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ABSTRACT 

If we insist on SU(3)~ SU(3) classification 

for hadrons, in the presence of the known low-lying 

multiplets, we are led to models of the following nature: 

Before spontaneous breakdown, we have two commuting gauge 

groups, hadronic and leptonic. This divides such models 

into three sectors, being,hadrons, leptons, and a third 

unconventional set of (presumably high-mass) scalar mesons 

which serve to connect the two "known" worlds. Spontaneous 

breakdown induces appropriate masses and all usual strong, 

weak, and electromagnetic couplings. Intimate connections 

are seen between these three fundamental forces. This is 

an expanded version of our recent letter on the same topic, 

and includes some discussion of new topics as well. 
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I. INTRODUCTION 

Gauge principles have been a guiding light in elementary 

particle theory for a very long time. By itself, gauge invariance is 

useful however only for theories involving certain massless particles 

(electrodynamics and gravitation). Taken together with spontaneous 

breakdown of gauge symmetries, and the 1 Riggs-Kibble phenomenon, 

the possibility of an ele{cint gauge structure for all physical forces 

is emerging i~ the context of renormalizable field theories. 

Weinberg2 and Salam3 were first to move in this direction, by 

constructing a unified gauge model of leptonic weak interactions and 

electromagnetism. At that time they also conjectured what is probably 

the most fascinating bonus of this gauge approach, namely that such 

models may be renormalizable. 

The subject lay dormant until t'Hoort
4 

and Lee4 showed that, 

modulo anomalies, 5 this conjecture was. correct. Various mechanisms 

for cancelling (known) anomalies have since been discussed, so that 

with some confidence, the community has begun a search through various 

(presumably) renormalizable gauge models for the one "chosen" by 

nature. 

Most effort has gone into constructing alternative models for 

weak interactions and electromagnetism, and a number2 ' 6 have recently 

appeared in the literature. In spite of the lack of tb,eoretical 

"uniqueness" of these models, they all share in an elegance and force 

that has, we believe, opened a new era in weak interaction physics. 

Recently, also, Bardakci and Halpern7 constructed a similar 

renormalizable gauge model of the hadronic vector mesons. This model 

realizes then the Yang-Mills ideas about strong vector mesons, and thus 
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moves further toward a unified gauge theory of particle forces. Such 

a unified model of hadrons and leptons has now been briefly presented in 

the literature. 8 It is the purpose of this paper to discuss the model 

in some depth. 

For strong interactions a Lagrangian is not very useful from 

the practical point of view: Such a Lagrangian can at best be used to 

describe low energy hadronic data, but we feel it will be extremely 

illuminating as a guide to a better understanding of hadron dynamics, 

and to the interplay of strong,weak,and electromagnetic interactions. 

For example, strictly from the hadronic viewpoint, such a model 

suggests that it will be useful to consider a hadron dynamics in 

which the strong vector mesons, at some intermediate stage in the 

calculation, have zero mass. {We remind the reader that this is indeed 

exactly what is happening in dual models at the moment.) It has been 

shown that there is an intimate connection between dual models and gauge 

theories.9 Now, the search is beginning for a dual Riggs-Kibble mech-

anism to raise the rho mass. We believe there is an intimate connec-

tion between our hadron model and the future spontaneously broken 

dual model, with internal symmetries, and hope our efforts may serve 

as a guide in the duality situation. 

Further, as we shall see below, the presence of the leptons 

does dictate in a certain way the structure of hadronic symmetry 

breaking. Thus, a full understanding of strong interactions seems to 

require the simultaneous understanding of weak and electromagnetic 

forces. Intimate connections between strong, weak, and electromagnetic 

forces, such as shown in our model, will, we believe, be of much 

more than passing interest in future theory and experiment. 
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Our goal in this paper is then a unified renormalizable gauge 

theory of strong, weak, and electromagnetic forces. Our approach is 

based on the following reasoning: It is the hadrons whose symmetries 

are ''known"--not the leptons. This is reflected by the plethora of 

lepton models, but only one SU(3) ® SU(3) hadron model. 7 For this 

reason we start firmly with the SU{3) ~ SU(3) hadrons, and search 

through the various lepton universes for one which "fits." 

In this, we are extremely encouraged by the structure of the 

hadron world. As shown in Ref. 7, the symmetric hadron theory 

necessarily begins {before spontaneous symmetry breakdown) with a 

local SU{3)(g} SU{3) .~ an extra ''global" group at least as large. 

The final symmetry is the product group. With Ba.rdakci and Halpern, 

we thus interpret the hadrons as "welcoming" a lepton theory as a 

local subgroup of its "extra" group. In this paper, the extra group 

will be called "primed" or "leptonic." 

The program is orderly. We study embedding the leptons in 

progressively larger "primed" groups of the hadron model. Taking 

SU(3)' ® SU(3)' for the "primed" group leads to trouble with 

ItO\ I strangeness-changing processes, but When we go to su(4)~su(4), 

everything falls in place beautifully. 

In our search through lepton universes, we first set ourselves 

the following.additional boundary conditions: 

(1) We require the leptons to allow a {3,3) + {3,3) symmetry-

breaking mechanism for hadrons. 

{2) In keeping with having only ~ SU(3) ~ SU(3) hadron world 

(3 quarks), we want the lepton model to contain only the known leptons. 

Requirement {2) limits us to Weinberg's theory, and is relaxed later. 
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It is worth remarking here that although some other lepton models can 

"fit" our hadrons, none is as natural as Weinberg's. 

In any case, of course, some extra (heavy) quarks and leptons 

are required to cancel anomalies. Our models lead uniquely to an 

anomaly-removal scheme which, for hadrons is very much in the spirit of 

dual models: In particular, we find removal of anomalies and proper 

rate for ~0 ~2y implies the existence of a heavy pion. 

The plan of this paper is as follows. Section II contains a 

general formulation of gauge theories. In Sec. III we reformulate 

Weinberg's theory in a suggestive notation, involving a new classifica

tion of the leptons. Section IV is a review of the U(3) (21 U(3) 

hadron theory; we include here a discussion of the hadronic currents. 

In Sec. v, we discuss a physical induction of the lepton world from 

this hadron world. Section VI contains the model itself, details, 

and possible alternatives. There are two appendices. Appendix A 

discusses the spontaneous breakdown in the somewhat involved system 

of scalar mesons. Appendix B mentions the alternative but 

unsuccessful attempt to embed the leptons in SU(3)'~ SU(3): 
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II . GENERAL GAUGE FORMALISM 

In order to present our analysis in an organized way
1

we outline 

here an operational approach, independent of representations, for 

writing a gauge invariant Lagrangian. We will always follow just three 

steps in each model we consider in this paper: 

Step 1: Classify the particles in the theory with an appropri-

ate group • 

step 2: Write a gauge invariant Lagrangian with dimension 

less than or equal to 4. 

Step 3: Break the symmetry spontaneously, guided by physical 

arguments. 

We emphasize here that the requirements of gauge invariance 

and dimension d < 4 are so restrictive that the physical content of 

the theory is essentially determined by the classification of the 

particles. Therefore, Step 1 contains the most important ingredients 

in building a model. 

step 1: We assume we have chosen a group whose generators are 

denoted by Fa, a= l···n. The operator which generates local 

transformations is U(x) = exp i(Fa wa(x)}. The transformation 

properties of the particles are determined by the linear representation 

to which they have been assigned (nonlinear representations are 

excluded from our analysis, because of the criterion d < 4 for 

renorroalizability). Thus, denoting the particles as ¢i(x), we have 

(2.1) 
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where Sij(x) defines the representation. For example, 

(a) If the group is SU(2) with generators 
... 
T and 

is a doublet, then 

(b) 

¢ij (x) 

1 =Pauli matrices.(2.2) 

If the group is SU(3)L@su(3)R with generators 

is a 3 X 3 matrix in the {3,3) representation, then 

e 
-i1.w (x) 

2 R 

and 

where ~ are the usual 3 X 3 SU(3) matrices. The infinitesimal 

form of the transformation equation defines the commutators of the 

generators with the fields. In examples l a 1 and ( b l above we get 

respectively, 

T. 

