entail that B = A %

, and that the transformations
corresponding to (6ai, 6aé, Gms) are generated by the triad of

generators
(Wy = Boy; Wy = Boy; Wy = og). (4.8)

These three generators enjoy the same commutation realtions as the
generators (cl, %95 03) of SU(2).

In the rest frame of particle j the quintet of factors rju(uj)
occurring in (4.2) reduces to a quartet. If these four factors
are identified with four factors Xu in the following way

. 0
Yo (1 + Buj) =X (4.92)

it
<

ivg(1 + 6ul) (4.9b)

0 . . ;
- Yl(l + Buj) =X, ) (4.9¢)
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v+ 8ud) = x - (4.94)
2P 1’ W
then, for all i, j, and k in the set (1, 2, 3),

[Wi, Xol =0 ) - (4.10a)
and

W, X1 = 20 0. : _ (4.10b)

Thus Xy transforms as a W-spin singlet, and the set (Xl, XZ’ XS)
transforms as a W-spin triplet. A

If all pdrticles are at rest then the function En defined in
(4.1) is invariant under SU(Z)W. The Lorentz transformation that
boosts l"ju(uj)from its rvest frame form F?u(uj)'to ‘its form I‘jp(uj)

in the standard coordinate system is given by

Vo 0\. W. 0 0
oy ) = I Yoo J
Jus 37, 0 ‘;j_a« Ju= 3 0 /_—‘Vj = i

(4.11)

If v lies in the 0 - 3 plane then the boost transformations appearil;g
in (4.11) commute with the generators of SU(Z)W,' since both Yz and
Y = g are invariant under SU(Z)W. Thus if the three-velocities ;;j
of all n particles are directed along the third coordinate axis then
the Lorentz transformations in (4.11) d§ not- disrupt the invariance
of (4.1) under SU(Z)W: the function Zn remains invariant.

If quarks of three flavors are allowed and the 4 x 4 matrices

s.u (u j) are expanded to the corresponding 12 x 12 matrices FJ:]J o (uj) Y

. ]
then these new 12 x 12 matrices will define a representation of

J

I
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SU(6),, and the new function I, formed as in (4.1) but with ri in
place of I‘j, will be invariant under SU(6)W.
A comparison with several earlier works may be helpful.

Bardacki and I—Ialpern26 also introduce spin factors analogous to

Chan-Paton factors, but arrive at a l6-particle multiplet in place

of our 4-particle multiplet. They find in addition to‘P and V, the
associated parity doublet partners S and A, which occur, moreover,

as ghost (negative metric) particles. They find also a second sét

of eight particles (S', P', V', A') that couple differently to the
quarks . These sixteen particles. correspond to the sixteen independent
matrices needed to span the space of 4 x 4 (Dirac) matrices.

The present work is based on the two;conrponent formalism and
conseqﬁently gives in place of the 16 particlesﬂ of Bardakci and
Halpern only four particles. AConSidered from the four-component
viewpoint the two Dirac equafions (C.48) reduce the nmltiplicity‘_._
of particles by a factor of four: they reduce the 16 particles of
Bardakci-Halpern to the_ fou;' ind_ependent ones coupled in accordance
with (4.2). '

Bardakci and Halpern introducé the spinor solutions Utpj) and
U(p J.) of theDirac equation, but their way of using these spinor
solutions does not give them the crucial Dirac eé{uations (C.48).

The present approach enforces the usual discontinuity equations, :
including pole factorization, at the zero-entropy level. But parity
invariance is not maintained at that level. Parity invariance, and

also SU(6),, invariance for spatially linear processes, is maintained
W P p

for the sum Eﬁ of the Zn'zero-entro,py functions, but pole-factorization

" does not hold for these sums.
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The terms needed to restore pole-factorization at the physical
level come from.higher-order terms in the topological expansion. To
obtain an approximate representation of a physical amplitude near a
singularity one can.insert into dispersion relations the discontinuity
functions obtained from the planar amplitudes of Chew and Rosenzweig
These amplitudes are built out of the zero-entropy functions. The aim
of the construction of these zefo-entropy amplitudes is not to
obtained immediately a good approximation teo the physical amplitudes.
It is rather to define and determine the basic building blocks of the
theory. '

The results obtained here are formally similar to those obtained
by Delbourgo et al?7 from considerations of the‘grbup U (12). They
use a four-component spin formalism, but impose the Diraé (i.e., Bargmann-
Wigner) equations in a way that yields results similar to (C.48). The
principal difference is that they interprete their analogs of ocur
functions Zh as interaction terms of a local field theory, rather
than as low-order amplitudes of a tdpdlogical expansion. Thus the
fungtion.fl(pl, Pps -+s pn) woul&,in'their approach, presumably be
an undetermined constant whereas in the present approach it would be
constrained ( and,it is hoped,detenninedj by the nonlinear zero-
entropy equations.Itshéﬁld also enjoy, for example, ‘Regge asymptotic
behavior. The full amplitude would be constructed in their thepry by
essentially a power series .expansion, but in the present theory by
including the remaining terms in the topological expansiohh The
crucial question is whether the self-consistent structure of the

functions fn(pl’ cees pn) determined by the zero-entropy equations,

70

in conjunction with the topological expansion procedure, will
eliminate the divergences of field theory associated with both
renormalization and the divergence of the perturbation series expansion.
Before these questions can be addressed it is necessary to include
baryvons into the theory: Chew has found that the topological expansion
scheme with mesons alone is not soluable, due to the minus sign
associated with the closed loop. Inclusion of baryons (and baryonium)
leads to a soluable system that gives a predicted ratio 6f the meson
and hadronic couplihg constants that is good agreement with experiment.8
Preliminary results indicate that the overall magnjtudes of the strong-

