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VOID BEHAVIOR DURING CREEP AND SINTERING
AT HIGH TEMPERATURES
Chun-Hway Hsueh
Materials and Molecular Research Division
Lawrence Berkeley Laboratory
and
Department of Materials Science and Mineral Engineering
University of California
Berkeley, California 94720
ABSTRACT
Pores in ceramics are often found both in the process of fabrica-
tion and in service. The porosity is.a serious problem because of its
effects both on electrical conductivity, thermal conductivity and most
importantly upon strength. The present work is hence devoted to a
study of void formation and propagation under an applied tensile stress
and to pore elimination in the final stage of sintering.
The first part of the thesis is a study of creep rupture in ceramics.
This occurs by the nucleation, growth and coalescence of cavities in
localized, inhomogeneous arrays. The cavities grow by diffusive mechan-
isms; a process which has préviously been analyzed for uniform cavity
distributions. Experimental results indicate that the inhomogeneity
exerts substantial perturbations upon the failure sequence and hence,
on the failure time. The failure sequence in the presence of inhomoge-
neity effects is examined in this paper. A model is developed tﬁat
accounts for the experimentally observed damage accumulation features
and predicts the influence of inhomogeneity upon the failure time.
The second part of the thesis is devoted to the motion of pores

attached to two grain interfaces. It is shown that pores exhibit a

maximum steady state velocity that varies with the dihedral angle and



_Vi_

that the onset of non-steady state pore motion results in grain boundary
convergence and the separation of the pore from the grain boundary. The
peak steady staté pore velocity has been coﬁbared with grain boundary
velocities for several grain configurations, in order to identify a
critical condition for the onset of separation. This comparison indi-
cates-that the pore size must be maintained below a critical value to

ensure grain boundary attachment.
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EFFECT OF INHOMOGENEITY ON CREEP RUPTURE
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1. INTRODUCTION

Creep behavior in polycrystalline ceramic materials has been
investigated extensively in recent years because of the increasing
use of these materials at high temperatures. It is usually found
that cavities form at grain boundaries during creep and subsequently
grow and coalesce to produce failure.l™% Experimental results indicate
that cavities generally form on grain boundaries oriented in a direction
perpendicular to the applied tensile load.?-6

A variety of cavity growth mechanisms has been proposgd.depending
on the temperature, the stress and the grain size./ Most commonly,
the growth of cavities has been explained by a diffusional transport
mechanism. This process was first ;nalyzed by Hull and Rim\mer,8
who considered a square array of spherical voids on a grain boundary
slab subject to a tensile load. They found that the véid growth rate
increases linearly with increasing applied stres;, provided that the
voids grow with a spherical morphology (by the absorption of vacancies
from the grain boundary) and that the grains on both side are rigid.
The model has been modified by subsequent workers by imposing different
boundary conditions.9 11 However, the conclusions weré esséntially
the same. The assumption concerning cavity shape implies that surface
diffusion is rapid enough that cavity growth is controlled by grain
boundary diffusion. However, these conditions do not always pertain.
The cavities sometimes exhibit an elongated, crack-like shape. Hence,
Chuang and Ricel? and othersl3-15 considered the other limiting case

of a thin crack-like cavity with a cavity growth rate controlled by



surface diffusion. Different relations between applied stress and
growth rate were established for this growth process.
Mechanisms such as grain boundary sliding16’17, power law creepls’19

and the combined effects of‘diffusion’and power law creepzo”25

may
also be in operation during the cavitation process. However, the

present study is restricted to long failure times and high temperatures

so that diffusive growth mechanisms prevail.

Prior studies of diffusive cavity growth assumed a homogeneous
distribution of cavities. However,vthe cavitation process is inhomogeneous,
involving.preferential cavitation in certain regions of the polycrystalline
arrayz’26 (Fig. 1). The intent of this work is thus to examine the
fole of cavitation inhomogeneity upon the éavity evdlution process
and hence, upon the time to failure.

The principal sourcés of inhomogenei;y are assumed to derive
from local variations in the grain boundary or surface diffusivity
(attributed to grain orientation éffectsz7, augmented by impﬁrity
distributions2»28) or in the dihedral angle (i.e., the ratio of the
boundary to the surface energy). The inhomogeneity effect resulting
from a grain size distribution has been discussed by other
investigators.29-31

The inhomogeneity is needed to obtain preferred sites for initial
cavitation, but appears to be of ;econdary importance for the zone
spreading and coalescence aspects of failure, as will become clear
later.

The concept of constraint on diffusive cavity grpwth was first

32

introduced by Dyson”“, who considered inhomogeneous cavitation at



the grain boundaries of a polycrystalline aggregate. He suggested
that compatibility between the cavitated grain boundaries and the

creep deformation of the surrounding material attenuates the local
stress transmitted to the cavitated region. A subsequent analysis

33, considered diffusional void growth on

of this phenomenon by'Rice
an isolated grain boundary and evaluated the local stress by simulating
the system as a circular crack in a viscous medium.

In the present study, differences in matter transport rates asso-
ciated with local variations in grain boundary diffusion, and/or in-
homogeneous cavitation, result in local stresses. These stresses are
induced by the constraint of the surrounding material, and tend to
suppress the original differences in matter transport.32’33 The con-
straint thus provides some stability to the inhomogeneous cavity arrays
‘and thereby contributes importantly to the rupture time.33 An approach
for estimating the level of constraint is described in the second
section of the thesis. Then, the formation of cavities, subject to
the appropriate constraints, is examined iﬁ the third section. Initi-
ally, the cavities exhibit an equilibrium morphology. Thereafter, a
transition to crack-like morphology ensues; a prediction of the transi-
tion is drawn in Fig. 2.34 This transition is of particular signifi-
cance to creep rupture in polycrystalline ceramics, beéauseAit signals
the onset of more rapid cavity growth34, squect to reduced constraint.
In the fourth section the time taken for the cavities to extend across
grain facets is discussed. Ultimately, the cavitation zone begins to
spread laterally and creates the failure initiating macrocrack. This

process is considered in the fifth section.



2. LOCAL STRESSES

Inhomogeneous_diffusion or localized cavitation creates local
stresses that may subsfantially differ from the appliéd streés. Deter- "
mination of these local stresses is central to the analysis of creep
rupture. The stress distributions in a polycrystalline aggregate is
complex,’and a rigorous stress analysis requires extenéive numerical
computatioﬁ. An approximate analytic solution is thus suggested, which
permifs both the identification of the important creep rupture. para-
meters and elucidates the essential trends. First the creeping material
is viewed as a viscous solid with the corresponding viscosity related
to the diffusivity and the grain si?é.l6 Thus the analysis can be based
upon a continuum solution for the transformation of an incluéion in an-
elastic medium3> and then the analogy between linear elastic and viscous
materials is invoked3® (Appendix). Thé solution requires cavitation to
occur withiﬁ a zone of diameter d (Fig. 3a) such that matter deposition
. on the intervening boundaries procedes at a rate which differs from the
average mass transport rate in the surrounding material. The enhanced
matter debosition, A§, that occurs in time, At, induces rigid body
displacements of the juxtaposed grains which, if unconstrained, would
ﬁroduce a shape change in the zone comprising these grains (Fig. 3b).
The unconstrained shape change is analggous to a transformation strain,
ezj, of a corresponding elastic problem, as depicted in Fig.'3b. .
Maintaining compatibility between thel'transformation' zone with the
surroundings (the 'matrix'), the matrix grainé induce a constraint
B{j on the transformation zone, and corresponding stresses in the

matrix (Fig. 3c, d).. Hence the constraint can be calculated by



adopting the Eshglby procedures.35 This comprises the imposition of
surface tractions to the transformation zone that causes it to conform
with the matrix, followed by the application of equal, but opposite,
body forces along the interface to remove the applied surface tractions.

The constraint P{j is dictated by the unconstrained transforma-
tion strain, e?j, and by the elastic constants for the elastic
medium.32 Transforming the solutions to the viscous materiai, the con-
straint P%j is then dictated by the unconstrained transformation
strain rate, é?j, and by the effective,viécosity, ”16, of the
transformation zone and matrix (Appendix). While the whole material
is subject to diffusive creep, the cavitation region is subject to an
extra flux from the cavity surface, which deposits within the transfor-
mation region; Hence, the unconstrained strain rate is the net cavity
volume change rate. Cavitation procedes in response to stresses normal
to the cavitating boundary; the appropriate é{j thus derives from
the cavity volume change in the presence of the resultant normal stress
acting during the interval, At.

The viscous deformation involves grain boundary sliding and diffu-
sive flowl0;37 (Fig. 3c). The viscosity assigned to this mode of
deformation depends upon the number of grains participating in the
relaxation process (especially those grains at the periphery of the
cavitation zone, Fig. 3c, where the shear stresses are most intense).
The viscosity approaches the continuum value for the polycrystalline
aggregate, ”cont.’16 when’a sufficiently large number of grains are

involved;



. — 3 : . ,
Neont. = On/Ep = 3V3L KT/142(V3LD, + T Dy6y,) (1)
where D0y is the grain boundary diffusion parameter, D, is the lattice
diffusivity, Q is the atomic volume, £ is the grain facet length, kT

has the usual meaning, 0_ is the applied stress and ém is the steady-

state creep rate. It is assumed, for present purposes, that cavitation

zones consisting of at least thrée grain facets (Fig. 3) embrace an
adequately large number of peripheral grains (i.e. V8 peripheral grains
in the two dimensional section'shown in Fig. 3, but'MSO peripheral
grains for the three-dimensional zone subject to analysis).

The.transformation strain-rate é%j is determined by the dis-
tribution of matter deposition within the cavitation zone; it is a
function of both the total cavitation rate, the distribution of grain
boundary orientations witﬁin the‘cavitation zone, and the zone shape.:
In general, éEj, will contain both deviatoric and dila;ional com-
ponents. The general stress analysis is unwieldly. Hence, the cavita-
tion zone is first approximated by an ellipsoid (Fig. 3c) and thé
constraint derived from the Eshelby solution.32 Specific results are
presented for the two limits of most significance. One extreme case
obtains when‘the aspect ratio is unity and the ellipsoid becomes a
sphere; the other is when the aspect ratio is large and the ellipsoid
can be considered to exhibit a disc shape.

When the transformation zome is a sphere, the dilational. component,
eT, results in a constraint, Pl, independent of the zone size.38 As
the cavitation zone diameter is relatively small (such as the three
cavitating facets depicted in Fig. 3), the constraint %s approximately

the same as that expected for a purely dilational transformation



(Appendix). The zone can therefore be considered subject to a dilation
dictated exclusively by the cavitation volume, AV. Consequently, by
- equating the cavitatipn zone volume to that of an ellipsoidal region

of equivalent size (Fig. 3c);

v ~ 1d%2/3 (2)
the transformation strain rate becomes;

T~ 3a0/ma%y L3
This dilational strain, pertinent to the lower zone size limit, results

in a size independent, upper bound constraint. For viscosities charac-

terized by Eq. (1), the constraint is given by (Appendix, Eq. (A7));

I_ (18\/5) 2T AV (4)
b= -5
. 3, )

20/
Conservation of matter within the zone requires that;

AV ~ Td288/3 (5)

The constraint thus becomes;

) oI~ 63 | g adkr 6)
. 7 Q(V3RDQ + ﬂDbob)

. i . . .
The local tensile stress OQ normal to the cavitating boundaries de-

picted in Fig. 3 is thus



. = 2t | |
ot =< Z )Gm_<z;/3.> R7ASKT | =
Q(/SQDQ + TDpO)

where the first term is the applied stress resolved on the grain bound-

ary facet and the second term is the component P}I’ normal to the

%1 ~ PI/3). For fine grained materials, D, <<

grain boundary (P

D, 8, and Eq. (7) reduces to
i _ (3N _[(2/3 QzAéki‘ : )
% 4 )% 7m | D, 8 _ \ '

The constraint reduces to a lower level than given by Eq. (8) when

o

the zone approaches a free surface or, when an array of such zones,
separated by < d, interact.

