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ABSTRACT

Microcracks can occur in ceramics subject to large localized re-
sidual stress, associated wifh a phase transformation or thermal con-
traction mismatch. The residual stress field in the absence of cracks
can be calculated by using the three-step procedure given by Eshelby.
The stress intensity factors for an evolving crack in the stress field
can then be calculated by the superposition method. The microcracking
process can be eva]uated»by comparing the stress intensity‘factors
with the local fracture toughness of the material. Two microcracking
cases have been studied by this method.

Microcracking associated with the martensitic transformation of
Zr‘O2 was analyzed. Interfacial dislocations have been proposed as
microcrack initiation sites. Calculated stress'intensity factors con-
firm this possibility and provide reasonable values of the interface
fracture energy for monoclinic Zroz.

The grain boundary residuai stresses in single phase polycrystals
with thermal contraction anisotropy are calculated for a general con-
figuration of nearby grain orientations. Grain boundary microcracks

are possibly initiated from grain triple junction inhomogeneities,
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such as cavities. Two equations for predicting the critical
size for spontaneous microcracking are given which correlate.

well with observations for several materials.

grain

quite
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1. Introduction

Certain brittle solids are susceptible to the formation of isolated
stable cracks whose sizes are in the range of the microstructural con-
stituents, e.g. grains. These cracks can form either spontaneous’lyl’2
or due to external 1oads.2 In most cases, the microcracks are assoc-
jated with residual stress fields which arise from shape mismatch be-
tween adjacent microstructural constituents. Examples include micro-
cracking in single phase polycrystalline ceramics due to thermal con-

traction anisotropyl’2

and microcracking during martensitic phase
transformations.” |

Several physical pfoperties can be influenced by the formation of
microcracks. It is observed that microcracking can have a beneficial
influence on thermal ﬁnsu]ation4 and, frequently, can enhance the
thermal shock resistance. The formation of microcracks can have either
beneficial or deleterious effects on mechanical properties, depending
on the role of these microcracks. For example, the influence of micro-
fracture on the mechanical strength would be deleterious.2 In the
absence of a discrete macrocrack, materials susceptible to microfrac-
ture are subject to damage upon application of an external load. The
damage consists of microcracks nucleated at microstructural inhomogen-
eities. The microcrack density increases with load microcrack goales-

cence occurs and eventually a discrete macrocrack forms. The macro-

crack subsequently propagates to failure. Therefore, the mechanical

+See Section 3.



strength is dictated by the susceptibility to microfracture. The mi-
crocrack nucleation proceés depends on the magnitude and configuration
- of the residual stress field. The microcrack coalescence procéss de-
pends on the distribution of microcrack initiation sites and micro-
crack interaction. The nature of the former procesé will be eluci-
dated in the present study.

On the other hand, the formation of microcracks can be beneficial
in increasing the fracture toughnéss.6 It is observed that a micro-
crack process zone is sometimes associated with the propagation of the
macrocrack. This usually results in an extrinsic toughness in excess
of the intrinsic material toughness.. The toughening is related to the
change in materia1 comp1iénce within the process zone. 'The problem is,
as yet, poorly defined at the quantitatfve level. Another way of vis-
ualizing the toughening process is to consider the creation of micro-
cracks as a source of net energy absorption. However, this also lacks
quaniitative evidence. The results obtained in the present study will
provide some insight into microcrack induced toughening.

Because of the inf luence of microcrécks on the various physical
propérties, understanding the microcrack formation mechanism has prac-
“tical implications. Many experimental studies have been conducted to
charactefize‘microcracking in single phase polycrysta]]ine ceramics
with thermal expansion anisotropy.l Therefore, most of the mathe-
matical modeling of ‘the microcracking process has been based on these

systems. Initially, an approach based on a maximum stress criterion

was pr0p036d.7:.This proved unsuccessful. Subsequently, models

&



based on an energy balance criterion were deve]oped.8 These corre-
late more satisfactorily with experiment. However, the detailed con-
figuration of the residual stress field, which dictates the nucleation
of the microcrack, as well as the underlying mechanism of the cracking
process, are ignored. |

The present study is focused on the microfracture process in mar-
tensitic transformations, as well as in single phasé polycrystalline
material. The residual stress field is calculated, taking into account
the microstructure at the microfracture site. A fracture mechanics an-
alysis is then utilized and a detailed understanding of the microcrack

evolution process is obtained.



2. General Method of Solution
The general method used for predicting microfracture consists of
two parts. The first part, using procedures similar to those given by

Eshelby,?

permits calculation of the residual stress field (due to
volume, or shape mismatch) in the absehce of cracks. The second part,
derived from 1inear elastic fracture mechanics and using superposition’
principles, characterizes. the evolution of a crack within this stress
field. |

The residual stress field %3 (in the absence of_cracks) caused
by volume contraction mismatch can be calculated in the following way.
Imagine the-Contractibn being decomposed .into three steps:

'1, Let each homogeneous part be separated from its surroundings
to permit an unconstrained shape change. | |

2. Apply surface forces to restore the original shape of each
part. |

‘3. Reassemble the components and release the surface forces.

No stresses aré created in the first step. In the_second_étep,

surface forces_FidS are applied and stresses agj are created in
each part. cgj can be readily obtained from the free contraction
. T
;tra1n eij’ ,
T _ (2.1)
o35 =~ Cij =k

eg (and hence ogj) should be homogeneous in each part.

