
))'r;
\ \

PROCEEDINGS of the

®D~LJ[}{]

BERKELEY WORKSHOP

LBL-1345~

UC-32
CONF-820201

RECEIVED
LAWRENCE

BERf~ELEY LAS(i)RATORY

LIBRARY AND
DOCUMENTS SECTION

on

DISTRIBUTED
DATA MANAGEMENT AND
COMPUTER NETWORKS

f FB 6 ~ 1982

Asilomar
[?®[Q)[[(Y]@[[W iJ® 0 iJ®S) iJ®®~

I..AWRENCE BERKELEY LABORATORY For Reference
'jNIVERSITY OF CALIFORNIA, BERKELEY

Not to be taken from this room

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT W-7405-ENG-48

r
OJr-
1

\fJ
+-
\Jf

Il ')J
j-

I
.}

LEGAL NOTICE

This book w~s prepared as an account of work
sponsored by an agency of the United States
Government. Neither the United States Govern
ment nor any agency thereof, nor any of their
employees, makes any warranty, expres~ or im
plied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process
disclosed, or represents that its use would not
infringe privately owned rights. Reference herein
to any specific commercial product, process, or
service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favor
ing by the United States Government or any agency
thereof. The views and opinions of authors ex
pressed herein do not necessarily state or reflect
those of the United States Government or any
agency thereof.

Printed in the United States of America
Available from

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price Code: A17

Lawrence Berkeley Laboratory is an equal opportunity employer.

PROCEEDINGS OF THE SIXTH

BERKELEY CONFERENCE ON DISTRIBUTED DATA MANAGEMENT

AND COMPUTER NETWORK

Sponsored by

Computer Science & Mathematics

Department

Lawrence Berkeley Laboratory

University of California

Berkeley, California 94720

Applied Mathematical Sciences

Research Program

Office of Energy Research

U.S. Department of Energy

Washington, D.C. 20585

i
/:

General Chairperson: Paula Hawthorn, Lawrence Berkel"!y Laboratory

Program Chairperson: David Dewitt, University of Wisconsin-Madison

Program Committee: D. Z. Badal, Naval Postgraduate Schpol

Kenneth Biba, Sytek Incorporated

Greg Chesson, Bell Laboratories

Lynn A. DeNoia, Bentley College

Susan Eggers, Lawrence Berkeley Laboratory

Frank Germano, Digital Equipment Corporation

Peter Kreps, Lawrence Berkeley Laboratory

Daniel Ries, Computer Corporation of America

Lawrence A. Rowe, U.C., B~rkeley

Fred Schneider, Cornell University

Robert H. Thomas, Bolt Beranek and Newman, Inc.

Kevin Wilkinson, Bell Laboratories

ACKNOWLEDGMENT

We would like to thank Dr. Donald Austin of the Offfce' of Energy Research, U.S. Department

of Energy, for his continued support of the workshop, under Contract No. W-7405-ENG-48.

iii

CONTENTS

Gemini--A Reliable Local Network
Neil B. Cohen, Charles B. Haley, Scott E. Henderson,
and Chak L. Won. • • ••••••••••••••••

The Resiliency of Fully Replicated Distributed Databases
Wing Kai Cheng and Geneva G. Belford • • • • • • • • • • • • 23

.
A Robust and Efficient Protocol for Checking the
Availability of Remote Sites

Bernd Walter • • • • • • • • · 45

.A Quorum-Based Commit Protocol
Dale Skeen • • • • • • • • • 69

Implementation of Distributed Transactions
Deborah J. DuBourdieu • • • • • • • • • • • • 81

Mutual Consistency of Copies of Files Based on
Request Characteristics

Gautam Barua • 95

On the Use of Optimistic Methods for Concurrency
Control in Distributed Databases

Stefano Ceri and Susan Owicki • • • • • • • • • • • • • • •117

Performance of Two Phase Locking
Wen-Te K. Lin and Jerry Nolte • • • • • • • 131

. .
A Distributed File System Architecture Supporting
High Availability

D. Scott Parker and Raimundo A. Ramos • • • • • • .161

Site Initialization, Recovery, and Back-Up in
a Distributed Database System

Rony Attar, Philip A. Bernstein, and Nathan Goodman •••• 185

View Definition and Generalization for Database
Integration in Multibase: A System for
Heterogeneous Distributed Databases

Umeshwar Dayal and Hai-YannHwang •••••••••••••203

Selective Broadcast in Packet-Switched Networks
David W. Wall ••••••••••••••••••••239

Performance Analysis of a Shortest-Delay Protocol
Liang Li, Herman D. Hughes, and Lewis H. Greenberg •••••259

The BX.25 Certification Facility
J.A. Meliei • . •••••.••••••.••.•••.••.283

The Design of the CSNET Name Server
Marvin Solomon, Lawrence H. Landweber,
and Donald Neuhengen ••••••••••••••••••••311

On the Correct and Efficient Scheduling of
Transactions in a Highly Parallel Database Machine

Ravindran Krishnamurthy and Umeshwar Dayal •••••••••329

Promising Approach to Distributed Query Processing
C.T. Yu, K. Lam, C.C. Chang, and S.K. Chang ••••••363

1

GEMINI - A RELIABLE LOCAL NETWORK

ABSTRACT

Syntrex has developed a local network called Gemini for
word-processing .terminals. Gemini's unique redundant
architecture ensures that no single failure will keep the
system from operating. The development of a
distributed mess'age switched operating system allowed
the network to be easily constructed and expanded.
Users can migrate to the network environment without
being forced to learn new operating procedures, since
the" word-processing software that runs in a stand
alone terminal is the same software that runs on
Gemini.

Neil B. Cohen

Charles B. Haley

Scott E. Henderson

Chak L. Won

Syntrex Inc.
Industrial Way West,
Eatontown, N.J. 07724

2

GEMINI - A RELIABLE LOCAL NETWORK

1. INTRODUCTION

Syntrex has developed a local network called Gemini for word-processing

terminals. The system is fully redundant, so that single failures don't force the

users to stop work and wait for repairs. The network is designed to avoid

problems of "perpetually open files" that can occur if a terminal fails before

closing all its files. The development of a distributed message switched

operating system allowed the network to be easily constructed and expanded.

Section 2 gives an overview of the architecture of the local network.

Section 3 describes the operating system and the features that are used

specifically for distributing the control. Section 4 describes the hardware and

software architecture of the local network. Section 5 provides details of some of

the interesting problems that were solved as the system was being built. Section

6 discusses potential plans for expanding the system.

2. SYNTREX NETWORK ARCHITECTURE

2.1. Background

One of Syntrex's major goals is to provide highly reliable, easy to use

office automation equipment. The regundancy designed into Gemini provides

reliability, since all the hardware is duplicated. The local network system is

easy to use because the software that runs on a stand-alone word processor is

the same software that runs on Gemini.

Our user community is extremely non-technical. Procedures such as

backing up disks are foreign to normal office operation, and are often avoided

or forgotten by users of automated systems. Gemini's automatic real-time backup

alleviates this problem, protecting users against the loss of information and at

the same time providing a measure of protection against lost work time due to a

down system.

3

It should be noted that the system is not designed to keep a fully

redundant system operating at all costs, or to connect Gemini units together to

provide load sharing or further redundancy (a la Tandem [5,7]). Rather, the

system is designed to continue operating without backup in the face of any

single failure of hardware or software. This allows the customer to continue to

do useful work until such time as a service person can get to the site to repair

and restore the damaged half of the system.

2.2. The Terminal

The Aquarius is a stand-alone intelligent word processing terminal

produced and marketed by Syntrex. It provides text editing and formatting

capabilities, as well as access to printers, a spelling checker, and other

features. Data and programs are stored on two 5 1/4 inch floppy diskettes, each

of which can store up to 400 kilobytes of information. The Aquarius connects to

several standard electronic typewriters, and fits on the typing extension of a

secretary's desk.

2.3. Network Topology

Figure 2-1 shows a sample Gemini configuration. This star network can

have up to 14 Aquarius workstation$ and printers attached •. Gemini itself acts as

a completely redundant file server, allowing users to share files and printers,

send mail to one another, and have access to up to 600 megabytes of

information.

Figure 2-2 shows how Gemini units can be clustered into a larger

distributed system. This. network has no central controller, and each part

(individual Gemini) will continue to operate correctly if a neighboring Gemini is

cut out of the system.

Figure 2-3 shows how Gemini clusters can communicate over a connection

to a Public Data Network.

4

3. Network System Software

3~1. Operating System

The Syntrex Operating System (SOS) was developed for the Aquarius.

SOS is a sophisticated message switched operating system. It was structured in

such a way that the extension to a network environment required a minimal

amount of changes. The same basic operating system that runs in the Aquarius

also runs in the disk controller of Gemini. Applications programs (text editor,

print programs, etc.) were moved to the network environment with no

significant modifications. The remainder of this section will describe the

operating system, with emphasis on the elements of the kernel that allow a

networking environment to be easily created.

We ass ume that the reader is familiar with standard operating system

concepts such as kernels, messages, processes, tasks, etc. These will not be

defined in the text that follows. The process and interrupt structure of SOS is

similar to that of Thoth[3], where system control relies upon teams of processes

to perform specific functions. We have also relied heavily on the concept of a

link[1,8], which is used for inter-process communication, and will be described

in detail below.

Processes communicate by sending messages to one another. The messages

are routed from process to process by the SOS kernel(s). A message consists of

a message header, followed by an (optional) message body. The header contains

information about the link on which the message was sent, an (optional) reply

link (see below), the message type, and the length of the message body.

Certain pre-defined message types exist for use with well-known processes

(such as open a file, write a record, create a new process, etc.)

Messages are sent over links. A link is a capability for one-way

communication over a channel between two processes. It is important to note

that a link is unidirectional.

5

When the kernel is told to send a message on a link, it compares its own

machine id with the machine id of the destination process. The Aquarius

terminal is given a machine id at the time the operating system is started. In a

stand-alone configuration, the machine id is set to zero. If the Aquarius is

connected to Gemini, then the machine id is set by the Gemini during the

startup phase of operation. If the destination process is located on the same

machine, then the message is queued directly to the destination. If the machine

id is different, then the kernel places the message on the queue to Gemini. The

communication line protoc()l will transmit the message to Gemini, where it will be

routed to its destination machine. The kernel in the destination machine then

queues the message to the destination process.

When a process creates a new link, it is said to own the link. Ownership

of a link may not be transferred. The owner of a"link will receive any message

sent on the link. Until given away, the owner process also holds the link. The

holder of a link can send a message on the link. Subject to having the

appropriate permissions, the holder of a link may give the link away to another

process, thus allowing that process to send a message to the link owner. The

holder of a link can not determine the identity of the owner. This helps to

ensure that there are no hidden dependencies between processes which would

make networking difficult.

Links have certain associated permissions, or attributes. These include

the ability to duplicate a link, give away a link, destroy a link after sending a

message on it (one time use), inform the owner when the link is destroyed or

duplicated, etc.

When a message is sent to a process, provision is made for including a

reply link in the message header. This is a link held (but not necessarily

owned) by the original sender, which the receiver can now use to send a

response message back to the link owner.

6

At the time a process is created, it is given a link to the Process Manager

process. The process manager passes arguments and a link to the system file

manager to the newly created process. This "well-known" link to the file

manager is used to access all files 'in the file system. The following example (see

also figure 3-1) shows how a file on the floppy disk is accessed:

1) The process sends an "open" request to the file manager on the well-known

link (marked "a" in the diagrams). Included in the open request is a reply

link (marked "b"). The reply link is coded for one-time use.

2) The file manager opens the file and sends a reply to that effect to the

process. Included with the reply is a reply link (the "file" link - marked,

"c"). The file link is owned by the file manager, and has attributes such

that the file manager will be informed when the link is duplicated or

destroyed. All further requests for action on the newly opened file must be

sent on the file link. If the file manager had failed to open the file

(nonexistent file, file busy, etc.) , an error message would have been

returned to the user, and the file link would not be created.

3) The process sends read (or write) requests on the file link. Each request

may contain a reply link for the file manager, to use to send back an

,ack/nack. If the process does not wish to receive such a response, no reply

link is sent with the read/write request, and thy file manager can not make

a response. If a reply link is specified by the process it is coded for one

time use.

4) When the process is through with the file, it destroys the file link (i. e.

closes the file). The file manager is notified of the destruction of the link,

and then closes the file. The well-known link between the process and the

file manager still exists, so that other files may be opened. Of course,

several files may be opened simultaneously. Each open file has its own file

link.

7

It should be obvious that the above mechanism can be extended to multiple

machines in a straightforward manner. In particular, suppose that the file

manager in a terminal has a "well-known" link to a file manager in another

terminal (see figure 3-2). Then suppose an open request arrives on the well

known link from a local process. The file manager attempts to access the

indicated file and fails. Now it is a simple matter to II forward II the message to

the remote file manager, supplying as a reply link the original reply link

provided by the user process. The remote file manager accesses the file (or

fails to; it makes no difference), and sends its reply on the link prOVided by

the original process and forwarded by the local file manager. The message is

routed by the kernel(s) directly. The local file manager does not see the reply,

and if the file is opened successfully the local file manager will not be invohred

in imy further message forwarding. Furthermore, the program that asked to

open the file remains unaware that the file has been opened on a remote

machine. It is this fact that allows SOS to extend to a network environment with

no changes in the application software.

4. GEMINI

4.1. Overview

Gemini was designed to meet a number of different goals. Primaryamong

them were automatic information backup and minimal customer down-time.

Gemini is a completely redundant system, in which the user's information

is continuously backed up on the slave half of the unit (see section 4.3.4 for a

more complete. description of master/slave concept in Gemini). When a failure

occurs, half the system may be disabled, but the remainder can continue

processing the user's information. Information about the failure (location of the

system, the part that failed, recovery procedures, if known) is .sent

automatically via the phone network to Syntrex. In this manner,· the customer

can continue working until the service person arrives to fix the broken palf of

the system. During the time that half the system is broken, no further backup

of the user information is done.

8

,
Secondary goals included an increase in available storage from 400

kilobytes on a single floppy disk, to as much as 600 megabytes on Gemini, as

well as resource sharing, which allows users to conveniently share documents

and data base information.

4.2. Hardware Description

The Gemini hardware consists of two major components, the Aquarius

Interface (AI) and the Disk Controller (DC). Gemini is a redundant system. It

contains two identical halves, each with its own AI and DC, as well as

duplicated power supplies, battery backups and cables. Figure 4-1 is a block

diagram showing the major hardware components of Gemini.

The Al performs all communications between Gemini and the Aquarii. The

main features of the AI are:

1) Up to fourteen synchronous, serial, half duplex communication lines fo;r the

connection of Aquarii.

2) One 8 bit parallel, full duplex port for communication between the two AI's.

3) Shared memory for communication with the DC.

4) An 8088 CPU and local ROM and RAM storage.

The DC provides file storage and file management for the Aquarii. The

main features of the DC are:

1) One to four disk drives, each with capacities ranging from 10 to 150

megabytes.

2) An RS232-C port for the connection of a modem and auto-dialer.

3) Shared memory for communication with the AI.

9

4) An 8086 CPU and local ROM and RAM storage.

4.3. Software I;lescription

The software can be broken into two broad classifications: the disk

controller software and the Aquarius Interface software.

The DC software will not be discussed here. It contains essentially the

same kernel software that runs in a stand-alone Aquarius and manages files in

the manner that was described in section 3.1. It is possible to extend the file

manager to know about clusters of Gemini units, and to use a straight-forward

routing algorithm to access files on different nodes of the network.

The AI software subsystems will be described in some detail in the

sections that follow.

4.3.1. AI Software Architecture

The software in the AI consists of interrupt routines that handle the

clock, communication hardware, interfaces to shared memory and the other AI.

There are diagnostic routines that run at regular intervals as well as during

failure conditions. Finally, there is a "scanner" routine that continuously looks

for and processes incoming/outgoing traffic on the communication lines.

The scanner is implemented as a finite state machine. It examines each

terminal in turn, checking for events that initiate state transitions. These

events include the arrival of an HDLC frame from a terminal, a timer expiration,

or a synchronization message from the other AI.

10

The AI software can be further subdivided into the following categories:

Interface to the Aquarius terminal'

Interface to the disk controller

Communications between the two AI's

Self-testing procedures

4.3.2. Interface to Aquarius

Each Aquarius terminal is linked to the Gemini by means of a high speed

(300+ Kbps) synchronous line. The line operates in half-duplex mode, using a

subset of the ISO HDLC [6] link protocol. HDLC was chosen because it is simple

tQ implement, and symmetric, so the same code could be run in both the terminal

ar;ld the AI.

4.3.3. Interface to Disk Controller

The AI and the DC communicate by the exchange of message buffers in

shared memory. Access to the various data structures in shared memory is

synchronized by means of semaphores. The hardware provides a read-modify

write (or test and set) instruction, which allows either the AI or the DC to test

a semaphore, and to lock it if possible. Shared memory can be viewed as a very

high speed communications channel.

4.3.4. AI-AI Communications

Gemini is designed so that the system will continue to operate normally (as
,

far as the user is concErned) even though part of the system has completely

failed. To accomplish this, each independent half of the system must continually

monitor the well-being of its partner. The heart of this monitoring is the AI-AI

communications procedures.

11

When both halves of Gemini are operating normally one side is said to be

"master" and the other side is the "slave." If a serious error occurs (disk

breaks, memory parity errors, etc.) on one side, the bad side is powered off,

and the good side continues to run. If the good side was the slave, it becomes

master at th'e time of the switch-over.

The only difference in the work performed by the master and the slave is

that the master actually transmits data to the Aquarius terminals, and the slave

does not. Anything else done by the master is done by the slave. This includes

reading data from the Aquarius and passing it on to the disk controller,

receiving data from the disk controller and preparing it to be sent to the

Aquarius, running on-line diagnostics, logging errors, etc. If an error occurs

on the master and the slave takes over, the slave is in a position to continue

talking to the terminals without interruption, or loss of information.

The AI's communicate with one another at different times for the following

reasons:

1) Startup testing and synchronization

When Gemini is started, the AI's talk to each other to make sure the link

between them is operating. If they fail to establish communications, then the

slave side shuts itself off, and the m'aster runs in simplex mode. It is possible

for the slave to detect that the master is not operating (as opposed to the link

between the AI's being broken), in which case the slave will become master and

run in simplex mode.

2) Synchronization during processing of Aquarius information

Before a message from a'll Aquarius can be passed on to the disk, it must

be correctly received by both AI's. It is possible, though unlikely, for a frame

to come in correctly on one side and have a eRe error on the other. The AI's

exchange information on the status of each incoming message to ensure that

synchronization is maintained.

12

Similarly, before a frame is sent to the terminal, the AI's exchange

information to ensure that the same type of frame is being sent by both sides.

See section 5.1 for more detail on the AI-AI synchronization procedures.

3) Error detection and recovery

When an error occurs either the bad side informs the good side about the

fault or it stops talking to the other AI altogether. In either case, the

information is log ged on the good disk controller, the bad side is powered down,

and the system continues to run in simplex mode. The Syntrex Service Genie™

calls the nearest Syntrex service center to report the error. In the meantime,

the customer can continue working without interruption.

As long as both sides are active, the two disks contain exactly the same

information with r~spect to the user's documents. If the system breaks a service

person will come out to repair it. Between the time of the failure and the arrival

of the service person, the customer can continue working on the simplex

system. During this time there is no further backup of information. Also ,the

information on the two disks is no longer the same; the broken disk is now out

of date. When the Gemini is repaired after one side has broken, the information

on the "broken i' side must be brought up to date. A recovery program copies all

the data from the "good" disk to the side that needs updating. Once the disks

are identical, the customer can begin working on the system again.

4 .4. Self Testing Procedures

While the system is active, it periodically runs tests on different parts of

the hardware and software. These tests include auditing the message buffers,

checking for the existence and accuracy. of the clock, running memory tests,

sanity checks on the DC, and testing the port between the AI's. If any test

fails, the system logs an error, informs the other AI (if possible), and forces

the other side to perform a switch to simplex mode. The good side then powers

off the side with the error, and the Service Genie reports the error to the

nearest service center.

13

5. SPECIAL PROBLEMS

A number of significant problems were encountered and solved during the

course of building Gemini. Some of the more interesting ones are described in

this section.

5.1. Synchronization

Synchronization of the master and slave presented a major challenge

during the system development. In order to guarantee that no data was lost

during any transaction, and to be sure that the slave was prepared to take

control at any time, it was decided that all incoming and outgoing frames must

be synchronized between the AI's prior to being processed. Ori input, this

meant that the AI's exchanged information about the CRC of each incoming

frame. If both sides received the frame the same way (either with a correct or

an incorrect CRC), then the message was processed. If the AI's disagreed (one

side had a CRC error while the other did not), the frame was processed as if a

CRC error had occurred on both AI's. A duplicate data frame or a frame with a

CRC error is discarded. Valid data frames are passed on to the disk controller.

Processing in this manner ensures that both AI's are strictly synchronized on

input from anyone Aquarius.

No attempt was made to synchronize processing in the disk controller.

Transactions processed by the DC will take varying amounts of time due to disk

retries, physical defects on the disk, seek optimization processing, etc. As a

result, when one disk controller sends a message to the AI to be passed on to

an Aquarius there is no guarantee that the message is ready to be sent from the

other AI.

We do not allow any frame to be sent to the terminal until both AI's agree

to send the same frame. When one AI has a frame to send to the Aquarius, it

sends a message to the other AI, describing the type of packet it wants to

send. It then waits until a similar message is received from the other AI. If they

are the same (in other words, if both sides want to send the same type of

14

frame), then the master side transmits the packet to the Aquarius. The slave

side listens for the master to complete the transmission. If the two sides don't

agree on the type of frame to send, then a. "lowest common denominator" frame

is selected and sent. One common case where the two sides won't agree on the

frame to send occurs when one AI wants to send a data packet that it has

received from the disk controller, and the other wants to send only an

acknowledgement (an HOLC RR frame), perhaps because a disk error is forcing

a retry and the data has not yet been read. In this case, the lowest common

d~nominator would be an RR frame. The next time around, if both sides have

the data packet, it will be sent to the Aquarius. Another example occurs when

one side wants to acknowledge a frame with an RR, and the other side wants to

initiate flow control (an HOLC RNR frame). The lowest common denominator in

this case is the RNR frame. There are safeguards in the system to avoid infinite

loops (such as a disk controller that does continuous retries without realizing

that it is broken).

5.2. Timeouts

When a timeout occurs in the standard implementation of HOLC, the side

that times out retransmits its most recent message. In our implementation, if the

Aquarius times out, it retransmits. If the Gemini times out, it places itself in

receive mode, and waits for the Aquarius to time out and retransmit. This was

done because the clocks on the two halves of Gemini do not run at exactly the

same speed. We founq that one side of the system would occasionally time out

and try to start a re-transmissiori, while the other side was still expecting a

message from the terminal. Rather than attempt to untangle the states of the two

AI's, we decided that the Gemini would never retransmit a message. The major

consequence of this was to lengthen the Aquarius timeout value, to make sure

that both sides of Gemini time out before the terminal retransmits.

We have found that when the system is working normally there are very

few re-transmissions necessary, so the longer timeout value does not impair the

performance of the system.

15

5.3. Resource Identification

The dynamic allocation of global resources must be carefully managed in a

redundant system. Otherwise, the independent halves of the system may create

different names for the same resource. The result is then confusion if one is

lucky, and disaster otherwise. This problem occurs in Gemini with respect to

the allocation of links in the disk controller.

Links are identified by a serial number, which is assigned at the time the

link is created. The following scenario describes the problem as it could occur:

1) The Aquarius sends a file open request to Gemini (see section 3.1 for a

detailed example of the operations required to open a file).

2) Both the master and slave DC open the file, and both allocate a IIfHe link ll ,

as described in section 3.1. However, since the DCl s are not completely

synchronized, they could assign different serial numbers to the file link.

3) The master AI sends the reply to the open back to the Aquarius. The file

link belongs to the II master ll side of the disk controller.

4) The Aquarius sends a read (or write) request on the file link. The message

is passed through the AI to the disk controller. On the master side, there is

no problem; the operation takes place as requested. However, on the slave,

the link does not have the correct serial number, so the operation fails!

There are several ways to avoid this problem. One would be to require

that the operation of the disk controllers be completely synchronized. However,

this may adversely affect the performance of the system. Our approach is less

restrictive. We set up a link translate table in the AI, and map all ambiguous

link serial numbers to unique serial numbers as the links pass through the AI.

Since the AI is synchronized on both input and output (on a per terminal

basis), the required mapping function is easy to create and maintain, and the

performance impact is minimal.

16

Mapping names to remove ambiguity is extensible from a single system to a

network of systems. We expect to use a similar mapping scheme to handle the

names of links in a cluster of Gemini units. The mapping may take place in a

gateway station between Geminis, or it may occur in the Gemini unit itself.

5.4. Deadlock

Gemini has a limited amount of shared memory for use by the AI and _the

disk controller. Without careful management of this resource, several forms of

deadly embrace are possible.

The first type of deadlock occurs when the disk needs a shared memory

buffer to send something to a terminal, and all the buffers are currently filled

with data being sent to the disk, or waiting for messages from the terminals.

The system is effectively dead, since the disk will not process the next

transaction until the current one has been put into shared memory, and shared

memory can't be cleared because all the buffers contain information destined for

the disk. This form of deadlock can be avoided by never allowing the AI to use

the last free buffer in shared memory. In this way, . the disk can always queue

information to the terminal, and the AI and disk controller won't lock up.

This solution is not sufficient for Gemini. It solves the disk/AI deadlock,

but not the master disk/slave disk deadlock that can also occur. This second

form of deadlock is a generalization of the first case. Consider the following

scenario:

1) The two disk controllers receive requests from terminals A and B that

require information to be sent back to the terminal.

2) The master processes request A and sends it to the AI. This uses its last

buffer in shared memory (which is reserved for use by the disk controller).

3) The slave processes request B and sends it to the AI, also using the last

available free buffer.

17

4) The AI now attempts to send the two requests back to the respective

terminals. However, both AI's must agree that they have the same data

before it can be sent. Unfortunately, this is not the case. There are no free

buffers in the master to complete terminal B's request, and no free buffers

in the slave to complete terminal Als request, so the system is deadlocked.

Gemini would eventually solve this problem by shutting off the slave half of

the system, assuming that the slave disk is bad and is unable to read the

requested data.

The problem can be avoided by extending the number of buffers that are

reserved for use by the disk controller. In general, (number of terminals/2) + 1

buffers are required to stay out of a deadlock situation. This guarantees that

regardless of the order in which transactions are processed by the two disk

controllers, there will be enough shared memory to ensure that data from the

disk controller will be sent back to the terminal.

6. CONCLUSIONS

Gemini is a real, commercially available local network. It employs state

of-the-art hardware, and several interesting software protocols (Aquarius-AI,

AI-AI, and AI-DC).

The Gemini system is "Always UpTM." Its unique redundant architecture is

designed to ensure that no single failure will stop the system. The design of the

operating system allows application software to make full use of the network

environment without modification.

It is possible to connect several Gemini units together to form a larger

network (see figures 2-2 and 2-3). In both cases, the file manager in the disk

controller would have to be aware of the existence of other Gemini units, and

would have to be able to forward messages to the file managers in those units

(via well-known links, as described in section 3.1). Provision must be made for, .

avoiding infinite loops in the network, as messages are forwarded from one file

18

manager to another. For an Ethernet™ [4] 1 connection, very little would have to

change in the Gemini, aside from the level 2 software required to talk to the

Ethernet itself. In the case of a Public Data Network, an X.25 level 3 interface

would be required to get information to and from the Public Network.

Studies are underway to analyze the performance of the system. Final

results are not yet available.

7. REFERENCES

[1] Basset F., Howard J., Montague J., Task Communication in Demos,

Proceedings of the Sixth Sigops, November, 1977, pp. 23""731.

[2] CCITT Recommendation X.25, CCITT Gray Book, Geneva Switz., ITU 1979.

[3] Cheriton et. al., Thoth, A Portable Real-Time Operating System, University

of Waterloo, Department of Computer Science Report CS-77-11, Oct. 1977.

[4] Digital Equipment Corporation, Intel Corporation, and Xerox Corporation,

The Ethernet, A Local Area Network, Version 1.0, September 30, 1980.

[5] Highleyman, W. , Survivable Systems, Computerworld - In Depth,

Computerworld, 1980.

[6] International Standards Organization, High Level Data Link Control Proposal

Doc. No. 1005-ISO TC97!SC6.

[7] Non-StopTM2 Systems - Tandem 16 Introduction, Tandem Computers.

[8] Solomon M., ,Finkel R., The ROSCOE Distributed Operating System,

Proceedings of the Seventh Sigops Principles, December, 1979, pp. 108-114.

1Ethernet is a trademark of Xerox Corporation.

2 Non-Stop is a trademark of Tandem Computer Incorporated.

19

/

c-/
GEMIIJI

I r""/(;U,e€"
I
I ~E/V1/f<'/

Mh'STE,E' I S'LnV£ COA./FI(fU.e
I
I
I

I I I

I

I

,qCPI rt92 ----------- ;:?(jJI4-

X.25
LltVk

Pique€" 2-2
GEM/jJi

CL.UST~e

FI(iVR€ -Z-S

c;EMI/J/ CLUSTE'..eS
COA./A./€C'TED TO /7 PU8LIC

lJl9'T'/9 /UE/'WCk:K.

20

0
@

·8 (I)

@

rEF ;:g (2)
@

®

~-003 (3)

0) @
::8 (4)

©

PI - USER PEOCESS
FM - FILii' M/JNAGEAe

~ -/JeT/VI: L/NK -HEL.D BY ®" OWNED BY (i)
___ • _ OG'sTR'O YED L//v/(

@

®
@

I I
WELL -/(NOf'./N LINK.

'FILE' LINk I

FIGf/R'F j-J

/7CC£.sS/.II/f; I!'/LE US"/NG LINks

21

(3 0 -8 ® -8
®

~@ -8 @ =B
® - -- - - ---. --..cz=@ --

-8 ® :?B©

CEL @ -8 ® -f3J
- @--- ----

P/ - VSE.-e p,eoc£ss
rA1! - L.OC'/9L r/L.E MI"7N,I9(i.:e
p~z - ,E'E"MOrG' ALE /4~A/,I9~E",e

~ - r?CTHG ,/N~ -h'ELD BY@ .,OWNED Byfj)

---~ - D!:ST.eOYED L.INK.

@ -'we'-L KA./o;VN / LINA::

® -REPL. Y To OP.:f/V .eEcPl/EST (OA./G TIMe' t/SE)

© - FILE LINK I

@ - 'WE"L KNOIV/c/'"IAlK B£nv#"€N .t="ILE /r?,qNtfI9C;Ees,

RtiV,e'E 3-2
~C'CESS/A/c; .e€MOTE F/L.£S ~/N" LINKS

22

/1C¥/ ----- - I1(¥N.

