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Abstract: 

Statistical considerations are applied to the multifragment disassembly 

of a piece of hot nuclear matter created in medium~energy nuclear collisions. 

A two-stage model, consisting of a quick explosion and a slower evaporation, 

is presented. Results are compared to those of previous simpler calculations 

and'to recent experimental data. The agreement is encouraging for a realistic 

range of the rna in par ameters of the mode 1: the avail ab 1 e energy per nuc 1 eon, 

the isospin asymmetry, and the extension of the primary explosion in space and 

time. 
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1. Introduction 

Several heavy-ion acceleratots throughout the world are presently (or 

will soon be) able to deliver beams of heavy nuclei with kinetic energies in 

the range from tens to hundreds of MeV per nucleon. This development has 

stimulated increased experimental and theoretical activity in the field of 

medium-energy nuclear collisions. Ref. [lJ recently pointed out the 

possibility of creating a transient nuclear system with an exci,tation 

comparable to its total binding energy. Such a hot nuclear system may decay 

into a large number of different multifragment channels. In the present -paper 

we address this disassembly process. 

The disassembly process is expected to be very complicated, and a 

detailed dynamical description is beyond our present capability. However, by 

virtue of the complexity of the proceis, statistical considerations may be 

useful, in p~rticular when the interest is focused on single-particle 

inclusive quantities. A statistical model yields the least biased estimates 

about the disassembly process and provides a meaningful reference against 

which more specific dynamical models can be discussed. 

Statistical ideas were first applied to hadrbnic reactions by Fermi [2J, 

who considered pion production in high-energy proton-proton collisions. For 

relativistic nuclear collisions Mekjian [3J and others [4,5J have developed 

models for composite fragment production assuming thermal and chemical 

equilibrium within a certain volume. Similar ideas were applied at medium 

energies by Koonin and Randrup [lJ. 

In this latter work the accessible phase space for the disassembly 

process included only particle-stable nuclear states. However, the collision 

process also produces metastable nuclear fragments with half-lives long on the 

time scale characterizing the disassembly process. Therefore, it appears 



." 

.. 

-3-

desirable to extend the model to include unstable fragments in the statistical 

disassembly process. The subsequent decay of these fragments needs then to be 

also considered. Towards this end, we propose a two-stage idealization of the 

disassembly process. In the primary stage the system quickly "explodes" into 

single nucleons and composite nucleides (at higher energy the creation of 

pions may also be important[, according to the available phase space. In the 

secondary stage the unstable nucleides produced in the explosion "evaporate" 

light ejectiles, such as nucleons and alpha-particles, on a somewhat longer 

time scale. [Their later further deexci~ation by way of electromagnetic 

radiation need not be considered since it does not change the relative 

fragment yields and has a negligible effect on the fragment spectra.] This 

model is described in Section 2. Section 3 discusses some instructive results 

and establishes contact with experiment. In Section 4 we make some concluding 

remarks: The Appendix addresses the relation between the volume parameter X 

of the present model and the conventional "break-up" baryon density o. 

2. Description of the model 

The disassembly of a system of hot nuclear matter is idealized as a 

two-stage process. The pr~mary, fast stage is referred to as the explosion, 

while the secondary, slower stage is denoted the evaporation. The treatment 

of the two stages is described below. 

2.1 Explosion 

Following ref. [1]~ we assume that the explosion populates phase space 

statistically. The evaluation of the exact microcanonical phase space is a 

formidable taSk. Substantial simplification can be achieved by invoking the 

grand canonical ensemble, as is justified for suffiCiently large systems. The 

ensemble averages are then given in terms of the partition function 



Z = L e -S (Ef-llAf-\I T f) 
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(1) 

The sum extends over- all possible final states f. The Lagrange multipliers S, 

ll, and \I are adjusted to ensure that the ensemble averages of the total energy 

Ef' the total baryon number Af , and the total isospin component Tf be 

equal to the prescribed values E • A , and T . 
000 

It is advantageous to introduce the intensive quantity w = (In Z)/Ao' 

Neglecting the interactions between fragments, w can be expressed in terms of 

contributions from different fragment species (characterized by AT): w = 

UuAT . Each term is of the form 

" 41T 3(" mA )3/2 r e-S(VAT - llA - \IT) 
wAT = X3 ro 21T Sh2 "'AT (2) 

The different factors in wAT arise from summation over different dimensions 

of phase space. The volume factor xjpr; is a result of the integration 

over fragment position and expresses the effectively available volume of the 

system at disassembly. The dimensionless parameter X is the ratio of the 

available volume and the reference volume ~;Ao' The relation of X to 

the baryon density at breakup is discussed in the Appendix. 

The second factor in eq. (2) arises from the integration over fragment 

momentum, which has a maxwellian distribution characterized by the ensemble 

temperature T = lis. 

The third factor 7,; AT is the intrinsic partition function of the nuclear 

species AT: 

(3) 
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where g(i) = 2j(i) + 1 is the degeneracy of the energy level EA(Ti ) of the 
AT AT 

species .AT. We have attempted to use the maximum available experimental 

information on the nuclear "levels [6]. However, as the mass number A and the 

excitation energy E increase, the data grow more and more scarce, first with 
(i) (i) 

regard to the degeneracies gAT' later on for the level positions EAT as 

we 11. 

Therefore, we have found it necessary to develop a simple semi-empirical 

formula for the density of levels in light nuclei at high excitation. The 

functional form 

(4) 

with the level density parameter given by 

a(A) (5) 

has been fitted to t~e available information on light nuclei, leading to 

kl = 0.2 and k2 = 0.8. The calculated results are not critically sensitive 

to var i at ions of these par·ameters. 

