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Microcracks can occur in ceramics subject to large localized re­

sidual stress, associated with a phase transformation or thermal con-

traction mismatch. The residual stress field in the absence of cracks. 

can be calculated by using the three-step procedure given by Eshelby. 

The stress intensity factors for an evolving crack in the stress field 

can then be calculated by the superposition method. The microcracking 

process can be evaluated by comparing the stress intensity factors 

with the local fracture toughness of the material. Two microcracking 

cases have been studied by this method. 

Microcracking associated with the martensitic transformation of 

Zr02 was analyzed. Interfacial dislocations have been proposed as 

microcrack initiation sites. Calculated stress intensity factors con-

firm this possibility and provide reasonable values of the interface 

fracture energy for monoclinic Zr02• 

The grain boundary residual stresses in single phase polycrystals 

with thermal contraction anisotropy are calculated for a general con­

figuration of nearby grain orientations. Grain boundary microcracks 

are possibly initiated from grain triple juncti~n inhomogeneities, 

---
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such as cavities. Two equations for predicting the critical grain 

size for spontaneous microcracking are given which correlate quite 

well with observations for several materials. 
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1. Introduction 

Certain brittle solids are susceptible to the formation of isolated 

stable cracks whose sizes are in the range of the microstructural con­

stituents, e.g. grains. These cracks can form either spontaneously1' 2 

or due to external loads.2 In most cases, the microcracks are assoc­

iated with residual stress fields which arise from shape mismatch be-

tween adjacent microstructural constituents. Examples include micro­

cracking in single phase polycrystalline ceramics due to thermal con­

traction anisotropy1' 2 and microcracking during martensitic phase 

transformations.+ 

Several physical properties can be influenced by the formation of 

microcracks. It is observed that microcracking can have a beneficial 

influence on thermal ,insulation4 and, frequently, can enhance the 

thermal shock resistance. The formation of microcracks can have either 

beneficial or deleterious effects on mechanical properties, depending 

on the role of these microcracks. For example, the influence of micro­

fracture on the mechanical strength would be deleterious. 2 In the 

absence of a discrete macrocrack, materials susceptible to microfrac-

ture are subject to damage upon application of an external load. The 

damage consists of microcracks nucleated at microstructural inhomogen­

eities. The microcrack density increases with load microcrack coales­

cence occurs and eventually a discrete macrocrack forms. The macro­

crack subsequently propagates to failure. Therefore, the mechanical 

+see Section 3. 
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strength is dictated by the susceptibility to microfracture. The mi­

crocrack nucleation process depends on the magnitude and configuration 

of the residual stress field. The microcrack coalescence process de-

- pends on the distribution of microcrack initiation sites and micro-

crack interaction. The nature of the former process will be eluci-

dated in the present study. 

On the other hand, the formation of microcracks can be beneficial 

in increasing the fracture toughness.6 It is observed that a micro­

crack process zone is sometimes associated with the propagation of the 

macrocrack. This usually results in an extrinsic toughness in excess 

of the intrinsic material toughness. The toughening is related to the 

change in material compliance within the process zone. The problem is, 

as yet, poorly defined at the quantitative le.vel. Another way of vis­

ualizing the toughening process is to consider the creation of micro­

cracks as a source of net energy absorption. However, this also lacks 

quantitative evidence. The results obtained in the present study will 

provide some insight into microcrack induced toughening. 

Because of the influence of microcracks on the various physical 

properties, understanding the microcrack formation mechanism has prac­

tical implications. Many experimental studies have been conducted to 

characterize microcracking in singlt:! phase polycrystalline ceramics 

with thermal expansion anisotropy. 1 Therefore, most of the mathe­

matical modeling of the microcr·acklng process has been based on these 

systems. Initially, an approach based on a maximum stress criterion 

was proposed.7 This proved unsuccessful. Subsequently, models 
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based on an energy balance criterion were developed.8 These corre­

late more satisfactorily with experiment. However, the detailed con­

figuration of the residual stress field, which dictates the nucleation 

of the microcrack, as well as the underlying mechanism of the cracking 

process, are ignored. 

The present study is focused on the microfracture process in mar­

tensitic transformations, as well as in single phase polycrystalline 

material. The residual stress field is calculated, taking into account 

the microstructure at the microfracture site. A fracture mechanics an­

alysis is then utilized and a detailed understanding of the microcrack 

evolution process is obtained. 
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2. General Method of Solution 

The general method used for predicting microfracture consists of 

two parts. The first part, using procedures simila,r to those given by 

Eshelby,9 permits calculation of the residual stress field (due to 

volume, or shape mismatch) in the absence of cracks. The second part, 

derived from linear elastic fracture mechanics and using superposition 

principles, characterizes the evolution of a crack within this stress 

field. 

The residual stress field aij {in the absence of cracks) caused 

by volume contraction mismatch can be calculated in the following way. 

Imagine the contraction being decomposed into three steps: 

1. Let each homogeneous part be separated from its surroundings 

to permit an unconstrained shape change. 

2. Apply surface forces to restore the original shape of each 

part. 