SM

/tz

DC

SM

FI§V.eE 4--1
(jEMIN/ h'I'9I€'DN-'?eG C'OMPON€A/rS

\
\

23

The Resiliency of Fully Replicated Distributed Databases

Wing Kai Cheng*
ROLM Corporation

4900 Old Ironsides Dr.
Santa Clara, CA 95050

GenevaG. Belford
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

ABSTRACT

One of the well publicized advantages of a distributed database system
is its availability. The increased availability is obtained in part by
keeping multiple copies of data. In 'a fully redundant distributed
database system, in which a copy of the data is kept at each node, the
probability that a read transaction can be successfully processed is

0- O-a)N)p , where a is the probability that a node is availa-
r

ble or "up" arid Pr is the probabili.ty that the node remains up

until the read transaciton is processed. In the case of . multiple-copy
distributed databases, the read resiliency is obviously better than the
read resiliency of ap of a single-copy database. However, the

r
update resiliency of a multiple-copy database is not necessarily better
than a single-copy database because many of the update synchronization
algorithms require that all nodes be "up" when an update is being
processed. The resiliency of the system to process an update request
depends on the update synchronization algorithm used since not all
algorithms require the same degree of node availability. This paper
presents an analysis of the availability of distributed' database
systems in relation to their update synchronization mechanisms and node
availability.

*Part of the research was conducted when the author was with the
University of Illinois.

24

1 Introduction

Reliability of a system is a measure of the success with which the
system conforms to some authoritative specification of its behavior.
Availability of a system, on the other hand, refers to the fraction of
time that the system satisfies its specification. Reliability and
availability are two of the most commonly noted advantages of distri
buted databases.

reada

theis

probability that

a is the probabil-

For a fully replicated database, the

request can be satisfied is (l-(l-a)N)p , if
r

ity that a site is available at any given time and p
r

probability that the read-site remains up until the read transaction is
processed. The probability that an update can successfully be
committed, however, is dependent on the update strategy and the system
configuration. For example, an update strategy may require that all
sites be available when an update request is executed, some require
that only a majority of the nodes be available; furthermore, the length
of time that the nodes have to be "up" differs among the update
strategies. This paper will analyze the issues of availability of DDB
systems in the light of update strategy and resiliency techniques. We
are interested in exploring the probability that node failure will not
cause the update to be aborted or blocked. In other words, we are
interested in how different synchronization techniques and the availa
bility of nodes may affect the probability that an update can be
completed. We define read resiliency as the probability that a read
request will not be rejected due to the unavailability of the nodes
that have the data items. Read resiliency is equal to the probability
that the nodes which are needed to process a read transaction are
available ("up") when the transaction arrives multiplied by the proba
bility that each node remains up until it completed its task as speci
fied by the synchronization algorithm. We define update resiliency as
the probability that the update can be committed; that is, the proba
bility that the update will not be aborted due to the failure of nodes.
Update resiliency is the probability that the nodes which are needed to
execute the synchronization algorithm are "up" when the update transac
tion arrives multiplied by the probability that each node remains "up"
until its task as specified by the algorithm is completed. Taking into
consideration read resiliency and update resiliency, the resiliency of
a distributed database system can be expressed as

(fraction of updates)*R + (fraction of read-only)*R
u r

where (fraction of updates) + (fraction of read-only) = 1

25

R is the resiliency of the system
u

R is the resiliency of the system
r

processing.

for update processing, and

for read-only transaction

Throughout this paper, we will assume that the database is fully
replicated; namely, a copy of thy database is stored at each node. In
the following section, the concurrency problem and resiliency problem
will be reviewed. We will then present some models that relate update
resiliency and read resiliency to node availability and the amount of
processing time required from each node. A comparison of the models
can be found in Section 4.

2 Concurrency Control

The primary goal of concurrency control algorithms is the preser
vation of consistency of data. The problems that arise when multiple
users access a shared database are of the following types: (1) If
transaction Tl is reading a portion of the database while transaction
T2 is updating it, Tl might read inconsistent or obsolete data. (2) If
transactions T3 and T4 are both updating the database, race conditions
can produce erroneous results. The objective of concurrency control is
essentially to control the sequencing of user-specified operations so
as to preserve the illusion that each transaction is a simple,
complete, atomic action. The issue is to ensure serializability
(Bernstein et al., 80) (Bernstein et al., 79); that is, even if the
transactions are running concurrently and in an interleaved manner, the
overali effect must be the same as if the transactions were run in some
sequential order.

In a distributed database system, the availability of data is
increased by keeping multiple copies of data. The presence of
multiple-copies of data, the possibility of failure, the variance in
transmission delay, and the fact that a site cannot know instantane
ously the activities at the other sites have all contributed to compli
cating the updating process. Several algorithms have been proposed for
updating replicated databases. The majority of them use either the
techniques of locking or timestamping.

Algorithms using locking can have either centralized control
(Bernstein and Goodman, 80b) (Bunch, 75) (Garcia-Molina, 79) (Cheng and
Belford, 80b), or distributed control (Bernstein and Goodman, 80b)
(Ellis, 77). Consistency of data is preserved by locking the data
before access. The theories behind locking as a means to control

26

concurrent access are fairly well developed (Eswaran et al., 76).

For the algorithms using timestamps, consistency is preserved
because timestamps induce a unique execution order for the
transactions. In a decentralized system, a timestamp typically con
sists of a pair (c,s) generated locally at each node, where c is the
physical clock time (or logical clock time--i.e., counter value) and s
is the unique identification of the node where the update request
originated. A timestamp Tl=(cl,sl) is said to precede (or be older
than) T2=(c2,s2) if either (cl<c2) or (cl=c2 and sl<s2). Two general
approaches have been used to update distributed databases using
timestamps. One of them is to allow updates to be applied only when it
is sure that the read-set of the transaction in consideration is
up-to-date and is not made obsolete by another update at this or other
nodes. The other approach is to apply the updates and later undo the
updates when conflict is detected. In a distributed environment where
failure may occur, or messages may be delayed, it is not easy for a
site to know when it is "safe" to apply an update. Examples of synch
ronization algorithms that use timestamping technique include the
Majority Consensus Algorithm (Thomas, 79), the SDD-l algorithm
(Bernstein, 78), and others (Cheng and Belford, 80a,c) (Bernstein and
Goodman, 80a) (Kaneko et al., 79). As we will see in the next section,
different concurrency control schemes require different degrees of node
availability.

To guard against the failures of nodes and communication networks
(such as partitioning) from disrupting the consistency of data, some
additional restrictions have to be imposed. To insure that an update is
applied to every copy (or atomicity of update), some algorithms require
that an update be committed only if each node that has a copy is able
to update its copy. Preserving transaction atomicity in the single
site case is a well understood problem (Gray, 79). Basically, at some
time during its execution, a commit point is reached where the site
decides to commit or to abort the transaction. A commit is an uncondi
tional guarantee to execute the transaction to completion, even in the
event of failures. An abort is an unconditional guarantee to back out
the transaction. The problem of guaranteeing transaction atomicity in a
distributed system is that of insuring that all the sites. either
unanimously abort or unanimously commit. This is accomplished by using
multi-phase update protocols. With the use of persistent communication
(i.e., storing update messages and broadcasting to the failed nodes at
a later time), the number of nodes that have to be "up" can be relaxed
a little.

Communication failure can partition a network into a number of
disjoint sub-networks that are unable to communicate with each other.
Some algorithms only allow the majority partition to perform updates.

27

If one allows every group of sites in a partitioned network to perform
new updates, the databases of the groups will diverge. When the groups
are to be re-united, some updates will have to be undone. Coordinating
the undoing of updates is a very difficult task. Update activities must
therefore be restricted in order to facilitate merging of the updates
when the distributed system is recovering from having been partitioned.
The strategy is usually to allow only one of the sub-networks to run
update transactions. For example, one may restrict updating to the
partition with a majority of nodes in it. In some situations, differ
ent weighting factors assigned to each site or to each copy of data and
used to compute a weighted majority may be more appropriate.
Application-specific knowledge may be used to help determine weights
for each node. For an inventory-like database, where the operations are
commutative, one can perhaps apportion a percentage of updates to each
site during partitioning (Hammer and Shipman, 79). For a system where
the primary copies of different parts of the database are at different
sites (e.g. as in distributed INGRES (Stonebraker, 79)), one may adopt
the policy of allowing an .update to be executed only if the primary
copies of all the data items in the read-set and write-set are in the
partition. As one may expect, partitioning considerations also affect
the degree of node availability required when applying updates.

3 Update Synchronization Techniques

Numerous algorithms for consistently updating distributed
ses have been proposed; in this paper, we consider examples
following types:

1) Locking all copies.

2) Centralized Locking

3) Centralized locking with backup nodes,

4) Linear Majority Voting with Timestamps, and

5) Broadcast Majority with Timestamps.

databa
of the

Before our discussion of these algorithms, we shall briefly review the
architecture of the distributed database system. We assume that the
system consists of N nodes, each node with the same hardware
availability. The mean time between failure is given by the parameter
MTBF and the mean time to repair is MTTR. The availability of a node
is

We assume the probability
is Poisson distributed;
where

28

a = MTBF/(MTBF+MTTR)
Guaranteed delivery of messages is assumed; that is, messages sent from
A to B will eventually be received by B.

In the following sections, we shall focus our attention on update
resiliency. The probability of no blocking for read-only transactions
is assumed to be the same for all of the concurrency control algorithms
discussed here. Given that the database is fully replicated, the

resiliency R for read processing is (l-(l-a)N)p since the
r r

Ndata can be obtained from any of the nodes. The term (l-(l-a»
represents the probability that at least one of the nodes is up when
the transaction arrives and p represents the probability that ther
node remains up until the read is completed.
that a site would fail in the next r seconds
the probability that it would not fail is p ,r

-r/MTBF
p = e

r

The parameter r represents, for example, .the amount of time
shared locks and read the items at the read-site.

3.1 Locking All Copies

(1)
to obtain

A simple distributed locking algorithm may require that all copies
be successfully locked before data are updated. That is, messages are
broadcast to lock and update the items in a tentative mode; if these
can be done at all nodes, the update is -finalized. An example of such
an algorithm might work as follows:

Algorithm LAC1

1) Update transaction T arrives at site q.

2) Issue LOCK_REQUEST for the read-set to the lock manager at q.

3) When LOCK_REQUEST is granted, read the read-set and compute the
update.

4) Broadcast INTEND_TO_UPDATE messages (including the write-set
and new values) to every node.

5) Each node stores the message on stable storage, obtains the
locks and performs the updates in tentative mode, and then
sends an AGREE_INTEND_TO UPDATE message to the controlling

29

module (at site q).

6) At site q,

a) when AGREE_INTEND_TO_UPDATE is received from each node,
send COMMIT and RELEASE LOCK messages to every node;
otherwise,

b) if AGREE_INTEND_TO_UPDATE is not received from some of
the nodes before the timeout, ABORT is sent to every
node to abort the update and release the locks.

The above protocol requires that all nodes be available to receive
and store the INTEND_TO_UPDATE message, and to send an acknowledgment
back to the controlling process. After this point, failure of any of
the nodes (other than the controlling node) will not delay the progress
of the update. Assuming guaranteed delivery of messages to the failed
node, we can show that the database will be consistent upon,recovery.

This model requires that all N nodes in the system be up when the
update transaction arrives; i.e.,

A = aN
With this model, if any of the nodes fails before it finishes its tasks
(Step 5 for cohorts and Steps 1 to 6 for controlling module) for the
pending update, the update will be blocked or aborted. We can compute
the probability that an update will be blocked. First assume that the
occurrence of a site failure is a Poisson process. Essentially, this
means that we assume that the probability that a failure occurs in any
time interval is proportional to the length of the interval, with
constant of proportionality the failure rate, or l/MTBF. This
assumption, which seems reasonable in the absence of detailed informa
tion on the failure behavior of specific machines, leads to the well
known exponential distribution for time intervals between failures.
That is, the probability that a node i will not fail within g seconds
of any initial time 0 is given by

-g./MTBFp.=e 1
1

(2)
If gi is the response time of a node to a task requested by some

transaction, p. then represents the probability that the task will
1

be completed. The parameter g. can be decomposed into the term
1

W., which represents the mean wait time, and the term X., which
1 1

represents the mean processing time; that is,

30

(3)
isprocessingofX. denotes the processing at site i; the amount

1

mainly dependent on
the site of origin,

whether i is the site where update originated. For
g. is essentially the time needed to complete

1

the update. For the cohorts, g. is the duration from the time the
1 .

transaction arrives until the COMMIT message is processed. The resi
liency of the system for update processing is the probability that all
N nodes are up when the transaction arrives multiplied by the probabil
ity that each of the N nodes remains up until it finishes its respec
tive task:

N-lR =Ap p
u 0

N N-l= a p po

Po is obtained from Equation 2 for the site of origin and

computed using Equation 2 for the N-l cohorts, assuming that
behave identically.

P is

they all

The resiliency of a system for update processing when this kind of
synchronization mechanism is used is lower than that of a centralized
database system (where the complete database is located at one central
site). The resiliency of a centralized database system for processing
updates is ap. If the number of update requests is greater than

o
the number of read requests, the resiliency of the distributed database
system is no longer better than that of a centralized database system.
Higher update resiliency can be achieved with some modifications to
Algorithm LACl; we shall refer to the more resilient algorithm as LAC2.
Algorithm LAC2 improves update resiliency by allowing a partition to
apply updates when at least a majority of the nodes are "up." In
Algorithm LAC2, it is necessary to check whether at least ~N+l)/~nodes
are up and record these nodes in the list_of_available_nodes before
Step 2. In Step 6 of the algorithm, AGREE~INTEND_TO_UPDATE messages
must be received from every nodes in the list_of_available_nodes before
an update is allowed to commit. The update resiliency of Algorithm
LAC2 should be quite similar to the algorithm in (Cheng and Belford,
80a). In brief, the update resiliency of LAC2 is

N N i N-i i-IR = t(.)a (I-a) p p
u f~' 0

The update protocols in this section consist essentially of two
phases (Gray, 79) (Lampson and Sturgis, 79) Algorithms with three
(Skeen, 81), four (Hammer and Shipman, 79), or more phases have also
been proposed.

31

3.2 Centralized Locking

The centralized locking algorithm is appealing because of its
conceptual simplicity. Consider a network of N nodes: a central and N-1
secondary nodes. Unlike the secondary nodes, the central has the
additional responsibility of preserving the consistency of data and
resolving conflict. Basically, locks are requested at the central
before an item is read or updated. The steps that an update transaction
has to go through may look like:

Algorithm CLA1

1) Update transaction is issued at a node q.

2) Lock requests are sent to the central.

3) If the locks could be granted, a GRANT message is forwarded to
q.

4) At q, the read-set is read and the update is computed.
COMMIT UPDATE request is sent to each node to update the local
write-set.

5) Each site applies the update and sends ACK to q.

6) When all the ACKs are received by q, it sends a RELEASE LOCK
message to the central.

This model requires that the central and the N-1 secondary nodes
must be up when the transaction arrives. The update resiliency of the
above algorithm is thus given by

(4)
where all p, p , and p have the formc 0

-g/MTBFp=e
(5)

We use the subscript 0 and c to denote the site of origin and the
central respectively; parameters (p and g) without subscripts refer to
those of the cohorts. Although the equations for update resiliency of
CLA1 and LAC1 have the same form, they are not the same because the
amount of time that each node has to be "up" are different. Since g,
g , and g in the centralized algorithm CLA1 are less than

c 0

32

the

pand g) in the Lock All Copies Algorithm,
o

CLA1, resulting in slightly higher R for
u

is to omit

their counterparts (g

and p are larger for
o

CLA1 when compared to LAC1. A more resilient algorithm
ACK and use sequence numbers like the algorithm below:

Algorithm CLA2

1) Update transaction is issued ata node q.

2) Lock requests are sent to the central.

3) If the locks could be granted, a GRANT message and a sequence
number are forwarded to q.

4) Site q waits for requests with lower
completed at q. The read-set is
computed.

sequence
read a~d

numbers to
the update

be
is

5) COMMIT-UPDATE request and the sequence number are sent to each
node to update the local write-set. A RELEASE LOCK request is
sent to the central.

6) Each site applies the update according to the sequence number.

The condition for the system to be available to process updates is that
the central and the site where the update originated must be available
for a certain period of time. The update resiliency is

R (1 (1 .)N-1) -g /MTBF -g /MTBF=a - -a e ceo
u

(6)
where g is the time needed for the central to grant the locks

c
(Step 3) and g is the length of time the site of origin spends on

o
the update request. (This assumes that other sites will eventually get
the update message and process the update, even if they fail during

this intial processing.) The factor a(1-(1_a)N-1) represents the

probability that the central and one of the secondary nodes to which
the transaction is to be submitted are up upon the arrival of the
transaction. If the transaction can be submitted to the central, it is
not necessary for a secondary node to be up before processing of the
transaction can begin; the resiliency is simply

-g /MTBFR =ae c
u

In case of a partitioning, only the partition with the central is
allowed to process update transactions. There is only one partition
that contains the central node; thUS, only one partition will perform

33

updates.

Proposed algorithms that belong to this category include those of
Garcia-Molina (Garcia-Molina, 79) and Bunch (Bunch, 75).

3.3 Centralized Locking with One Backup

The centralized locking algorithm, although quite appealing for
its conceptual simplicity, does not provide high resiliency. All
updating has to be halted when the central fails. Researchers in
distributed databases have suggested improving the resiliency of the
centralized locking algorithm by keeping backups for the central
(Alsberg et al., 76). Alsberg and co-workers have also shown the
sufficiency of one backup for most applications.

The centralized locking algorithm with one backup is assumed to
consist of a central node, which takes care of locking and resolving
conflicts., a backup, and N-2 secondary nodes. Essentially, the backup
is kept informed of the state of the central and, when the central
fails, the backup assumes the role of the central, and a new backup is
elected from the secondary nodes. When the backup fails, but not the
central, a new backup is likewise elected from the secondary nodes. All
failed nodes will be repaired and restored as secondary nodes. If
partitioning occurs, we assume that only the partition with the central
can make updates.

The centralized locking algorithm with one backup (CLOB) would
work as follows:

Algorithm CLOB1

1) An update transaction T arrives at a node q.

2) Node q requests from the central node locks for all the items
referenced by the update.

3) As soon as the central receives the lock request (from Step 2),
it transmits a LOCK_REQUEST_COOP message to the backup to
request cooperation. The message includes a list of the items
to be locked.

4) When the backup receives the LOCK_REQUEST COOP, it stores the
message on stable storage (Lampson and Sturgis, 79).

34

5) When the central decides that the lock request can be
it assigns a sequence number to the request and
GRANT_COOP message along with the sequence number
backup. The central marks the items in the database as

granted,
sends a
to the

locked.

6) In response to the GRANT_COOP message, the backup will send a
GRANT message and the sequence number to q, the node where the
lock request originated.

7) Once node q gets the GRANT message, the items are read from the
local database, and the update is computed.

8) After computing the update, q transmits an UPDATE message to
the cohort. The message contains update information, such as
the sequence number, names of items, and the new values.

9) Site q sends a ,message to release the locks at the central.

10) The central transmits RELEASE LOCK COOP to the backup and
releases the locks.

Based on the centralized locking algorithm with one backup descri
bed above, an update transaction is blocked when one of the following
sequences of events occur before the update is completed:

1) The central c fails. The backup b is promoted to be the new
central c l

• A new backup b l is elected, but the new central c l

fails before the new backup b l is fully installed.

2) The backup b fails, but not the central c. A. new backup b l has
to be installed, but the central c fails before the new backup
b l is fully installed.

The probability of update transaction not being able to be com
mitted due to Cases (1) and (2) is equivalent to the probability that
the failures of the central and the backup occur within k seconds of
each other, where k is the mean time to install a new backup. In Case
(1), the old backup fails within k seconds after the old central
failed. In Case (2), the central fails within k seconds after the old
backup failed.

The probability that a site will fail within the next t seconds is
assumed to be Poisson distributed; namely,

35

1 -t/MTBF-e

or approximately t/MTBF.

The probability that update processing will be blocked due to Cases
(1), and (2) is therefore approximately

-(1 -g /MTBF)(l -k/MTBF)q2- -e c . -e

+(l_e-gb/MTBF) (l_e-k/MTBF)

(7)
where MTBF is the mean time between failure of a node, k is the mean
time to install a backup, g is the duration for which the central

c
has to be up to process the update, and gb is the duration the

backup has to be up. The first term represents the probability that
the central fails before the update is completed, the backup becomes
the new central, but it too fails before anew backup is installed. The
second term represents the probability that the backup fails and the
central subsequently fails before a new backup can be installed.

The resiliency of the system to process updates is then equal to

2 N-2
Ru= a (1-(1-a))(1-q2)Po'

where p is the probability that the site of origin remains availa~
o

ble until COMMIT messages are sent to all cohorts:

-g /MTBF
P =e 0o

(8)
2 N-2The factor a (1-(1-a) y represent the probability that the

central, the backup, and one of .the secondary nodes to which the
transaction is to be submitted are up when the update transaction

arrives. The factor (1_(1_a)N-2) can be removed if the transaction

is submitted to the central or backup.

The resiliency can obviously be increased if the system is allowed
to start processing update whenever the central is up (even if the
backup is not); we refer to this more resilient algqrithm as Algorithm
CLOB2. The resiliency of CLOB2 can be approximated as follows: If the
central and backup are available when the transaction arrives, the
resiliency is given by Equation 7. When the central alone is
available, the central must survive until the update is completed or a
backup is installed. The probability that the central fails before the
update is completed and before a backup is installed is approximately

-(1 -g /MTBF)(l -k/MTBF)ql- -e 0 -e

The update resiliency when the central alone is up is

36

N-2
(1-(I-a))a(l-a)(I-ql)Po

(9)
In the case when the backup alone is up, the backup immediately becomes
the central, and the resiliency is similar to that given by Equation 8.
The update resiliency of CLOB2 is therefore the sum of Equations 7 and
9 :

R =a2 (1-(I_a)N-2)(I_q)p
u 2 0

N-2
+ 2(1-(I-a))a(l-a)(I-q l)Po

3.4 Linear Majority Voting with Timestamps

The daisy chain model of Thomas' Majority Consensus Algorithm
(Thomas, 79) is an example of a Linear Majority Algorithm. In the
database of each node, each data item has a timestamp that reflects the
time the item was assigned its current value. Updates are accepted only
if the read-set used in computing the updates have not been made
obsolete by another transaction. To determine whether the read-set is
up to date, a vote request is passed from node to node to give each
node a chance to decide.

In the daisy chain model of the Majority Consensus Algorithm
(Thomas, 79) (in which the vote request is passed from one node to
another, instead of broadcast), after the first node has voted, at
least one of the remaining N-l nodes must be available to receive the
update request. The probability that all N-l nodes fail is

(l_a)N-l; the probability that at least one of the N-l is available

N-l '
is 1-(I-a) . After the second node has voted, at least one of the

remaining N-2 nodes must be available to receive the update request and
vote on it. After the third node has voted, at least one of the remain
ing N-3 nodes must be available to receive the update request and vote
on it, and so forth. The resiliency of the system for processing
updates is therefore

N N-l N-2 . N-m+l(1-(I-a))p {1-(I-a))p(l-(l-a))p ... (l-(l-a))p
o

where'm is the mean number of nodes that have to vote before a consen
sus is reached. p and p are given by

o

p = e-g/MTBF

and

p and

An algorithm that uses a
Gifford (Gifford, 79). With
transaction has to collect a
da~abase, and a write quorum

37

..

For p , the probability that the node of origin doesn't fail,
o

g includes the time to read base·set, compute update, vote, and
o

transmit the vote message to another available site. For p, the
probability that one of the other nodes doesn't fail, g includes the
time to receive the message, read timestamps and vote, and to transmit
the vote message to another available site.

Other linear algorithms generally have lower resiliency, es·
pecially those in which the communicatiop medium is a ring and all the
sites must participate in the synch~onization in a pre-determined
order.

3.5 Broadcast Majority with Timestamps

One of the ways to facilitate recovery of a distributed database
from failure due to partitioning is to allow only one of the partitions
to process updates. This can be done by allowing only the partition
with the majority of nodes to process updates, as in the distributed
algorithm DMI in (Cheng and Belford, 80a). The update resiliency (for
algorithms requiring a majority such as DMI (Cheng and Belford, 80a)
and LAC2 referred to earlier) is the probability that an arriving
transaction finds that a majority of nodes are "up" and that each of
these survive through their critical period of duty.

N N i N-i i·l
r~l(i) a (I-a) PoP ,
p ~ again have the form

o

-g/MTBF
P = e

(10)

With this type of algorithm, before the update transaction T is
processed, the concurrency control ~lgQrithm makes sure that a majority
of nodes are available and records the names of these nodes in the
list of available nodes. If the update transaction T does not conflict
with-any of the pending transactions originated from any of the nodes
in the list_of_available_nodes, T will be cqmmitted.

weighted nlajofity has. been proposed by
this weighted voting algorithm, every
read quaru~· af R votes to read the

of W votes to write.

38

4 A Comparison of Resiliency

Queueing models have been developed for the concurrency control
models described in this paper in an effort to quantitatively compare
the resiliency of the different models. The analytic models are
derived in the following manner: The I/O service time requested from
the I/O server depends on the type of request. The I/O server is
modelled by an n-stage parallel server. By inspecting the synchroniza
tion algorithms, one can determine the moment of the service time for
each, and their relative request frequencies. From this information on
I/O requests, the first and second moments of the overall I/O service
time can be computed. Knowing these moments, the mean wait time can be
computed using the well-known mean-wait-time equation for M/G/1 queues.
To compute g, g , g , etc., we simply determine the task eacho c
node has to perform for the update before the update can be committed
and add up the delay (response time) incur at each step of the task.
(Note that we assume that the network consists of a set of independent
queues.) These g's are then used in the respective resiliency equation
to obtain the resiliency of the concurrency control algorithm.

The parameters for the models and the values used to obtain the
curves given in Figure 1 can be found in Table 1. The resiliency of
the different models as a function of MTBF is given in Figure 1. Table
2 summarizes the characteristics of the algorithms compared in Figure
1.

Parameters Definitions Values

3480 sec
5

0.1 sec

0.1 updates/sec
5 items

0.025

Ar
Bs

I/O

M

MTTR
N
T

arrival rate per node
read-set plus
write-set size

I/O time
for accessing an item,
a lock, a timestamp, etc.

number of items in 5000
the database

mean time to repair
number of nodes
network delay

sec

C
\,

Table 1. Parameters and their values.

39

Algorithms Characterist~cs

CLOB1 Centralized Locking with One Backup. The central,
backup, and a secondary node have to be "up" before
processing of transaction can begin; thereafter,
processing will not be interrupted as long as the
secondary and either the central or the backup are up.

CLOB2 Centralized Locking with One Backup. The central (or
backup) and a secondary node have to be up before
processing of transaction can begin; thereafter,
processing will not .be interrupted as long as the
secondary and either the central or the backup are up.

CLA2 .Centralized Locking Algorithm. The central and a
secondary have to be up b~fore processing of transac
tion can begin.

MCA Thomas' Majority Consensus Algorithm. Processing can
begin as long as one of the nodes is up.

LAC2 Lock All Copies. More than a majority of the nodes have
to be up before processing can begin.

Table 2. Summary of algorithms compared in Figure 1.
(Please refer to preceeding sections for more detail)

40

CLOB2
MCA

30 MTBF
(days)

Resili ncy

0.999

0.998

0.997

0.996

0.995

0.994

0.993

0.992

0.991

0.990
10 20

CLOB1--Centralized Locking with One Backup.
CLOB2--Centralized Locking with One Backup.
CLA2--Centralized Locking Algorithm.
MCA--Thomas' Majority Consensus Algorithm.
LAC2--Locking All Copies.

Figure 1: Resiliency as a function of MTBF

41

Figure 1 shows that algorithms reqU1r1ng that a majority of nodes
be "up" (such as'LAC2) have relatively low resiliency. Models requir
ing that the central t the backuPt and a secondary node be "up" (CLOBl)
before an update can be started has higher resiliency than LAC2.
Models requiring only the central and a secondary node be up (CLA2) has
higher resiliency than CLOBI. The resiliency of CLOB2 and the resi
liency of MCA are essentially identical for the range of MTBF and the
parameters chosen. CLOB2 and the daisy chain Majority Consen
sus Algorithm appear to have the highest resiliency of all the models
considered in this paper. With CLOB2 t processing of the transaction can
begin when the central or/and the backup and a secondary are "up;"
furthermore t failure of the central does not disrupt the progress as
long as the backup is still alive. With the Majority Consensus
Algorithm t processing of· the update transaction can begin as long as
one of the node is up; processing of the transaction will not be
blocked as long as one of the nodes that have not voted on the update
is alive to receive the vote request and vote on the update. It is
interesting to note that the Thomas' Majority Consensus Algorithm t
albeit it has a relatively high response time (Garcia-Molina t 78)t
appears to have very high update resiliency. The success of the
Majority Consensus Algorithm can be attributed to the fact that it only
requires a majority of the nodes for synchronization; furthermore t not
all of these nodes have to be "up" simultaneously.

The resiliency of Broadcast Majority with Timestamp algorithms is
very similar to that of LAC2. The resiliency of CLAI and LACI are not
plotted on the graph in Figure 1; their resiliency are the lowest among
the models considered in this paper. Although both CLAI and LACI
require that all the nodes be UPt the update resiliency of CLAI is
better than LACI because CLAI runs faster. Locks have to be stored at
all nodes in the case of LACI whereas locks have to be stored at the
central alone for CLAl; thus t W. and g. for CLAI are lower t1 1

implying that the cohorts have to be up for a shorter time.

5 Summary

In this paper t we have used read resiliency and update resiliency
to compare the resiliency of a few concurrency control algorithms and
point out changes to the algorithms that allow update resiliency to be
improved. We have only considered some aspect of reliabilitYt
availabilitYt and resiliency. The modelling in this paper can be
considered as modeliing of the first order effect of availabilitYt
resiliencYt and reliability. The problem of communication network
failure has been temporarily ignored to make the analysis tractable.

42

Not considered in this paper is the problem of recovery. Although the
Majority Consensus Algorithm performs well in terms of resiliency as
defined in this paper, its recovery is far more complicated than that
of the Centralized Locking with One Backup Algorithm. Work is in
progress, in analyzing and comparing more carefully the behavior of the
models described in this paper, and in developing more detailed models
to allow us to better understand the relationships among availability,
resiliency, and concurrency control.

6 References

(Alsberg, Belford, et al., 76) Alsberg, P. A., Belford, G. G., Day, J.
D., and Grapa, E., "Multi-copy Resiliency Techniques," 1976 CAC
document reprinted in Distributed Data Management (J. B.
Rothnie, Jr., P. A. Bernstein, and D. W. Shipman, eds.) IEEE,
1978, pp 128-176.