When the cavitation zone enlarges; éuch that d<6%, an appreciable
deviatoric stress develops, ana the problem resembles that of a crack
wiﬁh diameter d, subject to opening displacements that accommodate
the enhanced matter deposition along the intervening grain facets
(Appendix).33 The crack solution, pertinent to the large zone size

limit, provides a comstraint, given by (Appendix, Eq. (A8));

I 9/3 adekr <g>

Py, = - (9)
11 | 28 Dy 8y d

The subsequent analysis is-conducted in detail using the upper
bound constraint, as pertinent to situations in thch most of the
rupture time is consumed while the cavitation zone is small., It is
relatively stfaightforward to extgnd the analysis to include alternate

constraints.



. The shape change in the cavitation zone enhances the stress in the
matrix (Fig. 3d). The stresses on those boundaries contiguous with the
cavitating boundaries are of principal interest. These stresses derive
from the'continuum stresses, as redistributed by grain boundary sliding
and local grain boundary diffusion. It is assumed that the stress
redistribution is confined primarily to those boundaries immediately
adjacent to the cavitation zonej; such that the average stress on the
peripheral boundaries is similar to the average continuum stress.
Cavity growth in the peripheral zone is. then considered to proceed at
a rate dictated by this average stress. The upper bound continuum
stress on the grain boundaried of the surrounding grains, subject to

dilation, is;

I 3
0 3 p g
o, = |—o_ +{—— |[—=

9 ( A ) o < 3 >< X ) (10a)
where x is the distance from the center of the cavitation. The first
term results from the applied stress and the second term results from
the constraint, as derived from the radial normal stress in an elastic
medium containing a spherical cavity subject to an internal pressure,

PI/3.39 The average stress on the first peripheral zone (x ranges

from 2 to 24) is thus;

I ‘
o_(3\s .. B
<0>Q_< >ooo v (10b)

The equivalent solutions at the large zone limit are; ~
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™

'Oj?), = g, + pfl 31 - x/[xz—(d/Z)z]l/Z%

o N :
4200 <d+22+§ VL +2d))} // [42(K+d)] €

<0>) = 0 - Pilv 31 - [2(d+22) J(8+0a) +

(11a)

(11b)
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3. CAVITY GROWTH

3.1 General Considerations

In order to model the gréwth of cavities, consider for simplicity
the perfect hexagonal grain arrangement with a plane strain geometry
and cavities of center to tip distance, a, and center to center spacing,
2b (=2). The nucleation of cavities at a triple junction is assumed
for present purpose to occur, quite readily, at junctions between
boundaries with atypical diffusivities or dihedral angle. For fine-
grained polycrystals the mass transport rate by volume diffusion is
relatively small%40,41 and is neglected in the present analysis. The
matter which diffuses from the cavity surfaces is assumed to diffuse
along the grain boundary connecting the cavity array, such that the
grain boundary thickening is spatially uniform (uniform thickening per-
tains because the transient time to reach steady state is relatively
short for fine grained polycrystalsaz).

The problem of cavity nﬁcleation has been studied by several
workers.#3=46 1t ig simply noted here that triple junction nucleation
can occur at relatively low stress levels (typical of the applied
stresseé employed in creep tests) when the local dihedral angle, V.
is small (e.g., Y ~80°; as observed for A1203)2. Nucleation ié thus
expected to occur soon after the application of stress at that fraction
of grain junctions comprising low local dihedral angles. Some subse-
.quent nucleation at more resistant triple junctions (due to grain
boundary sliding instabilities) may also occur. But, in the present

analysis, the observed differences in cavity size are considered to
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~derive predominantly from differences in cavity growth rate, rather
than from different nucleation times.

The cavities given initial consideration are equilibrium-shaped
cylindrical cavities at triple junctions (Fig. 4a). .This configuration
is presumably preceded by spheroidal cavities élong three grain junc-
tions br at four grain junctions.2 »Howevey, equifibrium shapgd|cavities
extend rapidly aftér initial nucleation, and their growth into a cyiin—
drical shape is assumed to provide an insignificant contribution to. the
cavity evolution time. | |

The equilibrium cavities are expectéd to exhibit a transition to
crack-like cavities (Fig. 4b) as they extend along the intervening
grain boundary. Chuang et al.3% examined the entire spectrum of in-
teffacial void shapes in diffusive cavitation and concluded that, in
the absence of constraiﬁt, the transition occurs when thevvelocity
computed for the crack-like cavities exceeds the equilib;ium caviﬁy
velocity. The transition subject to constraint is undoubtedly more
complex, but will presumably proceéd in accord with the same velocity
criterion, provided that the transition also results in a reduced
constraint.

The system considered for the present analysis consists of several

contiguous boundaries that exhibit atypical diffusivities Db or DS

(relative to the average diffusivities D_ or DS) or a low dihedral

b

L .
angle, ¥ . Cavities are assumed to nucleate and grow uniformly at

each triple junction encompassed by these boundaries.

3.2 Derivation of Governing Fquations

When the grain boundary is subject to a normal tensile stress
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g(x) the chemical potential of the atoms at the grain boundary ish7

Au = - of . (12)
and it is known from diffusion theory that the difference in chemical
potential gives the driving force for atom diffusion. The flux law

has the form

D, &
_ 'bbdo - '
Ib = T 3% (13)

where Jb is the atom flux in the grain boundary and Db is the local

grain boundary diffusivity. The atoms deposit at the grain boundary,

forming a layer of uniform width, AS. It thus follows from matter

conservation requirement that

= —525; . (14)

Substitution of the grain boundary flux (Eq. (13)) into Eq. (14) yields
a relationship between the grain boundary thickening, AS, and normal

tensile stress, J.

dzo - _ ASKT

2 ]
dx DbﬁbQ

(15)

Solving the differential equation subject to the boundary conditions
that the stress is symmetric at the midpoint, x = b, and that the

/ .

stress is continuous at the cavity tip, x = a,

o'(b) = o and o(a) = Oo
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where 9, is the sintering stress at the cavity tip, lead to

. - L] 2
_ASKT 2 ASkT o, o, _ASKT b2'<§_‘ -f> (16)

1] ]
2D, 80 Dp6p82 Dy Spi2

where f = a/b. The condition of mechanical equilibrium requires

bo =/‘_’ o(x) dx ' (17)
2 a

substituting Eq. (16) into Eq. (17) gives;

Q

o S 1ey3
L0 (1igy 4 ['x(SkT (135)

2 Dp S92

(18)

o
o

Recalling that the local stress can be related to the applied stre#s

and the thickening rate by Eq. (8), it becomes possible to solve for

both the local stress and thé cavity growth rate. Solutions are obtained
for botﬁ equilibrium cavity growth (cavities with a uniform curvature)
and for crack-like cavity growth.(a coﬁdition under which there is‘
insufficient time for a cavity to develop a rounded shape and instead,
remains thin and crack-like). |

3.3 Equilibrium Cavities

The sintering stress is given by%’

o =y C _ | (19)
where vy is the surface energy and C is the curvature evaluated at
the cavity tip. For the equilibrium cavity, the sintering stress
can be expressed by .

O, = ZYSh(W)/ V3 a | © (20)
where h(¥) = sin [¥/2 - 7/6]
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Matter conservation requires that, for unit width of the cavita-

tion zone,

. .

~ AL (21)
eqm

where V is the rate of volume change of an individual cavity. The
volume of an equilibrium-shaped, cylindrical, triple junction cavity

is (for unit width)
V=3/3a’ F(Y)/4 (22)

V3 [¥- 7/3 - sin (y-1/3)]
2 sin’(y/2 - 1/6)

where F(V¥) =1 +

The rate of volume change is thus;

Veqm =3 /3 a aeqm (F(y)/2) . (23)

The cavity velocity is related to the additional matter deposition,

from Eqs. (21) and (23) by;

AS = (3 /3/4).aeqm f F(Y) (24)

Substituting Eq. (24) into Eq. (18), the growth rate of the cavity

in an inhomogeneous region with a local grain boundary diffusivity,

Db’ is

.
., o =0 (1-€)
= b & ° | (25)

aeqm 2 3
V/3kTL FY) £(1-£)

lﬁQDéé

The magnitude of the local stress pertinent to Eq. (25) is deduced by

noting that the matter deposition given by Eq. (24) must be compatible
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with the development of the local stress induced by the constraint
of the surrounding material. Using the upper bound counstraint (Eq.
(8)) pertinent to a small cavitation zone (e.g. Fig. 3), the local

stress becomes;

o, = [(3/4)(1-f3)0m + (24 /377ﬂ)(DL/Db)(l—f)oo] o

3 ' |
[(1—f) + (24 /5/7n)(Db/Db)] , (26)

Substituting the Sintering stress and the local stress from Eqs. (20)
and (26) into Eq. (25) the final relation for the cavity velocity,

expressed in dimensionless form, becomes;

. (16/ /3 [(3/4) (O 8/7 DE = (4/VDh(H) (1-5)]

a = '
eqm QDbﬁbYs F(W)fz[(l-f)3(Db/Db) + (24 V3/7M)]

(27)

3.4 Crack-like Cavities

The analysis of crack-like cavity growfh is facilitated by noting
that both the cavity pfofile and the atom flux at the tip of well‘de~
veloped crack-like cavities depend on the instantaneous cavity velocity;
viz. the prior, equilibrium.morphology of the cavity is of minor sig-
nificance, 34543 The érowth process can thus be‘adequately treated by
focussing on the tip region, and neglecting complex morphological
changes that méy be occurring in the vicinity of the cavity center.
Also, for present purposes the meniscus instability is neglected,
because the wavelengths needed to permit the growth of perturbations
is larger than the grain facet dimension for typical fine grained

ceramics.? , '
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-

Commencing with the expression for the curvature and the surface

flux at the tip of a crack-like cavity34

C =2 sin (¥/4) at/3 (kT/Dsaszs)1/3 (28)
crack
3 =2 sin (¥/4) 223 (b5 v /xTa!/3 (29)
8 8§ §'S8

crack

where Dsés is the surface diffusion parameter. Substituting Eq. (28)

into Eq. (19), the sintering stress of the crack-like cavity becomes

/3

. . 1
g, =2y, sin (W/&)(acrack kT/DSoSQYS) (30)

o]

The matter removed from the cavity tip must be deposited on the grain

boundary, in order to satisfy matter conservation; hence,
23 2 = 882/2 (31)

Combining Eq. (29) with Eq. (31), the boundary thickening rate becomes;

©2/3

AS = 8 sin(¥/4) a 1/3

: 3
(Dsdsﬂys/sz ) (32)

crack

Substituting Egqs. (30) and (32) into Eq. (18), the growth rate of the
crack-like cavity in an inhomogeneous region, with a grain boundary
diffusivity Dé, iss

. D o Qy
a _ s s s

crack kT
(33)
: , ) 1/2 )3
-1+[1+(2/3)(l—f)(Dsés/DbSb)(QOQ/YS sin (¥/4))]

(2/3)(l—fj2Q(Dsds/Dg6b)
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Combining Eq. (32) with the relation for the local constraint, Eq. (3),

yields the equétion

3 , —
o, = (Z) o, - (16 /3/7ﬂ)sin<W/4)(Dsés/Dbi)‘

(34)
23y aaym s ay )3
ss s
crack
Note that Eqs. (33) and (34) express the relation between the cavity
Qelocity and the local stress. Combining the two equations permits

the explicit determination of the cavity velocity and the local stress.

