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Abstract: 

Inseparability of Fermions in a Model 
of Cyclic Symmetric Field Theory 

Herbert M. Ruck 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94720 

LBL-13378 

In a field theory model of two scalar fields and two massless fermion 

fields with internal cyclic symmetry Z(3) there exists an algebraic relation 

between the fermion fields that makes them inseparable in both 3 + 1 and 1 + 1 

dimensions. 

Solutions of the field equations in 1 + 1 dimensions show bound states 

for the fermions .in interaction with the solitons generated by the scalar 

fields. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear Physics 

of the U.S. Department of Energy under Contract W-7405-ENG-48. 
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1. DEFINITION OF THE MODEL 

The variables of the model considered are two classical scalar fields 

¢1 and ¢2 and two fermion fields ~l and ~2 defined on the space-time 

manifold. 

We construct the matrix fields 

, 

where o1, o2, o3 are the Pauli matrices and 

The Lagrangian density of our model is a trace of 2 x 2 matrices 

- ~ - -+ i~y a ~ - m~w + gw¢w lJ lJ 

( 1 ) 

(2) 

(3) 

with the partial derivatives a = a/ax , a = -21 (a - a ) and the anticommuting 
lJ lJ lJ lJ lJ 

gamma matrices {YlJ,Yv} = 2gllv· 

The coupling constants A > 0. a < 0. B > 0 determine the strength of the 

self-interaction of the scalar fields, and the constant o is defined to set 

the potential density in the vacuum state to zero V(vacuum) = 0. m is the mass 

of the fermion fields, and g is the coupling constant of the Yukawa 

interaction between scalar and fermion fields. 

In 3 + 1 dimensions lJ,V = 0, 1,2,3:yll are the Dirac-gamma matrices and 

the metric tensor is g = diag(l.-1.-1.-1). In 1 + 1 dimensions lJ.V = 0,1 lJV . . 

and Yo= -o2, y1 = io1 (Ref. 1 ), glJV = diag (1,-1). 
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The Lagrangian (~) is invariant under the transformations of the Poincare 

group and has the internal symmetry Z(3), the cyclic group of order three: 

(4) 

with the representation 

R = exp (- i ea2). e = fin. n = 0, 1, 2 . ( 5) 

R3 is the unit matrix which guarantees the invariance of the interaction 

term ~¢1P. 

The field equations are coupled differential equations 

2 2 2 2 2 - -
a~¢1 = -4A{¢1 + ¢2)¢1 + 3a(¢1 - ¢2) + 28¢1 - g{~Pl~Pl - IP2IP2) 

2 { 2 2) { - -a~¢2 = -4A ¢1 + ¢2 ¢2- 6a¢1¢2 + 28¢2- g -~P11P2- IP21P1) 

iy~a~~P1 - mw1 = -g{~P1¢1 - IP2¢2) 

iy~a~IP2 - mlP2 = -g(-~P2¢1 - IP1¢2) 

2. INSEPARABILITY OF FERMIONS 

{6) 

{7) 

(8) 

(9) 

From the linear structure of the equations (8) and (9) and the symmetry 

of the problem, we find as a main result a connection between the fermion 

fields independent of the form of the fields ¢1 and ¢2. 

Theorem: For massless m = 0 fermion fields, any pair of solutions w1 and 

~P2 of the system of equations (8) and (9) are related algebraically: 

w2(t,x) = Aw1(t,x) 

L with A = iy5. 

Remark: We choose the Y5 matrix to be Y5 = iY0Y1 Y2Y3• y§ = +1, 

~Y5 .Y~J= 0: ~ = 0,1,2.3 in 3 + 1 dimensions: and Y5 = Y0Y1 = -o3, 

Y~ = +1, 1 y5 ,Y~J = 0, ~ = 0,1 in 1 + 1 dimensions. 

( 10) 
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Proof: Substitute w2 from (10) into Eqs. (8) and (9). Set m = 0. Then: 

(11) 

( 12) 

Equation (12) multiplied from the left by A is identical to (11) because AY~A 

= +Y and A2 = ~1 on both four and two dimensional space-time manifolds. 
~ 

This makes the fermions inseparable. 
'" 

If one component becomes zero the other vanishes too or the presence of 

one component implies the presence of the second component. 

