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ABSTRACT 

Under the presence of mass term due to explicitly symmetry 

breaking co term in o model, we directly renormalize spontaneously 

symmetry broken mode in a symmetric renormalization scheme, with 

the help of dimensional regularization method. Solution for the 

infinite resummation problem by Lee is found to be extremely 

simple within our formalism. 
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§I. INTRODUCTION AND PRELIMINARIES 

Under the spontaneously broken chiral symmetry, 1 ·pions are 

Goldstone particles and originally massless nucleons get their finite 

masses satisfying Goldberger-Treiman relation. Since various soft 

pion theorems derived by using partially conserved axial vector 

current (PCAC) relation have been successful, spontaneous breakdown 

of chiral symmetry has been considered to be excellent success of 

our understanding of hadron physics. In order to understand PCAC 

relation concretely, Gell-Mann and Levy have introduced o model
1 

£ £sym s-2 m 
+ m

0 2 >.. o (for Mo << 1), (1.1) 
0 0 

where£ is given by 
sym 

1 . 2 2 
£ = -2 [(a o) + (a n.) ] sym JJ JJ ~ 

2 
Mo 2 2 

+ 4 [o + (1ri) ] 

\ 2 2 2 
- 4 [o + (1ri) ] • (>..0 > 0) (1.2) 

[Throughout this paper, we use the following notations: Greek·index JJ 

denotes component in ordinary space and varies from 1 to 4. Roman 

indices (i, j, k, ~)denote components in isotopic space and vary from 

1 to 3. Repeated indices are to be summed over.] 

At the classical level, the minimum energy for the system given 

by .C . is obtained in the case 
sym 

0 = ~ 0 

>.. 
and 

0 
ni 0 (1.3) 
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. /2 2 and .11 has small. mass 'm ·, while o has mass M + 3m · • . . . 0 0 0 

The physical system (1.1) is quantized by imposing equal-time 

commutation relations (ETCR) 

X . -+ -+ 
[3

4 
o(x, t), o(y, t)1 

3 -+ -+ 
- 6 (x- y), 

X -+ -+ 
[a 4ni(x, t), nj(y, t)1 

3 -+ -+ 
oijo (x - y) 

and all other ETCR's among (n, o,a4n,a
4
o) are equal to zero. In 

the Heisenberg representation, we have equations of motion for 

quantized field operators 

2 
Mo 2 2 (1.5) On. (x) + 2 11. (x) - >.. 11. (x) {o + 11.} = 0 

1 1 01 JX 

and 

2 ~ 
Oo(x) 

MD 2 . 2 2 MD + 2mo 
+ 2 o (x) - >..

0
o(x) {o + nj} x + m

0 
2A = 0, 

0 

where and hereafter we use a simplified notation 

2 2 
{o + 11.} 

J X 

2 2 
_ { [ o (x) 1 + [ 11. (x) 1 } • 

J 

(1.6) 

(1. 7) 

If we introduce isospin generators Qi and axial charge operators QSi 

by 
r3 _,. . _,. 

Qi (t) = i£ij!<ld xnj (x, t)a4nk (x, t) (I.8) 

and 

QSi(t) !
3 + + -+ -+ 

_ i d x{o(x, t) a4ni(x, t) - ni(x, t)a4o(x, t)}. 

.,.. 

4 

We find from (1.4) that Q~ = -
2
1 

[Q. ± Q5 .1 are chiral SU(2) x SU(2) 
1 1 1 

generator~ satisfying.the following ETCR's 

[Q.(t), n.(it, t)1 
1 J 

-+ 
[Qi(t), o(x, t)1 

and 

-+ 
[Q

5
.(t), n.(x, t)1 
1 J 

-+ 
[Q5i(t), o(x, t)1 

0 

i£ (-+ ijk 11 k x, t), 

io .. o(~. t), 
1J 

-+ 
ini(x, t), etc .. (1.10) 

With the help of (1.1~,£ in (1.2) is easily shown to be chiral . sym . 

invariant, i.e., 

[£sym' Q~1 0. (1.11) 