The above formula (4) repre~ents an estimate of the total level density 

in a given nuclear species. However, in the present context, we are 

interested in levels with a half~life longer than a specified time 

characterizing the duration of the explosion. Generally it is expected that 

the higher the excitation energy of a level, the shorter is its half-life. 

Unfortunately, we are faced with the fact that very little is known about the 

stability properties of highly excited levels in very light nuclei. 

Therefore, we have made the following simplistic ansatz for the density of 

sufficiently stable levels, 



eff ( ) oAT (€) = PAT € e 

2 (€-B) 
2 

2€cut (A) 
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(6) 

Here B is the barrier against the dominant decay mode of the nucleus AT (see 

later), while €cut(A) is determined on the basis of the available data [6J. 

In our standard scenario, we wish to.include all levels with a width less than 

~ . 1 -22 one MeV, r - 1 MeV, corresponding to a half-llfe Tl/2 > 5· 0 s. On the 

basis of ref. [6J, we find that for nuclei with 5 ~ A ~ 16 this can be 

achieved with the following approximation 

€ = c(A - 4) cut (7) 

with c :::::: 2 MeV. The parameter c characterizes the extension of the explosion 

process in time and is in this way somewhat analogous to the" volume parameter 

X. These two parameters are the essenti al parameters of the model. Following 

the same guideline of including only levels with r < 1 MeV, we exclude the 

broad excited levels above 20.1 MeV in 4He and also the dinucleon 

resonance. We shall examine the sensitivity of the calculated results to 

these levels. 

Once specification has been made of the model parameters (namely the 

available energy per nucleQn €, the isospin asymmetry I = (N - Z)/A, and the 

parameters X and c), the Lagrange multipliers e, ~, and v are determined as in 

ref. [lJ by solving the following three coupled constraint equations: 

1 = L AWAT 
AT 

I = L 2TwAT 
AT 

(8) 

'. 
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1 ,,(i) (i) 
EAT = -t,; - ~ EAT gAT 

AT 1 
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( i ) 
-SEAT 

e 

is the average excitation energy of fragments of the species AT. 

(9) 

Subsequently, the partition function Z in eq. (1) can be constructed, yielding 

all the statistical information on ,the system immediately after the exploSion. 

2.2. Evaporation 

The description of the secondary evaporative stage of the process forms a 

special-problem since ordinary evaporation theories are not reliable for 

highly excited, very light nuclei. Therefore, it has been necessary to 

develop a simple procedure for treating the sequential deexcitation of the 

many nuclear species under consideration. 

At a given stage ~f the deexcitation process, the excited nucleus may 

decay by emission of either a nucleon or an alpha particle; the emission of 

other composite particles, such as deuterons, is neglected, since these 

processes are expected to be less favored. The dominant decay mode is 

determined on the basis of the estimated decay barriers given by 

B = S + V (10) 

Here S = M, t'l + M 'd - MeJ'ector is the separation energy of the eJec 1 e reSl ue 
ejectile (with M denoting the experimental mass excess). The electrostatic 

contribution to the barrier is estimated by 

o for n 

V = Vp = 
(Z-I)e2 

dp 1.5 fm for p (ll ) R+d = 
P 

V Z(Z-2}e2 
d 0.5 fm for ex = R+d = ex a 

ex 
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where R = roA1/3 is the nuclear radius, with ro = 1.15 fm. Although the 

constants r , d , and d are somewhat uncertain, the above procedure o p a 

predicts the correct dominant decay modes for the nuclei under consideration. 

For example, among the nuclei up to A = 12, alpha decay is the dominant decay 

mode for 6Li , 7Li , 7Be , 8Be , lOB, 12C. 

If nucleon decay is dominant, the branching between neutron and proton 

evaporation is considered. When alpha decay is dominant, only this mode is 

included. The excitation spectrum of the nuclei emerging from the explosion 

is characterized by the ensemble temperature T =.l/a, so the population of a 

given level with energy €Af) is given by 

The subsequent evaporation stage modifies this distribution. It is easy to 

solve the sequential evaporation problem recursively, starting from the 

heaviest nucleides included. A given nucleus then receives contributions to 

its population from the various types of decay from heavier nuclei, so its 

energy distribution prior to its own decay is given by 

(13 ) 

where the primed sum extends over the three types of decay process considered 

(i.e., n, p, and a decay) and AIT' denotes the respective emitter nucleide. 

.. 

Furthermore, k enumerates the nuclear levels in the emitter and ~ 

€~ax = €~IT' - S is the maximum kinetic energy of the ejectile. The 

energy factor arises from the. integration over the momentum of the ejectile n, 

p, or a. It is understood that only levels with a positive value of €~ax 

decay - the others are particle stable and will eventually decay to the ground 

state by gamma emission. This method of solving the cascade problem yields 

the final populations in a rather easy and convenient way. 
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3. Results 

The model described above has been employed for calculating the intensive 

quantities characterizing the disassembly of a hot, and sufficiently large, 

piece of nuclear matter. The first, fast stage of the disassembly process 

(the explosion) produces a distribution of fragments that, at least at the 

one-particle inclusive level, can be described statistically. Figure 1 s~ows 

the ensemble temperature T and the specific entropy a characterizing this 

stage of the process, as functions of the available excitation energy per 

baryon E. Two extreme values of the volume parameter X have been considered: 