3. Reassemble the components and release the surface forces. 

No stresses are created in the first step. In the second step, 

surface forcesF1dS are applied and stresses aTj are created in 

each part. aTj can be readily obtained from the free contraction 

t 
. T 

s ra1n eij' 

T T ek {and hence a .. ) should be homogeneous in each part. 
lJ 

The ',negative '·Si:gn appears 'becaus:e ceuch part ,is ,being .restored to orig-

inal shape. The magnitude of the surface forces F1dS can be ob­

talned from the equflibrium·conditi:ons at boundaries, 

. 
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T F .dS = a •• dS. 
1 1J J (2.2) 

In the third step, additional stresses are created by, releasing 

the surface forces. This is equivalent to the application of body 
I 

forces F;dS opposite in sign to the surface forces F;dS. 
I 

F.dS =- F.dS 
1 1 (2.3) 

Stresses created by body forces are more difficult to calculate. 
I 

Each infinitesimal element of body force, FidS, can be treated as 

a point force. The stresses a~j can thus be obtained by super­

position of the infinitesimal stresses da~j created by the point 
I 

forces F;dS. Remote from the outer surfaces, the stress field 

solution for a point force in an infinite body can be used. In 

two-dimensional situations (see Fig. 1), da~j can be expressed as 10 

dax; = ~ c~se [-(3 + v) + 2(1 + v) sin2e] F~dS 

(2.4) 

da ~ =- .l:- sine [(1-v) + 2(1 + v) cos2e] F 1~dS XJ '+'II' r 

where v is Poisson's ratio, and r and e are the radial coordinates as 

shown in Fig. 1. 

The resultant stresses aij are obtained by superposition, 
T c aij = aij + aij (2.5) 

The stress itensity factor K for a crack located within the resid-

ual stress field aij can be deduced by employing a superposition so­

lution.+ For a symmetrical stress field ayy(x) (see Fig. 2.A), 

+Here, 'On~y Mode I loadi.ng i·s considered equivalent expressions 
exist for the other two modes. 
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for both ends of the crack. For a non-synunetrical stress field ayy(x) 

(see Fig. 2.8), 

K = L[c ayix) .;X' dx 
./ 'lfC 

Q /C- X 
(2.7) 

for the end of the crack at x = c. The calculated stress intensity 

factor, K, can be compared with the. local fracture toughness Kc of 

the material and the crack evolution {propagation) behavior deter­

mined.12 
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3. Microfracture Induced by Phase Transformation in Zro2 
3.1. Observations 

The first analysis of microcrack nucleation is performed for in­

terface microcracking following martensitic transformations in Zro2• 

Martensitic transformation in zro2 invariably requires twin or vari­

ants13 which minimize the macroscopic shape change of the transform­

ing particle. Twin induced microcracks have been observed in a hot 

pressed Al203/Zro2 material containing a proportion of monoclin-

ic Zr02 particles.14 The observations were conducted using TEM, 

employing thin foils prepared by a conventional ion milling technique. 

The detailed characterization of microcracks has been confined to 

cracks formed at interfaces within the Zr02 particles in order to 

permit an effective comparison with the calculations, which are based 

upon elastic homogeneity in the vicinity of the microcrack. 

Some typical examples of microcracked interfaces are shown in Fig. 

3. It is noted that the microcracks occur at alternate interface in-

tersections; evidently, those subject to normal tension at the inter­

face. Also, the crack surface separations are larger than the elastic 

opening displacements. Some enhancement of the separation during the 

ion thinning process has thus undoubtedly occurred, particularly with­

in the vicinity of the microcrack centers. The accelerated thinning 

has improved the detectability of the microcracks, without inducing 

appreciable changes in the crack length. 

The extension of the cracks is restricted in each case to a dis-

tance equal to about half of the twin spacing. The crack trajectories 



8 

lie approximately along the interface separating the intersecting 

zones of twins. The appearance of strain contours in the vicinity of 

the interface indicates that appreciable residual strain is retained, 

principally in the regions (of compressive normal strain) between the 

microcracks. 

More general observations of twins in Zr02 particles, employing 

tilting procedures, indicate that the twins. exhibit a plate-like mor­

phology with an essentially constant plate thickness (for a given 

transformation mechanism) of 0.03 lim. Another study15 of the fine 

structure reveals the existence of dislocations, both along the habit 

planes and twin interfaces. Such dislocations, as will be shown la­

ter, are essential for the nucleation of the interfacial microcracks. 
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3.2. Stress Analysis 

The plate morphology of the twins suggests that the stresses with­

in a thin foil, in the vicinity of the internal interface, can be well 

approximated by adopting a two-dimensional procedure, based on the 

method described in Section 2 (Fig. 3}. Here, each twin is modeled by 

a rectangle of constant thickness. After an unconstrained transforma­

tion, the twin would become a parallelogram; the major component of 

strain being a shear yT of magnitude= 0.14.16 ,17 To restore the 

shape of each twin, following the steps described in Section 2, sur­

face forces PdS are applied along the boundary of each twin, where PdS 

is given by 

(3.1) 

( 11 is the shear modulus, dS is an infinitesimal length of the bound­

ary). The stresses induced in this step are 
T 

a = 0 XX 

T 
axy = - l1YT 

(3.2) 

In the next step, the surface forces are relaxed by applying body for-

ces P'dS equal but opposite to PdS. The stresses induced by the body 

forces would have to be calculated from superposition of the stresses 

induced by each infinitesimal body force P'dS. The alternating shear 

characteristics of the array indicates that the interface stress 

should·be dominated by the body forces imposed on those boundaries 

adjacent to the location of interest. The stresses that derive from 

forces on more remote boundaries are expected to cancel. Therefore, 
' 

the stresses along the interface induced by a single twin pair are 



10 

ca leu 1 ated with other twins and the rest of the surroundings treated 

as an elastically homogeneous matrixo (Fig. 4) The stresses, induced 

by body forces, along the twin termination interface are given as 

(Appendix 1), 

{ 3.3) . 