(Bernstein et al., 78) Bernstein, P. A., Rothnie,J. B., Goodman, N.,
and Papadimitriou, C. A., "The Concurrency Control Mechanism of
SDD-1: A System for Distributed Databases," IEEE Trans. on
Software Eng. , Vol. SE-4, pp 154-168, May 1978.

(Bernstein et al., 79) Bernstein, P. A., Shipman, D. W., and Wong, W.
S., "Formal Aspects of Serializability in Database Concurrency
Control," IEEE Trans. Softw. Eng. SE-5, 3 (May 1979), pp
203-215.

(Bernstein and Goodman, 80a) Bernstei~, P. A. and Goodman, N.,
"Timestamp Based Algorithms for Concurrency Control in Distri
buted Database Systems," Proc. 6th Int. Conf. on Very Large
Data Bases, Oct. 1980.

(Bernstein and Goodman, 80b) Bernstein, P. A. and Goodman, N.
"Fundamental Algorithms for Concurrency Control in Distributed
Database Systems," Tech Report CCA-80-05, Computer Corporation
of America, Feb., 15, 1980.

(Bernstein et al., 80) Bernstein, P. A., Shipman,D. W., Rothnie, J.
B., "Concurrency Control in A System for·Distributed Databases
(SDD-1),1' ACM Trans. on Database Systems, Vol 5, No.1, pp
18-51, March 1980.

(Bunch, 75) Bunch, S. R., "Automated Backup," in
Study Report, CAC Doc. 162, Center for

Preliminary Research
Advanced Computation,

43

Univ. of Illinois at Urhana-Champaign t May 1975.

(Cheng and Belford t 80a) Cheng t W. K. and Belford t G. G' t "Update
Synchronization in Distributed Databases t " Proc. Sixth Int.
Conf. on Very Large Data Basest Montreal t Oct. 1980.

(Cheng and Belford t 80b) Cheng t W. K. and Belford t G. G' t "Analysis of
Update Synchronization Schemes in Distributed Database t " Proc.
COMPCON Fall 80 t Sept. 1980.

(Cheng and Belford t 80c) Cheng t W. K. and Belford t G. G. t "A Clock
Synchronization Algorithms for Update Synchronization in
Distributed Databases on Local Broadcast Networks t " Proc. of
the 5th Conference on Local Computer Networks t Minneapolis t
Oct. 1980.

(Ellis t 77) Ellis t C. A. t "A Robust Algorithm for· Updating Duplicate
Databases t " Proc. 2nd Berkeley Workshop in Distributed Databa
ses and Computer Networks /' May 1977.

(Eswaran et al. t 76) Eswaran t K. P. t GraYt J. N. t Lorie t R. A. t and
Traiger t I. L. t "The Notions of Consistency and Predicate Locks
in A Database System t " Comm. ACM t vol 19 t No. llt pp 624-663 t
Nov. 1976.

(Garcia-Molina t 79) Garcia-Molina t H., "Centralized Control Update
Algorithms for Fully Redundant Distributed Databases t " Proc.
First International Conf. on Distributed Computing Systems t
IEEE t N.Y. t Oct. 1979 t pp 699-705.

(Garcia-Molina t 78) Garcia-Molina t H' t "Performance Comparison of Two
Update Algorithms for Distributed Databases t " Proc. Thrid
Berkeley Workshop on Distributed Data Management and Computer
Networks t Aug. 29-31 t pp 108-199 t 1978.

(Gifford t 79) Gifford t D. K. t "Weighted Voting for Replicated Data t " in
Proc. 7th Symposium on Operating Systems Principles t ACM, Dec.
1979.

(GraYt 79) GraYt J. N. t "Notes on Database Operatiing Systems t " in
Operating Systems: An Advanced Course t Springer-Verlag, 1979.

(Hammer and Shipman t 79) Hammer t M. H. and Shipman t D. W. t "Reliability
Mechanisms for SDD-l: A System for Distributed Databases t "
Tech. Rep. CCA-79-05 t Computer Corporation of America t
Cambridge t MAt July 31 t 1979)

44

(Kaneko et al., 79) Kaneko, A., Nishihara, Y.,
Hattori, M., "Logical Clock Synchronization
cated Database Control," Proc. 1st Int.
Computing Systems, Oct. 1979, pp 601-611.

Tsuruoka, K., and
Method for Dupli
Conf. Distributed

(Lampson and Sturgis, 79) Lampson, B. and Sturgis, H., "Crash Recovery
in Distributed Data Storage System," Comp. Sci. Lab., Xerox
Palo Alto Res. Center, Palo Alto, CA, unpubl. paper, 1979.

(Skeen, 81) Skeen, D., "Nonblocking Commit Protocols," Memorandum No.
UCB/ERL M81/11, March 10, 1981.

(Skeen and Stonebraker, 81) Skeen, D. and M. Stonebraker, "A Formal
Model of Crash Recovery in A Distributed System," Proc. of The
Fifth Berkeley Workshop on Distributed Data Management and
Computer Networks, Feb. 1981, pp 129-142.

(Stonebraker, 79) Stonebraker, M., "Concurrency Control and Consistency
of Multiple Copies of Data in Distributed INGRES," IEEE
Trans.on Software Engineering, vol SE-5, No.3, pp 188-194,
May 1979.

(Thomas, 79) Thomas, R. H., "A Majority Consensus Approach to Concur
rency Control," ACM Trans. on Database Systems, Vol. 4, No.2,
pp 180-209, 1979.

45

A ROBUST AND EFFICIENT PROTOCOL
FOR CHECKING THE AVAILABILITY OF REMOTE SITES

Bernd Walter

Institut fUr Informatik
University of Stuttgart

Stuttgart
Fed. Rep. of Germany

Abstract: A robust and efficient protocol for checking the availability of
remote sites is described. A remote site is said to be available if it has
not crashed and if the communication facilities are able to transmit
messages to and from this site. The presented protocol is robust against
any number of site crashes and communication breakdowns including network
partitioning. It is proven that the protocol is minimal in the given
context. Some app1i cat ions such as the recovery of mult i -s ite-t ransact ions
are given.

Keywords: Availability, robust protocols, distributed processing, trans
action processing, distributed databases.

1. I nt roduct i on

The protocol for checking the availability of remote sites in computer
networks can be used in the context of arbitrary applications. However,
since the ori gi na1 intent i on was to deve lop just a tool to support the
recovery of multi-site-transactions in distributed database systems
(DDBS), a DDBS context will be used in the following discussions.

Update-transactions in DDBS may be arbitrarily complex, such that several
sites of the system are involved in the processing of just one trans
action. To ensure consistency, update-transactions must be atomic, i.e.
all its updates must be committed or none of them. Adequate recovery
mechanisms and so-called two-phase-commit protocols /1, 6/ are needed to
guarantee this all-or-nothing property throughout normal and abnormal con
ditions. A lot of work has been invested in the development of commit
protocols and recovery-mechanisms for DDBS, however, only few investi
gations were made in order to develop suitable protocols for the detection
of abnormal conditions (failures). In distributed systems those failures
are of special interest which affect the availability of remote sites.
Events which cause sites to become unavailable are called crashes, events
which cause sites to become available again are called recoveries.

46

Assume a transaction T and two sites A and B such that some updates of T
are to be performed at A and the others at B. Assume further, that A is
wait i ng for some ready-message from B. Now if B crashes or becomes una
vailable due to communication breakdowns, two different strategies are
possible:
1 A waits unt il the awaited message arri ves, whatever is happeni ng. If B

eventually recovers and remembers T, then this strategy will work. How
ever serious drawbacks are associated with this strategy:

Since none of the resources locked by the affected transaction may be
released, these resources are not available for other transactions,
i.e. other transactions may be blocked as well until B recovers.
The cost of waiting increases proportional to the time a transaction
has to wait /10/.
There is no guaranty that B will recover within an acceptable amount
of time. Sometimes, there is even no guaranty that B will recover at
all.

2 A backs out the affected transact i on T and releases all its resources.
As soon as B recovers, a message that T has been backed out is sent to
B. This strategy avoids the drawbacks of the first strategy, however, a
protocol is needed to ensure fast and reliable detection of crashes and
recoveri es. Note that such a protocol needs not to detect crashes of
single processes, since in this case the local supervisor remains intact
and will be able to detect and to handle such events locally. Remote
detection is only needed if the supervisor and thus the whole system
becomes unavailable (see also application example 1).

It would also be possible to use a mixture of the two strategies, such
that site crashes are detected whenever some site tries to send a message
to a crashed site. However this non-systematic approach cannot guarantee
that a site crash will be detected within an acceptable period of time,
that means that the drawbacks of the first strategy are valid for this
mi xt.!J re as well.

Up to now SDD/I is the only system which provides a facility for system
atic detection of site failures and recoveries. However, the mechanisms of
SDD/l's RELNET /4/ are not robust against network partitioning. Further
more, as will be seen in the discussions at the end of this paper, the)
corresponding RELNET-protocols need more messages than our proposal.

In 1his paper a protocol will be described with the following character
istics:
- Each site of a network is provided with a table which presents this

site's current view of the network, i.e. the table shows which remote
sites are currently available for the owner of the table and which are
not.
The app1i cat i on of the protocol is not 1imited to the use in DDBS, but
may be used in other distributed systems as well.
Robustness is provided against any number of site crashes and communi
cation breakdowns including network partitioning.
During the execution of the protocol no data must be written onto stable
storage, only duri ng site start/restart one di sc access wi 11 be needed.

47

- The protocol uses distributed control.
The protocol is minimal in the given,context, i.e. a minimal number of
messages is needed during normal operations and a minimum of time is
needed to propagate crashes and recoveries.

In the remainder of this paper first of all the basic communication fa i
lities of the underlying network will be defined. Then a detailed destr p
tion of the protocol for checking the availability of remote sites will be
given including some proofs of the protocol IS characteristics. The:appli
cation of the protocol will be demonstrated in the context of transaction
recovery, maintenance of redundant data, and compile-time checks. Finally
the described protocol will be compared with the corresponding mechanisms
of SOD/lis RELNET.

2. Basic Communication Facilities

The underlyi ng computer network, whi ch provi des the bas i c message trans
mission facilities (ARPANET-like) is assumed to have the following charac
teristics:
- If A recei ves two messages from B, then they are recei ved in the same

order in which they were sent.
- If A di d not fail between the recei pt of two messages from B, then A

a1so recei ved any other messages sent to it by B between these two
messages.

- It is not guaranteed that a message which is sent by one site, will
actually be received by the intented receiver. If the receiver fails
before the message arrives, then the message is lost. The only way for a
sender to be sure that a ,message has been received is to require an
acknowledgement from the receiver.

- If communication facilities fail such that A is able to communicate with
B but not with C, then also B cannot communicate with C.

- If B is unreachable from A, then A cannot determine whether B has
crashed or is working in isolation. '

- Due to crashes of communication lines the network may be split into two
or more independent subnetworks. In reality partitions will mostly con
sist of just one isolated site, this will be the case whenever the 'local
communication facilities fail such that no messages can be sent to re-
mote sites. '

Furthermore it is assumed, that there are two constants LMAX and LMIN
where LMAX reflects the maximum transmission time of a single message be
tween two arbitrary nodes and LMIN the minimum transmission time. Note
that for the sake of simplicity clock divergencies during LMAX and LMIN
are not treated explicitly.

3. Availability of Remote Sites, Views and State Tables

A remote site B is available for a site A, only if the following holds:
1 B is able to process requests from A, i.e. B has not crashed.
2 The communication facilities are able to transmit messages between A

and B.

48

3 A is aware that 1 and 2 hold, i.e. it is aware that it may send requests
to B.

In order to enable a site A to determine whether 1 and 2 hold, B has to
send messages to A. Such messages could be send on A's request or period
ically. If A does not receive an awaited message within a certain period
of time, then B is assumed to be unavailable for A.

If such messages are sent on request, then two messages (request + answer)
and one timer (A waits for a period of length 2LMAX + AMAX where AMAX is
the maximum processing time needed at site B to generate an answer to A's
request) are needed to perform a single check of 1 and 2. One message and
two timers 'are needed, ifB periodically sends messages (HI-messages) to
A. In order to have a minimum of messages per check, the second alter
native will be used in the remainder of this paper. Periodical checks also
assure that, whenever 1 and 2 hold, A will be made aware of this fact.

Periodical checks are performed as follows:
- Each time, B sends a HI-message to A, a timer TSENDER is started. When

TSENDER expires, the next HI-message is sent etc.
- Each time, A receives a HI-message from B, a timer TCONTROL is re

started. If TCONTROL expires without A having received a HI-message,
then B is assumed to be unavailable. As soon as a new HI-message from B
is received, B is assumed to be available again. .

Let SINV be the timeout period of TSENDER, then the timeout period of
TCONTROL can be determined as EINV = SINV + LMAX - LMIN. This is the maxi
mum period which may pass between two successive HI-messages, it reflects
the worst case, i.e. a 'slow l message follows a Ifast l message.

This small protocol enables A to have a certain view of B. Two different
views are possible:
- B is UP: No timeout has been reported by TCONTROL, thus B is assumed to

be available for A.
- B is DOWN: A time-out was reported by TCONTROL and no HI -message has

been received since that time, thus B is assumed to be unavailable.

Due to several reasons a view sometimes will not reflect the actual state
of the system:
- State change (crash or recovery) since last check.
- HI-messages were lost.
- Message transmission time exceeded LMAX.
However, since checks are performed periodically a view eventually will
reflect the true state (provided that the state will be stable (no crashes
and recoveries) for a sufficient period of time).

A state table contains the current views of all remote sites as seen from
the owner of this state table. Such a table simply consists of an entry
for each site of the network. If CURRENT-STATEA is the state table of A,
then CURRENT-STATEA [BJ reflects A's view of B and thus contains one of
the values UP or DOWN.

49

It is assumed that there are physical clocks at each site of the system.
Phys ica1 clocks are needed to implement timers and to increment 1oca1
logical clocks /4/. Logical clocks are used for the generation of time
stamps. All the clocks in the network are synchronized in a way as des
cribed in /5/ (see also below).

4. The Protocol (RSC-Protocol)

In the following the protocol to be described will be called RSC-protocol
(RSC for Reliable State Control). The RSC-protocol consists of two sub
protocols, CONTROL and CHANGE. CONTROL is used to detect state changes and
CHANGE is used to perform the corresponding updates in the CURRENT-STATE
tables of the various sites. At first CONTROL and CHANGE will be described
separately and the interactions between these two subprotocols will be de
fi ned. Then the behavi our of the RSC-protoco1 duri ng site start/restart
and in the case of a network partitioning will be discussed. Finally some
proofs of the characteri st i cs of CONTROL and CHANGE wi 11 be gi ven. An
algorithmic definition of the protocols by means of a PASCAL-like notation
can be found in the appendix. Note that the complete RSC-protocol has also
been specified formally and verified by means of predicate-transition-nets
/3/ in combination with some temporal logic; however, due to space limita
tions the formal specifications are omitted in this paper; the interested
reader is referred to /12/.

4.1 CONTROL

The purpose of CONTROL is to detect crashes and recoveries as well as dif
fering views within a partition. Whenever such an event has been detected,
CHANGE will be initiated.

50

TCONTROL. If TCONTROL expires, subprotoco1 CHANGE is started, since
(K-1.)modN l s state is assumed to have changed from UP to DOWN.

Of course, HI-messages could be substituted by normal messages, provided
that actual timestamps are included in such messages as well. However, for
the sake of simplicity in the following only explicit HI-messages will be
considered.

In real ity an arbitrary number of sites may have crashed and the net may
be partitioned. If (K-1)modN is DOWN in K's view, then
- K has to monitor (K-1)rnodN to detect when it will be available again

(due to site recovery or recovery of thecorrespondi ng communi cat i on
paths).

- K has to monitor those sites which formerly had been controlled by
(K-1)modN.

A1.1 these sites to be monitored by K make up K's AREA-OF-CONTROL. More
exactly K's AREA-OF-CONTROL includes the following sites:
- The first site preceeding K along the virtual ring which is UP in Kls

view. Let this site be (K-J)modN where 0 < J < N.
- All' sites (K-I)modN which preceed K and succeed (K-J)modN along the vir-

tualring (0 < I < J). All these sites are DOWN in K's view.
IfK itself is the only available site in it's view, then K's AREA-OF-
CONTROL does only include DOWN-sites. .

If (K+1)modN is DOWN in K's view, then K has to send HI-messages to all
potential controllers of itself (Remember that there may be some sites
which have not crashed but which are not available for K because some com
munication lines have crashed). All these sites make up K's so-called
BROADCAST-AREA. K's BROADCAST-AREA exactly contains the following sites:
- The first site (K+H)modN (0 < H < N) which follows K along the virtual

ring and which is UP in K's view.
- All sites (K+I)modN which follow K and preceed (K+H)modN along the vir

tual ring, such that 0 < I < H. All these sites are DOWN in K1s view.

For an· arbitrary state of the network CONTROL can be defined as follows
(for an arbitrary non-isolated site K):
- K periodically sends HI-messages to each site in its BROADCAST-AREA.

Each time TSENDER generates a timeout signal HImessages are sent to all
these sites at once and TSENDER is restarted.

- K periodically receives HI-messages from site (K-J)modN which is the
only site of K1s AREA-OF-CONTROL which is UP in K's view. Each time a
HI-message is received from (K~J)modN, timer TCONTROL is restarted. If a
timeout signal is received from TCONTROL, then subprotoco1 CHANGE is
started. CHANGE is also started whenever a HI-message is received from
any other site in· K's AREA-OF-CONTROL (sites which are DOWN in K's
view).

1) Let (K-I)modN be defined as follows: If K > I then (K-I)modN = K-I;
if k = I then (K-I)modN = N; if K < I then (K-I)modN = K-I+N.

51

Fi g.l in the appendi x shows the arrangement of the AREAs -OF -CONTROL and
the BROADCAST-AREAs in a network consisting of 5 sites, 2 of which are
down. Fi g. 2 shows the correspondi ng arrangement for the same network,
now fallen apart into 2 partitions such that partition 1 contains sites 1,
4, and 5 with site 4 being down and partition 2 contains sites 2 and 3.

So far the dynami c behavi our of CURRENT -STATE has not been cons idered.
However, at each point of time CURRENT-STATE may be updated by some other
site whi ch has detected some crash or recovery and thus has started
CHANGE. In this case a new version of CURRENT-STATE is broadcast by the
updating site (see next chapter).

Since new vers ions may be broadcast by di fferent sites concurrently (due
to the detection of multiple crashes/recoveries), a version number is
attached to each new version. A version number consists of an actual
timestamp and the broadcasting site's identifier. Each site accepts a new
version only if its version number is higher than that of the local occur
rence of CURRENT-STATE. To ensure that all sites in a partition have iden
tical views and to detect the loss of new versions, the version number of
the local CURRENT-STATE table is attached to each HI-message. Now, differ
ing views can be detected by the receiving site.

However, due to different message delays during the distribution of a new
version of CURRENT-STATE temporary inconsistencies between the views of
different sites in the same part iti on may occur. Si nce such temporary
inconsistencies should be tolerated, CONTROL must be able to distinguish
between i ncons i stenci es caused by message .de1ays and i ncons i stenci es
caused by failures.

If a new version of CURRENT-STATE is broadcast at time T, then it will be
received by the other sites at a point of time between (T + LMIN) and
(T + LMAX). If a HI-message is received containing a version number higher
than the local table's version number, this cannot happen earlier than at
time (T + LMIN + LMIN). Whenever this is happening, a timer TCHECK(time
out period: LMAX - LMIN - LMIN) is started at the receiving site and the
received version number is stored in a variable CHECK-VERSION. If a new
version of CURRENT-STATE with a version number at least as high as the
value of CHECK-VERSION is received, then TCHECK is reset, else, if TCHECK
expires, a failure must be assumed and CHANGE is started. If a further HI
message is received with version number higher than the value of CHECK-
VERSION, then this new value is stored in CHECK-VERSION and TCHECK is
restarted.

This procedure has to be applied only to HI-messages received from the UP
site in the recei ver I s AREA-OF -CONTROL and only if the recei ved vers i on
number is higher than the local one (else each inconsistency between views
will be detected twice and two CHANGE executions will be initialized in
stead of one).

So far five events may happen during the execution of CONTROL (as will be
seen later there are two more):

52

- Receipt of a HI-message.
- Receipt of a new version of CURRENT-STATE (to be called STATE-TABLE-

message).
- Time-out signal from TSENDER.
- Time-out signal from TCONTROL.
- Time-out signal from TCHECK.
To avoid misinterpretations of a site1s status, time-out signals from
TSENDER are processed at the highest priority. All other events are pro
cessed in a fIfO order.

4.2 CHANGE

The purpose of CHANGE is to propagate crashes and recoveries detected by
CONTROL. The propagation should be performed within one execution of
CHANGE however compl ex the detected changes had been. In the fo 11 owi ng a
site i nit i at i ng a CHANGE execut ion wi 11 be called coordi nator , all other
sites participating in this execution will be called cohorts. Since CHANGE
may be executed at different sites concurrently, some sites may simulta
neously be the coordinator in one incarnation of CHANGE as well as a
cohort in some other incarnations.

Sometimes, CONTROL only detects a part of a complex change and the coordi
nator of the subsequent CHANGE execution can be provided only with incom
plete information on the real situation.

Example: Assume that K's AREA-Of-CONTROL consists of (K-l)modN and that
(K-l)modW s AREA-OF -CONTROL cons i sts of (K-2)modN. Now, if (K-l)modN
and (K-2)modN crash nearly simultaneously, then CONTROL assures that K
detects the crash of (K-l)modN. However, at this point of time CONTROL
does not enable any site to detect the crash of (K-2)modN.

Since we do not want CONTROL to use additional messages (control messages
should not decrease system throughput), it is CHANGEls task to collect the
lacking information on the characteristics of the detected change.

When CHANGE is initiated, the coordinator1s physical clock can be in one
of the following states:
- The clock contains the value 0: A site has- initiated CHANGE after its

restart (see 4.4) and no timestamped message has been received between
restart and initiation.

- The clock possibly diverges from other clocks in the system: A site has
i nit i ated CHANGE after havi ng detected a state change from DOWN to UP
(the change might have been caused by the physical recovery of a network
partitioning). -
The clock is synchronized: All other cases.

Since the version number of the new version of CURRENT-STATE to be built
up by CHANGE must contain an actual timestamp, it is also a task of CHANGE
to synchronize 'the coordinator's clock.

CHANGE consists of two phases:
- Information-collection- and clock-synchronization-phase: At first the

coordinator sends so-called REQ-STATE-messages containing the coordina
tor's identifier and an actual timestamp to all sites in the network and

53

then starts its local timer TCHANGE (timeout period: 2·LMAX + AMAX).
A Cohort receiving a REQ-STATE message responds by sending a STATE
REPORT-message back to the coordinator. A STATE-REPORT-message contains
the cohort1s identifier, the timestamp of the corresponding REQ-STATE
message and an actual timestamp. Thi s phase ends when STATE-REPORT
messages have been received from all cohorts; if any response is missed,
this phase lasts until a timeout signal has been reported by TCHANGE.

- State-table-distribution-phase: Depe~ding on the received STATE-REPORT
~essages a new version of CURRENT-STATE is built up. Sites from which a
STATE-REPORT-message was recei ved are marked UP, non-respondi ng sites
are marked DOWN. This new version of the state-table is broadcast as
part of a STATE-TABLE-message to all sites which are marked UP. A STATE
TABLE-message also contains an actual timestamp and the coordinator1s
identifier, which together make up the new version number. A cohort
accepting a new version of CURRENT-STATE, immediately sends HI-messages
to all sites in its new AREA-OF-CONTROL and restarts its timers TSENDER
and TCONTROL. If no UP-s ite is contained in the new AREA-OF -CONTROL,
TCONTROL is stopped (this can happen if a site has been isolated due to
communication breakdowns).

As already mentioned, concurrent CHANGE-executions are synchronized by
means of the version-number of the new state-table. If clocks fail such
that a state-table is accepted which does not reflect an actual view of
the network but does contain the highest timestamp in its version number,
this failure will be detected by CONTROL. Therefore the RSC-protocol is
also robust against diverging and/or failing clocks.

4.3 RSC = CONTROL + CHANGE

Since a CHANGE-coordinator remains a member of some other site1s AREA-OF
CONTROL, a coordi nator must keep sending HI -messages duri ng its CHANGE
execution. The following events can occur during a CHANGE execution:
- Time-out signal from TSENDER.
- Time-out signal from TCHANGE.
- Receipt of a HI-message (will be ignored).
- Receipt of a REQ-STATE-message.
- Receipt of a STATE-REPORT-message.
- Receipt of a STATE-TABLE-message.
These events are processed depending on their priority. Timeout signals
from TSENDER possess the highest priority, REQ-STATE-messages possess the
second highest priority, all other events are processed in a FIFO order.

In addit i on to the events 1i sted above, two further events may occur
during the execution of CONTROL:
- Receipt of a REQ-STATE-message (generqte response).
- Receipt of a STATE-REPORT-message, however, this can only happen due to

failures (ignore).

During a site1s start/restart this site just executes the CHANGE-protocol
and then switches over to CONTROL, all further CHANGE-executions are ini
tiated by CONTROL (for more details see below). If CHANGE and CONTROL are

54

regarded as procedures then RSC can be interpreted as a procedure which
consists of a call of CHANGE and a subsequent call of CONTROL. In a real
environment, e.g. in the context of a distributed operating system kernel,
all events which can happen during RSC can be interpreted as kernel events
(i nterrupts) whi ch may be processed in two modes, dependi ng on whether
CONTROL or CHANGE is currently executed.

An algorithmic specification of all constants, variables, timers, messages
and procedures of the RSC-protocol can be found in the appendix.

4.4 Site start/restart

A site start/restart is done by executing the CHANGE protocol. The REQ
STATE-messages sent during this CHANGE-execution contain a zero-timestamp
(assuming that during the site's down time the clock stopped too). With
the recei pt of the STATE-REPORT-messages the start i ng/restart i ng site's
clock can be resynchronized. HI-messages are sent not before CURRENT -STATE
has been ree~tablished; this is also the point of time at which TSENDER is
started for the first time after the site's down-time.

The only information which has to b~stored on stable storage is the des
cription of the virtual ring, which is a simple binary relation, contain
ing a pair of the form (physical address, position in the virtual ring)
for each site in the network. All other structures need only be kept in
volatile storage.

It should be clear that this procedure works even if all sites of a net
work have crashed. However, if the system-clock shoul d be synchroni zed
with the 'clock' of the real world, then real world's time has to be
supplied from outside the system.

4.5 Network partitioning

If some communlcation lines crash such that the network is partitioned,
then this will be detected since some sites will become unavailable for
some other sites. / /

~~

During the recovery of a partitioned network two requirements must be
fulfilled:
- Resynchronization of the clocks, which may have diverged during the

period of partitioning.
- Unification of the views of sites' which formerly were included in dif-

ferent partitions.

The phys i'ca1 recovery of the crashed communi cat i onl i nes will be detected
by means of HI-messages received from sites which are DOWN in the re
ceivers view. The subsequent CHANGE execution fulfills both of the above
requirements. Since an actual timestamp is contained in each message used
by CHANGE, the clocks can be resynchronized. CHANGE also provides all
sites in the available part of the network with a new version of CURRENT
STATE. Failures during a CHANGE execution will be detected by CONTROL.

55

Network partitioning is handled totally application-independent. The RSC
protocol provides mechanisms, not strategies.

4.6 RSC-Characteristics

In this section it is shown, that the RSC-subprotocols CONTROL and CHANGE
are minimal in the sense that they use a minimum of messages (CONTROL) or
a minimum of time (CHANGE).

Defi nit ion:
A protocol is said to be message-minimal, if the total number of mes
sages used by this protocol is the smallest possible number of messages
in the given context.
A protocol is said to be time-minimal if the critical message path is
the smallest possible in the given context. A critical message path is
the longest path of messages in the protocol, such that the sending of
each message depends on the receipt of the preceeding message.
Example: If a protocol consists of one message to be sent to a remote
site, then the critical path has a length of 1. If an acknowledgement is
requested, then the critical path has a length of 2, since the acknowl
edgement depends on the recei pt of thi s message. If the message is sent
to several sites in parallel, then the length of the critical path re
mains the same, since these messages do not depend on each other.

Assertion:
CONTROL is message-minimal during normal operations (each site available
for each other).

Proof:
The context requ i res that checks in the network have to be performed
periodically. Therefore it has to be proved, that the numbe~of messages
needed to perform one complete check of the network during normal opera
tions is minimal.

CONTROL needs N messages to perform one complete check, one HI-message
from each site. Now assume that there is another protocol which uses
less then N messages. Then there must be at least one site which does
not send a HI-message. However, a site which does not manifest itself by
sending messages will be assumed of being not available. Since during
normal operations all sites are available for all other sites such a
protocol provides incorrect views; thus CONTROL is message-minimal.

Assertion:
The number of messages CONTROL needs in the general case depends only on
the number of partitions. Let P be the number of partitions then P·N
messages are needed per complete check.

The proof is straightforward and left to the reader.

Assertion:
CHANGE is time-minimal.

56

Proof (Outline):
CHANGE has a critical message path of length 3 (a STATE-REPORT-message
is sent only after the receipt of a REQ-STATE-message, the sending of
STATE-TABLE-messages depends on the recei pt of the STATE-REPORT -mes
sages). In order to prove the correctness of the assertion, it will be
shown, that in CONTROL's context there can be no protocol with a path
1ength 1ess then 3. It shou1d be remembered that in CONTROL I S context
CHANGE has to complete the information prOVided by CONTROL and has also
to synchronize the coordinator's clock before the new version is distri
buted.

Assume a protocol with a critical path of length one. The only thing
such a protocol could do is to broadcast the information provided by
CONTROL. However, CONTROL does not provide complete information on some
kinds of multiple crashes (see example given in one of the preceeding
chapters). The construction of crashes which cannot be completely propa
gated even in two subsequent executions of such a protocol is straight
forward and left to the reader. Furthermore such a protocol is not able
to synchronize the coordinator's clock.

Now assume a protocol with a critical path of length two. One message is
needed to propagate the change and one message is left over to complete
the coordinator's information on the state change to be propagated and
to synchronize the coordinator's clock. However, additonal information
is avail abl e only on request such that two messages woul d be needed to
complete the information. Furthermore the synchronization of the clock
would require the receipt of a timestamped message which again must be
requested. Due to these reasons, in the gi ven context there can be no
such protocol which synchronizes the coordinator's clock, completes the
state information and distributes a new version of CURRENT-STATE. There
fore, CHANGE is time-minimal under the given conditions.