The negative :sign -appears because each part is being restored to orig-
inal shape. The magnitude of. the surface forces F;dS can be ob-

tained from the equilibrium conditions at boundaries,
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In the third step, additional stresses are created by releasing
the surface forces. This is equivalent to the application of body
]
forces FidS,Opposite in sign to the surface forces FidS.
]
FidS = - F,dS (2.3)
Stresses created by body forces are more difficult to calculate.
Each infinitesimal element of body force, F;dS, can be treated as
o

a point force. The stresses o;.

ij can thus be obtained by super-

position of the infinitesimal stresses d°§j created by the point
]
forces FidS. Remote from the outer surfaces, the stress field

solution for a point force in an infinite body can be used. In

two-dimensional situations (see Fig. 1), dagj can be expressed as 10
' .
do S = = £ [(3+y) +2(1+v) sinZe] Fds
5 '
oo = T S22 [(1-y) - 2(1 + v) sin%] Fids (2.4)

do,S = - er; i;-"ﬂ [(1-v) + 2(1 + v) cos%e] F;dS

where v is Poisson's ratio, and r and e are the radial coordinates as
shown in Fig. 1.

The resultant stresses %33 are obtained by superposition,

T c
945 = 94 + o35 (2.5).
The stress itensity factor K for a crack located within the resid-
ual stress field oj; can be deduced by employing a superposition so-
lution.+ For a symmetrical stress field ayy(x) (see Fig. 2.A),

+H"er‘e, only Mode I 1oading is considered eguivalent expressions
exist for the other two modes.



C : :
K = zﬁf _—Xy—(f’(—)—dx |  (2.6)
0 /;'ci - x° . v

(x)

for both ends of the crack. For a nonfsymmetrical stress field Oyy

(see Fig. 2.B),

C

| o, (x) /X o
K = icf Yy, dx : K (2.7)

for the end of the crack at x = ¢c. The calculated stress intensity
factor, K, can be compared with the local fracture toughness Kc of
the materia]vand-the'crack evolution {propagation) behavior deter-

mined.12
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3. Microfracture Induced by Phase Transformation in ZrO2
3.1. Observations

The first analysis of microcrack nucleation is performed for in-
2.
Martensitic transformation in Zr02 invariably requires twin or vari-
13

terface microcracking following martensitic transformations in Zr0
ants™~ which minimize the macroscopic shape change of the transform-
ing particle. Twin induced microcracks have been observed in a hot
pressed A1203/Zr02 material containing a proportibn of monoclin-
ic ZrO2 particles.14 The observations were conducted using TEM,
employing thin foils prepared by a conventional ion milling technique.
The detailed characterization of microcracks has been confined to |
cracks formed at interfaces within the ZrO2 particles in order to
permit an effective comparison with the calculations, which are based
upon elastic homogeneity in the vicinity of the microcrack.

Some typical examples of microcracked interfaces are shown in Fig.
3. It is noted that the microcracks occur at alternate interface in-
tersections; evidently, those subject to normal tension at the inter-
face. Also, the crack surface separations are larger than the elastic
opening displacements. Some enhancement of the separation during the
jon thinning process has thus undoubtedly occurred, particularly with-
in the vicinity of the microcrack centers. The accelerated thinning
has improved the detectability of the microcracks, without inducing
appreciable changes in the crack length.

The extension of the cracks is restricted in each case to a dis-

tance equal to about half of the twin spacing. The crack trajectories



lie approximately along the interface separating the intersecting
zones of twins. The appearance of strain contours in the vicinity of
the interface indicates that appreciable residual strain is retained,
principally in the regions (of compressive normal strain) between the
microcracks.

More general observations of twiné in ZrO2 particles, employing
tilting procedures, indicate that the twins,exhibii a plate-like mor-
phology with an essentially constant piatE'thiCKHESS'(fOP a given
transformation mechanism) of 0.03 um. Another study15 of the fine
structure reveals the existence of dislocations, both along the habit

planes and twin interfaces. Such dislocations, as will be shown la-

ter, are essential for the nucleation of the interfacial microcracks.



3.2. Stress Analysis

The plate morphology of the twins suggests that the stresses with-
in a thin foil, in the vicinity of the internal interface, can be well
approximated by adopting a two-dimensional procedure, based on the
method described in Section 2 (Fij. 3). Here, each twin is modeled by
a rectangle of constant thickness. After an unconstrained transforma-
tion, the twin would become a parallelogram; the major component of
strain being a.shear vy of magnitude = 0.14.16’1-7 To restore the
shape of each twin, following the steps described in Section 2, sur-
face forces PdS are applied along the boundary of each twin, where PdS
is given by

PdS = uypdS - (3.1)

(u is the shear modulus, dS is an infinitesima]_]ength of the bound;

ary). The stresses induced in this step are

°I¥ =0

(3.2)
T-—-
Ixy = = ¥IT
In the next step, the surface forces are relaxed by appliying body for-
ces P'dS equal but opposite to PdS. The stresses induced by the body
forces would have to be calculated from superposition of the stresses
induced by each infinitesimal body force P'dS. The alternating shear
characteristics of the array indicates that the interface stress
should be dominated by the body forces imposed on those boundaries
adjacent to the location of interest. The stresses that derive from
forces on more remote boundaries are expected to cancel. Therefore,

the stresses along the interface induced by a single twin pair are
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calculated with other twins and the rest of the surroundings treated
as an elastically homogeneous matrix. (Fig. 4) The stresses, induced
by body forces, along the twin termination interface are given as