X = 1 (solid curves) and X = 3 (dashed curves)~ we expect the physically _ 

relevant values of X to lie between those two extremes, cf. Appendix. The 

calculated curves are insensitive to the actual value of the isospin asymmetry 

variable I = (N - Z)/A. Figure 1a also includes the curve corresponding to an 
2' ideal gas of free nucleons: T = 3 E (dot-dashed curve). Production of 

composite fragments effectively reduces the number of translational degrees of 

freedom and thereby raises the temperature. This effect is most pronounced at 

lower energies and for small values of the volume parameter X. At higher 

energies pion production begins to playa role, providing an efficient 

mechanism for cooling the ?ystem below the ideal gas temperature. In fig. 1b 

we include results from other calculation~ [7-9J. It can be seen that our 

results for the pre-evaporation stage (in particular for X = 1) agree 

reasonably well with those of other models. However, since the subsequent 

evaporation stage can lead to observable quantities rather different from 

those associated with the explosion, the original statistical quantities lose 

their significance. 

In order to demonstrate the importance of the evaporation in shaping the 

final distributions, we compare in fig. 2 the relative yields of final 
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fragments (solid histogram) with those associated with the pre-evaporation 

stage (dashed histogram), in one particular example having € = 20 MeV, X = 1, 

and I = (N-Z)/A = O. The most spectacular difference is, of course, that all 

the A = 5 nuclei disappear in the final distribution. Furthermore, the yield 

of alpha particles is increased by about a factor of six and actually becomes 

a local maximum in the distribution. A similar effect is found for other 

especially stable nuclei. The number of free nucleons is also increased 

significantly (more than 30% in the present example), while the deuterons 

receive only a relatively small contribution from the evaporation. On the 

other hand, the heavy species tend to suffer sUbstantial losses, particularly 

so for the less stable odd-A nucleides. This change of the relative 

abundancies of the various fragment species significantly affects the final 

deuteron-to-proton yield ratio, dip. This general feature makes it essential 

to take account of the decay of composite fragments if one attempts to use dip 

as a measure of the entropy of the initial source. Such an idea was 

introduced in ref. [lJ and has also been discussed in refs. [10,11J. 

The formation of unbound nuc1eides during the explosion stage also has 

the appealing effect of enhancing the final abundancies of particularly stable 
4 species, such as He. Fig~re 3 shows a comparison of our results for 

relative fragment yields (solid histogram) to those of an earlier calculation 

where only particle-stable nuclear states have been included in the 

statistical explosion (dashed histogram) [IJ. The parameter values are the 

same as in fig. 2. While the dashed histogram does not exhibit maxima for the 

more stable nuclei (in fact, odd-A species are sometimes more abundant than 

the neighboring even ones), nuclei with A = 4,12 (and to a lesser extent A = 

6,8,10) show pronounced peaks in the present calculation. This inversion 

arises mainly because well-bound stable nuclei usually tend to have fewer 

particle-stable excited levels than those with less bound ground states. 

.. ' 
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Now we wish to establish contact between our calculated results and 

experimental data. Since only intensive quantities appear in eq. (8), the 

results apply to all systems with the same values of E and I. The 

corresponding extensive quantities (i.e., the absolute production cross 

section «TAT of a given fragment species AT) scale with the source size 

Ao' In fact, ~AT is of the form 

(14 ) 

where a is the cross section for forming a source and A is the average 
o 0 

number of nucleons in the source. The source is identified with the 

participant nucleons and is assumed to be composed of nucleons from the 

projectile and target according to the standard sharp-~phere clean-cut 

geometry; this leads to [12J 

A A2f3 + A A2f3 
T P P T 

Ao = -( A'-1--'-:f3=---+-A'-1--'-:f3"-)"""'2 
P T 

(15 ) 

U " th t " t" . t" -0 -- nr02(Ap1f3 + AT
1f3 )2 and (15) slng e geome rlC reac lon cross sec lon w 

we obtain 

(16 ) 

Figure 4 displays the absolute cross section for protons, C'p' as a function 

of the quantity ATA~f3 + ApAi f3 for nuclear collisions with 

Eb fA = 800 MeV. The curves represent expected limits of the parameter eam . 
range. The data are taken from ref. [12J. It is seen that the predicted 

linear dependence is borne out and that the absolute sizes are in good mutual 

agreement. 

In subsequent figures we plot relative yield ratios for different 

fragment species as functions of the available energy E. In order to make a 
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comparison with the data, it is necessary to calculate the values of E 

appropriate to the different reactions investigated experimentally [12J. 

Since the identification of the source with the participant nucleons led to a 

good description of the absolute cross sections, we use the same ideas to 

estmate the available energy. Thus, we assume that the kinetic energy of the 

participant nucleons is available for the explosion. It should be noted, 

though, that specific dynamical models may yield different distributions of 

the energy; e.g., in a hydrodynamical picture approximately half the total 

energy is contained in the macroscopic flow of matter and only the remainder 

is available for statistical excitation [13J." 

Figure 5 shows the dIp ratio obtained for several values of the model 

parameters, as a function of the available energy per participant nucleon, E. 

