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ABSTRACT 

Pores in ceram1cs are often found both 1n the process of fabrica-

tion and in serv1ce. The porosity is a serious problem because of its 

effects both on electrical conductivity, thermal conductivity and most 

importantly upon strength. The present work is hence devoted to a 

study of void formation and propagation under an applied tensile stress 

and to pore elimination in the final stage of sintering. 

The first part of the thesis is a study of creep rupture 1n ceram1cs. 

This occurs by the nucleation, growth and coalescence of cavities in 

localized, inhomogeneous arrays. The cavities grow by diffusive mechan-

1sms; a process which has previously been analyzed for uniform cavity 

distributions. Experimental results indicate that the inhomogeneity 

exerts substantial perturbations upon the failure sequence and hence, 

on the failure time. The failure sequence in the presence of inhomoge-

neity effects is examined in this paper. A model is developed that 

accounts for the experimentally observed damage accumulation features 

and predicts the influence of inhomogeneity upon the failure time. 

The second part of the thesis is devoted to the motion of pores 

attached to two grain interfaces. It is shom1 that pores exhibit a 

maximum steady state velocity that varies with the dihedral angle and 
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that the onset of non-steady state pore motion results in grain boundary 

convergence and the separation of the pore from the grain boundary. The 

peak steady state pore velocity has been compared with grain boundary ~ 

velocities for several grain configurations, in order to identify a 
I 

critical condition for the onset of separation. This comparison indi-

cates that the pore size must be maintained below a critical value to 

ensure grain boundary attachment. 

\ 
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1. INTRODUCTION 

Creep behavior in polycrystalline ceramic materials has been 

investigated extensively in ~ecent years because of the increasing 

use of these materials at high temperatures. It ~s usually found 

that cavities form at grain boundaries during creep and subsequently 

grow and coalesce to produce failure.l-4 Experimental results indicate 

that cavities generally form on grain boundaries oriented in a direction 

perpendicular to the applied tensile load.S-6 

A variety of cavity growth mechanisms has been propos~d depending 

on the temperature, the stress and the grain size.7 Most commonly, 

the growth of cavities has been explained by a diffusional transport 

mechanism. This process was first analyzed by Hull and Rimmer,8 

who considered a square array of spherical voids on a grain boundary 

slab subject to a tensile load. They found that the void growth rate 

increases linearly with increasing applied stress, provided that the 

voids grow with a spherical morphology (by the absorption of vacancies 

from the grain boundary) and that the grains on both side are rigid. 

The model has been modified by subsequent workers by imposing different 

boundary conditions.9-ll However, the conclusions were essentially 

the same. The assumption concerning cavity shape implies that surface 

diffusion is rapid enough that cavity growth is controlled by grain 

boundary diffusion. However, these conditions do not always pertain. 

The cavities sometimes exhibit an elongated, crack-like shape. Hence, 

Chuang and Ricel2 and othersl3-15 considered the other limiting case 

of a thin crack-like cavity with a cavity growth rate controlled by 
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. 
surface diffusion. Different relations between applied stress and 

growth rate were established for this growth process. 

Mechanisms such as grain boundary slidingl6,17, power law creepl8,19 

and the combined effects of diffusion and power law creep20-25 may 

also be in operation during the cavitation process. However, the 

present study is restricted to long failure times and high_temperatures 

so that diffusive growth mechanisms prevail. 

Prior studies of diffusive cavity growth assumed a homogeneous 

distributio~ of cavities. However, the cavitation process is inhomogeneous, 

involving preferential c~vitation in certain regions of the polycrystalline 

array2,26 (Fig. 1). The intent of this work is thus to examine the 

role of cavitation inhomogeneity upon the cavity evolution process 

and hence, upon the time to failure. 

The principal sources of inhomogeneity are assumed to derive 

from local variations in the grain boundary or surface diffusivity 

(attributed to grain orientation effects27 , augm~nted by impurity 

distributions2,28) or in the dihedral angle (i.e., the ratio of the 

boundary to the surface energy). The inhomogeneity effect resulting 

from a grain size distribution has been discussed by other 

investigators.29-31 

The inhomogeneity is needed to obtain preferred sites for initial 

cavitation, but appears to be of secondary importance for the zone 

spreading and coalescence aspects of failure, as will become clear 

later. 

The concept of constraint on diffusive cavity growth was first 

introduced by Dyson3 2 , who considered inhomogeneous cavitation at 
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the grain boundaries of a polycrystalline aggregate. He suggested 

that compatibility between the cavitated grain boundaries and the 

creep deformation of the surrounding material attenuates the local 

stress transmitted to the cavitated region. A subsequent analysis 

of this phenomenon by Rice33, considered diffusional void growth on 

an isolated grain boundary and evaluated the local stress by simulating 

the system as a circular crack in a viscous medium. 

In the present study, differences in matter transport rates asso­

ciated with local variations in grain boundary diffusion, and/or in­

homogeneous cavitation, result in local stresses. These stresses are 

induced by the constraint of the surrounding material, and tend to 

suppress the original differences in matter transport.32,33 The con­

straint thus provides some stability to the inhomogeneous cavity arrays 

and thereby contributes importantly to the rupture time.33 An approach 

for estimating the level of constraint is described in the second 

section of the thesis. Then, the formation of cavities, subject to 

the appropriate constraints, is examined in the third section. Initi­

ally, the cavities exhibit an equilibrium morphology. Thereafter, a 

transition to crack-like morphology ensues; a prediction of the transi­

tion is drawn in Fig. 2.34 This transition is of particular signifi­

cance to creep rupture in polycrystalline ceramics, because it signals 

the onset of more rapid cavity growth34, subject to reduced constraint. 

In the fourth section the time taken for the cavities to extend across 

grain facets is discussed. Ultimately, the cavit~tion zone begins to 

spread laterally and creates the failure initiating macrocrack. This 

process is considered in the fifth section. 
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2. LOCAL STRESSES 

Inhomogeneous diffusion or localized cavitation creates local 

stresses that may substantially differ from the applied stress. Deter-

mination of these local stresses is central to the analysis of creep 

rupture. The stress distributions in a polycrystalline aggregate is 

complex, and a rigorous stress analysis requires extensive numerical 

computation. An approximate analytic_solution is thus suggested, which 

permits both the identification of the important creep rupture para-

meters and elucidates the essential trends. First the creeping material 

is viewed as a viscous solid with the corresponding viscosity related 

to the diffusivity and the grain size.l6 Thus the analysis can be based 

upon a conti'nuum solution for the transformation of an inclusion 1n an 

elastic medium35 and then the analogy bet\•7een linear elastic and viscous 

materials is invoked36 (Appendix). The solution requires cavitation to 

occur within a zone of-diameter d (Fig. 3a) such-that matter deposition 

on the intervening boundaries procedes at a rate which differs from the 

average mass transport rate in t~e surrounding material. The enhanced 

matter deposition, ~8, that occurs in time, ~t, induces rigid body 

displacements of the juxtaposed grains which, if unconstrained,_would 

produce a shape change in the zone comprising these grains (Fig. 3b). 

The unconstrained shape change is analagous to a transformation strain, 

eij, of a corresp6nding elastic problem, as depicted in Fig. 3b. 

Haintaining compatibility between the 'transformation' zone \~i th the 

surroundings (th~ 'matrix'), the matrix grains induce a constraint 

Ptj on the transformation zone, and corresponding stresses in the 

matrix (Fig. 3c, d). Hence the constraint can be calculated by 

.. ,_ 
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adopting the Eshelby procedures.35 This comprises the imposition of 

surface tractions to the transformation zone that causes it to conform 

with the matrix, followed by the application of equal, but opposite, 

body forces along the interface to remove the applied surface tractions. 

The constraint Ptj is dictated by the unconstrained transforma­

tion strain, etj' and by the elastic constants for the elastic 

medium.35 Transforming the solutions to the v~scous material, the con-

straint Ptj is then dictated by the unconstrained transformation 

· , 'T 16 stra~n rate, e~j' and by the effective Niscosity, n , of the 

transformation zone and matrix (Appendix). While the whole material 

is subject to diffusive creep, the cavitation region is subject to an 

extra flux from the cavity surface, which deposits within the transfer-

mation region. Hence, the unconstrained strain rate ~s the net cavity 

volume change rate. Cavitation precedes ~n response to stresses normal 

to the cavitating boundary; the appropriate ~tj thus derives from 

the cavity volume change in the presence of the resultant normal stress 

acting during the interval, 6t. 

The viscous deformation involve's grain boundary sliding and diffu-

sive flowl6,37 (Fig. 3c). The viscosity assigned to this mode of 

deformation depends upon the number of gra~ns participating in the 

relaxation process (especially those grains at the periphery of the 

cavitation zone, Fig. 3c, where the shear stresses are most intense). 

The viscosity approaches the continuum value for the polycrystalline 

aggregate, ncont,,l6 when a sufficiently large number of grains are 

involved; 
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Tlcont. (1) 

where Dbob is the grain boundary diffusion parameter, D£ is the lattice 

diffusivity, D is the atomic volume, £ is the grain facet length, kT 

has the usual meaning, a is the applied stress and E is the steady-
oo 00 

state creep rate. It is assumed, for present purposes, that cavitation 

zones consisting of at least three grain facets (Fig. 3) embrace an 

adequately large number of peripheral grains (i.e. 'v8 peripheral grains 

in the two dimensional section shown in Fig. 3, but ~30 peripheral 

grains for the three-dimensional zone subject to analysis). 

The transformation strain-rate ~tj is determined by the·dis-

tribution of matter deposition within the cavitation zone; it is a 

function of both the total c~vitation rate, the distribution of grain 

boundary orientations within the cavitation zone, and the zone shape. 

"T In general, e~j, \•7ill contain both deviatoric and dilational com-

ponents. The general stress analysis is unwieldly. Hence, the cavita-

tion zone is first approximated by an ellipsoid (Fig. 3c) and the 

constraint derived from the Eshelby solution.35 Specific results are 

presented for the t~..ro limits of mos't significance. One extreme case 

obtains when the aspect ratio is unity and the ellipsoid becomes a 

sphere; the other ~s when the aspect ratio is large and the ellipsoid 

can be considered to exhibit a disc shape. 

When the transformation zone is a sphere, the dilational. component, 

eT, results in a constraint, pi, independent of the zone size.38 As 

the cavitation zone diameter ~s relatively small (such as the three 

cavitating facets depicted in Fig. 3), the constraint ~s approximately 

the same as that expected for a purely dilational transformation 
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(Appendix). The zone can therefore be considered subject to a dilation 

dictated exclusively by the cavitation volume, 6V. Consequently, by 

equating the cavitation zone volume to that of an ellipsoidal region 

of equivalent size (Fig. 3c); 

v "" nd
2

Q,/3 

the transformation strain rate becomes; 

·T • 2 e "" 36V/nd Q, 

( 2) 

(3) 

This dilational strain, pertinent to the lower zone size limit, results 

in a size independent, upper bound constraint. For viscosities charac-

terized by Eq. (1), the constraint is g~ven by (Appendix, Eq. (A7)); 

I 
p -e~-~3) 

Conservation of matter within the zone requires that; 

The constraint thus becomes; 

(4) 

(5) 

(6) 

~ 
The local tensile streEs o£ normal to the cavitating boundaries de-

picted in Fig. 3 is thus 
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(7) 

where the first term is the applied stress resolved on the gra1n bound-

I ary facet and the second term is the component P
11

, normal to the 

gra1n boundary (P~ 1 ~ PI/3). For fine grained materials, £D£ << 

Dbob, and Eq. (7) reduces to 

(8)' 

The constraint reduces to a lower level than given by Eq. (8) when 

the zone approaches a free surface or, when an array of such zones, 

separated by < d, interact. 