(Appendix 1),

' 2

“xx 1 , a7 1l e ot 4
el o (3 +,V)g2"[(a) ;]*&n(a*l)}
| (3.3)
c _

Ixy = T ¥WIT
where a is the distance from the central boundary, and d is the width
of one twin. The twin 1éngth is assumed to be much larger than d such
that the influence of the body forces on the opposite termination in-
terface can be neglected. The final stresses, obtained by combining

the transformation stresses expressed in'Eq.'3.2 and the constrained

stresses expressed in Eq. 3.3, are

T Wy o [rdy2 d
O%x = Txx T °§x = _3;1[’ (3 +v) ;m[(’a') - 1-]+2n(€ * 1)}
T c
Oy = Ixy ¥ Oxy =0 " v (3.4)

A similar procedure can be used to calculate the stress for any
number of twin pairs. The stresses along the central interface for
the six twins pertinent to the présent observations (Fig. 3) are

o 2 - 2 2 .
xx (3 + vy) d," - ld . [d” - a
: o = qx ; n I}E) - 1]+ zn‘-é- + 1] + 2 m [4_2__2]

. - a0 - a
2 2 - .
+2 .ln;[""“"‘“""""g'qz“:“a’z } | . (3.5)

Lad® - a°]
Oxy T |
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The dimensionless stress °xxl“*T depends exc]usi?e]y upon the
relative distance a/d from the central boundary, as plotted in Fig. 5.
The moét important characteristics of the stress are the singularities
at the interface/boundary intersection. The tensile sfhgularity at

~ the inner boundary is characterized by,

;-%=%;(3+v) en 4 (3.6)
It will be demonstrated that this singularity dominates the nucleation
of microcracks.

A uniform compressive stress that results from the dilational
transformation strain is also required for particles fully constrained
by the A1203 matrix. However, this stress is expected to be of
negligible magnitude in thin foils, because of a relaxation effect

associated with the elastic deflection (buckling) of the foil.
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3.3 The Stress Intensity Factor

The logarithmic character of the stress singularity induced by
‘variant formation is probably too weak to permit the formation of a
microcrack in the absence of an interface inhomogeneity,+ Hence,
the fracture analysis is chducted by hypothésizing the existence of a
crack-like inhomogenéity at the site subject to the maximum stress.
‘The nature of this inhomogeneity will be discussed later. Stress in-
tensity factors can be calculated for the crack-like inhomogeneities
andvthe resu1tant ﬁicrocracks,‘as shown in Section 2. Specifically,
for a crack of length 2c symmetrically located in the stress field
axx(a), the stress intehsity factor K may be estimated from the su-

perposition solution;

da | (3.7)

Inserting the stress field o, of six variants obtained from Eg. 3.5

XX
and integrating, yields the numerical result for K plotted in Fig. 6. -
The occurrence of the maximum in K is typical of crack behavior in

rapidly varying stress fields (consistent with observations of crack

arrest).

*A singularity with a strength > 1/ x (the crack tip singularity)

can be readily demonstrated to induce fracture in the absence of in-
homogeneities. However, fracture in the presence of weaker singuiari-
ties is not well understood. It is presumed here that weaker singu-
larities are incapable of crack nucleation.

. o
Numerical integration is needed because terms like: ;{
0

. cannot be integrated in closed form.
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The evolution of microcracks can be examined by comparing this K curve
with the crack propagation resistance of the material. This compari-

son will be conducted in the following section.
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3.4. Analysis of Microfracture

The two most,pertineht features of'the microcrack observations
upon which the subsequent argument}is based are (a) the incidence of
microcracking at each junction, and (b) the (absolute) magnitude of
the crack arrest length. Firstly, consider the observed invariance of
microcrack formation at interface junctions. These junctions were
originally located within a single grain (particle) of tetragonal
Zroz. Postulates for fracture based on the prior existence of in-
homogeneities of appreciable size are thus necessarily obviated (be-
cause there can be no rationale for anticipating inhomogeneities of
relatively large size at each‘junction). The largest crack-like
inhbmogeneities-that can consistently occur along the termination in-
terface of a variant are interfacial dislocations, a§ obsérved in a |
comparison Study.15 The following analysis, which attempts to trace
the evolution of the microcracks,linvokes interfacial dislocations of
edge character. A similar analysis could be performed for mixed dis-
locations.

An edge dislocation core contains a small zone (on the tensile
side) with crack-like'chafacferistics, as first noted by Stroh18
(Fig. 7). Additionally, the dislocation self-stress will locally aug-
ment the stress intensity factor. It can be readily demonstrated that
the stress field associated with an edge dislocation provides a stress
intensification analogous to that of a crack subject to a semi-infinite

wedge opening, as provided by the extra ha]f.plane11 (Fig. 7), where
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K =J§'ub (1+v) ' (3.8)
. nve
b is the thickness of the wedge (approximately equal to the Burgers

vector) and c is the length of the crack ahead of the wedge. The mag-

nitude of the stress intensity factor increases with decrease in crack

length (Fig. 7) and is, of course, only approximate at very small crack
lengths (when non-linear effects become important).

The stress intensity %actors from the dislocation field and the
variant field caﬁ be superimposed to provide the final trend in K with
crack length, as shown schematically in Fig. 8. A minimum,-Kmin,
now appears in addition to the previously noted maximum. The level of |
this minimum has a major fnf]uence upon the onset condition for micrd-
cracking. Specifica]]y, when Kmin exceeds the crack extension re-

sistance of the interface K;gter

, a well developed microcrack
will form with an approximate final length, Cf, as illustrated in
Fig. 9.