where a is the distance from the central boundary, and d is the width 

of one twin. The twin length is assumed to be much larger than d such 

that the influence of the body forces on the opposite termination in­

terface can be neglected. The final stresses, obtained by combining 

the transformation stresses expressed in Eq. 3.2 and the constrained 

stresses expressed in Eq. 3.3, are 

•xx = •!x + ·~x = ";! (3 + v) { .u{(~) 2 
- 1] +.on(~ + 1)1 

_ T + c _ O 
axy - axy axy - (3.4) 

A simi 1 ar procedure can be used to ca leu 1 ate the stress for any 

number of twin pairs. The stresses along the central interface for 

the six twins pertinent to the present observations (Fig. 3) are 

:~; = <\: v) ~ m ~~) 
2-"1} mf~ + 1] 

+ 2 tn r::~ = :~] !. 
a = 0 

X.Y 

[
d2 - i ] .-. 

+ 2 !n . z 2 
.. 4a - a 

(.3 .• 5) 
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The dimensionless stress axxlllYT depends exclusively upon the 

relative distance a/d from the central boundary, as plotted in Fig. 5. 

The most important characteristics of the stress are the singularities 

at the interface/boundary intersection. The tensile singularity at 

the inner boundary is characterized by, 

axx 3 d 
-=-.r- (3 + v) in­lJYT ~w a (3.6) 

It will be demonstrated that this singularity dominates the nucleation 

of microcracks. 

A uniform compressive stress that results from the dilational 

transformation strain is also required for particles fully constrained 

by the Al 2o3 matrix. However, this stress is expected to be of 

negligible magnitude in thin foils, because of a relaxation effect 

associated with the elastic deflection (buckling) of the foil. 
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3o3 The Stress Intensity Factor 

The logarithmic character of the stress singularity induced by 

variant formation is probably too weak to permit the formation of a 

microcrack in the absence of an interface inhomogeneityo+ Hence, 

the fracture analysis is conducted by hypothesizing the existence of a 

crack-like inhomogeneity at the site subject to the maximum stress. 

The nature of this inhomogeneity will be discussed later. Stress in­

tensity factors can be calculated for the crack-like inhomogeneities 

and the resultant microcracks, as shown in Section 2. Specifically, 

for a crack of length 2c symmetrically located in the stress field 

axx{a), the stress intensity factor K may be estimated from the su­

perposition solution; 

(3.7) 

Inserting the stress field axx of six variants obtained from Eq. 3.5 

and integrating, yields the numerical result for K plotted in Fig. 6. -

The occurrence of the maximum in K is typical of crack behavior in 

rapidly varying stress fields {consistent with obs-ervations of crack 

arrest). 

+A singularity with a strength > l/ x (the crack tip singularity) 
can be readily demonstrated to induce fracture in the absence of in­
homogeneities. However, fracture in the presence of weaker singulari­
ties is .not w~ll understood. It is presumed here that weaker singu­
larities are incapable of crack nucleation. 

Nume:rical integratio-n is· needed because terms like 

rc:an:nat .be .inte·gr.ated in. closed fo.rm. 
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The evolution of microcracks can be examined by comparing this K curve 

with the crack propagation resistance of the material. This compari­

son will be conducted in the following section. 
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3.4e Analysis of Microfracture 

The two most. pertinent features of the microcrack observations 

upon which the subsequent argument is based are {a) the incidence of 

microcracking at each junction, and {b) the {absolute) magnitude of 

the crack arrest length. Firstly,. consider the observed invariance of 

microcrack formation at interface junctions. These junctions were 

originally located within a single grain {particle) of tetragonal 

Zr02• Postulates for fracture based on the prior existence of in­

homogeneities of appreciable size are thus necessarily obviated {be­

cause there can be no rationale for anticipating inhomogeneities of 

relatively large size at each junction). The largest crack-like 

inhomogeneities that can consistently occur along the termination in­

terface of a variant are interfacial dislocations, as observed in a 

comparison study. 15 The following analysis, which attempts to trace 

the evolution of the microcracks, invokes interfacial dislocations of 

edge character. A similar analysis could be performed for mixed dis­

locations. 

An edge dislocation core contains a small zone {on the tensile 

side) with crack-like characteristics, as first noted by Stroh18 

{Fig. 7). Additionally, the dislocation self-stress will locally aug-

ment the stress intensity factor. It can be readily demonstrated that 

the stress field associated with an edge dislocation provides a stress 

intensification analogous to that .of a crack subject to a semi-infi.nite 

wedge opening, as provided by the extra half plane11 {Fig. 7), w~ere 
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K =/[ ~b ( 1 + v) ( 3.8) 

1r v'C 
b is the thickness of the wedge (approximately equal to the Burgers 

vector) and c is the length of the crack ahead of the wedge. The mag­

nitude of the stress intensity factor increases with decrease in crack 

length (Fig. 7) and is, of course, only approximate at very small crack 

lengths (when non-linear effects become important}. 