interaction coupling constants, as determined by the nonlinear

" integral equations for the zero-entropy functions, agrees with

. . . ; . 9
experiment at least in order of magnitude.
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APPENDIX A: ORIGIN OF DISCONTINUITY FORMULAS T(E) =V + VE%HbV + VE%EbVE%HOV'*"‘ (A.2)
Discontinuity formulas are derived in S matrix theory nominally If one defines R by
from macrocausality and unitarity.28 However, it was fecognized long
ago that unitarity is not essential. What is directly used in the . —21ri6(Ep - Ep.)grg<p' lT(Ep t ie) [p>=<p! lRilp >, (A3
derivations is not unitarity, but rather the property that the inverse
of the S matrix possess the anti-namal analytic structure. This anti- then it is easy to verify, formally, that
normal analytic structure is the same as the normal analytic structure
derived for the S matrix from macrocausality, except that the plus R" - R =RR" =RR. (A.4)
ie rule is replaced by the minus ie rule. It is the property that the
singularities in the real region bf definition be confined to the Thus the definitions (
positive-o Landau surfaces, and that the function near these singu-
larities be defined by the minus ie limiting procedure. That the : ‘ sT=1+R" : ' (A.5)
inverse of Sshould possess this anti-normal analytic structure can
be derived from unitarity and the fact that S possesses the normal allow one to write
analytic structure. But the property should hold regardless of
whether S is unitary or not. | ' §'s = §7s" = 1. (A.6)
To see the essential point in the simplest way consider first the
formal perturbative solution. Then the S matrix can be written in the Hence the operator S defined by (A.5) is the inverse of S = s'.
form 2° Consequéntly, the operators R" and R'_ defined by the plus ie and minus
ie limiting procedures on the same function T(E) define formally the
<p'Isjp>=<p'lp>- 2"15(Ep - Epv)gig <p'|T (B+ie)|p > operators (S - 'I)‘and st -, respectively,
These relationships are usually derived from unitarity. But the
(A.1) above derivation does not depend on the Hermitian character of V:
it goes through, formally at least, even if S is not uhitary.
where
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In S-matrix theory the anti-normal analytic structure of S_1

is usually derived from unitarity and the normal analytic structure
of S. However, it can be derived, alternatively, directly from the
anti-macrocausality property of S'l. Thié latter property is the
same as the macrocausality property except that the sign of time is
reversed, so that physical particles carry positive energy from
later times to earlier times, rather than vice versa.28’30

If Ssatisfies macrocausality then S-l; if it exists,should satisfy
anti—@acrocausality. bThis will not be proved here, but the foilowing
argument makes it very plausible.

Consider a normalized initial state ¢ that represénts a system
of incoming particles each of which is represented by an incident wave
packet with fairly well defined momenta and trajectory region. The
action of S takes ¢ to Sp = . And the(action of S‘1 on ¢y takes it
back to ¢ = S_lw. The two reciprocal processes ¢ -+ pand ¢ + ¢ are
thus closely related. If S is unitary then v ié nqrmalized. If S
is not unitary then ¥ need not be normalized. But in any case the
action of S-1 on ¢ is closely connected to the action of Son ¢: S
constructs ¢ fromé, and g1 reconstrﬁcts ¢ from ¥. ‘

One can imaginey to be decomposed into components 1 corrésponding
to various combinations of outgoing particles with fairly well defined
momenta and trajectory locations. Then the wave functions ¢ and by
can be wave funcfions of the kind used in the macrocausality_arguments
of reference 3q If S satisfies macrocausality then in various dilated
situations of the kind discussed in that reference the dominant con-

tributions to the process ¢ -y will correspond to physical scattering

-in the general S-matrix context, that S’
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processes. If 8—1 should fail to satisfy anti-macrocausality then
for some process ¢-*wtherevnuldbecontributions to v~ ¢ that do not
corresponding to temporally reversed physical processes, yet do not
fall off in the way demanded by macrocausality for the corresponding
direct process that contributes to ¢ + ¢. But then the domiﬁant
contributions to ¢ -+ and ¥+ ¢would not be temporal inverses of

each other, and the close reciprocal connection of these two processes

would have to be maintained via an intricate interplay of contributions

that are not naturally related via temporal inversion.

Although such a situation is perhaps conceivable, it will almost

‘ surely not be achievable in situations having the complexity of

relativistic particle physics. Thus I think it safe to assume,
1, if it exists,should be
anti-macrocausal regardless of whether the S matrix is unitary or not:
the anti-macrocausality property of S.1 is a moré primitive and basic
property than unitarity. From this anti-macrocausality property one can
deduce immediately from the arguments of Ref. 30 the anti-normal
analytic structure of 5! needed in the derivation of the discontinuity
formulas.

Further insight into the connection between discontinuity —
equations and the inverse of S can be obtained by considering the S
matrix from the point of view of the "in' and "out' parts of the wave
functions in radial coordinates. Separating out the center-of-mass
motion of an n particle system one is left with a function of various
relative coordinates (xl, s Xn—l)' An alternative set of coordi-
nates consists of R = (r, » Tj.1) and @ =, 5 9 9)s

where (ri, Qi) are the radial and angular coordinates associated with



75

the relative motion of some pair of subsystems. If y(R,q) is a steady
state solution and K = (kl, e kn-l) is a set of n - 1 scalars
defining momentum magnitudes then one may define the asymptotic

amplitude

n-1 © ik.r.
AK,) = % |lim J dr. —1—3

islle,v0 9 1 (2m)

-i(k,-ie.) (r:-P5)
" (e(ri _ °i) R AR AT NN ]

'i(ki"'i ei) (Ti'pi)) ‘P(Rp »9)