For example, the velocity is given by;

v2/3A1/3[(2/3)(1—f)3(Db/Dé)

(35)

+ (16/§/%n)] v 2! Ba-ea? = 374y o /v, sin(y/a)

. .3 ' .
= A=D3§6 8 .
where v écrack(kTR /DbébQYs) and DS s/Db b However, in order
to obtain a simple analytic expression for the cavity velocity and
the local stress, some approximations are made.J The parameters OmQ/Ys
and DI;/Db are typically=>1, whereupon Eq. (35) reduces to

[(217/256/3) o_g/y_ sin(y/4)] 3/2
A1/2

v =

1/2
(36a)

(7/31/12)y_sin(¥/4)
% 1 - S (1-£)

a2

L=

which, upon further simplification, becomes

?2/3 ~ 0.15]0, 2/ sin(w/é)]

~ — (36b)
/ '
Al,_3 :
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An almost steady velocity is thus anticipated in the crack-like region
during initial cavitation. However, when the constraint is reduced in
the later stages of cavitation, cavity acceleration is to be antici-
pated and Eq. (36) should not be used. The equivalent expression for
the local stress is;

L
G, AOwQ/YSsin(W/A)

o BISU-B LT/ (0,8/y, sin(¥/4))8]1/2

-(71/16V/3)(1-£)2

(37)

3.5 Velocity Trends

The solutions given in Eqé. (26), (27), (36) and (37) are based on
the assumptions that the cavities grow with either an equilibrium. shape
or a crack-like shape, respectively. Chuang et al.'s criterion3# can
be used to consider the transition between the two shapes, which re-
quires the transition to occur when the crack-like cavity velocity
exceeds the equilibrium cavity velocity.

The local stress and the velocity of equiliSrium cavities from
Eqs. (26) and (27) and the exact solutiomns for crack—like cavities from
Eqs. (33) and (34) are shown in Fig. 5, (where the two limiting cases
are plotted for OwQ/YS = 20, A = 0.5 and ¥ = 80° as the data are perti-
nent to A1203 for diffusive creep). It is seen from Fig.,Sa that when
the applied stress is high enough to overcome the sintering stress, the
cavity starts to grow and possesses an equilibrium shape. As the equilib-

rium cavity grows, the cavity velocity is affected by two factors; (a)

the sintering stress, wihich is decreased by the cavity growth (Eq.(20))
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and tends to increase the cavity velocity, and (g) the local stress,
which decreases as the cavit& grows (Eq. (18)) and tends to retard the
cavity growth., At the cavity nucleation size the sintering stress is
important and the cavity velocity increases rapidly up to a méximum
value. Then, the constraint dominates and reduces the cavity velocity.
On the other hand, the crack-like cavity yelocity maintains an approxi-
mately constant value. Thus, as the equilibrium cavity grows to a
transition éize f*, the crack-like cavity velocity exceeds the equilib-
rium cavity velocity (Fig. 5a). A reduced constraint obtains for the
crack-like morphology (Fig. 55). The transition to crack-like cavities
is thus considered favorable when the crack-like velocity exceeds that
for equilibrium ca§ities, and the 1pca1 stress is assumed té ad just t§
this érack—like value, ovér the transition range.

The important trendsvin cavity velocity with cavity length, d,
and with the dominant variables (Omﬁ/ys, Y ahd A) are illustrated in
Fig. 6.

Firstly, the strong influencebqf the constraint upon initial

»

cavitation is noted (Fig. 6a). The effect of the constraint is mani-
!

fest at the very earliest stages of cavity growth and continues to be

amplified as the extension proceeds. As the cavitation region enlarges
the constraint becomes smaller and the local stress becomes larger,

..0 . I )
hence the cavity velocity increases. It is also re—-emphasized that the
development of constraint leads to a relatively invariant cavity veloc-
ity in the crack-like regime. Secondly, the magnitude of the applied

stress (Fig. 6b) has a substantial effect on the cavity velocity, over

the entire range. The higher the applied stress, the higher the cavity
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velocity. However, other notable effects of the stress include the de-
crease in transition size, f¥, as observed experimentally,Z and the
substantial reduction in the critical nucleation size, f . Setting

)

aeqm to zero in Eq. (27), the relative nucleation size isj

-1

3/3 0002
16 sin(¥/2-m/6) YS

£, = |1 + (38)

Thirdly, the material parameter, ¥, the local value of the dihedral
angle, has a dominant influence upon inhomogeneous cavitation (Fig. 6c).
Specifically the growth of cavities with a small dihedral angle re-
quires the removal of relativeiy small quantities of material; conse-
quently, the cavity velocity increases as the dihedral angle decreases,
Finally, the ratio A of the surface to boundary diffusity affects the
cavity velocity (Fig. 6d) such that cavity growth in the crack-like
mode is favored when grain boundary diffusion is more rapid than sur-
face diffusion (i.e., when A is small).3%

The local grain boundary diffusivity has a negligible influence
on the cavity velocity. However, variations in this diffusivity would
exert a much more significant influence on éavity growth at smallér
values of cavity spacing. The transition, £, between the equilibrium
and crack-like modes of cavity growth predicted by the above analysis
can be compared with experimental data? obtained for A1203. The pre-
diction, illustrated in Fig. 7 for ¥ = 80° and A = 0.5, appears to
adequately separate observations of the two cavity types; hence, some

<
credence in the preceding analysis is established.
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.
4, PROPAGATION TIME

The time taken for cavities to extend across grain facets is of
principal importance for the creep rupture process; If.cavitf nucle-
ation occurs soon after steady state is established, the time tp needed
to create a cavity of relative length f is simply,

£* £

2tp/a = - .+ —_— _ (39)

By using 2 qm from Eq. (27) and a from Eq. (35) and solving

ack
the integral numerically, some typical dimensionless propagation times
are obtained as plotted in Fig. 8. The variation of propagation time
with cavity length for ¥ = 80°, omz/ys = 20 and A = 0.5 is shown in
Fig. 8a. When the diﬁedral angle or the local surfaée diffusivity
decrease and/or the applied stress increases, the cavity velocity
increases (Sec. 3.4): hence, the propagation time decreases, as shown
in Figs. ' 8b, 8c and 8d (for.f=1). In the above cases, the transition
to the crack-like mode occurs.rapidly and most of the time required to
develop a full facet length cavity is dictated by the growth in the
crack-like mode (as might be anticipated from the velocity diagrams).
The initial cavitation that occurs in local regions of a creeping poly-
crystal (due to small local values of ¥ or DS) can thus be approxi-

mately characterized by the constant velocity relation (Eq. 36b);

whereupon the propagation time becomes; .

- /2
- leA RS sin(y/4)
tp = 20 ﬁ—,z AN "—T— (40)
b°b's" %%
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If the initial cavitation consumes the major portion of the rup-
ture process, Eq. (40) will also provide an approximate estimate of
the failure time. However, the conditions wherein this approximation

I'e

obtains can only be ascertained by examining the subsequent cavity

evolution, as manifest in the zone spreading process.
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5. ZONE SPREADING

The incidence of zone spreading is contingent upon the development
of enhanced tensions and thus, éccelerated cavity grbwth, around the
periphery of the cavitation zone. Cavitation firstly occurs along
several contiguous boundaries for which one (or both) of the parameters
that dominate the cavitation rate (¥ or DS) deviates from the average
value. The local stress outside the cavitation zone, on the contiguous
boundaries, is larger than the épplied stress (Fig. 9). The cavitation
rates in this peripheral zone are presumably non-uniform. A complete
solution of peripheral~cavity growth is beyond the scope of the present
wdrk. Instead, a simplified intermittent spreading procedure is |
adopted. Cavity growth in each peripheral zone is assumed to occur
uniformly (i.e., two uniformly approaching cavities on each peripheral
boundary, Fig. 9) at a stress equal to the average stress over that
boundary, determined from Eq. (10b), while cavitation on'the‘original
boundary continues at the initially deduced local stress. Then, at a
time t* when the cavity lengths ih the cavitation zone and in the
peripherél zone 5ecome equal (Fig. 10), the cavitation zone is con-
sidered to advance to the boundary of the peripheral zone. The process
is then continued by considering the growth in the next peripheral
zone, with a new value of the local stress assigned to the cavitation
zone (based on the increase in the zone size, d). Proéeeding in this
way the timevti needed to form a discrete macrocrack can be deduced, as
schematically shown in Fig. 10. The cavity velocity in the first peri-
pheral zone is deduced by substituting <O>3 from Eq. (10b) for O in

Eq. (27) (the equilibrium regime) or Eq. (35) (the crack-like regime).
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The cavity propagation times are compared in Fig. 11 with those on the
initial boundary for several choices of V', ¥, D and D;.

Some general cavitation characteristics are established before
examining the zone spreading process. Firstly, small local surface
diffusivities cannot be the source of preferred cavitation, because
the equilibrium cavity growth process is independent of D_ (aithough
earlier transitions to crack-like cavitation can certainly be attribu-
ted to deviations in DS).. A prerequisite for the appearance of pre-
ferred cavitation is thus the existence of a dihedral angle smaller
than the average value. Zone spreading considerations are therefore
based on the premise that initial cavity development on certain bound-
aries resides in a small dihedral angle. However, subsequent cavity
development on these boundaries can be further enhanced by small sur-
face diffusivities.

The zoue spreading process can be conveniently separated into
three regimes. Firstly, when the deviations in Y and D_ are small, and
the absolute values are close to the average values for the material,
zone spreading occurs very rapidly, while the cavi;ies are still quite
small (Fig. 1la). Failure from these regions is expected to occur
quite slowly, at a rate similar to that for homogeneous material.
Conversely, when there are appreciable local deviations in both ¥ and
DS, a cavity can extend fully across a grain facét before significant
cavitation can be induced on the contiguous boundaries (Fig. 11b),

The cavitation can then be regarded as an essentially independent

process. This cavitation regime is likely to pertain to isolated
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regionsT'during the early stages of failure, and explains the observa-
tion of preﬁature full-facet sized cavities.? Again, however, this
mode of,cévitation has little influence upon the failure process, be-
cause the full-facet cavities have a minor effect on cavitation in the -
contiguous boundaries and do not, therefore, lead to the generation of
macrocracks (as noted experimentally).2 An intermediate regime, that
consists of appreciable deviations in ¥, but small deviations in DS,,is
of principal importance with regard to failu:e (Fig. llc). Cavity propa-
gation and coalescence under these conditions occurs most rapidly. Such
regions are thus considered to be the principal sites for failure
initiation.

The trends in constraint during zone spreading suggest -that a
large proportion of the failure time in the intermediate region should
be consumed while cavitation is confined to a small number of contigu-
éus grain facets. The approximate expression for the failure time
(Eq. (40)) that pertains during this period should thus provide a
first-order estimate of failure. Comparing this relation with that
for diffusive creep (Eq. (1)), the following expression for the failure

time, t

s emerges;

tpe, ~ 50mCy /o, 0% sin(wa)3? (o s 6212 (41)

£

The analysis thus. anticipates a strong interdepedence of the

failure time and the steady-state creep rate, as generally observed

TThe number of these regimes would be dictated by the probability
of locating a boundary with small values of both ¥ and Dg, based
upon the appropriate statistical distributions of Y and Dg.
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(the Monkman-Grant relationship);%43 although an additional dependence
of the failure time on the stress (YS/OOOSL)I/2 emérges from the present
analysis. Important effects of the local dihedral angle and of the
diffusity ratio are also predicted, in the sense that small values of

these parameters encourage failure.
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6. DISCUSSION AND CONCLUSIONS

The cavitation process in cefamic polycrystals is observed to be
inhomogenequs; resulting from the presence of local variability in
material properties, especially in the dihedral angle, Y, or in the
diffusivity along the newly created cavity surfaces, Ds" Such vari-
ability in ¥ or Ps could arise from crystalline'anisotropy, but appre-
ciable effects of impurities may also be involved;' The excess matter
deposition from the cavitation induces constraints which retard the
cavitation rate and contribute importantly to the rupture time. The
magnitudé of the constraint is dictated by the rate of cavity volume
change relative to the viscous relaxation rate (associated with the
creep of the surroundihg material). Additionally, the constraint de-
pends upon the morphology of the cavitation zone. Two limiting cases,
the equilibrium cavity and the crack-like cavity are of practical im-
portance. The transition is comnsidered to occur when the crack-like .
cavity velocity exceeds the équiiibrium cavity velocity and leés con-
straint is derived from the transition. The failure characteristics
exhibited by a material depend on the extent of the deviatioms in DS
or ¥. Three possibilities are considered.