The stress intensity factors from the dislocation field and the 

variant field can be superimposed to provide the final trend in K with 

crack length, as shown schematically in Fig. 8. A minimum, Kmin' 

now appears in addition to the previously noted maximum. The level of 

this minimum has a major influence upon the onset condition for micro-

cracking. Specifically, when Kmin exceeds the crack extension re­

sistance of the interface K~~ter, a well developed microcrack 

will form with an approximate final length, Cf' as illustrated in 

Fig. 9. 

Variations in Kmin that elevate it to the requisite level for 

microcrack formation are dictated by the amplitude and the scale of 

the stress field induced by the variants. However, inspection of Fig. 

9 indicates that conformance of the K level with these microcrack for-

mation requirements can be directly deduced from the final crack 

length. This is achieved by superimposing the crack length measured 

from Fig. 3 onto the K curve calculated for the observed variant 

structure. The K level at the intersection (as wen as providing a 

measure of the nominal crack propagation resistance of the interface) 

must be less than Kmin to account for microcrack initiation at edge 

dis lot:"at ions. 
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The specific results of this procedure are presented in Fig. 10. 

The absolute magnitude of K was deduced by employing the measured val­

ue of d(300 A), the known values for p(69GPa) and v(0.25) and estimates 

for yT and b. The variant shear strain yT is taken to be 2. 0.14, 

(a minimum value for transformations in Zr02) and b is assumed to be 

- 5 A, the unit cell dimension in the monoclinic structure. Superim­

posing the measured Cf/d of 0.5 yields the intersection shown in Fig. 

10. The intersection K level (1.8 MPa .!iii) is just below Kmin (2.15 

MPa·..liii) as required to account for the formation of a microcrack at an 

interface edge dislocation. The nominal interface crack propagation 

resistance given by the interaction level is K:~ter = 1.8 MPa 

m (g~nter = 18 Jm-2). This value is at the lower bound.of the range 

typically measured for polycrystals of cubic zro2, 9c = 16- 40 

Jm-2•19,20 and can thus be regarded as consistent with reasonable 

expectations for interface separation in Zr02• 

: 

; 

li 
'J 
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3.5 Discussion 

A relatively consistent description of microcrack nucleation based 

upon the combined stress fields of an edge dislocation and of marten­

site variants has been provided. This is the first example of micro­

crack formation in ceramics that has not required either the pre-exis­

tence of a microstructural inhomogeneity (such as a void or an inclu­

sion) or a dislocation slip band. The microcracking process is simi­

lar to that proposed by Stroh, for crack nucleation ahead of a dislo­

cation pile-up, but excludes the necessity for dislocation coalescence 

(which is a central feature of the Stroh mechanism). Since disloca­

tion mobility is rather limited in ceramics, the capability for crack 

nucleation without invoking dislocation motion is probably of more 

general interest. 

The extension of the present nucleation concept to other micro­

crack situations is evidently a subject for further detailed examina­

tion. However, it is observed here that the variables which dictate 

microcrack formation are appreciably different for other common micro­

crack problems. The.most notable. is microcracking at grain boundaries 

from thermal contraction anisotropy, which will be analysed in the next 

section. 



18 

4. Microcracking in Single Phase Polycrystals 

4clo Observations 

In the previous section, microcracking during martelisitic trans-

formations in Zr02 was analysed. Microcracking also occurs at grain 

boundaries in single phase polycrystalline ceramics with thennal ex­

pansion anisotropy.1' 2 .. In such cases, microcracks are created by 

residua·l stresses induced when the material is cooled from a high tem­

perature. The residual stresses begin to develop when relaxation 

through diffusion becomes inoperative below a temperature Tg. 21 

One of the dominant features of such microcracking events is the 

dependence on grain size. Typically, there is a critical grain size, 

tc, below which microcracking is greatly suppressed and above which a 

significant densjty of microcracks becomes evident. The abi 1 ity to 

predict R.c is a primary objective of microcracking analysis. 

Previous attempts at describing microcracking have included a ten­

sile stress criterion {which does not yield a grain size dependence, 

because the amplitude of the residual stress field is independent of 

the grain size), and an energy balance criterion. The latter equates 

the loss in strain energy associated with complete separation of a 

boundary facet to the increase in surface energy, and yields a criti­

ca 1 facet length, 1 

:ll. = c {4.1) 

where E is Young's modulus, Yg.b i's the grain boundary fracture ener­

;gy :and E is the ~gratn bounda.ry strain. However, only the initial and 
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final stages of the formation event are considered in the thermodynam­

ic analysis; whereas, fracture is dictated by the rate of energy change 

at the critical condition for unstable crack extension. 

In the present analysis, the grain size effect is shown to stem 

directly from considerations related to the gradient of the residual 

stress field (stress intensity factor criterion) and/or to the stress 

relaxation effects. 21 
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4.2. Stress Analysis 

first, the residual stress field induced by thermal contraction 

mismatch is calculated along one grain boundary facet. Assuming a 

uniform grain size, a two dimensional array of hexagons (Fig. 11) can 

be used to model the system. Each grain has a random orientation, and 

elastic anisotropy is neglected (to permit the use of stress functions 

derived from isotropic elasticity). This simplification should not 

introduce important quantitative errors because the thermal stresses 

are relatively insensitive to the elastic anisotropy (in contrast to 

their strong dependence on the thermal expansion anisotropy). 22 

To carry out the calculation, the system is further simplified by 

concentrating only on the four grains nearest to the grain boundary, 

while treating the remainder of the system as an elastically homogene­

ous matrix. (Fig. 11) Following the first step in section 2, the four 

grains are separated from the matrix and allowed ta contract freely. 