' 2 
In the case of m = 0, spontaneously broken· vacuum stateiO > 

0 

corresponding to the classical situation (1.3) is characterized by 

< ofn .lo > = o 
1 

but <ololo>.;. o, (1.12) 

so that 

Qi lo> = o • ·but Q5ilo># o . (1.13) 

In Sec. 2 we derive an integral equation for covariant Green's 

functions having two expansion parameters "a" and "h", and obtain 

Ward identities valid for any value of "a" and "h". In Sec. 3 we 

derive a generating functional for covariant Green's functions and 

·=-
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show the meaning of expansions in a power series of "a" and "h". In §2. I~TEGRAL EQUATIONS FOR CONVARIANT 

Sec. 4 we prove renormalizability (in spontaneously broken case) in a GREEN'S FUNCTIONS AND WARD IDENTITIES 

power series expansion in "a~' .(not in "h"), by minimally subtracting 

ultraviolet divergent terms. In Sec. 4, we discuss analytic continu- In this section, we will derive integral equations (having two 

ation of "a" along the real axis in the complex plane, and give the parameters "a" and "h") for covariant Green's functions and Ward 

prescription how renormalized Green's functions at a = 1 can be identities valid for any "a" and "h". 

effectively calculated. In Sec. 5 we discuss our results. In order to investigate quantum system (1.4)-(1.7), it is more 

covenient to treat the covariant Green's functions 

* y w < oiT {ni(x) ••• a4nj(y) ••• o(v) ••• a4o(w)}io > (2.1) 

than the non-convariant time-ordered products 

< OIT{ni{x) ••• arnj(y) ••. o(v) ••• a:o(w)}io >. (2.2) 

2 The general definitions of (2.1) in terms of (2.2) may be easily 

imagined from the. following special example: The two-point covariant 

Green's functions (2.1) are the same as the corresponding (2.2), 

except for 

< oiT*{a~ni{x)arnj(y)llo > 

- < OIT{ax4n.(x)a4Yn.(y)}IO >- io .. o4
(x-y) 

l. J l.J 

and 

< oiT*{a~o(x)aro(y)}io > 

- < oiT{a~o{x)ara<y)}lo >- io
4

{x-y). (2.3) 
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Then our (1.4)-(1.6) are found to give the infinite set of covariant 

differential equations among (2.1}. In order to express these expressions 

2-5 - - - - .. · -compactly, we introduce Mandelstam' s operators 11i, a4 11j, o and a4 o 

acting on a linear space of the covariant Green's functions by the 

definition 

- y- - w I CHI11i(x) ••• a411j(y) ..• o(v) ••• a4o(w) G) 

* y w-- < OIT {11i (x) ..• a411j (y) ••• o(v) ••• a4o(w)} lo >. (2.4) 

Then our results-can be expressed as follows. 
i 

M2 
o - - -2 - 2 I 0 = [Oii

1
(x) + -2 n. (x) - A.. 11 .(x){o + 11.} - i~ (x)] G) 

l. 0 l. J X 11i (2.5) 

- M2 -
0 = [DO(x) + 2 o(x) ~ - -2 -2 2 () 

-bo(x){o + 11j}x+m0 -_-
0
--ir;

0
(x)]IG), 

and 

(2. 6) 

where (and hereafter) we use the shorthand convention (1.7) and 

(HI~ = (Hir; = 0, . 11. 0 
l. 

- 4 
[11.(x),~ (y)] = 6 .. 6- (x-y), 

l. 'IT. l.J 
J 

[cr(x),~0 (y)] 
4 = 6 (x-y) 

[;i(x) ,r;o(y)]. = [o(x),r; (y)J = o. 
11. 