Unless otherwise indicated, the lower boundary of the different bands on the 
N-Z figures represents symmetric systems (I = A = 0), while the upper boundary 

corresponds to the value I = 0.2, which characterizes the combined system C + 

Pb and is the highest value of relevance. Figure 5a shows the results of the 

model for two limiting values of the volume paY'ameter, X = 1 (solid curves) 

and X = 3 (dashed curves), with the life-time parameter in eq. (7) held 

constant at c = 2. In fig: 5b the volume parameter is kept constant at X = 1 

and the number of levels included is varied. The results displayed have been 

calculated with c = 1 (dashed curve), c = 2 (solid curves), and c = 4 

(dot-dashed curves). The calculations displayed in figs. 5a,b have included 

only the "standard" levels for A ~ 4, i.e., "the only excited state for A ~ 4 

is the level at E = 20.1 MeV in 4He . In fig. 5c the standard value c = 2 

has been kept, but we have included either the dinucleon resonance at around 

2.2 MeV (dashes) or the broad excited levels in the alpha particle above 20.1 

MeV (dot-dashes). The data points have been included in these figures. 
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Figure 5 demonstrates that the relative yields are rather sensitive to the 

value of the volume parameter X but (at least at higher energies) not too 

sensitive to moderate variations in the parameter c. On the other hand, the 

role of the dinucleon resonance is significant, while the broad excited states 

in the alpha particle affect the result~ only moderately. The width of the 

dinucleon resonance can be estimated from free nucleon-nucleon scattering 

phase shifts at low energies. Using r ~2E/6 with £ ~ 2 MeV and 6 ~ 1 for th~ 

phase shift [3J we arrive at the estimate r ~ 4 MeV. This corresponds to a 

lifetime not much shorter than our rough estimate of the time scale for the 

explosion phase. Hence a specific' dynamical model is probably required to 

determine whether the dinucleon should be included in the explosion or not . 

. One might also argue conversely: if it is possible to fix the other 

parameters, the present model may offer a tool for learning about the time 

scale of the disassembly process, insofar as the calculated results are 

sensitive to the inclusion of a particular state with a known lifetime. 

In the subsequent figures we consider the standard scenario: c = 2 and 

only the 20.1 MeV excited state in 4He included for A < 4. Figure 6 

displays the alpha~to-proton yield ratio, alp, for two different values of the 

volum~ parameter: X = 1 (solid curves) and X = 3 (dashed curves). As 

indicated by fig. 2 and recent calculations [14J, the alpha yield seems to . 

provide the most sensitive test of the theory of the disassembly of nuclear 

matter. Ref. [14J discusses the possibility of a Bose condensation of alpha 

particles, in analogy to what has been predicted earlier for low-energy pions 

[15J. In view of this, it is unfortunate that only relatively few 

measurements of the alpha yield have been reported in ref. [12J, and more 

measurements of the alpha yields in medium-energy nuclear collisions would be 

highly desirable. 
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Figure 7 is an illustration of our results for the relative yields of 

other fragments. Figure 7a shows the 3He/p yield ratio, while fig, 7b 

displays the triton~to-proton yield ratio, tIp. As in fig. 5, one observes a 

remarkable trend of constancy in the gross structure of the experimental data 

as a function of E, which the model does not reproduce, particularly for the 

lower energies, E < 100 MeV. This discrepancy may be partly attributed to the 

fact that classical statistics has been used, although quantum statistics play 

an important role at energies below the Fermi energy, as pointed out, e.g .. in 

[14J. Nevertheless, more experimental data are necessary (particularly in the 

ranges 20 MeV < E < 80 MeV and 100 MeV < € < 150 MeV) in order to allow 

definite conclusions about the model. 

In fig 8 we compare the prediction of our model for the yield ratio of 

positive and negative pions to protons, and compare with data [12J. The 

calculations have been carried out for two different values of the volume 

parameter: X = 1 (solid curves) and X = 3 (dashed curves). It can be seen 

that pion production sets in with about the same slope in theory and 

experiment, but the calculation overestimates the absolute pion yields 

significantly. This may not be surprising in view of the experimental finding 

[16J that the pion multiplicities scale with a power close to 2/3 of the 

source size Ao' This suggests that pion production may be mainly associated 

with the surface of the system, and the present model would have to be refined 

accordingly before good agreement for the pions could be expected. 

It is instructive to note the neutron-to-proton yield ratio, nip. as a 

function of E. This quantity is shown in fig. ga. The results do not depend 

strongly on X, but they are sensitive to the neutron excess in the source, I. 

For neutron-rich systems the presence of composite nucleides amplifies the 

resulting ratio between free neutrons and protons, as has been discussed in 
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are generally contained within the calculated rang~, their enefgy dependence 

appears to be somewhat weaker. 

As mentioned in Section 2, in the calculations we have neglected the 

fragment-fragment interactions that are dominated by the electrostatic 

repulsion. Due to the long range of the Coulomb force, this contribution can 

be approximated by ~ssuming that the fragmentation occu~s in a 

configuration-independent electrostatic potential ¢ (identified with half the 

typical electric potential inside the source) [lJ. The potential energy of a 

given species is then increased by the amount Z e~, where Z is the charge 
o 0 

of the source. On the basis of this mean~field approximation it can be shown 

. that the calculated res~lts depend only slightly on the Coulomb parameter ¢: 

furthermore, the mai n effect is an effective decrease of the available 

excitation energy E by 
Zo 

This feature is reflected in slightly the amount p. 
0 

lower temperatures and entropies; the yield of pions and light nuclei is 

correspondingly somewhat smaller, and the yield of heavier fragments slightly 

larger, than with ¢ = O. This effect is less than a few percent in all 

quantities. 
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4. Concluding remarks . 