The strain ~ of the "matrix cavity" is then uniform and isotrop-

ic and given by; 

e~ = - (a) ~T (4 .2) 

where a is the isotropic expansion coefficient of the matrix and ~T 

is for temperature range over which the stresses develop. The strains 

in the principal directions of each grain are 

~T 

(4.3) 

£ = ·- a ~T s s 
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where af,S are the linear expansion coefficients of the grain. The 

magnitude of(a) is between the magnitudes of at and as. 

Next, surface forces are applied on the boundaries of each grain 

in order to restore the regular hexagonal grain shape, before replac­

ing the grains into the matrix cavity. The strains created in each 

grain are readily obtained as 

e T .2. = (a .2. - (a)) AT : A at AT 

£I = (as - a ) AT = - ~a) - as ) AT : - Aa sAT. 
(4.4) 

The stresses within the grain would be 

aT =(E) (Aa1 - vAas)AT/(l-v2) 
. (4.5) 

a~= (E) (Aas - vAa )AT/(l-v2) 

where (E) is the isotropic Young's modulus and v is the Poisson's ra­

tio. The surface forces needed to deform each grain can be obtained 

from the equilibrium conditions on the boundaries. They are shown in 

Fig. 12 for each boundary section of a hexagonal grain. 

In the next step, these surface forces are released by applying 

body forces equal in magnitude but opposite in sign to the surface 

forces. These body forces would induce additional stresses a~j 

within each grain and the matrix. To calculate these stresses, the 

body force on an infinitesimal boundary segment is treated as a line 

force in a plate, Eq. 2.4. The stresses induced by body forces on 

each segment are added to give the resultant a~j· It is conveni-

ent to establish the stress field of distributed forces ·an a line seg-
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ment before proceeding. The stress field, as shown in Appendix 2, is 

given by 

(4e6) 

c 
a = xy 

p 
[{1-v)F1 + 2(1+v)F4] + 4~ [(1-v)F2 + 2(1+v)F3] 

where Fi's are functions of R, , a, & which are specified in Appen­

dix 2. By inserting appropriate sets of R, , a, 6 values, the 

stresses created by body force on all boundary segments (except the 

central segment), can be obtained. The F;'s are rather complex 

functions {event though in closed forms) and a computer code is used 

to obtain numerical solutions. The stresses created by body forces on 

the central boundary segment would be (see Appendix 1) 

{4. 7) 

at. points close to and above the segment. The constrained stresses 

"~j are obtained from superposition of stresses created by body 

forces on the 19 boundary segments. The resultant stresses would be 

the sum of the transformation stresses a1j and the con~trained 
c stresses "ij" 

The stresses along one grain boundary calculated with this method 

for sever-al d·ifferent confi·gurations of near.-:by grain orientations are 

shown in Fig. 13. The tensile stresses approach infinit.Y at grain 
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triple points. This singularity is dictated by the logarithmic terms 

in Eq. 4.5, which are explicit in Appendix 2. 

To analyse the problem of critical grain size, we concentrate on 

the grain boundary subject to the largest tensile stress. It is ob­

served in Fig. 13 that the tensile stress is largest for configuration 

A, in which the two grains adjacent to the grain boundary have their 

maximum contractions in a direction perpendicular to the boundary. 

The amplitude of this stress field is independent of the grain size. 

Also, the singularity at the triple point prohibits the derivation of 

a critical grain size from the stress field. Therefore, we proceed to 

calculate the stress intensity factor of a crack of size c enplaced 

within the stress field. 
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4.3 The Critical Microcracking Condition 

As described in section 2, the stress intensity factor of a crack 

can be obtained from the original crack-free stress field by using Eq. 

2.7. Inserting into Eq. 2.7 the stress fiel~ of the grain boundary __ 

under maximum tension in Fig. 13.A, the stress intensity factors of an 

evolving grain boundary crack with one end fixed at the grain triple 

point can be obtained. Here a numerical method is needed to calculate 

the integral in Eq. 2.7. The result is shown in Fig. 14, where the 

normalized stress intensity factor versus normalized crack size is 

plotted. The qualitative dependence of microcracking on the grain 

size can be derived from this figure. Notice that the stress intens­

ity factor is normalized by the square root of grain size. Hence, by 

changing the ordinate into an absolute scale and plotting the stress 

intensity factors for constant grain size, higher levels of the stress 

intensity factor would obtain for larger grained materials. This im­

plies that microcracking would be more severe for larger grained struc­

tures. 

The general characteristics of the stress intensity curve indicate 

several important features. Firstly, the stress intensity approaches 

zero as the crack size becomes small. Hence, inhomogeneities located 

at triple junctions are needed to initiate microcracking. This is a 

similar requirement to that established for microcracking in zro2, 

where microcracks :we·re ·predicted to i'nitiate from interfacial disloc.a­

tions. However, the inhomogeneities required at the triple junctions 

m1.1.st .be .much more .extensive in dimension than dislocations. The most 
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viable possibilities include cavities, inclusions, etc.; although, the 

explicit role of the inhomogeneities on crack initiation is not well 

understood. As an approximation, these inhomogeneities are treated as 

crack-like entities, such that the level and variation of the stress 

intensity factor can be directly related to the size and shape of the 

inhomogeneity. This approximation is subsequently used for establish~ 

ing crack initiation criteria. 