3. SOLUTIONS IN 1 + 1 DIMENSIONS 

Approximate solutions of the field equations are found in 1 + 1 

dimensions in an iterative way: 

(i) First we solve exactly the system Eqs. (6), (7) without any fermions 

present wl = w2 = 0, 

(ii) then we solve exactly the equation of motion (8) and (9) of the fermions 

in the scalar field, and 

(iii) calculate in a linear approximation the correction of the scalar fields 

due to the presence of fermions. And last we 

(iv) check that the new scalar inserted into the field fermionic equations (8) 

and (9) does not change the fermionic currents but only adds a complex phase 

to the fermionic fields. 

(i) Solutions of the scalar field equations~~ = ~2 = 0 

Bee au se of the eye 1 i c symmetry the potent i a 1 

-. 



-5-

has three minima or vacuum states located at n1 
1 -1! 

and n3 = (-~V' ~v) such that the potential 

vanish in all n•s. V(n1 ) = V(n2) = v(n3) = 0, 

Using the trajectory method of Rajaraman2 

1 I! 
= (~v,o), n2 = (-2¢v' ~v) 

and its first derivatives 

(av;acp1 )(n1 ) = o (defines <Pv)· 

for coupled nonlinear 

''"" '• differential equations in one dimension we find time-independent soliton 

solutions. 3' 4 When a= ~~¢v, B =A¢~, and o = -~A¢~, a linear trajectory 

connecting the minima n1 and n2 -- ¢1 + 13¢2 = ¢v -- decouples the 

equations and leads to the solutions: 

<t>
1
(x) = t ¢v[l + 3tanh(ax)] , 

<t> 2 (x) = ~ <Pv[l - tanh(ax)] 

with a = ¢v I'JAT'l . 

( 14) 

( 15) 

The fields are combinations of constants and kinks of the single field 

¥?
4-theory. 5 The asymptotic values are lim (¢1 .¢2) = n1 and lim (¢ .cp) = Q. 

x-++oo X-+-oo 1 2 2 

The choice of the coupling constants a and B implies a linear trajectory 

in the sense that the saddle points of the potential surface V(<t>1 ,<t>2 ) lie on 

the straight lines connecting the minima n pairwise. The tunneling of the 

solutions occurs along these lines through the saddle points. 

Two more pairs of solutions are obtained from (14) and (15) by rotations 

of 120° in ¢ space. 

The energy density of the soliton configurations is 

9 4 [ J-4 T00 (x) = ~A<f>v cosh(ax) ( 16) 

and the total energy or mass is 

M
0 = f""T 00 (x)dx = ¢~ l3'fT2 ( 17) 

-oo 
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(ii) The motion of fermions in the scalar soliton field 

Due to the theorem Eq. (10) it is sufficient to solve Eq. (11) for ~ 1 . 

Because the variables t and x separate, we assume a stationary time dependence 

~ 1 (t,x) = NU exp [-iEt - H(x)] , ( 19) 

where E is the energy. N the normalization factor, U a two comp0nent spinor, 

and H(x) a positive definite function. 
6 

Equation (18) splits into two parts: the time dependent but x-independent 

part 

(20) 

and the x-dependent part of the equation 

(21) 

Equation (20) determines the energy: 

E = (sign E) i g¢v (22) 

(sign E = ±1) and the spinor U (by choice the upper component is one u1 = 1): 

U = C s:gn E) exp ( -i7fl) 
Equation (21) determines H(x): 

-1/2 H(x) = - (sign E)(2A) g in [cosh(ax)] 

For the normalizability of the fermionic fields H(x) must be a positive 

definite function, i.e. sign E = -1. 

( 23) 

( 24) 

' 
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Then ~2 = -io3~ 1 and the fermionic currents are 

j 1(x) = ~l~l - ~ 2~2 = 4N
2 sin(~) exp[-2H(x)] , 

The normalization constant N is defined by: 

which also implies j_ooj 1 ( x )dx = 1 
-oo 

We obtain an exact expression7 for N2: 

N2 = (3A/8) 112¢vr[} + (2A)-112g] r- 1 (~)r- 1 [(2A)- 1 1 2 gJ 

= (3A/8)1/2¢vB-l[t,g(2A)-1/2] 

where B is the beta function.-

( 25) 

(26) 

( 27) 

(28) 

The kinetic energy of the fermion fields is zero because Uy1U = 0. 

The energy contrfbution comes from their interaction with the scalar 

soliton field. The energy density is 

( 29) 

and the total energy 
00 

f int( ) T00 x dx = -g¢v ( 30) 
-oo 

is twice the energy E of Eq. (22). 