Large local deviations in the dihedral angle and "in the diffusivity
appear to be relatively innocuous, because the isolated full-facet sized
cavities which form in these regions do not enhance the cavitation rate
on contiguous boundaries. However, if there are a relatively larée pro-—
portion of boundaries with a high cavitation susceptibility, premature

failure may occur from contiguous accumulations of these boundaries.

.
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The probabilistic aspects of failure under ‘similar conditions have been
examined by Evans.3

Exclusion of failure from large statistical accumuiations of
susceptible boundaries results in a creep rupture process dominated by
cavity propagation in regions containing several contiguous boundaries
with significant deviations in dihedral angle (and small deviations?in
the diffusivity along the cavity surfaces created at the boundary).
The fgilufe time that obtains under these conditions may be approxi-
mately expressed by Eé. (40); a result. that indicates important influ-
ences on rupture of the steady-state creep rate (i.e., Monkman—Granf
behavior), the local dihedral angle ¥ and the ratio of the surface to
the boundary diffusivity, Ds/Db' Small values of Y or Ds/Db encourage
creep rupture. Such effects should be apparent in creep rupture ex-
periments. It has already been observed, in fact, that cavitating
boundaries in A1203 exhibit smaller dihedral angles than those typically
measured during sintering or grain boundary grooving experiments2 (809 -
compared with 100-120°).

In materials of relative uniformity, cavitation is expected to
develop homogeneously, by virtue of a rapid zone spreading process.
The stress in these regions thus remains at a level gssentially similar
to the applied stress. Homogeneous cavitation models that exclude an
explicit dependence on the steady-state creep rate are then most perti-
nent. The cavitation rate exceeds that in materials containing regions
of low ¥ and/or Ds’ because the more rapid cavitation associated with

the smaller ¥ or D is not sufficiently counteracted by the development

of constraint. This trend is evident from a comparison of cavity
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propagation times in regions with a relatively uniform, average di-
hedral angle (Fig. lla)vand regions with a particularly low dihedral
angle (Fig. llc). However, probabilistic studies of the'dispribution;
of grain boundary properties are needed in order to distinguish the
principal modes of creep rupture experienced by specific ceramic
polﬁ%rystals. ‘

Finally, some correlations between creep rupture and sintering are
examined. As low ratio of the surface to boundary diffusivity is a
prerequisite for initial stage sintering.49 Most ceramic polycrystals
should thus be susceptible to the cavitation failure processes described
in this work. Also, it is probable that regions of a polycrystalline
aggregate that are the last to sinter to full density are also the re-
gions subject to cavitation during creep. Pore removal rates during
final stage sintering can be determined by setting O_ to zero in
Eq. (27): | , to

c . - . 64 sin(¥/2 - T/6)(1-£)
dsinter ~ — 3 + —
3F(V)E° [(1-£)7(Dy/Dy) +(24/3/77)]

(42)

Some typical‘sintering characteristics are plotted in Fig. 12.
Inspection of Fig. 12 indicates that pores with small dihedral
angles, Y -~ 7/3, will be removed very slowly; cavities which, as already
noted, extend most rapidly. Such regions are the principal candidates
for creep rupture initiation. It may be surmised, therefore, that éhe

addition of solutes that enlarge ﬁhe'dihedral angle should encourage
final stage sintering as well as retarding creep rupture. Prospects
for identifying solutes with this capability should be explored in

future studies.
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APPENDIX
CONSTRAINT ON TﬁE CAVITATION ZONE
The constraint exerted on a zone subject to a transformation
strain efj can be conveniently separated into dilational pI and
'

deviatoric component pij. The dilational constraint is independent

of the zone size and is given for an elastic solid by;38

I : eT

P = 1/(4 um) + l/(3Kp)

(Al)

wheré u is tﬁe shear modulus, k is the bulk modulus ahd the subscripts
p and m prefer to the material inside and outside the transformation
zone, respectivelyf The_deviatoric constraint is shape dependent,
For example, the deviatoric constraint associated with a spherical
zone is given by;38

T

oy T
Pij = ~ 1/(2 up) + (A—Svm)/[(7-5vm) um]

(A2)

where Vv is Poisson's ratio. The relative influence of the dilational
and deviatoric constraints on the stress normal to the grain boundaries
(the driving force for cavitation) depends on the grain boundary orien-
 tations within the zone (which determines the unconstrained transforma-
. . T T T .
tion strains €., €,,, €.., Fig. 3b) and on the zone shape.
11 22° 733

For the grain boundary orientations and zone shape depicted in
Fig. 3 the stress is dominated by the dilational transformation strain.

Specific calculations conducted using the Eshelby tensor for an ellip-

differs from PI/B

soidal cavitation zone (Fig. 13) indicate that Pil

by a small amount if the cavitation zone is small. A dilation dominated
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constraint can thus be considered to exist for zones of small lateral
extent, typified by Fig. 3. This is the basis for the upper bound
solution presented in this work.

For an elongated zone, d>>{, wherein the majo;ity of grain bound-
aries subject to enhanced matter deposition are nearly normal to the
applied stress, the constraint is simulated by the solution of a disc-
shaped crack with diameter d in a homogeneous linear elasf:ic'solid;j3

I 3mu<as>

P11 7 7 T4-via (A3)

_where <A6> is the average @attér deposition along the cavitation zone.
This solution épproximates the constraint level attained within trans-
formation zones of lateral extent d36% (Fig. 13).

By the analogy between linear elastic and linear viscoelastic
materials,36 the equivalent solution for a viscoué solid which exhibits
diffusive creep can be obtained if U is replaéed by ns and v by (3« -

2ns)/(6x + 2Ns), where s is given by the Laplace transform;

(oe]

F(s) = e 5t F(t)dt | | (A4)

(o]

Eqs. (Al) and (A3) can thus be directly transformed into the equivalent

viscous equation

-1 _ -e-T ‘ ] .
—_— e —
: 3k
4ns . b

for zones of small lateral extend and,
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I 3ms<A8> 6k + 2ns
P11 4d 3K + 4ns

for elongated zones.

By setting K = ®, Inversion then gives;

I .
= —Anm e

T

for zones of small lateral extent and,

I _ ']
Py = 3ﬂnmA6/2d

for elongated zones.

(A6)

(A7)

(A8)
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FIGURE CAPTIONS

Fig. 1. A scanning electron micrograph of cavity arrays in A1203;
showing preferred regions of cavitation.2

Fig. 2. A schematic illustrating the two dominant cavity configura—

" tions, equilibrium triple point cavities, and crack-like
cavities and the nature of the transition.

Fig. 3. Schematics indicating localized diffusive flow from cavities
and the resultant development of constraint (a) the grain
configuration and (b) the unconstrained strain in the cavita-
tion zone separated from the matrix (c) the constrained cavi-
tation zone showing the regions of grain boundary sliding and
intensive diffusion flow (d) the resultant stress distribution.

Fig. 4. The‘geometry of the cavity arrays used for analysis (a)
equilibrium cavities (b) crack-like cavities.

Fig. 5. a) Cavity velocity as a function of the relative cavity
length indicating the equilibrium to crack-like transition.
b) The local stress in the equilibrium and crack-like
regions,

Fig. 6. Plots of cavity velocity for several choices of the important
variables, (a) the effect of constraint, (b) thé influence
of the applied stress, (c) the effect of the dihedral angle,
(d) the effect of small changes in the surface diffusivity.

Fig. 7. A comparison of crack-like and equilibrium cavity for A120

3
with the predicted transition length, £f¥: A = 0.5, ¥ = 80°.
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The cavity propagation time characteriétjcs (a) the variation
of time with cavity length, (b) the effect of strain on

the time taken to reach f = 1.0, (c) the effect of dihedral
angle, and (d) the influence of surface &iffusivity.

A scﬁematic indicating the cavitation and peripheral zones
cbnsidered in the analysis.

A schematic indicating ﬁhe stages of zone spreading through
three peripheral zones, prior to coalescence.

The zone spreading process characteristics (a) small deyia—
tions in Y and D, (b) large deviations in ¥ and D, ()
appreciable deviations in ¥, but small deviations in'DS:

O /Yy = 20.

Sintering characteristics (a) the variation of pore shrinkage
timevwith pore length for ¥ = 80° (b) the effect of ¥ on

the pore shrinkage time for £ = 0.1. ‘ .
A plot of the normalized congtraint p{l/ueT as a -function

of the shape of the cavitation zone, for vV = 1/2 and

T. T m T

=/3 e

e33 = e22> 11° Also shown are the limit solutions

for a dilational zone and a crack-like zone.
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PART II

PORE/GRAIN BOUNDARY SEPARATION
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1. INTRODUCTION‘

The separation of pores from grain bOuAdaries during final stage
sintering is a preeminent barrier to the complete densification of
a powder compact. Pores attached to grain boundaries shrink by a
grain boundary diffusion process; but once a pore is detached, and
locates within the grain, it can only shrink by the (usuaily) much
slower mechanism of lattice diffusion. Consequently, observations
indicate that once trapped inside a grain, the pore does not exhibit
significant shrinkage.l’2 Additionally, the separation process may
be an important element in the initiation of exaggerated grain
growth.B—5

To forestall separation, many researchers have focused on process

2,10 particle size,11 /

variables, such as addit:ives,6—8 atmosphere,
and size distribution.12 For example, small particles and a narrow
size distribution gemerally yield high denmsities; also, certain impuri-
ties may (a) decrease the grain boundary mobility or increase the sur-
face (pore) mobility to enéourage pore attachment for most of the
sintering process, (b) inhibit boundary migration by a solute drag

mechanism.lB’14

However, the observations are mostly empirical and do
not readily extend to new materials. Each time, a unique process must
be developed, most often by trial and error.

3,4,15-17 has focused on a phenomenological ap-

Recent literature
proach to explain the effects of the process variables, by introducing
simplified concepts of the physical interaction between the pore and

grain boundary during breakaway. The final result of the analysis can

be expressed in terms of a separation diagram in pore, grain size
P

J
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space,vas illustrated in Fig. 1. The present analysis emphasizes the

physical mechanism involved in the separation process and thereby,

identifies several quantitative differences from the phenomenological

analysis.

The phenoménological analysis is essentially based upon solutions
for the interaction of avb0undary:with a rigidvsecond-phase particle.
Specifically, the interaction between a pore and a moving grain bound-

ary assumes a spherical pore, moving through an isotropic, homogeneous

material at some velocity determined by the surface diffusion coef-

ficient. A unique pore mobility has thereby been derived by retaining
the spherical symmetry of the pore (hence, neglecting the changes in*
pore shape needed to maintain the atom flux over the -pore surface).
The approximate pore mobility deduced in this manner is given by;1
Moo (1)

P kTTTao4

wherg DSGS ié'the surface diffusiop parameter, a_ is thg pore radius,
2 is the atomic volume, and kT has the usual meaning.

~ The force, F, exerted by the grain boundary on the bore (which
eventually dictates separation) is also derived from the rigid particle
{spherical po:e) analog by assuming that the contact line between the
boundary and the pore can move freely over the pore surface; whereupon

the force becomes;
F = 27a vy, cosO sin8 (2)

where 6 is the boundary intersection angle and Yy is the grain boundary

o
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~

energy. The force has a maximum value F at 6 = 7/4 given by;
F = ﬂaoyb (3)

This force maximum, coupled with the pore mobility (Eq. (1)) yields
a peak pore velocity;
QDSGSYb

§ =252 (4)

P kTao

In mechanically undeformed materials the driving force for grain
Iboundary migration stems only from the energy of the grain boundary.
This driving force can be thought of as a pressure difference between
the two touching grains, caused by the curvature of their interface.l9
Breakaway is considered to occur when the grain boundary velocity
exceeds the peak pore velocity in Eq. (4). However, a determination
of the separation condition requires that some assumptions be made
concerning the velocit§ of pores attached to grain boundaries. This
is achieved by requiring that the motion of each grain boundary be
impeded by the presence of pores, such that the grains and pores are
treated as average entities. Specifically, the grain boundaries are
considered to contain N pores per atom and the spacing between pores
is assﬂmed to be proportional to the average grain size.%»15 with

these assumptions, the separation condition can be expressed as

I

-1
- ﬂao D36391/3
R =2 R2 + . a3

b o

(5)
KT
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vhere R is the grain radius and M, is the grain boundary mobility.

b

The two limiting cases

2Mkaa2
Dglgh2
and
Ta ) .
- . (6b)

provide the boundaries of the separation diagram depicted in Fig. 1.