When the cavitation zone enlarges, such ~hat d<6£, an appreciable 

deviatoric stress develops, and the problem r:esembles that of a crack 

with diameter d, subject to open1ng displacements that accommodate 

the enhanced matter deposition along.the intervening grain facets 

(Appendix).33 The crack solution, pertinent to the large zone s1ze 

limit, provides a constraint, given by (Appendix, Eq. (A8)); 

91~ =- --
28 ( +) (9) 

The subsequent analysis is conducted in detail us1ng the upper 

bound constraint, as pertinent to situations 1n which most of the 

rupture time is consumed "'hile the cavitation zone 1s small. It is 

relatively straightforward to extend the analysis to include alternate 

constraints. 
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The shape change in the cavitation zone enhances the stress in the 

matrix (Fig. 3d). The stresses on those boundaries contiguous with the 

cavitating boundaries are of principal interest. These stresses derive 

from the continuum stresses, as redistributed by grain boundary sliding 

and local grain boundary diffusion. It 1s assumed that the stress 

redistribution is confined primarily to those boundaries immediately 

adjacent to the cavitation zone; such that the average stress on the 

peripheral boundaries is similar to the average continuum stress. 

Cavity growth in the peripheral zone is. then considered to proceed at 

a rate dictated by this average stress. The upper bound continuum 

stress on the grain boundaried of the surrounding grains, subject to 

dilation, is; 

0 
(JR. (lOa) 

where x is the distance from the center of the cavitation. The first 

t~rm results from the applied stress and the second term results from 

the constraint, as derived from the radial normal stress 1n an elastic 

medium containing a sphe~ical cavity subject to an internal pressure, 

P
1 /3.39 The average stress on the first peripheral zone (x ranges 

from 9, to 2 9,) is thus; 

<a>~ (lOb) 

The equivalent solutions at the large zone limit are; 
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(lla) 

o I <a>n =a·- p 
Yv co 11 

(llb) 
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3. CAVITY GROWTH 

3.1 General Considerations 

In order to model the growth of cavities, consider for simplicity 

the perfect hexagonal grain arrangement with a plane strain geometry 

and cavities of center to tip distance, a, and center to center spacing, 

2b (=~). The nucleation of cavities at a triple junction is assumed 

for present purpose to occur, quite readily, at junctions between 

boundaries with atypical diffusivities or dihedral angle. For fine-

grained polycrystals the mass transport rate by volume diffusion ~s 

relatively small40,41 and is neglected in the present analysis. The 

matter which diffuses from the cavity surfaces is assumed to diffuse 

along the grain boundary connecting the cavity array, such that the 

grain boundary thickening is spatially uniform (uniform thickening per-

tains because the transient time to reach steady state is relatively 

short for fine grained polycrystals42). 

The problem of cavity nucleation has, been studied by several 

workers.43-46 It is simply noted here that triple junction nucleation 

can occur at relatively low stress levels (typical of the applied 

stresses employed in creep tests) when the local dihedral angle, ~. 

2 
is small (e.g.,~ 'V800; as observed for Al 2o3 ) • Nucleation is thus 

expected to occur soon after the application of stress at that fraction 

of grain junctions comprising low local dihedral angles. Some subse-

quent nucleation at more resistant triple junctions (due to grain 

boundary sliding instabilities) may also occur. But, ~n the present 

analysis, the observed differences ~n cavity s~ze are considered to 
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derive predominantly from differences 1n cavity growth rate, rather 

than from different nucleation times. 

The cavities given initial consideration are equilibrium-shaped 

cylindrical cavities at triple junctions (Fig. 4a). This configuration 

is presumably preceded by spheroidal cavities along three grain Junc-

tions or at four grain junctions.2 However, equilibrium shaped .cavities 

extend rapidly after initial nucleation, and their growth into a cylin-

drical shape is assumed to provide an insignificant contribution to the 

cavity evolution time. 

The equilibrium cavities are expected to exhibit a transition to 

crack-like cavities (Fig. 4b) as they extend along the intervening 

grain boundary. Chuang et al. 34 examined the entire spectrum of 1n-

terfacial void shapes 1n diffusive cavitation and concluded that, in 

the absence of constraint, the transition occurs when the velocity 

computed for the crack-like cavities exceeds the equilibrium cavity 

velocity. The transition subject to constraint is undoubtedly more 

complex, but will presumably proceed 1n accord with the same velocity 

criterion, provided that the transitio~ also results 1n a reduced 

constraint. 

The system considered for the present analysis consists of several 

contiguous boundaries that exhibit atypical diffusivities Db or D
5 

(relative to the average diffusivities Db or Ds) or a low dihedral 
I 

angle, 1¥ • Cavities are assumed to nucleate and grow uniformly at 

each triple junction encompassed by these boundaries. 

3.2 Derivation of Governing Equations 

When the grain boundary is subject to a normal tensile stress 
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d(x) the chemical potential of the atoms at the grain boundary is47 

(12) 

and it is known from diffusion theory that the difference in chemical 

potential gives the driving force for atom diffusion. The flux law 

has the form 

kT dx 
(13) 

where Jb is the atom flux in the grain boundary and Db LS the local 

grain boundary diffusivity. The atoms deposit at the grain boundary, 

forming a layer of uniform width, 68. It thus follows from matter 

conservation requirement that 

CJJ - rt­
dx 

(14) 

Substitution of the grain boundary flux (Eq. (13)) into Eq. (14) yields 

a relationship between the grain boundary thickening, 68, and normal 

tensile stress, a. 

66kT --,-- (15) 

Db8brt 

Solving the differential equation subject to the boundary conditions 

that the stress is symmetric at the midpoint, x 

stress is continuous at the cavity tip, x = a, 

a'(b)=o and a(a) a 
0 

b, and that the 
j 
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where a is the sintering stress at the cavity tip, lead to 
0 

a(x) bx + 

where f = a/b. The condition of mechanical equilibrium requires 

ba i = J.b a(x) dx 

substituting Eq. (16) into Eq._ (17) gives; 

(16) 

(17) 

(18) 

Recalling that the local stress can be related to the applied stress 

and the thickening rate by Eq. (8), it becomes possible to solve for 

both the local stress and the cavity growth rate. Solutions are obtained 

for both equilibrium cavity growth (cavities with a uniform curvature) 

and for crack-like cavity growth (a condition under which there is 

insufficient time for a cavity to develop a rounded shape and instead, 

remains thin and crack-like). 

3.3 Equilibrium Cavities 

The sintering stress is given by47 

a = y c 
0 s 

(19) 

where y
8 

is the surface energy and C ~s the curvature evaluated at 

the cavity tip. For the equilibrium cavity, the sintering stress 

can be expressed by 

ab = 2\h(\jl)/ 13 a 

where h(\jl) =sin [\jl/2- Tr/6] 

(20) 



15 

Matter conservation requires that, for unit width of the cavita-

tion zone, 

(21) 

. 
where V is the rate of volume change of an individual cavity. The 

volume of an equilibrium-shaped, cylindrical, triple junction cavity 

is (for unit width) 

V = 3 13 a
2 F('±')/4 

where F('±') = 1 + /3 ['±'- rr/3 - s1n ('±'-rr/3)] 

2 sin2('±'/2 - rr/6) 

The rate of volume change is thus; 

. 
V = 3 /3 a a (F('±')/2) eqm eqm 

(22) 

(23) 

The cavity velocity is related to the additional matter deposition, 

from Eqs. (21) and (23) by; 

. 
M = (3 /3/4) a f F('±') 

eqm (24) 

Substituting Eq. (24) into Eq. (18), the growth rate of the cavity 

in an inhomogeneous region with a local grain boundary diffusivity, 
I 

Db' is 

16rtn,;o0 
a = 

eqm /3kT9-2 

a 1 
- a ( 1-f) 

9, 0 

F ('±' ) f (1- f) 3 (25) 

The magnitude of the local stress pertinent to Eq. (25) is deduced by 

noting that the matter deposition given by Eq. (24) must be compatible 
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with the development of the local stress induced by the constraint 

of the surrounding material. Using the upper bound constraint (Eq. 

(8)) pertinent to a small cavitation zone (e.g. Fig. 3), the local 

stress becomes; 

I 

(26) 

Substituting the sintering stress and the local stress from Eqs. (20) 

and (26) into Eq. (25) the final relation for the cavity velocity, 

expressed in dimensionless form, becomes; 

(16//3)[(3/4).(0
0
)1,/ys)f- (4//3)h('¥)(1-f)] 

F('¥)f 2 [(1-f) 3 (Db/D~) + (24 /3/7rr)] 

3.4 Crack-like Cavities 

(27) 

The analysis of crack-like cavity grm-1th is facilitated by noting 

that both the cavity profile and the atom flux at the tip of well de-

veloped crack-like cavities depend on the instantaneous cavity velocity; 

viz. the prior, equilibrium morphology of the cavity is of minor sig­

nificance.34,43 The growth process can thus be adequately treated by 

focussing on the tip region, and neglecting complex morphological 

changes that may be occ~rring in the vicinity of the cavity center. 

Also, for present purposes the meniscus instability is neglected, 

because the wavelengths needed to permit the growth of perturbations 

is larger than the grain facet dimension for typical fine grained 

ceramics.2 
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. 
Commencing with the expression for the curvature and the surface 

flux at the tip of a crack-like cavity34 

C = 2 s1n (1/4) ; 113 

crack 

J = 2 s1n 
s 

(1/4) ;2/3 
crack 

(kT/D 8 1"2y ) 1/ 3 
s s s 

(28) 

( 29) 

,.,here D 8 is the surface diffusion parameter. Substituting Eq. (28) 
s s 

into Eq. (19), the sintering stress of·the crack-like cavity becomes 

a = 2 y s1n (1/4)(a k kT/D o 1"2y >1
'

3 
o s crac s s s 

(30) 

The matter removed from the cavity tip must be deposited on the grain 

boundary, in order to satisfy matter conservation; hence, 

2J 1"2 
s 

(31) 

Combining Eq. (29) with Eq. (31), the boundary thickening rate becomes; 

66 = 8 sin(1/4) ~ 213 
crack 

(32) 

Substituting Eqs. (30) and (32) into Eq. (18), the growth rate of the 

crack-like cavity 1n an inhomogeneous region, with a grain boundary 

' diffusivity Db' is; 

a 
crack = 

D a Dy 
s s s 

kT 

-1+[1+(2/3)( 1-f)(D
8 

6
5
/Db 6b)( £oQ,/y

3 
sin (1/4))] 112 

( 2/3 )( 1- f) 2 9,( D s <\I D~ <\) 

(33) 
3 
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Combining Eq. (32) with the relation for the local constraint, Eq. (3), 

yields the equation 

(34) 

·2/3 
a 
crack 

y i (kT/D o ~y )2/ 3 
s s s s 

Note that Eqs. (33) and (34) express the relation between the cavity 

velocity and the local stress. Combining the two equations permits 

the explicit de,termination of the cavity velocity and the local stress. 

For example, the velocity is given by; 

(35) 

(3/4) a £/y sin(~/4) 
00 s 

to obtain a simple ?nalytic expression for the cavity velocity and 

the local stress, some approximations are made. The parameters a ijy 
00 s 

I 

and Db/Db are typically? 1, whereupon Eq. (35) reduces to 

[ (21n/256/TI a £/y 
00 . s 

v = --------------~~~-------------/:,1/2 

sin(~/ 4) J 3/2 

X 1 /;
111/2 
u ( 1-f) 

(36a) 

which, upon further simplification, becomes 

0 . 15 La £1 y s in ( ~I 4 ) J 
v2/3 ~ ~-----oo~~s------~---

61/3 
(36b) 
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An almost steady velocity is thus anticipated ~n the crack-like region 

during initial cavitation. However, when the constraint is reduced in 

the later stages of cavitation, cavity acceleration is to be antici-

pated and Eq. (36) should not be used. The equivalent expression for 

the local stress is; 

(/3/4)(1-f)[(7n//3) (o Q,jy sin(\jlf4))6]1/2 
00 s 

--- = --------------~--~--~~~~~-----------60 Q,jy sin('±'/4) 
00 s 

-(71T/ 1613) ( 1-f) 2 
(37) 

3.5 Velocity Trends 

The solutions given ~n Eqs. (26), (27), (36) and (37) are based on 

the assumptions that the cavities grow with either an equilibrium shape 

or a crack-like shape, respectively. Chuang et al.'s criterion34 can 

be used to consider the transition between the two shapes, which re-

quires the transition to occur when the crack-like cavity velocity 

exceeds the equilibrium cavity velocity. 