Secondly, the stress intensity factor exhibits a maximum. This 

maximum can be associated with a lower bound on the microcrack initia­

tion condition; a bound which necessitates the pre-existence of an in­

homogeneity with relative dimensions c/ t ~ 0.2. Analogous lower bound 

treatments have been particularly useful in other fracture threshold 

problems, such as indentation fracture. Finally, it is noted that the 

stress intensity factor diminishes slowly with crack length beyond the 

maximum. This contrasts with the rapid decline in the Zro2 micro­

cracking problem. Hence, a microcrack, once initiated, is likely to 

extend across the entire grain facet. The arrest of the microcrack 

beyond the three grain junction will be dictated by the level of com­

pression on the neighboring grain boundaries. 

The grain size dependence of microcracking can be quantified by 

adopting pertinent initiation criteria. Two such criteria will be 

adopted herein. Firstly, a lower bound is determined by equating the 

peak value of K to Kc. From Fig. 12, 
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2 
5(1-v ) Kmax 

= 1.1 
4EA<JAT ~ 

Also, Kc is related to the grain boundary fracture energy by 

K2 (1-v2) 
2y b = g = c E g. . c 

The critical grain size thus becomes 

(4.9) 

(4.10) 

An alternate criterion assumes that the effective size of the inhomo-

geneity is about one tenth of the grain size, typical of the size of 

residual cavities observed in sintered products. The crack initiation 

condition would then be K = Kc at c/R. = 0.1. The predicted critical 

grain size then becomes 

(4.11) 

Inserting appropriate values of 'g.b,' E, v, AT and A<J into the equa­

tions, the critical sizes can be calculated and compared with the ob­

served values, summarized in Table 1. 

A final determination of the critical size requires that AT be 

specified, by vi,rture -of a selection of the 'freezing temperature' Tg 

at which stres.s relaxation by diffusion terminates. A grain boundary 

diffus.ion mode123 indicates that th,is freezing temperature is given 

,by 
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T - Q/k 
g n[l2nD

0 
.s

0
E/ v'3 n k t 3t] (4.12) 

where Q is the activation energy of grain boundary diffusion, k is the 

Boltzman constant, n is the effective volume of the diffussing parti­

cles, .sb is the effective thickness of the grain boundary, E is the 

Young's modulus, t is the grain size, n is a material dependent param­

eter and t is the cooling rate. 

Extension of the analysis to include determinations of the crack 

density, crack tip process zone etc. requires that relations be estab­

lished between the stress intensity factor and crack size for general 

grain orientation configurations. In the present work, the stress in­

tensity factor-crack size relation has only been determined for one 

configuration (Fig. 13.A}, where the tension is a maximum, although 

the stress analysis has been carried out for a general configuration. 

The mathematics associated with the general problem are unwieldy, but 

further analysis seems promising. Subsequent studies will seek rea­

sonable simplifications for the stress fields, and then proceed to 

predict crack densities. 
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5~ Conclusion 

Microfracture is an important phenomenon in brittle materials. 

Its role can be either deleterious or beneficial. To achieve optimal 

control, understanding of the ini.tiation and growth mechanisms is es­

sentialo 

The present study is focused on microfracture both as a conse­

quence of the martensitic transformation in Zr02 and in single phase 

polycrystalline ceramics with thermal contraction anisotropy. In both 

cases, the microcracks are induced by the residual stress field which 

arises from shape mismatch (due to either phase transformation or ther­

mal. contraction anisotropy). The residual stress field in the absence 

of the microcracks can be calculated using Eshelby's method. The 

stresses induced by the body forces are derived from the stress field 

of a concentrated force in an infinite plate. All the residual stress 

fields show a logarithmic singularity at the crack initiation site. 

The stress intensity factor of an evolving crack in this residual 

stress fie.ld can be calculated using fracture mechanics methods. The 

initiation and growth processes of the crack can then be derived from 

comparison of the stress intensity factor with the fracture toughness. 

In both cases, it is observed that inhomogeneities are required to 

initiate the cracks. For microfracture, caused by m~rtensitic trans­

formation in zro2, it has been demonstrated that the interfacial 

microcracks can be initiated from edge dislocations. However, for mi­

crofracture in sin~le phase polycrystalline ceramics, the initiation 

~mechanism is "not ·f.uHy -understood. The inhomogeneities could .be cavi-

: 

.. 
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ties or inclusions at grain triple points. Two approximate initiation 

criteria are shown which can be used to derive the critical grain size 

for spontaneous microfracture. Other qualitative aspects of grain size 

dependence for microfracture in single phase polycrystalline ceramics 
-

can also be derived. Another factor which can influence the grain size 

dependence is the grain size dependence of the diffusion relaxation of 

the residual stress field that occurs above the freezing temperature. 

It is shown that such a factor can be incorporated in the present an­

alysis. 
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Appendix 1: Stresses Induced By Body Forces For One Twin Pair 

For one twin pair, there are seven straight boundary sections 

which are labeled from (1) to (7) as shown in Fig. 4. The body forces 

are of magnitude PYT per unit length on the outer boundaries and of 

magnitude 2pyT per unit length on the inner boundary section (3). 

The directions of these forces are as shown by the arrows in Fig. 14. 