+ e(pi - ri)e (A.7)

where p; = eiz, and R® = (r; = P seves T~ Ppop) -

' n-1

This definition is such that if y is a plane wave X exp i _;& . ﬁg,
i=1

and the directions and magnitudes of the n - 1 three-vectors _E? are

specified by the sets of coordinates no = (6(1), ¢g, 6101_1, ¢g_1) and
KO = (k(lj, e kg_l), where kg > 0 for all i, then the corresponding

A(K,Q) is

A &,2; K% )=sk, KDs(e, 0% + sk, Ks2,8%), A.®)

where
§(K, X') = I:I:Ii s(k; - ki), (A.9)
n-1
o o izlﬂ(cos Oj - cos #3)8(e; - ¢3). (A.10)
K= Cokgseee s - Ky g)s (A.11)
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and

Q= (r R ¢1+‘n, ces T T By ¢n_1_n). (A.12)

If, on the other hand, ¢ represents the solution to the

scattering problem with the incident or incoming state given by
n-1

the same plane wave exp 2 i T()(l) . —1:1 that was used in (A.8),
i=]

then the amplitude A(Q, K) can be written as

AK, 25 K0, @0 = sk, o; 0, 20

v 5K, Bse; 39, (A.13)
where
ose; K, 0y = s, 0510, 0%
Here ‘
© n-1
00 = T 8(k,), (A.15)
i-1 _

and ©(k;) is zero or one according to whether k; is negative or
non-negative. Equation (A.14) expresses the condition that the
incoming part of the asymptotic wave (i.e. the part having the
behavior (exp - iZkir.l)) ’is the same as that of the incident plane
wave. F,quafion (A.13) defines the S-matrix in these variables.

The k(iJ in 0 al1 satisfy kg > 0., Substitution of the argument
&, 8% for (&, 2% in (A.13) gives '

Ao K, 80 = s,e; 0, 8% + sk, Ds@, o). @)
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The condition, analogous to (A.14), that the two terms in (A.16)
represent separately the asymptotic incoming and outgoing  parts

of y is

0 (R)S(K, a; K0, 29 = s(x, o; &0, &°

where tﬁé kg in K0 always satisfy kg > 0.

The wave functions y corresponding to the asymptotic amplitudes .

defined in (A.13) and (A.16) represent solutions that have incoming
"_and outgoing parts equal, respectively, to the incoming and outgoing
parté of the plane wave whose asymptotic amplitude is given in (A.8).

We now invoke two general principles. The first is the super-

position principle, which asserts that a linear superposition of solutions

P is a solution ¢' The second is' the causality principle that the incoming

parts of a solution should determine uniquely the outgoing parts.

Using the superposition principle one can form a solution ¥' by

taking a linear superposition over various values of (KO, QO) the solu-

0

tion y that correspond té the amplitudes A(K, 2; K, 90) of (A.13).

The weight factor will be chosen to be S(RO, 60; Kg,

fixed (Kg, ﬁ?). Thus the asymptotic amplitude corresponding to y'

ﬁg), for some

will be

). (A.17)
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1
A (K,0) =

ja’raaac a5 K08, 7% ;69

0

= deojan(S(K s s K0,00) + sk, ©sa, 30
« s, % &, 2D
- [ak’ s x,0; k0,00, &, K, &)
+ S(K,05 K, 7). (A.18)

The conditions (A.14) and (A.17) entail that the incoming part of
A'(K,q) is the same as the incoming part of the solution whose
asymptotic amplitude is given in (A.16), with (KO,QO) set equal to
(Kg,ég). " Thus, by vir;ue of the causality principle, the asymptotic

outgoing parts of these two solutions must also be the same:
0,0 ap . 0 Oyarz0 =0 =0 -0
faKy Aoy S(K, 05 K0S, o5 K7, 07)
_ 0 0
- (S(K:K )6(9; Ql) . (A'lg)
But then the introduction of the notation
0 -0

s, & ‘((lJ Eﬁ) = 50, ;K ,9(1)) (A.20)
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allows one towrite (A.19) in (A.20) in the form
S§ = 1. (A-21)

Consequently the transformation of shifting to the bafred coordinates
takes S to its inverse. The transformation that takes (K,2) to
(K, ) reverses both the signs of all momentum magnitudes and the
directions of all the vectors. Hence the associates sets of vectors
Ki are transformed into themselves. Thus when the fuhctions S and S'1
are expressed in terms of these vector arguments one needs two
separate coverings of the physical region, one for S and one for S-l.
On the other hand, the points (K,2) and (K, f) lie in two separate
regions of (k,?) space. These regions are joined at the point‘where
all k; = 0.

The formal manipulations given above suggest that there might be
some sort of analytic comnection between the functions S(K, &; k', 2")
defined above in the two disjoint regions k;, kiv>'0 and k;, k; <0.

One may examine this question in specific models, and in particular

in nonrelativistic models with real or complex (and local or nonlocal)

potentials. If the potentials are short ranged, so that the singularities

near the transition point where all ki = 0 arise exclusively from the
singularities in the propagators,then the singularity structure near
the transition point should be correctly represented by perturbation

theory.
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Near the two-particle threshold in a theory with one kind of

particle the propagator (E - H -1 becomes, when the overall center-

o)
of-mass motion is factored out, just a one-particle propagator. This

propagator, as it occurs in the functions <p'|R*|p > defined in

(A.3), is>t
exp+ikr
m

w T \ (A.22)

where
1/2
k =@ .
o [( mEp) | (A.23)

Consequently the functions < p{R'|p' > and <p|R[p*>, when expressed

in temms of the variébles (K,Q; K',Q'), will be analytically
connected, regardless of whether the potential is real or not. This
analytic connection entails a corresponding connection between
S(K,2; K',2') and s'l(x,sz; K',2") = S(K, &' k', 2").