(2. 7) 

J 

c: 
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In order to investigate Green's functions in the spontaneuosly 

broken case, we first consider the following integral equations 

derived from (2.5) and (2.6): 

and 

where 

z--y . 2 
- M0+2m0 4 mO MO 2 -

0 = [o(x) -"-J-2->.- + ifd y D (x-y){(2 + m0)o 
0 

- -2 2 I - >. 0o(o + n.) - i~ } ] G) 
J 0 y 

.. ·· 2 
- 4 o Mo -' 

0 = [11 1 (x)·+ if d yD (x-y){2 11i 

Dm( ) = __ l_Jd4 ipx __ 1 
x - 4 P e 2 2 

(211) i p -+m -iE 

- (-2 - 2 >. 0ni o· + 11j ) 

(2.8) 

i~ } ] IG), 
11i y 

(2. 9) 

(2 .10) 

For the sake of renormalization procedures, we prepare following 

equations having two dimensionless parameters "a" and "h": 

-R fMZ+2m2 4 . m -R 
0 = [o - a'\}-2->.- + i J d y D (x-y) { (~-l)OJ 

2 M
2 

-R 2 2-R -R -R 
2 -~ 2 

+ a 2 ZMo + a m o - >.Z>. o [ {o } + { 11j} ] 

iahr;R} JIGR) h = 0 
o y a 

(2.11) 

and 

-R 4 0 -R 2 M
2 

-R 
0 = [11. + ifd yD (x-y)t(z. -1)011. +a -

2 
ZM11. 

l. -w ~ .. l. 

2 2-R . - - 2 - 2 
+ (a -:0 m 11_ - >.z,11R[{oR} + { 11~} ] 

J. A J 
iah~! \ JIGR) h. 

i y a 

(2.12) 

It is easily shown that the above lcR)ah satisfies 

"'"' 
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0 
-R 1 2 2 -R 2 2 . -R 

{~Do +2M a ZMcr + m (a -l)a 

~ R · R R 
- >..Z>..o [{oR}2 + {rr~}2] + m2 --- a-iah~;a} IG ) ah (2.13) 

J X 

and 

0 -R 1 2 2 -R 2( 2 )-R 0 = lZ 11 . + -
2 

M a 7~ .11 . + m a -1 11 . 'IV 1 --M 1 1 

-R -R 
2 

-R 
2 

. R R >..Z 11. [{a } + { 11.} ] - 1ah 1; } I G ) h • 
>.. 1 J. 11i x a 

It is very important ~hat (2.13) and (2.14) in the case a 

can be rewritten into (2.5) and (2.6) provided that 

and 

1 1 
- - 2 -R 
a=zwa, /;a=~ 

-2 i;R 
a 

1 1 

- _ 2- R - -2 R 
11 i=zw 11 i' 1;11. = ~ 1;11. 

1 i 

2 Mo = z z -1~ MIV , 
- -2 

AO = ZAZW ).. 

2 
mo 

1 
2-2 --~. 2 

M +2mo 2 2 ~ 
0 - z -m ' --- = H 2A 2>..

0 

This fact means that 

I G) IGR)a=l, h=l' 

(2.14) 

h = 1 

(2.15) 

(2.16) 

so that physical Green's functions satisfying (2 .5) and (2 .6) ·can 

be obtained from IGR)ah by setting a= h = 1. 

• 
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Multiplying (2.13) [(2.14)] by ;~[oR] and then subtracting each 
1 . 

other, we obtain 

ahi{oR(x)~;R (x) - ;[~(x)~;R(x}} IGR) h 
11i 1 a a 

I 2 + m2V M +2m2 
2>.. aiT~(x} IGR) ah 

X - R( ) X- R( ) - R( ) X- R( ) I R) z. a {a x a 11 . x - 11 . x a a x } G h • IVJJ JJ1 1 lJ a 
(2.17) 

Integrating (2.17) over space time, and using the fact that surface 

terms vanish because of the absence of any massless particle in the 

explicitly symmetry breaking system IGR)ah' we finally obtain Ward 

identities (WI) in the form 

r;;z::;::r 
hQ~iiGR)ah =- m\J~ J d4x ;:;iR(x)IGR)ah' 

-R where Q5i•s are defined by 

-R 
Q5i _ i Jd

4
x {oR(x)r;;R(x) - iT~(x) r;;~(x)} , 

11i 

which are axial charge generators acting4 on a linear space of 

covariant Green's functions, so that we have 

and 

-R -R 
[Q5i' 11j(x)] 

-R -R 
[Q5i' a (x)] 

-R 
ioij a (x) 

-R 
i1T.(x). 