The local stress and the velocity of equilibrium cavities from 

Eqs. (26) and (27) and the exact solutions for crack-like cavities from 

Eqs. (33) and (34) are shmm in Fig. S, (where the tvm limiting cases 

are plotted for oooQ,fy = 20, 6 = 0.5 and '±' = 80° as the data are perti­
s 

nent to Al
2
o

3 
for diffusive creep). It is seen from Fig. ,.Sa that ,.,hen 

the applied stress is high enough to overcome the sintering stress, the 

cavity starts to grow and possesses an equilibrium shape. As the equilib-

rium cavity grows, the cavity velocity is affected by two factors; (a) 

the sintering stress, which is decreased by the cavity growth (Eq.(20)) 
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and tends to increase the cavity velocity, and (b) the local stress, 

which decreases as the cavity grows (Eq. (18)) and tends to retard the 

cavity growth. At·the cavity nucleation s1ze the sintering stress is 

important and the cavity velocity increases rapidly up to a max1mum 

value. Then, the constraint dominates and reduces the cavity velocity. 

On the other hand, the c~ack-like cavity velocity maintains an approxi-

mately constant value. Thus, as the equilibrium cavity grows to a 

transition size f*, the crack-like cavity ·velocity exceeds the equilib-

rium cavity velocity (Fig. Sa). A reduced constraint obtains for the 

crack-like morphology (Fig. Sb). The transition to crack-like cavities 

is thus considered favorable when the crack-like velocity exceeds that 

for equilibrium cavities, and the local stress is assumed to adjust to 

this crack-like value, over the transition range. 

The important trends in cavity velocity with cavity length, d, 

and with the dominant variables (a 1/y , ~ and 6) are illustrated 1n 
00 s 

Fig~ 6. 

Firstly, the strong influence of the constraint upon initial 

cavitation is noted (Fig. 6a). The effect of the constraint is man1-

fest at the very earliest stages of cavity growth and continues to be 

~mplified as the extension proceeds. As the cavitation region enlarges 

the constraint becomes smaller and the local stress becomes larger, 

• 
hence the cavity velocity 1ncreases. It is also re-emphasized that the 

development of constraint leads to a relatively invariant cavity veloc-

ity in the crack-like regime. Secondly, the magnitude of the applied 

stress (Fig. 6b) has a substantial effect on the cavity velocity, over 

the entire range. The higher the applied stress, the higher the cavity 



21 

velocity. However, other notable effects of the stress include the de-

crease 1n transition size, f*, as observed experimentally,2 and the 

substantial reduction in the critical nucleation s1ze, f • Setting 
0 

; to zero in Eq. (27), the relative nucleation size is; 
eqm 

-1 

313 (cr~:)] (38) 
sin(\f/2-lT/6) 

Thirdly, the material parameter, ~' the local value of the dihedral 

angle, has a dominant influence upon inhomogeneous cavitation (Fig. 6c). 

Specifically the growth of cavities with a small dihedral angle re-

quires the removal of relatively small quantities of material; conse-

quently, the cavity velocity increases as the dihedral angle decreases. 

Finally, the ratio ~ of the surface to boundary diffusity affects the 

cavity velocity (Fig. 6d) such that cavity growth in the crack-like 

mode is favored when grain boundary diffusion is more rapid than sur-

face diffusion (i.e., when~ is small).34 

The local grain boundary diffusivity has a negligible influence 

on the cavity velocity. However, variations in this diffusivity would 

exert a much more significant influence on cavity growth at smaller 

values of cavity spacing. The transition, f*, between the equilibrium 

and crack-like modes of cavity growth predicted by the above analysis 

can be compared with experimental data2 obtained for Al
2
o

3
• The pre­

diction, illustrated in Fig. 7 for ~ = 80° and ~ = 0.5, appears to 

adequately separate observations of the two cavity types; hence, some 
c 

credence in the preceding analysis is established. 
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4. PROPAGATION TIME 

The time taken for cavities to extend across grain facets 1s of 

principal importance for the creep rupture process. If cavity nucle-

ation occurs 
.,. 

state is established, the time needed soon after steady t 
p 

to create a cavity of relative length f is simply, 

f* f 

2tp/.Q, 1 df I df (39) + 
a a crack 

0 
eqm 

By using aeqm from Eq. (27) and acrack from Eq. (35) and solving 

the integral numerically, some typical dimensionless propagation times 

are obtained as plotted in Fig. 8. The variation of propagation time 

with cavity length for ljl = 80°, ocx/jy
8 

= 20 and !:, = 0.5 is shown 1n 

Fig. Sa. When the dihedral angle or the local surface diffusivity 

decrease and/or the applied stress increases, the cavity velocity 

increases (Sec. 3.4); hence, the propagation time decreases, as shown 

in Figs. · 8b, 8c and 8d (for f=l). In the above cases, the transition 

to the crack-like mode occurs rapidly and most of the time required to 

develop a full facet length cavity is dictated by the growth in the 

crack-like mode (as might be anticipated from the velocity diagrams). 

The initial cavitation that occurs 1n local regions of a creeping poly-

crystal (due to small local values of ljl or D ) can thus be approxi­
s 

mately characterized by the constant velocity relation (Eq. 36b); 

whereupon the propagation time becomes; 

1/2- C' 3/2 
sin(IJI/4)) 

0 9. 
co 

(40) 
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If the initial cavitation consumes the major portion of the rup­

ture process, Eq. (40) will also provide an approximate estimate of 

the failure time. However, the conditions wherein this approximation 

obtains can only be ascertained by examining the subsequent cavity 

evolution, as manifest 1n the zone spreading process. 



24 

5. ZONE SPREADING 

The incidence of zone spreading is contingent upon the development 

of enhanced tensions and thus, accelerated cavity growth, around the 

periphery of the cavitation zone. Cavitation firstly occurs along 

several contiguous boundaries for which one (or both) of the parameters 

that dominate the cavitation rate (~ or D ) deviates from the average 
s 

value. The local stress outside the cavitation zone, on the contiguous 

boundaries, is larger than the applied stress (Fig. 9). The cavitation 

rates in this peripheral zone are presumably non-uniform. A complete 

solution of peripheral cavity growth is beyond the scope of the present 

wdrk. Instead, a simplified intermittent spreading procedure is 

adopted. Cavity growth in each peripheral zone 1s assumed to occur 

uniformly (i.e., two uniformly approaching cavities on each peripheral 

boundary, Fig. 9) at a stress equal to the average stress over that 

boundary, determined from Eq. (lOb), while cavitation on the·origirtal 

boundary continues at the initially deduced local stress. Then, at a 

time t* when the cavity lengths in the cavitation zone and in the 

peripheral zone become equal (Fig. 10), the cavitation zone 1s con-

sidered to advance to the boundary of the peripheral zone. The process 

is then continued by considering the growth in the next peripheral 

zone, with a new value of the local stress assigned to the cavitation 

zone (based on the increase in the zone size, d). Proceeding in this 

way the time t. needed to form a discrete macrocrack can be deduced, as 
. 1 

schematically shown in Fig. 10. The cavity velocity in the first peri­

pheral zone is deduced by substituting <a>~ from Eq. (lOb) for 0
00 

1n 

Eq. (27) (the equilibrium regime) or Eq. (35) (the crack-like regime). 
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The cavity propagation times are compared in Fig. 11 with those on the 

initial boundary for several choices of~·,~, D 
s 

I 
and D • 

s 

Some general cavitation characteristics are established before 

examining the zone spreading process. Firstly, small local surface 

diffusivities cannot be the source of preferred cavitation, because 

the equilibrium cavity growth process is independent of D (although s 

earlier transitions to crack-like cavitation can certainly be attribu-

ted to deviations in D ). A prerequisite for the appearance of pre­
s 

ferred cavitation is thus the existence of a dihedral angle smaller 

than the average value. Zone spreading considerations are therefore 

based on the premise that initial cavity development on certain bound-

ar1es resides in a.small dihedral angle. However, subsequent cavity 

development on these boundaries can be further enhanced by small sur-

face diffusivities. 

The zone spreading process can be conveniently separated into 

three regimes. Firstly, when the deviations in~ and D are small, and 
s 

the absolute values are close to the average values for the material, 

zone spreading occurs very rapidly, while the cavities are still quite 

small (Fig. lla). Failure from these regions is expected to occur 

( 

quite slowly, at a rate similar to that for homogeneous material. 

Conversely, when there are appreciable local deviations in both ~ and 

D , a cavity can extend fully across a grain facet before significant 
s 

cavitation can be induced on the contiguous boundaries (Fig. llb). 

The cavitation can then be regarded as an essentially independent 

process. This cavitation regime is likely to pertain to isolated 
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regionst.during the earl~ stages of failure, and explains the observa­

tion of pre~ature full-facet sized cavities.2 Again, however, this 

mode of cavitation has little influence upon the failure process, be-

cause the full-facet cavities have a minor effect on cavitation in the 

contiguous boundaries and do not, therefore, lead to the generation of 

macrocracks (as noted experimentally).2 An intermediate regime, that 

consists of appreciable deviations in ~, but small deviations in D , is s . 

of principal importance with regard to failure (Fig. llc). Cavity propa-

gation and coalescence under these conditions occurs most rapidly. Such 

regions are thus considered to be the principal sites for failure 

initiation. 

The trends in constraint during zone spreading suggest that a 

large proportion of the failure time ~n the intermediate region should 

be consumed while cavitation is confined to a small number of contigu-

ous grain facets. The approximate expression for_ the failure time 

(Eq. (40)) that pertains during this period should thus provide a 

first-order estimate of failure. Comparing this relation with that 

for diffusive creep (Eq. (1)), the following expression for the failure 

time, tf' emerges; 

~ 50n(y /a Z) 112 sin(~/4) 312 (D o /Do ) 1/ 2 
s 00 s s b b 

(41) 

The analysis thus. anticipates a strong interdepedence of the 

failure time and the steady-state creep rate, as generally observed 

tThe number of these regimes would be dictated by the probability 
of locating a boundary with small values of both ~and D8 , based 
upon the appropriate statistical distributions of ~ and Ds• 
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(the Monkman-Grant relationship);48 although an additional dependence 

of the failure time·on the stress (y /0 £)
1/ 2 emerges from the present s 00 

analysis. Important effects of the local dihedral angle and of the 

diffusity ratio are also predicted, in the sense that small values of 

these parameters encourage failure. 
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6. DISCUSSION AND CONCLUSIONS 

The cavitation process in ceramic polycrystals is observed to be 

inhomogeneous~ resulting from the presence of local variability 1n 

material properties, especially in the dihedral angle, ~, or 1n the 

diffusivity along the newly created cavity surfaces, Ds. Such vari­

ability in ~ or D could arise from crystalline anisotropy, but appre-
. s . 

ciable effects of impurities may also be involved. The excess matter 

deposition from the cavitation induces constraints which retard the 

cavitation rate and contribute importantly to the rupture time. The 

magnitude of the constraint is dictated by the rate of cavity volume 

change relative to the viscous relaxation rate (associated with the 

creep of the surrounding material). Additionally, the constraint de-

pends upon the morphology of the cavitation zone. Two limiting cases, 

the equilibrium cavity and the crack-like cavity are of practical im-

portance. The transition is considered to occur when the crack~like 

cavity velocity exceeds the equilibrium cavity velocity and less con-

straint is derived from the transition. The failure characteristics 

exhibited by a material depend on the extent of the deviations 1n D 
s 

or ~. Three possibilities are considered. 