Only under relaxed conditions an alternative protocol could be used in
instead of CHANGE. Assume that clocks never fail and that no clock diver
gences occur during network partitioning. Then the following protocol (to
be called QUICKCHANGE) would work:
- At first the coordinator sends PREPARE-messages containing the version

number of the new version of CURRENT-STATE to all sites of the network
and starts its timer TCOORD (timeout period: LMAX + LMAX).

- Each site which has received such a message broadcasts a REPORT-message
containing the new version number, starts its timer TQUICK (timeout
period: LMAX + LMAX - LMIN) and then prepares the construction of a new
version of CURRENT-STATE.

- Each site from which a REPORT-message is received, will be marked UP in
the new version, else, if a timeout is reported by TQUICK or TCOORD all
sites from which no REPORT-message has been received will be marked
DOWN.

This protocol does not guarantee that state tables with identical version
numbers do always reflect the same view (lost messages). In order to
enable CONTROL to detect differing views even in this case, a HI-messages
must contain a complete state table instead of a version numbers. However,

57

even if clocks do not fail, CHANGE might be the better alternative, espe
cially in large networks, where QUICKCHANGE needs much more messages than
CHANGE.

5. Interface of the RSC-Layer

The RSC-layer contains the RSC-protocols and should be located on top of
the basic network communication facilities. It could be implemented as
part of a distributed operating system kernel such that all messages to
remote sites must pass the RSC-layer. In the following a possible inter
face to the RSC-l ayer wi 11 be defi ned by descri bi ng the vari ous procedure
calls which must be issued to request RSC-services (this version of an
interface has been designed to fulfill the needs of a distributed data
base systems, other applications might require different services):

- SEND-MESSAGE (destination, message) RETURNS (status, ack).
If the destination site is not available (marked DOWN in the local
CURRENT-STATE table) . then an error code is returned to the calling
process. If the intented receiver is marked UP, then the message is sent
and a timer (time-out period of length 2·LMAX + AMAX) is started. If the
timer expires and no acknowledgement has been received for this message,
then CURRENT-STATE is checked again. The message will be retransmitted
if the receiver is still marked UP, else an error code is returned to
the calling process. Of course it is application-dependent whether ac
knowledgements are required or not, therefore it might be appropriate to
have al so procedures for sendi ng unacknowl edged messages; however for
the applications to be discussed in the next chapter the given interface
will be sufficient.

- RECEIVE-MESSAGE (source) RETURNS (status, timestamp, message).
If the site of the expected sender is DOWN (becomes DOWN) then an error
code is returned to the calling process, else the message and its time
stamp will be returned upon arrival. If a message is received from a
remote site, then CURRENT-STATE has to be checked. The message will be
ignored, if the sender is marked DOWN (note that there can It be a pro
cess waiting for such a message, since in this case an error code would
have been returned such that this process might have already initialized
some exception handling procedures). Of course, if there is no CURRENT
STATE table (during recovery) then incoming messages which are not RSC
related are ignored, too.

- SEND-ACK (destination, timestamp) RETURNS (status).
An acknowledgement contains the timestamp of the message to be acknowl
edged. If the destination site is down, then an error is returned to the
calling process,else an ok is returned in the status. In the environ
ment of distributed data base systems acknowledgements sometimes are
explicitly sent by the receiver after he has stabilized the information
received in the corresponding message (e.g. logging of some information
in stable storage).

58

- CHECK-STATE (site-number) RETURNS (state).
The state of the site identified by this site-number is checked in
CURRENT-STATE, the actual state is returned to the calling process~

- WATCH-UP (site-number) RETURNS (UP),
WATCH-DOWN (site-number) RETURNS (DOWN).
If the state of the site to be watched is already UP (DOWN) or as soon
as its state changes from DOWN'to UP (UP to DOWN), then UP (DOWN) is
returned to the calling process.

- STOP-WATCH (site-number).
The correspondi ng WATCH-UP or WATCH-DOWN formerly requested by the ca1
ling process is deleted.

- TIMESTAMP () RETURNS (timestamp).
An actual and unique timestamp is delivered to the calling process.

To implement this interface two internal tables must be maintained, one
table to contain the messages to be acknowledged, the other one to contain
a11 WATCH-UP and WATCH-DOWN requests. Note that the RSC-l ayer has been
given in an idealized form, in a real environment additional parameters,
such as the identification of the calling process, would be needed.

6. Application of the RSC mechanisms

In this section three examples are given to demonstrate how the RSC-mecha
nisms can be applied to support
1 the recovery of distributed update-transactions
2 the maintenance of redundant data
3 the compile-time-checking of the availability of resources

Example 1: distributed update transactions

First of' all the basic characteristics of transactions must be defined
(see also /11/):
- From the user1s point of view TAs possess the atomic property. In the

case of update-TAs the system guarantees that either all of the updates
are performed or none of them.

- TAs are static, i.e. all processing sites are predetermined at compile
time.
The processing of a TA is co-ordinated by its site-of-origin.

- A TA consists a set of subtransactions (STA).
- STAs are atomic actions at a lower level of abstraction.
- Each STA is processed at just one site.
- Over the set of STAs a precedence structure is defined, which determines

the order in which the STAs must be processed. Parallel processing of
STAs is possible too.

Updates may be arbitrarily complex, such that several sites are involved
in the processing of such transactions. In principle update transactions

59

coul d be processed as foll ows (TA- and STA-states must be kept in stabl e
storage) :
1 After the TA has been started by the user, STA-messages are sent to

those sites whi ch co-operate in the processing of thi s TA (TA enters
state DO).

2 An STA enters the state DO after the STA-message has been received by
the corresponding site.

3 STAs write their updates into intention lists /5,10/. When a STA has
finished and its intention list has been written to disc, the STA-state
changes to READY and a READY-message is sent to the site-of-origin. If
an STA fails, then its state is converted to ERROR and an ERROR-message
is issued.

4 After the site-of-origin has received READY- and/or ERROR-messages from
all co-operating sites, the TA-state changes to COMMIT (all STAs were
successful) or to BACKOUT (at least one STA failed) and COMMIT- (BACK
OUT-)messages are sent to all sites co-operat i ng in the process i ng of
this TA. After the receipt of all acknowledgements the TA-state changes
to UNKNOWN.

5 After the receipt of a COMMIT- (BACKOUT-)message the corresponding STA
state is changed to COMMIT (BACKOUT) and its intention list is executed
(backed out).

Assume a TA in state DO after all STA-messages have been sent to the co
operating sites. In this case the site-of-origin is waiting for READY- or
ERROR-messages, however, it cannot determine how long it has to wait. It
even cannot determine whether there will be a response at all. In conven
tional systems this problem is handled by means of the positive-acknowl
edgement-or-retransmit techni que, i. e. the STA-message wi 11 peri odically
be retransmitted until a READY-or an ERROR-message has been recei ved.
However, transactions may be arbitrarily complex and longl ived /2/ such
that an arbitrary number of messages is needed in order to process one TA.
Furthermore this technique can only be applied if it is assured that co
operating sites do not crash forever (in this case retransmission must be
performed forever). In the following it is shown how these problems can be
avoided in using the RSC-protocol.

To assure the receipt of the STA-message, an acknowledgement must be r~

qui red. Then the site-of-ori gi n calls WATCH-DOWN for all co-operat i ng
sites during the TA is in the DO-state; each time a READY-message is
received, a STOP-WATCH for the corresponding site is issued. If a site is
reported to have crashed, then the TA can be backed out immediately (for
corresponding protocols see /10/) and a WATCH-UP is called for the crashed
site. When it is reported to be UP again, a BACKOUT-message is sent to
this site.

A co-operating site calls WATCH-DOWN for the site-of-origin after having
sent the READY-message. A STOP-WATCH is issued after the receipt of the
corresponding COMMIT- (BACKOUT-)message. If a crash of the site-of-origin
is reported, a request is sent to the other co-operating sites (for more
details see /11/) to determine whether
- at least one of them has received a COMMIT- (BACKOUT-)message: all STAs

60

may convert to the COMMIT- (BACKOUT-)state.
- at least one of them is still in state DO: all STAs may convert to the

BACKOUT-state.
- all of them are in state READY: all STAs have to wait for the recovery

of the site-of-origin, since it is impossible to decide whether it would
be correct to commit or to backout.

In each case the recovering site-of-origin will try to resume the proces
sing of the TA. In the first case it finds the TA to be in state DO and
unknown at all other sites, thus the TA was backed out. In the second case
it finds the TA in state COMMIT (BACKOUT) and unknown on all other sites,
thus the TA has been committed (backed out). In the third case processing
can be resumed.

If only a single process fails on one of the co-operating sites, then this
wi 11 not be reported by the WATCH-DOWN primit i ves. However, si nee process
crashes do not affect the local supervisor in this case, the local system
its.elf will be able to detect this crash. Since all STA-related informa
tions are stored on stable storage it will also be able to initialize
suitable recovery actions.

Example 2: Maintenance of redundant data

Assume, that copies of data are organized in a way, such that there is one
primary copy and a collection of secondaries. Assume further that all up
dates must be performed via the primary. Most of the read-only-transac
t ions wi 11 access secondary copi es. However, some users wi 11 not be i n
terested in retrieving data items which are not at the same level of
actualization as the primary. Whenever the primary's site is not available
from a secondary's site there might be updates which can only be propa
gated to the primary (network partitioning). To handle this problem a
WATCH-DOWN is called for the primary's site. Whenever unavailability is
reported the secondary wi 11 be marked to i ndi cate that it may be not up
to-date and a WATCH-UP is called for the primary's site. When the
primary's site is reported to be available again, then it can be checked
whether some updates have been missed (perhaps by using version numbers).

Example 3: Compile-time-checks

For each multi-site-transaction it can easily be checked whether all
needed remote sites are currently available by just calling the CHECK
STATE primitive. If one of the sites is not available, then the affected
TA cannot enter it's processing phase.

7. Discussion

RSC keeps clocks synchronized and provides each site in the network with a
complete view of all remote sites. To maintain these services RSC needs
one message for each site and for each check. Similar services are pro
vided by RELNET's so-called 'Global Time Layer'(GTL) /4/. However GTL
needs more messages than RSC without providing the same level of robust-

61

ness. Each RELNET-site has associated with it a collection of guardians to
which it periodically issues so-called TIMESIGNAL messages. The mechanisms
do not tolerate the crash of a site and all it1s guardians. Therefore it
would be desirable to have many guardians, however, more guardians require
more TIMESIGNAL messages to be sent per check. Additionally so-called
PROBE-messages are used to check the avail abil ity of remote sites, how
ever, these checks are only performed on request such that two messages
are needed per single check of one site (PROBE message plus response).
Generally RELNET does not provide complete views of ~he network and thus
cannot support the same set of app1icat ions as the RSC-protoco1 can.
Although RELNET I s GTL mi ght be a very good sol ut i on for I command and
control I applications, we feel that RSC provides a more efficient and more
robust solution for general applications.

The concept of having state tables was also suggested by other authors.
However, the proposal in /8/ is based on centralized locking protocols and
thus is strongly embedded into the context of certain strategies and not
useable in more general contexts. The mechanisms described in /9/ are also
embedded into a very special context, furthermore they can only be applied
in environments with only a small amount of distributed transactions.

References

/1:./ J.N. Gray, Notes on data base operating systems, in: R. Bayer,R.M.
Graham, G. SeegmUller, eds., Lecture Notes in Computer Science 60:
Operating Systems, an Advanced Course (Springer-Verlag, Heidelberg,
1978) 393 - 481.

/2/ J. N. Gray, The transact i on concept: vi rtues and 1i mi tat ions, in:
Proc. 7th Int. Conference on Very Large Data Bases (IEEE, 1980)
144 - 154.

/3/ H.J. Genrich, K. Lautenbach, The analysis of distributed database
systems by means of predicate/transition-nets, in: G. Kahn, ed.,
Lecture Notes in Computer Sci ence 70: The Semant i cs of Concurrent
Computation (Springer-Verlag, Heidelberg, 1979) 123 - 146.

/4/ M. Hammer, D. Shipman, Reliability mechanisms for SOD/I: a system
for di stri buted databases, ACM Transactions on Database Systems 5
(1980) 431 - 466.

/5/ L. Lamport, Time, clocks and the ordering of events in distributed
system, Communications of the ACM 21 (1978) 558 - 565.

/6/ B. Lampson, H. Sturgis, Crash recovery in a distributed data storage
system, Technical Report XEROX PARC, Palo Alto, Calif. (1979).

/7/ G. LeLann, Distributed systems - towards a formal approach, in:
B. Gilchrist, ed., Information Processing 77 (North Holland Pub
lishing Company, Amsterdam, 1977) 155 - 160.

62

/8/ D.A. Menasce, G.J. Popek, R.R. Muntz, A locking protocol for re
source co-ordination in distributed databases, ACM TODS 5 (1980)
103 - 138.

/9/ M. Stonebraker, Concurrency control and consistency of multiple
copies of data in distributed INGRES II

, IEEE Transactions on Soft
ware Engineering 5 (1979) 188 - 194.

/10/ B. Walter, Strategies for handling transactions in distributed data
base systems during recovery, in: Proc. 6th Int. Conference on Very
Large Data Bases (IEEE, 1980) 384 - 389.

/11/ B. Walter, Global recovery in a distributed data base system, to be
published in: R.P. vande Riet, W. Litwin, eds., Distributed Data
Sharing Systems (North Holland Publishing Company, Amsterdam, 1982).

/12/ B. Walter, Formale Spezifikation und Analyse des RSC-Protokolls,
Technical Report, University of Stuttgart (1981).

63

Appendix 1

figure 1

--

figure 2- -

".

- --

- -

.....

64

Appendix 2: Algorithmic Description of the RSC-Protocol

In the following the algorithmic description of the complete RSC-protocol
will be given, using a PASCAL-like notation_ The protocol is presented in
an idealized form and not embedded into a special environment like the
kernel of a distributed operating system_

CONSTANTS

const LOCID = identifier of the local site;
N = number of sites in the network;
LMAX = maximum message delay between two arbitrary sites;
LMIN = minimum message delay between two arbitrary sites;
AMAX = maximum time a site needs to generate a response;
SINV = time period between the sending two successive HIs;

DATA,TYPES

~ state = (UP,DOWN);
area = array [1 __ N] of boolean;
timestamp = to be specified system dependent;
version: record TIME: timestamp; ID: integer end;
statetable = record ---

VERSION: version;
TABLE: array [1 __ N] of state

end;
event = (TCONTROL-OUT, TSENDER-OUT, TCHANGE-OUT, TCHECK-OUT, HI-IN,

REQUEST-STATE-IN, STATE-REPORT-IN, STATETABLE-IN);

VARIABLES

var NEXTEVENT: event; CHECK-VERSION: ve~sion; EMPTY: boolean;
--- AREA-OF-CONTROL, BROADCAST-AREA: area;

. CURRENT-STATE, NEW-STATE: statetable;

TIMERS are defined by their name and their individual timeout period
(TX (INV) defines a timer TX with timeout period INV)_

timer TCONTROL (SINV + LMAX - LMIN); TSENDER (SINV);
TCHANGE (2-LMAX + AMAX); TCHECK (LMAX - 2-LMIN);

MESSAGES are defined by their name and the data-structure they contain_
Messages may be interpreted as variables, the values of which are trans
ferred between sites_

message·
HI = record

SENDER : integer;
MSG-TIME : timestamp;
ST-VERSION : version

end;

(Sender's identifier)
(Actual timestamp)
(Timestamp of sender's

CURRENT-STATE)

65

REQUEST~STATE = record SENDER: integer;
MSG-TIME : timestamp

end;
STATE-REPORT = record SENDER: integer;

REQ-TIME: timestamp;
MSG-TIME: timestamp

end;
STATE-TABLE = record-sENDER: integer;

MSG-TIME: timestamp;
STATE: statetable

end;

SYSTEM PROCEDURES AND INTERNAL RSC-PROCEDURES

(Sender's identifier)
(Actual timestamp)

(Sender1s identifier)
(Timestamp of request)
(Actual timestamp)

(Sender1s identifier)
(Actual timestamp)
(New state table)

rocedure SYNCCLOCK (T: timestamp);
Sets clock to the maximum of its current value and the value of T)

function NEWTIMESTAMP: timestamp;
(Generates an actual timestamp)

Er2cedure START-TIMER (T: timer);
(Start timer T. If T has already been started, then restart T)

procedure RESET-TIMER (T: timer);
(Reset timer to its zero-position)

rocedure AWAITEVENT (NEXTEVENT);
Returns event with highest priority)

rocedure FORGETEVENT;
Delete all events except TSENDER-OUT and REQUEST-STATE-IN and reset
TCONTROL and TCHECK to their zero-position)

rocedure SEND-MESSAGE (M: messa e, DEST: integer);
Send message Mto site DEST

procedure GENAREAS;
var I: integer;
TTnitialize AREA-OF-CONTROL)
begin for I := 1 to N do AREA-OF-CONTROL [I] := false;

I := LOCID; EMPTY := false;
while CURRENT-STATE [I] = DOWN dO,begin

if I = 1 then I := Nelse I := I - 1;
AREA-OF -CONTROL [I] : = true end;

if I ~ LOCID then AREA-OF-CONTROL [I] := true else EMPTY := true;
(Initialize BROADCAST-AREA) -----

for I := 1 to Ndo BROADCAST-AREA [I~:= false;
I:= LOCID;- -
while CURRENT-STATE [I] = DOWN do begin

if I = Nthen I := 1 else I := I + 1;
BROADCAST-AREA [I] := true end;

if I ~ LOCID then BROADCAST~AREA [I] := true;
(Restart TSENDER and broadcast HI) -----

HI.SENDER := LOCID; HI.MSG-TIME := NEWTIMESTAMP;
for I := 1 to N do if BROADCAST-AREA [I] then SEND-MESSAGE (HI, I);
START-TIMER--rTSENDER)" -----

(If AREA-OF-CONTROL contains an UP-site then restart TCONTROL)
if ~EMPTY then START-TIMER (TCONTROL)

end;

66

CONTROL, CHANGE AND RSC

procedure CONTROL
var CHECK: boolean; I: integer;
1>ij'"in CHECK := false;

while true do begin
AWAITEVENT (NEXTEVENT);
case NEXTEVENT of:

TSENDER-OUT:
begin HI.SENDER := LOCID; HI.ST-VERSION := CURRENT-STATE.VERSION;

HI.MSG-TIME := NEWTIMESTAMP;
for I := 1 to Ndo
---if BROADCAST-AREA [I] then SEND-MESSAGE (HI, I);
START (TSENDER)

end;

TCONTROL-OUT: begi n RESET -TIMER (TCONTROL); FORGETEVENT; CHANGE end;

TCHECK-OUT: begin CHECK := false; FORGETEVENT; CHANGE end;

HI-IN:
begin SYNCCLOCK (HI.MSG-TIME);

if AREA-OF-CONTROL [HI.SENDER]
--then if STATETABLE [HI.SENDER] = UP

then begin if HI.ST-VERSION > CURRENT-STATE-VERSION
then begin CHECK := true; CHECK-VERSION := HI.ST-VERSION;
--sTART-TIMER (TCHEC~nd;
START-TIMER (TCONTROL) end

else begin CHECK := false;FORGETEVENT; CHANGE end
else ignore

end;--

STATE-TABLE-IN:
begin SYNCCLOCK (STATE-TABLE.MSG-TIME);

if STATE-TABLE.STATE.VERSION > CURRENT-STATE.VERSION
--then begin CURRENT-STATE:= STATE-TABLE.STATE; GENAREAS;

if CHECK then if CURRENT-STATE.VERSION ~ CHECK-VERSION
-- then ~nICHECK := false; RESET (TCHECK) end

end end;

REQUEST-STATE-IN:
begin SYNCCLOCK (REQUEST-STATE.MSG-TIME);

STATE-REPORT.SENDER := LOCID;
STATE-REPORT.REQ-TIME := REQUEST-STATE.MSG-TIME;
STATE~REPORT.MSG-TIME := NEWTIMESTAMP;
SEND-MESSAGE (STATE-REPORT, REQ-STATE.SENDER)

end· .
---'

STATE-REPORT-IN: begin ignore end

67

procedure CHANGE;
var ACTIVE: boolean; COUNT: integer;
begin ACTIVE := true; COUNT := 0;

REQ-STATE.SENDER := LOCID;
REQ-STATE.MSG-TIME := NEWTIMESTAMP;
for I := 1 to Ndo
~ I ~ LoCTD then SENDMESSAGE (REQ-STATE, I)
START-TIMER (TCHANGE);
for I := 1 to Ndo NEW-STATE [I] := DOWN;
Whll e ACTIVEdo

begin
AWAITEVENT (NEXTEVENT);
case NEXTEVENT of:

TSENDER-OUT: see CONTROL;

REQUEST-STATE-IN: see CONTROL;

HI-IN: ignore;

STATE-TABLE-IN:
begin SYNCCLOCK (STATE-TABLE.MSG-TIME);

if STATE-TABLE.STATE.VERSION > CURRENT-STATE. VERSION
--then begin CURRENT-STATE := STATE-TABLE.STATE;

GENAREAS end

STATE-REPORT-IN:
begin NEW-STATE [STATE-REPORT.SENDER] := UP;

COUNT :=CQUNT + 1;
if COUNT = N - 1
--then begin RESET-TIMER (TCHANGE);

ACTIVE := false end
end'-'

TCONTROL-OUT:
begin ACTIVE :=false end

STATE-TABLE. TABLE := NEW-STATE;
STATE-TABLE.MSG-TIME := NEWTIMESTAMP;
for I := 1 to Ndo
-if NEW-STATE [11 = UP then SEND-MESSAGE (STATE-TABLE, I);
CURRENT-STATE := NEW-STATE; CURRENT-STATE [LOCID] := UP;
GENAREAS

end;

procedure RSC;
begin CHANGE; CONTROL end;

resilient to multi
failures: arbitrary
It does not require
fact. resiliency is

69

A QUORUB-BASKD COKBXT PROTOCOL

\.

Dale Skeen

Computer Science Department
Cornell University
Ithaca. New York

Abstract

Herein. we propo.se a commit protocol and an associated recovery protocol
that is resilient to site failures. lost messages. and network partitioning.
The protocols do not require that a failure be correctly identified or even
detected. The only potential effect of undetected failures is a degradation
in performance. The protocols use a weighted voting scheme that supports an
arbitrary degree of data replication (including none) and allows unila
terally aborts by any site. This last property facilitates the integration
of these protocols with concurrency control protocols. Both protocols are
centralized protocols with low message overhead.

l. Introduction

A transaction is. by def inition. an atomic operation on a distributed
database system. Either all changes by the transaction are permanently
installed in the database. in which case the transaction is said to be com
mitted. or no changes persist. in which case the transaction is said to be
aborted. It is the task of a 90mmit protocol to ensure that a transaction
is atomically executed.

In this paper we propose a commit protocol that is
pIe occurrences of the following classes of benevolent
site failures • lost messages. and network partitioning.
that the type of failure be correctly determined. in
guaranteed even if failures go undetected.

The protocol uses a weighted voting scheme to resolve conflicts during
failur~s. When failures occur. a transaction is committed only if a
minimum number of votes. called a COmmit quorwm and denoted VC• are cast for
committing. S1milarly. in the presence of failures. a transaction will be
aborted only if a minimum number of votes. called an abort quorum and
denoted VA. are cast for aborting. A comm;i.t quorum does not have to. equal
an~ quorum. but their sum must exceed the total number of votes.

Voting schemes have been proposed previously for transaction manage
ment. Thomas introduced a majority voting scheme to ensure consistency in a
fully replicated database ([THOM79]). Gifford extended the scheme by
assigning weights to sites and using quorums rather than a simple majority
([GIFF79J). The proposed protocol differs from the previous work in several
important ways:

(1) It is a commit protocol. not a concurrency control scheme. It provides
atomicity at a ~ transact;i.on basis. Nonetheless. it is straightfor
ward to integrate any type of concurrency control protocol into this

70

protocol.

(2) It allows unilateral aborts during the first phase of the transaction.
A site may decide to abort because of several reasons, for example, a
deadlock is detected locally.

(3) It is primarily intended for partially replicated distributed databases
where a transaction can read from any copy but must update all copies.

In addition, the protocol exhibits the following properties:

(1) It is a centralized protocol and. thus. benefits from the economy of
centralized protocols.

(2) In the absence of failures it is no more expensive than previously pro
posed protocols that are resilient only to coordinator failures (and
not to a partitioning of the network).

(3) If all failures are eventually repaued. then the protocol will eventu
ally terminate.

(4) It is a blocking protocol -- operational sites must occasionally wait
until a failure is repaired. This is an undesirable but necessary· pro
perty exhibited by any protocol· that is resilient to network partition
ing ([SKEE81a]). However. the protocol can be tuned so that the fre
quency of blocking is low.

This paper is divided into six sections. The second section states our
assumptions and def ines the terminology used in the remainder of the paper.
The third section develops a resilient quorum-based commit protocol. and the
fourth section develops a resilient quorum-based recovery protocol. The
recovery protocol is invoked whenever a group of sites can no longer commun
icate with the original coordinator (either it has failed or the network has
partitioned). Like the commit protocol. it is a centralized protocol. The
fifth section discusses performance. and the sixth section concludes the
paper.

Although the protocols proposed are resilient to many classes of
failures. this paper will focus· on the problem of network partitioning.
This class of failures is generally agreed to the most difficult class to
handle. The other two classes. site failures and lost messages. can be cast
as special cases of a partitioned network. In a site failure. a single site
is isolated (partitioned) from the remainder of the network. A lost message
can be viewed as a very short lived) partitioning. In all cases, the proto
cols work without modifications.

2.. Backaround

We assume that an underlying communications network provides point-to
point communication between any pair of sites. We also assume that it gen
erates no spontaneous messages, and that garbled messages are detected and
deleted. We do ~ assume that messages arrive in order nor that it detects
lost messages.

A partitioned network occurs when there are two or more disjoint groups
of sites where no communication is possible between the groups. Each of the
disjoint groups is called a partition.

71

A distributed transaction T is decomposed into subtransactions TI , T
Z

'
••• , TN' where a subtransaction is executed at one of the N participating
sites. Any subtransaction can be unilaterally aborted" which results in the
abortion of the entire transaction. Hence, fpr transaction T to be commit
ted, All sites must agree to commit their subtransaction. We assume that a
subtransaction can be atomically executed by a local transaction management
system ([GRAY79,LIND79]). '

It is the responsibility of a commit protocol to ensure that all sub
transactions are consistently cO!DJllitted or aborted. One of the simplest
commit protocols is the two-phase protocol ([GRAY79, LAMP76]) depicted in
Figure 1.· The protocol uses a central site, the coordinator, to direct the
execution of the transaction at the other sites. Each slave has a chance to
abort the transaction by replying with a "no" in the first round.

A commit protocol can be conveniently described by a set of state
diagrams, one for each participating site ([SKEE8la]). The diagram for Site
i describes the processing of subtransaction Ti • A state in the diagram is
called a local transaction state.

In the two-phase commit protocol, a single state diagram (illustrated
in Figure 2.) suffices to describe processing at all sites. For both the
coordinator and the slaves, there are four distinct and easily identified
local transaction states: the initial state (state q in the diagram), the
m.t .s.t.a.1.e. (w), the abort state (a), and the Commit state (c). A site occu
pies the initial state until it decides whether to unilateral abort the

COORDIBATOIl

(1) Transaction is received.
Sub transactions are

sent to each slave.

(2) If all sites respond ~
then Commit is sent:
else,~ is sent.

SLAVE

Subtransaction is received.
A reply is sent:
~ to commit,
llQ. to abort.

Either cOmmit or~ is
received and processed.

I'iaure 1. The two-phase counnit protocol.

72

Pi.are 2. The state diagram for the two-phase commit protocol.

transaction. If the site decides against an abort. then the Di.t. state is
entered. This state represents a period of uncertainty for the site. where
it has agreed to proceed with the transaction but does not yet know its out
come (i.e. committed or aborted). The commit and a.b.gtt states are self
explanatory.

The local transaction states of any protocol form two disjoint subsets:
the couunittable states and the noncommittable states. A site occupies a
committable state only if all sites have agreed to proceed with the transac
tion. For example. the only committable state in the two-phase commit pro
tocol is the commit state. A state that is not a committable state is a
noncommittable state.

~. A Resilient COmmit Protocol

The two-phase commit protocol is not a very robust protocol. Whenever
the coordinator fails or becomes partitioned from the slaves. the slaves
must block until the failure can be repaired.

In this section we develop a very resilient commit protocol that allows
recovery from both of these types of failures. The section develops the
commit protocol in detail; the next section discusses the associated
recovery protocols for handling coordinator failures and partitioning.

Each site is assigned an integral nonnegative number of votes. (The
number can be O. in which case the site is a passive participant.) The basic
idea is that whenever a group of communicating sites establishes a quorum.
they are allowed to proceed. There are two distinct types of quorums - a
commit quorum and an abort quorum.

73

Let V. VC. and VA represent the total number of votes. the number
required for a commit quorum. and the number required for an abort quorum.
A resilient quorum-based protocol must obey the following properties
([SKEE81c]):

(1) VC+VA>V where O<VC.VA<=V

(2) When any site is in the commit state. then at least a commit quorum of
sites are in committable states.

(3) When any site is in the abort state. thjen at least an abort quorum of
sites are in noncommittable states.

These requirements are sufficient to ensure that a quorum-based proto
col terminates in a consistent state -- if it does terminate ([SKEE81c]).

COORDIBATOIl.

(1) Transaction is received.
Subtransactions are

sent to each slave.

(2) If all sites respond ~
then

prepare 1Q commit is sent;
continue to phase (3)

else
.alliu:t. is sent;
stop.

(3) If the sum of the weights
of the responding sites equals
or exceeds Vc

then
send commit to all

else
block (wait until a ttmergett).

:Figure 3. The quorum based commit protocol.

SLAVE·S B.ESPOBSE

~ to commit
HQ to abort

Ack

74

The requuements are very S1milar to those for k..-resiJ iency where a protocol
can tolerate upto k arbitrary site failures (see [ALSB76] for a definition
of k-resiliency and [SKEE8lb] for a set of sufficient conditions ensuring
k-resiliency in a commit protocol). In both cases a minimum number of sites
must agree before an irreversible decision is made by any site.

The second requirement can be viewed as two subrequirements:

(2.1) Before the first site commits. a commit quorum of sites in committ-
able states must be obtained. and

(2.2) After any site has committed. a commit quorum must be maintained.

As a consequence of (2.2). a site can safely move from a committable state
to a noncommittable state if and only if it can be shown that no site has
committed the transaction. or it can be shown that this will not destroy a
commit quor~.