Variations in K that elevate it to the requisite level for

min
microcrack formation are dictated by the amplitude and the scale of
the stress field induced by the variants. However, inspection of Fig.
9 indicates that conformance of the K level with these microcrack for-
mation requirements can be directly deduced from the final crack
length. This is achieved by superimposing the crack length measured
from Fig. 3 onto the K curve calcﬁ]ated for the observed variant
structure. The K level at the intersection (as well as providing a
measure of the nominal crack propagation resistance of the interface)

must be less than Kmin to account for microcrack initiation at edge

dislocations.
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The specific results of this procedure are presented in Fig. 10.
The absolute magnitude of K was deduced by employing the measured val-
ue of d(300 A), the known Qa]ues for u(69GPa) and v(0.25) and estimates
for yf and b. The variant shear strain Y7 is taken to be > 0.14,
(2 minimum value for trahsformations in Zr02) and b is assumed tb be
~ 5 A, the unit cell dimension in the monoclinic structure. Superim-
posing the measured C./d of 0;5 yields the intersection shown in Fig.

10. The intersection K level (1.8 MPa /m) is just below K (2.15

min
MPa@ﬁi) as requiréd to account for thg formation of a microcrack at an
interface edge dislocation. The nominal interface craék propagation
resistance given by the interaction leyel is K;gter = 1.8 MPa

m (génter =18 Jm’?). This value is at the lower bound of the range

- typically measured for polycrystals of cubic ZfOZ, 9c = 16 - 40
Jm'z.lg’20 and can thus be regarded as consistent with reasonable

expectations for interface separation in ZrO2°
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3.5 Discussion

A relatively consistent description of microcrack nucleation based
upon the combined stress fields of an edge dislocation and of marten-
site variants has been provided. This is the first example of micro-
crack formation in ceramics that has not required either the pre-exis-
tence of a microstructural inhomogeneity (such as a void or an inclu-
sion) or a dislocation slip band. The microcracking process is simi-
lar to that proposed by Stroh, for crack nucleation ahead of a dislo-
cation pile-up, but excludes the necessity for dislocation coalescence
(which is a central feature of the Stroh mechanism). Since disloca-.
tion mobility is rather limited in ceramics, the capability for crack
nucleation without invoking dislocation motion is probably of more
general interest.

The exfension of the present nucleation concept to other micro-
crack situations is evidently a subject for further detailed examina-
tion. However, it is observed here that the variables which dictate
microcrack formation are appreciably different for other common micro-
crack problems. The most notable is microcracking at grain boundaries
from thermal contraction anisotropy, which will be analysed in the next

section.
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4, Microcracking in Single Phase Polycrystals
4.1. Observations

In the previdus‘section, microcracking during martensitic trans-
formations in ZrO2 was analysed. Microcracking also occurs at grain
boundafieé in single phase polycrystalTine ceramics with thermal ex-

pansion aﬂisdtropy.l’2

In such cases, microcracks are created by
residual stresses induced when the material is cooled from a high tem-
peratufe. The residual stresses begin to develop when relaxation
through diffusion becomes inoperative below a temperature Tg.21

One of the dominaﬁt features of such microcracking events is the
dependence on gfain size. Typicaj]y, there is a critical grain size,
2c, below whi@h microcracking is greatly suppressed and above which a
significant density of microcracks becomes evident. The ability to
predict 2c,is a primary objective of microcracking analysis.

Previous attempts at describing microcracking have included a ten-
sile stress criterion (which does not yield a grain size dependence,
because the amplitude of the residual stress field is independent of

the grain size), and an energy balance criterion. The latter equates

~ the loss in strain energy associated with complete separation of a

boundary faget to the increase in surface energy, and yields a criti-

cal facet 'lengt-h,1

QC = ——-—2—-— (4.1)

where £ is Young's modulus, fg b is the grain boundary fracture ener-
gy and £ is the grain bqundary strain. However, only the initial and

[
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final stages of the formation event are considered in the thermodynam-
ic analysis; whereas, fracture is dictated by the rate of energy change
at the critical condition for unstable crack extension.

In the present analysis, the grain size effect is shown to stem
directly from considerations related to the grad{ent of the residual
stress field (stress intensity factor criterion) and/or to the stress

relaxation effects.21



20

4.2, Stress Analysis
First, the residual stress field induced by thermal contraction

mismatch is ca]cu]ated‘along one grain boundary facet. Assuming a
uniform grain size, a two dimensional array of hexagons (Fig. 11) can
be used to model the system. Each grain has a random orientation, and
elastic anisotropy is neglected (to permit the use of stress functions
derived from isotropic elésticity); This simplification should not
introduce important quantitative errors because thé thermal stresses
are relatively insensitive to the elastic anisotropy (in contrast to
their strong dependence on the thermal expansion anisotmpy);22

To carry out the calculation, the system is further simplified by
concentrating only on the four grains nearest to the grain boundary,
while treating the remaindef'of the system as an elastically homogene-
ous matrix. (Fig. 11) Following the first step in section 2, the four

grains are separated from the matrix and allowed to contract freely.

T

The strain c

of the "matrix cavity" is then uniform and isotrop-
ic and given by;
T .

ec = -(a) oT (4.2)
where o« is the isotropic expansion coefficient of the matrix and aT
is for temperature range over which the stresses develop. The strains
in the principal directions of each grain are

€ = - az aT

(4.3)

AT

”
]

I
=]
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where’ag’s are the linear expansion coefficients of the»grain. The
magnitude of (a) is between the magnitudes of ay and a.