(a) [Ti'¢] 2~ ¢ (2.4) 

(b) [FLo:,¢] 
A.o: 
2¢, [FRo:,¢1 

A.o: 
-¢2 (2.5) 

Step 2: The derivative o ¢ = -i[P ,¢] (P =momentum op.) 
~ ~ ~ 

does not transform covariantly when ¢ is replaced by v(x) ¢'U(~). 
To define a covariant derivative independent of representation,we first 

define a covariant momentum operator ~ by introducing as many 
~ 

vector gauge bosons V o:{x) as there are generators, 
~ 

P + g V ·F 
~ 1.1 

(2.6) 

{V o: are considered as 
~ 

formal manipulations.) 

covariantly 
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c-numbers with respect to ~ 

We demand that under 1.{f.x), (P, 
~ 

in ·the following 

transforms 

where the rhs is found by calculating "L{ p ~l = p + 't{[p :tC 1 ] 
~ ~ ~ 

. ~ -1 _a 
= P + ~ 1.(...o 'U.. • Here we have assumed that [P ,1!· ] = o, which 

~ ~ ~ 

means that ~ are internal symmetry generators. If we allow the more 

general case of [PI.l,~J ~ o, like for example, ~ being generators 

of Lorentz transformations, or dilatations,
1 

etc. then we have to 

' consider general relativity in curved space. This displays the known 

close relationship that exists between general relativity and the 

10 Yang-Mills approach. Equation (2.7) induces a transformation on 

V ·F _. v' •F 
1.1 1.1 

I:JJI i -1 
r.u.V ·F +- o 'fti 

1.1 g ~ 
(2.8) 

' 

With these properties we can see that the covariant derivative is 

o ¢- igVa[~,¢] 
~ 1.1 

(2.9) 

I 
where the commutator [~,¢] is specified·in step 1 and depends on 

representation. Indeed under a simultaneous transformation of ¢ 
and V o: we get 

~ 

(2.10) 
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Thus V ¢ transforms covariantly (like ¢). The covariant derivatives 
1-l 

for V a can be. found from the commutator 
1-l 

Since the lhs is covariant, so is the rhs. We get 

F a 
I-LV 

o V a - o v a + g :fXI3Y V 13 v Y 
1-l v v 1-l 1-l v 

where :fXI3Y are the structure constants of the group under 

consideration. 

(2.11) 

(2.12) 

Using only covariant derivatives we can now write an invariant 

Lagrangian as if-we had global invariance, as usua1. 11 Mass terms 

for Va should be omitted since they are not invariant. For 
1-l 

renormalizability we should also require that any term_ in the 

Lagrangian has dimension d < 4. 

Step 3: The gauge particles acquire mass through the Riggs

Kibble mechanism. 1 The local gauge symmetry is broken spontaneously 

by introducing a set of scalar mesons which acquire nonvanishing 
' 1 

vacuum expectation value. A counting argument due to Kibble shows 

that, when one considers this scalar meson system alone, the number 

of massless Goldstone bosons generated by the spontaneous breakdown is 

~ equal to the difference of the number of ~ symmetries existing 

within the scalar system before and after spontaneous breakdown. In 

simple12 physically reasonable models, these Goldstone bosons are 

completely eliminated from the Lagrangian by a gauge transformation and 

they become the longitudinal components of the vector gauge bosons 

which acquire mass. Thus, the scalar mesons must be assigned to a 
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representation such as to generate, through spontaneous breakdown, the 

same number of Goldstone bosons as the number of gauge particles that 

are desired to be raised in mass. 

The restrictive power of'the procedure is self evident. The 

model is essentially completed in the first step, simply by the 

classification of the particles. The form of the vacuum expectation 

value is further restricted by physical requirements such as the 

existence of a massless and universal photon, masses of fermions, 

masses of gauge mesons (if known), physical val~es of coupling constants 

etc. This procedure also produces many relations between (bare) 

masses and coupling constants, which are adjusted to·best fit 

experimental data (say to zeroth order). As a result, few possible 

classifications of particles are capable of yielding a viable theory. 

If in addition we restrict ourselves to as small a group as possible 

which can describe all possible interactions, and fit the data as 

close as possible to first order, then the form of the theory that one 

can write is extremely limited. This will be illustrated in the 

following sections. 
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II I. WEINBERG'S THEORY EMBEDDED IN SU (2. f (t} SU (2 )' 

In this section we present Weinberg's theory as an example of 

the procedure outlined in the preceding section. We classifY the 

leptons with SU(2)~ ® SU(2)
1
R with generators F~, FR' among which 

only F~, F3~ [corresponding to a subgroup SU(2)~U(l)] generate 

local transformations; the other generators correspond only to global 

transformations. We are denoting our generators with a prime for 

notational convenience which will become clear later. This formalism, 

as shown below, suggests that the electronic and muonic systems form 

I rV\ I 
a (badly) broken SU(2)L ~ SU(2)R multiplet. The classification is 

such that it generates exactly Weinberg's theory for leptons. Thus, 

it appears that as long as we consider only the leptonic system without 

any reference to the hadrons this classification is equivalent to 

Weinberg's. However, it will be shown 1hat it suggests a natural 

extension to the hadrons (not implied by Weinberg) which will be 

crucial in the building of a unified theory of strong, weak, and 

electromagnetic interactions, 8 such that the group associated with 

strong interactions is SU(3)(i)su(3). 

The known leptons are embedded within (2,2) and (1,3) 

representations of D = doublet, 

S = singlet) 

(: ~ (0 ~ 
111D 111s i 

\ 
eL -vR \eR 0 

\ 
(3.1) 
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with the following transformation properties under ~(x) 

1 1 -1 
'&(x) = expi('FI,·ttL(x) + F3R a

3
R(x)]: q,( ~D w_- = SL 111D SR , 

where 

The commutators of the generators with the 

fields are formally defined by the infinitesimal form of the 
-> 

transformation equations. Thus [FL,111D] = ~ 111D' 

which identifies the weak hypercharge Yw = F3R· It can be checked 

that this charge assigns the correct charges to each field by 

commuting it with 111D and *s· Electronic and muonic-type leptons are 

not mixed by any local transformation, [only F3R is included in our 

local group, while FiR and F2R are excluded]. It is due to this 

choice of a local group that SU(2YR is broken and thus, electron and 

muon type leptons are distinguished by their SU(2)~ quantum numbers. 

We remark that the doublet * -c~ ) is the "G-pari ty" conjugate 
ll - -vR 

i.e.' As is well known, under SU(2) 

" both \jill and 1jlll transform in exactly the same way: Th~t is 
1
if 

1111l ->Si 1111l (like electronic doublet) then also 1111.1 ~s~ \jill. Therefore, 

our local group is equivalent to Weinberg's when we consider only the 

leptons. 

To make our classification more transparent, we remark that 

this is not the only possible 2 X 2 matrix classification of 

leptons. Another one given by Gursey and Feinberg13 [which can also 

be fitted to give Weinberg's theory of leptons] is very close to 

Weinberg's formulation 
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(3.2) 

In this case, we must take Yw = -(F01 + 2F0R) instead of F3R' so 

that Q = F3L- F01 - 2F0R.· Here w1 transforms only with F~L from 

the left and WR only with FOR from the left. It turns out that only 

the previous classification can be joined to an SU(3) ~ SU(3) 

classification of hadrons. These considerations hinge on the respec-

tive charge operators, and will become clear in Sec. v. From here on 

we concentrate on the classification of Eq. (3.1). 

The SU(2)~ triplet of weak gauge bosons , WJ.l , are assigned to 

a (3,1) representation, the singlet BJ.l is part of (1,3) and 

Weinberg's scalars ¢ belong to a (2,2) representation. We define 

w 
J.l 

3 

L 
i=l 

Q ~ ~ -1 1 -l 
where t.{ '!' -r_L = s.;, ¢ SR etc. The covariant momentum is 

P + g W ·~ + g' B F' • 
J.l J.l L J.l 3R 

(3.5) 

By commuting 00 with each field, we obtain the covariant derivatives, 
J.l 
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~ dJ.l 1j!D - ig WI-t 1j!D + ig' 1)!D ~ BJ.l 

T 

d ¢ - ig W ¢ + ig' ¢ ~ B 
J.l J.l 2 J.l 

The F W and F B are obtained from Eq. (2.12). We are now ready 
J.lV J.lV 

to write the most general (electron and muon number conserving) gauge 

invariant Lagrangian with dimension d ~ 4, 

_ 1 F W.F J.lV _ 1 F B F J.lV _ ; T ~ ~ ,1, 4 J.lV W 4 J.lV B • r ~D f •n - i Tr ii18 '/1)!8 

(3.7) 

In order not to violate the local gauge invariance, .as required by 

renormalizability, the numerical matrix G should satisfy 

'-1 
G = SR G SR or [T

3
,GJ = 0. Therefore, G is any diagonal matrix, 

G = (g1 g
2
). 

The photon can immediately be found by rewriting the covariant 

momentum in terms of a canonical redefinition of fields such that the 

charge operator Q = F3L + F3R appears, 

(cos ¢ w
3 

- sin ¢ B ) 
J.l J.l 

(3.8) 
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where tan¢= g'fg. Thus, we can read off Weinberg's photon and 

electric charge as the coefficient of the charge operator; 

sin ¢ w
3 

+ cos ~ B 
1.1 1.1 

(3.9) 
e g sin~ 

We emphasize that we have found the photon~ spontaneous breakdown. 

This is because we knew a priori the form of the charge operator by 

making sure it assigned the correct physical charges to the particles 

in the theory. In fact, of course, it is quite general that specifica-

tion of Q defines the photon and charges independent of spontaneous 

breakdown. In our later analysis we found it very convenient to 

follow this procedure, because it could show a priori whether a 

certain classification of particles involving both leptons and hadrons 

could give a massless, universal photon or not. 