1 

(2.18) 

(2.19) 

(2.20) 

It is important that WI (2 .18) is valid for any value of "a" and "h" · 
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§3. GENERATING FUNCTIONAL 

In this section, we will derive a generating functional for 

covariant Green's functions satisfying (2.11) and (2.12). [Throughout 

this paper, we use dimensi;nal regularization method. 6] Finally, we 

show the meaning of a power of "a" and "h" in Feynman diagrams. 

with 

We multiply (2.11) and (2.12) by 

-i I 4 ~, 
exp{ah d _x £int (x)ah} 

~ 1 W ~R 2 ~R 2 
£i' t (x) h·=- -2<z -l){(a o ) +(an.) } 

n a u u J x 

2 2 
+ a2(~ ZM +I ){(crR)2 + (;~)2}x 

2 
_.!!!. {(;R)2} 

2 j X 

A ~R 2 ~ 2 -4 ZA{(o) + (n~)2} 
J x' 

(3 .1) 

(3 .2) 

and then this factor (3.1) is moved to the rightward by using (2.7)­

and (2.15), so as to operate directly on IGR)ah" Thus we find 

0 ~ 4 m R 1 R [uR(x) - aV~-2->.-- ahf d y D (x-y)l;o(y)] GO)ah{3.3) 

and 

~R J 4 0 R I R o = [n.(x) - ah d y D (x-y)s (y)] G
0

) h' 
1 ni a (3.4) 

where 

R 
I Go) ah 

i 4 ~, R 
- exp {- ahf d x .Cint(x)ah}IG )ah" (3 .5) 

.:::-
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With the help of generating functional defined by2•5 

WR[JR JR] 
0 o' n ah 

I f. 4 R ( ~R R ~R I R 
- (H exp[ d x{J x)n.(x) + J 0 (x)o (x)}] G

0
) h.(3.6) 

ni 1 a 

Equations (3.3) and (3.4) can be solved in the form 

WR[JR JR] 
-0 o' n ah 

ah J 4 4 R . 0 R exp{;r d x d y(J (x)D (x-y)J (y) 
ITi ni 

R m R r;;;;;;; 4 R 
+ J (x)D (x-y)J (y)] +\j~-2-,- a J d z J (z) }. 

0 0 A 0 

Then we obtain from (3 .5) and (3. 7) 

where 

WR[JR JR] 
o' IT ah 

- (Hiexp(jd
4
x{JR (x);~(x) + JR(x)oR(x)}] IGR) h 

n. 1 a a 
1 

i I 4 R R = exp{--h d z £~ t(a/oJ (z), a/oJ (z)J h} 
a m o IT. a 

1 

ah 4 4 R 0 R exp{ --2 Jd x d y[J (x)D (x-y)J (y) 
ITi ni 

R m R J.Ml. +2m2 f 4 R + J (x)D (x-y)J (y)J +v·---
2
-,--- ad zJ (z)}, 

a o A o 

•: . 

(3. 7) 

(3.8) 
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£! t[6/6JR(z), 6/6JR (z))ah 
1n a Tii 

1 R 2 R 2 _ - -zC~-1) [ {6/6a J (z)} + {&'oa J (z)} J 
lJ a IJ nj 

+ a2(lzM +~2)[{o/6J:(z)}2 + {o/oJ: (z)}2) 
4 j 

2 - i zA[{o/o JR(z)}
2 

+ {o/oJR (z)l2J 
a nj 

2 m R 2 - ;r {o/6J (z)} . 
Tij 

(3. 9) 

In a power series expansions of "a", it is more convenient to absorb 

the last mass vertices in the right hand side of (3.9) into propagators 

of TI, so that n's get mass m. Then Fe obtain from (3.8) 

WR[JR, JR] 
a TI 

i · 4 R . R 
exp{ -h jd z £ [o/oJ (z)' o/6J (z)] h} a 1nt a TI. a 

1 

ah 4 4 R m R 
• exp{ :f Jd x d y[J (x)D (x-y)J (y) 