These questions can be discussed in greater depth within the
context of various special models.  However, the point of the above
discussion is to note that very general considerations, which lie
deeper than particular models, stro;gly indicate that the familiar

analytic comnection between S and st should be maintained indepen-

dently of unitary.
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APPENDIX B: FAILURE OF UNITARITY FOR ORTHO AND PARA AMPLITUDES.

Let the M function be decomposed into its "unit'' part plus-the i

rémainaer :
M(P'; P') = Mu(P'; P + MT(P'; P') . (B.1)

Then the basic discontinuity equation has the form’

topr. pn “pt. pn
Mr(P y P o= Mr(P 3 P
= [M_(P'; P) V -5 M_(P; P)dP, (.2)

where V.5 stands for the product of factors vied - Continuation
around the leading threshold is supposed to take the connected part of
M:_(P'; P'") = Mr(P'; P') into the connected part of M;(P'; Py,

The basic topological assumption is that the separation of
M:(P'; P and M;(P'; P') into parts having different topological
characters separates the discontinuity equation into parts having
different topological characters. This entails that the ortho and
para parts satisfy an equation of the form (B.2), but with only planar
singularities.

The ortho and para parts of M;(P' ; P') and M;(_P'; P") have
polynomial factors that are specified by the rules given in the text.
These polynomial factors have no singularity at the the threshold.
Thus they are the same for the ortho (resp. para) parts of

M;(P' ; P') and M;(P’; P'"). Moreover, they are the same also for the
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ortho (resp. para) part of the right-hand side of (B.2). This

consequence of our rules leads to an important simplification of the
discontinuity equations: the polynomial spin factor is the same for
each term, and hence can be factored out. Thus the discontinuity
formula at the ortho or para level becomes, essentially, a discontinuity
eﬁﬁation for the residual scalar function.

Thetpolynomial spin factor in the ortho part of M;(P'; Py is
built of factors u - o, one for each quark line.“For example, a
quark line whose leading end lies at a vertex associated with a
variable P; contributes a factor u; - cai& » where u; = pi/mi’ and oy
and &j are spinor indices associated with the leading and trailing ends
of the quark line, respectively.

The polynomial -spin factor associated with M;(P'; P'") gets from

this same quark line an identical factor u, CAFEE
. * 1] :
function Mr(P' ; Py o= Mr(P"; P') gets a factor -u.- 9., for real uj .

This is not equal to ui-o&i 4 »TIOT even proportional to it, since u;

However, the

and uj are generally non parallel. ,

On the other hand, the contribution u; - 0“1‘.‘ from any given
quark line to the ortho amplitude M_(P'; P'") is the same as the
contribution LA from this same quark line to the Hermitian
conjugate of the Ezli_r;_ ‘contribption to MT(P' ; P).  Thus the sum of

the ortho and para amplitudes satisfies

= - (MI_O + Mip). _ (B.3)
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Hence when the ortho and para parts are combined one recovers the
familiar Hermitian analyticity relation, generally derived from
(extended) unitarity..

Since Hermitian analyticity fails for ortho ‘and para amplitudes

one cannot expect unitarity to hold for them.
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Appendix C: Four-Component Formalism

This appendix transcribes the results obtained above in the
two-component formalism into the more familiar four—componenf
formalism.

The connection between the two-component and four-component
formalisms is most easily expressed by ﬁsing the Weyl representation

for the four-by-four Dirac matrices. In this representation

T 0
u
a =
u 0 o
H,
0 I
B =
I- 0
. 0 ou
Y= Boy= °, 0
-1 0
Y =
> \o 1
o5 0> ‘ ‘
o = =123 (€.1)
0 9

The two-by-two charge conjugation matrix is

0 -1
C=-1ig,=
1 0 ' (C.2)
and gives

c cuC =0 ‘ (C.3)
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“where o = (04> -%j. Thus
E - 0 C - 0 C (C.4)
C-l 0 -C 0
.o -1 _ Tr _ ot _ % )
satisfies E<=E " =E "~ =E =E , where Tr, dagger, and star

represent transpose, Hermitian conjugation, and complex conjugation,

respectively. The important properties of E are

E'ee = - 1T _ o (€.5)
+ _ TIr
E auE = a, (C.6)
-and .
+ - . Tr : '
E,UiE-_ o . ) (C.7)

The free-field operator for Dirac particles of type t is
) = ] -—Td4p 208 - m)e(pY) x
e (2n) d

z -1 ipx, ¥ .
j ;‘=1’2(U“(P,>\)e pxa(p,)\,t)+Va(p,A)e P b (p,As t))
(C.8)
wl{ere

EU (p,2) (C.9)

Vip,1)
and

U(,A) = EV (@) - (C.10)
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The charge conjugation operator € is defined so that

cfyee = BT ) = ) -

(C.11)

The interchange p(x) wc(x) is equivalent to the interchange

a<+b.

Parity is represented by the operator P, which satisfies

t =
SAACREENE NIRRT {ON
where e; is the intrinsic parity associated with vy

The time reversal matrix @ is

tom o HIT

QB =28
t - _ Ir
Q aiQ = ai
and - ™
+ _ Tr
Q oiQ = - Gi .