The spontaneous breakdown should be arranged such that the 

photon remains massless, while w1,w2 and Z = cos ¢ w
3 

- sin ¢ B 

become massive. For a massless photon we must demand 

(3.10) 

Thus, by taking i.e. we can give masses to 

the gauge bosons as well as the electron and muon. It is more 

convenient to use the covariant derivatives obtained with l/>1.1 of 

eq. (3.8). With Weinberg we obtain 
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' 1 2 g-,.,., \ 
m) 

1.1 

G 

1 

-f2G.w 

With the single proviso below, the structure of our classification is 

just that of Weinberg. 

The form of G emphasizes the point suggested earlier that 

the source for the difference between the electron and the muon might 
I 

be the breaking of SU(2)R. Furthermore, there is one amusing 

philosophical consequence of our representation. In Weinberg's 

original classification, the universality of electromagnetic. c.~1.3~ i'i 

fixed by hand. However, by imagining that the leptons belong to a 

badly broken SU(2)~~SU(2~ universality of the electric charge is 

automatically obtained due to the construction of Q as a generator 

belonging to a nonabelian group. 

The present SU(2)
1 ® SU(2}' classification of the leptons has 
(. {l. 

bsen our starting point for a search through schemes to unify strong, 

weak, and electromagnetic interactions [such that strongly interacting 

particles are classified with SU(3)QDSU(3)]. We shall see that the 
L r(. 

introduction of the Cabibbo angle resulting in unwanted 6S = 1 

neutral currents, will suggest embedding. the above classification in 

progressively larger matrices, finally resulting in the scheme of 

Sec. VI. 
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IV. MASSIVE GAUGE THEORY OF STRONG INTERACTIONS 

Some time ago, Bardakci and Halpern7 considered the problem of 

giving mass to strongly interacting vector and axial-vector gauge 

systems. Here we will, for completeness, give only the model with a 

final U(3)®U(3) symmetry--using the notation of Sec. II. We also 
L R 

indicate the direction we shall follow in unifying this model with a 

model of leptons like Weinberg's, or others . 

The generators of the local group U(3)
1

(R)U(3)R are 

indicated as F01, FaR' a 0,···8, with the representation 

(left or right), where ~a are the usual 3 X 3 SU(3) matrices. 

We introduce the vector (V~) and axial vector (A~) gauge 

fields in the matrix form 

vL 
~ 

0 

VR 
~ 

8 

I 
0 

~ . 
..£(v a +A a) . 
2 ~ ~ 

(4.1) 

These transform as (8,1) and (1·,8) representations respectively, 

under the local gauge transformation operator 

(4.2) 

exp i[~·~(x)] . 

The Riggs-Kibble mechanism which will give mass to all gauge 

particles (no photon) is gener&ted by introducing two 3 X 3 complex 

matrices, ~ and ~' which transform under 'lt{x) like sets of 
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SU(3)L,R triplets (3,1) and (1,3); 

We remark here that the 3 X 3 matrices Mt and ~ 

transform only from one side with the local group generated by Fa 
L 

a 
and FR • There is also the freedom of applying more transformations 

from the second side with a "primed" group which will be generated by 

some other operators 

(4.4) 

The "primed" group here is the "global" group of Ref. 7. Then, under 

the group generated by Mt would be a set of fields in the 

(3,3\ representation, and similarly for ~· The "primed" transforma

tions are not local transformations in this discussion. However, in 

the coming sections where we introduce the leptons and weak gauge 

( 
1,0, I bosons as well, they will be classified with a local SU 2)~~U(l) 

subgroup embedded in the "primed" group. 

The covariant derivatives are easily obtained from the 

covariant momentum operator 

with the same coupling f for both left and right gauge bosons to 

preserve parity. We get 

(4.6) 
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and ~' ~ obtained from Eq. (2.12) in terms of VaL 
~v ~v ~ 

The gauge invariant Lagrangian with dimension d < 4 is 

- l Tr(F L F ~v + F R F ~v) 
4 ~v L ~v R 

and V a:R. 
~ 

+ h1[(Tr(~t ~))2 
+ (Tr(~t ~))2 ] + h2 Tr[(~t ~)

2 
+ (~t ~)2 ] 

(4.7) 

L 8 a: L 
where we have written F = L ~ ~ etc. 

~v 0 ~v 

The gauge symmetry is broken spontaneously by taking 

Kl (4.8) 

There are 18 massless Goldstone bosons which are identified as 

~t-~ and ~t-~, and which are eliminated by using the 18 degrees 

of freedom generated by F
1

a: and FRa:. The Goldstone bosons become 

the longitudinal degrees of freedom of the massive vector and axial 

vector mesons with masses 

(4.9) 

The remaining scalar particles are the hermitian part of ~ and ~ 

and have arbitrary SU(3)® SU(3) invariant masses. The final Lagrangian 

thenisobtainedfrom{4.7)byreplac~ngML...,ML Kl and ~ ->~ + Kl,. 

where now ~ and ~ are hermitian matrices. 
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As observed by Bardakci and Halpern, this final Lagrangian is 

invariant under a global final group U(3)1~ U(3)R generated by 

(F1 + FL)a: and (FR + FR)a:. 

Hadron Currents 

Here we also discuss the structure of the currents associated 

with the ~1 (product) group. As in massive Yang-Mills theories 

(in general), we distinguish two kinds of currents, both conserved but 

with equal charges. The first is the usual Noether current(s) 

generated by the transformation 

v, _. s v s-1 
.... ~ ' 

. 1 
M + K: -> S(M + K)S- , 

[J ~] 
N 

( 4.10) 

(left and right); the second kind [~] is associated with the 

transformation 

i " -1 v _. s(v + -f u )s , 
~ ~ ~ 

(M + K) -> S(M + K)S-l (4.11) 

(left and right). In an ordinary massive Yang-Mills model, J~ is 

proportional to the vector meson field. In our case, because masses 

arise spontaneously, we will obtain a modified field-current identity--

however, as is generally true, we maintain 

J v 
N 

(4.12) 

As seen below, weak interactions and electromagnetism do in fact 

couple to Jv rather than JNv' so we give next some more of its 

structure. The variation (4.11) gives [S ~ 1 + ia:(x)] 

• 

• 
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in the unitary gauge. We notice that, in the absence of the M's we 

have the usual field-current identity. 

The algebra of the is found in the usual manner, using 

(4.12). The results are almost those of field-algebra, with the 

exception that the usual c-number Schwinger term C in the space-time 

algebra becomes an operator. Where algebra of fields has ~a~ c, 
2 

mo 
C = ~' we obtain 

f 

ca~(operator) 

2 
mo 
~ 5a~ + (operator terms)a~ 

(4.13) 

The algebra including time-derivatives of currents is more complicated 

and will be discussed elsewhere.
14 

In the presence of additional hadrons, such as quarks, pions, 

etc., J~ does not change, while, J~ acquires extra terms involving 

the addtional fields. 
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V. UNIFICATION OF HADRONIC AND LEPTONIC GAUGE THEORIES 

A. Extension of Hadron Theory and General Considerations 

As already suggested, the path we will explore for the unifica-

tion of hadronic and leptonic models is the freedom o~ making local a 

certain subgroup of the "primed" group, and classifying the leptons 

with it. The following picture emerges: Hadrons are classified and 

transform only with the unprimed U(3)1~U(3)R chiral local group, 

while leptons are classified and transform with only the primed group. 

Gauge invariance does not allow any direct lepton-hadron interactions 

before spontaneous breakdown. The only fields that transform with both 

groups are Mt and MR and they couple to both strong and weak gauge 

bosons. Thus, ~ and MR play the role of a "bridge" between 

hadrons and leptons. Before spontaneous breakdown all semi-leptonic 

and nonleptonic weak interactions occur through intermediate ~ and 

MR loops. After spontaneous breakdown however, we generate direct 

mixings between strong and weak gauge bosons, so that at low energies 

semi-leptonic and nonleptonic weak interactions occur through vector 

meson dominance. 

For hadrons, we consider U(3)1Q9u(3)R chiral theory15 which 

includes usual quarks, (3,3) scalar and pseudoscalar mesons 

(E = cr + irr), as well as vector and axial-vector mesons. These 

fields transform only with the unprimed generators F1a, FRa of 

Section IV: 

v ~ -+ s (v ~ + i2l~)s · L L L L' 



In this model, gauge invariance does not allow mass terms for v1 , VR' 

and q. Masses for these fields can only be generated through 

spontaneous breakdown. For quarks we need a term in the Lagrangian of 

the type (aq
1

EqR + h.c.) (this is another reason for introducing E), 

and to generate masses for all vector and axial-vector mesons, we have 

to introduce the Bardakci-Halpern scalars, 7 Mt and ~ of Sec. IV. 