Next, surface forces are applied on the boundaries of each grain
in order to restore the regular hexagonal grain shape, before replac-
ing the grains into the matrix cavity. The strains created in each

grain are readily obtained as

elg= (az -<&>)AT,=. Aag AT

4.4

el = (as - a)AT=-(<a>-as) AT = - acgaT. (4.4)
The stresses within the grain would be

ol =<E> (Aaz - vAas)ATl(l-vz) (8.5)

o;r = (E) (Acs - vaa )_AT/(l-vz)
where'<E> is the isotropic Young's modulus and v is the Poisson's ra-
tio. The surface forces needed to deform each grain can be obtained
from the equilibrium conditions on the boundaries. They are shown in
Fig. 12 for each boundary section of a hexagonal grain.

In the next step, these surfacé forces are released by applying
body forces equal in magnitude but opposite in sign to the surface
forces. These body forces would induce additional stresses a%j
within each grain and the matrix. To calculate these stresses, the
body force on an infinitesimal boundary segment is treated as a line
force in a plate, Eq. 2.4. The stresses induced by body forces on

each segment are added to give the resultant °§j’ It is conveni-

ent to establish the stress field of distributed forces on a line seg-
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ment before proceeding. The stress field, as shown in Appendix 2, is

given by
C PX P ‘
Ouy = Tx [(1—v)F2 + 2(l+v)F3] + z% [(3"'\’_)"-1 - 2'(1+V)F4J
| (4.6)
¢ Py ? -
oxy = In [(l—v)Fl + 2(1+\!)F4] + /vy [(l‘V)Fz + 2(1+\’)F3]

where Fi's are functions of R, , 8, & which are specified in Appen-
dix 2. By inserting appropriate sets of R, , 8, a’va]ues, the
stresses created by body force on all boundary segments (except the
central segment), can be obtained. The Fi's are rather complex
functions (eVent though in closed forms) ahd a computer code is used
to obtain numerical solutions. The stresses created by body forces on

the central boundary segment would be (see Appendix 1)

Oc = - l P
yy 2 'y
o, =-—-% P
Xy 2 X

at points close to and above the segment. The constrained stresses
¢

o35 are obtained from superposition of stresses created by body

. forces on the 19 boundary segments. The resultant stresses would be
the sum of the transformation stresses o§j and the constrained

stresses.a?

ij*
The stresses along one grain boundary calculated with this method
for several different configurations of near-by grain orientations are

shown in Fig. 13. The tensile stresses approach infinity at grain
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tripie points. This singularity is dictated by the logarithmic terms
in Eq. 4.5, which are explicit in Appendix 2.

To analyse the problem of critical grain size, we concentrate on
the grain boundary subject to the largest tensile stress. It iS ob-
served in Fig. 13 that the tensile stfess is largest for configuration
A, in which the two grains adjacent to the grain boundary have their
maximum contractions in a direction perpendicular to the boundary.

The amplitude of this stress field is independent of the grain size.
Also, the singularity at the triple point prohibits the derivation of
a critical grain size from the stress field. Therefore, we proceed to
calculate the stress intensity factor of a crack of size c enplaced

within the stress field.
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4.3 The Critical Microcracking Condition

As described in section 2, the stress intensity factor of a crack
can be obtained from the original crack-free stress field by using Eq.
2.7. Inserting into Eq. 2.7 the stress field of the grain boundary _
uhder max imum tension in Fig. 13.A, the stress intensity factors of an
evolving gfain bouhdary crack with one end fixed at the grain trip]e
point can be obtained. Here a numericalimethod is needed to ca]éulate
the integral in Eq. 2.7. The result is shown in Fig; 14, where the
normalized stress intensity factor versus horma]ized crack size is
plotted. The qualitative dépendence of microcracking on the grain
size can be derived from this figure. Notice that the stress intens-
ity factor is normalized by the square root of grain size. Hence, by
changing the ordinate into an absolute scale and plotting the stress
intensity factors for constant grain size, higher levels of the stress
inténsity factor would obtain for larger grained materials. This im-
plies that microcracking would be more severe for larger grained struc-
tures.

The general characteristics of the stress intensity curve indicate
several important features. Firstly, the stress intensity approaches
zero as the crack size becomes small. Hence, inhomogeneities located
at triple juhctions are needed to initiate microcracking. This is a
similar requirement to that established for microcracking in Zr02,
fwhere'microcrackS'Mereipfedicted'tb initiate from interfacial disloca-
tions. However, the inhomogeneities required at the triple junctions

must be much more extensive in dimension than dislocations. The most
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viable possibilities include cavities, inclusions, etc.; a]though, the
explicit role of the inhomogeneities on crack initiation is not well
understood. As an approximation, these inhomogeneities are treated as
crack-like entities, such that the level and variation of the stress
intensity factor can be directly related to the size and shape of the
inhomogeneity. This approximation is subsequently used for establish-
ing crack initiation criteria.

Secondly, the stress intensity factor exhibits a maximum. This
maximum can be associated with a lower bound on the microcrack initia-
tion condition; a bound which necessiéates the pre—existence of an in-
Ihomogeneity with re1ative dimensions ¢/ 2 ~ 0.2. Analogous lower bound
treatments have been particularly useful in other fracture threshold
problems, such as indentation fracture. Finally, it is noted that the
stress intensity factor diminishes slowly with crack length beyond the
maximum. This contrasts with the rapid decline in the ZrO2 micro-
cracking problem. Hence, a microcrack, once initiated, is likely to
extend across the entire grain facet. The arrest of the microcrack
beyond the three grain junction will be dictated by the level of com-
pression on the neighboring grain boundaries.