Tii Tii 

R m R JM
2

+2m
2 

4 R + J (x) D (x-y)J (y)] + ---2---- a fd z J (z)}, 
a a A a 

(3.10) 

where£. 1nt ] is a chiral SU(2) x SU(2) invariant interaction given 

by 

R R 
£int[o/oJa(z), 616Jn_(z)]ah 

1 

_ £~nt[ o/6J~(z), 
2 2 

6/oJ~_(z) ]ah + m2 {of6J~_(z)} 
1 J 

(3.11) 

The presence of 

r:c:7 
av~ 

4 R J d z J (z) 
a 

I( 

14 

(3.12) 

in (3.8) and (3.10) is typical of our formulation. For this (3.12) to 

have well defined meaning, it is necessary that the a's propagator Dm 

in (2.ll) has nonvanishing mass, so that we must work under the presence 

of explicitly symmetry breaking term. [In other words, the term 

2j;+2m
2 

. . . m --2-A--- a plays the role of regular1z1ng the spontaneously broken 

system.] 

In Fig.·l, we draw all vertices appearing in Feyman diagrams 

obtained from (3.10). 

Figure 1 

Vertices of types (a) and (b) exist in (3.11), while lines-a (in (e) -

(f)) with small bubbles at the end represent the ~ffect of (3.12), so 

that ~ propagators are attached to those lines. On the other hand, 

when lines with arrows ~in Fig. 1 appear in Feynman diagrams, they 

always accompany propagators Dm(m/0) in (2.10). [Incidentally, we 

can neglect vertices of type (f), since we are concerned only with 

WR[JR]/WR[O), hereafter.] 

Consider a connected Feynman diagram consisting of E external 

lines, I internal lines and Va(Vb, Vc, Vd and Ve) vertices of type 

(a) [(b), (c), (d) and (e), respectively). Then the diagram in 

question is found to be of order 

( h
E + L- 1 2V + V 

a J a a s, (3.13) 
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where we have used that. the number L of closed loops in this diagram 

is given by 

L I + 1 - V - V - V - V - V a b c d e 

and the total number v of spurious lines (---o) is given by 
s 

v 
s Vc + 2Vd + 3Ve. 

(3.14) 

(3.15) 

Since Vs appears in (3.13), it is convenient to explicitly draw lines 

---o, in.much the same way as we draw E external lines, and both 

E + Vs lines would be referred to as generalized external lines. 

Then diagrams can be defined to be one particle irreducible (or 

"proper") in the case when there does not exist one particle propagator 

Dm in any single line of generalized external lines. 

c'" 
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§4. RENORMALIZATION
7 

\ole shall prove that we can obtain ultraviolet convergent 

Green's functions 
•. 

-R . -R I R (Hini(x) ••• cr (y) G )ah . (4.1) 

by using (3.9)-(3.11), provided that we properly choose divergent Z 

factors [in (3.9)] in a power series of "a;' and "h" as 

4w - 1 = £im {4w(n)-l} = £im 
n i 

{ 1.: (a h) zw . } , 
n-+«> n-+«> i=l ' 1 

n i 2 
ZM - 1 = ~im {ZM(n)-1} = £im { 1.: (ah) [h xM i.+ yM .]} 

n-+«> i=-1 ' '
1 n-+«> 

and 

Z;. - 1 ~im {Z>. (n)~l} 
n...., 

n i 
£im { 1.: (ah) z>. i}. 
n~ i=l ' 

(4.2) 

First, we introduce equations (2.x)'.and (3.y)', which would be 

obtained by replacing both suffices Rand factors Z' s [in. original (2 .• x) 

and (3.y)] with Rn ·and Z(n)'s in (4.2). As the assumption of 

mathematical induction, we assume that Z(n)'s have already been deter~ 

mined in order for (3.9)' - (3.ll)' to give ultraviolet finite 

Green's functions 

_Rn -Rn I Rn (H ln. (x) ••• cr (y) G ) 
l. ah 

(4 .3) 

3+n 
up to order a Green's functions (4.3) are ultraviolet divergent 

at order a 4tn This situation can be analyzed in the following way. 

·:::-



·~ 

17 

Superficial degree D of ultraviolet divergence of proper 

diagrams is given by 

D 4- (E + V + 2V ). s a 
(4 .4). 