Notice that we cannot break SU(3\® SU(3)R in the usual way, by 

adding a linear term in E, like Tr(f E), (f is a numerical 

matrix). This would spoil the gauge invariance (and hence renormaliz-

ability). such a linear term must be induced only through spontaneous 

breakdown from a gauge invariant term. If only a hadron theory is 

desired, such a term is easy to find: Tr(G Mt + E ~) +h. c. [G is 

a numerical "insertion" of form (aab)]. In the presence of leptons the 

term is a bit harder, but we shall find later just such a term which, 

in the limit of no weak or electromagnetic interactions reduces to 

just the above hadronic term. 

Again, if only a hadron theory is desired, Mt and ~ may 

be taken 3 )( 3. In the presence of leptons however, we will need to 

take them as 3 X 4 matrices (to eliminate neutral strangeness 

changing currents). In general of course, we can enlarge to 3 x n, 

n 2: 3, thus enlarging the "primed" group to U(n)' (2?) U(n)'. No 

Golstone bosons will couple as long as the "new" columns do not develop 

any vacuum expectation values (the extra global symmetries associated 

with the extra columns should be broken by hand). Thus 

( :1 
0 0 0 0 

) <Mt> (~) K Kl 0 0·. ·0 . (5.2) 

0 K2 0 0 

We find that the smallest n we need is n = 4. 

-24-

This, we find below, eliminates all neutral strangeness changing 

processes to first order. 

B. "Induction" of Leptonic Structure from Hadrons 

Among the constraints on the unification, two are particularly 

worth focussing on. These are (a) proper introduction of Cabbibo 

angle and (b) having a universal, massless photon. These play particu-

larly crucial roles inthe choice of a local group to classify the 

leptons, as a subgroup of the "primed" group {as well as its 

representations). 

We first consider the photon, whose structure is closely 

related to the construction of the charge operator Q. In the type of 

theory we want to propose Q will be constructed from the unprimed as 

well as the primed generators. The unprimed part, which will assign 

the correct charges to quarks, E, V , and A , is the usual 
j.l j.l 

SU(3)1 ®su(3)R charge operator, namely (F31 + F
3
R) + .f3(F81 + F8R). 

The primed part of the charge operator should first of all give the 

correct charges for the leptons. We assume that we have chosen 

SU(2)I, ® Y1 as a subgroup of a U(n)I, ® U(n' )R group. We choos.e 

SU(2)~0PY' both because it is the natural group of the known leptons, 

and because, as it will turn out, our hadrons will not connect to any 

smaller leptonic group. Of course we will search for the smallest n 

compatible with data. 

Thus, the total charge operator is 

Q (5.3) 

• 

, 
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The "primed" part of the charge operator F' + Y' 
31 

determines the 

weak hypercharge Y'. At this point, the crucial ingredient in our 

induction is the known charges of the Bardakci-Halpern scalars ~,R; 

e.g., their diagonal entries, which acquire a vacuum expectation value, 

must be neutral. 

More precisely, the charges of Mt,R are determined by the 

representations of the unprimed and primed parts of Q, which we denote 

by Q1 'R and Q1 'R respectively (s =strong, w =weak). We have 
s w 

already determined Q1 'R as the usual SU(3) charge matrix, 
s 

-1/3 \ 
-1/;/ 

The charges of each entry of the matrices ~ and ~ are found by 

computing 

(5.4) 

etc. The above commutator is determined as explained in Sec. II, with 

the transformation properties of ~ and ~ as in Eq. (4.3) and 

(4.4). 

To assure a massless photon we have to satisfy 

0 (5.5) 

K as in Eq. (5.2), ~ must then satisfy 

Q1,R 01,R 
S K-K""w 0 (5.6) 
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Therefore,. ~,R must have the form 

~/3 0 0 \ 
r 

0 -1/3 0 0 \ 
~,R 0 0 -1/3 . 

- - -- -- - .\ (5. 7) 
' \- -~-

~ ' ' '? ! 
I ., J 

0 ''I / · .... , ... z/ 

That is, the 3 X 3 submatrix has the same form as Q1 'R. Now, if we s 

embed SU(2)L ® Y' in U(3)L ®U(3)R and take SU(2)L ·as the isospin 

subgroup of U(3)i,, then the primed part of the charge 

uniquely determined as (F3L + F3R) + ~ (Fg1 + FBR); 

y' F
3
'R + _!__ (F' + F' ) 1[3 81 8R 

operator is 

therefore 

(5 .8) 

This suggests that Weinberg's leptons should be embedded in a 3 X 3 

matrix with the notation of Sec. III 

(o ~: l;-
0
_ 

l/rs 
• 

0 I 

(5 .9) 

Notice that the operator (F81 + FSR) commutes with both 1j!D and 1j!S' 

if these fields transform as specified in Sec. III [taking the isospin 

subgroup of SU(3) with ~ matrices instead of the 2 X 2 Pauli 

matrices in SL and SR]. Therefore, the hypercharge Y1 is assigned 
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to o/D and o/S only by F3R' just as in Sec. III. Thus the charge 

operator that we have just chosen also assigns the correct charges to 

the leptons. This is why we think Weinberg's leptons are much more 

suggestive if classified as in Eq. (3.1) [rather than as in Eq. (3.2)]. 

Thus (as mentioned above) the presence of the hadrons in a sense 

distinguishes the electron and muon type leptons by their SU(2)R 

quantum numbers, and gives a zero charge neutrino. 

As already mentioned and as shown in Appendix A 

U(3)~ ~ U(3)R will turn out unsatisfactory. The next most economic 

scheme is an embedding of SU(2):i..(~Y' in U(4)~ ® U(4)R. Out of the 

generators F'L,R 
a ' 

'L 
a= 0,···15 we choose F1 , 2 ,

3 
to form an 

SU(2)~, plus a U(l)1 operator Y'. For reasons that will become clear 

shortly, the representation we want to use for these generators has 

the form (left or right) 

= Pauli matrices 

(5 .10) 

form a U(2) algebra. Equation (5.7) is satisfied Clearly t 0 ,1 , 2 , 3 

if we take ~,R t
3 

+ 3 t
0

. This suggests that the primed charge 

(F3L + F3R) + 3<FoL + F0R), determining operator has the form 

Y' (5 .11) 

Now, if we embed the leptons of Sec. III in a 4 X 4 matrix 
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r 

4 
.. ,) 

i 

I 0 ~{ 
-, 

VL I 
0 I 0 

o/D eL -vR 

J 

ws I eR 0 (5.12) 
I ' r- ' 

J 
~- ··- - - -,-

r 0 ? 0 ? 

L L 
and let them transform as before (but with ta replacing 1 in -T 

2 a 

SL and sR), we see that FOL +FOR commutes with both *n and *s· 

Again only F3L assigns the value of the hypercharge Y' to the 

leptons as in Sec. III. The question marks (?) in (5.12) are suggestive 

of the presence of new heavy leptons. In fact, in order to cancel 

anomalies we will need new leptons which will fill the spaces marked 

by (?); these will also fix the fourth entry of QL,R in Eq. (5.7) 
w 

exactly as given by (5.11). Discussion of heavy leptons will be 

continued in Sec. VI. 

So far we have seen how the determination of the charge operator 

has greatly restricted our choice of the SU(2)L ~ Y' subgroup. 

However, we still need to introduce the Cabibbo angle. This, and the 

requirement of no 6S = 1 neutral currents will finally determine the 

representation of the SU(2)' ® Y' 
L 

algebra which we need. 

According to Cabibbo's theory, the weak currents which are part 

of an SU(2) multiplet "see" a rotated picture of the badrons. 

Therefore, the weak SU(2)I, group must be rotated with respect to 

the strong SU(3)L group in such a way that the weak gauge bosons 

"see" a left banded strong isospin current slightly rotated in the t..
7 

direction. Weak gauge boson couplings occur in our model through the 

scalars ~ and MR' which after spontaneous breakdown generate terms 

of the form (see later sections) 

.. 
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(5.13) 

where W is a rotated matrix W = R W R-l, 
~ ~ ~ 

3 
w " w a t 

il al;l ~ a' 

R = Cabibbo rotation. With the form of K given in Eq.(5.2) we see 

that R must be chosen as 

1 0 0 o-- 0 
·---+------

0 cos 9 sin 9 0·. ·0 

R 0 •-sin 9 cos 9 o ... o (5.14) 
----·----·-··-·-·--~-----t-~~· -·--

9 0 0 l 1 ') I I 1\ I 
I I I I , 0 
l I I , 

0 0 - -b : 0- -1 

where 9 is the Cabibbo angle. 