(iii) Feedback of the fermions onto the scalar fields 

We expand the scalar fields Eq. (14) and Eq. (15) by~, and ~2 . The 

new fields are 
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The equations for the corrective fields are: 

- ::2 ~1 = dl~l + d2~~ + d3~~ + d~~2 + d5~1~2 
+ dft~ + dtp 1 1P~ - gj 1 (x) 

with the expansion coefficients d and e: 

and 

d3 = -4/.. 

d4 = -8/..~1¢2 - 6a¢2 

d5 = -8/..¢2 

d6 = ·-4/..¢1 - 3a 

d7 = -4/.. 

2 2 e1 = -4/..¢1 - 12/..¢2 -6a¢1 + 2B 

e2 = -12/..¢2 

(31) 

(32) 

(33) 

(34) 

( 35a) 

( 35b) 

( 35c) 

( 35d) 

(35e) 

(35f) 

(35g) 
v 

( 36a) 

( 36b) 
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e -3 - -41. (36c) 

e -4 - -81.¢1¢2 - 6a¢2 ( 36d) 

es = -SA¢ 1 - 6a ( 36e) 

e6 = -41.¢2 ( 36f) 

e7 = -41. . (36g) 

Because the currents are proportional to each other j 2 = l!j 1 [Eqs. 

(25) and (26)]._ we make the ansatz: 

1P2 = /lpl::: /lp (37) 

and reduce the problem (33) and (34) to a single corrective field ~P 1 that we 

henceforth denote by IP. 

The equations for IPl and ~P 2 become~ 

- ~ 1P = (dl + /3d4)'P + (d2 + /3d 5 + 3d6)'P 2 + (d3 + 3d7)'P 3 gj, (38) 
dx 

The coefficients of the odd powers of IP on the righthand side are equal; 

and 

but the coefficients of the quadratic terms differ: 

d2 + l!d5 + 3d6 = -161-<Pv- 121-<Pv tanh(ax) , 

e6 
/!e2 + e5 +--- = -161-<Pv + 4A¢v tanh(ax) . 

13" 

(40) 

(41) 

( 42) 

(43) 
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We solve for~ in a linear approximation when we can use the Greens function 

of the hyperbolic differential equation in one dimension: 

(44) 0 

which has the solution: 
00 

~(x) = -g(4A1 '2 ~vl-l L dx'exp[-2A112 <~>yjx-x' ~j 1 (x') {45) 

that has negative values for all x and vanishes at infinity. 

Because Joo j 1(x)dx = 1, ~ is bounded from below by -g/(4:\ l/2¢v). 
-oo 

The trajectory in ~-space is no longer a straight line as in the absence 

of the fermions but is tilted toward the center of the coordinate system ~l 

= o. ~2 = o: ~ 1 + v'3$2 = ~v + ~ ( x) ( ~ < o). 
(iv) Reevaluation of the fermion fields 

As the correction ~ of the scalar fields is a function of space 

coordinate, it will not affect the energy E or spinor part U but adds to the 

Eq. (21). 

The correction h(x) to H(x): H(x) ~ H(x) + h(x) satisfies the linear 

differential equation: 

- ~x h(x) = -2ig~(x) (46) 

h(x) is therefore imaginary (h* = -h), which adds only a complex phase to the 

fields w and leaves the currents and the normalization constant N unchanged. 

The linear approximation is thus consistent with the fermion equations. 

4. THE MASS SPECTRUM 

The total energy of the composite system of scalar and fermion particles 

determined from the fields ~l, ~2 • Eq. (31),(32) and the currents j 1,j 2, 

Eqs. {25),(26} is exact up to orders of 0(~ 2 ). 
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To illustrate the mass spectrum we calculate the masses for the 

particular values of the parameters in the model A= 1, ~V = 2.6717, g = 5 

when the mass of a system made only of scalar fields Eq. (17} is 22.31 and the 

mass of the composite system of scalar and fermion particles is 17.03 in units 

of A. 

We have a two level spectrum. The ground-state with two fermions present 

has always a smaller mass M than the state without fermions M0
: M ~M0 when g 

~0. The equality of M and M0 is obtained in the limit g + 0. 

CONCLUSIONS 

In a classical field theory model of two scalar fields and two fermion 

fields with an internal cyclic symmetry Z(3) induced by the cubic 

self-interaction of the scalar fields we observe that the massless fermions 

are inseparable, i.e., the solutions of the field equations in 3 + 1 and 1 + 

dimensions are related algebraicaliy. 

We illustrate the structure of the model in 1 + 1 dimensions, where we 

obtain a two level mass-spectrum of bound states, the mass of the composite 

system of bosons and fermions being lower than the mass of the system made of 

bosons alone. 
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