The grain size dependence of microcracking can bé quantified by
adopting pertinent initiation criteria. Two such criteria will be

adopted herein. Firstly, a lower bound is determined by equating the

peak value of K to Kc. From Fig. 12,



26

2,
5(1-v") K
R max = 1.1 ‘ ) ) (408)
- 4EAaAT \/R,c

Also, Kc is related to the grain boundary fracture energy by

| K2 (1-v%)
Zyg.b = g.C = = | (4.9)
The critical grain size thus becomes
3.1 v 2
.br -

E(AaAT)2

An alternate ériterion assumes that the effective size of the inhomo-
geneity is about one tenth of the grain size, typical of the size of
résidual cavities observed in sintered products. The crack initiation
condition would then be K = Kc,at c/2 = 0.1. The predicted critical

grain size then becomes

_3 7 g, (1) | (@.11)

L =
¢ E (AaAT)2

Inserting appropriate values of Yg.b,? E, v, ATlénd Aa into the equa-
tions, the critical sizes can be calculated and compared with the ob-
served values, summarized in Table 1.

A final determination of the critical size requires that aT be
specified, by virture of a sélection of the 'freezing temperature' T

g
at which stress relaxation by diffusion terminates. A grain boundary

diffusion mode123 jn4icates that this freezing temperature is given

by
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I - __Q/k |
9 nl12a06,E/v3 n k 2317 (4.12)

where Q is the activation energy of grain boundary diffusion, k is the
Boltzman constant, Q is the effective volume of the diffussing parti-
cles, Sy is the effective thickness of the grain boundary, E is fhe
Young's modulus, & is the grain size, n is a material dependent param-
eter and T is the cooling rate.

Extension of the analysis to include determinations of the crack
density, crack tip process zone etc. requires that relations be estab-
lished between the stress intensity factor and crack size for general
grain orientation configurations. In the present work, the stress in-
tensity factor-crack size relation has only been determined for one
configuration (Fig. 13.A), where the tension is a maximum, although
the stress analysis has been carried out for a general configuration.
The mathematics. associated with the general problem are unwieldy, but
further analysis seems promising. Subsequent studies will seek réa—
sonable simplifications for the stress fields, and then proceed to

predict crack densities.
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5. Conclusion

Microfracture is an important phenomenon in brittle materials.

Its role can be either deleterious or beneficial. To achieve optimal
control, understanding of the initiation and growth mechanisms fs es-
sential. _

The present study is focused on microfracture both as a tbnse—
quence of the martensitic transformation in ZrO2 and in single phase'
~ polycrystalline ceramics with thermal contraction anisotropy. In both
cases, the microcracks are induced by the residua] stress field which
arises from shape mismatchv(due to either phase transformation or ther-
mal contraction anisotropy). The residual stress field in the absence
~ of the microcracks can be calculated using Eshelby's method. The
stresses induced by the body forces are derived from the stress field
of a concentrated force in an infinite blate. A11 the residual stress
fields show a logarithmic singularity at the crack initiation site.

The stress intensity factor of an evolving crack in this residual
stress field can be calculated using fracture mechanics methods. The
initiation and growth processes of the créck can then be derived from
comparison of the stress intensity factor with the fracture toughness.

In both cases, it is.observed that inhomogeneities are required to
initiate the cracks. For_hicrofracture, caused by martensitic trans-
formation in Zr02, it has been demonstrated that the interfacial
microcracks can be initiated from edge dislocations. However, for mi-
crofracture in single phase polycrystalline ceramics, the initiation
mechanism is not fully understood. The inhomogeneities could be cavi-

13
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ties or inclusions at grain triple points. Two approximate initiation
criteria are shown which can be used to derive the critical grain size
for spontaneous microfracture. Other qualitative aspects of grain size _
dependence for microfracture in single phase polycrystalline ceramics
can also be derived. Another factor which can influence the grain size
dependence is the grain size dependence of the diffusion relaxation of
the residual stress field that occurs above the freezing temperature.
It is shown that such a factor can be incorporated in the present an-

alysis.
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Appendix 1: Stresses Induced By Body Forces For One Twin Pair

For one twin pair, there are seven straight boundary sections

which are labeled from (1) to (7) as shown in Fig. 4. The body forces
are of magnitude uy per unit length on the outer boundaries and of
magnitude Z“YT per unit length on the inner boundary section (3).
The directions of these forces are as shown by the arrows in Fig. 14.
The stresses induced by the body forces on each boundary section are
calculated separately and then summed. Each boundary section is cut
into infinitesimal segments such that the body forces on each segment
dS can be treated aé a concentrated force udeS (ZuyT dS on bound-

ary section (3)) in an infinite plate (Fig. 1) where the stress field

is
uy7dS
doyy = 1, 5353 [-(3+v) + 2(1+v)sin29]
HYTds . _ .
doyy = —am 20 - 2(1+v)sin’e] (Al.1)
wrpdS  ging

doyy = = =70 =2 [(1-v) * 2(1*v)cos’e]

I. Stresses induced by body forces on boundary section (1)
Calculation of these stresses represent a special case, because
the stress location coincides with the boundary section (1) (see Fig.
4) and the stress across the boundary is discontinuous (positive on
one side and negative on the other). Therefore, positions infinitesi-

mally close to the boundary are selected for the computation.
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C]ose to the boundary, the boundary section (1) can be regarded as
infinitely long (Fig. 15).