Therefore, in order to analyze ultraviolet divergences of order a
4

+n 

we have only to study Green's functions forE ~4 (and E + Vs ~ 4). 

With the help of generalized external lines, we can factorize 

divergent parts of order a
4

+n (for 1 ~ E ~4) as diagramatically 

shown in Fig. 2 
Figure 2 

In Fig. 2, r•s are proper 4 point vertices, and we·shall call k 

pseudo self energy part. We find from (3.13) and (4.4) that ultra­

violet divergence D = 2 of order a
4
+n ink originates from (n+3) 

loops contributions, whileD= 0 divergences of order a
4
+n ink and 

r come from (n+l) loops contributions. First we consider the amplitude 

(HicrRn(x) IGRn)ah· From Fig. 2(a) we find that dimensionally ultra­

violet divergent terms (DUV) 8 like (n-4)-1 , (n-4)-2 , etc. (where n is 

the dimension of space time,) can be subtracted away by chiral SU(2) x 

~U(2) invariant counter terms 

M2 n+l 2 Rn 
2 

Rn 2. 
£1 (z) = ~(ah) (h xMn+l + yMn+l){[o/oJ

0 
(z)] + [o/oJn. (z)]} 

.J 

(4.5) 

and 

£2(z) 
2 

- A(ah)n+lz {[o/oJRn(z)]2 + [o/oJRn(z)]2} , 
4 ;l.n+l o n. 

J 

• 
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respectively. In (4.5) and (4.6), xM,n+l (yM,n+l) corresponds to 

D = 2 (D = 0) and we have taken advantage of the fact that we can 

freely add 

finiteness 

counter terms involving o/oJRn(z), without 
TI. 

4+n l. 
(up to order a ) of transition amplitude 

violating the 

(from o to 

vacuum) obtained by calculating 

. 4 
exp[ a~ fd z{£l(z) +£2(z)}]•WRn[J~n, J~n]ah 

I I 4 Rn -Rn Rn-Rn }JI Rn (H exp[ d x{J (x)ni (x) + J o (x) Gt ) h' n. o a 
(4.7) 

l. 

where 

Rn . 4 - - Rn 
let )ah = exp[a~ Jd z{£l(z) + £2(x)}] ·IG )ah (4.8) 

with 

f _ M2 
n+l 2 -Rn 2 -Rn 2} 

1 Cz) = ~(ah) (h xM,n+l + YM,n+l){[o (z)] + [nj (z)] 

(4.9) 

and 

£- _ -A n+l -Rn 2 -Rn 2 2 

2 (z) = ~(ah) z;l.n+l { [o (z)] + [ n j (z)] } (4 .10) 

From (2.13)' and (2.14) ', we can derive equations (2.13)" and (2.14)" 

for the new state IGRn) h' which have the form obtained from (2.13) 
t a 

and (2.14) by replacing Z's and IGR)ah with ~(n), ZM(n+l), ZA(n+l) and 

IGRn) h' respectively. Then (2.13)" and (2 .14)" give the same 
t a . --

WI(2.18)' even for IG~n)ah" First, we consider the following WI: 

. ( I -Rn( ) -Rn( ) -Rn( ) -Rn( ) I Rn) J.h H 0 .. 0 x o y - n. X n. Y Gt h 
l.J l. J a 

W-- 2 (HioRn(x)rr~n(y)Jd4 zrr~n(z) IGRn) h,(4.11) 
--m ;>. J. l. ta 
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4+n where we have used (2.18)' and (2.?0). We compare DUV of order a 

in both sides of (4.11), by noticing DUV in Fig. 2(b
2

) and Fig. 2(c) 

behave like l/p
4 

at large p
2 

(where p is the energy momentum of 

external lines), while those in Fig. 2(b1) behave like l/p2, so 

that they should be cancelled. Thus we find 

and 

p; (p) lnuv 
0 

- z 2 + W,n+lp an+l(=O) 

2 
[~1T(p)]DUV = - zW,n+lp + 6n+l 

(4.12) 

(4.13) 

where [~0]DUV and [~11]DUV are DUV in pseudo self energy parts of o and 

11, respectively. 