Large local deviations in the dihedral angle and -in the diffusivity 

appear to be relatively innocuous, because the isolated full-facet sized 

cavities which form in these regions do not enhance the cavitation rate 

on contiguous boundaries. However, if there are a relatively large pro-

portion of boundaries with a high cavitation susceptibility, premature 

failure may occur from contiguous accumulations of these boundaries. 
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The probabilistic aspects of failure under 'similar conditions have been 

examined by Evans.3 

Exclusion of failure from large statistical accumulations of 

susceptible boundaries results in a creep rupture process dominated by 

cavity propagation in regions containing several contiguous boundaries 

with significant deviations in dihedral angle (and small deviationsfiin 

the diffusivity along the cavity surfaces created at the boundary). 

The failure time that obtains under these conditions may be approxi-

mately expressed by Eq. (40); a result.that indicates important influ-

ences on rupture of the steady-state creep rate (i.e., Monkman-Grant 

behavior), the local dihedral angle~ and the ratio of the surface to 

the boundary diffusivity, Ds/Db. Small values of ~ or Ds/Db encourage 

creep rupture. Such effects should be apparent in creep rupture ex-

periments. It has already been observed, in fact, that cavitating 

boundaries in Al
2
o

3 
exhibit smaller dihedral angles than those typically 

measured during sintering or grain boundary grooving experiments 2 (~80° · 

compared with 100-120°). 

In materials of relative uniformity, cavitation is expected to 

develop homogeneously, by virtue of a rapid zone spreading process. 

The stress in these regions thus remains at a level essentially similar 

to the applied stress. Homogeneous cavitation models that exclude an 

explicit dependence on the steady-state creep rate are then most perti-

nent. The cavitation rate exceeds that 1n materials containing regions 

of low ~ and/or D , because the more rapid cavitation associated with 
s 

the smaller~ or D is.not sufficiently counteracted by the development 
s 

of constraint. This trend is evident from a comparison of cavity 



30 

propagation times ~n regions with a relatively uniform, average di-

hedral angle (Fig. lla) and regions with a particularly low dihedral 

angle (Fig. llc). However, probabilistic studies of the distribution 

of grain boundary properties are needed in order to distinguish the 

principal modes of creep rupture experienced by specific ceramic 

~· polycrystals. 

Finally, some correlations between creep r~pture and sintering are 

examined. As low ratio of the surface to boundary diffusivity is a 

prerequisite for initial stage sintering.49 Most ceramic polycrystals 

should thus be susceptible to the cavitation failure prqcesses described 

in this work. Also, it is probable that regions of a polycrystalline 

aggregate that are the last to sinter to full density are also the re-

gions subject to cavitation during creep. Pore removal rates during 

final stage sintering can be determined by setting 0
00 

to zero in 

Eq. ( 27): 

8 sinter = 
64 sin(~/2 - TI/6)(1-f) 

(42) 

Some typical sintering characteristics are plotted in Fig. 12. 

Inspection of Fig. 12 indicates that pores with small dihedral 

angles, ~ + n/3, will be removed very slowly; cavities which, as already 

noted, extend most rapidly. Such regions are the principal candidates 

for creep rupture initiation. It may be surmised, therefore, that the 

addition of solutes that enlarge th~ dihedral angle should encourage 

final stage sintering as well as retarding creep rupture. Prospects 

for identifying solutes with this capability should be explored in 

future studies. 
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APPENDIX 

CONSTRAINT ON THE CAVITATION ZONE 

The constraint exerted'on a zone subject to a transformation 

T I strain e .. can be conveniently separated into dilational p and 
1] 

deviatoric component 'p~ .• The dilational constraint is independent 
1J 

of the zone size and is given for an elastic solid by;38 

I 
p = 

T 
e 

+ 
(Al) 

where ~ is the shear modulus, K is the bulk modulus and the subscripts 

p and m prefer to the material inside and outside the transformation 

zone, respectively. The deviatoric constraint is shape dependent. 

For example, the deviatoric constraint associated with a spherical 

zone is given by;38 

I T 
e~ . 
l] 

(4-Sv )/[(7-Sv ) m m 
(A2) 

where vis Poisson's ratio. The relative influence of the dilational 

and deviatoric constraints on the stress normal to the grain boundaries 

(the driving force for cavitation) depends on the grain boundary orien-

tations within the zone (which determines the unconstrained transforma-

T T T 
tion strains s11 , E22 , E

33
, Fig. 3b) and on the zone shape. 

For the grain boundary orientations and zone shape depicted 1n 

Fig. 3 the stress is dominated by the dilational transformation strain. 

Specific calculations conducted us1ng the Eshelby tensor for an ellip­

soidal cavitation zone (Fig. 13) indicate that Pi
1 

differs from PI/3 

by a small amount if the cavitation zone is small. A dilation dominated 
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constraint can thus be considered to exist for zones of small lateral 

extent, typified by Fig. 3. This is the basis for the upper bound 

solution presented 1n this work. 

For an elongated zone, d>>~, wherein the majority of grain bound-

aries subject to enhanced matter deposition are nearly riormal to the 

applied stress, the constraint is simulated by the solution of a disc-

shaped crack with diameter d in a homogeneous linear elastic solid;33 

3nf1<Lio> 
4(1-\J)d (A3) 

where <66> is the average matter deposition along the cavitation zone. 

This solution approximates the ~onstraint level attained within trans-

formation zones of lateral extent d>6£ (Fig. 13). 

By the analogy between linear elastic and linear viscoelastic 

materials,36 the equivalent solution for a viscous solid which exhibits 

diffusive creep can be obtained if f1 is replaced by ns and \J by (3K -

2ns)/(6K + 2ns), where s is given by the Laplace transform; 

F(s) = ~:-st F(t)dt 

0 

(A4) 

Eqs. (A1) and (A3) can thus be directly transformed into the equivalent 

viscous equation 

-I 
p 

1 
4ns 

-T 
e 

1 + --
3K 

p 

for zones of small lateral extend and, 

(AS) 



-I 
Pu = - 3nns<M> 

4d 

for elongated zones. 

6K + 2ns 
3K + 4ns 

33 

By setting K = oo, Inversion then gives; 

I •T 
p = -4n e 

m 

for zones of small lateral extent and, 

for elongated zones. 

(A6) 

(A7) 

(AS) 
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FIGURE CAPTIONS 

Fig. 1. A scanning electron micrograph of cavity arrays 1n Al
2
o

3
, 

h . f d. f .. 2 s ow1ng pre erre reg1ons o cav1tat1on. 

Fig. 2. A schematic illustrating the two dominant cavity configura-

tions, equilibrium triple point cavities, and crack-like 

cavities and the nature of the transition. 

Fig. 3. Schematics indicating localized diffusive flow from cavities 

and the resultant development of constraint (a) the grain 

configuration and (b) the unconstrained strain 1n the cavita-

tion zone separated from the matrix (c) the constrained cavi-

tation zone showing the regions of grain boundary sliding and 

intensive diffusion flow (d) the resultant stress distribution. 

Fig. 4. The geometry of the cavity arrays used for analysis (a) 

equilibrium cavities (b) crack-like cavities. 

Fig. 5. a) Cavity velocity as a function of the relative cavity 

length indicating the equilibrium to crack-like transition. 

b) The local stress in the equilibrium and crack-like 

regions. 

Fig. 6. Plots of cavity velocity for several choices of the important 

variables, (a) the effect of constraint, (b) the influence 

of the applied stress, (c) the effect of the dihedral angle, 

(d) the effect of small changes in the surface diffusivity. 

Fig. 7. A comparison of crack-like and equilibrium cavity for Al
2
o

3 

with the predicted transition length, f*: 6 = 0.5, ~ 80°. 
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Fig. 8. The cavity propagation time characterist~cs (a) the variation 

of time with cavity length, (b) the effect of strain on 

the time taken to reach f = 1.0, (c) the effect of dihedral 

angle, and (d) the influence of surface diffusivity. 

Fig. 9. A schematic indicating the cavitation and peripheral zones 

considered in the analysis. 

Fig. 10. A schematic indicating the stages of zone spreading through 

three peripheral zones, prior to coalescence. 

Fig. 11. The zone spreading process characteristics (a) small devia-

tions in ~ and D , (b) large deviations in ~ and D , (c) 
s s 

appreciable deviations in ~, but small deviations in·D 
s 

a £/y = 20. 
00 s 

Fig. 12. Sintering characteristics (a) the variation of pore shrinkage 

time with pore length for ~ = 80° (b) the effect of ~ on 

the pore shrinkage time for f = 0.1. 

Fig. 13. A plot of the normalized constraint p~ 1 /weT as a function 

of the shape of the cavitation zone, for v = 1/2 and 

Also shown are the limit solutions 

for a dilational zone and a crack-like zone. 
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1. INTRODUCTION 

The separation of pores from grain boundaries during final stage 

sintering is a preeminent barrier to the complete densification of 

a powder compact. Pores attached to grain boundaries shrink by a 

grain boundary diffusion process; but once a pore is detached, and 

locates within the grain, it can only shrink by the (usually) much 

slower mechanism of lattice diffusion. Consequently, observations 

indicate that once trapped inside a grain, the pore does not exhibit 

significant shrinkage. 1
'
2 Additionally, the separation process may 

be an important element in the initiation of exaggerated grain 

3-5 
growth. 

To forestall separation, many researchers have focused on process 

. bl h dd. . 6-8 h 9 '10 . 1 . 11 var~a es, sue as a ~t~ves, atmosp ere, part~c e s~ze, 

d . d' 'b . 12 an s1ze 1str1 ut1on. For example, small particles and a narrow 

s1ze distribution generally yield high densities; also, certain impuri-

ties may (a) decrease the grain boundary mobility or increase the sur-

face (pore) mobility to encourage pore attachment for most of the 

sintering process, (b) inhibit boundary migration by a solute drag 

. 13 14 mechan1sm. ' However, the observations are mostly empirical and do 

not readily extend to new.materials. Each time, a unique process must 

be developed, most often by trial and error. 

. 3 4 15-17 Recent l1terature ' ' has focused on a phenomenological ap-

proach to explain the effects of the process variables, by introducing 

simplified concepts of the physical interaction between the pore and 

grain boundary during breakaway. The final result of the analysis can 

be expressed in terms of a separation diagram in pore, gra~n s~ze 

/ 

(_f 
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space, as illustrated in Fig. 1. The present analysis emphasizes the 

physical mechanism involved in the separation process and thereby, 

identifies several quantitative differences from the phenomenological 

analysis. 

The phenomenological analysis is essentially based upon solutions 

for the interaction of a boundar~ with a rigid second-phase particle. 

Specifically, the interaction between .a pore and a moving grain bound-

ary assumes a spherical pore, moving through an isotropic, homogeneous 

material at some velocity determined by the surface diffusion coef-

ficient. A unique por~ mobility has thereby been derived by retaining 

the spherical symmetry of the pore (hence, neglecting the changes in' 

pore shape needed to maintain the atom flux over the pore surface). 

The approximate pore mobility deduced in this manner is given by; 18 

M 
p 

D o S"2 
s s 

4 kTTia0 

(1) 

where D o is the surface diffusion parameter, a is the pore radius, 
s s 0 

S"2 is the atomic volume, and kT has the usual meaning. 

The force, F, exerted by the grain boundary on the pore (which 

eventually dictates separation) is also derived from the rigid particle 

(spherical pore) analog by assuming that the contact line between the 

boundary and the pore can move freely over the pore surface; whereupon 

the force becomes; 

(2) 

where 8 is the boundary intersection angle and yb 1.s the grain boundary 

t· 
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energy. The force has a max1mum value F at 8 = n/4 g1ven by; 

F = (3) 

This force maximum, coupled with the pore mobility (Eq. (1)) yields 

a peak pore v~locity; 

,.. 
v 

p 
= _~......;s=-0-=s~y.:;..b 

3 kTa0 

(4) 

In mechanically undeformed materials the driving force for grain 

boundary migration stems only from the energy of the gra1n boundary. 