The third requirement. concerning abort quorums. is analogous to (2).
Hence. there exists (3.1) and (3.2) which are the analogs of (2.1) and
(2.2) •

The two-phase commit protocol does not satisfy the second rule. nor can
it be I;limply extended to satisfy it. Moreover. any protocol which has a
single committable state (which must be the commit state) cannot satisfy the
rule. Hence. in a quorum-based commit protocol. we need to introduce a new
committable state. the prepared ~ Commit (pc) state. This state will sub
stantially increase the cost of the protocol. but unfortunately. it is
necessary.

The· new protocol is described in Figure 3 and its state diagram is
given in Figure 4. It requ1res three phases to commit. two to abort. The
new phase is the second phase. where all sites move into the prepared .t.a.
Commit state. The only explicit mention of quorums is in the third phase
where the transaction is committed only if a commit quorum of sites advance
to the prepared .t.a. Commit state. Even though abort quorums are not expli
citly mentioned. the third requirement is still satisfied. In fact. if any
site unilaterally aborts (including the coordinator). then no site ever
enters a committable state and the third rule is trivially satisfied.

The protocol is a pesS1mistic protocol -- if any site fails or a parti
tion occurs during the first phase. then the coordinator immediately aborts
the transaction.

!. Recovery

There are two aspects of recovery. When a group of sites is parti
tioned from the rest of the sites. they will execute a protocol that
attempts to form a quorum and terminate the transaction. These protocols.
called termination protocols are discussed in the first part of this sec
tion. If a quorum can not be achieved within the partition. then the sites
must block until communication between partitions is restored. Once this is
achieved. the sites within the new partition can execute a merae protocol
and reattempt terminating the transaction.

75

Pi.are 4. State diagram for the quorum based commit protocol.

Termination Protocol

As with the commit protocol. the major emphasis in the proposed proto
col is on successful termination. Partially executed transaction will be
aborted. when necessary. to achieve this goal.

When a group of sites detect that they are partitioned from the
remainder of the network. they execute a two part termination protocol. The
first part consists of electing a surroaate coordinator and the second part
consists of an attempt to form a quorum.

There are several possible election protocols. We will not explicitly
discuss election protocols except to note that it is possible to elect a
unique coordinator at linear cost ([GARC81.HAMM79]). The resilency of a
quorum-based protocol is not dependent on the uniqueness of the outcome of
the election. Even if two surrogates are chosen. resiliency is guaranteed
but performance suffers.

When the election completes the surrogate executes a protocol similar
to the commit protocol in the previous section. The termination protocol is
slightly more complex for two reasons. First. a surrogate works with less
knowledge than the original coordinator. specifically. the surrogate may not

76

know if a transaction is committable. Second. whereas there was a single
coordinator originally. there many be many surrogates each operating in dif-
f

.. 1erent part1t10ns.

For the first problem. a surrogate can attempt to form a commit proto
col only if a site within the partition is in the committable state. For
the second problem. a surrogate must explicitly form abort quorums. A site
indicates its willingness to participate in an abort quorum by moving into a
prepared .to. abort state.

The termination protocol is given in Figure 5. Like the commit proto
col. it consists of three phases. In the first phase the surrogate coordi
nator polls the sites about their local state. and these replies determine
the action taken in the next two phases. If any site has committed

COORDIBATOR

(1) Request local state.

(2)~ responses

;::1 commit

;::1 abort

;::1 prepared to commit and
weights ot wait and
prepared to commit ;::Vc
weights of wait and
prepared to abort ;::VA

(3a) if ;::Vc ack's then send commit
else block

(3b) if ;::VA ack's then send abort
else block

coordinator'~ actions

send commit;
terminate

send abort;
terminate.

send prepare to commit
continue with (3a)

send prepare to abort
continue with (3b)

(Slaves respond with their local state in Phase 1 and with an acknowledge
ment in Phase 2).

Figure .5. The quorum-based termination protocol.

lOr even in the same partition if the election protocol fails to uniquely
elect a surrogate.

77

(aborted). then the transaction is immediately committed (aborted) at all
sites. Otherwise. the surrogate w1ll attempt to establish a quorum.

A commit quorum is possible if at least one site is in the prepared ~
cOmmit state and the sum of the weights of the sites occupying the prepared
~ commit state and the wU..t. states is at least Vc. If this is the case.
the surrogates will attempt to move all sites in the lmit. state into the
prepared ~ conunit state. Barring additional failures. the surrogate will
then commit the transaction.

However. additional failures may prevent sites either from making the
transition or from acknowledging the transition. If an insufficient number
of acknowledgements is received. then the protocol blocks.

An abort quorum is possible if the sum of the weights of sites occupy
ing the ~ state and the prepared ~~ state is at least VA. Unlike a
commit quorum. an abort quorum does not require any sites to occupy the
prepared .t.Q.~ state. Again. the surrogate attempts to move an abort
quorum of sites into the prepared .t.Q.~ state -- aborting the transaction
if it is successful. blocking otherwise.

The state transition diagram is given in Figure 6. A heavy line indi
cates the normal movement of the site into a "prepared" state and then into
the corresponding final state. A dashed line indicates a path taken when
the site is not a participant in the formation of the quorum.

l'i&Dre 6. State diagram for the termination protocol •.

78

Mera-ini

Partition merging occurs whenever a failure is repaired and communica
tion is established between two or more partitions. We assume that the re-
establishme~t of communication paths is detectable2 •

The recovery strategy for merging is simple: execute the termination
protocol described in the last section. In this case the election process
can be streamlined -- the new coordinator can be chosen from among the old
coordinators. e.g. let the coordinator with lowest site number become the
new coordinator. , The new coordinator then executes the three phases in the
second part of the termination protocol.

S1te recovery is equally simple -- it is a special case of merging
where one partition contains a single site.

i. Performance

It is very difficult to analyze the expected performance of quorum
based protocols. even if very simple and independent probability distribu
tion functions are used to describe site failures. For nonzero failure pro
babilities. it is clear that the worst case performance is unbounded. which
is expected from the results of the Two Generals Problem (see [GRAY79] for
an description of this problem and its ramifications).

However. we argue that if all partitions are eventually resolved. then
the protocols will eventually terminate. They are acyclic. hence every
state transition moves a site closer to termination. and they are deadlock
free. This latter property is assured by the choice for the quorum sizes
after the merging if all partitions. it must be the case that either an
abort quorum or a commit quorum can be formed.

In environments where failures are rare. the most important cost meas
ure is the cost of the commit protocol in the absence of failures. The
quorum~based commit protocol requires 3 phases. 5 end-to-end message delays.
and about 5N messages (where N is the number of participants). This cost is
substantially higher than the cost of the two phase commit protocol
higher by approximately 50%. However. the two-phase protocol is not very
resilient. A more resilient protocol. specifically one that is resilient to
a coordinator failure. requ1res at least three phases. While several three
ph'ase protocols are known ([GARC79. SKEE8lbJ). the quorum-based protocol is
the only one resilient to network partitioning.

There are two sets of parameters that determine the performance of the
protocol in the presence of failures: the weights assigned to individual
sites. and the values for Vc and VA'

The assignment of weights is often influenced by policy considerations
external to implementation of the system. However. some factors that are
relevant to performance are percentage downtime. failure rate. and percen
tage of data stored at the site. The most intuitive rule is to assign
weights inversely proportional to the percentage downtime.

2A low level protocol can periodically attempt communication with other
sites. Eventually it will detect the repair of the partition.

79

In choosing quorum sizes. it is not necessary for VC to equal VA. In

fact. there are several strong arguments for choosing VC>VA. One argument
concerns protocols allowing unilateral aborts: if a significant number of
transactions are unilaterally aborted. then clearly VA should be smaller. A

stronger argument is that most site failures are expected to occur during
Phase 1 of the commit protocol since most of the transaction execution time
is spent in Phase 1. This phase is time consuming because the majority of
the data processing takes place. during it; whereas. Phase 2 and Phase 3 syn
chronize state information among the sites and require very little local
processing. If sites fail during Phase 1. then the transaction must be
aborted -- hence. it should be easy to abort.

An interesting heuristic for choosing VA is based on a rough estimate

of the failure distribution of the sites. This heuristic is useful in
environments where site failures. rather than network partitions. predom
inate. Let P{VA) be the probability that at least an abort quorum is opera-

tional. p{VA) is a decreasing function in VA. The point is to choose the

maximum VA such that VA<=VC and p{VA) exceeds a minimum level of desired

availability.

As mentioned before. the weight of a site can be zero. in which case'
the site contributes nothing toward forming a quorum. (However. such a site
can still unilaterally abort the transaction.) When designing a proto~ol. a
zero-weighted site can be e11minated from all phases requiring the formation
of a quorum. In the extreme case. where only a single site has a non~zero

weight. a quorum based commit protocol degenerates into the standard two
phase protocol with all of its disadvantages. Specifically. all sites must
block on the failure of the only nonzero weighted site (which is normally
the coordinator).

6.. Conclusion

The use of quorums is a standard recovery technique for handling net
work partitioning (even primary site schemes. e.g. [STON79J. are a degen':'
erate case of using quorums). We have presented a very general quorum-based
commit protocol that can be used with both replicated c!ind nonreplicated
data. Unlike previous schemes it allows a single site to unilaterally abort
the transaction.

Quorum-based protocols are resilient because a site is allowed to par
ticipate in only one type of quorum. Quorum sizes are carefully chosen such
that the formation of both a commit and an abort quorum requires the parti
cipation of a common site. In this way mutual exclusion is assured -- only
one type of quorum can be formed during the execution of a transaction.
(However. it is possible for multiple occurrences of a single type of quorum
to be formed. For example. since abort quorums are usually small. more than
one can be formed concurrently.) In such a scheme the concurrent execution
of several coordinators. even if they are within the same partition. does
not destroy consistency.

When a new coordinator is elected in the proposed recovery protocol. it
polls all sites about their current local state. In making a commit deci
sion. only the replies from the latest poll is used -- information obtained
in earlier polls is ignored. Less conservative approaches which uses

80

previous information can be found in [SKEE81c].

R.BPBR..BCBS

[ALSB76]

[GARC79]

[GARC8!]

[GIFF79]

[GRAY79]

[HAMM79]

[LAMP76]

[LIND79]

Alsberg. P. and Day. J •• "A Principle for Resilient Sharing of
Distributed Resources." ~. 2nd International ~onference Qn

Software Eniineerini. San Francisco. Ca •• October 1976.

Garcia-Molina. Hector. Ph.D. Thesis. Stanford University.
1979.

Garcia-Molina. Hector. "Elections in a Distributed Computing
System." TR No. 280. Princeton University. December. 1980.

Gifford. David. "Weighted Voting for Replicated Data" Operat
~ Systems Review. 13. 5. Dec •• 1979. pp. 150-9.

Gray. J. N•• "Notes on Database Operating Systems." in Qperat
~ Systems: An. Adyanced Course. Springer-Verlag. 1979.

Hammer. M. and Shipman. D•• "Reliability Mechanisms for SDD-1:
A System for Distributed Databases." Computer Corporation of
America. Cambridge. Mass •• July 1979.

Lampson. B. and Sturgis. H•• "Crash Recovery in a Distributed
Storage System." Tech. Report. Computer Science Laboratory.
Xerox Parc. Palo Alto. California. 1976.

Lindsay. B.G. et a1.. "Notes on Distributed Databases." IBM
Research Report. no. RJ2571 (July 1979).

[SKEE81a] Skeen. D. and M. Stonebraker. "A Formal
Recovery in a Distributed System." IEEE
Software Eniineerini. (to appear).

Model of Crash
Transactions .c.n

[SKEE81b]

[SKEE81c]

[STON79]

[TH0M79]

Skeen. D•• "Nonblocking Commit Protocols." SIGMOD Interna
tional~• .c.n Manaiement ~ DAta. Ann Arbor. Michigan. 1981.

Skeen. D•• "Crash Recovery in a Distributed Database System."
Ph.D. Thesis. University of California. Berkeley (in prepara
tion) •

Stonebraker. M•• "Concurrency Control and Consistency of Mul
tiple Copies in Distributed INGRES." ~ Transactions .c.n
Software Eniineerini' May 1979. .

Thomas. Robert. "A Majority Consensus Approach to Concurrency
Control." Transactions .c.n Database Systems. 4. 2. June 1979.

81

IMPLEMENTATION OF DISTRIBUTED TRANSACTIONS

Deborah J. DuBourdieu

Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Mass. 01701

ABSTRACT

This paper explores some of the issues encountered in the design
and implementation of distributed transactions in an ongoing
project at Prime Computer, Inc. An important feature of the
concurrency control algorithm to be discussed is that
retrieval-only transactions never wait. Implementation details
relevant to this feature include the maintenance of a pool of
previous data images, and more complex synchronization
requirements in a distributed environment. Another important
point discussed is an optimization of the Two-Phase Commit
protocol in the event of coordinator failure. Finally, the
design of an IPC suitable for support of distributed transactions
is examined.

1 INTRODUCTION

A major strength of the Prime product line is Primenet(TM), which
provides complete local and remote network communication services
for all Prime systems [GORD79]. In geographically dispersed
network configurations it allows Prime computers to communicate
with other Prime computers, with computers from other vendors,
and with terminals and computers attached to packet switching
networks. In local network configurations, Primenet allows Prime
computers to be attached .via a high-bandwidth, mUlti-point ring
arrangement to other Prime systems.

Another strength of the Prime product line is our
CODASYL-compliant DBMS with full recovery, interactive database
administration, and interactive query language/report writer.
Part of our strategy in Data Management is to build upon these
strengths by developing expertise in the issues of distributed
DBMS. We have concentrated first upon remote data access and
distributed transactions, and the system which incorporates this
work is discussed below. Areas for future work include improved
distributed schema management and optimization of distributed
queries.

82

2 PRIME DATA MANAGEMENT ACCESS METHOD

This block-oriented access method is used by all Prime data
management products which provide the service of transaction
management, including concurrency control and data recovery. It
is composed of several internal subsystems. The Data Manager
provides I/O to local and remote data files. The Resource
Request Manager is a general subsystem for the management of
arbitrary types of locks on arbitrary objects, including control
of deadlock. The Communication Manager provides a high-level
interface to Primenet, our X.25-compatible network service. The
Recovery Manager runs during system restart and makes use of log
information left by the Transaction Manager to bring all
databases into a consistent state following a system halt.
Finally, the Recovery Manager can also bring databases into a
consistent state following a disk crash by using log information
written by the Transaction Manager.

The Transaction Manager uses the services of all the other
internal subsystems to provide control of both local and global
(or distributed) transactions. This paper will concentrate on
some of the implementation problems of providing that service in
a distributed environment. By "distributed environment" is meant
one in which machines are connected by ~ local or long-haul
network, so that users can access files which reside on their own
machine or a remote machine, transparently to the application
program. A "distributed transaction" is one which accesses data
stored at more than one site. It is still an atomic unit of
work, so that it sees a globally consistent database, and its
updates are either installed in the permanent database at all
sites or at none of them. In our current implementation data
files may not be stored redundantly.

3 TRANSACTION MANAGEMENT IN LOCAL ENVIRONMENT

1~l-S~n£h~Qniz~tion_Yig~~Q=fhg2~~LQ£king

The synchronization technique we use is two-phase locking
[ESWA76] and the unit of locking is the disk page. Each read
which is performed must be preceded by the acquisition of a
read-lock on the page, which can be shared with other read-locks.
No write may be performed on an item which is read-locked. Each
write must be preceded by the acquisition of a write-lock, which
cannot be shared with any other locks. Once a transaction has
released a lock, it may not acquire any further locks, which is
enforced in our implementation by the rule that locks must be
held until the transaction completes.

Read-only transactions do not need to obey this protocol and
never interfere with update transactions. All that is required
for the read~only transaction is that reads be repeatable
(computationally equivalent); seeing the output of the same write
operation each time the same read is performed. The mechanism
whereby this is accomplished is discussed in a later section.

83

~~2~~~~~Hg£Qyg~~

The recovery of data files after a soft or hard crash also
depends on the transaction mechanism. The runtime side of this
work is a variant of the DO-UNDO-REDO protocol [GRAY78], which we
implement as two separate logs. Before entering an uncommitted
update of a page into the permanent data file, the Transaction
Manager must write an image of the current version of that data
page into the UNDO log. If a soft crash occurs before the
transaction is committed or is aborted at runtime, the Recovery
Manager will use that image in the UNDO log to roll back the
transaction, leaving the data file in the state that it was
before the updater started, and therefore consistent. Before
executing commit, which tells the user that the transaction
definitely completed, the Transaction Manager must write an image
of all of its updates to the Redo log. If a disk crash occurs
later, the Recovery Manager uses those images to. redo or roll
forward the transaction, leaving the data file in the same
(consistent) state that it was left by the original update
transaction.

We employ an optimization of this technique which uses multiple
versions of data items. An early developer of this technology
was Christopher Earnest, currently of Prime Research. Multiple
versions in the context of timestamp-ordering is discussed in
[BERN81], and a design similar to ours is found in [BAYE80].

The "current database ll at any moment of time is defined as the
database which would result if all unterminated processes were to
be aborted [ROSE78]. It is consistent because it contains only
the output of committed transactions, which were controlled by
the serializing 2PL scheduler. We distinguish between those
'transactions which only issue reads (Readers) and those
transations which also issue writes (Updaters). We introduce the
rule that for a Reader, the current database at the time the
Reader starts is the database the Reader should continue to see
throughout the life of the transaction. This rule is correct
(yields serializable execution histories). The important
implication of this rule is that if the current database is kept
available to the Reader throughout its life, the Reader will
never have any reads rejected by the concurrency control,
regardless of update activity. Notice that Readers will not see
the IDQet current database at every point in time, which may be an
important factor in some applications.

Updaters do not participate in
reads the previous version of an
Updater V, then U must precede V
2PL scheduler. This requires

this optimization. If updater U
item being updated by concurrent
in the ordering generated by the

remembering all read-write

1\
',I

84

conflicts which have occurred, in some cases even after the
transactions have completed, adding extra complexity and overhead
which we believe would more than cancel the benefit of ~he read
optimization.

Each data item can be thought of as having its complete update
history available (though in actuality this history is maintained
only as far back as is necessary to satisfy possible requests).
These previous versions are actually the same versions generated
by Updaters for the UNDO log, so no extra work is done except to
preserve the old images as long as there is a Reader who might
make use of them. Transactions receive unique monotonically
increasing transaction numbers which are interpreted as version
or generation numbers. When an update is performed, the new
value of the data item is stamped with the transaction number of
the transaction which wrote it. When a Reader begins it is given
a heavily encoded list of all transactions whose output is legal
for it to read, namely, all those who had committed before the
Reader started. This defines the Reader's current database.

When a Reader performs a read, the transaction number in the data
block is checked to see whether it is on the Reader's list. If
it is not, a chain of pointers to previous versions which begins
at the data block is followed backwards in time until a version
is found whose transaction number does appear on the Reader's
list.

~~!~QgBglQ£k~£~evgntiQn~Y~~fAO

If an Updater U requests a write-lock on a page which is
currently read-locked by Updater V, rather than deny U and force
it to abort, we permit U to wait for V to terminate and release
the lock. Since V in turn may try to wait for another lock,
possibly one held by U, the potential for deadlock is introduced.

Deadlocks are detected by looking for cycles in a directed graph
which represents the relation "which transactions are currently
waiting for which other transactions" (WAITS-FOR). We use the
progressive acyclic digraph algorithm described by [HANS79].
Nodes represent transactions and an arc between T2 and Tl
represents the state that T2 is waiting for Tl (because Tl has a
resource, in this case a lock, that T2 wants). An ar'c may be
added to the graph unless it would cause a cycle, in which case
one or more nodes must be detached (those transactions have been
pre-empted and their locks have been released). To optimize the
detection of cycles, a topologically sorted list is kept of all
nodes which have arcs. If transaction T2 wishes to wait for
transaction Tl and T2 precedes Tl in this ordering, then there is
no possibility of a cycle and no further work need be done. If
T2 follows Tl in the topologic sort, then we must determine the
hard way (by computing the transitive closure) whether Tl is
really waiting for T2, since the ordering could simply be an
artifact of the order in which the transactions arrived. This

85

offers a significant performance improvement over computing the
transitive closure for every case.

A timestamp which is retained across restarts is used to prevent
cyclic restart (suggested by [ROSE78]). Suppose that T2 wants a
lock which is currently owned by Tl'. If T2 can wait without
causing deadlock then it will wait. If for T2 to wait would
cause deadlock then either T2 must be refused (nonpreemptive) or
Tl must be aborted (preemptive). We use the timestamp to help
make the choice, selecting the transaction with the youngest
timestamp for refusal or preemption. Since every transaction
will eventually become the oldest transaction, cyclic restart and
indefinite postponement are avoided.

4 TRANSACTION MANAGEMENT IN DISTRIBUTED ENVIRONMENT

Our design is oriented towards decentralization and site
autonomy. There is no central site for synchronization purposes,
restart at each site is independent, and the effect of a failure
at one point in the network is restricted as much as possible.

Each site continues to maintain its own series of transaction
numbers and its own UNDO and REDO logs, so that management of a
stricly local transaction operates in precisely the same way. A
distributed transaction is implemented as a group of local
transactions, one at each site the distributed transaction
visits, including the originating site. The Transaction Manager
at the originating site has extra responsibilities in that it
must send requests against remote data files to the correct site
using the Communications Manager, in addition to satisfying
requests against local data files, and it must coordinate events
at start and end of transaction. For this reason the orginating
site and its local transaction are referred to as the Master, and
all the other local transactions are referred to as "cohorts."

Since there is no central site dispensing transaction numbers,
there is no bottleneck. Furthermore, system restart at each node
is completely independent (except for un resolvable global
transactions), since each site has its own UNDO log.

This design works very efficiently for global Updaters, who
simply acquire a transaction number at any given local site when
they first access a data file at that site. The mapping of a
group of local transaction numbers into a single global update
transaction is not needed at runtime, when the master and cohorts
need only the information about one another which is necessary to
send messages to each other. However, the mapping is written to
the log for use by the Recovery Manager during system restart.

Global Readers, who still use the optimization of previous
images, face a new problem. They must acquire not just one list
of completed transactions, but a list at every site where they

86

access data, and all of these must be consistent. The problem is
that if a global Reader is in the process of acquiring these
lists while a global update transaction is in the process of
ending, the Reader may acquire a set of lists in which one cohort
of the Updater may be marked as complete while another one may
not yet have terminated and is therefore listed as incomplete.
The global Reader would then see inconsistent data. Therefore,
we synchronize this activity via a lock which must be obtained by
global Readers when starting and by global Updaters when ending.
It can be shared by any number of Readers or any number of
Updaters but not between Readers and Updaters. We are
investigating a more efficient alternative in which global
Readers are synchronized by timestamp ordering.

!~~Qi2t£ibut~~lQgk2

Each site has its own Resource Request Manager, and manages all
locks on data residing at that site. This has the advantage of
incurring the minimum overhead associated with acqulrlng locks,
since it does not have the bottleneck problem and communication
cost of a central lock manager site. The disadvantage is that
the local algorithm for deadlock detection becomes insufficient
because deadlock can now occur indirectly through a chain of
waiting processes which crosses nodes.

!~~Q~~glQgk_~£~~~ntiQ~vi~~NQUND-NAI~

We handle deadlock via the hybrid WOUND-WAIT algorithm [ROSE78].

Deadlock handling consists of two questions: First, will letting
TI wait for T2 cause a cycle in the graph representing waiting
processes (deadlock detection)? Second, if so, who is going to
die (restart protocol)? In the local case we have all the
information necessary to accurately answer the first question,
and the second is answered using the timestamp in order to
prevent cyclic restart. In the distributed case the first
question cannot be answered accurately without" sending all
information about locks to some designated site. Instead a very
crude heuristic is used, which is to presume that allowing global
transaction Tlto wait for a younger global transaction T2 at one
site might cause a global cycle. This determination is made by
comparing the two transactions' timestamps, which are unique
across the network. AS in the local case, the restart protocol
selects the younger transaction for restart, and does so by
sending WOUND messages to all sites where that transaction has
visited. In the stronger definition of WOUND, this message is
interpreted as an abort when received at th~ active site, if
termination has not yet started. However, such quick execution
is not necessary to prevent deadlock. Under the alternate
definition of WOUND, wouhded processes may continue processing
until they try to wait, at which point deadlock is again
possible, and the wounded process must be aborted. Since forcing
the older transaction to wait a while longer gives the wounded
transaction one chance to complete, we use this definition.

87

We further reduce the total number of restarts by distinguishing
between local transactions (those which have not left their
original site) and global transactions (those which have). For
local transactions deadlock continues to be handled in the same
way as described,in the previous section, using the locally
computed WAITS-FOR relation, while global transactions are
handled using WOUND-WAIT.

There are two costs.-in this method. First, some transactions
will be aborted unnecessarily (younger ones who would not have
caused a cycle in a centrally maintained WAITS-FOR graph).
Second, when a transaction is wounded, extra messages (the WOUND
message) are sent to all sites which the transaction has visited.

5 RECOVERY FROM SYSTEM HALT

The goal of this mechanism is to ensure that the system contiues
to run, and to run correctly despite component failure and
recoveries. A highly resilient network is thus more reliable in
that it can be expected to:

1. Provide continued limited service at individual nodes in the
presence of other failures, and

2. Maintain database consistency.

What "limited service" means is that new transactions may be run
which are directed against data which is still accessible either
locally or through the network. Of course, transactions which
were interrupted by a failure elsewhere may still have resources
(including locked data) allocated to them at the functioning
node. This is a concern because when a failure occurs elsewhere
in the network, there is a distinct possibility that the failing
component will be out of service for a very long time, hours or
days perhaps. We want those sites which are still functioning to
be able to continue providing the best service possible under
those conditions.

For the purposes of this analysis an active transaction has only
two states: execution and termination. Termination is defined
as the process of ending a tran~~ction, which implies that it is
either aborted or committed. "Commit" is defined as the act of
installing all of a transaction's updates in the permanent
database; "abort" is defined as undoing any update~ performed by
the transaction;, both are followed by forgetting all information
about the transaction except that it has terminated.

If a crash occurs during execution there is no' 'doubt that, the
proper action is to abort the transaction at all sites. If a
crash occurs during termination, the proper action is not
immediately evident, since some cohorts may have successfully
committed while the failed one may have lost some updates that
were in volatile storage.

88

The Two-phase Commit protocol, developed by Lampson and Sturgis
in [LAMP76] and by Gray in [GRAY78], addresses this problem.
Gray's "coordinator" is the Master in our implementation, and his
"participants" are cohorts in our terminology. The coordinator
sends a message to each participant, "prepare to commit." Each
participant then enters a state in which it is capable of either
committing or rolling back the transaction, and then sends an
acknowledgement back. When the coordinator has received all the
acknowledgements it sends the message "Commit" to each
participant, which then terminates. The participants terminate
and send a final acknowledgement to the coordinator, who then
terminates.

2~~QQtimizatiQn~Qn~Two=fha§g_QQmmit

A similar optimization was independently discovered by the SIRIUS
DELTA Distributed Database System project of INRIA, and was
mentioned briefly in their presentation at the Fifth Berkeley
Workshop on Distributed Data Management.

In the original statement of the protocol above, an important
implication is that if the coordinator fails, then the
participants must wait for the Recovery Manager at the
coordinator's site to get started and direct the participants to
the conclusion of the transaction. Depending on what caused the
crash at the coordinator site and how long it takes to fix it,
the participants could wait for an appreciable period of time,
during which all the locks held by those participants must remain
held since it is not known whether the transaction has committed.
This wait is not necessary in the event that all the other
participants have survived and can communicate with each other.
In this case they can each exchange all the information they have
about the interrupted transaction. If any participants received
a commit, they will all decide to commit. If none heard a
commit, they will all decide to abort. If not all participants
survived, then the survivors will have to wait as in the original
protocol.

This follows the statement of the protocol in [GRAY78]. "IF
COORDINATOR FAILS" is really a condition which is detected rather
than a conditional statement.

PARTICIPANT~2_P_C: PROCEDURE
WAIT~FOR 'PREPARE TO COMMIT'
IF COORDINATOR FAILS

THEN ABORT AND RETURN
ELSE

FORCE UNDO REDO LOG TO NONVOLATILE STORE
IF SUCCESS THEN

89

REPLY 'AGREE'
ELSE

REPLY 'ABORT'
END IF

END IF
WAIT~FOR VERDICT
IF COORDINATOR FAILS

WHILE TRANSACTION IS UNRESOLVED DO
FOR EACH PARTICIPANT IN THIS GLOBAL TRANSACTION DO

SEND (PARTICIPANT, 'DID YOU HEAR COMMIT?')
RECEIVE (PARTICIPANT, 'YES/NO')

END FOR
IF ANY PARTICIPANT REPLIED 'YES' THEN

COMMIT AND RETURN
ELSE

IF ALL PARTICIPANTS REPLIED 'NO' THEN
ABORT AND RETURN

ELSE
WAIT FOR FAILED PARTICIPANTS OR
COORDINATOR TO RECOVER

END IF
END IF

END WHILE
END IF
IF VERDICT = 'COMMIT' THEN

DO
RELEASE RESOURCES AND LOCKS
REPLY 'ACKNOWLEDGE'
END

ELSE
DO
UNDO PARTICIPANT
REPLY 'ACKNOWLEDGE'
END

END PARTICIPANT

The system restart logic gets a bit more complicated at the
coordinator site as well. Instead of merely examining the
coordinator's log, the Recovery Manager must consider the
possibility that in recovering from this particular crash, the
participants made a decision on their own. The Recovery Manager
can easily handle this possibility by querying any other site
involved in the transaction as to what it believes the state of
the transaction to be. The site will reply "Committed",
"Undone", or "In doubt." At the coordinator site, then, the
Recovery Manager will react to the first two responses by doing
likewise, and to the third, response by controlling resolution of
the transaction as outlined in the original protocol.

This optimization introduces a subtle implementation problem,
namely, that the participants and coordinator must share the same
perception of whether the coordinator has failed. Otherwise the
participants may be attempting to recover on their own while the
coordinator is still attempting to end the transaction. In

to distributed transaction design, it is
to continue to think of the system in
of execution. The physical end-user can
so there is a central source of database
the coordinator· and participants in
very much like a master-slave

90

theory, failure of the coordinator should arise from only one
cause, failure of the node where it resides. This is easy enough
to determine since communication with that node becomes
impossible. However, the coordinator may appear to have ceased
responding when in fact the network is so slow that messages take
much longer to arrive than ,expected, when the network loses
messages, or when there is a system error at the coordinator
site. All of these ugly cases must be accounted for in a
commercial product.

6 PROBLEMS WE ENCOUNTERED, THINGS WE LEARNED

When moving from local
natural for the designer
terms of central control
only be at one site,
commands. The role of
Two-Phase Commit looks
relationship.