Finally we consider 

I 
~Rn ~Rn ~Rn 

ih(H -1Ti (x)o (y)1Tj (z) ;Rn(x)n~(y)n~(z) 

~Rn ~Rn ~Rn 1 Rn 
+ oij o •(x) o (y) o (z) Gt ) ah 

~ ~Rn ~Rn ~Rn 4 ~Rn Rn 
m

2 
2 ;\. (Hio (x)o (y)11j (z)jd w 11i (w) let )ah' 

(4.14) 

which can be derived from (2.18)' and (2.20). Comparing DUV of order 

a 4+n in both hand sides of (4.14), we find the relation which are shown 

symbolically in Fig. 3. 

Figure 3 

White blobs in Fig. 3 represent only DUV of order a
4

+n. Especially, 

proper two point white blobs in Fig. 3 include effects due to Fig. 2(b2) 

c-

20 

together with Fig. 2(b
1

) [i.e., (4.12) and (4.13)] 1 so that they 

can be expressed by 

2 
@ = - z p + y ( =0) W,n+l n+l (4 .15) 

and 

2 
® = - zv1 n+lp + 5n+l" . (4.16) 

I ~Rnl Rn In (4.15) [and (4.12)], we have used the fact that (H o Gt )ah has 

4+n been made to be finite up to order a by (4.9) and (4.10). [Compare 

Fig. 2(a) with 2(b).] In the last step of Fig.' 3, we have used WI 

(2.18) among tree (zero loop) amplitudes; 

Since there does not exist any double pole on the left hand side 

2 2 -2 
of Fig. 3, a double pole term on+l(k + m - iE) on the right 

hand side should not exist. Thus we conclude 

0 
n+l 0, 

so that (4.15) and (4.16) give 

@=@ z 2 
W,n+lp • 

From (4.18) we find that the right hand side of Fig. 3 vanishes 

(4.17) 

(4.18) 

identically. In order for the left hand side of Fig. 3 to vanish, 

DUV must be proportional to zero loop's four point vertices. On the 

other hand, we have already eliminated DUV in o
4 vertex by the counter 

term (4.6) [i.e., (4.10)]. Thus [together with similar analysis for 

(I ~~~~ JRn H 1Ti1Tj1TkQ52 Gt )ah], we can conclude that there is no DUV in 4 point 

'I 
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vertex a 2n2(n4). Thus we have proved that Green's functions given §5. ANALYTIC CONTINUATION IN "a" 

b . f . 1 WR(n+l) [JR(n+l)] f. . d 4+n y generat1ng unct1ona are 1n1te up to or er a , 

provided Z(n+l)'s are chosen as In §4 we have· obtained renormalized Green's functions in a power 

series expanison at a = h = 0. However, what we want to obtain is 

n+l 
~(n+l) = ZW(n) + (ah) zW,n+l 

the renormalized Green's functions at a h = 1 (see (2.lb)). Since 

"h" is a loop expansion parameter, "h" is accompanied with Planck's 

n+l 2 
ZM(n+l) = ZM(n) + (ah) (h xM,n+l + YM,n+l) (4 .19) constant ~- Therefore, infinite sums induced by h = 1 are not 

• specific to our treatment. On the other hand, infinite sums induced 

n+l 
ZA(n+l) = ZA(n) + (ah) zA,n+l" 

by a = 1 are specific to symmetric renormalization procedure. We 

consider this problem in this section. 

The transition amplitude CHioRIGR)ah can be obtained in the form 

R R . 
(H lo IG ) h = ~ f. (a)(ah)J, (5 .1) 

a j=O J 
where 

00 

i (5.2) f. (a) = ~ . a ai .. 
J i=l J 

The infinite sum in (5.2) is a so called resummation problem by Lee. 9 

Since we have used following Lagrangian 

1 2 2 
£ =- 2 ~{ (aJ.lo) + <aJ.lnj) } 

1 2 2 M2 m2 2 2 
+{-z-m +a (4 +-z)Ho +nj} 

A 2 2 
2 flii!-2 - 4 ZA {a + n.} + 2 M +2m J m _2_A_ aa 

(5.3) 

with (4.2) in carrying out renormalization, we can find
9 

that f 0 (a) 

in (5.2) is the value of a, where the classial potential 
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V(a) 
1 4 1 2 2 M