Thus our group is now generated by the operators 

( 'L- I) rotated with respect to F1 , 2 ,
3 

and Y • In the simplest case of 

SU(3)1 ~ SU(3)R these are represented by 
~ -1 
~ = R ~l 2 3 8 R for 

' ' ' 
the left-handed generators, and un~otated ~3 , 8 for the right-handed 

generators. For the case of su(4)1 ~ su(4)R, we represent the left-

~ -1 
or right~handed generators by ta = R ta R where ta are as given 

in Eq. (5.10). The representation of Q is invariant under R in 

both cases. However, it is only in the latter case that the neutral 

operators do not(Cabibbo) rotate t
3 

= t
3

, t 0 = t 0 . As will be seen, 

this is why the neutral strangeness changing currents are eliminated. 

For :this reason, we relegate further discussion of the SU(3}i, ® SU(3)R 

to Appendix B, and continue here with the preferred su(4)1 ~ su(4)R 

scheme. 
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Finally, we remark that, to maintain the couplings o~ the 

unrotated leptonic world unchanged, we need of course rotate th€ €ntire 

leptonic representation (so that they would not be aware of the rotated 

generators). Thus, we will formally introduce a fully rotated notation 

-1 
R 1jrD R , 

R S' R-l 
L 
R 

-1 
R 1\IS R , 

which transform as above, namely, under the "primed" group. 

~· -1 1>1.--} 1>1.~ 
R R R 

(5.15) 

(5.16) 

etc. Actually, this is equivalent to saying that weak gauge bosons 
(f"'~,tl..) ~ 

couple to hadronsAwith rotated ta' and with unrotated ta to leptons. 

In pa.rticular, SR = SR' so some of this formalism is for notational 

convenience. 

We have given reasons for our choice of the SU(2)'QO Y' group, 
l 

and its representations. Thus much has followed from no 6S = 1 

neutral current8 and known hadron charges. More problems remain to be 

solved such as medium-strong SU(3)Q9 SU(3) breaking in the presence 

of leptons(with ~physical Goldstone bosons), cancellation of 

anomalies, etc. These will be discussed after we construct explicitly 

our model in the coming sections. 
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VI. UNIFIED MODEL 

A. Construction of Lagrangian 

As we saw in the last section and Appendix A, the use of 

SU(3)'@su(3)~ as the primed group for embedding the leptons led to 
L ~. 

trouble in general with strangeness-changing processes. Speaking 

generally then, we have at this juncture two possible directions: 

One choice, followed by most authors, 6 is to try enlarging the hadronic 

group (more quarks, etc.'); as explained above, we consider this 

unesthetic at least, and in fact such attempts do not solve the 

"strangeness" problems in our case anyway. Thus our choice8 will be, 

as anticipated above, to enlarge the primed group to u(4)'@u(4)'. 
L R. 

For the sake of elegance, we will present the model in a 

unified (strong, weak, and electromagnetic) super-matrix notation. 

For example, the general local operator transformation is represented 

by the 14 X 14 super-matrix 

SL 0 0 0 

0 SR 0 0 
s (6.1) 

l: 
0 SR 0 

0 0 si. 

where, as detailed in Sec. V 

(6.2) 

and so on. Recall that the twiddle operation is the Cabbibo rotation. 
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In the same notation we represent all vector mesons (strong, 

weak, and electromagnetic), as a similar 14 '/. 14 matrix with diagonal 

entries 

Then the unified gauge transformation on vll is just 

a, 'l..Cl 
tA.... vll • s(v t io )s-1 . 

ll ll 
(6.4) 

Similarly, for Weinberg's leptons, we introduce the SU(2) doublets 

WD and SU(2) singlets ~S as in Eq. (5.12). To fit them into a 

super-matrix notation £, we define rotated quantities, 

£ 

-1 
R ~D R , 

0 0 

0 0 

0 0 

0 0 
l 
I 

0 0 

~s 
1 oJ c 

....[2 "~D 

0 

(6.6) 

c ('J!D : charge conjugated in Dirac space and transposed in matrix 

space). We then specify the transformation CJ)..e. :.u_-l = S £ s-1 . 

This means that the unrotated 'J[D and ~S transform with the 

unrotated representations S' and SR': 
L. 

• 
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,,, __. s• ,,, s•-1 
'D L 'D R ' (6.7) 

Thus, they belong respectively to (4,4) and (1,15) representations 

of U(4)L~u(4)R. For the scalar mesons, the super-matrix notation 

is most symmetric, 

jo L: 0 ~: 
I Et 0 ~ 0 I 

M - I 'i{ M :ul s M s-1 

l 0 ~ 0 ~t 

'-
t4; 0 ~ 0 (6.8) 

Here L: = (J + ire is the usual (3,3) multiplet of scalars and 

pseudoscalars; ~ R are now three-by-four complex matrices (one 
' . 

extra column to support the enlarged primed group), ~ is the 

rotated Weinberg scalar ~ = ¢0 t 0 + i¢·t. The notation emphasizes 

that (a) ~,R are the only fields in the model which transform under 

both the hadronic and leptonic groups and (b) Weinberg's ¢ is to the 

~~} leptonic system precisely what L: is to the hadronic. It is this 

symmetry which will allow us to construct a (3,3) + (3,3) symmetry 

·-. breaking term in the model. We take leptons and quarks, for the moment 

at least, as discussed in the previous sections. 

Covariant derivatives are formed in the usual fashion, leading 

to our unified gauge-invariant Lagrangian 

_ 1 Tr(F ~tv F L + F llV F R) _ 1 F B F ~tv 1 ( w· llV) 
r. L R r:- - r. Tr F F 
'+ llV llV '+ l.lV B '+ llV w 

+ v(~) + v(~) + v(E) + v(¢) 

+ Tr(G2~t~Mf ¢ + G2 ~ ~ ¢t ¢) + Tr(Gl ¢t ~ E ~ + h.c.). 

(6.9) 

Here, the V(···)'s are the usual quartic and quadratic terms1J with 

certain G "insertions", 7 being 4 X 4 numerical matrices which, 

because they break only F~-type symmetries, do not spoil the. unified 

gauge invariance. In particular, we write their diagonal entries 

G 
2 
:;-(m ,m , ? , ? ) , 
" e ll 

G2 : (a,a,b,c). (C.lO) 

The interpretation of these parameters will be clarified in the 

following paragraph. 

We come now to the spontaneous breakdown. First, we use 

21 degrees of gauge freedom (ail but Q) to eliminate the 3X 3 

submatrices of ~-M£ and ~-~, and all the components of ¢ 
except ¢0 . With an eye to the charge operator (5.3), we next assign 
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the charge-conserving vacuum expectation values 

(6.ll) 

We shall return in a moment to the specific alYowed form of K, but 

first notice that (6.11) generates, through the last term in ct,, a 

linear term in the I: field. Thus I: itself acquires a vacuum 

expectation value (I:) = v, which is the usual (3,3) + (3,3) hadronic 

symmetry breaking in the spirit of Gell-Mann, Oakes, and Renner. 16 

The allowed forms for K and v require a detailed discussion 

of this complicated scalar system. Such is tedious and not terribly 

illuminating, but can be found in Appendix A. Here we only state that 

to lowest order, neglecting weak effects, we can take the following 

isospin and strangeness conserving vacuum expectation values:17 

~ arbitrary and 

1: 
0 0 J vl 0 

1 
0 : 

~ 0 vl 
I 

K = 

:I 
v 0 0 

0 K2 0 v2! 
L 0 I 

-' _j 

(6.12) 

with no massless Goldstone mesons. Except for d, the interpretation of 

the parameters in G1 and v is standard,15 while G2, d, and V(···) 

can be adjusted to give arbitrarily large masses to ¢0 and the 

remaining scalars in ~ and ~· The vacuum expectation values vi 

are directly related to the pseudoscalar decay constants 

To illustrate the meaning of the K., we also list (ignoring 
l. . 

electromagnetic mixing of p ¢ w etc. for the moment) some (bare) 

18 vector meson masses after spontaneous breakdown 
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2 2 i 2 m m Kl p w 

2 i 2 2 1 2 2 2 2 
m¢ K2 mK* 2 f [Kl + K2 + (vl - v2) ] 

(6.13) 
2 2 2 ? 2 m: 2 i(r..22 2 

mA m f ( r..1- + 2v 
1 

) , + 2v2 ) 
1 WA ¢A 

2 1: f20 2 2 
+ (vl + v2)2) ~A 2 Kl + K2 

With proper choices of r..1 , K2, v
1

, v2, these formulatfor the vector 

meson masses are well satisfied by experiment. Further, w± and Z 

also get a small extra contribution to their masses, due to r... Such 

relations should be taken together with a number of remarks (1) Electro-

magnetic mixing, to be discussed below, gives order 2 e corrections to 

p w ¢ masses. (2) Ignoring (1), and the presence of the remaining 

ML terms--which influence the known hadronsonly through loops,----r.,R 

the hadron theory is just a familiar mass-mixing Yang·-Mills a-model. 

Of course, with r..1 ~ r..2, we lose the second Weinberg sum rule--so, in 

general we prefer K1 r..2, leaving w-¢ splitting to higher order. 