This driving force can be thought of as a pressure difference between 

the two touching grains, caused by the curvature of their interface.l9 

Breakaway is considered to occur when the grain boundary velocity 

exceeds the peak pore velocity in Eq. (4). However, a determination 

of the separation condition requires that some assumptions be made 

concerning the velocity of pores attached to grain boundaries. This 

is achieved by requiring that the motion of each grain boundary be 

impeded by the presence of pores, such that the gra1ns and pores are 

treated as average entities. Specifically, the grain boundaries are 

considered to contain N pores per atom and the spacing between pores 

is assumed to be proportional to the average grain size.4,15 With 

these assumptions, the separation condition can be expressed as 

R ( 5) 
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l~There R is the grain radius and Mb is the grain boundary mobility. 

The two limiting cases 

3 

R~ 
2MbkTa

0 

Ds6sr2
113 

(6a) 

and 

~ 
Tra 

0 

2 
(6b) 

provide the boundaries of the separation diagram depicted in Fig. 1. 

The significance of this diagram for the development of fully 

dense materials can be appreciated by imposing a typical grain, pore 

size trajectory.20 When this trajectory avoids the separation region, 

breakaway is prohibited and the attainment of full density is not 

impeded by pore isolation within the grains. 

The quantitative application of this separation diagram to the 

avoidance of breakaway 1s suspect, because none of the physical details 

of pore motion and breakaway have been considered in the analysis; 

besides, neither the theoretical nor the experimental basis for chaos-

ing the spherical pore has been established. The present model intends 

to address this deficiency by providing a self-consistent physical 

description of attached pore motion. This is achieved by first deter-

mining the shape changes that accompany the motion of a pore attached 

to a grain boundary. Then, the shapes of grain boundaries attached to 

pores subject to grain growth are deduced. The grain boundry shapes 

are determined within the context of the grain disappearance process 
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that actually accompanies grain growth. Finally, expressions for 

the pore and grain sizes that characterize the separation event are 

derived and implications for the avoidance of breakaway are discussed. 

~ .. 
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2. PORE VELOCITIES 

The complete separation of pores from·grain boundaries occurs when 

the pores are located on two-grain interfaces (Fig. 2). The separation 

of pores from three-grain junctions onto two-grain interfaces must 

precede this complete separation event. However, this process is com-

plex and is assumed to occur more readily than the ultimate separation. 

The present analysis is thus devoted to a determination of the pore 

separation criticality at two grain interfaces. The motion of pores 

attached to three grain junctions has been considered by Spears.20 

The motion of pores with grain boundaries is achieved by inducing 

a flux of atoms from the leading to the trailing surface of the pore 

(Fig. 3). The driving force for the atom flux is associated with the 

existence of ;g gradient in the curvature of the pore surface. Pore 

distortion is thus a necessary consequence of pore motion. This sec-

tion is prim~rily concerned with a determination of the pore distortion 

as a function of pore velocity. However, a corollary of pore distor-

tion is a change in the location and inclination of the grain boundary 

tangent at the pore, grain boundary intersection (Fig. 3). This bound-

ary tangent change is uniquely related to the pore distortion and 
1 
j .:.j.. 

thereby, provides th~ important link with breakaway. 

The configurat~on selected for analysis is an axisymmetric pore21 

subject to motion by surface diffusion.22,23t Initially, steady-state 

motion (all locations on the surface moving at the same velocity) 

tSurface diffusion is likely to be the dominant mode of pore motion 
in many practical situations, but equivalent analysis for evaporation/ 
condensation and lattice diffusion wi 11 eventually be rteeded. 
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is considered, followed by some considerations pertinent to non-steady-

state behavior. The axisymmetric pore exhibits two curvatures (see 

Fig. 11): an in-plane curvature, K1 , and an axisymmetric curvature, 

K
2

• These curvatures are related to the coordinates of the problem 

(x, y) by; 

(7) 

= (1/x)(dy/dx) [1 + (dy/dx) 2J-112 

The chemical potential associated with the curvature ~s 

where y is the surface energy. A varying curvature along the pore 
s 

surface gives the gradient of chemical potential, which in turn, gives 

the driving force for surface diffusion, and the flux equation has 

the form 

(9) 

where J is the number of atoms per unit time crossing unit length of 
s 

the surface, and ds is an element of ~ore surface in the flow direction 

(Fig. 3). Letting the angle between the surface tangent and x-axis be 

denoted by a as shown in Fig. 3 ds = dx/cosa; thus Eq. (9) can be 

expressed 

cos a (10) 
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Symmetry permits consideration of one quadrant of the pore. For a 

pore moving with a velocity v (positive) in theY direction (Fig. 3b), 
p 

conservation of matter requires that 

2Tix J 
s 

,(11) 

where the positive sign refers to the leading surface and the negative 

sign to the trailing surface. 

Using the symbols, p and q <=dy/dx) for the slopes of the trailing. 

and leading surfaces respectively, Eqs. (7), (10) and (11) give; 

(12a) 

2 2 2 v kT 2 3 
- (1/x )p(l+p ) = 

2
n

0
P8 Y x (l+p ) 
s s s 

and 

(12b) 

2 2 2 v kT 2 3 
- (1/x )q(l+q ) =- 2n~ 8 Y x (l+q ) 

s s s 

The motion of the pore ~s subject to the requirement that the 

total dihedral angle T between the grain boundary and pore surfaces 

(Fig. 3) be invariant. Hence, in terms of the constituent dihedral 

which can be conveniently re-expressed for further analysis ~n the 

form 
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p + q = c - cpq ( 13b) 

at the pore tip, where c = tan~. It is also required that the chemical 

potential be continuous at the intersection of the leading and trailing 

surfaces; hence, 

(14) 
2 -3/2 2 -1/2 

= q' (l+q ) + (q/x)(l+q ) 

at the pore tip. Finally, it is noted that the atom flux and surface 

slope must be zero at the axis of symmetry. 

The solution of Eq. (12) subject to the above boundary conditions 

1s a non-linear problem. A solution is thus obtained by linearizing 

about a trial solution and then us1ng a finite difference scheme, 

in which the region is divided into N+1 points with uniform spacing 

6x (Fig. 3b). The resultant linearized equations (Appendix I) are 

in the form of coupled, tridiagonal matrices which can be solved by 

iteration. The iteration procedure commences with the slope solution 

for a stationary pore (with a uniform surface curvature) as the trial 

solution and procedes to solve for the slope of a moving pore for 

a ser1es of successive small increments in pore velocity. Convergence 

is assured by a proper linearization and suitably small increments 

in pore velocity. The pore shape can be determined from the slope 

(Appendix II). Some resultant pore shapes, computed in accord with 

this procedure, expressed in terms of the dimensionless pore velocity, 



v 
p 

= 
3 v kTa 

p 0 

Dn 8 y 
s s s 
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(15) 

are plotted in Fig. 4 for ~ = n/3, where a is the radius of contact 
0 

between the boundary and the stationary pore. ·Shapes similar to these 

predictions have been observed experimentally (Fig. 5).21 

The grain boundary bisects the dihedral angle ~ and satisfies 

the relation (for a non-equilibrium case, a correction factor may 

be needed) 

(16) 

The inclination 8 of the grain boundary tangent to the plane of 

contact between the grain boundary and the pore (Fig. 3) emerges from 

the analysis as a unique function of the normalized pore velocity 

V , and dihedral angle as plotted in Fig. 6a. The radius of contact, p . 

a, between the boundary and pore can also be deduced by requiring 

that the pore volume be independent of pore velocity, in order to per-

mit a unique comparison between the dimensions of the stationary and 

moving pores,. The resultant trend in contact radius with normalized 

pore velocity is plotted in Fig. 6b, indicating a slow decrease 1n 

contact radius, a, with increase in pore velocity. 

Convergent pore shape solutions are found to exist over a limited 

range of pore velocities, as inferred by the terminations 1n Fig. 6. 

A d 1 . . ( \II) • h . 1 . d t stea y-state ve oc1ty max1mum, v r , 1s t us 1mp. 1e • 
p 

This maximum 

t Attempts at obtaining pore shapes 1n excess of the maximum always 
result in divergent solutions. 
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exhibits an appreciable dependence on the dihedral angle, as plotted 

in Figs. 7a and 7b, where the dimensionless pore velocity is normalized 

by the stationary pore radius in Fig. 7a and by the current moving 

pore radius in Fig. 7b. The pore shapes that develop at the maximum 

are constructed for several different dihedral angles ~n Fig. 8. 

The existence of a velocity max~mum is associated with an inability 

to simultaneously satisfy the requirements that the dihedral angle 

be specified, that the curvature be continuous and finite and that 

the pore velocity be uniform. Specifically, attempts to increase 

the velocity above v (~) must violate one of these imposed conditions. 
p 

The consequences of increasing the velocity above v can be readily 
p 

visualized when the dihedral angle~~ TI (Fig. 9) •. Shape changes 

which induce a continuous atom flux in the requisite direction for 

pore motion (i.e., a continuous gradient in surface curvature) cannot 

be constructed. Regions subject to a counter-flux are inevitable 

(Fig. 9). Steady-state motion by surface diffusion of a pore with 

~ ~ TI is thus impossible (in marked contrast with the expectations 

of the phenomenological analysis).4,15t This steady-state velocity 

maximum may be regarded as the present equivalent of the peak velocity 

derived using the phenomenological analysis (Eq. (4)), and can be ex-

pressed as 

tThe inability of a pore with~~ n to exhibit steady-state motion 
implies that such pores will always detach from grain boundaries. 
This is intuitively reasonable because, when~ = n, the grain boundary 
energy is zero and there is no preference for pores to locate on grain 
boundaries. 
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A 

v 
p 

Qn o y 
s s s 

3 kTa0 

(17. 9 - 6. 2'1') • (17a) 

or 

A 

v 
p 

hn o y 
s s s 

3 
kTa0 

(1 0 • 8 - 3 • 44'1') ' ( 17b) 

The consequences of a maximum 1n the steady-state pore velocity 

are central to the breakaway problem. Non-steady-solutions, in which 

the velocity varies over the pore surface (with a maximum at the axis 

of the leading surface) can be found for net velocities in excess 

A 

v • 
p 

These solutions coincide with a marked change in pore shape of 

and an appreciable decrease in the grain boundary contact radius, 

a, as illustrated by the shape depicted in Fig. 10. It is presumed, 

therefore, that the contact radius, a, will rapidly diminish to ·zero 

when the net velocity exceeds v , causing the grain boundary to con­
p 

verge onto the pore axis and thereby, to initiate breakaway. Hence; 

the upper bound steady-state pore velocity will hereafter be used as 

a velocity which, if exceeded, will inevitably result in non-steady-

state pore motion and breakaway. 

Finally, it is instructive to note that the pore mobility defined 

in terms of the pore velocity and the force exerted by the grain 

boundary (F = 2nayb sin8) is not unique; but changes as the pore 
p . 

velocity changes. Analyses that utilize a unique pore mobility are 

thus subject to uncertainty. 
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3. GRAIN BOUNDARY SHAPES 

The evolution of grain boundary shapes within the vicinity of 

a dragging pore constitute an important physical link with the break-

away process (even though a knowledge of grain bou~dary shapes is not 

explicitly required in order to estimate the breakaway condition). 