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

The Wigner complex conjugation operator K satisfies, for

all states ¥ and ¢, and all complex mumbers « and 8,
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*
< Ky|Ke > = <v|o >= <o|y> , (C.17)
® *
K(a|¥ >+ g]e>) =a |[K¥ >+ 8 |Ke >, (C.18)
~and
2 _ .
K“ = 1. ‘ (C.19)

Defining the operator Ak by
< y|AKjy >= < xy|A|Ky > @y (C.20a)
one oPtains from.application of (C.17), (C.185, and (C.19) to
<ay + eq>|AK|a\v + By >, . (C.20b)
witha =1 and 8 = 1 and i, the result

< o[AXjy > = < xy|A|xo > ~(c.21)

for all ¥ and ¢. The definition of K is completed by taking

kx> = |x > (C.22a)

and

|[kp >=|-p> . (C.22b)
in first_quantized theory, and by taking

Ko GOK = 4, () (C.23)
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and

Kjo>= |0 > (C.24)
in second quantized theory. That is, the ket |x> , the field
operator ¥ (x), and the vacuum are considered real 5 Thus in

first quantized theory if

<x|p> = £ ' (C.25)
then

&
< x| K> =<Kxfy> = £ (), (C.26)

whereas in second quantized theory if

<O0|¢x) [¥>= £(x) (C.27)
then

<0Jyp(x) [Ky >

<olyx)Ky >

*
< KO|Ky(x)Ky >

*
<0y (xX)¥ >

®
f (x). ' -~ (C.28)

The time reveral operator is then

T= UKT . (€C.29)
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where
THET = v(xh, : (€.30)
with x' = (- t, x), and
S uTyeou = (o b09),, - (C.31)

For any operator A one may defina At by

< Ty|A|Ty > = <vhb|y > (€.32)
for all ¥. Then arguments similar to those leading to (C.21)
_give

At = TxutATukT. (C.33)

The current and spih operators

3, v =20, 0, e, 0 (.38

‘and

oy (x, ) = W' (t, X), o5 ¥ (¢, )] (C.35)

then satisfy

SN, 0 = T, 0 2 gl 0, - 36t ) (36
and

of(r, x =

!
Q
~~
|
[
.
»
St
|
)
Q
~~
|
rt
X
~

(c.37)

¥ ¥
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Thus the time reversal operation on the states generates the
change in expectation values demanded by the physical meaning
of the operation of time reversal.

Suppressingbthe dependence on all other particles one may

write the S operator for the scattering of a Dirac pgrticle as
Sop =vf wT(x')G(*’; x)w(x)d4x'd4x. | (C.38)

The pperaFors a(p, A,.t)-aﬂa b(p, A t) are normalized by"
<a(,» 0a' @', £1) > =<b@,, DTN, £ 3

(€.39)

3.3
= 20(20) 8" @ - 3')6)\,\'_11'

1/2

whereu;z(p2 + mz) , and A and t are the spin and particle-type

labels. Then the S matrix for the scattering of a Dirac particle
of type t is
S(P',A', tip,A, 1) = <alp')', 1) S a'p,, 1) 0

_ =t a6, - p) UK (C.40)

where the type label on G is suppressed.
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The spinors in (C.40) are

. )1/2 '
— : A
ve.n = AV,
4 [ e oY/
U (p,)\) = ( (V ~)1/2
(V.G)I/Z c
vip,a) =
P, (( v 0)1/2 c
and
< < (y- 0)1/2
v*(P,x) = )
85 (v )2 (-1 (C.41)

where v = p/m, py >0, ¢° = Cp, ¢, =6, and

1/2 1/2 ~1/28 _ 6By 1/2
(oo )2y, = 2o, 10 6,00 AP =20, v 3*HY
etc.
The M function for the scattering of the Dirac particle is
defined by

M@',t; - py - 1) = - )Y 2 s, tip, ) (veo)

(C.42)
The insertion of (C.40) and (C.41) gives

M@p', t; - p, - t) = (v' - 0)Gyp', - P) (Vo)

+ (V"O)GUL(P',‘P)*'GLU(P', - p)V o+ GLL(p" - P),
> (C.43)

where the four-by-four matrix G is written as

S G

G

(C.48)

G

U LL

1/2
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In terms of the mathematical momentum-energy vectors k' and

k, and the associated vectors u' = k'/m and u = k/m, Eq. (C.43)

can be written

M(k’, t;:k, -t). = (u"o)Gy k', K)(- u-o)
)Gy (', K
*+ Gk, K (- u+o)
+ 6, K. : (C.45)

The four-by-four M function is defined by

My K My k', 10

M(k', k) =
MLU(k', ) MLL(k’, k)
1 u'?d 1 (-uro)
- 6k, K\ - ' (C.46)
utec 1 (-u~c) 1

where the type variables t are now suppressed. The original two-
by-two M function is MLL(k‘ > k). The other three two-by-two parts

are _trivially related to MLL(k' » K). In particular, one has

: (I ME', K) (- w5) u'-s MK', k)
M(k?', k) = ( ) (C.47)
M(k', k) (- wd) M(k', )

where the two-by-two and four-by-four M functions are represented

by the same symbol. . These relationships, or (C.46), entail the



93

Dirac equations

@ Y)BM = @M = (B (- u-y) - (C.48)

The two-by;two M-function given in (C.42j_refers explicitly
to the physical process involving an outgoing dirac particle of
type t and an incoming Dirac particle of type t. The function
G(x', x) in (C.38) describes also. the three related processes in
which the incoming particle is changed to an outgoing antiparticle
or the outgoing particle is changed to an incoming antiparticle, or
both. 1If, for example, the outgoing particle is changed to an

incoming antiparticle then (C.40) is replace by

S(iP',j\',‘t; P, A, t)

1]

< Sopb.l-(p' ,A' ) 't)a*(P,)\,t)>0

- v a6, -pU®,N)

1/2

oS 1) Y16y (', P vea) P
+ v )2 eney () )Y

+ w3 oy, p) eyt

s v M Cpr, P v Y e, (C.40")
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The charge conjugation opeiator in ¢c arises from the convention
whereby ' is to be contracted onto the right-hand index of the spin
operator if the particle is an initial particle but onto the left-
hand index of the spin operator %f fhe_particle is a final particle.
The convention for M functions is that the contraction rule is .
independent of whether the particle involved is initial or final,
but that the sign of the mathematical rest-frame sfin vector s
occurring in the spin operator s .¢ is tied to the éign of the
associated energy component invthe manner specifiéd in (2:53).