We believe now that a more accurate intuition about distributed
transactions is that they are composed of cooperating processes.
The fundamental reason for this is that exceptional events can
occur out in the boondocks which require the cohorts to take
action on their own. To the extent they can do' so, the whole
system is more robust. In this paper we have already seen an
example of one such event, failure of the coordinator site.
Under the optimization we have used, the cohorts each take charge
of attempting to resolve their part of the transaction. Other
examples are the various system errors that can occur
aiynchronously, including transaction timeout.

The factors discussed above carry implications for the underlying
communications mechanism. In keeping with our original
philosophy of "extending" the master· process to remote sites
where it adquires a slave process, ourCommtinications Manager was
based on the network primitive .of remote procedure call. We
would now prefer to use high~level network primitives composing
an IPC that facilitates peer-peer communication. The ideal IPC
for our purposes is sUfficiently high-Iev~l that all details
about the physical nature of the network, such as virtual circuit
reset, are masked. It includes 'the follow~ngprimitives:

GET~NODE~NAME (OBJECT, NODE~NAME)

For OBJECT which is known
return the NODE_NAME at which
known to the network and the
Data Manager to determine the

to the naming ·server (file system),
it is found. NODE~NAME is also
IPC. This primitive is used by the
location of data files in the

91

network.

Strictly speaking, this primitive is not part of an IPC at all.
It is included as a reminder that the IPC must be designed to
work in cooperation with the global naming server.

CREATE PROCESS (NODE, PROCESS_NETWORK_ADDRESS, ~RR~STAT)

Create a complete process on machine NODE and return the process'
"network address," which uniquely identifies the process
throughout the network. Anybody who knows the process' network
address can- send messages to it without further ado in the same
way that anybody who knows your street address can send you a
letter. This address is an attribute of the process and is
available to the network and the OS in the process control block.
Some of the possible error returns are "No more processes
available at NODE," "NODE is unavailable on the network." This
primitive is used by the master to create cohorts.

TERMINATE~PROCESS (PROCESS~NETWORK~ADDRESS,ERR~STAT)

TERMINATE PROCESS tells the recipient to do all necessary
clean-up and log itself out. There must be an error return
whereby the recipient can indicate that it cannot -terminate and
why. Although from the IPC user's point of view TERMINATE could
just as well be done via SEND like any other message it is
probably easier for the network and OS to handle it as an
explicit primitive, since its consequences are major. This
primitive is used by the master to log out the cohorts.

SEND (PROCESS~NETWORK~ADDRESS, BUFFER, ERR~STAT)

SEND can handle any message of arbitrary length which is placed
in its buffer. The semantics of the message must be determined
by the recipient. Typical messages are "Execute this procedure",
"Here's your data record," and "I heard a Commit." The options
on SEND should reflect the underlying network in a useful way.
For example, in our network it is possible to specify whether you
wish to wait for your message to leave your machine before
proceeding, thus giving an extra degree of confirmation. This
should appear as an option on SEND. If the network provides a
high priority message type for network users (as opposed to the
network itself) this should be an option. Possible error is
"Addressee does not exist."

RECEIVE (SYNCH/ASYNCH, BUFFER, PROCESS_NETWORK_ADDRESS, ERR~STAT)

In executing this primitive, the SYNCH option is the usual case
of procedure execution where the procedure does not return until
a message arrives in BUFFER. The ASYNCH option allows immediate
return from the procedure. The network will put the message in
BUFFER when it arrives, and it is up to the IPC user to poll the
buffer to determine that event. A value for

92

PROCESS~NETWORK~ADDRESS as an input argument is optional. When
given a value on input it means that the only message which
should be placed in BUFFER is a message from that process. All
other messages are to be treated as unexpected (see below). A
null value on input means receive from any process. Its value on
output is the network address of the process which sent the
message currently in BUFFER. The network can determine the
identity of the sender from its process control block and package
it with the message transparently to the sender.

BROADCAST (LIST_OF~PROCESS~NETWORK~ADDRESSES, BUFFER, ERR_STAT)

There are several points in. the Two-Phase Commit protocol where
the same message is sent to all cohorts at the same time. While
the functionality of BROADCAST can easily be built by the IPC
user out of SEND, BROADCAST should be included as a primitive if
the underlying network has such a facility (as does ours).

SEND~SIGNAL (PROCESS~NETWORK_ADDRESS,BUFFER, ERR~STAT)

RECEIVE~SIGNAL (PROCEDURE_NAME, BUFFER, SENDER~PNA)

The IPC must handle unsolicited messages, some of which are user
interrupts. "Unsolicited messages" are those which are not
expected by thi recipient, who may not have been in previous
communication with the sender. This is where the concept of a
process' network address. becomes so useful, since Process A can
send a message to Process B. even if B is unaware of A's
existence, as long as A knows B's network address. An example of
this situation is WOUND, where A wishes to wound B. Other
examples are cohort recovery from failure of the master site, and
the reporting of unexpected errors such as timeout. The other
aspect of the unsolicited message is that it is necessary to
interrupt or awaken the recipient in order to direct it to
examine the messsage. The IPC at the receiver site can do this
by signaling the recipient. This could probably be implemented
as a system-defined condition and handled by the recipient via a
PL/I-style on-unit.

It is also possible that the recipient does not have a receive
outstanding, in which case there is no buffer available to the
network in which to place the message. For this reason the IPC
has to implement a simple buffering mechanism, although it is
likely that if IPC users abuse this facility by failing to use
RECEIVE~SIGNAL or disabling the signal for long periods,
performance will suffer significantly.

SEND· SIGNAL directs the IPC to deliver the message in BUFFER to
PROCESS~NETWORK~ADDRESSand to send a signal to that process. If
the recipient does not have a RECEIVE or RECEIVE_SIGNAL
outstanding, the signal will be trapped by the system default
on-unit which will handle it as a user error and dump the message
from the IPC buffer to the user error file. RECEIVE_SIGNAL tells
the IPC that if a message arrives, put it in BUFFER and raise the

predefined signal, which will cause the recipient to jump to
procedure PROCEDURE~NAME. The receiver must also be able to turn
off the signal while in critical code, during which time incoming
messages are buffered by the IPC. When the receiver turns
signaling back on, the signal should be raised once per message
as the receiver drains them from the IPC buffer.

7 CONCLUSION

Many services familiar in the context of a single-machine
environment change character in the context of a distributed
processing environment. In this paper we have examined such a
service, distributed transactions, and its implications for
another basic service, inter-process communication. We believe
this exploration helps to lay the groundwork for the development
of a high-quality distributed DBMS.

8 ACKNOWLEDGEMENTS

I am grateful to Gordon D. McLean, Jr., for critically reviewing
a draft of this paper, and for his many insights into concurrency
control while a colleague at Prime. .Marguerite McGuire supplied
valuable comments on the PAD algorith~. This design was refined
and implemented by Bob Gray, Kriss Kellermann, Marguerite
McGuire, Jeannie Nakano, and Howard Spilke.

REFERENCES

Heller, H., and Reiser, A.,
Control in Database Systems,"

Very Large Data Bases, Oct.

[BAYE80] Bayer, R., Elhardt, K.,
"Distributed Concurrency
in Proc. 6th Int. Conf.
1980.

[BERN81] Bernstein, P. A., and Goodman, N., "Concurrency Control
in Distributed Database Systems," ACM ~QIDQuting~sy~y~~§,

June 1981.

[ESWA76] Eswaran, K. P., Gray, J. N., Lorie, R. A.; and
Traiger, I. L., "The notions of consistency and
predicate locks in a database system," ~mmYni£~tiQn§

~ML, Nov. 1976.

Gordon, R.
A Packet
Control,"
1979.

[GORD79] L., Farr, W. W., and Levine, P., "Ringnet:
Switched Local Network with Decentralized

CQmQYt~~__N~t~Qrks, Vol. 3, No.6, Dec.

[GRAY78] Gray, J. N., "Notes on databas~ operating systems," in
QQer~ting s~§t~m§~ An__Agy~n£~g__~QY~~, vol. 60,
L~£~~~NQt~~in~CQIDQYt~~S£~ng~,Springer-Verlag, New
York, 1978.

[HANS79] Hansen, W. J., "Progressive
for Database Integrity,"

Acyclic Digraphs--A
~ommYni£~tion§~_A~M,

Tool
Sept.

94

1979.

[LAMP76) Lampson, B., and Sturgis, H., "Crash
distributed data storage system," Tech.
Science Lab., Xerox Palo Alto 'Research
Alto, Calif. 1976.

recovery in a
Rep., Computer
Center, Palo

[ROSE78) Rosenkrantz, D. J., Stearns, R. E., and Lewis, P. M.,
"System level concurrency control for distributed
database systems," AQM~~~n§~£tiQn§~Qn_DAt~Q~§~_s~§t~m§,

June 1978.

95

Mutual Consistency of Copies of Files based on Request Characteristics

Gautam Barua

Department of Computer Science
University of California
Santa Barbara, CA 93106

ABSlRACT

An algorithm to maintain mutual consistency of copies of a file in
a distributed file system is presented. The number of up-to~date copies
of a file varies according to the characteristics of the requests. When
an update takes place, there is one such copy. As other nodes read, the
number of copies grow till it again shrinks to one when another update
takes place. An outline of a proof that the algorithm ens~res mutual
consistency and that there is no starvation of requests is presented.
An informal discussion of the performance of the scheme is also
presented.

Keywords and Phrases: distributed file systems, distributed data bases,
concurrency control, mutual consistency.

1. Introduction

In recent years many algorithms have been proposed that enable con
current reading and updating of a distributed data base to take place
correctly. Typically, in a distributed data base(DDB) the data is com
posed of a number of entities that are placed in sites that are distri
buted geographically. In addition, to improve the read response times,
some (or all) entities are replicated and distributed over the sites. An
entity is the smallest data unit that can be "locked" for exclusive use.
The read/update control algorithm (the Concurrency Control algorithm)
has to ensure that two types of Consistencies are met during operation:

i) all the copies of an entity contain the same information (this is
the problem of ensuring Mutual Consistency).

ii) the data base as a whole has "consistent" data (variously referred
to as the problem of ensuring consistency or external consistency
) .
If the data base is fully replicated at each site, then only mutual

This research was supported in part under NSF Grant MCS80-042S7.

96

consistency is of concern (consistency of data within a site still has
to be ensured, but it is now a problem of a centralized data base and
ways of achieving this can be found in [PAPA]).

A survey of most of the algorithms proposed for concurrency control
can be found in [KOHL] and [WILM]. [WILM] attempts a classification and
a comparison of a few representative algorithms. The terms introduced
above are explained in more detail in [KOHL]. The series of articles on
the concurrency control method used in SDD-l, a DDB, is another useful
source ([BERN]). General notions on consistency and concurrency control
in a centralized data base can be found in [ESWA] and [PAPA].

In this paper we propose a concurrency control algorithm to ensure
mutual consistency in a distributed file system (DFS). A DDB can be
viewed as a DFS where the entities are files. However, the algorithm
described in this paper incurs a space overhead that may be deemed unac
ceptable in a DDB if the size of entities is small. In any case, in all
DDBs proposed, the number of copies of an entity is assumed to be con
stant and are in fixed places. When an update to an entity occurs, all
the copies of the entity are updated. We propose a scheme where the
number of up-to-date copies of a file varies according to the charac
teristics of the requests to the file. In the general case (see [BAR2]),
the number of copies (up-to-date or otherwise) can vary, but for the
purpose of this paper we assume that a fixed number of copies of every
file exists at predetermined sites.

In the sections to follow, the above idea is p~esented in greater
detail, an algorithm to ensure mutual consistency of files is presented,
a proof of correctness of the algorithm is outlined and an informal dis
cussion of the performance of the algorithm is presented.

l. The Environment.

There are M computer systems (to be referred to as nodes from here
on) interconnected in some fashion by a communication network. Each node
has secondary storage units attached to it along with other devices.
Operating systems running on each node are independent of one another
except that they share a common file system. Files private to a node are
accessed in the usual way. Acc.ss to files that are shared by more than
one node have to be made via the algorithm to be described below. At
any instant of time, only a subset of the M nodes may be sharing a par
ticular file. Thus, the directory structure maintained'at a node will
point to private files and to files that the node is currently sharing
with others. We are not going into the details of the directory struc
ture in this paper. It is possible that a request for a file originates
at a node where no copy of the file is present. The node may not even
know where a copy of the file exists. In such a case, the node obtains a
copy of the file by searching the network. Details of this procedure is
discussed elsewhere ([BAR2]). For simplicity of exposition we assume
here that requests for a file originate only in those nodes that have a
copy of the file.

97

A transaction ([PAPA]) is a read or an update of a single file.
All transactions are processed at the node where the transaction ori
ginates. Thus a "valid" copy (what makes a copy valid will become clear
later) of a file has to be present in the node before a transaction on
that file can be processed (note that there are no "writes" to files:
only reads and updates (which is a combination of reads and writes».

No assumptions are made about the interconnection structure other
than that there exists a physical path from every node to every other
node. Thus every node is (logically) connected to every other node.

We make the following assumptions regarding the operation of the
system:

Assumptions

1) The~e are no failures either of nodes or links (physical intercon
nections) •

2) All messages from one node to another reach their destination
within a finite amount of time.

3) No messages are lost, either in transit (ensured by 1) and 2», or
inside a node (due to overflow of queues etc.).

4) Messages sent from node i to node j reach j in the order they were
sent from i.

5) All reads and updates of files take a finite amount of time.

~. The Algorithm

It is a distributed algorithm in that every node in the system fol
lows the same algorithm. Since the algQrithm controls access to ~ file
, there has to be a separate invocation of the algorithm for each shared
file in the system.

The number of up-to-date copies of a file present in the system
varies with demand. At the end of an update exactly one up-to-date copy
exists: at the node where the update took place. As other nodes read the
file each gets· an up-to-date copy of the file and the number of such
copies grows until the next update when it again shrinks to one. At any
moment exactly one node is the "Master". A file can be updated by a node
only if it is the Master. This idea of a floating Master is the same as
the "migrating primary sites" used in [MINO] to describe a concurrency
control algorithm based on "two-phased locking" which efficiently takes
care of multiple copies of a file.

For simplicity of exposition, we assume that when a node needs an
up-to-date copy of a file the whole file is transported across to it.

98

In an implementation, only portions of a file will be transported. This
can be achieved by using "version numbers" on files.

The controlling program (the controller) is driven by events~ The
following events can occur:

1) Internal Read Request (IRR).

2) Read request from node i (RR(i)).

3) Message "GRANT READ"from node i (GR(i». A copy of the file is sent
along 'with this message.

4) Internal Update Request (IUR).

5) Update Request from node i (UR(i».

6) Message "GO TO EXCLUDED" arrives from node j with the originator of
~he message being node i (EX(i,j».

7) Message "BECOME MASTER" arrives along with the queue (Q) of the pre
vious master (BM(Q». The file is sent along with this message.

8) Update Complete (UC).

The controller in each node has the following variables to control
access to the file:

SUBSTATE: SUBSTATE e {CURRENT, PENDING, EXCLUDED}

CURRENT: A valid copy of the file exists in the node.

PENDING: The node is waiting for a reply to an
update/read it sent out or it is the Master servicing an
internal update request.

EXCLUDED: The node does not have a valid copy and there
are no pending requests.

FATHFR:

MASTER:

SONS:

Contains the name of another node in the network. All requests
that cannot be locally processed are sent to the nej'de pointed
to by FATHFR. It is not used if the node is in substate PEND
ING or is the 'MASTER'.

MASTER e {'!RUE, FALSE}
At most one node can be the MASTER at any point in time. A

node can process an update only if it is the Master.

A list of "sons" in the present configuration. It is meaning
ful only when the node is in substate CURRENT.

QUEUE:

THIS:

99

A queue of pending requests.

Number of this node. Each node has a unique number.

The structure of the processes in a node is shown in Figure 1. We
present below the algorithm followed by the controller. It waits for an
event to occur. When one does, the action taken depends on the event and
the substate of the node. After the response to the event is complete,
the queue in the controller is examined if the current substate is not
PENDING. If it is not empty, the top element in the queue is made the
next event. If it is empty (or the current substate is PENDING), a "pro
cessing complete" signal is sent to the event handler and the controller
waits for the next event to occur. The event handler, on receiving the
above signal sends the next event present in its buffer. Thus events
arrive from the event handler and also from within the controller.

Internal Requests

Event
Handler

IEvent Queuel

T
Incoming
Messages

Events

Processing

Complete

Network

Controller

Message
Outputter

Figure 1 Structure of processes controlling access
to a file in a node.

100

A1gori thm I

Begin Program
Loop Forever
Wait (Event) ;
Case SUBSTATE:

SUBSTATE = CURRENT:
Case Event:

IRR
Service the request (Read); {see note 1 below}

RR(i)
Send message "Grant read" (GR(THIS» to node i;
Add i to SONS;

IUR
Send message "Go to Excluded" (EX(THIS,THIS»

to all SONS;
SUBSTATE := PENDING;
If MASTER = true then

Service the request (update);
Else

Send request to FATHER (UR(THIS»;
Insert request into QUEUE;

Endif
UR(i)

If MASTER = true then
Copy all "interna1" requests in QUEUE
int 0 TEMPQ; {a tempor ary queue}

Delete all these requests except the
first from QUEUE;

Send message "Become Master" (BM(QUEUE» to i;
QUEUE := TEMPQ;
MASTER := false;
If QUEUE = empty then

SUBSTATE := EXCLUDED;
FATHER. := i;

Else
SUBSTATE := PENDING;

Endif
If there is an update request in QUEUE then

{it must be an internal request}
Send EX(THIS,THIS) to all SONS;

Else
Send EX(i,THIS) to all SONS;

Endif { for efficiency; see note 2 below}
Else {MASTER = false}

SUBSTATE := EXCLUDED;
Transmit request to FATHER;
FATHER. := i;
Send EX(i,THIS) to all SONS;

101

Endif
EX(i,j) :

If FATHER f j or MASTER = true then
Ignore;

Else
SUBSTATE := EXCLUDED;
FATHER := i;
Send EX(i,THIS) to all SONS;

Endif
Endcase

SUBSTATE = PENDING
Case Event:

IRR
RR(1)
IUR
UR(1)

Insert request into QUEUE;
{see note 4 below}

GR(i)
FATHER := i;
SUBSTATE := CURRENT;
SONS := empty;

EX(i,j):
Ignore;

BM(Q)
MASTER := true;
Merge Q into QUEUE by "timestamp" order;

{see notes 3 and 5 below}
SUBSTATE := CURRENT;
SONS := empty;

UC
SUBSTATE := CURRENT;
SONS := empty;

Endcase

SUBSTATE = EXCLUDED

Case Event:
IRR

Transmit request (RR(THIS» to FATHER;
Insert request into QUEUE;
SUBSTATE := PENDING;

RR(i)
Transmit request to FATHER;

IUR
SUBSTATE := PENDING;
Insert request into QUEUE;
Send UR(THIS) to FATHER;

UR(i)
Transmit request to FATHER;

102

FATHER := i;
EX(i,j):

Ignore;
Endcase

Endcase
{termination}

If QUEUE not empty and SUBSTATE ~ PENDING then
Make "top" of QUEUE the next event;
Remove "top" of QUEUE;

Else
Send signal "processing complete' to Event Handler;

Endif
Endloop

Endprogram

1) A request is serviced by waking up the relevant process waiting for
the request to be granted. For a read request it is assumed that a
copy of the file is made available to the process since the file
itself may be updated by other requests while this request is still
being serviced (if this is not feasible, then the controller
should wait for the request to be complete before continuing pro
cessing as is done for updates) •

2) If there is an update request in QUEUE then this node will become
Master again "soon" so it is more efficient for nodes going into
substate EXCLUDED to send their forthcoming requests to this node
rather than to the new Master (and hence EX(THIS,THIS) rather than
EX(i, THIS» •

3) To ensnre fairness, each request has associated with it a "times~

tamp". A timestamp is generated by appending the number of the node
where the request originates as the lower order bits to the current
value of the local clock. To ensnre that all timestamps are unique,
we only require that the local clock be incremented at least once
between two uses of it. See [LAMP] for more details on timestamps
and ways of keeping the local clocks synchronised. The timestamp is
generated at the time the request is submitted.

4) The insertion is done at a place' such that the requests in QUEUE
are in increasing timestamp order. However a request cannot be
inserted at the top of QUEUE since the node will already have
responded to the request at the' top of QUEUE by sending out a mes
sage and the reply to this messa'ge must see the same request at the
top of QUEUE for correct operation. So at any time the elements in
QUEUE are in timestamp order exc,ept possibly for the request at the
top of QUEUE.

103

5) When merging two queues by timestamp order, the top request in
QUEUE must not be disturbed since the event in question (Become
Master) is in response to this request. The situation is similar to
that discussed in note 4 above.

6) In the algorithm as
are not specified
event when the node
Thus, for example,
state is CURRENT is

presented above, if the actions for an event
for somesubstate then the occurrence of that

is in thatsubstate is an error condition.
the occurrence of the event GR(i) when the sub
an error condition.

7) When a node sends a particular message to "all sons" in response to
a message from one of its sons it is assumed that it does not send
the message to that particular son•

.4,. An Example

The
example.
sta te of
shown in

way the above algorithm works can best be illustrated by an
Consider the seque~ce of Figures 2(a) to 2(g). They depict the

a typical system as time progresses starting with the state
Figure 2(a).

In the Figures, each node is labelled on the outside by a number
(1,2,3,.. etc) which is the identifier of the node. The label inside a
node, C(current), E (excluded), P (pending) specifies the substate of
the particular node. A solid, directed edge points to the "Father" of a
particular node. A dashed edge from i to j labelled B indicates that
message B, sent from i, is in the communication network on its way to j.
If a node has a second label "M" on the inside, then that node is the
Master.

In Figure 2(a) node 5 is the Master and nodes 1,2,3,5,6,7 and S
have valid copies of the file and are hence in_ substate CURRENT. Node 4
is in EXCLUDEDsubstate.

Update r~quests originate simultaneously at nodes 1 and S. Both the
nodes go into substate PENDING and send the messages UR(l) and UR(S)
respectively to their Fathers. Node S has Sons, so it "asks" them to go
to substate EXCLUDED (message EX(S,S) is sent to both 6 and 7).

this
to 5,
UR(S)

After some time the state depicted in Fi~ure 2(b) is reached.
time 3 has receivedUR(l) and in response to it has transmitted
has gone into substate EXCLUDED and has sent EX(1,3) to node
has not yet reached 5.

By
it
2.

UR(S) then reaches 5. Node 5, on receivin~ it, goes into substate
EXCLUDED, relinquishes the Master token and "asks" node S to become the
Master (via message BM(QUEUE5); note that QUEUEi is empty). The situa
tion at this point is depicted in Figure2(c). The Figure also indicates
that EX(1,3) has by now reached 2 which goes into substate EXCLUDED and
makes 1 its Father in response.

4

:C - Current
P - Pending
E - Excluded
M - Master

5

Figure 2

104

(a)

~UR(8)....
.... , 8

"

(b)

An Example

105

BM(e:)--
...;.\

5

",'"'f
;'

,'" DR(!)..

(e)

~

\ RR(7)
\70

DR(l)
.......

.........~ 8

5
4

3

0·
/

J RR(3)
2'

\i.-
1

(d)

Figure 2 (contd)

3

0)
1

~
IIffiWl

106

(e)

(f)

Figure 2 (contd)

107

5

3

l

(g)

Figure 2 (contd)

108

UR(l) then reaches 5 which merely transmits it to 8. Meanwhile,
node 8 receives BM(QUEUES)' becomes the Master, does the update it was
waiting on and goes into substate CURRENT. As this is going on, read
requests originate in nodes 3 and 7. These nodes go into substate PEND
ING and send the messages RR(3) and RR(7) respectively to their Fathers.
The situation at this point is shown in Figure 2(d).

RR(3) and RR(7) reach their destinations. On receiving RR(7), node
8 sends a copy of the file and a grant read (GR(8» message to 7 which
on receiving them goes into substate CURRENT and services the pending
read request. When node RR(3) reaches node 1, the request is put into
the queue in 1 (into QUEUE1). Figure 2(e) illustrates this state. The
queue at node 1 is drawn next to the node (strictly speaking, the queues
at each pending node should be shown. However to avoid cluttering up the
Figures, only queues with more than one entry are shown).

UR(l) finally reaches 8. Node 8 relinquishes the Master token in
favour of 1, goes into substate EXCLUDED and asks its only son, node 7
to do likewise. Node 1, on receiving the "Become Master" message, ser
vices the pending update request and goes into substate CURRENT. It then
finds RR(3) in its queue. So a valid copy of the file and a grant read
message is sent to 3. The state at this point is shown in Figure 2(f).

When node 1 receives the grant read message, it services the pend
ing read request, goes into substate CURRENT and we reach the stat~

shown in Figure 2(g).

The above example has not been able to capture all the aspects of
the algorithm. It only illustrates the salient features.

~. Proof of Correctness

We need to prove that the algorithm is correct with respect to the
following properties:

1) Mutual Exclusion of updates is achieved.

2) There is no starvation of any requests.

The formal proofs will not be present~d here. The interested reader
should refer to [BAR1]. We present only the outlines here.

Mutual Exclusion

Update requests can be serviced at a node only if the node is the
Master. Within a node, updates are serviced sequentially since a node
goes into substate PENDING when an update begins and does not service
any other request while this update is going on. Thus to prove 1), we
need to prove that more than one node cannot be the Master at any
instant. This is done by a simple case analysis.

109

While a node is updating a file another node could be reading the
same, file. A read need not therefore be of the most up-to-date copy of
a file. Every node with a valid copy will however be informed ultimately
of any update to the file. Thus the algorithm guarantees weak mutual
consistency of the copies of a file.

Starvation

Consider an update request emanating from node i (UR(i». If node i
is the Master and in substate CURRENT, UR(i) gets service immediately
according to the algorithm.

Now suppose i is not the Master and is in substate CURRENT or
EXCLUDED. UR(i) is sent to the node pointed to by the variable FATHER,
node i goes into substate PENDING and UR(i) is also placed at the top of
QUEUE in i. We prove that in such a case UR(i) reaches a node other than
i which~ at that time, is in substate PENDING or is the Master, after a
finite amount of time.

From the example presented above it should be clear that the
"state" of the system at any instant corresponds to a forest with the
roots of the constituent trees being nodes in substate PENDING or the
node that is the Master. We prove by a case analysis that this is indeed
the case. This result is then used to prove that UR(i) ultimately
reaches a node in substate PENDING or with MASTER=true. 1£ trR(i) reaches
a node which is the Master and in substate CURRENT at that moment it
gets service via a "Become Master" message that is sent to node i. Oth
erwise UR(i) is placed in QUEUE of some node j. At this point UR(Owi1l
be in two queues: the one at the node of origin (i, in this case) and
the one it has just been placed into (j).

If UR(i) had emanated from a node which was at that time in sub
state PENDING it would have been placed in QUEUE at i.

In any case UR(i) either gets service or is placed in QUEUE of some
node j that is in substate PENDING.

So we prove that once an update request is placed in QUEUE of some
node, it gets service within a finite amount of time. A distance measure
is defined. The following example shows what this is: UR(i) is distance
two if, UR(i) is in QUEUE of node j, node j is in substate PENDING, the
request at the top of QUEUE in j is an update request from j itself
which is also in QUEUE in node k and node k is the Master. A node gets
service when its distance is zero. An induction on the distance of a
request is used to prove that it gets service within a finite amount of
time. The key to the proof is that requests are inserted into a queue by
timestamp order and so at most a finite number of requests can "over
take" a particular request in a queue.

That read requests are not starved out can be shown similarly.

110

~. Performance Evaluation

N nodes use a file over a certain period of time (NiM, the total
number of nodes). Now, because of the nature of the algorithm, at any
point in time only n nodes have a valid copy of the file (n iN). If an
update request originates in one of these nodes, every other node with a
valid copy has to be informed and the Master has to send a grant message
to the node (if the node is not already the Master). Thus n or n-l mes
sages have to be sent to complete an update. If on the other hand, a
node without a valid copy wishes to update, more than n messages may be
required. But in either case, at most N messages will be required. How
ever, the price being paid is that read requests will also need to send
messages if a valid copy is not present at the node where the request
originates (contrast this with a scheme in which all nodes have a copy:
reads are for "free" but updates are more "expensive"). Secondly, the
read and update response times depends on the configuration. The read
response time depends on the distance a node is from a node with a valid
copy while the update response time depends on the distance of a node
from the current Master.

The appeal of the algorithm lies in the fact that the configuration
is dynamic. This implies that it is not to~ally dependent on some static
characteristics of requests (one typically made in DDBs is that reads
predominate writes), but can react to transients fairly adequately.
Thus, for example, if within a certain period of time say 3 particular
nodes do a series of updates while the other nodes are dormant, only
these 3 nodes will participate in the operation, greatly improving per
formance over a strategy where every update has to be posted at all
nodes. Thus, while the mean characteristic of the requests (where the
requests originate, percentage of reads over updates) will affect the
mean performance, the algorithm does not degrade from this behaviour
when variations from this mean take place. So in environments where
there is considerable fluctuation in the request characteristics over
time, the algorithm becomes particularly attractive.

In order to get a quantitative measure of the performance,
tem has been modelled as a Markov Chain and various performance
have been obtained. The details of the analysis can be found in
Only the main results are presented here.

the sys
measures

[BAR2].

Let there be N nodes with a copy of a given file. We assume that
requests are uniformly distributed over these N nodes and that the
request arrival process is Poisson. Every request is a read request with
probability p and an update request with probability q (q=l-p), indepen
dent of other requests.

If all N copies are kept up-to-date (we shall refer to any scheme
that does this as an N-copy scheme),· the number of messages required to
service an update request is a standard performance measure. In Algo
rithm I, messages may have to be sent to service a read request also and
so we define the read cycle cost as a performance measure. This is the

111

number of messages that are sent by all nodes between two successive
updates to the file. Note that the read cycle cost is the same as the
cost to service an update in any N-copy scheme.

The second performance measure is the response time of a request in
the absence of any other 90nflicting requests to the same file. Let R be
the mean read response time and U the mean update response time. Then
the mean r~sponse time T is. obtained as

T = pR + qU

It is assumed that it takes one time unit for a message to travel from
one node to another and that all computations take time zero.

The read cycle cost is plotted against p for different values of N
in Figure 3. The response time is plotted against p for different N in
Figure 4. Also plotted in both these Figures are the corresponding quan
tities for Ellis' ring algorithm ([ELLI]), an algorithm that implements
the N-copy scheme. The read cycle cost of this algorithm is 2N and the
read response time is zero, while the update response time is taken to
be N. All these quantities are independent of p for this algorithm. As
the Figures indicate, only for high values of p is the performance of
Algorithm I inferior to Ellis' algorithm. This checks with the intuition
that it is better to update all N copies at the same time if it is
likely that all N nodes will read· the file before the next update (a
high value of p makes this probable). It can be proved that the worst
case mean read cycle cost for Algorithm I is 3N-2. This shows that even
if the assumptions made about the input are not valid, the degradation
in performance of the algorithm will not be great.