Pore drag will initiate when the velocity of the pore becomes smaller 

than the grain boundary velocity at some remote location on the bound-

ary (Fig. 11). The incidence of pore drag yields a grain boundary with 

two dominant curvatures (Fig. 11): the in-plane radius of curvature 

R
1 

and the axis~nmetric radius of curvature R2• The driving force Fb 

for grain boundary motion is thus; 

Fb ybD2/3 [1/Rl + l/R2J 

2/3[ 2 2 2 -3/2 _ ybD -(d y/dx ) [l+(dy/dx) J 

2 -1/2] + (1/y)[l + (dy/dx) ] 

(18) 

where (x,y) are the grain boundary coordinates (Fig. 11). For the 

dragging pore, R
1 

is negative. However, a driving force with a com­

ponent acting in the direction of the pore velocity still exists when-

ever R2<1R1 1; a situation which must prevail during pore drag. The 

existence of the axisymmetric curvature accounts for the observed 

motion of pores away from their in-plane center of curvature, Fig. 5 

(contrasting with the usual observation of boundary motion toward their 

in-plane center of curvature). 

Grain boundary shapes can be determined from Eq. (18) if some 

assumption is made concerning the disposition of driving forces along 
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the boundary. Preliminary estimates of the shape of a grain boundary 

containing a pore, pertinent to a three-sided grain, are determined for 

the simplest possible postulate: that of uniform driving force (i.e., 

constant chemical potential). The governing differential equation is 

then; 

dp/dx = - (2/R)(l+p2)3/ 2 + (l/y)(l+p2) (19) 

where p = dy/dx and R is the radius of curvature of the two boundaries 

devoid of pores. On a pore free grain boundary, the grain boundary 

inclination, 8 , at the three-grain junction is n/6 (Fig. 12) •. How­
, 0 

ever, pore drag increases the inclination. The shapes calculated from 

Eq. (19) using a finite difference scheme, subject to the condition 

that the angle at the three-grain junction be 2n/3, are plotted in 

Fig. 12 for several different 8 • 
0 

The grain boundary shapes within the vicinity of the pore are 

similar in form to those observed experimentally (Fig. 5), but deviate 

appreciably at more remote locations. The dragging pore thus has an 

influence zone (Fig. 11) which appears to be smaller than predicted by 

imposing a uniform chemical potential. Hence, further pr~gress toward 

a detailed understanding of the observed grain boundary shapes requires 
' 

that some insights be gained concerning the gradient of driving force 

along the grain boundary. However, these details are not essential to 

the development of a mechanistic description of breakaway. 

The grain boundaries subject to pore drag exhibit a velocity 

component normal to the axis of symmetry (Fig. 12), indicative of a 

tendency toward ins.tability. More specifically, when vb exceeds vp' 
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the axisymmetric radius of curvature R
2 

decreases during the motion of 

the pore, grain boundary configuration (Fig. 13) especially within the 

immediate vicinity of the pore. The decrease in R2 exceeds the change 

1n R
1

, and hence, the configuration 1s intrinsically metastable. 

Steady-state motion of the complete pore/grain boundary ensemble is 

impossible. Presumably, therefore, pore drag will increasingly distort 

the boundary, and eventually induce separation. The actual separation 

will occur when the pore velocity exceeds the steady-state maximum 

(section 2) and the pore contact radius, a, diminishes rapidly with 

further small increments 1n net pore velocity (thereby, permitting 

convergence of the boundary onto the pore axis). 
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4. PORE BREAKAWAY 

The specific condition that dictates the separation of pores from 

grain boundaries depends upon the ·grain configuration to which the pore 

is attached. Two specific configurations, pertinent to the earliest 

separation events that occur during grain growth, are considered in 

this section:t a pore located on one boundary of a three-sided grain 

(Fig. 2b) (the configuration that invariably precedes grain disappear-

ance), and· a pore located on one boundary of a five-sided grain at the 

perimeter of a large grain (Fig. 2a) subject to exaggerated grain 

growth. Pore drag observations (Fig. 5) indicate that the· pore per-

turbs grain boundary motion over a certain influence distance, z. It 

is appropriate, therefore, to examine the motion of the grain boundary 

outside this influence distance, relative to that of the pore. This 

approach is, of course, only appropriate when the influence distance 

is less than the grain radius. 

The velocity of the grain boundary outside the influence zone, in 

the direction of pore motion (Fig. 11) is, 

(20) 

tOther configurations, such as several pores on one grain boundary, will 
provide different separation conditions. However, these separation 
events usrially occur after the first separations have been induced and 
are, probably, less critical. For example, a modified phenomenological 
analysis with a pore spacing a R gives the two limiting cases (Appendix 
III) 
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where R is the grain boundary radius of curvature. By allowing this 

velocity to exceed the peak steady-state pore velocity (Eq. 17), sepa-

ration should be inevitable, provided that a grain boundary displace-

ment (i.e., grain dimension) sufficient to create boundary convergence 

at the dragging pore (section 3) is available. This criterion yields 

a pore size for separation given by; 

(1 7 • 9 - 6 • 2\jl ) 
13 (21) 

For the five-sided gra1n, R remains essentially constant, yielding 

a separation boundary, depicted in Fig. 14, reminiscent of that pre-

dieted by the phenomenological theory (Fig. 1). However, the most 

stringent condition for breakaway exists when R attains its smallest 

value. This condition develops in the three-sided grain configuration, 

preceding grain disappearance (Fig. 2b). For this grain configuration, 

separation 1s averted if the pore converges onto the prospective three 

grain junction, Riv2a, before Eq. (21) can be satisfied. The critical 

condition thus becomes 

(22) 

as plotted in Fig. 14. This critical pore size represents a lower 

bound for pore separation at all reasonable values of a /R. 
0 

An alternate approach for assessing separation would be to regard 

the onset of pore drag as an inevitable precursor to separation. The 

onset of drag can be ascertained by firstly determining the velocity 

developed by pores attached to boundaries of cylindrical (or spherical) 
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profile (the steady-state grain boundary shape) and then allowing the 

pore velocity to become incrementally smaller than the boundary velo-

city. Attachment of a pore to a spherical boundary requires that the 

grain boundary tangent, e, satisfy a geometric requirement, dependent 

upon the pore radius, a, given by; 

tan e =a I ~R2-~ 2 (23) 

But 8 dictates the pore velocity (section 2, Fig. 6a), and R estab-

lishes the boundary velocity (Eq. (20)). Hence, by requiring v to be 
p 

incrementally smaller than vb' the condition for initiating instability 

becomes; 

2 
a 

0 

16(nl/3n o y /kTMbyb) > s s s 

~ 1 - (a
0

/R)
2 

(24) 

Hence, an instability ~s most likely to initiate when R is at its lar-

gest value (because 8 decreases as R increases). The five-sided grain 

1s thus the configuration with the greater propensity for pore drag. 

The drag initiation requirement (for R>3a ) is then; 
0 

(25) 

as plotted on Fig. 14. It is noted that drag initiation occurs at 

pore sizes just ~n excess of the lower separation bound (vb> v )t 
• p 

and hence, that Eq. (22) invariably represents the lower limit for 

pore separation. 

tPore separation events should thus initiate at disappearing three­
sided grains, just after observing pore drag. 

• 
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Finally, it is noted tht pores cannot exist at two grain inter-

faces unless they are smaller than a fraction f of the grain facet 

dimension. The magnitude of this fraction can be ascertained from 

certain geometric considerations pertinent to the transfer of pores 

from three grain junctions onto two grain interfaces. The sequence of 

pore morphological changes that accompany final stage sintering initi-

ate with the pores as continuous channels along three grain junctions 

(Fig. 15). These channel~ must dissociate into isolated pores at three 

grain junctions (by means of Rayleigh instability associated with pore 

surface changes in the presence of surface.diffusion).24 The largest 

possible isolated pore dimension, 2h, that can develop in this manner 

(Fig. 15) is equal to the grain facet length £. This pore must then 

detach from the three grain junction onto a two grain interface. 

Determination of the relative volumes of pores at three and two gra1n 

interfaces25 indicates that for a specified volume, the grain boundary 

contact diameter 2a , must be smaller than the contact length 2h. 0 < 

Specifically, by equating 2h to £, the largest admissable dimension, 

a , of a pore located at a two grain interface becomes; max 

a /£ ~ 0.5[(1.28~- 1.42)/(1.27~- 0.556)] 1/ 3 
max < 

(26) 

This condition is plotted on Fig. 14, (£~R) in order to outline the 

inadmissable region. Again, some similarity with the phenomenological 

result emerges (Fig. 1); but now the physical origin (based upon 

inadmissibility is apparent. 
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5. IMPLICATIONS AND CONCLUSIONS 

The analysis of pore motion indicates that the poie distortion 

that necessarily acco~panies pore motion results in a maximum possible 

steady-state pore velocity, v . The separation of pores from grain 
p 

boundaries is intimately associated with this peak velocity. Ancilli-

ary studies of grain boundary shapes during pore drag indicate that the 

grain boundary is me~astable during pore drag and hence, that the bound-

ary can converge onto the axis of symmetry, causing breakaway, whenever 

the remote grain boundary velocity vb exceeds 
A 

v • 
p 

The actual pore separation process based upon the requirement that 

vb > vp depends upon the grain configuration. The grain geometry that 

provides the lower bound for separation is the three-sided grain as-

sociated with grain disappearance during grain growth. This configura-

tion yields a critical pore size for the onset of separation. This 

critical size increases as the surface diffusivity increases or as the 

gra1n boundary mobility and dihedral angle decrease. For other grain 

configurations, separation occurs at large values of pore s1ze. How-

ever, since gra1n disappearance is an integral part of grain growth, 

these other separation conditions are considered less significant. 

The separation processes at the lower bound pore s1ze occurs while the 

grain boundary exhibits uniform (spherical) curvature. Pore drag con-

figurations would not, therefore, be observed at the lower bound. An 

ability to observe pore drag (Fig. 5) requires the development of 

microstructures well within the separation region (Fig. 14). 

The material modifications that suppress breakaway may be ascer-

tained by comparing the critical pore size with the por~, grain size 
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trajectory associated with final stage sintering. This 1ssue is more 

comprehensively addressed by Spears.20 
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APPENDIX I 

Linearization of Differential Equations Governing Pore Shape 

A determination of the pore shape based on Eqs. (12), (13) and 

(14) requires a linearization procedure. This is achieved by commenc-

ing with a trial solution which approximates the final shape, such that 

p(j), p 1 (j) and p11 (j) can be replaced by initial trial values p
0
(j), 

I II 

p
0
(j) and p

0
(j). Similar substitutions can be made for q and its 

derivatives. Then we can write, for example, 

I I I 

p(j)p (j) = [po(j}+~p(j)][po(j)+~p (j)] 

I I I I 

~ p (j)p (j)+p (j)~p (j)+p (j)~p(j) 
0 0 0 0 

(Al) 

where the quadratic term in the small quantities ~p{j) and ~p 1 (j) 

I 

has been neglected. Replacing ~p(j) by p(j) - p (j) and ~p (j) by 
0 

I 

p (j) - p (j), we can write 
0 

I , I I I 

p(j)p (j) ~ p(j)p (j) + p (J')p (j) - p (j)p (j) 
0 . 0 0 0 

The linearized form of Eq. (12a) can now be written ast; 

(A2) 

tan equivalent form exists for q, with p replaced by q and v replaced 
0 0 p by -v • 

p 
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[l+p2(j) J p"(j) 
0 I 

. . 2 2 
I [l+p (j) J 

+ -6P (j)p (j) + 
0
(') 

0 0 X J 
. . 