Then (C.3) allows the c on ¢C in (C.40') to be absorbed into the
definition of the spin operators. The S matrix corresponding to the
M function is thﬁs the quantity in the brackets in the last line of

(C.40'). It is converted to the M function of the process, namely

to M(-p', t; -p, -t), by multiplying it by the factors (v'-a)l/2
and (v-0)/2, just as in (C.42). This gives
M(-p', t; -p, -t) =
- V'eg GUU(_p" -p) Veg
- V' Gy (-p', -P)
*+ Gyy(-p's -p) Veo
+ G (p'y P . (C.43")

For initial particles v = -'u. Thus
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this equation is a special case of (C.45). Thus the two different
processes are described by the one function M(k', t; k, -t) defined
in (C.45), evaluated in different regions in (k', k) space. The
function G(k', k) in these different regions is obtained from the
Fourier transformation of the single function G(x', x).

The third case is that in which the original incoming particle is

changed to an outgoing particle. Then (C.40) is réplaced by

S(',A', t; poa, -t:)

<alP'a', b(e.A,-95,, %

- Ut ' ANGE!, PIVEP,A)

o, L0 -0) 2600, PY Vo) /2 (-

+ ) 600, p)

. (V,_le/z

Sy®'s P o))
+ w00, mee A (c.40'")

The S matrix corresponding to this M function is the quantity in the

bracket in the last line of (C.40''). It is converted to the M

function by multiplying it by (v'-)/? and (v-0)/2, just as in (C.42).

This gives
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M(p', t; p, ~t) =

=v'y GUU(p', p) (~v.g)

+v'0 G (p7, P) + Gye's PY(~ve0) + G (c.43'")

L

Since both particles are final one has u = v and u' = v'. Thus

this is also a special case of the function defined in (C.45).

The fourth and final case is similar. The order in which the
arguments of the M function are placed is the same as the order of the
operators that create or annihilate the corresponding parficles from
the vacuum. (See (C. 40), (C. 40"), and (C.46"), and the corresponding

equationg (C.43), (C.43'), and (C.43'").) Then the fourth case gives
-M(p, -t; -p', t) = M(=p', t; p, -t)
f (~v'so) Gyu-p's PY(~vea) + (=v'-0) Gy (-p"s P)
+ GLU(—?', P)(=v+-0) + G, (-p", P), (0.43")

where the antisymmetry of M under the interchange of spin-%-variables
is used. The second part of (C.43'') is equivalent to (C. 45), and
hence the.one function M(k', t; k, t) describes all four processes.

The formulas given above refer to a single spin—% particle. But:
théy immediately generalize to the case of n spin—%-particles: one
treats each such particle in the mamner shown above.

The parity transformation P defined in (C.12) induces in G(k', k)

the change

Gk, k) > (88 )e(k’, O ( 1 €8), (C.49)
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where € is the product of intrinsic paritiés at the fields, and
i runs over the particle-antiparticle pairs. A little algebra
shows that this transformation on G induces the same trans-

formation on the M function defined in (C.46):

MK, K) > e( [o8 MK, B( [og) - - (€.50)
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Consideration of the no-scattering part entails that the product
of the intrinsic parities of wi(x) aﬁdw;(x) is unity. Thus the
intrinsic parities of the spin-%—fields drop out of ¢, as in (2.56).

Then (2.58) allows (2.55) to be written as
PM(K', t; k, -t) = e (u'-c)ME, t; K, ~t)(-u-o), (€.51)
where ¢ is the product of the intrinsic parities of the scalar

particles. The parity transformation (C.49) on the function G

occurring in the expression (C.45) for the twolby-two M function.induces.

~ the transformation M - PM, with PM defined by (C.51).

The antiparticle conjugation operation w(x)++wf(x)_defined in

(C.11) replaces Sop by

wn
1

gp = fC ) e v a*xrdix

+ .
JEF M) 6(x', ) By () dAxratx

fot e Efex, 0BTy atxratx. (C.52)

Comparison to (C.38) shows that the antiparticle conjugation operation

is equivalent to the operation

C(x', X) <+ Gc(x', X)

-F o, x)B)T

= - EGT(x, x")E, " (C.53)
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where Tr means transpose in spin space.

The momentum-energy space version of (C.53) is obtained by
replacing x and x' by k and k', respectively. This transformation
on G{k', k) induces on the four-by-four M function defined in (C.46)

the transformation

-

M(k', t; k', -t) =M(k', t' k, -t)

1 u'w 1 -Uu-+c
- E 6T (K, k')E)
u'-s 1 -u+g 1
- Tr .
= - EMT(k, t; k', -t)E . (C.54)

It induces on the two-by-two M function defined in (C.45) the
transformation M(k', t; k, -t)+CM(k', t' k, -t), where CM is
defined by (2.61). |

The parity (or antiéarticle conjugation) operation acting on M
converts it to the M function that describes processes in a conceivable
world in which the amplitude for any process P is equal to the
amplitude that the parity inverse (or antiparticle conjugate) of P has
in the actual physical world. The analogous timereversal operation on
the four-by-four M function is obtained by making the substitution

t . .
Sop‘_*sop’ defined by (C.38) and. (C.33):

[PSPOR
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t
Sop > Sop.