The stresses induced by the body forces on each boundary section are 

ca leu 1 ated separately and then suiTITled. Each boundary sect ion is cut 

into infinitesima 1 segments such that the body forces on each segment 

dS can be treated as a concentrated force pyTdS (2pyT dS on bound­

ary section (3)) in an infinite plate (Fig. 1) where the stress field 

is 

do = 
pyTdS case [-(3+v) + 2(1+v)sin2e] 4,.. -XX r 

do = 
pyTds case [ (1-v) - 2(1+v)sin2e] (Al.1) 4'11' -yy r 

do = -
pyTds sine [(1-v) + 2(1+v)cos2e] 4,.. -xy r 

I. Stresses induced by body forces on boundary section (1) 

Calculation of these stresses represent a special case, because 

the stress location coincides with the boundary section (1) (see Fig. 

4) and the stress across the boundary is discontinuous (positive on 

one side and ·negative on the other). Therefore, positions infinitesi­

mally close to the boundary are selected for the computatio-n. 



32 

Close to the boundary, the boundary section (1) can be regarded as 

infinitely long (Fig. 15). 

Consider a position P at a distance h from the boundary and an 

angle a to the boundary segment dS. The stress induced at P by body 

forces 11yTdS on dS would then be (from Eq .. ALl) 

daxx = 

11YTdS 
da - - -,....;--xy - 4n 

cos(2 + a) [ 
h/cosa (1-v) - 2(1+v) sin2(f + a)] 

(A1.2) 

sin(~ + a) [ 2 ~ 
~ (1 ) + 2(1+ ) COS (w2 + a) h/cosa -v. v 

Replacing dS = h da/cos2a and integrating from a = ~ w/2 to a = + w/2, 

Eq .. AL2 becomes 

(A1.3) 

This is the stress field at a point infinitesimally close to the bound­

ary. Across the boundary, the stress field would change abruptly to 

axx = 0 

(A1.4) 

+1f the normal body force component Fx is not zero (see Fig. 15) 

··a xx ·would -be-·- ~ F x. 
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II. Stresses induced by body forces on boundary sections (2) - (4) 

Comparing with Fig. 1, the parameters r and e for segments on 

boundary sections (2) - (4) can be obtained as shown in Fig. 4. 

r and e in each case can be expressed by a, d and S. 

For section (2), 

r2 = (d-a)2 + s2 (Al.S) 

cose = s sine = d-a 
1/2 l/2 

[(d-a)2 + s2] [(d-a)2 + s2] 

For section {3), 

r2 = i + s2 

(Al.6) 

cose = - s sine = a 

(a2 + 52)112 <i + s2 )112 

For section {4), 

r2 = (a + d)2 + s2 

(Al. 7) 

cose = d + a sine =- s 

. 
Substituting these into Eq. Al.l and integrating from S = 0 to S = 1, 

we obtain 
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for section (2) 

(ALB) 

a = - -,.-- 2 tan '"'T':r';")- ( 1 +v) ( d-a) 2 2 llYT [ -1 i i ] 
xy ~n ,u-a i +(d-a) 

for section (3), 

(A1.9) 

for section (4), 

(Al.lO) 

llYT [ 1 i i ] axy = ,-; 2 tan- d+a - (l+v)(d+a) 2 2 Jl. +(d+a) 

Sincet>> d, these equations can be simplified by letting R. +CID. Sum­

ming the simplified equations gives: 

llYT 
:axx = - -(3+v) in 41r [ 

d . 2 ] 
( a ) - 1 

{Al.ll) 

r. 
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III. Stresses induced by body forces on boundary section (5) 

Substituting r = s + a, e = w into Eq. A1.1 and integrating from 

S = 0 to S = d, we obtain 

llYT ( d ) oxx = 4w {3+v) tn a+ 1 

{Al.12} 

IV. Stresses induced by body forces on boundary sections (6) - {7} 

For boundary sections (6} - (7), r ~ R >>d. The terms in Eq. 1 

s~ne and c~se , would approach zero. Therefore, the stresses induced 

by body forces on boundary sections (6) - (7) should be negligible. 

V. Resultant stresses 

Summing Eqs. A1.3, Al.ll and A1.12, we obtain the resultant 

stresses at the termination interface induced by body forces on the 

boundary of a twin pair 

(Al.l3) 
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Appendix 2: Stress Field of Distributed Force in Infinite Plate 

Distributed forces Px and PYper unit length act on the line 

segment of length io Consider the stresses at a point where R and & 

are the distance and angle from one end of the line segment (Fig. 16). 

Forces on an infinitesimal segment dt can be treated as a concentrated 

line force. Comparing with Fig. 1, we obtain 

P dS 
X COS(1r+~) 

dayy = 4;- r 

+ :;dS cos(t +-)[- (3-v)-2(l+v)sin2 (2 + 6)] 

da = - p
4
xdS sin(1r+~) [(1-v) + 2(1-v) cos2 (1r + ~)] 

xy 1r r (A2.1) 

By superposition, 

(A2 .2) 

There are four characteristic integration terms, 
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R. • "' 
{ ~ dS = F1 lo r -

R. "' • 2,. 

1 cos~ s 1 n ~ dS = F 
0 

r 3 

R. • "' 2.,. 

1 s 1 n~ cos "' dS ~ F 
r - 4 

0 

Expressing r, sin0, cost> in R, 6. S, a, gives 

r2 = (R sin6 + S sin a) 2 + (R cos 6 + S cose)2 

sintJ = R sin& + S sins 
r 

cost> = R cos6 + S cosa 
r 

Substituting these into the four characteristic integrations 

(A2.3) 