The present study is relevant for nuclear collisions at intermediate 

energies, say from 20 to 200 MeV per nucleon. The apparent lack of small 

parameters, on which the physics discussion can be based, constitutes a 

particular challenge of medium-energy nuclear physics. This situation is in 

contrast to low-energy nuclear reactions, where the smallness of the 

macroscopic velocities relative to the intrinsic nucleonic motion has a nu~ber 

of simplifying consequences and to high-energy nuclear collisions where the 

largeness of the bombarding energy on the nucleonic scale allows some 

important approximations. 

In the present paper we have studied the disassembly of a hot nuclear 

system in a two-stage idealization. In the first stage the system quickly 

explodes into many excited nuclear fragments. While cohceptually similar to 

the approach in ref. [lJ, the present description of the explosion .is more 

general in that also particle unstable nuclear levels are considered 

accessible. Therefore, a subsequent evaporative stage need be considered 

during which the unstable fragments deexcite. 

We have demonstrated that the inclusion of unstable levels does in fact 

affect the final, observabJe fragment abundancies significantly. Therefore, 

this inclusion appears necessary in any quantitative model. An example of 

special current interest is the deuteron-to-proton yield ratio. It was shown 

that the decay of unstable heavier fragments contributes a substantial number 

of debris protons, particularly at lower bombarding energies, so the 

observable dIp ratio emerges as relatively independent of energy, a feature 

that is clearly indicated by the data but that can not be reproduced in 

statistical models neglecting unstable fragments. 
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Other fragment yield ratios have also been compared with data. The 

calculations exhibit an encouraging degree of agreement with the data, 

although they yield a somewhat strong.er beam energy dependence than is. 

indicated by the data. However, considerably more data are necessary before 

any.firm conclusions can be drawn. 

Until now, our attention has focused on the fragment yields. However, 

the differential angular distributions and energy spectra can readily be 

calculated in the model, although some additional practical work woul~ be 

required. If the further confrontation with more complete data proves 

successful, the differential quantities should be considered subsequently. 

While p, d, and t spectra from relativistic nuclear collisions have already 

been measured [17J, there is a great need for additional data, in particular 

for heavier fragments. 

The .present work focuses on one particular aspect of medium-energy 

n~clear collisions, namely the disassembly into observable fragments at the 

final stages of the collision process. This aspect has so far been largely 

ignored in existing dynamical collision models, such as nuclear fluid dynamics 

and intra-nuclear cascades, which yield only an u~structured matter 

distribution emerging from_ the reaction zone. An important next step would 

therefore be to augment the dynamical models with the present model for the 

disassembly phase. Such efforts are presently under way [18J, and we hope 

they will lead to a more complete description of the entire collision process. 

In the course of this work we have had stimulating discussions with S.E. 

Koonin, H. St6cker~ and W.J. Swiatecki. This work was supported by the 

Director, Office of Energy Research, Division of Nuclear Physics of the Office 

of High Energy and Nuclear Physics of the U.S. Department of Energy under 

Contract W-7405-ENG-48. 
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Appendix: The relation between X and p 

. In the following discussion, we ignore the isospin variable T and assume 

that a nuclear species is characterized by its mass number A alone; this 

simplification is merely for notational convenience. 

Each term in the partition function Z refers to a definite fragmentation 

channe1 characterized by the numbers {nA~with nA denoting the number of 

fragments with mass number A. The total number of fragments in that 

particular channel is given by N =LnA. 

The position of a fragment is ~enoted by ;~~) where iA = 1 •... nA 
enumerates the nA fragments of the species A. The contribution to the 

partition function from the integration over the fragment positions is of the 

form 

00 nA r 
= IT • IT Jd;~A) 

A=l 'A=l A 
(A-I) 

th A rough estimate of this N-dimensional volume integral is the N power of 

some volume characterizing the size of the system. As a convenient reference 
4n 3 . 

volume we use -~ r A where A is the (average) total number of 
,) 0 0 0 

nucleons in the system. However, the quantitative evaluation is complicated 

by the circumstance that in general the different position coordinates are not 

independent of each other. This is so because each fragment occupies a 

certain volume in space and thereby makes that domain inaccessible to other 

fragments. In order not to introduce complications beyond the scope of the 

model, we have introduced the parameter X by writing the above integral eq. 

(A-I) as 

(A-2) 

J, 



j. 

-19,... 

This is equivalent to assuming that the average available volume for any 

fragment amounts to 

(A-3) 

In order to make contact with other models, it is necessary to relate X 

to the physical break-up density of baryons. To this end we analyze the 

relatively simple case where only fragments of the same size occur. This case 

presents a good illustration since equipartition is actually the most probable 

fragmentation for channels with a given number of fragments. 

Consider then a volume V in which N equal fragments are present. Let 

each of them block a volume V IN,where V < V. We shall study the o . . 0 

thermodynamic limit where V,Vo,N ~ 00 while Vo/V remains constant. The N 

coupled volume integrals in (A-I) can then be evaluated by first performing an 

unrestrictedint~gration ovef (any) dneof the position variables, then 

integrating over another one with the restriction that it not enter the domain 

blocked by the first one, and so on. This procedure leads to the result 

(A-4) 

After some algebraic manipulation~ the use of Stirling's formula results in 

the form 

N h . Vo~ 1- ~ - IN 
fd~. Vo 2N 

II ~ e 1 - V 
i=1 

. 1 
(A-5) 

On the other hand, from the definition (A-3) of X we also have 

N fd~. = (X V )N II 
i=1 1 0 

(A-6) 

Therefore, by identification, we find 
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(A-7) 

where the term 1/2N in the exponent has been neglected, as is justified in the 

limit N ~ 00. 