The significance of this diagram for the development of fully
dense materials can be appreciated by imposing a typical grain, pore
size trajectory.20 When this trajectory avoids the separation region,
breakaway is prohibited and the attainment of full density is not
impeded by pore isola;ion within the grains.,

The quantitative appiication of this separation diagram to the
avoidance of breakaway is suspect, because none of the physical details
of pore motion and breakaway have been considered in the analysis;
besides; neither the theoretical nor the experimental basis for choos~
ing the spherical pore has been established. The ?resent model intends
to address this deficiency by providing a self-consistent physical
description of attached pore motion. This is achieved by first deter-
mining the shape changes that accdmpany the motion of a pore attached
to a grain boundary. Then, the shapes of grain boundaries atg;ched to

pores subject to grain growth are deduced. The grain boundry shapes

are determined within the context of the grain disappearance process
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that actually accompanies grain growth. Finally, expressions for
the pore and grain sizes that characterize the separation event are

derived and implications for the avoidance of breakaway are discussed.
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2. PORE VELOCITIES

The'complete separation of porés from- grain boundaries occurs when.
the pores are iocated on two—grain interfaces (Fig. 2). bThe separatipn
of pores from threngrain jﬁnctions onto two—grain interfaces must
precede this complete separation event. However, this process is. com-—
plex and is aséumed tovoccur moré feédily than the ultimate separation.
The present analysis is thus devoted to a determination of the pére
éeparation criticality at twovgrain interfaces. The motion of pores
attached to three grain junctions has been consiéered by Spears.20

The motion of pofes with grain boundayies is achieved by inducing
a flux of atoms from the.leading to the trailing surface of the pore
(Fig. 3). The driving force fér the atoﬁ flux is associated with the
existence of a gradient in the curvature of thevpore surfaée; Pore
distortion is thus a necessary consequence of pore motion, . This sec-
tion is primarily concerned with a determination of the pore distortion
‘as a function bf pore velocity. However, a coréllary of pore distor-
tion is a change in the location and inclination of the grain boundary
ﬁaﬁgent at the poré, grain boundary intersection (Fig. 3). This bound-
ary tangent change is uniéuely related to the pore distortion and
' thereby, provihe; the ihportant link with Breakaway.

| The configuration seleéted for analysis is an axisymmetric pore21

subjecf to motion by surfaée diffusion.zz’z3+ Initially, steady-state

motion (all locations on the surface moving at the same velocity)

1Surface diffusion is likely to be the dominant mode of pore motion
in many practical situations, but equivalent analysis for evaporation/
condensation and lattice diffusion will eventually be deeded.
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is considered, followed by some considerations pertinent to non-steady-
state behavior., The axisymmetric pore exhibits two curvatures (see
Fig. 11): an in-plane curvature, Kl’ and an axisymmetric curvature,

Kz. These curvatures are related to the coordinates of the problem

(x,y) by;
Sih (dzy/dxz)[l + (dy/dx)2:|—3/2
(7)
K, = (1/x)(@dy/dx) (1 + (ay/ax)?]™H/?2
The chemical potential associated with the curvature is
U= QYS(Kl + Kz) (8)

where Yq is the surface energy. A varying curvature along the pore
surface gives the gradient of chemical potential, which in turn, gives
the driving force for surface diffusion, and the flux equation has

the form

Jg = - : (9)

where JS is the number of atoms per unit time crossing unit length of
the surface, and ds is an element of .pore surface in the flow direction
(Fig. 3). Letting the angle between the surface tangent and x-axis be
denoted by o as shown in Fig. 3 ds = dx/cosa; thus Eq. (9) can be

expressed

D § v \ dx K,)
sss)__1* 2 o (10)
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Symmetry permits consideration of one quadrant of the pore. For a
pore moving with a velocity v (positive) in the Y direction (Fig. 3b),

conservation of matter requires that
s 2 :
2% JS = & 7Tx VP/Q , SN ERD)

where the positive sign refers to the leading surface and the negative
sign to the trailing surface.
Using the symbols, p and q (3dy/dx) for the slopes of the trailing.

and' leading surfaces respectively, Egqs. (7), (10) and (11) give;

Ll

p" (1+p2) - 3pp'2 + (l/x)p'(1+p2)2 - (l/x)pzp'(l‘“Pz) _

(12a)
v_kT
= a/xdpeph? = o x (14977
' S 8 8
and
q" (1+q2) - 3qq'2 + (1/x)q'(1+q2)2 - (l/x)qzq'(1+q2)
(12b)

KT
2 22 p . 2,3
- (1/x)q(1+q")" = - 2QDS sYs x (1+q7)

The motion of the pore is subject to the requirement that the
total dihedral angle Y between the grain boundary and pore surfaces
(Fig. 3) be invariant. Hence, in terms of the constituent dihedral

angles Wl(vp), and Wz(vp);
Wl(v ) + ¥ (v) =Y ‘ : (13a)
p 2 'p ,

which can be conveniently re-expressed for further analysis in the

form
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p+q=c- cpg ’ (13b)

at the pore tip, where c¢ = tanY. It is also required that the chemical
potential be continuous at the intersection of the leading and trailing

surfaces; hence,

2,-3/2

p' (1+p"7) /2

+ (p/x) (1epD) 7t

(14)

2)—3/2 -1/2

= q' (l+q + (q/x)(1+q%)

at the pore tip. Finally, it is noted that the atom flux and surface

slope must be zero at the axis of symmetry. “
The solution of Eq. (12) subject to the above boundary conditions

is a non-linear problem. A solution is thus obtained by 1iﬁéarizing

about a trial solution and then using a finite difference scheﬁe,

in which the region is divided into N+1 points with uniform spacing

Ax (Fig. 3b). The resultant linearized equations (Appendix I) are

in the form of coupled, tridiagonal matrices which can be solved by

iteration. The iteration procedure commences with the slope solution

for a stationary pore (with a uniform surface curvature) as the trial

solution and procedes to solve for the slope of a moving pore for

a series of successive small increments in pore velocity. Convergence

is assured by a proper linearization and suitably small increments

in pore velocity., The pore shape can be determined from the slope

(Appendix II). Some resultant pore shapes, computed in accord with

this procedure, expressed in terms of the dimensionless pore velocity,
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=P __O _ '
Vp DY (15)

arebplotted in Fig. 4 for ¥ = 1/3, Where a_ is the raéius of contact
between the boundary and the stationary pore. Shapes similar to these
predictions have been observed experimentélly (Fig. 5).21

The grain boundary bisects the dihedral anglé ¥ and sétisfies
_the relation (for a non-equilibrium case, a correction factor may

‘be needed)

-

8=y -y | | (16)

The inclination 6 of the grain boundary tangent to the plane of
contact betweeﬁ the grain boundary and the pqre_(Fig. 3) emerges from
thelanalysis as a unique function of the normalized pore velocity
Vp, and dihedral angle as plotted in Fig. 6a. The radius of cohtact,
a, befween the 5oundary and pore can also be deduced by requiring
that the pore volume be indepeﬁdent of pore.velocity, in order to per-
mit a unique comparisop between the dimensions of tﬁe stationary and
moving pores. The resultantvtrend in contact radius with normalized
pore velocity 1is pLotted in Fig. 6b, indicating 4 slow decrease in
contact radius, a, with increase in pore velocity.

Convergent pore shape solutionS'are found to exist over a limited
range of pore velocities, as inferred by the terminations in Fig. 6.

”~

A steady~-state velocity maximum, vp(W), is thus implied.+ This maximum

Attempts at obtaining pore shapes in excess of the maximum always
result in divergent solutions. '
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exhibits an appreciable dependence on the dihedral angle, as plotted
in Figs. 7a and 7b, where the dimensionless pore velocity is normalized
by the stationary pore radius in Fig. 7a and by the current moving
pore radius in Fig. 7b. The pore shapes that develop at the maximum
are constructed for several different dihedral angles in Fig. 8.

The existence of a velocity maximum is associated with an inability

to simultaneously satisfy the requirements that the dihedral angle

be specified, that the éurvature be continuous and finite and that

the pore velocity be uniform. 'Specifically, attempts to increase

the velocity above GP(W) must violate one of these imposed conditions.
The consequences of increasing the velocity above vp can be readily
visualized when the dihedral angle Y ® m (Fig. 9). Shape changes
which induce a continuous atom flux in the requisite direction for
pore motion (i.e., a continuous gradient in surface curvature) cannot
be constructed. Regions subject to a counter-flux are inevitable
(Fig. 9). Steady-state motion by surface diffusion of a pore with

Y ~ 7 is thus impossible (in marked contrast with the expectations

of the phenomenological analysis).4,15+ This steady-state velocity
maximum may be regarded as the present equivalent of the peak velocity
derived using tbe phenomenological analysis (Eq. (4)), and can be ex-

pressed as

+The inability of a pore with ¥ ~ 7 to exhibit steady-state motion

implies that such pores will always detach from grain boundaries.

This is intuitively reasonable because, when ¥ = 1, the grain boundary
energy is zero and there is no preference for pores to locate on grain
boundaries.
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oD 6 Y

v 222 (17.9 - 6.2¥) | *(17a)
P kTag
or
hDsdsy s :
v =22 (10.8 - 3.44Y)  (17b)

The consequences of a maximum in the steady-state éore velocity
are centfal to the breakaway problem. Non-steady-solutions, in which
the velocity varies over the pore surface (with a maximum at thevaxis
of thejleading surface) can be found for net velocities in excess
of QP. These solutions coincide with a marked change in pofe shape
and an éppreciable decrease in the grain boundary contact éadius,

a, as illustrated by the shape depicted in Fig. 10. It is pfesumed,
therefore, that the contact radius, a, will rapidly diminish to zero
when the net velocity exceeds Gp; causing the grain boundary to con-
verge onto tﬁe poré axis and thereby, to initiate breakaway. Hehce;
the upper bou;d steady-state pore velocity will hereafter be.used as
a velocity which, if exceeded, will inevitabiy result in non—s;eady—~
state pore motion and breakaway.

Finally, it_is instructive to note that the pore ﬁobility defined
in ﬁerms of the pore velocify and the force exerted‘by the grain
bouﬁdary (Fp = ZﬂaYb sinf) is not unique; but changes as the pore
velocity changes. Analyseé that utilize a unique pore mobility are

thus subject to uncertainty.
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3. GRAIN BOUNDARY SHAPES

The evolution of grain boundary shapes within the vicinity of
a dragging pore constitute an important physical link with the break-
away process (even though a knowledge of grain boundary shapes is not
explicitly required in order to estimate the breakaway condition).
Pore drag will initiate when the velocity of the pore becomes smaller
than the gréin boundary velocity at some remote location on the bound-
ary (Fig. 11). The incidence of pore drag yields a grain boundary with
two dominant curvatures (Fig. 11): the in-plane radius of curvature

R, and the axisymmetric radius of curvature R

1 The driving force F

2° b

for grain boundary motion is thus;

F, = YbQ2/3 [l/R1 + l/R2]

(18)
-3/2
be2/3 -(dzy/dxz) [l+(dy/dx)2]

-1/2
(1/y)[1 + (dy/dx)2] /

+

where (x,y) are the grain boundary coordinates (Fig. 11). For the

dragging pore, R, is negative. However, a driving force with a com-

1
ponent acting in the direction of the pore velocity still exists when-
ever R2<|Rl|; a situation which must prevail during pore drag. The
existence of the axisymmetric curvature accounts for the observed
motion of pores away from their in-plane center of curvature,_Fig. 5
(contrasting with the usual observation of boundary motion toward their
in-plane center of curvature).