Consider a position P at a distance h from the boundary and an
angle o« to the boundary segment dS. The stress induced at P by body
forces wypdS on dS would then be (from Eq. Al.1)

wypdS  cos(z + o) -
daxx = I RTcoss [(l-v) - 2(1+v) sin (2-+ c)]
(A1.2)

uy-dS sin(% + o) '
Xy -~ 4: h/%os« [(1"“) *+ 2(14+v) COS‘Z(JZL * “]

Q.
Q
|

Replacing dS = h da/COSZG and integrating from o = - n/2 to a = + /2,

Eq. Al.2 becomes

(A1.3)

Iy =T 7 ¥

This is the stress field at a point infinitesimally close to the bound-

ary. Across the boundary, the stress field would change abruptly to

XX -
(Al.4)

1
Oxy =7 M7

*1f the normal body force component Fy is not zero (see Fig. 15)

Ty x would bew-»ﬁ-Fx.
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I1. Stresses induced by body forces on boundary sections (2) - (4)

Comparing with Fig. 1, the parameters r and e for segments on

boundary sections (2) - (4) can be obtained as shown in Fig. 4.

r and e in each case can be expressed by a, d and S.

For section (2),

r'2 = (d—a)2 + 52

S
[(d-a)? + s2]

C0se = 172

For section (3),

rz =at+ 52

S
52)1/2

C0Se = -

(a2 +

For section (4),

r2 =(a+ d)2 + 52

+
C0Se = d a

[(d v a)2 + 52)]1/2

(A1.5)
. d-a
sine = > > 172
[(d-a)" + s°]
(Al.6)
sine = a
(aZ + S2)1/2
(A1.7)
sine = - S

[(d +a)? + 52)]1/2

Subst{tuting these into Eq. Al.l and integrating from S =0 to S = &,

we obtain
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for section (2)

: | 2 2 |
- 6 = ~ .‘iY_I (3+v) 2n [1+(d_2:=3> ]_ uZT (p”[ﬁL...; - 1]

XX- ‘ 8“ 1§ (d a)Z +2'2
3 (Al1.8)
M7 M2 ta (1*v) (d-a)
— n- - -a
- | Ixy = T[ la ) v 2+(d-a)§]
for section (3),
ny . 2 uy 2
o Oyx = % (3%) 2n [1‘” (<) ] + (1) [ Sl
2°+3
_ (A1.9)
wYT -1 2 Qa
Oxy = - - [2 tan 3" (1+v) 2+a2]

for section (4),

- l + l + : '_ I + liz__l-d a - l
s (3+v) &n |1l (a—la) 7 (1+v) ( )2 1
(Al‘lo) .

HfT

-1 2 2
ny = 7. [2 tan~ Ta (1+v)(d+a) m]

Since £ >> d, these equations can be simplified by letting ¢ »e. Sum-

ming the simplified equations gives:

‘ \ 2
Xx;' 'u—}.;l;' (3+v) 4Ln [(%) _1]

&
|

(A1.11)

6. me—k
Xy 2 Y7
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4

I1I. Stresses induced by body forces on boundary section (5)
Substituting r = s +a, e = n into Eq. Al.1l and integrating from
S=0toS =d, we obtain

ny
Oxx = —TE (3*v) &n (g'+ 1)

oxy=0

IV. Stresses induced by body forces on boundary sections (6) - (7)

For boundary sections (6) - (7), r = g2>> d. The terms in Eq. 1

C0s8
r

S;"G and , would approach zero. Therefore, the stresses induced

by body forces on boundary sections (6) - (7) should be negligible.
V. Resultant stresses

Summing Eqs. Al.3, Al.ll and Al.12, we obtain the resultant
stresses at the termination interface induced by body forces on the

boundary of a twin pair

YT

Gix = -z? (3"‘\)) gln [(

aja

") el

(Al1.13)

Q
f

xy = T WIT
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Appendix 2: Stress Field of Distributed Force in Infinite Plate

Distributed forces Px and P per unit length act on the line

y
segment of length 2. Consider the stresses at a point where R and &
are the distance and angle from one end of the line segment (Fig. 16).
Forces on an infinitesimal segment d& can be treated as a concentrated
line force. Comparing with Fig. 1, we obtain

. PXdS

doyy = g S0 [(1oy)-2(14v)sin? (+9)]

1> COS(;Z': +¢)[_ (3.__\))_2(1,,,“)51"2 (_;_ + b)]

P.dS . . -
do, = = — sv‘"tﬁ" %) [(1-v) + 2(1-v) cos? (v + 6)]  (A2.1)

PdS . (% 44 |
- 2 e 9[- et (3 + 9]

By superposition,

: L g .
Oy =/ doyy Oy = / daxy (A2.2)
(o] o :

There are four characteristic integration terms,
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fs""" dS= F
o r 1

* coss
/C°S dS = F
o ' 2

(A2.3)
L . 2
/’ cosp sin~ 9 dS = F
r 3
0
L . 2 .
/ sing cos 9 dS = F
r 4
0
Expressing r, sing, cosp in R, &§. S, B, gives
r'2 = (R sinsg + S sin 3)2 + (Rcos s +S costs)2
sing = R sing : S sing _
(A2.4)
cosd = R cossA: S cos8
Substituting these into the four characteristic integrations
5 sing 2 R sing + S sing
Fy -_-[ 218 ds =[ > > dS
0 o (Rsins+ S sing)° + (R coss + S coss)

(A2.5)

sing . , sins - sing cos(g-s) G

1 [sin (8-8)| 2

coS8 cos§ - C0osB €0s(B-¢)
Gl * sin (8-6)] GZ
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Fj fj& cosd sinzb ds
o r