Two interesting cases are the dense limit (V ~ V) and the dilute limit a 
(Va «V). In the dense limit Va ~'V we have. 1 - VIVo = € ~ 0 and hence 

1 
X ~ e ~ 0.37 (A-8) 

In the dilute limit we have to leading order in the small quantity Vo/V 

(A-g) 

A numerical comparison of X in (A-7) and the above dilute-limit formula 

(A-g) shows that the latter actually provides a very good approximation up to 

values of Vo/V rather close to unity, say up to Vo/V ~ 0.8. 

The relation between X and the nucleon density p can be established by 

assuming that the volume blocked by a given fragment with mass number A is 
. 4n 3 simply equal to the standard nuclear volume 3 roA. The average nucleon 

Vo 
density in the considered v.olume V is then given by p = V Po where 

f> = (4'fT r 3)-1 is the nucleon density in standard nuclear matter. By o 30 

inserting this relation into the general expression (A-7), or its approximate 

form (A-g), one obtains a useful correspondence between the volume parameter X 

and the standard break-up density p. In particular, it follows that the 

values X = 1 and 3 correspond to ~.7p and 0.3 p ,respectively. We o 0 

expect that these two values provide brackets on the break-up density. 
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Figure Captions 

Fig. 1. 

Fig. 2. 

Fi g. 3. 

Fi g. 4. 

The temperature T(a) and the specific entropy u(b) immediately 

after the explosion as functions of the available excitation energy 

per baryon E, for two values of the volume parameter: X = 1 (solid 

curves) and X = 3 (dashed curves). In Fig. 1a light lines display 

the results without inclusion of pions, while heavy lines represent 

the full calculation. The curve corresponding to an ideal gas of 

free nucleons (dot-dashes) has also been included. Figure 1b 

includes results from other theoretical calculations; the sources of 

these curves are refs. 7. 8 and 9. 

Relative yields of final fragments (solid histogram) compared to 

those prior to the evaporation stage (dashed histogram) for the 

parameter values E = 20 MeV, X = 1, I = (N-Z)fA = O. 

Comparison of the final relative fragment yields of the present 

mod~l, which takes all nuclear levels with a width r < 1 MeV into 

account (solid heavy histogram), with those of an earlier 

calculation [lJ where only stable (r = 0) nuclear levels have been 

included in the availab1~ phase space (dashed light histogram), for 

the parameter values € = 20 MeV, X = 1, I = O. 

Absolute cross section for protons 0p as a function of the 

quantity ATA~f3 + ApAi f3 for nuclear collisions 

Eb fA = 800 MeV .. The curves represent expected limits of the earn 
parameter range. The experimental data (here and in all subsequent 

figures) are taken from ref. [12J. For each of the five different 

projectile-target combinations, the value of the isospin asymmetry I 

is given for the total system as well as for the average source. 



Fi g. 5. 

Fi g. 6. 

Fi g. 7. 

Fi g. 8. 

Fi g. 9. 
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Deuteron-to-proton yield ratio (dIp) as a function of the available 

excitation energy per participant nucleon € obtained for several 

values of the model parameters. The lower boundary of the different 

bands represents sYmmetric systems, while the upper boundary 

corresponds to I = (N-Z)/A = 0.2. The different sections of the 

figure show the dependence of dIp on (a) the volume parameter X, (b) 

the life-time parameter c for nuclei A ~ 5, and (c) the excited 

states in nuclei A ~4. 

Alpha-to-proton yield ratio (alp) as a function of the available 

energy per participant nucleon € for two different values of the 

volume parameter: X = 1 (solid curves), X = 3 (dashed curves). The 

lower and upper boundaries of the different bands correspond to 

I = 0 and I = 0.2, respectively. 

3He-to-proton yield ratio (a) and triton-to-proton yield ratio (b) 

as functions of the available energy per participant nucleon € for 

. two different values of the volume parameter: X = 1 (solid curves 

and X = 3 (dashed curves). The lower and upper boundaries of the 

different bands correspond to I = 0 and I = 0.2, respectively. 

Pion-to-proton Yield ratios for (a) positive pions and (b) negative 

pions, as functions of the available energy per participant nucleon 

€, for the values X = 1 (solid curves) and X = 3 (dashed curves) of 

the volume parameter. 

Relative yield ratios of fragments with the same mass but different 

isospin component: (a) neutron-to-proton, (b) triton-to-3He, (c) 
- + 

n -to-u as a function of the available energy per participant 

nucleon €, for different values of the volume parameter X and the 

isospin asymmetry I. 



Q. -~ 
o 

£ -

II 

>< 
t() 
II 

>< 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ , ~ \ 

\ . \ 
~ \ \ 

\ \ 
\ \. , 

\ \ , 
\ . \ 
',\. \ 
\\., 

\ \\ , . 

-24-

c 
o 
Q) 

\ '\ 
\ .\ (J 

~ 
c· \ . 

\~. g 
\\~ ~ 

'~\'\I "~ . 
\\ . \\ \. 

',\. ,\. 
'\ \. 

\ \ 

o 
o 
C\J 

-> Q) 

~ 
0"""" 
LO \II 

c 
o 
Q) 

() 
~ 
C 
'
Q) 

o 0-
o >. 

C'l 
'
Q) 

C 
Q) 

C 
o 

...... 
C o ...... 