Grain boundary shapes can be determined from Eq. (18) if some

assumption is made concerning the disposition of driving forces along
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the boundary. Preliminary estimates of the shape of a grain boundary
containing a pore, pertinent to a three-sided g;ain, are determined for
the simplest possible postulate: that of uniform driving force (i.e.,
constant chemical potential). The governing differential equation is

then;

2)3/2

dp/ax = - (2/R) (1> + () apD) a9y

where p = dy/dx and R is the radius of curvature of the two boundaries
devoid of pores. On a pore free grain boundary, the grain boundary
inclination? 60, at the three-grain junction is m/6 (Fig. 12).. How-
evér, pore drag increases the inclination. The shapes calculated from
Eq. (19) using a finite difference scheme, sﬁbject to the condition
that the angle at the three-grain junction be 27/3, are plotted in
Fig. 12 for several differenf 60.

The grain boundary shapes within the vicinity of the pore are
similar in form to those observed exﬁerimentally (Fig. 5), but deviate
appreciably at more remote locations. The dragging pore thus has an
influence zone (Fig. 11) which appears to be smaller than predicted by
imposing a uniform chemical potential. Hence, further progress ;oward
a detailed understanding of the observed grain boyndary shapes requires
that some insights be gained concerning the gradient of.driving force
along the grain boundary. However, these details are not essential to
the development of a mechanistic description of breakaway.

The grain boundarieé subject to pore dfag exhibit a velocity
component normal to the axis of symﬁetry (Fig. 12), indicative of a

tendency toward instability. WMore specifically, when v, exceeds vp,

b
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the axisymmetric radius of curvature R_ decreases during the motion of

2
the pore, grain boundary configuration (Fig. 13) especially within the

immediate vicinity of the pore. The decrease in R, exceeds the change

2
in Rl, and hence, the configuration is intrinsically metastable.
Steady~state motion of the complete pore/grain boundary ensemble is
impossible. Presumably, therefore, pore drag will increasingly distort
the boundary, and eventually induce separation. The actual separation
will occur when the pore velocity exceeds the steady-state maximum
(section 2) and the pore contact radius, a, diminishes rapidly with

further small increments in net pore velocity (thereby, permitting

convergence of the boundary onto the pore axis).
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4. PORE BREAKAWAY

The specific condition that dictates the separation of pores from
grain boundaries depends upon the grain configuration to which the pore '
is attached. Two specific configurations, pertinent t§ the‘earliest
separation events that occur during grain growth, are considered in

T a pore located on one boundary of a three-sided grain

this section:
(Fig. 2b) (the configuration that invariably precedes grain disappear-
ance), and a pore located on one boundary of a five-sided grain at the
perimeter of a large grain (Fig. 2a) subject to exaggeratea grain
growth. Pore drag observations (Fig. 5) indicate that the pore per-
turbs grain boundary.motion over a certain influence distance, z. It
is appropriate, therefore, to examine the motion of the grain boundafy
outside this influence.distance, relative to that of the pore. This
approach is, of course, oﬁly appropriate when the influence distance

is less than the grain radius.

The velocity of the grain boundary outside the influence zone, in

the direction of pore motion (Fig. 11) is,

v, = /3y, M0 3R (20)

+Other configurations, such as several pores on one grain boundary, will
provide different separation conditions. However, these separation
events usually occur after the first separations have been induced and
are, probably, less critical., For example, a modified phenomenological
analysis with a pore spacing o R gives the two limiting cases (Appendix
I11)

1/3

3
< -
R ZMkaYbaolbsésYsQ (17.9 6.2Y)

1/3
RSy 0 (17.9 - 6.2¥)/2y,a
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where R is the grain boundary radius of curvature. By allowing this
velocity to exceed the peak steady-state pore velocity (Eq. 17), sepa-
ration should be inevitable, provided that a grain boundary displace-
ment (i.e., grain dimension) sufficient to create boundary convergence
at the dragging pore (section 3) is available. This criterion yields
a pore size for separation given by

1/3
2 [ R\ [® PPYs\ (17.9 - 6.2%)

R (21)
o*\a, kTMbYb V3

a

For the five-sided grain, R remains essentially constant, yielding
a separation boundary, depicted in Fig. 14, reminiscent of that pre-
dicted by the phenomenological theory (Fig. 1). However, the most
stringent condition for breakaway exists when R attains its smallest
value. This condition develops in the three-sided grain configuration,
preceding grain disappearance (Fig. 2b). For this grain configuration,
separation.is avertéd if the pore converges onto the proépective three
grain junction, Rv2a, before Eq. (21) can be satisfied. The critiéal

condition thus becomes

1/3

2 -
(ao)c = (Q Dsasys/kTMbyb)(Z//§)(17.9 6.2Y) (22)

as plotted in Fig. 14. This critical pore size represents a lower
bound for pore separation at all reasonable values of aO/R.

An alternate approach for assessing seéaration would be to regard
the onset of pore drag as an inevitable precursor to separation. The
onset of drag can be ascertained by firstly determining the velocity

developed by pores attached to boundaries of cylindrical (or spherical)
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profile (the’steady—state grain boundary shape) and then allowing the
pore velocity to becoﬁe incrementally smaller than the boundary velo-
- city. Attachment of a pore to a spherical boundary requires that the
grain boundary tangent, O, satisfy a geometric requirement, dependent

upon the pore radius, a, given by;

tan8 = a / 1}R2—52 : : (23)

But 6 dictates the pore velocity (section 2, Fig. 6a), and R estab-
lishes the boundary velocity (Eq. (20)). Hence, by requiring v, to be

incrementally smaller than v,_, the condition for initiating instability

b’

becomes;

1/3
16(1/3p 8 y_/kmM v, )

(24)

a” 3
o]

\/1 - '(aO/R)Z

Hence, an instability is most likely to initiate when R is at its lar-
gest value (because O decreases as R increases). The five-sided grain

is thus the configuration with the greater propensity for pore drag.

The drag initiation requirement (for RSBaO) is then;

2 1/3

(ao) ~ 16(Q Dsasys/kTMbyb) (25)

drag

as plotted on Fig. l4. It is noted that drag initiation occurs at

; . . . ~ T
pore sizes just in excess of the lower separation bound (vb> vp)

and hence, that Eq. (22) invariably represents the lower limit for

pore separation.

!

+Pore separation events should thus initiate at dlsappearlng three-
sided grains, just after observing pore drag.
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Finally, it is noted tht pores cannot exist at two grain inter-
faces unless they are smaller than a fraction f of the grain facet
dimension. The magnitude of this fraction can be ascertained from
certain geometric considerations pertinent to the transfer of pores
from three grain junctions onto two grain interfaces. The sequence of
pore morphological changes that. accompany final stage sintering initi-
ate with the pores as continuous channels along three grain junctions
(Fig. 15). These channels must dissociate into isolated pores at three
grain junctions (by means of Rayleigh instability associated with pore
surface changes in the presence of surface .diffusion).24 The largest
possible isolated pore dimension, 2h, that can develop in this manner
(Fig. 15) is equal to the grain facet length 2. This éore must then
detach from the three grain junction onto a two grain interface.
Determination of the relative volumes of pores at three and two grain
interfaces23 indicates that for a specified volume, the grain boundary
contact diameter 2ao, must be smaller than the contact length 2h.
Specifically, by equating 2h to &, the largest admissable dimension,

a ax’ of a pore located at a two grain interface becomes;

1/3

a_ /=~ 0.5[(1.28Y - 1.42)/(1.27¢ - 0.556)] (26)

max

This condition is plotted on Fig. 14, (g~R) in order to outline the
inadmissable region. Again, some similarity with the phenomenological
result emerges (Fig. 1); but now the physical origin (based upon

inadmissibility is apparent.
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5. IMPLICATIONS AND CONCLUSIONS

The analysis of pore motion indicates thét the pore distortion
that necessarily accompanies pore motion results in a maximum possibie
steady-state pore velocity, Gp. The separation of pores from grain
boundaries is intimately associated with this peak velocity. Ancilli-
ary studies of grain boundary shapes during pore drag indicate that the
grain boundary is metastable during pore drag and hence, that.the bound-
ary can converge onto the axis of symmetry, causing breakaway, whenever
the remote grain boundaryivelocity vy exceeds QP.

The actual pore separation process based upon the requirement that
vs > Gp depends upon the grain configﬁration. The grain geometry that
provides the lower bound for separation is the three-sided grain as-
sociated with grain disappearance during grain growth. This configura-
ltion yields a critical pore size for the onset of separation. Tﬁis
critical size increases as the surface diffusivity increases or as the
grain boundary mobility and dihedral angle decrease. Forlother grain
configurations, separation occurs at large values of pore size. How-
ever, since grain disappearance is an integral part of grain growth,
'these other separation conditions are considered less significant.__
The separation processes at the lower bound pore size occurs thle the
grain boundary exhibits uniform (spherical) curvature. Pore drag con-
figurations would not, therefore, be observed at the lower bound. An
ability to observe pore drag (Fig. 5) requires the development of
microstructures well within the separation region (Fig. 14)..

The material modifications that suppress breakaway may be ascer-

tained by comparing the critical pore size with the pore, grain size
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trajectory associated with final stage sintering.

comprehensively addressed by Spears.zo

This issue is more
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- APPENDIX I

Linearization of Differential Equations Governing Pore Shape

A determination of ﬁhe pore shape based on Eqs. (12), (13) and
(14) requires a linearization proéedure. This is achieved by commenc-
ing with a trial solution which approximates the final shape, such that
p(j), p'(3) and p"(j).can be replaced by initial trial values po(j),
p;(j) and p;(j). Similar substitution§.can be made for q and its.

derivatives. Then we can write,;for examble,
P(ip (3) = [py(3)+ap()1[p,(3)*ap (§)]
~ p, ()b, (3)+p, (DAp (i)+p,($)Ap(3) (AD)

where the quadratic term in the small quantities Ap(j) and Ap'(j)
’ t
has been neglected. Replacing Ap(j) by p(j) - po(j) and Ap (j) by

p'(j) - p;(j), we can write
p(idp () = p(j)po(j) + po(j)p (i) - po(j)po(j)' (A2)

The linearized form of Eq. (12a) can now be written asf;

T an equivalent form exists for q, with Py replaced by q, and v_ replaced
by —vp. _ p
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2,. _ o e (7T
[L+p (D] ") + 1-6P ()p (§) + —— 5y
p, ()2 [1+p (3)7] .
x(3) p'(3)

. . 12
dp (Dp'(P[1+p _(5)7]
2p,(P(3) = 3p)()? + B2

+

_ 2p_(3)p. (i) [132p_(5)?]
x(j)

3V kT
P
b & vy

5 8's

. . .22
X(J)pO(J) [l+po(J) ]

.\ 2- (2 .
- .12 [1+p (3> ][1+5p _(3)7] ¢ p()
x(°

2p_(3)%p"(3) = 6p_(3)p! ()

4py (e () [1+p (D7) 20, () 7o () [142p ()7
x(3) x(3)

4 3 po(j)3 [1+po(j)2]
x(3)

V kT (A3)

P L3 - 2 . N
200 8 7 x(3) [1-3p_(3)"-9p_(3) 5p,(3) 1
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while the boundary conditions can be expressed asj
[1+cq0(1)_] p(1) + [1+cpo(1)] q(1) = ¢ [1+po(1) qo(l)]

and,

ep'(1) + fq'(1) + gp(1l) + hq(l) = k

(A4)

(A5)
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where
3 p (1)[1+p (1)2]
e = 2[1+qo(1)2] pL(D) + 8
3 q (1)[1+q (1)2]
£ = —2[l+p0(1)2] qé(l)+ > x(lg
. 9 ’ 3 , po(l) )
g = [2/x(1)][1+3po(1) ][1+q0(1) ] po(l) D [1+p0(l) ]
9 2 , qo(l) 9 2
- 6po(1) [l+po(1) ] qo(l) * D [1 + qo(l) ]
- .2 )3 qo(l) 9
h = -[2/x(1)][1+3q0(1) ] [l+po(1) ] qé(l) * [1+q0(1) ]
' 5.2 po(l) .12
+6q (1) [1+q (D] ip (1) + —gy [14p (1)7]
k =,f[po(1),qo(l)] - f[qo(l),po(l)]

f(po,qo)= péz (1+9q§ + 15q2 + 7pg) + [Z/X(l)]p;po[l+9q§ + 15q§ + 7qS

+

3p2 (1 + 5q° + Tq. + 3qg)]+[1/x(1)2]po[l + 6> + 9 + 5.