- x(j) pI (j) 

+ 12p (j)p"(j) -
0 0 

2 4p (j)p 1(j)[l+p (j) 2] 
3 1(') 0 0 0 

p J + (') 0 X J 

2p (j)p 1(j)[l+2p (j) 2] 
- 0 0 0 

x(j) 

3V kT 2 2 
p x(j)po(j) [l+po(j) J 

QJ)s c\ Ys 

- ___l_2 [l+p (j)2][1+5p (j)2] l p(j) 
x(j) o o 

= 2p (j)2p"(j)- 6p (j)p1(j)2 
0 0 0 0 

4p (j)p 1(j)[l+p (j) 2] 
0 0 0 + -----,-,-:------x(j) 

2p (j) 2p1(j)[l+2p (j) 2] 
0 0 0 

x(j) 

(A3) 
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while the boundary conditions can be expressed as; 

[l+cq (1)] p(1) + [1+cp (1)] q(1) = c [l+p (1) q (1)] (A4) 
0 . 0 0 0 

and, 

ep'(1) + fq'(1) + gp(1) + hq(1) = k (AS) 
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2 31 q (1 ) [ 1 +q (1 ) 2 J I 
f z -2[1+p

0
(1) ] q~(1)+ 0 

x( 1) 

g = 

2 
+ 6q (1) [1 +q (1) 2 ] 

0 0 

+ ~(1) [1+po(1) J p (1) 21 

k = f[p (1) ,q (1)] - f[q (1) ,p (1)] 
0 0 0 0 

2 2 4 2 4 4 2 6 2 6 
+ 30p q + 15q + 42p q + 21p q + 7q + 18p q 

0 0 0 0 0 0 0 0 0 0 
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for purposes of finite difference analysis the derivatives are ap-

proximated by; 

pI ( j) 

p"(j) 

= p(j+l) - p(j-1) 
21':.x 

p(j+l) - 2p(j) + p(j-1) 

(L:.x) 2 

( j. = 1 'v N) 

where N+l is the number of points in the finite difference scheme 

for each quadrant of the pore surface. · Symmetry requires that; 

(A6) 

p(N+l) = 0 (A7) 

There is no point below j = 1. However, 1n order to define p'(l) 

and p"(l) an imaginary point 0 is added. The finite difference forms 

~f the boundary conditions, coupled with the differential equations 

at j=l, permit the imaginary point to be eliminated. The problem 

then reduces to two tridiagonal matrices, and the standard methods 

of forward reduction and _backward substitution can be used to solve 

fot p(j) and q(j). Successive iteration is used to obtain convergent 

values. Finally, the pore shape is determined from the slopes p and q. 
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APPENDIX II 

Determination of the Pore Shape 

The pore shape can be determined from the slope solutions of 

Appendix I, starting with the finite difference expression for the 

t slope 

p( j) 
Y(j+l) - Y(j-1) 

2L'Ix 

Y(j+1) = Y(j-1) + 2P(j)L'Ix 

with the pore tip located on the x-axis, 

Y(l) = 0 

(j 2 rv N) 

(B1) 

(B2) 

However, the position of point 2 (or the imaginary point) 1s still 

needed in order to solve for the pore shape. 

The slope and the derivative of the slope at point 1 can be ex-

pressed by 

p(l) = 

pI (1) 

Y(2) - Y(O) 
2L'Ix 

Y(2) - 2Y(1) + Y(O) 

(L'Ix)2 

tA similar calculation may be used for q(j) 

(B3) 

(B4) 
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Combining Eqs. (B2), (B3) and (B4), we can derive 

Y(2) {P(l) + [P(2) - P(0)]/4} 6x (BS) 

Eqs. (Bl), (B2) and (BS) allow us to derive the pore shape. 
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PROGRAM HSUEHI INPUTtOUTPUT) 

c 
c 
c 
c 

CHUN-HWAY HSUEH 
"D!PARTMENT OF MATERIALS SCIENCE AND MINERAL ENGINEERING 

UNIVERSITY OF CALIFORNIA• BERKELEY 
A•PRI L 1981 

C OBJECTIVE *PORE SHAPE ANALYSIS* 
C THE PORE SHAPE IS DETERMINED BY THE DIHEDRAL ANGLE AND THE PORE VE 
C LOCITY. SURFACE DIFFUSION IS THE TRANSPORT MECHANISM. LINEARIZATIO 
C N OF A NON-LINEAR DIFFERENTIAL EQUATION IS USED TO SOLVE THE PROBL 
C EM. STARTING FROM THE SOLUTION FOR THE STATIONARY POREt A SERIES 0 
C F SUCCESSIVE ITERATIONS BY SMALL INCREMENTS OF PORE VELOCITY IS US 
C ED TO OBTAIN THE SOLUTION FOR A MOVING PORE. 

c ------------------------- ------------------- ---- --- -- - --- -· 
C ***INPUT DATA*** 
C le TOTAL DIHEDRAL ANGLE. 
C '-• PORE ~ADIUS. 
C 3• NUMBER OF POINTS USED IN THE FINITE DIFFERENCE SCHEME. 
C 4• NUMBER OF ITERATIONS IN EACH SET. 
C 5. PORE VELOCITY !CONTINUOUS READING BY SMALL INCREMENTS! 

C ***OUTPUT SOLUTIONS FOR EACH PORE VELOCITY*** 
C 1• SLOPE AT SEVERAL POINTS FOR EACH ITERATION. 
C 2• PARTIAL DIHEDRAL ANGLESt PSI 1 AND PSI 2• 
C ~. PO~E SHAPE. 
C 4• PORE ~ADIUS. 
C 4• PORE VOLUME. 
C 5e PORE RADIUSt NORMALIZED BY THE STATIONARY PORE VOLUME. 
C ***IF THE PORE VELOCITY EX(EEDS THE UPPER BOUND, THE ITERATION 
C WILL NOT CONVERGE. 
c ---------------------------------------------------

DIMENSION Xl10lltPI10llt0110lltARI10lltASI101ltATI1011tAUI1011tBRI 
11 01 l 'BS I 10 1 I t B T I 1 0 ll. t BU I 10 1 l 'Y U I 1 0 1 l t Y Ll 10 1 l 

READ 1tPSitPRtNtNO 
1 FORMATI2F5.1t2131 

PI=4•*ATANI1el 
C=TANIPSI*Pf/180•1 
CO=TANIPSI•PI/360e) 
DX=PR/FLOATI~l 
DX2=DX**2 
DXX=2•*DX 
OXY=DX/2• 

C-----PIII IS THE SLOPE AT POlNT I OF THE TRAILING SURFACE OF THE PORE 
C----~QIIl IS THE SLOPE AT POINT I OF THE LEADING SURFACE OF THE PORE 
C-----XIIl IS THE X POSITION AT POINT I 

N1=N+1 
1)0 11 I = 1 t N 1 
XIII•-PR+PR*FLOATII-1l/FLOAT1Nl 

11 CONTINUE 
~-----SET SLOPE VALUE OF THE STATIONARY PORE 

R=PR**2*11e+l•/C0**21 
DO 19 I•ltN1 
PI I I •-X I I l /SORT I R-X I I I **21 
QIII•Pill 
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19 CO~TlNUE 
PO=-IXI11-DXI/SORTIR-IXI11-DXI**21 
OO=PO 
NI=IFIXIN/10+0.0011 

c-----CALCULATION OF THE VOLUME OF THE STATIONARY PORE 
VP=PI*I2.*R*SORTIRl/3.-PR*C2,*R/3.+PR**2/3.l/COl*2• 

c-----cOTINUOUS READING OF VELOCITY DATA BY SMALL INCREMENTS 
18 CONTINUE 

READ 8•V 
8 FM..,ATIF6.2l 

I F IV • E Q • 0 • l STOP 
PRINT 2oPSioPRoVtNtNO 

2 FORMATI*1PORE SHAPE ANALYSIS !LINEARIZATION OF NON-LINEAR DIFFER 
1ENTIAL EQUATION!*/* DIHEDRAL ANGLEIDEGREEI=*F5o1/* PORE RADIUS=*F5 
2.11* NORMALIZED PORE VELOCITY=*F6.2/* NUMBER OF POINTS IN FINITE D 
3IFFERENCE SCHEME=*I3/* NUMBER OF ITERATIONS=*I3l 

PRINT 3•1XIll•l=1•N1•Nll 
3 FORMAT!//* SOLUTIONS *I* P IS THE SLOPE OF THE TRAILING SURFACE 

10F THE PORE*/* Q IS THE SLOPE OF THE LEADING SURFACE OF THE PORE * 
21* NoOolo IS THE NUMBER OF ITERATIONS*/*-------------------------
3------------------------------------------------------------------
4----------------------------------------*/* N.O.I.*54X•*X POSIT 
5ION*113Xo*IMAGINARY*tF8.2t10F10o2/* ----------~-------------------6--------- ---- -------- -------- --------------- - ---------- ---- -------7-------·- --------------------- .::._ -- ... , 

PRINT 4•POoiPIIl•I=ltNltNll 
4 FORMATI/F18•2•11Fl0o21 

P R I NT 5 t QO • I Q I I I • I = 1 • N 1 t N I I 
5 FORMATI/F23•2t11F10o21 

c-----ITERATION FOR THE FOLLOWING STEPS <wiTH NEW PI II AND Q(JI I 
DO 12 NOI=1tNO 

c-----SET FIRST DERIVATIVE OF SLOPE AT POINT 1 
DP=IP121-POI/DXX 
DO=IOI21-00I/DXX 

(-----DEFINE VARIABLES WHICH RELATE TO BOUNDARY CONDITIONS 
P2=Pill**2 
P4=P2**2 
P6=P4*P2 
02=0111**2 
04=02**2 
06=04*02 
PP=1o+P2 
OO=lo+02 
PP3=PP**3 
003=00**3 
A=1.+C*OI11 
B=1o+C*PI1l 
D•C* I lo+P I 1 l *0 I 1 l l 
f=2•*003*1DP+PC11*PP/XI1ll 
F=-2o*PP3*1DQ+OI1!*00/XIlll 
G=2.*11.+3.*P2!*003*1DP+Pil)*PP/XIlli/XIl)-6o*P11!*PP*PP*ID0+0111* 

100/XIlll**2 
H=-2.*1lo+3o*02)*PP3*1D0+0111*0Q/Xl111/XI1)+6o*OI11*00*0Q*IDP+PI11 

l*PP/XI lll**2 
AK=DP*DP*Ilo+9.*02+15o*04+7.*06l+2o*DP*Pill*l1.+9o*02+15.*04+7.*Q6 

1+3o*P2*11.+5.*02+7o*04+3o*06ll/XI11+PI1l*llo+6.*P2+9.*02+5.*P4+30. 
2*P2*02+15o*04+42o*P2*04+21o*P4*02+7o*06+18.*P2*06+27o*P4*04+llo*P4 

... 
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3*061/XI11**2-DQ*DO*I1.+9e*P2+15•*~4+7e*P6l-2e*DO*CI1l*(le+9e*P2+15 
4e*P4+7e*P6+3e*02*11e+5e*P2+7e*P4+3e*P6ll/XI1l-QI1l*l1•+6e*Oi+9.*P2 
5+5e*04+30e*P2*Q2+15e*P4+42e*02*P4+21e*04*P2+7•*P6+18.*02*P6+27•*Q4 
6*P4+11•*04*P6l/XI11**2 ' 

AE=E/DXX 
AF=FtDXX 

C-----DEFINE VARIABLES FOR THE TRI-DIAGONAL MATRIX 
DO 13 J=ltN 
IFIJ•EO•ll GO TO 14 
I •J-1 
K=J+1 
DP=IPCKI-PIIIl/DXX 
DQ=IQIKI-QIIII/DXX 
DDP=IPIKl-2e*PIJI+PIIll/DX2 
DDQ=IQIKI-2•*01Jl+Q1Ill/DX2 
GO TO 15 

14 CONTINUE 
DDP=IP121-2e*PI1l+POI/DX2 
DDQ=IQI2l-2e*OI11+001/DX2 

15 CONTINUE 
PJ2=PIJl**2 
I'J4=PJ2**2 
I'J6=PJ4*PJ? 
DP2=DI'**2 
AA=le+PJ2 
AB=-6•*P(Jl*DP+AA/XIJI 
AC=2•*PIJJ*DDP-3.*DP2+2e*PIJI*DP/XIJJ-3.*V*PIJY*AA*AA*XIJI-AA*I1.+ 