2 
m

2 
2 

4Aa +{2m -a (~ + :f)}a 

~ 2 aa - m 2A (5.4) 

is stationary, i.e., 

, 3 2 2 M . 2 2 M +2ni 2 ~2 2 
V (o) = Aa + {m - a (:2 + m ) } a- m -

2
-A- a=O 

(5.5) 

In addition to f
0
(a), Eq. (5.5) has two other solutions, say, g

0
(a) 

and h
0
(a). It is easily found that f

0
(a);;.o for 0.;;; a.;;; 1, and 

f
0

(o) o, g
0

Co) ig. ho(o) .r:z. - 1~T (5.6) 

In the range 0.;;; a .;;; a
0 

(<1), g
0

(a) and h
0

(a) are complex conjugate to 

each other, while g
0

(a) .;;; h
0

(a) < 0 in the range a
0

.;;; a.;;; 1. On the 

other hand, we can show that a power series expansion (5.2) is 

absolutely convergent in the region I a I < £ ( << 1) in the complex "a" 

plane. Since the solution :f
0

(a) of (5;5) has always definitely 

differe~t value from g
0

(a) and h
0

(a) in the region 0.;;; a.;;; 1, 

we can analytically continue the expression (5.2) along the real axis: 

i 
1:a aiO 

i 
1:(a-a0) · f\o 

i 
1:(a-a1 ) YiO 

i 
!(a-1) 6 iO, 

(0 < ao < al < ... <1) 

where 6
00 

is the solution of (5.5) at a= 1, so ·that 

~ 

(5 .6) 

r;;::;:-2 
6oo =t( ~--- . 
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(5. 7) 

Equation (5.7) shows that we can obtain physical renormalized Green's 

functions in the spontaneously broken case, byanalytically continuing 

1
-R -R . I R 

renormalized Green's functions (}:! 11 (x) . ... a (y) G )ah along the real 

axis (in the complex "a" plane) to the point a = 1. It should be 

noticed that existence of mass term ~ m2
a2 

without "a" parameter has 

played essential roles in this analytic conti~uation scheme. 

Since all other infinite resummations in f.(a) (i;;. 1) in (5.1) 
1 

and in other renormalized Green's functions can be handled by 

factoring out f
0

(a),we conclude that physical ren~rmalized Green's 

functions (at a = 1) can be effectively obtained by setting 

f
0

(1) =~M2+2m2 

2A . • (5.8) 

Incid-entally, it is useful in understanding our renormalization scheme 

that resummation for Z's in (4.2)_ is always accompanied with "h", so 

that it is not typical of "a". 

-:.: 
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§6. CONCLUSIONS 

0 
With the help of symmetric renormalization (proposed by Lee'), 

Ward identities and subtracting only dimensionally ultraviolet 

divergent terms
6

•
8 

(like (n-4)-1 , (n-4)-2 , etc.), we have renormalized 

Lagrangian system (5.3) with small "a" i.e., in a power series 

in "a" (not in "h" as in Lee's paper9). Since there exist physical 

mass m (m
2 > 0) even at a= 0, we can calculate Feynman's integration 

over internal energies-momenta without encountering any unphysical 

divergences caused by tachyon like unphysical poles in propagators. 

This is not the case in Lee's formalism 9 for M2 > 0 in (1.2), so 
2 that he assumed M < 0, i.e., spontaneously broken case was not 

renormalized directly. Symmetric renormalization scheme is much 

easier than Symanzik' s renormalization, 10 but it intrinsically has Lee's 

resummation problem
9 

(5.2). We solved this problem by essentially using 

mass vertices- t m2o2 
in (5.3). This means that existence of 

explicitly symmetry breaking term is crucial in intermediate steps 

of anlytic continuation of "a" along the real axis of the complex plane. 

[Of course, it does not mean that we cannot set m = 0 at the final 

result.) Final conclusion of resummation problem is extremely simple 

in our case: We can obtain correct renormalized Green's functions at 

a = 1 by imposing the condition (5.8). 

• 
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