6
o

+

30p_q q_ + 2lp

oN
oN

4 2 4 4 2 6 2
+ 15qo + 42pO N o q, + 7qO + 18po q

o &

+

4 4 6
27p_ q_ + 11p_ q_]
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for purposes of finite difference analysis the derivatives are ap-

proximated by;

p(j+l1) - p(j-1)
2Ax

p'(3)

(j-= 1VvN) (A6)

weoy _ pli+l) = 2p(j) + p(j-1)
p"(j) = >
(Ax)

where N+1 is the number of points in the finite difference scheme

for each quadrant of the pore surface. Symmetry requires that;
p(N+1) = 0 (A7)

There is no point below j = 1. However, in order to define p'(1l)

énd p"(1) an imaginary ﬁoint 0 is added. The finite difference forms
of tﬁe boundary conditions; coupled with the differential equations
at  j=1, permit the imaginary point to be eliminated. The problem
then reduces to two tridiagonal matrices, and the standard methods

of forward reduction and_backward substitution can be used to solve
for p(j) and‘ﬁ(j). Successive iteration is used to obtain convergent

values, Finally, the pore shape is determined from the slopes p and q.
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APPENDIX II

Determination of the Pore Shape

The pore shape can be determined from the slope solutions of
Appendix I, starting with the finite difference expression for the

slope

Y(3+1) = Y(3-1) + 2P(j)Ax (B1)
with the pore tip located on the x-axis,
Y(1) =0 (B2)

However, the position of point 2 (or the imaginary point) is still
needed in order to solve for the pore shape.

The slope and the derivative of the slope at point 1 can be ex-

pressed by
_Y(2) - Y(0)
p(l) = R P | (B3)
. _Y(2) - 2v(1) + Y(0)
p'(1) = )2 (B4)
.t.

A similar calculation may be used for q(j)



80

Combining Egqs. (B2), (B3) and (B4), we can derive

¥(2) = |P(1) + [P(2) - P(0)]/4} Ax o (BS)

Eqs. (Bl), (B2) and (B5) allow us to derive the pore shape.
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Trial Solution /
Stationary Pore Shape, VpiO

Uniform Surface Curvature

ﬂ |

Solution ?

Trial Solution ——>

AN

Finite Difference
Scheme

b

Iteration

Solution Pore Velocity
Moving Pore, Converge Exceeds
Vp ? Upper Bound

XBL8II0-6680

Flow chart of the program.
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PROGRAM HSUEH( INPUT,OUTPUT)
K CHUN-HWAY HSUEH
‘DEPARTMENT OF MATERIALS SCIENCE AND MINERAL ENGINEERING
UNIVERSITY OF CALIFORNIA» BERKELEY
APRIL 1981

OBJECTIVE *PORE SHAPE ANALYSIS#
THE PORE SHAPE IS DETERMINED BY THE DIHEDRAL ANGLE AND THE PORE VE
LOCITYs SURFACE DIFFUSION IS THE TRANSPORT MECHANISM. LINEARIZATIO

N OF A NON-LINEAR DIFFERENTIAL EQUATION IS USED TO SOLVE THE PROBL
EMs STARTING FROM THE SOLUTION FOR THE STATIONARY POREs A SERIES O

F SUCCESSIVE ITERATIONS BY SMALL INCREMENTS OF PORE VELOCITY IS US
ED TO OBTAIN THE SOLUTION FOR A MOVING PORE.

###INPUT DATA®##

1. TOTAL DIHEDRAL ANGLE.

2. PORE RADIUS. ,

3. NUMBER OF POINTS USED IN THE FINITE DIFFERENCE SCHEME.
4+ NUMBER OF ITERATIONS IN EACH SET.

5. PORE VELOCITY (CONTINUOUS READING BY SMALL INCREMENTS)

###0UTPUT SOLUTIONS FOR EACH PORE VELOCITy##»

le SLOPE AT SEVERAL POINTS FOR EACH ITERATION.

2. PARTIAL DIHEDRAL ANGLESs PS! 1 AND PSI 2.

3. PORE SHAPE.

4« PORE RADIUS.

4+ PORE VOLUME, v

5. PORE RADIUSs NORMALIZED BY THE STATIONARY PORE VOLUME.

###[F THE PORE VELOCITY EXCEEDS THE UPPER BOUNDs THE ITERATION
WwILL NOT CONVERGE.

DIMENSION X(101)sP(101)sQ{101)sAR(101)sAS(101)+AT(101)+AU(101)¢BRI
1101)sBS(101)+sBT(101)sBUI101)sYU(101)sYL(101)
READ 1+PSIsPRsN*NO

FORMAT(2FS5419213) "

Pl=4e%ATAN(1,.)

C=TAN(PSI*PI/180.)

CO=TAN(PSI#P1/360.)

DX=zPR/FLOATI(N)

DX2=DX#%2

DXX=22 e #DX

DXY=DX/2.

-P(1) IS THE SLOPE AT POINT I OF THE TRAILING SURFACE OF THE PORE

C-==-rQ{I) 1S THE SLOPE AT PQINT I OF THE LEADING SURFACE OF THE PORE

=X(1) IS THE X POSITION AT POINT I

N1=N+1

nO 11 I=1sN1
X{1)==PR+PR®*FLOAT(I-1)/FLOATIN)
CONTINUE

~SET SLOPE VALUE OF THE STATIONARY PORE

RIPREX2% (1 4+]1e /CORR2)

DO 19 I=1sN1
PlI)==X{1)/SQRT(R=X(])%n2)
Q(ly=pP(I)
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CONTINUE

PO=-(X{1)-DX)}/SQRT(R=(X(1)=-DX)*#%2)

Q0=PO

NI=IFIX{N/19+0,001) ,
~CALCULATION OF THE VOLUME OF THE STATIONARY PORE

VP=PI ({2, %R*¥SQRTI(R) /3, —PRRE(24%R/3,+PR*%#2/3,)/CO) %2,
-COTINUOUS READING OF VELOCITY DATA BY SMALL INCREMENTS

CONTINUE

READ 8,V

FORMAT(F6.2)

IF({VeEQeOs) STOP

PRINT 2+PSI1sPRsVINsNO

FORMAT (#1PORE SHAPE ANALYSIS (LINEARIZATION OF NON~LINEAR DIFFER
1ENTIAL EQUATION)*/%* DIHEDRAL ANGLE(DEGREE)=*F5.1/% PORE RADIUS=%F5
2.1/% NORMALIZED PORE VELOCITY=%Fg,2/% NUMBER OF POINTS IN FINITE D
3IFFERENCE SCHEME=#13/% NUMBER OF ITERATIONS=#13)

PRINT 3+(X{(I)sI=1sN1sNI)

FORMAT(//% SOLUTIONS #/% P 1S THE SLOPE OF THE TRAILING SURFACE
10F THE PORE*/% Q IS THE SLOPE OF THE LEADING SURFACE OF THE PORE #
2/% NeQele IS THE NUMBER OF ITERATIONS*/# —~wrewe—-—--—---mo-—o—e-—o=

3 __________________________________________________________________
Lt Sl T A NeOolo¥54X %X POSIT
STON®/13Xs# IMAGINARY*3FBe2910F10e2/ % mmmm—mmm o o e e e cvmmme e
- R et ettt ittt et i i
i 2 b D |

PRINT 49P0s(P(T1)sI=19N1sNI)

FORMAT(/F1842911F104,2)

PRINT 5sQ02(Q(I)sI=19sN1sNI)

FORMAT(/F232911F1042) .
-]TERATION FOR THE FOLLOWING STEPS (WITH NEW P(I) AND Q(I))

DO 12 NOI=1sNO

~SET FIRST DERIVATIVE OF SLOPE AT POINT 1

DP={P(2)-PO)Y/DXX

DQA=(Q(2)-Q0)/DXX

-DEFINE VARIABLES WHICH RELATE TO BOUNDARY CONDITIONS

P2=P(1)*%2

D4=P2*#2

P6=P4XP2

Q2=Q(1)%*%*2

Q4=Q2%%2

N6=Q4 %02

PP=1e+P2

QQ=1.++Q2

DP3=pPpP##3

QQR3=QQ**3

Azle.+C#Q(1)

B=le+C*P (1)

DsCH(1.+P(1)1%#Q(1))

E=z2,#0Q3%(DP+P (1) %PP/X (1))

Fx=2,%PP3% (DQ+Q(1)1%QQ/X(1))
G=2e#(1e+3,¥P2)#QQ3¥(DP+P (1) *PP/X(1)1)1/X{1)=6*P (1) *PP*PPX(DQ+Q{ 1%
10Q/X(1) )y #%2
HE=2e%#(1443,%Q2)*¥PP3*¥(DQ+Q(1)1%QQ/X (1)) /X{1)1+6.*Q(1)*QU*QQ*(DP+P (1)
1%#PP/X{1))%n2

AK=DPHDP#( 1o+ e #Q2+15%Q4+Te*QE)+2 4 #DP#HP (1) %#(14+9%Q2+15,*#Q4+T %06
143 ¥P 2% ({14 +5e%Q2+Te*Q4+3,%#Q6) ) /X{L1)1+P (1) %(1446,%P2+9,%Q2+5.,%P4+30,
2#P2#Q2+15.%Q04+42 ¥P2%NG42] o RPLHN24T 4 #QE+ 18, #P2*¥QE+2T o #P4%Q4+1 14 %P4
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IQ6 )/ X1} #R2-DA¥DQ¥( 1o+ ¥P2+ 18 %P4+Te#PE)~2.#DQAUQ( 1) % (14 +9e#P2+18
BoRPO+ToRPO+3a#Q2% (1o +5e#P24+T e #PL+3e#PE) )/ X(1)~QIL)%(1e+6e*Q2+T*P2
5+5.*Qk+30.*PZ’QZ*15.*P4+42-*QZ*PQ+21.*04*P2+7o*P6+18.*QZ*P6+27o‘QA
6#P4+11. *Q“*Pé)/X(l)*’Z

AE=E/DXX

AF=F/DXX
~DEFINE VARIABLES FOR THE TRI-DIAGONAL MATRIX

DO 13 J=1sN

IF(JsEQsl) GO TO 14

T=2J-1

K=J+1

DP=(P(K)=P(1}))/DXX

DQ=(Q(K)-Q(1))/DXX

DOP=(P(K)=2+%#P(J)+P (1)} /DX2

DOO=(Q(K)=2+%#Q(J)+Q( 1)} /DX2

GO TO 15

CONTINUE

DDP=(P(2)=2.%#P(1)+P0O)/DX2

DDQ=(Q(2)-2.#Q(1)+Q0)/DX2

CONTINUE

PJ2=P () %n2

PUL=P J20%2

PJe=PJs*p y)

DP2=DPxx2

AA=1e+PJ2

AB==86%P () ) #DP+AA/X( J)

AC=2e*¥P(J)¥DDP =34 #DP2+24#P(J)XDP/X(J) =3 ¥VHP (JYRAARAARX (J)—AA*( 1.+

T 154%#PU2)/X(J) R

AD=2+¥PJ2%#DDP=6o#P (J)RDP2+2. %P U2¥DP/X(J) +V#(1e=3,%PJ2-9 o #PJ4=5 ¢ *PJ
16)1%X(J) /2,6 ¥PU2#P(J)#AA/X(J) *#22

AR(J)=AA~AB*DXY .