15e*PJ21/X.IJI**2 
AD=2e*PJ2*DDP-6.*PIJI*DP2+2.*PJ2*DP/X~JJ+V*I1.-3.*PJ2-9e*PJ4-5e*PJ 

16l*XIJJI2.-4.*PJ2*PIJ)*AA/XIJ1**2 
ARIJI=AA-AB*DXY-
ASIJI=-2e*AA+AC*DX2 
ATIJI=AA+AB*DXY 
AUIJI=AD*DX2 
QJ2=QIJI**Z 
QJ4=QJ2**2 ' 
QJ6=QJ4*0J2 
D02=D0**2 
9A=le+OJ2 
~B=-6e*01Jl*DO+BA/XIJJ 
BC•2e*OIJI*DDQ-3•*D02+2.*01Jl*DO/XIJJ+3e*V*OIJJ*BA*BA*XIJI-BA*I1e+ 

15e*OJ21/XIJI**2 
BD•2•*0J2*DD0-6e*OIJI*D02+2.*QJ2*DO/XIJJ-V*I1.-3.*0J2-9e*OJ4-5e*QJ 

161*XIJI/2e-4e*OJ2*01JI*BA/XIJI**2 
BRIJI=BA-BB*DXY 
BSIJI=-2•*BA+BC*DX2 
13TIJI•BA+BB*DXY 
9UIJI=BD*DX2 

13 CONTI WE 
c-----VARIABLE STOkAGE• USED LATER TO CALCULATE NEW SLOPE v~LUE AT THE I 
C-----MAGINARY POINT 

ASS=ASill 
ATS=ATill 
AUS=AUI11 
BSS=BSill 
BTS=BTill 
BUS=BUill 
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C------DEFINE FIRST ROW OF THE TRI-DIAGONAL MATRIX !COOPERATE WITH B.C.) 
ASl=ASill+ARill*IG-H*A/6-AF*BSili*A/IBRili*Bli/AE 
ATl=ATCli+ARCll 
AUl=AUCll-ARCli*AF*I1o+BTCli/8Rilli*OI21/AE+ARCli*IAK-H*D/B+AF*CBU 

1Cli-8SCli*D/BI/BRClli/AE 
BSl=BSCti+BRCli*CH-G*B/A-AE*ASili*B/IARCli*AII/AF 
BTl=BTCll+BRCll 
BUl=BUili-BRili*AE*Ilo+ATI11/ARilii*PI21/AF+BRili*IAK-G~D/A+AE*IAU 

1111-ASC li*D/AI /ARC 111/AF 
ASC11=AS1 
ATili=ATl 
AUili=AUl 
13SC11=BS1 
BTCli=BTl 
BUI]J=BUl 

c-----SOLUTION OF THE TRI-DIAGONAL MATRIX-----I. FORWARD REDUCTION 
DO 16 L=2•N 
Ll=L-1 
ARS=ARCLI/ASCLll 
ASCLl=ASCLI-ARS*ATILll 
AUCLI=AUILI-ARS*AUILll 
BRS=BRCLI/BSCL11 
BSCLI=BSCLI-BRS*BTCL11 
BUILI=BUCLI-BRS*BUILll 

16 CONTINUE 
c-----SOLUTION OF THE TRI-DIAGONAL MATRIX-----2. BACK SUBSTITUTION 

PCN!=AUCNI/ASINI 
QCNI=BUCNI/BSCNI 
DO 17 M=2•N 
II=N+l-M 
JJ=II+l 
PCIII=CAUCIJJ-ATIIII*PCJJI 1/ASCIII 
QIIII=CBUCIII-BTCIII*QCJJII/BSIIII 

17 CONTINUE 
C-----DEFINE NEW SLOPE VALUE AT THE IMAGINARY POINT 

PO=CAUS-ATS*PC2!-ASS*Pilii/ARC11 
QO=C8US-BTS*QI?I-BSS*OC111/BRC11 

C-----PRINT SLOPE VALUES FOR SEVERAL POINTS FOR EACH ITERATION 
PRINT 6•NOI,PO,CPCIIti=l,NltNII 

6 FORMAT!/* P*,I5,Fll•2•11Fl0o21 
PRINT 7•NOJ,QO,CQCII,I=ltNltNII 

7 FORMAT!/* O*ti5tFl6o2,11Fl0o21 
12 CONTINUE 

C-----CALCULATION OF THE DIHEDRAL ANGLE 
C-----PSil IS THE DIHEDRAL ANGLE OF THE TRAILING PART 
t-----PSI2 IS THE DIHEDRAL ANGLE OF THE LEADING PART 
c-----SI IS THE INCLINATION ANGLE 

PSI l=ATANC PC 1 I 1*180./PI 
PSI2=ATANIOI11 1*180./PI 
SI=CPSI1-PSI21/2• 
PRINT 9•PSil,PSJ2,SI 

9 FORMAT I/* ------------------------ --------------------------------
1*1* DESCRIPTION OF THE PORE SHAPE*/*--------~--------------------
2---------------------------*l* DIHEDRAL ANGLE IDEGREEI OF THE TRAY 
3LING PART=*F6o2/* DIHEDRAL ANGLE IDEGREEI OF THE LEADING PART=*F7o 
42/* INCLINATION ANGLE IDEGREEI=*F7o2l 

C-----CALCULATION OF THE PORE SHAPE 
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c-----YUIIl IS THE Y.POSITION OF THE TRAILING PART AT POINT I 
c-----Yliil IS THEY POSITION OF THE LEADING PART AT POINT I 

YUI]l::Oe 
Yllll=O• 
YUI2l=IPill+IPI2l-POl/4el*DX 
YLI2l=IQI1l+IQI2l-00l/4.l*DX 
DO 21 J=2•N, 
I=J-1 
K=J+1 
YUIKl=YUI+l+PIJl*DXX 
YliKl=YLI+l+QIJl*DXX 

21 CONTINUE 
c-----CALCULATION OF THE PORE VOLUME AND THE SURFACE AREA 
c-----VU IS THE VOLUME OF THE TRAILING PART 
C-----Vl IS THE VOLUME OF THE LEADING PART 

VU=O. 
VL=O• 
AREA=O• 
DO 20 J=1•N 
I(=J+1 
XR::IXIJl+DXYl**2*PI 
VU=VU+XR*IYUIKl-YUIJll \ 
VL=VL+XR*IYLIKl-YLIJll 
AREA=AREA-IXIJl+DXYl*2•*PI*ISQRTIIYUIKl-YUIJll**2+DX2l+SQRTICYLIKl 

l-YLIJll**2+DX2ll 
ZO CONTINUE 

VOL=VU+VL 
AREA~AREA*IVP/VOLl**IZ./3•1 

(-----CALCULATION OF THE PORE RADIUS I V VELOCITY! WHICH HAS THE SAME PO 
e-----RE VOLUME OF THE STATIONARY PORE 

RR=PR*IVP/V0ll**l1•/3•l 
c-----RV IS THE PORE VELOCITY NORMALIZED BY THE STATIONARY PORE RADIUS 

RV=V•VOLIVP 
PRINT 10tCXIIlti=1tN1tNiltiYUIIlti=ltN1tNil•IYLIIlti=ltN1tNiltVUtV 

1LtVOLtVPtRR•RVtAREA 
10 FORMAT!//* X POSITION *11F10•3/* Y POSITION*/* TRAILING PART*11F 

110.3/* LEADING PART *11Fl0.3//* VOLUME !TRAILING PARTl=*F7.3/* VOL 
ZUME .!LEADING PARTl=*FBe3/* TOTAL PORE VOLUMEm*Fl2e3//* VOLUME OF T 
3HE STATIONARY PORE=*Fl0.3/* PORE RADIUS !NORMALIZED BY THE STATION 
4ARY POREI=*F6e2/* PORE VELOCITY !NORMALIZED BY STATIONARY PORE RAD 
5IUSl=*F6e3/* PORE SURFACE AREA=*F7.3) 

Gn TO 18 
END 

C-----EXAMPLE !INPUT) 
60e0001e01000Z0 

leO 
z.o 
3.0 
4.0 
5.0 
6.0 
6·5 
6.7 
6·8 
6.9 
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APPENDIX III 

Modified Phenomenological Analysis 

A constant pore mobility (Eq. (1)), a fixed maximum driving force 

exerted on the pore (Eq. (3)) and hence a constant maximum pore veloc-

ity (Eq. (4)) are used in the phenomenological analysis. However, the 

detailed numerical pore velocity analysis indicates that the maximum 

pore velocity depends on the dihedral angle (Eq. (17)). A modified 

phenomenological analysis is thus needed. 

Instead of choosing the mobility for a spherical pore, let us 

consider the pore mobility (by surface diffusion) per atom 

M 
p = 

D 
s 

kT 
(C1) 

The maximum driving force per atom for the pore motion can be derived 

from Eqs. (17) and (Cl) 

D6 y 
s s 

a3 
0 

(17.9 - 6.2~) (C2) 

which depends on the dihedral angle. Taking into account the reduction 

of the driving force for grain boundary motion 1n the case of attach-

ment by the dragging force F of the pore, the grain boundary velocity 
p 

becomes; 

(C3) 

where Fb is the driving force acting on the pore free grain boundary 

(per atom) 
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b 
R 

88 

(C4) 

N = a 2/R
2 

is the ratio of the number of atoms between the pore sur­
o 

face and the boundary, (assuming that the interpore distance is the 

grain size). A limiting velocity of separation can now be defined 
A 

V = V , which, in an R, a diagram, occurs when, b p 0 

D o y 1J1/3 
s s s 

R -----3-
2 Dbyb ao 

(17.9- 6.2\jl) = --1~2-­
ao Db 

1 + -­
R2 D 

s 

The two limiting cases are 

and 

R;;;;. o y IJ113 ('17.9-6.21j1)/2yba s s 0 

(C5) 

(C6) 

(C7) 
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FIGURE CAPTIONS 

A schematic of the pore separation reg1on given by the 

phenomenological analysis. 

A schematic of the grain disappearance process involved 

in grain growth a) exaggerated grain growth invol~ing five­

sided grains b) the three-sided configuration associated 

with ultimate grain disappearance. 

a) A schematic of a moving pore indicating the atom flux 

and the inclination of the grain boundary, e. 

b) A schematic of the trailing and the leading surfaces 

in the finite difference scheme. 

Predicted pore shapes for several values of the normalized 

pore velocity (~= TI/3). 

Pores in MgO subject to motion with the grain boundary. 

a) A plot of the grain boundary inclination as a function 

of pore velocity for several dihedral angles. 

b) A plot of the grain boundary contact radius as a function 

of the normalized pore velocity. 

The maximum steady-state pore velocity as a function of 

dihedral angle normalized by a) stationary pore radius b) 

moving pore radius. 

The shapes of pores when the velocity attains the maximum 

value. 

A schematic illustrating the development of a counter flux 

with ~ = TI is distorted to achieve a net atom flux and hence, 

pore motion with the grain boundary. 
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Fig. 10. A schematic illustrating the shapes of a pore under non­

steady-state conditions. For the pore volume to remain 

contact, the matter removed from the leading surface v
2 

must equal the matter deposited on the trailing surface, 

Vt. Additionally, under non-steady state conditions, the 

average velocity of the leadirig surface, v2' must excede 

that for the trailing surface, vt. In order tn satisfy 

these requirements the contact radius a must decrease rapidly 

with increase in net pore·velocity. 

Fig. 11. The axisymmetric configuration associated with pore drag, 

illustrating the important curvatures, the influence distance 

and the pore and grain boundary velocities. 

Fig. 12. Calculated grain boundary shapes for an axisymmetric configu­

ration, subject to·uniform chemical potential along the 

boundary.· 

Fig. 13. A schematic indicating the change ~n the axisymmetric radius 

of curvature that accompanies pore drag with vb > v p. 

Fig. 14. The various separation and admissibility ~onditions identi­

fied in the pr~sent analysis, plotted for three values of 

the dihedral angle. 

Fig. 15. A pore created at a three grain junction by a Rayleigh in­

stability and the corresponding pore at a two grain interface. 
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