Ceinl 2-R cos (8-6) cos (B-¢) 1 }
= R sin“s coss + = + , , G
; 2 sin“(s-5) 6; R sin“(g-s) 1" (8-8)172
+ (sin%s coss + sin2s sins) { R 'ZR%C"S(B'” -1 5 - £05 !g-d) 6,{
2 sin“(g~8) G3 2 sin(s-8) 2lsin®(s-8)!

o 2 2 |
+ (sins sin2s + coss s_,.nz,a); R!.[Zvcoszts-s)-l] - R°cos(s-5) . cos(s-z-a)
2 sin“(g-s) 63 2 sin (8=¢)
‘ 1 Gz}
. leing(a-s)l
- sinzs Cos 8 @
‘ 2 1
_ sin’s coss cos(s-s) G
|sin (8-6)] 2
' 2 | ’[4R2cosz(s-s')-2R2]2.-2R3cos(a-s) cos(B-§)
- sin“g cosg cos(B-¢§) . > + >
' 2R sin~(g-$) G3 | sin“(8-s)
e ——
Isin®(s-6)l
g . {4- choLs(a-s)-Rz 1 cos(s-3) }
" SINB COSB ) sin®(g-s) Gy 2 sin(s-s) T 2 sin’(g-s) °

.y 2,/
F4 sf smg cos " § ds
(s

2

€os“B sing G
- 6

_'cfo"sza sing_cos{s-¢) G

151n(8-4)| 2
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2
2. o {RZ-R cos(s-s) , cos(s-s) 1 }
+ C0S"6§ SIng + + v G
2 sinz(s-c) G3 2 sinz(s-s) ¢ sin{g-¢) "2
2
+ (cos?s sing + sin2s cos) {R °2R§c°5(8'6) - 1 5 - °°§§5'6) GZ}
2 sin“(8-¢) G3 2 sin“(g-s) 2l sin”(8-¢)l

Re[2cos? (8-)-1] - R%cos®(s-s) , _cos(8-s)
2 sin”(8-5) Gy 2sin®(8-8)

+ (coss sin2s + sins cosza){

1
+ 6
PRl

chos(s-s)-R2 + 1 + _cos(s-s) . }
2 sin®(s-6) Gy 2 sin°(s-s)  2lsin(s-s)l 2

+ C082

8 sins{

[4Rcosz(s-c)-2R]2-2R2cos(§-s)
2 sin‘(s-s) G,

- cosza sing cos(s-a){

+ cos(s=¢§) 1 5
sinz(a-c) lsin3(s—s)l 2

where

6. = &n 12- 2R2cos(B8-5) + R2

-1 2- R cos(8-s) _ -1 cos(s-3
p = tan RIsin{(8=6)] tan ls1n§8-sh

= R® - 2R cos(s-§) + 22

G

Gy

Substituting into Eq. A2.1, we obtain

P, P
ayy = 7o [(1=v) Fy + 2 (1+) F31+ & [(3%v) Fp - 2(1%v) F,)

(A2.6)
P, p
Gy = T [* (1-v) F} #.2 (%) F 1+ gL [-(1%) F, + 2(1%v) Fy]

LS
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Table 1.
Al O MgTi 0 H+0
23 25 2
E  (6Pa) 420 240 240
v | E 0.2 0.2 0.2
da (x10-6/°K) 0.37 5 5
aT (°K) 1600 1000 1000-1600
vg.b. (Jm2) | 315 1.5
| prediction by Eq. 4.10 63 0.5 2.6 0.8 0.3
¢ (um) prediction by Eq. 4.11 75 0.6 3.1 0.9 0.4

observed _. go(l)  3(2) 2(24)
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Figure Captions
Schematic figure of the stress field of a concentrated force

in an infinite body.

. Schematics of cracks in symmetrical and non-symmetrical

stress fields.

TEM micrograph of microcracks in a ZrO2 grain after marten-
sitic transformation.”

Schematics of one twin pair in a homogeneous matrix.

Plot of normalized normal stresses along the twin terminating
interface versus distance from corner for two and six twin
structures.

Plot of normalized stress intensity factor versus normalized
crack length for six twin structure.

Schematics of the crack nature of an edge dislocation and the
associated stress intensity factor.

Schematics of superposition of stress intensity factors of
twin field and the edge dislocation.

Schematics of crack evolution of superpositioned stress in-
tensity factor.

Plot of stress intensity factors versus crack length for
microcracking in ZrOZ.'

Schematic showing of residual stress on grain boundary caused

by anisotropic contraction of nearby grains.

. Schematics of surface forces needed to restore the shape of a

grain after thermal contraction.

+Courtesy of Dr. W. M. Kriven
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A-D Plots of normalized residual stresses along grain bound-
aries versus distance from corner for four different grain
orientation configurations.

Plot of normalized stress intensity-faétor versus crack size -
for a grain boundary crack.

Schematics of distributed forces on an infinite straight
boundary in a body.

Schematics of the stress field of distributed forces on a

finite straight boundary in an infinite body.
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o "'4:- corse' .-(3+v)+2(l+v) sinze‘
P cos8 [,,_.1\_ . 2]
Oyy -l .(l, v)-2 (l1+v)sin 6J
P i f )
Oxy = 2m s'r"e h(l-v)+2(l+v) coszei

XBL8I5-5839
Fig. 1
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P, =0y singcosg
-0y cosdsin 8

Ry = qTsingsing
+0.T cos@cosé
. , . ot _
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