LO () 
)( 

,W 

L-------------~------------~------------~O o 
o 

o 
LO 

o 
LO 

o 

OJ 
C") 
<:t ..... 
6 ...... ..... 
co 
...J 
co 
X 

\'., 



-25-

-0 

d 
<0 
'<t 
'<t - 0 (/) 6 

~ :::l 0 ~ 

~ 

~ C\J CXl 

C ..J 
co 

~ x 

d5 -> Q) 

~ 
'-'" 

0 \U 
LO - C 

0 
Q) 

(.) 
::l 
C ..c 

r-

'-
Q) 0 

O'l 
C- o or-

O LL. 

0 ~ 
~ 
'-
Q) 

- C c Q) -Q) C 
c: 0 .-- 0+-
(/) 0 :::l 0+-.s= 0 0-
(/) (.) 

LO )( 
~ W 

~~----------~----------~--~--~~o 
C\J o 



~ 

.~ 10-2 

+-c: 
a> 
E 
0' 
o 
~ 

"t-

a> 
::: 10-3 
o 
a> 

0::: 

I ----, , 
I 
I 
I 
I 
I 
I .. _-

-26-

--, 
'----

I 

E = 20 MeV 
X = I 
1=0 

---- BefOre} Evaporation 
- After stage 

---I 

I 
I 
I 
I 

~--

2 3 4 5 6 7 8 9 10 II 12 13 14 

Fragment mass number A 
XBL 816- 3190 

Fig. 2 

".' 

.t' 



-(1) 

0:: 

--, 
--~--, 

I 
I 

I 
I 
I 
I 
I L __ 

-27-

E = 20 MeV 
X = I 
1=0 

---- r = 0 

-f<IMeV 

r--..... --, 
I 
I 
I 
I 
L __ , 

r-- ....... __ , 
I I 

I 

I 
I 
I 
I 
I L __ , 

I L __ 

2 3 4 5 6· 7 8 9 10 II 12 13 14 

Fr<;lgment mass number A 

XBL 8110-1437 

Fig. 3 



-28-

100~------~--------~r-------------~--~ 

-c 
~ 

0 
..0 -0-

b 
c 
0 

of-
U 
OJ 
en 
en 
en 
0 
~ 

u 
c 
0 

of-

0 
~ 

0-

0 
of-

~ 

10 

E labIA = 800 MeV 

+ Symmetric 
y Ne+Cu 
+ Ne+ Pb 
9 Ar+ Pb 
{- C+ Pb 

X=I,I=0.2 

N-Z 
I=

A 

Total 
o 

0.060 

Participants 
o 

0.047 
0.193 0.145 
0.194 0.171 
0.200 . 0.153 

IL-______________ ~ __ L-________________ ~ 

100 1000 

AS 2/3 + SA 2/3 
XBL 8110-1438 

Fig. 4 



'.' 

~ 

;, , 

(/) 

E 
Q) 
+-
(/) 
~ 
(/) 

0 
~ 
+-Q):::J..o..o 
·.E u 0... 0.....0 
E+++o... 
~Q)Q)~+ 
cnZZ«U 

.... -c- -+~~ 

C\J 
II 

0 

o 

C\J 
0 

-29-

~ 

II 

>< 

t.{) . . 

o 

r0 

0 
II ...... 

diP O!~DJ PI8!A UO~OJd-O~~UOJ8~n8a 

O"l -rr> 
I 

U> 
CD 
-I 

0 
co 
x 

0 
C\J 

->" 
CD 
~ -

0 \U 
t.{) c 

0 
CD 
0 
::J 
C 
~ 

CD 
0- r1:I 

I.() 

0 >. 
0 Cl C) 

'r-
~ LL. 

CD 
C 
(I.) 

C 
0 
+-
C 
+-

0 0 
t.{) )( 

W 



en 
E 
Cl> 
+en 
~ en 
u 
~ 

+-
Cl> ::J..c..c 
Eua..a..5: 
E + + + 
~Cl>Cl>~+ 
(J)ZZ«U 

II 

>< 

I 
C\J 
II 
() 

-
II 
() 

-30-

V 
II 
() 

o 
o 
C\J 

o 
o 

o 
LO 

~----------~--------~--------~O q LO 0 
o 

diP O!~DJPla!~ uo~oJd-o~-uoJa~naa 

c: 
0 
Q) 

0 
::J 
c: 
~ 

..0 Q) L!'l 
Q; 

>- 0'1 .,.... 
~ lJ... 

~ 

Q) 
c: 
Q) 

c: 
0 
+-
0 
+-
0 
)( 

w 



~ 
........ 
~ 

0 
~ 

0 
~ 

~ 
Q) 

~ 

c 
o 
~ o 
~ 

~ 
I 
o 

1.0 

... 0.5 
c 
o 
~ 
Q) 
~ 

:J 
Q) 

o 

:-,. (:, 

Standard 

With. 
broad a 
excited 
states 

-'-... ............. 