The above analysis does not include the cost incurred due to relia
bility considerations. If they are, the update response time of Ellis'
algori thm will be 2N. If one were· to use a centralized controller to
maintain the mutual consistency of the N copies of a file, the read
cycle cost will be 3N-2 and the update response time 4. The high read
cycle cost is due to the need for using a two phase commit procedure
(see [GRAY]) while posting an update at all the N nodes. Algorithm I has
to be modified since it is possible that only one node has the up-to
date copy at a particular time. But reliability considerations do not
require that N copies be maintained up-to-date at all times. If three
copies are to be up-to-date at all times then the read cycle cost for
the modified form of Algorithm I will increase by about 4. This is
because the two phase commit procedure has to be invoked with respect to
only 2 nodes instead of N~l nodes in the centralized case. The read
response time of Algorithm I will improve because of this change but the
update response time will degrade because of the need to wait for an
update to be posted-at sites other than the site where the update ori
ginated. It was not possible to model the scheme with the reliability
features added in and so the above remarks are qualitative in nature.
Comparing the above ·figures with those indicated by Figures 3 and 4, we
can conclude that the com~arison of Algorithm I with N-copy schemes

112

Algorithm I

- - - - - - - Ellis I s Algorithm

75 r-------.-----~---__,..__---_---_

60

N =25

40
C

20

20

15--------------------------

10

0.2

p

0.6 0.8 1.0

Figure 3 Mean cost per cycle (C) versus the probability
of a read (p) for different N> the number of
nodes

113

Algorithm I

------ Ellis's Algorithm

7r-----r--~-__,r__--r_.,....~-~__,r__---_r

6

4

2

N= 25

5

0.2

\ \

\ \
\

\
\

\10
\

\

\ ,
\

p

\
,is
\

\
\

\ ,

\
\N = 25
\
\
\
\

Figure 4 Mean response time (t) versus p, the probabil
ity ofa read, for different N, the number of
nodes

114

becomes even more favourable when the schemes have to incorporate
features to aid in failure recovery.

1. Conclusion

We have presented an algorithm for maintaining mutual consistency
of multiple copies of a file in a distributed system. The algorithm
keeps a variable number of up-to-date copies of a file with the number
of such copies varying with the variati~n in the type and origin of
requests in the system. We have proved that the algorithm guarantees
mutual consistency and avoids starvation.

The scheme has been modelled and a fairly extensive analysis has
shown that it compares favourably with other algorithms over a large
range of request characteristics.

The algorithm has been extended to enable a node that wishes to
access a file for the first time to do so and for a node that no longer
wishes to maintain a copy to drop out. These aspects become important
when a node has to'destroy a copy of a file because of secondary storage
space limitations.

The algorithm presented in this paper only guarantees mutual con
sistency of the copies of a file. It has been extended to service
requests that have "tickets" assigned to them. Using a ticket allocation
scheme (for example see [LELA]) along with this extended algorithm will
then enable multi-file transactions to be serviced correctly. One of the
prime criterion in this design is to allow single file transactions to
access a file using just Algorithm I even in the presence of multi-file
transactions. In an environment where most transactions are of the sin
gle file type, the efficiency of the concurrency control scheme will
then be good. Finally, reliability aspects of these algorithms have
been studied. The reader is referred to [BAR2] for details.

Acknowledgement

The author would like to thank his advisor, Professor John Bruno,
for his valuable guidance.

References

[BARl] Barua, G., A Demand Based Algorithm to maintain Mutual Con
sistency in a Distributed File System, Technical Report,
Department of Computer Science, UCSB, May 1981.

[BAR2] Barua, G., Demand Based
Systems, Ph.D Thesis,
tember 1981.

Concurrency Control in Distributed
Dept. of Computer Science, UCSB, Sep-

[BERN]

[ESWA]

[GRAY].

[KOHL]

[LAMP]

[LELA]

[MINO]

[PAPA]

[WILM]

115

Bernstein, P. A., D. W. Shipman and J. B. Rothnie, Concurrency
Control in a System for Distributed Databases (SDD-1), ACM
Transactions on Database Systems, Vol. 5, No.1, Mar. 1980.

Eswaran, K. P., J. N. Gray, R. A. Lorie and 1. L. Traiger, The
Notions of Consistency and Predicate Locks in a Database Sys
tem, CACM, Vol. 19, No. 11, Nov. 1976.

Gray, J. N., Notes on Data Base Operating Systems, Operating
Systems: An Advanced Course, Springer-Verlag, Berlin, 1978.

Kohler, W. H., A Survey of Techniques for Synchronization and
Recovery in Decentralized Computer Systems, ACM Computing Sur
veys, Vol. 13, No.2, June 1981. .

Lamport,L., Time, Clocks and the Ordering of Events in a Dis
tributed System, 'CACM, Vol. 21, No.7, July 1978.

Lelann, G., Algorithms for Distributed Data-sharing Systems
which use Tickets, 3rd Berkeley Workshop on Distributed Data
Management and Computer Networks, Aug. 1978.

Minoura,T., A New Concurrency Control Algorithm for Distri
buted Database Systems, 4th Berkeley Conference on Distributed
Data Management and Computer Networks, Aug. 1979.

Papadimitriou, C.' H., The Serializability of Concurrent Data
base Updates, JACM, Vol. 26, No.4, Oct. 1979.

Wilms, P., Qualitative and Quantitative Comparison of Update
Algorithms in Distributed Databases, Distributed Databases,
ed. Delobel and Litwin, North Holland, 1980.

117

ON THE USE OF OPTIMISTIC METHODS FOR CONCURRENCY CONTROL
IN DISTRIBUTED DATABASES

Stefano Ceri
Istituto di Elettrotecllica ed Elettronica
Politecnico di Milano
Piazza L. da Vinci, 32
1-20133 Milano - Italy

Abstract

Susan Owicki
Computer Systems Laboratory
Department of Electrical Engineering
Stanford University
Stanford Ca 94305

Optimistic concurrency control methods are based on the assumption that, in most
real-life applications, conflicts between transactions are unlikely. To exploit this,
transactions are allowed to execute freely, without the overhead of complex
consistency-preserving mechanisms. However, transactions are validated before
making their actions visible to other processes, and they are backed up whenever
their actions would lead to inconsistency.

In this paper, one of the optimistic concurrency control methods presented by Kung
and Robinson for single-site systems provides the fj'amework for the development of
a concurrency control method for distributed databases. Distributed transactions
have to satisfy the requirements imposed by the local concurrency control systems,
and also to respect global consisLency requirements. In particular, the notion of
global serializability is introduced, and an algorithm which guarantees the global
serializability of distributed transactions is presented.

The work of Susan Owicki was pmtially supported by the Defense Advanced Research
Project Agency under contract MOA903··79·C-0680.

118

1. Introduction

In this paper, we extend to a distributed database the Optimistic Concurrency
Control methods for a single-site system presented by Kung and Robinson [9]. The
approach is to assume that each node of the distributed database can use a local·
optimistic concurrency control algorithm and check for local consistency of
transactions; local mechanisms are modified in order to ensure the global consistency
of distributed transactions.

The main principie underlying optimistic concurrency control is the following:
instead of ensuring the consistency of transactions a priori, using algorithms based on
locking or time-stamp mechanisms, transactions are allowed to execute freely;
however, a consistency check of the transaction execution (also called validation) is
performed before making the effects of the transaction "visible" to other
transactions; if a non-consistent execution is detected, then the transaction is backed
up and restarted.

Kung and Robinson [9] and Badal [2] give arguments that suppOli the optimistic
approach. In particular, they note that in many real-life applications the probability
of conflicts between transactions is very low, and therefore the overhead due to
backups of conflicting transactions is largely offset by avoiding more complex
consistency-preserving mechanisms. In this paper, another assumption is made
which justifies the use of optimistic methods in distributed databases, namely that
most of the transactions in the distributed system are local to one site, and also that
most of distributed transactions involve a limited number of sites. Thererefore the
one-site optimistic control algorithm will be adequate for most transactions, and only
in a limited number of cases will it be necessary to use the (rather heavy) global
validation mechanism.

The paper is organized as follows. In Section 2, the optimistic approach described in
[9] is reviewed; in Section 3, distributed transactions are described, and consistency
criteria for distributed transactions are discussed. In paiticular, the notion of global
serializability as an additional consistency. requirement for distributed transactions is
introduced. Section 4 describes an algorithm and a validation technique which
provide the global serializability of distributed transactions; the method is derived
from the parallel validation method of [9]. Finally, in Section 5 the correctness of the
algorithm is proved and the approach is compared with other techniques presented
in the literature.

2. The optimistic approach

2.1 Fundamentals

A distributed data base is a collection of named data objects, distributed over N
different sites of a computer network. Any transaction consists of three phases: a read
phase, a validation phase and a possible write phase. During the read phase, ali writes
take place on copies of the objects; during the validation, it is verified that the
changes made. by the transaction will not cause a loss of integrity. If the validation

119

succeeds, then the copies are made effective in the write phase; otherwise the
transaction is backed up.

The typical primitives provided to application programs allow one to create, delete,
read, and write data objects; these primitives are implemented through calls to the
concurrency control mechanism, operating as follows:

create(o)
write(o,v)

read(o)

delete(o)

adds a new object to the create set CS
if 0 E CS or 0' E WS, writes the new value v in it;
otherwise creates a copy 0' of 0, writes v in it, and inserts 0' in the

write set WS
adds 0 to the read setRS; ifa copy 0' of 0 existsin WS, the value in

that copy is read, otherwise the value of 0 is read
adds 0 to the delete set DS.

The sets are initialized to -be empty by a begin call, and the validation phase is
requested via an end call; the write phase simply consists of making the writes
effective, by writing the values of copies 0' E WS into the original objects, deleting
the objects in DS, and deleting the temporary copies in WS.. (It should be remarked
that producing an output from a transaction is considered a write action).

2.2 Validation phase

The validation criteria used in [9],1s serial reproducibility [5] or serializability [3,13].
Transactions are considered to consist of tWo atomic parts: the retrieval of the values
of a set of database objects (the read set), followed by the update of the values of
another set of objects (the write set) [13]. The criteria accepts those concurrent
executions of transactions which are equivalent to some serial execution of the same
transactions.

In [9], the criteria is enforced by verifying that the order in which transactions are
actually executed is equivalent to their serial execution in the order in which they
complete the read phase. If one ofthe following validation conditions holds, then the
actual execution order is equivalent to one in which Ti completes before Tj starts
[9,13]:

(1) Ti completes its write phase before Tj starts its read phase.
(2) The write set of Ti does not intersect the read set of Tj, and Ti completes its write

phase before 1J starts its write phase.
(3) The write set of Ti does not intersect the read set or the write set of Tj and Ti

completes its read phase before Tj completes its read phase.

Note that rules (1-3) are sufficient, but not necessary, conditions for serializability.
To show that they are not necessary, consider rule (2). Let {o}=WSi n RSj in a
schedule having only transactiolls i and j, aIid assume that Ti writes a after the
beginning of read actions of 1] but before the actual read of 0 by Tj. Then the
validation fails,even if a perfectly legal sequence: "Ti reads 0, Ti writes 0, Tj reads 0,
Tj writes 0" has, occurred.

120

In the following, the control mechanism callcd parallel validation in [9] is outlined.
The other mechanism introduced in [9], called serial validation, is unattractive for
distributed databases becauses it forces the validations to be strictly serial. This is too
restrictive for a distributed transaction, in which all the components of· the
transactions on the various sites must "agree" on either commit or abort.

In parallel validation, a global counter tnc is used for the purpose of assigning
transaction numbers. Each transaction Tj reads tnc into StarL-Tj at the beginning of
the read phase (begin call). (Note that the value of tnc is not modified at this point:
assignment of a transaction number for Tj takes place after validation.) At the end
of the read phase (end call) the transaction is validated. Within a first critical section
tnc is read into Finish-Tj and Tj is added to the set AS of transactions which are
active, i. e. have completed the read phase but have not yet completed the write
phase; Tj also takes a copy ASj of the active set at that time. Then, outside the
critical section, validation of Tj takes place. Potential conflicts between Tj and
transactions Ti with transaction num bel' tn(Ti) such that Start-Tj <tn(Ti) <= Finish
1J are checked using rule (2); potential conflicts between rlj and transactions Ti E
ASj are checked according to rule (3). If the validation succeeds, then the write phase
takes place; finally, within a critical section, 1J is assigned a transaction number and
eliminated from the active set AS. Note that, because of this transaction number
assignment schema, transactions with tn(Ti) <= Start-Tj necessarily satisfy rule (1).

The mechanism strictly enforces the serialization of transactions in the order in which
they enter the active set. In the following, we use the fact that the order in which
transactions enter the active set is the sanie as the serial schedule which is enforced
by each local concurrency control mechanism.

3. AModel of distributed transactions

Transactions are classified as local (single-site) transactions, or global transactions,
which operate on several nodes. A global transaction originates at a master site,
wh ich is in charge of coordinating the actions of the transaction on the other sites. In
particular, the transaction master initiates several sub-transactions which are logically
part of the transaction itself but run on different nodes. Subtransactions run
concurrently, but at the end they commit to the transaction master using a two-phase
commitment schema [8].

With respect to the concurrency model outlined in the previous section, sub
transactions can still be considered to consist of a read and a write part; however,
each global transaction now consists of multiple pairs of read and write actions, one
at each site where a sub-transaction is activated, including the master site.

Global transactions have to satisfy the following consistency requirements:

(1) Sub-transactions have to be properly synchronized with local transactions on their
execution site, producing local serializable schedules; this is ensured by using the
local concurrency conLrol mechanisms. Lel Lhe relation "(" refer Lo Lhe serialization

121

order which is enforced by the local concurrency control mechanisms.

(2) There is a global consistency requirement: global transactions should execute in
such a way as to produce a globally serializable schedule. In the following, the notion
of global serializability for this particular transaction environment is discussed.

First, as an example, consider a distributed database consisting of the nodes {1,2},
and two global transactions 1'1 and 1'2 each consisting of two sub-transactions. Let
STij indicate the sub-transaction of Ti executed at node j. Finally, let
RS1 = RS2 =WS1 = WS2 ={x,y}, with x stored at site 1, y stored at site 2.

The notion of precedence between global transactions has to be formulated. A
possible definition of global precedence between Tl and 1'2 requires that every
action of 1'1 precede every action of 1'2; according to this definition, the following is
a legal schedule:

"1'1 reads RS1, T1 writes WS1, 1'2 reads RS2, T2 writes WS2".

However, this notion of serializahility is rather unattractive in practice; it requires a
strict serialization of actions which refer to objects that are not stored at the same
site, and clearly this is a heavy requirement.

A better definition of global precedence requires that the concurrent execution of T1
and 1'2 on several sites produces the same effects as the serial execution of 1'1 and
1'2, without actually requiring strict serialization. The formal definition of global
precedence is based on the order of transactions at sites where they cont1ict.

The definition of conflict between two transactions Ti and Tj executing at the same
site is given as in [3,13]; it is:

conllicL(Ti,Tj) +? (RSinWSj>t<I» V (WSinRSj>t<I» V (WSinWSj:;t:<I»

The relation conflict' takes into account the ordering of 1'1 and 1'2 in the local
serialization; it is:

conflict'(Ti,Tj) ~ conflict(Ti,Tj) /\ Ti<Tj

Finally, the relation "«" is the transitive closure of conflict'. Intuitively, T1«T2
means that execution of 1'1 preceded and may have affected execution of T2.

Having defined the "«" relation between transactions at a single site, it is possible to
define a globally serializable execution of the distributed transactions. Let G = <N,E>
represent a directed graph called the global serialization graph, where:

N = { Ti I Ti is a global transaction }
E = { <Ti,Tj> 13k EN: STik << STjk }

G retlects the serializations that are forced at each site by using the local concurrency
control mechanisms; then, the global transactions are globally serializable if the

122

graph is acyclic.

In fact, with an acyclic global serialization graph, the effect is equivalent to the serial
execution of the transaetions in any order consistent with the "«" relation. Note that
the transitive closure of conflict' is needed in defining G, because the graph includes
only global tl'ansactions, but the propagation of the effects of one global transaction
on another can take place through .local transactions.

One of the possible globally serializable executions of 1'1 and 1'2 in the above
example corresponds· to the following local schedules at nodes 1 and 2:

"STU reads x, STU writes x, 8'1'21 reads x, ST21 writes x" at site 1;
"STI2 reads y, ST12 writes y, ST22 reads y, ST22 writes y" at site 2.

In this case, we have STU « ST21 and STi2 « S'1'22; the serialization graph has
only an edge from 'II to T2, and is clearly acyclic.

Consider now a case in which the definition is violated. Let two local schedules be :

"STU reads x, 8TH writes x, ST21 reads x, ST21 writes x" at site 1;
"81'22 reads y, 8'1'22 writes y, ST12 reads y, ST12 writes y" at site 2.

Here STU « ST21 and ST22 « ST12; the global serialization graph has a cycle, as
there are two opposite edges between 'II and 1'2. This concurrent execution leads to
evident inconsistency when the constraint x-=:= y holds, and 'II adds 10 to the
(numerical) objects to which is applied; while 1'2 multiplies by 10 the (numerical)
objects to which is applied.

4. An algorithm for global transaction validation

The' algorithm for the validation of global transactions has been· designed with the
goal of keeping the activities related to the concurrency control as distributed as
possible. Therefore, algoritbms involving the presence of a unique consistency
monitor that receives all information about the local schedules and checks for
acyclicity of the global serialization graph have not been considered. This general
criterion is motivated by considerations of reliability, efficiency, and site autonomy.

In the proposed algorithm, local transactions are executed under the control of local
concurrency control systems, with minor modifications. Global transactions are
subjected to a more complex concurrency control mechanism, described in the
following. The term sub-transactions will refer to local portions of global
transactions, as opposed to local transactions. Some new features are introduced with
respect to [9]:

(I) Transactions are assigned unique transaction identifiers (TID); this requires the
use of counters at each node, whose value is incremented for each new transaction;
all the sub-transactions of a particular global transaction receive the same TID from

r

123

the transaction master, augmented with the master site index in order to preserve
uniquenes of identifiers in the network.

(2) At each local site, a list is maintained of the local transaction or sub-transaction
identifiers in the order in which they enter the active set: it is called the active set list
(ASL). Note that transaction identifiers are recorded on the list in the same order in •
which their serialization is enforced; we have STi<STj whenever STi precedes STj in
the list. After the validation of the transactions, the identifiers are either removed
from the list, when the validation fails, or marked as committed, when the validation
succeeds. Active set lists are periodically examined in ord~r to delete from them
those items which are not of interest for validation purposes; as it will become clear
in the following, all identifiers preceding the earliest global transaction which is not
marked are not of interest for the validation.

(3) Each sub-transaction collects into a happened before set HB the TIDs of the global
transactions that have effectively executed before at that site, have influenced its
execution, and have their identifier still recorded in the active set list. The happened
before set is based on the relation "«" already introduced. In the evaluation of "«",
only those local transactions and subtransactions whose TID is recorded in the ASL
are considered; the HB set is then defined as follows:

HB(STih) = { TIDj I Tj is global 1\ Tj E ASL 1\ STjh « STih }.

Local transactions arc validated according to the parallel validation algorithm of [9],
with the only difference that they have to insert their TID in the ASL when the
validation statts and either delete it if the validation fails or mark it if the validation
succeeds. The active set of [9] consists in this case of those transactions whose TID is
stored in the ASL and is not marked. Moreover, the read and write set of the local
transactions have to remain available until their marked identifiers are actually
deleted from the ASL, as they are used for computing the "«" relation.

The validation of sub-transactions consists of a local and a glohal validation phase.
For the local validation, the parallel validation algorithm of [9] is used. If the
validation fails, the sub-transaction is backed up and restmted locally. Finally, the
sub-transaction enters the global validation phase, in which global serializability is
checked. Tn the following, the global validation and commitment of a sub-transaction
STih is described; the validation procedure for sub-transactions is also shown in Fig.
1, as an extension to the end consistency control call of [9].

end = (

124

/* validation of STih on node h */

/* local validation, as in [9] */
<Finish-Tn:=tnc;

COPYih= (make a copy of ASL);
{append TID to ASL}>;

• FA:=(make a copy of active transactions not marked in COPYih);
valid:=true;
for t 'from Start-Tn to Finish-Tn do

if (write set of transaction number t intersects read set)
then valid:=false;

for i E FA do
if (write set of transaction STi intersects read set or write set)
then valid:=false;

1f val id then /* global val idation phase */

/* build the HB */
HB(STih)={TIDi};
whllp. (no more TID can be added to HB(STih)) do

if 3 j,k I TIDjECOPYih /\ TIDkEHB(STih) /\ conflict'(STjh,STkh)
then HB(STih) = HB(STih) U { TIDj };

(remove TIDi and local transaction identifiers from HB(STih»;

/* testing for' commitment or abortion of confl icting transactions */
while (3 STjh E HB(STih)) and valid do

if (STjh E ASL and STjh is marked) or (STjh ~ ASL)
then HB(STih)= HB(STih) - {STjh}
else (/* time-out and second attempt */

go-to-sleep(timeout);
whlle (3 STjh E HI3(STih)) and valid do

if (STjh E ASL and STjh is marked) or (STjh ~ ASL)
then HB(STih)=HB(STih) - {STjh}
else val.id := false;

/* two-phase commitment */
1f val id then (

sondreply("ready to commit U
);

if message=commit
then ((write phase);

<tnc:=tnc+l; tn:=tnc;
(mark TID in the i\SL) > »

else <ASL:=ASL - TID >,;
(backup»

/* failure of global validation */
else (<ASL:=ASL - TID >;

sond("abort");
(backUp) » /* end global validation phase */

/* failure of local validation */
else «ASL:=ASL - TID >;

(local backup) ».

Fig. 1: Extensions to end consistency control call for sub-transactions
with respect to the para77el va7idation method of [9].
Critical sections are enclosed by symbols "<", '>'.
Communications occur between the master site and site j; when
the primitive sendreply is used, the sender waits until it
receives the reply.

125

1) The HB set is computed; initially, it is HB(STih) - {TIDi}, and then the TID of
transactions in conflict' relation with some transaction of the HB set arc included in
the set itself; this construction is repeated until no more transaction can be added to
the HB set. At the end, the TID's of local transactions and TIDi are eliminated from
the set, which therefore contains only those global transactions which are in "«"
relation with STih.

(2) The global validation phase consists of verifying that all the transactions of the
HB set have either committed or aborted before the point at which STih is validated;
as it will be proved in the next section, this condition ensures global serializability.
The commitment or aborting of conflicting transactions can be read from the ASL,
without requiring exclusive access to it. In the case where the validation fails because
there is some global transation STjh in HB(STih) which is still active, the transaction
is kept waiting for a given timeout. Then the validation is repeated, and if it fails
again Ti is abOlted. In this case, a message is sent to the transaction master, which
both broadcasts the abort command to all the other sub-transactions, and issues a
new global transaction (assigning a new transaction number to it).

Let us consider how the validation attempt might fail. In a simple case, say Tih «
Tjh and Tjk <<Tik, transaction Tj cannot complete validation at site h until after Ti
has committed or aborted globally, and Ti cannot complete validation at site k until
after 1j has committed or abOlted globally. Thus at least one of them will time-out
and abort in its validation phase. In general, whenever committing a set of conflicting
transactions would cause a cycle in the global serialization graph, there is a
corresponding cycle in the validation phase, in which each transaction must wait for
one of the others to commit or abOlt (this is proved in section 5). The wait cycle can
only be broken by one (or more) abOlting, and this prevents cycles in the
serialization graph. Of course, this method Can abort some transactions unnecessarily:
a transaction may time-out and abort just before the transaction it was waiting for
commits or aburts.However, given our assumption that conflicts are uncommon, a
proper choice of time-out interval should make such ,un-needed backups rare.

(3) At the end of the global validation phase, the two-phase commitment takes
place; a ready to commit message is sent to the transaction master, which collects the
messages from all the sub-transactions; jf none of them abolts, then finally a commit
message is sent back. Then, just as in the parallel validation algorithm,
subtransactions can perform the write phase, are assigned a local transaction number,
and are marked in t.he local ASL. If instead one of the sub-transactions aborts, then
all other subtransactions have to eliminate their TID from the local ASL's, and
repeat their execution (with a new TID).

The global concurrency control mechanism is completed by a clean-up transaction
which is issued periodically; it analyses the ASL and deletes from it all the TID's
which precede the earliest non marked global TID. Moreover, read sets of
transactions whose TID is deleted are also deleted, together with the write sets which
are not of interest for the local concurrency control mechanism.

126

5. Proof of correctness of the HIgorithm, some practical considerations, and
comparison with other approaches)

;'
,:j'

Proof of Correctness

The correctness of the algorithm is proved informally here, though a formal proof
based on the techniques of[12] is possible. We will show that the algorithm is safe in
the sense that it does not allow construction of local schedules which are not globally
serializable. There is no guarantee that a tmnsaction will eventually be able to
commit; one can only say that the assumption of low conflict between transactions
makes eventual commitment very probable.

We first show that an edge between two transactions in the global serialization graph
implies that there is a site at which the first one committed before the second
completed its validation phase. (Note that the definition of the global serialization
graph implies immediately that the first transaction committed before the second
committed.)

Lemma: If there is an edge from Ti to Tj in the global serialization graph, then there
is some site h such that STih committed before STJh completed validation.

Proof: Let h be a site such that STih « STjh; the definition of the global
serialization graph implies that such a site exists. Consider the value computed for
HB(STjh), assuming, for the moment, that no clean-up transaction have been run
and thus the ASL contains all transactions that have ever committed or are still active
at site h. In this case, computation of HB(STjh) captures all sub-transactions that are
in the "«" relation to S1Jh; in particular, TIDi is in HB(STjh). Now, the algorithm
delays validation of STjh until after STih has committed, giving the required result.

Next, consider the effect of clean-up transactions. As long as TIDi is put in
HI3(STjh), the lemma is satisfied. The only way that TIDi can fail to appeai' in
HB(STjh) is if it has been removed from the· ASL by a clean-up transaction before
HB(STjh) is computed. Because a transaction can only be -removed after it has
committed, this implies that STih committed before STjh began its validation phase,
which is well before it ended validation. So the lemma is satisfied in this case too.

Theorem: The algorithm described above can never give rise to a cycle in the global
serialization graph of com mitted transactions.

Proof:. The algorithm prevents a cycle in the serialization graph by requiring
contlicting global transactions to complete validation in the same order as they would
appear in the graph. In the case of a cycle, this prevents any of the transactions from
completing validation until one or more of the transactions in the cycle has aborted.
We proceed to establish this by contradiction. Assume that a cycle of committed
transactions exists, consisting of T1, '1'2, ... , Tn, Tn +- 1=Tl. The lemma above
implies that, {or each pair of transactions Ti and Ti+ 1, there is some site h where Ti
committed before Ti +- 1 completed validation. Since Ti could not commit before all
of its sUb-transactions completed validation, this implies that all sub-transactions of
Ti completed validation before all sub-transactions of Ti +1 did so. Since the

127

transactions form a cycle, this is impossible, and we have the required contradiction.

Practical considerations

The following modifications to the validation mechanism can be used to improve its'
efficiency or functionality in celtain cases.

(1) There is an inefficiency in the local validation algorithm which was pointed out in
[9], namely that "a transaction in ASL can invalidate another transaction, even
though the former transaction is itself invalidated". A possible escape from this case
was also pointed out in [9], and consists of "waiting for the invalidating transaction to
either be invalidated, and hence ignored, or validated, causing the backup". This
escape, however, holds for local transactions only, because keeping a global
transaction waiting introduces potential distributed deadlocks (but see note 2 below).

(2) The algorithm currently prevents deadlocks among cyclically conflicting
transactions by a time~out mechanism. Alternatively, one could detect such cycles,
using an algorithm like Obermarck's [11], and abOlt transactions only when they are
involved in a cycle. Given the assumption that conflicts are infrequent, this situation
should seldom arise, so the extra mechanism required for cycle detection might not
be Llsed often enough to justify its inclusion.

(3) The computation of transitive closure of conflict can be rather lengthy, expedally
with transactions with large read and write sets. In fact, more emdent algorithms
than the one presented in Fig. 1 can be used for determining transitively the conflicts
between transactions. For instance, it is clear that the local conflict history for a given
transaction is all contained in its local HB set, and therefore this information can be
used to build the transitive closure of conflicts. Note, however, that the method
presented here relies on the optimistic assumption of having a very limited number
of contlicts between transactions, and this should greatly simplify in practice the
computation of HB sets.

(4) At each local site, the complexity of the validation process and the amount of
information that has to be stored for the validation depends on the number of
transaction which are stored in the ASL, and they ultimately depend on the earliest
global transaction which is not validated. The size of the AS L could be controlled by
introducing a mechanism to force the abOltion of the latest global transaction, based
either on time-out mechanisms or on the amount of local storage availlable for
concurrency control.

(5) The possibility that a transaction never succeeds in its validation (starvation) has
to be considered. In [9], lock-based techniques are recommended for those
transactions which are repeatedly invalidated. This also applies to a distributed
environment, with the additional problems which arise because of global deadlocks
[11]. Badal [1] suggests the use of random lime intervals fol' restarting transactions
that have contlicted, in order not to repeat the same conflicting sequence.

(6) Although we have not explicitly considered replicated data, it tits into the
algorithm quite easily. It is only necessary to implement a write on a replicated item

128

by writes to all copies of the item, using sub-transactions at each site where the item
is stored; a read may be implemented by reading any copy. The global consistency
mechanism will ensure serializability of these transactions, and this implies that
multiple copies remain consistent. In fact, the more general weighting schemes
described by Gifford [7] may be used to determine how many copies must be
accessed by read and write operations.

Comparison with other approaches

An algorithm for concurrency control of distributed transactions which uses an
optimistic approach is presented in [6]. However, the model of distributed transaction
which is assumed in that paper is different from the proposed model; a distributed
transaction in [6] corresponds to a sequential execution of sub-transactions at the
various sites. In this way, each sub-transaction has a global knowledge of its connict
history, and therefore decisions on the conflicts that lead to non-serial executions can
be progressively taken during transaction evolution. The concurrency control
information is stored together with objects; each object has a stack-based log which
stores the transaction identifiers of transactions which access the object, together with
their past conflict history. The advantage of the method is in the possibility of
anticipating decisions about conflicts; the disadvantage is in the "sequential" model
of sub-transaction execution, that doesn't allow parallelism.