AS(J)==2,#AA+ACHDX2

AT(J) =AA+AB*DXY

AU( J) =AD#DX2

QU2=Q(J)**2

QJL=QI2%%2

0J6=0J4%#QJ2

DQ2=DO**2

8A=144QJ2

8B==64%Q( J) *DQ+BA/X(J)

BC=2+%#Q(J) ¥DDQA-3¢#DQ2+2.#Q(J)#DQ/X (J)+3, #V*Q (J) #BAXBA#X (J)~BAR(1,+
15.%#QU2) /X(J) #%2
BD=2.¥QJ2%DDQG=604*Q(J)1#DA2+2+%¥QU2¥DQ/X (J) =V¥( 1e=3 ¢ ¥QJ2-9 s #QJ4=5 « ¥QJ
161%X(J)/20-64*QI2%Q(II*BA/X (J) *%2

BR( J) =BA-BB*DXY

BS(J) =~2+#BA+BCADX?2

8T(J)=BA+BB*DXY

8U( J) =BD*DX2 -

CONT INUE : '
-VARTABLE STOKAGEs USED LATER TO CALCULATE NEW SLOPE vALUE AT THE 1

---- MAGINARY POINT

- ASS=AS(1)
ATS=AT(1)
AUS=AU(1)
BSS=8S(1)
BTS=BT(1)
BUS=BU(1)
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~DEFINE FIRST ROW OF THE TRI-DIAGONAL MATRIX (COOPERATE WITH BeCe)
AS1=AS{1)+AR(1)%(G-H*A/B~AF*BS(1)*A/{(BR(1}#B))/AE

AT1=AT(1)+AR(1)
AUL=AUL1)-AR(1)*#AF*(14+BT(1)/BR(1)I*Q(2)/AE+AR( 1} *(AK-H*D/B+AF*(BU
1(1)-BS(1)%#D/B)/RR(1))/AE
BS1=BS(1)4BR{1)I*#(H-G*B/A-AEXAS(1)#B/(AR(1)%A))/AF

BT1=BT(1)+BR(1)
BU1=BU(1)=BRI1)*#AE#(1«+AT(1)/AR(1)I*P(2)/AF+BR(1)*(AK~GXD/A+AE* (AU
1(1)=AS(1)%#D/A)/AR(1))/AF

AS(1)=AS1

AT(1)=AT1

AUL1)=AU1

BS(1)=8%51

BT(1)=BT1

BU(1)=BU1

-SOLUTION OF THE TRI-DIAGONAL MATRIX=-=—-- 1. FORWARD REDUCTION

DO 16 L=2sN

Ll=t-1

ARS=AR(L)/AS(L1)

AS(L)=AS(L)~-ARS*AT(L])

AUCL)=AUIL)-ARS*AU(L])

BRS=BR(L)/BS(L1])

BS(L)=BS(L)-BRS*BT(L1)

BU(L)=BU(L)-BRS*BU(L]1)

CONTINUE
~SOLUTION OF THE TRI-DIAGONAL MATRIX=---==2, BACK SUBSTITUTION
PIN)=AU(N)/ASIN)

QIN)=BUIN}Y/BSI(N)

DO 17 M=24N

T1=N+1-M

JJ=11+1
PIIT)=(AUCTT)=AT(II)*P(JJY)/AS(T]
QUII)=(BUIIT)-BT(II)*Q(JJ))I/BS(1]
CONTINUE
-DEFINE NEW SLOPE VALUE AT THE IMAGINARY POINT
PO=(AUS-ATS*P(2)—ASS*P (1)) /AR( 1)
QO0={RUS=BTS*Q(2)-BSS*Q{1))/BR( 1}
=PRINT SLOPE VALUES FOR SEVERAL POINTS FOR EACH ITERATION
PRINT 6sNOIsPOs(P(1)91=13N1sNI}

)
)

FORMAT(/% P%*3153F11e2911F10,42)

PRINT 7sNOI»QO»(Q(I)sI=19N1sNI)

FORMAT (/% Q¥,3159F16¢2511F1042)

CONTINUE

~CALCULATION OF THE DIHEDRAL ANGLE

-PSI1 1S THE DIHEDRAL ANGLE OF THE TRAILING PART
-PS12 1S5 THE DIHEDRAL ANGLE OF THE LEADING PART

=S1 IS THE INCLINATION ANGLE

PSI1=ATAN(P(1))*180,/P1

PSI2=ATAN(Q(1))%1804/P1

SI=(pPSI1-pSI2) /2.

PRINT 9sPSI1sPSI2,4S1

FORMAT (/% = e — o oo o e o e e e e e mec e e e a
1%/% DESCRIPTION OF THE PORE SHAPE# /% —cmmmmameCmem o oo e oo
=sm=mo=—----o--o-----------4/% DIHEDRAL ANGLE (DEGREE) OF THE TRAI

BLING PART=#F6+2/%* DIHEDRAL ANGLE (DEGREE) OF THE LEADING PART=#F7.
42/* INCLINATION ANGLE (DEGREE)=*F7.2)
~CALCULATION OF THE PORE SHAPE
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-YU(I). IS THE Y POSITION OF THE TRAILING PART AT POINT I
-YL(I) IS THE Y POSITION OF THE LEADING PART AT POINT 1

YU(1)=0e

YL{1)=0.
YU(2)=(P(1)+(P(2)-P0O)/6,.)®DX
YL(2)=(Q(1)+(Q(2)-Q0)/4.)*DX
DO 21 J=2sN . :

1=U~1

K=J+1

YUIK)=YU(+)+P( J) *#DXX
YLIK)Y=YL(+)+Q( J)*DXX
CONTINUE

-CALCULATION OF THE PORE VOLUME AND THE SURFACE AREA
--VU 1S5 THE VOLUME OF THE TRAILING PART
-vL IS THE VOLUME OF THE LEADING PART

vu=0,

. VL=0.

20

~-RE VOLUME OF THE STATIONARY PORE

10

6060
1.0
240
3.0
4.0
560
6e0
65
6e7
6e8
6e9

AREA=O.

DO 20 J=1sN

K=J+1

XR=(X{J)+DXY ) #%#2%p] :
VUSVU+XR*(YUIK)=YU(J)) N
V0I=VL+XR*(YL(K)=YL{J)) '

AREA=AREA~(X(J)+DXY)#2 #PI#(SQRTI(YU(KI=YU(J) ) %*#24DX2)+SQRT( (YL (K)
1-YL(J))##24DX2))

CONTINUE

VOL=VU+VL

AREAZAREA® (VP/VOL)I**#(2,/3,)

-CALCULATION OF THE PORE RADIUS ( V VELOCITY) WHICH HAS THE SAME PO

RR=PR*{VP/VOL) *#%#(1e¢/34) .
~RV 1S THE PORE VELOCITY NORMALIZED BY THE STATIONARY PORE RADIUS

RV=V*VOL/VP

PRINT 100(XC(I)oI=1oNIoNI)o(YU(TI)oI=1aNIoNI o (YLUTI)sI=1sN1oNI)sVUsV
1L»VOL VP IRRIRVAREA : .

FORMAT(//% X POSITION #11F10e3/% Y POSITION®/* TRAILING PARTH*11F
110.3/% LEADING PART #11F1043//% VOLUME (TRAILING PART)=%#F7,3/% VOL
2UME (LEADING PART)=#FB8.3/% TOTAL PORE VOLUME=*F12.3//% VOLUME OF T
3HE STATIONARY PORE=#F10.3/% PORE RADIUS (NORMALIZED BY THE STATION
4ARY PORE)=*F6,2/% PORE VELOCITY (NORMALIZED BY STATIONARY PORE RAD
SIUS)=%#F6.3/% PORE SURFACE AREA=%#FT7,.,3)

GO TO 18

END

-EXAMPLE (INPUT)
001.0100020
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APPENDIX III

‘Modified Phenomenological Analysis

A constant pore mobiiity (Eq. (1)), a fixed maximum driving force
exerted on the pore (Eq. (3)) and hence a constant maximum pore veloc-
ity (Eq. (4)) are used in the phenomenological analysis. However,'the
detailed numerical pore velocity analysis indicates that the maximum
pore velocity depends on the dihedral angle (Eq. (17)). A modified
phenomenological analysis is thus needed.

Instead of choosing the mobiligy for a spherical pore, let u;

consider the pore mobility (by surface diffusion) per atom
M = -5 (c1)

The maximum driving force per atom for the pore motion can be derived

from Eqs. (17) and (Cl)

. Q6 s

Fp = ——zg—— (17.9 - 6.2¥) (c2)
which depends on the dihedral angle. Taking into account the reduction
of the driving force for grain boundary motion in the case of attach-

ment by the dragging force Fp of the pore, the grain boundary velocity

becomes;
SV = Mb(Fb - N FP) (c3)

where Fb is the driving force acting on the pore free grain boundary

(per atom)
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N = a§/R2 is the ratio of the number of atoms between the pore sur-
face and the boundary, (assuming that the interpore distance is the
grain size). A limiting velocity of separation can now be defined

Vy = Vp, which, in an R, a diagram, occurs when,

DSy ql/3
CERE:] _ 1
R —— 3 (17.9 - 6.2Y) = ———me. S (c5)

2Dy, a . a’ D - ,

b'db o ‘ o b

1+ 5
R D
s

The two limiting cases are

3
N <_ZDbeao

< (c6)
DSGSY891/3

(17.9-6.2¥)

sand

1/3, '
R > 6.y 0 (17.9-6.2\11)/2ybao (c7)
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FIGURE CAPTIONS
A schematic of the pore separation region given by the
phenomenological analysis,
A schematic of the grain disappearance process involved
in grain growth a) exaggerated grain growth involbing five-
sided grains b) the three-sided configuration associated
with ultimate grain disappéarance.
a) A schematic of a moving pore indicating the atom flux
and the inclination of the grain boundary, 6.
b) A schematic of the trailing and the leading surfaces
in the finite difference scheme.
Predicted pore shapes for several values of the normalized
pore velocity (¥= m/3).
Pores in Mg0 subject to motion with the grain boundary.
a) A plot of the grain boundary inclination as a function
of pore velocity for several dihedral angles,
b) Avplot of the grain boundary contact radius’as a function
of the normalized pore velocity.
The maximum steady—stake pore velocity as a function of
dihedral angle normalized by a) stationary pore radius b)
moving pore radius.
The shapes of pores when the velocity attains the maximum
value.
A schematic illustrating the development of a counter flux
with ¥ = T is distorted to achieve a net atom flux and hence,

pore motion with the grain boundary.



Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.
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A schematic illustrating the shapes of a pore under non-
steady-state conditions. For the pore volume to remain

contéct, the matter removed from the leading surface V2

‘must equal the matter deposited on the trailing surface, .

Vt{ Additionally, under non-steady state conditions, the
average veloaity of the leading surface, 32, must excede

that for the trailing surface, ;t' In order to satisfy

these requirements the contact radius a must decreaég rapidly
with increase in net pore velocity.

The axisymmetriévconfiguration associated with poré drag,
illustrating the important curvatures, the influence distance
and the»pdfe.ahd grain Boundary velocities,

Calculated grain boundary shapes for an axisymmetric configu?
ration, subject to‘'uniform chemical potentiél along the
boundary.

A schematic indicating the ch;nge in the axisymmetric radius

of curvature that accompanies pore drag with vb>>vp.

The various separation and admissibility’conﬂitibns identi-
fied in the present analysis, plétted for three Qalues of
the dihedral angle.

A pore created at a three grain junction by a Rayleigh in-

+

stability and the corresponding pore at a two grain interface.
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