.,,' 

x = I + Symmetric systems 
C=2 y N'e+Cu 

+ Ne+ Pb 
.? Ar + Pb 
9 C+ Pb 

.----.---:--:--
---...-- ~ -._. . - '~.; 

- ~~~ 
With --If. t ~+ ~ ----- . NN __________ _ resonance __________________ ~--

" 

O~I ______________ ~~ ______________ ~ ____ ~ ________ ~ ______ ~ ________ ~ ____ ~ 

o 50 100 150 200 

Excitation energy per nucleon E (MeV) 
XBL 8110,1447 

Fi g. 5c 

I 
W 
-..oJ 



Q. 
......... 
tj 

o .-. 
+-
c 
'- 0.1 

-Q) 

c: 
o 
+-o 
'-
Q. 
I 0.01 
o 
+-

J 

C 
..c 
0--« 

\ 
\\ 

-32-

+ Symmetric systems 
~ Ar + Pb 

~ 
~ ~ 
~" " " " '" " " ". X-3 " -

0.00 I L..-----:... ____ --'-_____ '----3Ioo...&.._--I 

o . 100 200 

Excitation energy per nucleon E (MeV) 

XBL 8110-1445 

Fig. 6 

\.; 



' .... 

0.3 

0-
......... 
Q) 

I 
ro 

0 
+-
~ 0.2 

"'0 
Q) 

>-
c 
0 

'+-
0 
~ 

0.1 0-
I 

0 
+-

I 
Q) 

I 
ro 

0 .... 
0 

('. 

\ 
,\ 
\\ 

\ 

;f 

+ Sym'metric systems 
y Ne+Cu 
+ Ne+ Pb 
¢ Ar + Pb 
<} C+ Pb 

~ . f 
"t '1 -X=I 

"-
............... Ul __________ ¥-__ X=3 

roo 200 

Excitation energy per nucleon E (MeV) 

XBL 8110-1442 

Fig. 7a 

I 
W 
W 
I 



0.6 + Symmetric systems 
a. 

\\ 
y Ne+ Cu 

........ + Ne+ Pb ..... 
0 ~ Ar + Pb .-

? C+Pb ..... 
c \ '-

"'C \ CD 0.4 
\ ~ 

c: \ 
0 \ 

~ 
I 

W ..... ~ 

0 \ I 

'- 1=0.2 } a. \ 1= 0 X= 3 I 
\ 0 \ ..... 0.2 \ ~~g.2}X=1 I \ c: "-.0 

? \ 
..... "-- "-'-r ........ ......... 

\ 
I 

I --.....;;;~ ___ '.1 
0 -

0 100 200 

Excitation energy per nucleon E (MeV) 

XBL 8110-1443 

Fig. 7b 

. - (. 
j . ~ 



~ a $ 

0.151-
+ Symmetric systems· 

0-
y Ne+Cu 

+' + Ne+ Pb 
~ ¢ Ar + Pb 
0 .-
+-
0 
~ 0.1 

"'0 
Q) 

~ 

c:: 
0 

t f +-
0 
~ 

0-
t, 0.05 +~ ~ 

I 
W 

+-

c.n 

, 
I 

+ 
~ 

01 a:<:. I I I 

o 50 100 150 '200 

Excitation energy per nucleon E (MeV) 

XBL 8110-1444 

Fig. 8a 



I 

0-

I' 
t:: 
o 

0.3 

+- 0.2 
o 
~ 

'"0 
Q) .-
>. 
c 
0 
+-
0 

0.1 ~ 

0.. 
I 

0 
+-
I 

t:: 

+ Symmetric systems 
y Ne+Cu 
, Ne+ Pb 
~ Ar+ Pb 
~ C+"Pb 

t~ 7 ", 

X=I,I=O 

°b~~~~~------~------~~----~~J 50 100 150 , 200 

Excitation energy-per nucleon E (MeV) 

XBL 8110-1441 

Fig. 8b 

,,", r:; J: "~ 

I 
W 
0'1 
I 



-37-

(\J 
()') 

C\J 
rt') 
I 

0 0 U> 
<X) .• 

II II -l 
H H 0 CD 

. , 0 x 

,f~ C\J 

I , ...-
I > 

.-- Q) 

~ ........ 
r0 0 \lJ 
II l!) c: I >< - 0 

I 
Q) 

0 

I I ::l 
c: 

I ' I ~ 
Q) 10 

(» 

I I 0- 0 

~ 
O"l 

0 Or-

I I.J.. 

I 0 C'» 

I 
~ 

/ 
Q) 

I c: 

/ 
Q) 

I c: 
/ I 

0 

/ 
+-

I 0 

I 
+-, 0 0 

/ l!) )( 

/ 1 w 

:..!J 

6 

L...-___ ...L-____ --'-~---------IO 

r0 C\J 0 

d/ P O!~OJ PI8!A uo~oJd - o~- UOJ~n8N 



3 

0 
~ 2 
c 
~ 

. "'C 
Q) 

~ 

Q) 

::I: 
~ 
....... 

.::I: 
~ 

\ , ,. 
" , ....... 

',,-

t---- -------
X= 1 

1=0.2 

_-------.1.-------_ --- T:!' 

+ Symmetric systems X=3 
y Ne+Cu 
• Ne+ Pb 
~ Ar + Pb 
~ C+ Pb 

I 

50 100 150 200 

Excitation energy per nucleon e(MeV) 
XBL816-3193 

Fig. 9b 

~' i ... 
}. ,. 

I 
W 
ex> 
I 



""";>, 

6 

o -c 
~ 

"'C 4 
<D 
~. 

+ 
I:: 

" I:: 
2 

(: 

" " . ", 
" 

+ Symmetric systems 
V Ne+Cu 
+ Ne+ Pb 
? Ar + Pb 

J 

, ~ X=I ',. ----............... +- 1=0.2 ------- -- . 

X=3 

+ _1 t~ -1=0 t ----
O~, ______________ ~ ______________ ~ ______________ ~ ____ ~ ____ ~ __ ~ ______ ~ 

o 50 100 150 200 

Excitation energy per nucleon € (MeV) 
XBL 8110-1440 

Fi g. 9c • 

I 
W 
1.0 
I 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



.jttt- - =- "" 

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

... ~ ------..::--