(3) Frankly, we do not know whether our Lagrangian willbe more useful 

as an effective Lagrangian or as a guide to nonperturbative structure 

and the currents of the strong interactions. In general, we will 

discuss whichever view (or both) when they appear interesting. 

B. Photon System and Vector-Meson Diagonalization 

The structure of our theory with respect to these topics is 

somewhat unusual. As discussed above, the (massless, universal) photon 

is found as the coefficient of Q in the covariant momentum: 

.. 
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··~ 

. 
"'""\ 
=--,..) 

• 

where 

e 

f 
eQ·A + cos 1} 

g sin ¢ cos TJ, 

cos 

tan¢ 

cos {~v3 +~V~ 
1 ~ 

- - 2 v3 + 2 v8 · 

-)7-

+ sin 

- sin TJ(sin ¢ w
3 

+ cos ¢ B) 

(6.15) 

with f2 /4rc ~ 2 and g, g' small, we obtain approximately Weinberg's 

2 1 2 l 
e ~ gg'/(g + g )2. 

Because of the diagonalization, our picture of electromagnetic 

effects is unusual. As a first indication of this, we notice that we 

are forced to electromagnetically mix the strong vector mesons. The 

p ¢ w mass matrix becomes 

Tr[(1/3 Qf1v38 + ru3v38 + f'~0v0 ) 2K2 J (6.16) 

Here we have allowed a different universal coupling constant f' I f 

for the ninth vector and axial vector mesons v0 and A0 ; K stands 

for the 3 X 3 submatrix of K [Eq. (6.12)] with K1 I K2 . The 

other symbols are given as 
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0 0 

fl f 2(i - ~ e2 )-~, Q 0 -1/3 0 

0 0 

c: 
0 :~ u3 1 ~0 -{fl (6.17) 

-1/ 0 

It turns out that f' must be close to f to obtain the usual ¢-w 
(canonical nonet) mixing angle. We also find that, aside from small 

electromagnetic mass corrections, the p-w mixing angle can be fit to 

data, and is very sensitive to variations in f'-f of order 2 e . 

Further of course, the eigenvectors of the mass matrix which are 

the physical p, w, and ¢, have direct order e
2
.ff electromagnetic 

couplings to the leptons. This can be easily seen from Eq. (6.14): 

is also associated with the total charge Q, like the photon. Thus 

electromagnetic effects will not be describable purely in terms of a 

J ~.A coupling. In explicit calculation, say in electron quark 
EM ~ 

(electromagnetic) scattering, we find that the hadronic vector couplings 

always add to the photon in just such a way as to simulate vector meson-

dominated electromagnetic form factors in lowest order: e.g., 

2 2 
e2 - f(~ ) 
q 

2 
q 

1 
2 - m 

p 

(6.18) 

Further, these couplings give a hadronic correction to the muonic 

g - 2 
-2- of order 5 X lo-8, agreeing with previous estimates.19 
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We will discuss the effect of the diagonalization on currents 

after specifying our ~rescription for-the other weak vector meson 

couplings. These we choose not to diagonalize,leaving charged w± 

and neutral Z terms of the form 

(6.19) 

as they are. Thus charged lowest order currents proceed via vector 

exchange at low energies. Actually, ·of course, one can diagonalize, 

but this is quite lengthy, ana__~e theory is easily interpreted without 

doing so. 

c. Currents and Universality 

Hadronic currents in our model are, of course, determined by 

the Lagrangian ;;!_ . The physical weak currents J ~ can immediately 
± 

be read off as the hadronic coeffiCient of W ~ in ;;;(_ (M' s 
± 

considered hadrons) .. In the limit g,g' ~o (and mass of the fourth 

column of M' s large), these currents are just those discussed in 

Sec. IV. The electromagnetic current is also the hadronic coefficient 

of A~, but as stressed above, this current is not useful in the 

usual manner, due to the "other" electromagnetic effects from neutral 

strong vector mesons. 

Although, as in Sec. IV, these currents can be found through 

hadronic considerations, it is perhaps more illuminating to consider 

their structure from the point of view of the "primed" transformations, 

and the W equations of motion. As an example, we discuss the Noether 

derivation of J ~ 
± 

from this viewpoint. For simplicity, we consider 

only transformations within the unitary gauge 

in this case, those generated by Fi 2 . Thus 
' 

(("- Mt)= o, ¢- f= o)-
iP ·J><~ 

¢, M, and the other 
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hadrons do not transform (otherwise we cannot maintain the gauge), while 

the leptons transform as usual. With respect to W, we follow Sec. IV 

to consider two classes of transformations (and hence two groups of 

currents). As in Sec. IV, the two W transformations u-e those with 

or without an extra s'-l o s'. 
~ 

The transformation with the extra 

derivative term leads to the physical currents J ~ d f' d · · t· ··b .. ·-·. + e ~ne JUS -a ?ve; 

these can be written as where .P are the ·. 
rJ- M,¢ 

covariant kinetic energy terms for M and ¢ in the unitary gauge. 

The transformations without the derivative lead to 

I' .;· ..;: 
( ;;;___ - .. ..; M - ,.i_ ¢), which are the ordinary Noether currents of the 

leptons and W fields, and not the hadron currents. As always in these 

algebra-of-fields-type situations (see Sec. IV), the two sets of 

currents are related by a total divergence, this time being 

Thus J ~ 
± is related to the weak Noether current ~ JrN through the 

W equations of motion; simultaneously, forms essentially J ~ are 
± 

related, as in Sec. IV, to the hadronic Noether current through the 

strong vector meson equations of motion. 

It is clear from the above discussion, that the hadronic 

charge algebra is that of the leptonic charges; hence universality is 

guaranteed. 20 

A further remark about the electromagnetic current: It would 

be useful to have an "effective" electromagnetic current, that takes 

into account the hadronic corrections mentioned above. We would 

conjecture that such an object is the current coupling to Weinberg's 

photon (i.e., do not diagonalize; Weinberg's photon is the real photon 

taken at TJ = 0). 

• 



• 

-41-

Neutral Strangeness-Changing Currents and a Correspondence Principle 

In lowest order, we get no ~ = 1, 6Q = 0 currents, because 

our Cabibbo rotation (5.14) does not rotate neutral weak vector mesons 

size 

= t
3

, t 0 = t 0], we have accomplished this only by increasing the 

of f\,R' without extra quarks. 

On the other hand, it is clear that the four columns of NL 
-~,R 

6 are acting like the (p, n, ~, p') quarks of other models. In fact, 

we see a type of "correspondence principle" at work here in the sense 

that, from the structure of some n-quark "direct coupling theory" 

(e.g., q W q), we can read ann-column 11M-theory" (our models here)--

or vice versa. This principle will be useful below when we consider 

~ f1 inclusion of other lepton models. 

;.>~ Preliminary calculations indicate that higher order induced 

... ···--; strange currents are suppressed by factors of hadron masses and mass 

M__2,· splittings divided by -~ 

processes are zero to order 

Before vacuum expectation values, such 

4 g --due to a cancellation between internal 

p and p'-type column exchanges [as in the Glashow-Illiopoulos-Maiani 

su(4) model]. Therefore, after spontaneous breakdown, these amplitudes 

are suppressed by hadron masses and mass differences divided by Mw2
. 

These conclusions are being checked in detail and will be presented 

elsewhere. 21 

D. Fermions and Anomalies 

As thus far presented, our model has anomalies. Further, in 

the presence of .both strong and weak vector mesons, it does not appear 

possible to cancel quark versus lepton anomalies. Hence we will discuss 

a simple doubling scheme which, at least for the hadrons, is very much 

in the spirit of dual models. In particular, our approach will lead 
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us directly to the existence of a heavy pion. The scheme is as 

follows. 

We introducetheavy) q'' *s,n that couple to gauge bosons 

just as q, *s,n but with the opposite sign of '5· The new leptons 

go where we had question marks in the 4)( 4 lepton matrices: 

!veL ~ 0 0 l 

*n 

I 
c 

eL -(v ) 0 0 
IJ. R 

0 0 ' -
-vLI" eR 

Lo 0 '+ (v:c~ J ~ 

0 llt 0 0 l 
L 

eR 0 0 0 

0 0 t3'v' 
!lR eR 

0 0 
'+ 

a'v' (6.20) llR eR 

In the leptonic system, anomalies are cancelled without complication. 

However now, q and q' loops with an odd mumber of couplings 

tend to cancel (because both type of quarks are picking up masses and 

interactions from the same type of terms qLLqR' qRLqL)--suppressing 

~0 ~2r. This we cannot allow. The only solution to this dilemma 

appears to require the introduction of a heavy pion'-sigma' field 

2:' = a' + h' . For simplicity, we choose to couple q only to 2:, 

q' only to E'. (Most general couplings do not affect the 

conclusion.) Now it is easy to arrange that the masses of q', I:' 

<~·) are high while keeping ~ v' 
v 

<< 1 so that the new 2:' has 



negligible effect on all low lying hadrons, including V and A. Now, 

of course, r.
0 
~2r proceeds only through q. To get an extra factor 

of 3 in rr
0 
~2y amplitude there are a number of choices. We can go 

to sets of integralrcharged quarks, with Y providing a "charm", or 

most perversely, e.g., introduce two more such "pairs" of cancelling 

quarks with large mass. 22 Such schemes appear quite flexible with 

regard to quark classification, the only common denominator being the 

apparent necessity for a heavy pion. Implications of such ideas in 

the operatorial formulation of PCAC will be explored elsewhere. 