tartst
T'KU'S G, UKT

bTKU+ o 6T, 1 vx) axd’x wkr
= k(') 6T, 0 oo Huk aterd
= fro a6t o, ek ateeat
Tr t. t

= [kt 2™ 6 T ot x Haveox atxratx

t IT

= St e’ TS, x e v dhxrdtx - (C.55)

Thus the time-reversal operation on the states or. fields is equivalent

to the operation on G

6(x', X+ G (x', x)

tIT

= a6 Tt x'te, (C.56)
or equivalently
G(k', k)« Gt (k', k)
- 26Tk, -Je. (C.57) -

This transformation induces in the fouf—by-four M function defined

by (C.46) the analogous transformation
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MK, K)o MGk, k) = @MIT (K, K)a. (€.58)

The transformation (C.57) induces in the two-by-two M function

defined by (C.45) the transformation

M(k', t; k, 't) Ead TM(k': t; k, -t)

~

= M(K, t; k', -t) (€.59)
In a model where all particles are constructed from spin-%
particles the intrinsic parity factor € is unity. Then the product
of parity inversion, antiparticle ‘conjugation, and time reversal on
the four-by-four M function gives, by virtue of (C.50), (C.54),
- (C.58), and (C.13),
M(k', t; k, -t) > TCPM(k" t; k, -t)

= - M(-k', t; -k, -t) , (C.60)

The same result holds for the two-by-twosubmatrix M= M.

-The two-by two M function has one dotted and one undotted index.

Thus, by virtue of (2.70), the change of the sign of all-of its
‘vector arguments changes its sign. Thus the two-by-two M function

is transformed into precisely itself by the product of the T,C, and P
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transformations.

The formula (C.60) refers to a situation involving only one
spin—% particle. For the case of n such particles the variables
k', k, and t are 4n-vectors, or n-vectors, and the minus sign in
front of M should be (-l)n. Thus the product of the transformations
T,C, and P againvleaves M invariant.

In carrying out the calculations whose results are summarized
above it is helpful to recall that the two-by-two function M can be

-1 MTI‘

expressed as C C. If M is a product of Pauli matrices then M
is obtained from M by transposing the order of these matrices and
replacing each 9 i=1, 2,3 by -0;-

The -Lorentz transformation properties of the two-by-two M

function is .indicated by assigning spinor index types according

to the rule
M(k', t; k, -t) = MLL(k', t; k, -t) -

Mak', t; k, -t) = M(k',a, t; k,B, -t) (C.61a)
The transformation properties of several other two-by-two functions

are indicated by the following assignmenf,s: ,

Mk, t; k', -t) +M&8(k, t; k', -t)
ME', t; K, -t) +M&B(T<"-, t; K, -t)
My &', t5 k, -t) ->M‘é8(k', t; k, -t)
My (KT, 5 -k, -t) > MK, £ K, -t)
M, t ek, 1) > MLUaﬁ(k-, t; k, -t) . (C.61B)
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In these equations one may interprete the variables k' and k as 4n
Vectors, the variables t as n-vectors, and the variables o and 8 as
n-spinors:e.g., a= (agp--- an). Our convention ié that the épinor a
goes with k' and the spinor B goes with k. The quantities on the
right-hand sides of (C.61) are invariant under the simultaneous action
of the spinor transformation (2.9) and (k', k) » (L Y(m)k', L1 (m)K).
Comparison of (C.61) to (C.47) shows that one may interprete
(u"g) and (-wg) acting onthe left and right, respectively, as
operators that simultaneously raise and dot (or undot) the indices o
and é, respectively. Then the subscripts Uand L on the two-by-two
functions M(k', t; k, -t) can be dropped and thé four-by-four M

function written as

M(k', t; k, -t)

Mk, t; k, -t) Mk, t; K, -t)

8 . (k' t- -
M k', t5 k, -1) MaB(k , t5 k, -t) (C.62)

In formulas (3.5a) and (3.5b) for the ortho and para amplitudes
corresponding to quérk closed loops the (quark) M functions are just
-the products 1;(u'.l-o) and g(-ui-c) respectively. In both cases thé
individual two-by-two M functions are MLL and their spinor index types
are as in Maé' However, it is possible to use different choices of
index type, provided one makes compensating changes in the spin

operators that occur in (3.5). One convenient choice is to use M &

for the ortho propagators and Mas for the para propagators. Comparison

of (C62) to (C.47) shows that the ortho propagator is then Saé and ‘the

para progator is 60; .
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The propagators can be considered the analogs of the functions

G of field theory. Thus we write

0 & '
& - < B) _ (C.63a)
0 0 .
and
0 0
& =< 8 > . (C.63b)
§ 0

The associated spin factors are

0 i 0 . 0 '
Fi "/'2: (si.a-r ui.o)ué 0 . (C-64a)
and ~) 8
0 (1 u;*c s,.+0
-1 ( 11 “) (C.64b)
vz Vo 0 o
Then one may write, in place of (3.5),
0 - 0,0
AG, k, s) = - (Tr 1 (F;G )) £(K). (C.65a)
i
and
A@GP, &, 5) = - (Tr 1 (FB5GP)) £(K). ~ (C.65b)
i
The sum of the two amplitudes is then
0 P - ' .
A"+ AT = - (Tr 1(FiG)) £(k) (€.66)
1 .

where

G= + P and 7' = F0 + FP.
1 1 1
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Equation (C.40) shows that the four—by-fodr matrix G occurs in

the form U'GU. The matrix 8G occurs in UBGU, where U = U'g.