(A2.4) 

sin0 dS 
r 

R sin& + S sins dS 

(R sin6 + S sine)2 + (R cos& + S cosa)2 

(A2.5) 
__ sins G + sin& - sins cos(e-&) 

62 - 2 1 jsin (e-&)1 

case G + coso - cosa cos(a-&) 
= -~ 1 1 sin (B-6) 1 62 
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. 1 J. • 2,~. 
F -~cos~ s1n ~ dS 
3 Jo r 

+ (sin2.s coss + $in2.s sin.a) j R2-2R~cos(a-.s) _ 1 ,_ cos (s-.s) G t 
2 sin (s-.s) G3 2 sin2(s-.s) 21sin3(s-.s)l2~ 

+ (sina sin2s + coss sin2s)J Ri[2 cos
2

Ca-a)-1J- R
2
cos(a-a) + cos(a-a) 

2 sin2 {s-o) G
3 

2 si n2 (s-.s) 

+ 21sin3~a-a)l liz l 

_ sin2s coss cos(s-.s) G 
1 sin ( s-.s )I 2 

- sin2s coss cos(a-a) l [4R
2
cos

2
Ca-a)-2R

2J R. -2R
3
cos(s-a) + cos(s-a) 

2R sin2(s-.s) G3 sin2(s-o) 

+ 1 G l 
lsin3(s-o)l 2 

+ . 2 . j + Rtcos(s-.s)-R
2 

1 cos(s-.s) l 
Sln 8 CQSB 2 sin2(s-.s) G

3 
+ 2 sin2(s-.s) + 2 sin3{s-o) G2 f 

F -1· sin/J cos
2
6 ~s 

4 
0 

r 

_ cos2s. ·sins cos(s-o) G 
· 1 sin(s-o) 1 2 



39 

+ cos26 sin6l RR.-R
2
cos(B-6) + COS(B-6) 

2 sin2(B-6) G3 2 sin2(B-6) 
+ 1 . I 2 sin(B-6) G2 

+ (cos6 sin2a + sina cos2a) ~ R1[2cos2 !~-~l-1J - R
2
cos

2
!a-6) + cos(a-a) 

~ S1n (B-6) G3 2sin2(B-6) 

+ 
zlsiJ(a-6)1 

62 f 

- COS2B sinB cos(B-6) (4Rcos (B-6)-2R] 1- 2R COS(B-6) . { 2 2 

2 sin2(B-6) G3 

+ COS~B-o) + 1 
sin (B-o) I sin3(B-o)l 

where 

Substituting into Eq. A2.1, we obtain 

p 
~ [ ( 3+..,) F l - 2 ( 1 +..,) F 4] 

( A2 .6) 

a = xy . 

p p 

4~ [+ (1-'J) F
1 

+..2 (1+..,) F] + ..1... [-(1+..,) F
2 

+ 2(1+..,) F
3

] 
4 4"1f 
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Table 1. 

Al 0 MgTi 0 H+O 
2 3 2 5 2 

E (GPa) 420 240 240 

v 0.2 0.2 0.2 

A a (x1o-6 ( K) 0.37 5 5 

AT CK) 1600 1000 1000-1600 

Yg.b. (Jrrr2) 3 1 5 1.5 

prediction by Eq. 4.10 63 0.5 2.6 0.8 0.3 

c (pm) prediction by Eq. 4.11 75 0.6 3.1 0.9 0.4 

observed ao(l) 3(2) 2(24) 



43 

Figure Captions 

Fig. 1. Schematic figure of the stress field of a concentrated force 

in an infinite body. 

Fig. 2 •. Schematics of cracks in symmetrical and non-symmetrical 

stress fields. 

Fig. 3. TEM micrograph of microcracks in a Zr02 grain after marten­

sitic transformation.+ 

Fig. 4. Schematics of one twin pair in a homogeneous matrix. 

Fig. 5. Plot of normalized normal stresses along the twin terminating 

interface versus distance from corner for two and six twin 

structures. 

Fig. 6. Plot of normalized stress intensity factor versus normalized 

crack length for six twin structure. 

Fig. 7. Schematics of the crack nature of an edge dislocation and the 

associated stress intensity factor. 

Fig. 8. Schematics of superposition of stress intensity factors of 

twin field and the edge dislocation. 

Fig. 9. Schematics of crack evolution of superpositioned stress in-

tensity factor. 

Fig. 10. Plot of stress intensity factors versus crack length for 

microcracking in Zr02• 

Fig. 11. Schematic showing of residual stress on grain boundary caused 

by anisotropic contraction of nearby grains. 

Fig. 12. Schematics of surface forces needed to restore the shape of a 

grain after thermal contraction. 

+ Courtesy of Dr. W. N. Kriven 
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Fig. 13. A-D Plots of normalized residual stresses along grain bound­

aries versus distance from corner for. four different grain 

orientation configurations. 

Fig. 14. Plot of normalized stress intensity factor versus crack size 

for a grain boundary crack. 

Fig. 15. Schematics of distributed forces on an infinite straight 

boundary in a body. 

Fig. 16. Schematics of the stress field of distributed forces on a 

finite straight boundary in an infinite body. 
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