E. Other Lepton Models 

Among the other lepton models in the literature, none fits our 

hadrons as well as Weinberg's. However, with more scalar mesons (etc.), 

some other models can be incorporated, and we will make some brief 

remarks on this subject. 

The second model of Prentki and Zumino looks good at first 

sight. 8 Indeed, their leptons fit naturally into our wD,S' However, 
_.1. 

due to the (2) 2 in their neutrino classification, we would violate 

hadronic universality (by this factor) if we coupled directly to our 

hadrons above. 23 Consulting the correspondence principle again, we 

find that universality is restored with the addition of one ~ set 

of 3 X 4 matrices Mi.,R· At this stage, however, we consider this 

unattractive. 

A more economical generalization follows lines between 

Weinberg and that of Georgi and Glashow. As discussed in Sec. V, the 

presence of the M's requires four weak gauge bosons. Keeping the 

~weak gauge bosons, we now classify the leptons under SU(2) as 

Georgi and Glashow. The leptons are singlets under Y. The Georgi-
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Glashow scalar fields ¢G = ~·~G are needed to retain their lepton 

mass pattern; Weinberg's scalars ¢w are also needed to construct our 

(3 ,3) symmetry..;breaking term (see above). Further (¢w) :\. can be 

taken to provide the bulk of weak gauge boson masses. To avoid 

Goldstone bosons in lowest order, terms like Tr[¢~ ¢G ¢w] must be 

included in the potential. In this model then, with only three extra, 

scalars (¢G), we suppress neutrino processes in the manner of Georgi 

and Glashow. Without the extra U(l), the original 0(3) model of 

Georgi and Glashow does not seem possible to incorporate. 

We have not found a way of incorporating (without Goldstone 

bosons in lowest order) the model of Lee, Prentki, and Zumino. 

F. Final Remarks and Directions 

We would like to discuss briefly perturbation expansion around 

the "hadron" theory. We choose to hold fixed the masses of W, z, 

and ¢. This leaves one parameter, say e (electric charge) to 

expand all weak and electromagnetic effects. As e ~o, we reach the 

pure hadronic system, which is of interest in itself. The hadron 

Lagrangian is in most respects the model of Bardakci and Halpern. 

A notable, exception, of course, is the (3,3) symmetry-breaking term. 

-1 -1 
Since A. = g Mw ~ O(e), then G1 [Eq. (6.9)} 

Thus in the term Tr(G1 (¢ +A.)~~) the term 

is also o(e). 

Tr(A.G1~~) 
survives as (another e-independent) part of the hadron world. Thus all 

hadron symmetry breaking occurs in terms of dimension d < 3. Having 

required, as we have, parity, isospin and hypercharge conserving strong 

interactions--this conclusion about symmetry-breaking dimensionality 

follows directly from the structure of the leptons. 

• 



• 
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The question of deep inelastic scaling for our model remains 

to be investigated. Although the current algebra generally resembles 

algebra of fields, still there are a number of special features here 

that interest us in a re-examination of the possible scaling. (1) The 

theory is renormalizable, i.e., longitudinally damped in some sense. 

Can th~s connect with the physical fact o
1

joT ~o? (2) Whereas in 

algebra of fields, one has current dimension one, here we naturally 

obtain asymptotic dimension three. (3) Possibly relevant to this 

question is the further fact that the unified theory can be taken scale 

invariant before spontaneous breakdown, all except for the ¢ mass 

term. Hadronic scalar masses are generated along with other masses, 

as long as we include also potential terms like Tr(ML ~ ~ ~t) etc. 

The theory cannot be taken completely scale-invariant. (or a Goldstone 

24 dilaton appears). 

Finally, we want to make a few brief remarks concerning the 

introduction of baryons in the model. In lieu of a Bethe-Salpeter 

bound state calculation, we have the option of introducing elementary 

baryons, but the resulting picture is not very attractive. To give 

(renormalizable) mass to the usual (8,1) = ~,(1,8) = ~ baryons, 

one is forced to introduce an (8,8) scalar field X which 

couples to baryons as B1 X~ and to ~ as ~~ Tr(~ ~ ~~ Et). 

The last term is needed to avoid new Goldstone bosons in lowest order, 

X of course, involves 128 new scalars, whose masses can be taken 

large. An alternate possiblity is the old (3,3) + (3,3) baryons,
25 

whose masses can be generated by E alone {no new scalars); such 

classification of course leads to bad D/F ratios to lowest order. 
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APPENDIX A. SPONTANEOUS BREAKDOWN AND THE SCALAR SYSTEM 

The part of the Lagrangian we wish to study here is 

(A.l) 

We will take the potential terms V(···), as follows; 

(A.2) 

G1 and G2 are diagonal "insertion" matrices, as detailed in the 

text. 

We remark that, the SU(2) ® U(l)' gauge in variance allows more 
L 

general insertions and in more places than the ones indicated. The 

only further restriction is that, to preserve CP invariance both before 

and after spontaneous breakdown, all insertions must be real matrices 

(Gf = Gi), which commute with the SU(2i~U(l)1 
group. However, in 

lowest order in the weak and electromagnetic couplings, we would like 

to have isospin, hypercharge, and parity invariant strong interactions. 

For this reason, we only allow the insertions indicated. We wait until 

higher order divergent weak interaction loops demand a certain insertion 

as a counterterm, and do not introduce it otherwise. This is a device 

to make their effect show only in higher orders, and thus be physically 

negligible. 
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+ 
For the moment, we will not introduce the term det ~ + det E , 

but will return later to remark on the circumstances of its inclusion. 

Now, we assign vacuum expectation values (¢) = \ t 0 , (~) = (MR) = ~~:, 

(E) = v 

(1 0 0 ,., .... 
0 

0 :\ 11:2 

K v v2 

~ 
0 11:3 v) 0 0 

0 

(A.3) 

and \, vi are real numbers. 

Let us first deal with the particles of the fourth column of 

~,R· Writing 

~,R 
( !L,R "L,R) 

000 0 

(A.4) 

where sL,R are 3 X 3 matrix fields and ~,R is the fourth 

column, we notice that we are inducing ~ linear terms in x, + 
X. • 

This is consistent with (A-3). In fact, the set of quadratic terms 

involving ~,R is just the usual terms from V(M), plus 

2 

~vi cl 4 v ~ + k- c if. ~ + (L ~ R) (A.5) 

where c,d are the numbers in the 4,4 position of G1 2 . 
' 

The 

parameters c and d can be adjusted to give arbitrary masses to 

~ ± ~. Thus, though ~ are extremely important in the structural 
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connection between strong and nonstrong interactions, they play no 

important role in the analysis of the scalar system. In what follows, 

we regard ~,R ~ sL,R as just 3 X 3 matrices. 

Proceeding, we list the (matrix) relations obtained on 

requiring the absence of linear terms in ¢, ~, M: 

1 ' 1 2 2 2 2 \V Gl + 4 \ G2 +a + 2(3 Tr(K ) + 2YK 0 

1 2 2 2 2 \ K Gi + [a' + 2(3' Tr(v ) + 2Y'v ]v 0 (A.6) 

0 

where ~~:Gi_ are the 3 ~ 3 parts of ~~:,Gi. Because of the "insertions" 

Gi 2 , the equations are well underdetermined even allowing arbitrary 
' 

diagonal ~~:, v, \. 

In preparation for writing down the quadratic terms, we use our 

21 degrees of gauge freedom (all but ~) to eliminate the 21 scalar 

degrees of freedom (£+ - £)L,R and (¢ - ¢+). Then using (A.6) to 

simplify, we have 

Tr ( (2v.-2 1 'vG' )t 2 + 2Y ~ t ~ tL + _2A. Gl' tL v •R) + 4A(Tr ~~:•1)2 I~ - 2 " 1 !>L ~ !>L ~ !> .. !> f-' !> 

( 1 2 -1 1 t 1 2 t r r .... t t } + £1 - sR + Tr - 2 \K v G1 ~ ~ + 2Y v II + Y 'LV r:v + Y "-' vL: v 

t 2 1 2 2 ( 2 ) d
0
2 

+ t3'[Tr v(L: + L: )) + 4[e\ + ~ Tr VK Gi ) ~ 

(A. 7) 
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where we have written s+ = 5. 