Correspondingly, (C.66) may be written in the alternative form

A%+ AP - - (Tr 1 (FIB) (BOE(R) (C.67)
i
where
[} 8 0 .
a .
8G = . (C.68)
0 Gaé .
and - a
v v, . (-u, +0) (s, *0) -0 .
FB= i ( peeme ; ) (C.69)
0 (si'o)(ui-a) M

p

'Then the contributions A0 and A" come from the lower left-hand and

~
upper right-hand two-by-two sectors, respectively.
If the ﬁeson corresponding to vertex i is a spin-zero meson then
sy = U, and (C.67) becomes

(=~ u,+0) (u,*d)
FI8 =i< o1 i

(u;+9) (ui'0)>
, - iYs . ’ (C.703)

On the other hand, if the meson associated with vertex i is a spin-one

meson then uss = 0 and

(s;-0) ;-3 . 0 .; : .
Flg =i . . ©(C.70b)
* 0 (s;*9), *0)
\ -
. M
= so,u )

where
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% = 7 (7, = 1Y) | | (C.71)

Thus the coupling of the spin-zero particle to the ortho and para .
quarks are via the matrices iys(l + ys)/z and iys(l -YS)/Z respectively.
The couplings of the spin-one particle fo the ortho and paré quarks
are via the matrices suouv u’(1 + Y5)/2 and s“ouvuY(l_- ¥5)/2,
réspectively. _ »

This separation of the ortho and para contributions into the two
orthogonal pérts of spin space means that at the zero‘entropy level
fhe ortho and para quarks are, in effect, distinct entities: they
are repreéehted by orthogonal states. The rules shown in Fig. 8
mean .that there are also, in effect, two different kinds of mesons,
one composed of a quark and antiqﬁark of ortho type the other
composed of a quark and antiquark of para type.

The close analogy at tﬁe zero-entropy level between the ortho-
para types and the flavor types suggests that one should allow, at
the zero-entropy level, also the mesons built from an ortho quark and
a para antiquark, or from a para quark and an ortho antiquark. The
coupling of these two ﬂew types of mesons will be obtained by fillihg
fhe two empty spaces in the coupling matrix F.8 of (C.69). Indeed,
if one goes back to the two-component formalism, and follows the
normal aﬁd natural practice of impoéing parity invariance on each
quark propagator individually, rather than on the process as whole,

then the function Fis becomes

T. =F.p =i (('—ui.c)(si"a))su (('ui'ﬂ)si‘a(di'd).)ﬁé

ro 5;-0% (6539 (0y-0))%;

(C.72)
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For the case of a spin-zero meson, where $; = Uj, the two new

terms reduce to

" < 0 ‘u1°0 ) y
F.8 =1 = iy (y -uby. (C.73a)
. 1 X ui‘g 0 5 u 1

For the case of a spin-one meson, where u, s, = 0, the two new terms

reduce to

. 0 Siao u .
Fyg=if = dypest Lo (C.73b)
40 0

The explicitly appearing spin vector s in (C.70b) and (C.73b)
can be eliminated, since the index u against which it is contracted
can play an equivalent role. Recall that the summation over the

three physical spin-one states is represented, as in (3.19), by

é sphys n Sphys v
e=1 © e

(- g™+ v'V)

3
. _mathy . th
e§1 (i sea. Has™ Yy (C.74)

Thus the vectors islgath Yin (C.70b) aﬁd (C.73b) can be omitted and
the index wu of 9o OF Y, contracted directly onto the metric tensor
gl Y.

The result can now be compared to the résults of Bardakci gnd
Halpern,26 who use the standard four-component formalism. The

complete coupling of the spin-zero meson is via the factor
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r.o= iy (A + veu), C.75a
j = s ) (C.75a)

whereas the complete coupling of the spin-one meson is via the

factor

_ s 0 .
I‘j = (Yu i o“puj}. _ R (C.75b)

where uj = kj/m = Vjsign ug, and vj is the four—velocity of the meson j.
The sum 6f all of the zero-entropy amplitudes corresponding to

a fixed cyclic order of the meson variables is the common scalar

factor f(k) times the trace of the cyclically ordered product of

factors Pi:

Al - k) == Te@ T, i Gy, oeey K, (C.76)

These coupling are the coupling associated with positive metric pseudo-
scalar and vector mesons. These mesons are the mesons that are the
basic particles of the ordered Hilbert space, and thus of the physical
Hilbert space.

~  The factorization property does not hold for the sum of zero-
entfopy amplitudes discussed above. It holds rather for the
individual zero-entropy amplitudes. An individual zerc-entropy
amplitude is obtained by assigning to each quark line segment of the
closed loop of, éay, Fig. 1 an ortho or para label, and inserting

an associated factor of (1 + 75)/2 or (1 - ys)/Z, respectively,

between the corresponding factors T, and r, ; of the trace in (C.76).



109

Notice that when a meson is coupled to a zero-entropy function only
- one or the other of the two terms of (C.75a) or (C.75b) will
contribute, and this term will be thé same at the vertices lying

on the two ends of the meson connecéion line, by virtue of the
identity represented in Fig. 8,'and~the two similar i&entitiés
associated withthe two other ortho-para type mesons. Thus the only
coupling matrices fhat enter are those associated with positive
metric pseudo-scalar and vector mesons.

The present theory thus resolves simultaﬁeously four serioué

difficulties that have long plagued this kind of approach. These

problems ares’26

first the apparent necessity for a doubling of

the pseudo-scalar and vector particles; second, the apparent necessity
for a parity. doublet partner of each of the above mentioned particles;
third the apparent demand that each of these parity doublet partners
have the wrong metric (i.e., be a ghost), and fourth the lack of

any rétionale for the empirically observed SU(6)w symmetry of

vertices. This latter symmetry emerges automaticaily in the present
theory for the amplitudes formed as the sum of zero-entropy amplitudes,

provided all momentum vectors fj are parallel to the third coordinate

axis.
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