It is relatively easy to see that this system contains in 

general~ Goldstone bosons. Further, if we choose to fix ¢0 , 5L,R 

to have large masses (e.g., by large A, r), while a+ irr stay at 

lower masses (see interpretation of entries of v in text), then the 

mixings of physical particles (say just the pseudoscalars) with ¢
0

, 

5L,R are very small and there is no practical need to diagonalize 

further. 

Thus far, we have analyzed the system without a det E + det E+ 

term, keeping the ninth axial vector meson. This leaves us with a 

problem as far as considering our Lagrangian as an effective Lagrangian. 

To zeroth order then, we have a rr-~ deg~neracy {see Ref. 15). The 

ninth axial current is not conserved in the model however, so this 

degeneracy is not expected to persist to all orders. 

We would however feel more comfortable with the conventional 

"effective" rr-~ dynamics. This can be achieved by omitting 

the ninth axial vector meson entirely. Thus, with no need for ninth 

axial gauge freedom, we can add the det E term. Now our 20' degrees 

of gauge freedom just suffices to remove the resulting 20 Goldstone 

scalars (the scalar system of course starts with one less symmetry). 

There is a problem however. A low mass (about 1 GeV) ~~~, with the 

quantum numbers of ~· , being the pseudoscalar that would have been 

absorbed into A9 remains. It would be of interest to carry out some 

detailed calculations on its mixing with ~' ~·, and its decays etc., 

26 
with the possibility of its identification with ·M(953). 
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APPENDIX B. EMBEDDING OF THE WEAK GROUP IN SU(3)iQt'·SU(3)~ 

We present here a scheme for embedding the leptons·in 

SU(3 )i, z· SU(3 )~. This would seem to be the most natural extension of 

the hadronic theory, to include also weak interactions. Unfortunately, 

the simplest scheme leads to conflict with experimental evidence on 

strangeness changing neutral currents. This effect is well known and 

will not be discussed further. (It is however, the g2 = 0 limit of 

the following scheme). 

Therefore, vre extend the leptonic gauge group by one more 

U(l)2 operator in addition to SU(2)i g: U(l)i. Then, as seen below, 

we succeed in suppressing greatly the 68 = 1 neutral currents in 

semi-leptonic decays. However, 68 = 2 nonleptonic interactions are 

found not small enough to lowest order. We consider this result as a 

failure of this scheme. This is why we are finally led to embed the 

leptons in U( 4 )i, ® U( 4 )~ as shown in Sec. VI. 

Groups and representations 

The hadronic group is as chosen in the main text. The local 

leptonic group is SU(2)i, QD U(l)i ~ U(l)2 embedded in the primed 

SU(3)i, ~SU(3)R. We call the latter's generators F~L' F~R 

(a= 1,···8). These are represented by ~ and ~ respectively, 

where, for the left-handed group we have applied a Cabibbo rotation 
HlA -iGA.... 

(~ = e 7 ~ e f). Only five of these generators are realized 

locally; these are a = 1,2,3; ~ I 1 (~F' ) 
yl = F3R + -{3 8L + FSR ; 

~ 1 (~' ' ) h t . and Y2 = ~r: FSL + FSR • The c arge opera or 1s 
V3 · 

Q F F · 1 (F + F ) + F' + Y We remark that since the = 3L + 3R + -{3 8L 8R 3L 1. 
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charge combination F3R + ~ FSR is invariant under a right-handed 

Cabibbo rotation, we could write Y1 = F3R + ...f3 (FSL + FSR). 

Local transformations 

The general local operator 

is represented in a unified super matrix notation: 

s 

where 

I 

Fields and classification 

..., 
; 

l 
I 

SB_ l 
. - l S' i 

L! 
' ...! 

(B.l) 

(B.2) 

(B.)) 

etc. 

The hadronic part includes quarks, vector and axial vector 

mesons, E =a+ in multiplet etc. The only change from the model in 

the text being that ~ and MR are now 3X 3 matrices, transforming 

as 

'-1 
~ MR SR . (B.4) 
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associated with the The weak gauge bosons 
-+ 

generators FL' Y'1 , couplings 

The SU(2)~ doublet leptons WD 

g, gi, g2 respectively. 

are assigned to part of the 

(3 ,3)' representation while the singlet leptons v S belong to · (1, 8) • : 

~ VL 4 
I ol 0 

l: o! WD -vR Vs l eR 
I 
I 

oJ 0 Lo 

Defining the rotated representation for vD: Wn 

specifY the transformations 

'U *'n"u -1 = s• *' '-1 
L-1. L D 8R and C) IV q;-1 

.!--{_ s .,;: 

I{ -~ 
0 

I 
l 

0 0 
I 
l 

' 0 0 l 
J 

(B.5) 

(B.6) 

(This means that the unrotated WD transforms with the unrotated sL 
'-1 -

WD -+SL WD ~ .)i
9
Finally we introduce a (3,3)' complex 3 X 3 

scalar ¢ (~ = e ~ ¢) transforming just like vD' and satisfYing 

the invariant linear constraint 

Tr (<~ - ~t)p) 0 . (B.?) 

Here P (0 0 1) commutes with the local 

SU(2)~ ® U(l).i ® U(l)2 group. This last constraint is necessary 

to avoid a Goldstone boson in lowest order in the spontaneous breakdown 

scheme we wish to consider below. 

u 



• 
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Lagrangian and spontaneous breakdown 

Covariant derivatives are written with the help of the covariant 

momentum operators 

.... 
<?1-l pl-l + f(VLJ.L·FL + VRJ.L·FR) + g]'L:wl-l + gi Y1 

(B.8) 

The Lagrangian is constructed analogously to the 

3 X 3 matrices and in particular the 

/ 

(

{ m 2 
1( 1( 

-1 -2 

'' \ f 
·2 ~ (B.9) m 

1( 1( 

2fic ~ 
2 

- f m") 
1( 1( 

where )1. and K are respectively the vacuum expectation values 

r 
\ 

(We will specialize to )1.
11 = )1. below for simplicity. We do not find 

any interesting results with )1.
11 f )1..) The potential term V(¢) also 

must contain the necessary gauge invariant insertions that break extra 

symmetries by hand, thus avoiding massless Goldstone bosons in lowest 

order. 

Further, notice, that, we can write a lepton mass generating 

term 
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(B.lO) 

which gives the mass·ratio 
me ll.' , 
m = ~ cos e. (This relation can actually 

1-l 
be broken by allowing G to be a matrix inside the trace, without 

breaking the gauge invariance.) 

Photon diagonalization and heavy neutral weak gauge bosons 

If the photon is found as in Sec. VI B, we remain with two 

weak neutral gauge bosons Z ~nd B
2 

associated with the following 

generators and couplings 

where 

z 

tan ¢ g'/g 
1 

(B.ll) 

(B.l2) 

In this notation we write the mass matrix for the massive weak gauge 

bosons: 

2 2 1 2 2 11 2 2 2 2 
g [ll. + ll. cos e + ll. sin e](w

1 
+ w

2 
) 

2 1 2 2 1 2 2 112 2 2 
+ (g + g )[ll. + ll. cos e + ll. sin e]z 

1 2 1 2 "2 2 2 
+ g2 (ll. + ll. )sin e B2 

2 1 2 .!_ "2 2 
-2 g2(g + g )2 ll. sin e z B

2 (B.l3) 
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Defining the neutral eigenstates 

z cos ex z1 + sin ex z2 

(B.l4) 
-sin ex zl + cos ex z2 

m - ( _e-=-"''> We find in the approximation )1.1 << A. A." remember m )1. 

1-l 

- 2x - sin
2 

9 
tana:x 2 2 ' 

x - sin 9 

g2 '2 + g (B.l5) X = 

Strangeness changing neutral currents 

The couplings of the heavy neutral weak gauge bosons to hadronic 

and leptonic currents are obtained as 

(B.l6) 

where, JL6h is the left-handed hadronic current associated with )1.6, 

and j
31

£ is the left-handed leptonic current associated with ~ 

etc. 

Rewriting the above in terms of z1 , 2, and using the mass 

matrix, we calculate the effective semi-leptonic, nonleptonic, and 

leptonic Lagrangians. We find that: 

(1) The purely ieptonic processes are almost as in Weinberg's 
'2 m )2 

Lagrangian with a small change of the order of ~ 2 ,. ( m: • 

(2) The neutral ~ = 1 currents in semi-leptonic processes 

are suppressed in the decay rates by a factor ( 
, \4 (m )4 

of ~) "" me 
1-l 

(3) The nonleptonic effective weak Lagrangian contains 

~ = 2 pieces, which, compared to the largest ~ = 0, pieces are 

smaller only by a factor of ~(sin 9)2 . There are also terms which 

may give an approximate .61 = 1/2 rule (A." t A. may be better). 

Conclusion 

In spite of a lot of effort we could not improve on item (3) 

above within many variations of the SU(3)i, OC;su(3)R scheme. To avoid 

this large contribution of ~ = 2 processes in lowest order, we were 

finally led to consider enlarging the primed group to u(4)' QP u(4)' 

as discussed in Sec. VI. 
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