The notion of serializability used in [3, 4, 10, 13] was, in the authors' opinion, heavily
influenced by the operational features of some distributed database system (see for
instance SDD-I [4]); in pmticular, the need in those systems of collecting the non
local infOlmation on the initiating site and executing the transaction there leads quite
naturally t6 mantaining one .read phase and one write phase in a distributed
environment as well. The model which is proposed here, which allows several
sub transactions to execute their read and write phase without requiring a strict
sequcntiality between all reads and all writes, is probably more general, and moves in
the direction of considering more distributed models of transaction execution.

6. References

[1] Badal, D. Z. Correctness of Concurrency Control and implications in Distributed
Databases, Proc. COlv!PSAC 79, Chicago, November 1979, pp. 588-593.

[2] Badal, D. Z. Concurrency Control Overhead or Closer Look at Blocking vs.
Nonblocking Concurrency Control Mechanisms, Proc. Fifth Berkeley Workshop on
Distributed Data Management and Computer Networks, February 1981, pp. 85-103.

[3] Bernstein, P. A., Shipman, D. W., and Wong, W. S. Formal Aspects of
Scria!izability in Database Concurrency Control, IEEE Transactions on Sojtware
Engineering, Vol. 5 No.3, May 1979, pp. 203-214.

129

[4] Bernstein, P. A., Shipman, D. W., and Rothnie, 1. B. Concurrency Control in a
System for Distributed Databases (SDD--1), ACAJI rODS, Vol. 5 No.1, March 1980,
pp 18-51.

[5] Eswaran, K. P., Gray, 1. N., Lorie, R. A.,and Traiger, 1. L. The Notion of
Consistency and Predicate Locks in a Database System, Comm ACM, Vol. 19 No. 11,
November 1976, pp. 624-633.

[6] Garcia-Molina, H. and Wiederhold, G. Read-only Transactions in a Distributed
Database, Stanford 'Department of Computer Science, Report No. STAN-CS-80-797,
April 1980.

[7] Gifford, D. K. Weighted Voting for Replicated Data, Operating System Review,
Vol 13, No.5, December 1979, pp 150-162.,

[8] Gray, 1. Notes on Database Operating Systems, in Operating Systems: an
Advanced Course, R. Bayer, R. M. Graham, G. Seegmuller eds., Springer-Verlag,
1978, pp. 393-481.

[9] Kung, H. T. and Robinson, 1. T. On Optimistic Methods for Concurrency
Control, ACM rODS, Vol. 6 No.2, June 1981, pp 213-226.

[10] Minoura, T. Resilient Extended True-copy token Algorithm for Distributed
Database Systems, Dept. of Electrical Engineering, Ph. D. Dissertation, Stanford
University, May 1980.

[11] Obermarck, R. Global Deadlock Detection Algorithm, IBM Rep. N.
RJ2845(36131) 6/13/80, June 1980.

[12] Owicki, S. and Gries, D. An Axiomatic Proof Technique for Parallel Programs,
Acta Informatica, Vol. 6 No.4, pp 319-340.

[13] Papadimitriou, C. H. The serializabpity of Concurrent Database Updates,
Journal of the ACM, Vol. 26 No 4, October 1979, pp 631 - 653.

/;

/1
I)1

{'

131

Performance of Two Phase Locking

Wen-Te K. Lin
Jerry Nolte

computer Corporation of America

Abstract

Simulation and analytical modeling of the two phase locking
in a DBMS is the subject of this study. It is only part of a
larger project that is studying the performances of various con
currency control and reliability algorithms in a distributed
DBMS. In the simulation model, the application environment is
characterized by the transaction size -- the number of lockable
units requested by each transaction -- and the system environment
by the number of transactions running concurrently (multiprogram
ming level), total number of lockable units in the database, and
the distribution of accesses to these lockable units. These
environments are varied for different simulation runs. Output
from these simulation runs includes the probabilities of a lock
request involved in a conflict and deadlock respectively (PC and
PD), and the average waiting delay (WT) and its standard devia
tion (DV) of a blocked lock request. The results show that the
system behaves quite similarly for different access distributions
-- PC, PD, WT, and DV all increase more than linearly with the
mUltiprogramming level and the transaction size; the increase of
PC is faster with mUltiprogramming level than with the transac
tion size, and the reverse is true for PD, WT, and DV. Regres
sion analysis on the simulation results reveals interesting rela
tionships between the granularity of the lockable units and PC,
PD, and WT. Because of the assumption of fixed delay (excluding
blocking due to lock conflict) between two consecutive lock
requests by a transaction, the results apply to a centralized
DBMS with little 10 delay variation, and a distributed DBMS with
little communication delay variation.

This research is supported by the Rome Air Development Center
(TSR) of the Department of the Air Force under Contract Number
F30602-81-C-0028. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as necessarily representing the official policies, either ex
pressed or implied, of the Rome Air Development Center of the
Department of the Air Force or the U.S. Government.

132

1. Introduction

In the two phase locking protocol as described in Gray [1],

during the first phase transactions accummulate locks incremen

tally, acquiring each lock as its need arises, and during the

second phase, release each lock as soon as its need ends. But to

spare the end users the responsibility of requesting and releas

ing . locks, most DBMSs implement implicit locking. The DBMSs

request and release the locks automatically when the transactions

request the data items and when the transactions end, respec

tively. Because a DBMS, not knowing enough of the syntax and

semantics of the transactions, is ignorant of the time when each

data item is no longer needed, it can only release the locks held

by a transaction when the transaction ends. Besides, if locks

held by a transaction are released before the transaction ends,

then the abortion of the transaction causes roll-backs of all

other transactions that have read data released by the aborted

transaction. To avoid the problems discussed above, most DBMS

release locks held by a transaction when the transaction ends.

The performance of this modified two-phase locking is the sUbject

of this study.

In this study we use several measures of system performance.

We emphasize the blocking and restart behavior of transactions.

We concentrate on the basic underlying factors of conflict,

deadlock, and wait duration. The performance variables are

listed as follows:

133

1. the average probability of a lock request conflicting with
another one;

2. the average probability of a lock request causing a deadlock;

3. the average waiting delay of a conflicting lock request;

4. and the standard deviation of this delay.

Besides locking protocol, the performance of a DBMS depends on

several system and application parameters:

1. the average number of locks requested by a transaction (tran
saction size);

2. the maximum number of transactions running concurrently (the
mUltiprogramming level);

3. the size of the group that is the unit of locking (lockable
unit size);

4. the size of the database (total number of lockable units);

5. and the distribution of lock requests to the lockable units
of the database.

Two distributions of lock requests to the lockable units are

simulated. The random access model assumes that all lockable

units have the same probability of being accessed by a lock

request. The 20/80 model assumes that 20% of the database is

accessed 80% of the time.

Using simulation and statistical data analysis techniques,

this paper studies the relationships between the performance of a

DBMS and those system and application parameters affecting it.

A few researchers have attempted similar studies. In Lin

[2], the same approach taken in this study was used to evaluate

two timestamping protocol~, but its results could not be extended

to the two-phase locking protocol. In Naka [3], the result

134

confirmed that concurrent updating of the database by transac

tions degrades the performance of a DBMS. In Spit [4], the two

phase locking and the modified version (described above) were

found to perform equally well insystem-2000. In Mun [5],

deadlock resolution methods were studied, and three were found to

be superior: restarting the smallest, the one holding the least

locks, and the one having consumed the least cpu time. In addi

tion, it was found that simultaneous reduction of the sizes of

the lockable unit and the transaction improves the performance.

But the oversimplified definition of performance as the cpu util

ization made the results less useful. In Ries [6], the scope and

the objective of its simulation were much more ambitious than the

previous three. Nevertheless, it emphasized the effects of the

size of the lockable unit on the performance of the DBMS, which

was defined as the cpu and 10 utilizations, plus in some cases

the response time and the system through-put. The main model

required transactions to obtain all the required locks before

they started, and the request-as-needed model was only briefly

studied. It had many interesting results showing how the size of

the lockable unit interacts with the system and application

parameters to effect the performance. But its assumption that

the mUltiprogramming level has no affect on performance is con

tradicted by this study. Also, performance was not related to

system and application parameters as precisely and quantitatively

as in the present study.

135

This study expands on Lin [2] and Ries [4], and presents the

results in the same precise form as that of Lin [2]. The second

section discusses the simulation model; the third section

presents and analyzes the results of the random access model; the

fourth section presents and summar izes. the results of the 20/80

model; and the fifth section summarizes the results of this

study.

2. Simulation Model

A complete description of a simulation model for a DBMS must

include the database, the transactions, the computer system, and

the output parameters.

The database consists of DZ (Database siZe) lockable units

of equal size. The size of each lockable unit is irrelevant to

our model. The database size DZ varies among different simula

tion runs.

We simulate two different access distributions to the data

base: the random access model in which all lockable units are

equally likely to be accessed, and the 20/80 access model in

which 20% of the database is accessed 80% of the time.

All transactions request only exclusive locks. Within each

simulation run, all transactions request the same numberTZ

(Transaction siZe) of lockable units, but TZ varies among dif

ferent simulation runs. Each transaction requests its lockable

136

units sequentially, but different transactions request lockable

units asynchronously. When a transaction requests for a lockable

unit, a random number is drawn to select one among all the lock

able units in the database except those held by the requesting

transaction; thus a transaction never requests the same lockable

unit more than once. If the drawn lockable unit is locked by

another transaction, the requesting transaction is queued at the

end of a FIFO queue. Otherwise, it sets a lock on the drawn

lockable unit and waits one time unit before requesting another

lockable unit. Since processing a lock request is assumed to be

instantaneous, the simulation timer is advanced one unit only

after all outstanding lock requests have been processed. The

assumption that a transaction waits a unit of time (after obtain

ing a lockable unit) before requesting another one, implies that

it takes one time unit to retrieve a lockable unit from the data

base, to wait for the cpu, and to process it. Each transaction

releases all its lockable uniti after its completion or abortion.

We model the computer system at a high functional level.

The cpu, 10 devices, and other hardware components are invisible

in the simulation model; their existence is implied by the pro

cessing time required for each lockable unit discussed previ

ously. The system is a closed mUltiprogramming system, i.e., the

number of transactions running concurrently remains at a constant

level MP (MultiProgramming level); a new transaction starts as

soon as one completes or aborts. Nonetheless MP varies among

different simulation runs. A lock request conflicts if it

137

requests a lockable unit already held by another transaction.

The system maintains a lock with a FIFO queue for each lockable

unit and places conflicting lock requests into the queue. It

checks for deadlocks as soon as a lock request conflicts. If it

detects a deadlock, the transaction of the conflicting lock

request aborts and restarts immediately; it restarts with a new

randomly drawn sequence of lock requests. Checkings of conflicts

and deadlocks are instantaneous.

For each simulation run, the output includes the fraction of

conflicting lock requests (which is the same as the probability

of a lock request conflicting with another lock request PC), the

fraction of conflicting lock requests causing deadlocks (which is

the same as the probability of a lock request causing a deadlock

PD), and the average waiting of a blocked lock request (WT) and

its standard deviation (DV).

3. Simulation Results of the Random Access Model

Sixty four simulations were run for 4 values of multipro

gramming level (MP), transaction size (TZ), and database size

(DZ) each. The results are presented and analyzed in this sec

tion in the following order: PC, PD, WT, and DV. The analysis

consists of three steps: visual inspection, regression analysis,

and examination of the regression equations.

138

The results of PC are presented in Figure 3.1. The figure,

shows that for a fixed DZ, PC increases with both MP and TZ, and

the increase is larger with MP than with TZ. This behavior is

explained by the following observation during the simulation

runs: the number of transactions deadlocked increases faster with

the transaction size than with the mUltiprogramming level. Since

a deadlocked transaction aborts and releases all held . locks as

soon as the deadlock occurs, the total number of locks outstand

ing (not released) increases slower with the transaction size

than with the multiprogramming level.

if a diagonal line is drawn from the top left to the bottom

right of each table in the figure, each number below the line is

always larger than the opposite number across the-line. Assuming

DZ is fixed, two elements across the diagonal line represent the

same load (L) defined as the product of MP and TZ divided by DZ.

For example, a system with 16 transactions, each requesting 7

locks, imposes the same load (112 lockable units) on the database

as a system with 7 transactions, each requesting 16 locks. This

line shows that with the same load, the system with higher mul

tiprogramming level has higher probability of conflict than the

system with higher transaction size. This behavior is explained

by the following observation during the simulation runs. Assum

ing the load L and the database" Size DZ are fixed, then on the

average, a larger MP with smaller TZ implies less deadlocks and

more locks outstanding. Since each lockable unit has the same

probability of being accessed, more outstanding locks means

139

higher probability of conflict. But higher probability of con-

flict does not necessarily means longer response time, because

smaller transaction size causes conflicting requests to wait less

and to deadlock less, as will be shown.

The differences across the diagonal line diminish as the

database size DZ increases -- that is, the probability of con-

flict (PC) is approximately proportional to the load L when the

load on the database is light, because increasing the database

size without increasing the multiprogramming level or the tran-

saction size is equivalent to decreasing the load on the data-

base.

We applied regression analysis to the data in Figure 3.1,

and found equation (3.1) a good fit. The residuals -- the

differences between the actual values and the values predicted by

the equation -- are within 2.5% of the actual values. We did a

few simulation runs with larger values of DZ, MP, and TZ, and

found that the equation is still a good fit for DZ of up to

12384, MP of up to 128, and TZ of up to 32; but we found that

when the transaction size TZ gets much larger than 32, the equa

tion under-estimates the probability of conflict (PC) substan-

tially.

0.72 (MP_l)1.05+0.35L Tzl.08-0.13L
PC = ----------~;I:08+0:28E------------

MP x TZ
L = -------DZ

(3.1)

140

Next, we use the regression equation to examine the rela

tionship between the size of the lockable unit and the probabil

ity of conflict.

If we split each lockable unit into k smaller units, then

the database size increases to k times its original size.

Because of the smaller lockable units, a transaction must request

more lockable units; thus the transaction size increases to w

(l~w~k) times its original size. The value of w depends on how

well the database is placed before the split. If the database is

originally well placed, then all the data items contained in the

original TZ lockable units are wanted by the transaction -- no

frivolous data items are retrieved. In this case, when a lock

able unit is split into k smaller ones, the transaction size

increases to k times its original size (w=k). Otherwise, if the

database is badly placed before the split, then the lockable

units retrieved by a transaction contain a lot of unwanted data

items. Thus, after the split, a transaction may request the same

number of lockable units and still obtain all the data items it

needs (w=l). In most cases, however, w will be larger than one

and smaller than k.

Replacing DZ and TZ by kDZ and wTZ, equation (3.1) becomes

equation <3.2),

PC' = t x PC

141

where·

DZO.28Lr TZO.13Lr wl -(O.13Lw)/k
t = -------------------------------(MP_l)O.35Lr kl -(O.28Lw)/k

and

r = (k-w)/k.

Setting w to k, equation (3.2a) becomes (3.2b).

1
t = ~o:4IL

(3.2 a)

(3.2b)

Since k is larger than one, t is smaller than one. Thus smaller

lockable units imply a smaller probability of conflict whenever

the database is well placed. But as we will show later, smaller

probability of conflict with larger transaction size may result

in a higher probability of deadlock and longer transaction

response time. As L approaches zero, i.e., the load is light, t

approximates one, and the difference between PC and PC' becomes

insignificant.

Setting w to one in equation (3.2a) results in equation

D.2c).

(3.2c)

where

r = (k-l)/k

and

t = 11k as L approaches zero.

142

Equation (3.2c) shows that when the load L is smaller than 100%,

which is within our simulation range and is realistic, t is less

than one. Therefore, if the database is badly placed, smaller

lockable units imply a smaller probability of conflict. In this

case, since the transaction size remains the same, a smalier pro

bability of conflict does imply a smaller probability of deadlock

and shorter response time.

To sum up, smaller lockable units always imply smaller pro

bability of conflict.

The probabilities of deadlock (PO) are presented in Figure

3.2. Notice that PO is the conditional probability of a lock

request causing a deadlock, given that the request conflicts.

The unconditional probability of deadlock is the product of PC

and PO, which is presented in Figure 3.3. These data are also

analyzed in three steps: visual inspection, regression analysis,

and analysis of the regression equation.

Figure 3.3 shows that for a fixed OZ, PO increases with both

the mUltiprogramming level MP and the transaction size TZ. But

in contrast to PC, the increase is larger with TZ than with MP.

If the diagonal line discussed previously is drawn for each

table in Figure 3.3, the number below the line is always smaller

than the corresponding number across the line, in sharp contrast

to PC of Figure 3.1. Thus assuming equal loads L, a system with

larger transactions and lower mUltiprogramming level has a higher

probability of deadlock than a system with shorter transactions

143

and higher mUltiprogramming level.

Similarly, regression analysis shows equation (3.3) a good

fit for the data of Figure 3.3.

PD' = PDxPC

MP x TZ
L = -------DZ

0.Ol2(MP_l)l.07-0.24L TZ3.61-3.48L
= -----------~;I:99:I:79L----------- (3.3)

We must emphasize that PD is the probability of deadlock for a

lock request, not a transaction. Equation (3.3) shows that when

the load L is larger than 80%, the coefficient c is smaller than

the coefficient b. Therefore, for a fixed load of 80% or

greater, a system with shorter transactions and higher multipro-

gramming level has a higher probability of deadlock than a system

with longer transactions and lower multiprogramming level. This

rather surprising behavior is not immediately apparent from

inspection of Figure 3.3. This behavior occurs because when the

load is high and trarisactions are long, transactions deadlock and

abort frequently; and abortions of long transactions means that

more locks are freed. Thus there is less probability of a lock

request causing a deadlock.

To analyze the relationship between PD and the lockable unit

size, we replace DZ by kDZ and TZ by wTZ, and equation (3.3)

becomes equation (3.4).

PD" = t X PD'

where

144

(3.4)

and

r = (l-w/k)

(3.4a)

Setting w to k, equation (3.4a) becomes (3.4b), which shows that

if and only if the load L is less than one, which is within the

range of our simulation and is realistic, t is greater than one.

(3.4b)

Thus, when the database is well placed, smaller lockable units

imply a larger probability of deadlock.

Setting w to 1 for the originally badly placed system, equa-

tion (3.4a) becomes (3.4c), which shows that, within the range of

our simulation, t is less than one. Therefore smaller lockable

units reduce the probability of deadlock.

In summa~y, larger lockable units in a well placed system

and smaller lockable units in a badly placed system reduce the

probability of deadlock for lock requests and transactions.

(3.4c)
",i

where

r = (I-11k).

145

The average waiting times of a conflicting lock request are

shown in Figure 3.4, which shows that the average waiting of a

conflicting lock request increases with the ~ultiprogramming

level and the transaction size, and the increase is larger with

the transaction size than with the multiprogramming level. The

result is consistent with our intuition, because a lock request

blocked by a long transaction must wait until the long transac-

tion completes or aborts; and it takes longer for a long transac-

tion to complete or abort. Also, if a similar diagonal line is

drawn for each table, the number above the line is always larger

than the corresponding number across the diagonal line.

Regression analysis shows equation (3.5) a good fit for the

data of Figure 3.4.

WT

2 2
0.19(MP_l)3.4(L+0.2) -0.3 Tz2.7(L+0.15) +0.8

= ---------------------------2----------------
Dz4.1(L-0.04) -0.16

<3.5)

Assuming the database is well placed, to reduce the granularity

of the lockable units to 11k of its original size, we increase

the database size DZ and transaction size TZ to kDZ and kTZ

respectively in equation <3.5) , resulting in equation (3.6a).

Equation <3.6a) shows that when the load L is less than 1.4,

which is realistic and within the range of our simulations,

smaller lockable units imply longer waiting for a conflicting

lock request. The result is consistent with the earlier observa-

tion -- longer transactions induce longer waiting.

increase the database size DZ to kDZ, but leave the transaction

abort. Since a transaction takes longer to complete than to

With

(3.6a)

146

WT

the lockable units reduces the probability of deadlock.

base is badly placed and the load is light, reducing the size of

is small, t is greater than one -- longer waiting for a conflict-

less deadlocks, more transactions complete and less transactions

ing lock request. As shown earlier this is because when a data-

Assuming the database is badly placed, to reduce the granu

larity of the lockable units to 11k of its original size we

size TZ unchanged in equation (3.5), resulting in equation

(3.6b). Equation (3.6b) shows that when the load is light and k

abort, a blocked lock request waits longer.

WT = DZ 4 •lrL (qL-0.OS)
--2-----

. (MP_l)3.4rL(qL+0.4) Tz2.7rL(qL+0.3) k4.l(L/k-0.04) -0.16

(3.6b)

where

r = (1 - 11k)
q = (1 + 11k)

In summary, whether the database is well placed or badly

placed, smaller lockable units increase waiting delay for a

blocked lock request, except when load is extremely heavy, the

database is badly placed, and the reduction in lockable unit size

is large.

147

We next examined the standard deviation of waiting delays.

These results can be summarized very simply.

Regression on the data of Figure 3.5 results in equation

3.7, which shows that the waiting delay may be approximated by an

Er1angian distribution.

DV = 0.86 x WT

DZ = 256 DZ = 1025
-----------------~------- ------------------------

MP/TZ 7 10 12 16 MP/TZ 7 10 12 '16
------------------------- ------------------~-----

7 .077 .104 .118 .135 7 .020 .029 .034 .045
10 .113 .145 .159 .176 10 .030 .043 .050 .064
12 .135 .169 .182 .198 12 .037 .052 .061 .076
16 .174 .210 .224 .236 16 .050 .069 .081 .098

DZ = 512 DZ = 2048
------------------------- ------------------------

MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
------------------------- ------------------------

7 .040 .056 .066 .081 7 .010 .015 .017 .023
10 .059 .081 .094 .112 10 .015 .022 .026 .034
12 .072 .097 .111 .130 12 .019 .026 .031 .041
16 .096 .127 .142 .160 16 .025 .036 .043 .055

PC : Probability of a Lock Request conflicting
With Another Lock Request

Figure 3.1

(3.7)

DZ = 256

148

DZ = 1024

MP/TZ 7 10 12 16 MP/TZ 7 10 12 16

7 • 031 • 07 8 .112. .183
10.039.102.143.207
12 .044 .115 .156 .218
16 .061 .141 .179 .232

DZ = 512

7 .006 .014 .026 .050
10 .008 .019 .028 .061
12 .007 .019 .033 .068
16 .007 .025 .040 .090

DZ = 2048

MP/TZ 7 10 12 16 MP/TZ 7 / 10 12 16

7 .014 .037 .052 .102
10 .014 .041 .068 .130
12 .017 .049 .079 .144
16 .021 .067 .102 .168

7 .003 .006 .011 .024
10 .003 .006 .011 .024
12 • 003 • 009 •014 .029
16 .003 .009 .015 .034

PD : Conditional Probability of a Lock Request
CausiQg a Deadlock after Conflict

Figure 3.2

DZ = 256 DZ = 1024

MP/TZ 7 10 12 16 MP/TZ 7 10 12 16

7 .0024 .0081 .0132 .0247
10 .0044 .0148 .0227 .0364
12 .0059 .0194 .0284 .0432
16 .0106 .0296 .0401 .0548

7 .00012 .00040 .00088 .00225
10 .00024 .00081 .00140 .00390
12 .00026 .00099 .00201 .00517
16 .00035 .00173 .00324 .00882

DZ = 512 DZ = 2048
---------------------------- --------------------------------
fiiP/TZ 7 10 12 16 MP/TZ 7 10 12 16

7 .0006 .0021 .0034 .0083
10 .0008 .0033 .0064 .0146
12 .0012 .0048 .0088 .0187
16 .0020 .0085 .0145 .0269

7 .000030 .00009 .00019 .0006
10 .000045.00013.00029.0008
12 .000057 .00023 .00043 .0012
16 .000075 .00032 .00063 .0019

PCxPD : Absolute Probability of a Lock Request
Causing a Deadlock after Conflict

Figure 3.3

DZ = 256

149

DZ = 1024

MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
-------------------------- ---------------------------
7 3.76 6.18 7.85 11.01 7 3.09 4.49 5.60 8.26
10 4.64 8.25 10.55 14.40 10 3.19 4.93 6.42 10.57
12 5.36 9.52 12.09 15.70 12 3.35 5.34 7.25 ;1.1.80
16 7.27 12.52 15.24 18.65 16 3.54 6.65 9.30 16.05

DZ = 512 DZ = 2048
-------------------------- --~------------------------

l-lP/TZ 7 10 12 16 MP/TZ 7 10 12 16
-------------------------- ---------------------------
7 . 3.33 5.12 6.60 9.7~ 7 2.94 4.11 5.00 7.01
10 3.66 6.18 8.50 13.37 10 ' 3.01 4.39 5.42 8.13
12 3.88 7.19 9.91 15.28 12 3.07 4.49 5.64 8.88
16 4.71 9.77 13.53 19.43 16 3.14 4.88 6.35 10.91

WT : Average Waiting Time ofa Conflicting
Lock Request after the Conflict

Figure 3.4

DZ = 256 DZ = 1024

MP/TZ· 7 10 12 16 MP/TZ 7 10 12 16

7 2.86 5.28 6.90 10.09
10 4.02 7.59 9.88 13.56
12 4.93 9.03 11.26 14.78
16 7.05 11.77 14.19 17.66

DZ = 512

7 1.95 3.35 4.36 6.92
10 2.16 3.94 5.50 9.62
12 2.38 4.52 6.49 10.98
16 2.68 6.15 8.97 15.51

DZ = 2048

lilP/TZ 7 10 12 16 MP/TZ 7 10 12 16
--------------------------- -----------------------------
7 2.29 4.08 5.44 8.61 7 1.80 2.80 3.49 5.46
10 2.78 5.45 7.76 12.51 10 1.89 3.09 4.06 6.93
12 7.19 6.71 9.22 14.32 12 1.94 3.21 4.53 8.04
16 4.32 9.45 12.90 18.,07 ~(i 2.09 3.92 5.52 10.58

DV : Standard Deviation of the Waiting Times of
Conflicting Lock Requests

Figure 3.5

150

4. Results of 20/80 Access Model

The results of simulating the 20/80 access model are shown

in Figures 4.1 through 4.5. They are similar to the results of

the random access model with heavier load. The reason is that

when 20% of, the database is used 80% of the time, the same load

of the random access model becomes a heavier load. The probabil

ity of conflict, the probability of deadlock, and the average

waiting of a conflicting lock request still increases with both

the transaction size and the multiprogramming level. The proba

bility of conflict increases faster with the multiprogramming

level than with the transaction size, while the reverse is true

for the probability of deadlock and the average waiting of a con

flicting lock request.' If diagonal lines are drawn for the

tables (as previously explained), the number below the line is

always larger than the corresponding number above the line for

the probability of conflict, and the opposite is true for the

probability of deadlock and the average waiting of a conflicting

lock request. But the differences diminish as the load becomes

lighter.

Applying regression analysis to data in Figure 4.1 results

in equation (4.1). Similar to equation (3.1), it' shows that the

coefficient b is always larger than the coefficient c. The major

difference between this equation and equation (3.1) is that the

coefficient a of equation (4.1) is equal 3.7, much larger than

th~ 0.72 of equation (3.1).

151

3.7(MP_l)1.08+1.51L TZl.08+0.58L
PC = ----------~;I:I3+I:39L----------

where

MP x TZ
L = -------DZ

To examine the relationship between the probability of conflict

and the lockable unit ,size, we replace TZ by wTZ and DZ by kDZ in

equation (4.1), and obtain equation (4.2).

PC' = t x PC

where

DZl.39rL wl +(0.58Lw)/k
t = -------------------------------TZO.58rL Mpl.51rL kl+(1.39L~)/k

and

r = 1 - w/k.

(4.2)

(4.2a)

If the database is well placed, then w is equal to k, and equa

tion (4.2a) becomes equation (4.2b), which shows that smaller

lockable units reduce the probability of conflict, consistent

with the result of the random access case.

t = k-0 •81 (4.2b)

If the database is badly placed, then w is equal to one, and.

equation (4.2a) becomes equation (4.2c). Equation (4.2c') shows

that if the load L is less 50%, which is within the range of our

simulations and is realistic, smaller lockable units reduce pro-

bability of conflict. In summary, whether the database is origi-

152

nally well or badly placed, reducing lockable units reduces the

probability of conflict. This result is the same as in the ran-

dom access model.

(4.2c)

where

r = 1 - 11k.

Regression of the data in Figure 4.3 results in equation

(4.3), which shows that when the load L is greater than 33%, the

coefficient cis smaller than the coefficient b. Therefore, for

a fixed load of 33% or higher, a system with higher mUltiprogram

ming level and smaller transactions has higher probability of

deadlock than a system with lower multiprogramming level and

longer transactions. This result is similar to the random access

model.

PD' =

where

PDxPC
O.8(MP_l)1.4l+2.66L Tz3.88-4.74L

= ----------~;2:33:0:13E---------- (4.3)

MP x TZ
L = -------DZ

To examine the relationship between the probability of deadlock

and the lockable unit size, we replace TZ by wTZ and DZ by kDZ in

equation (4.3), and obtain equation (4.4).

PO" = t x PO'

where

153

(4.4)

(4.4a)

If the database is well placed, then w is equal to k,' and

equation (4.4a) becomes equation (4.4b). Similar to ~quation

(3.4b), it shows that when the load L is less than 34%, which is

realistic and within the range of our simulations,t is greater

than one. That means larger lockable units reduce the probabil

ity of deadlock. This result is similar to the one found in the

random access model.

t = kl.55-4.6IL (4.4b)

For the badly placed database, setting w to one in equation

(4.4a) results in equation (4.4c), which shows that, within the

iange of odr simulations, smaller lockable units reduce the pro-

bability of deadlock. This result is also similar to the one

found in the random access model.

TZ4.74Lr
t = -------------------------------------(MP_I)2.66Lr DZO.13Lr k2 • 33-(O.13L)/k (4.4c)

Regression on the data in Figure 4.4 results in equation

(4.5) •

154

2 2
0.037(MP_l)11.7(L-0.l) -0.24 TZ14.8(L-0.22) +0.25

WT = ----------------------------2--------------------
Dz13.4(L-0.2) -0.27

(4.5)

Replacing DZ by kDZ and TZ by kTZ, equation (4.5) becomes

equation (4.6a), which shows, as does equation (3.6a), that t is

greater than one -- longer waiting delay for a conflicting lock

request.

2
WT = kO•l +l •4 (L-0.4) (4.6a)

Replacing DZ by kDZ, but leaving TZ unchanged, equation

(4.5) becomes equation (4.6b), which shows, as does equation

(3.6b), that when the load is light and k is small, t is greater

than one. Therefore, in general, reducing the size of lockable

units increases the waiting delay of a conflicting lock request,

except when the load is heavy, the database is badly placed, and

the reduction of lockable unit size is large.

WT = (4.6c)

DZ13.4rL(qL-0.4)
---2-----
(MP_l)11.7rL(qL-0.2) Tz14.8rL(qL-0.44) k13.4(L/k-0.2) -0.27

where

r = (l - 11k)
q = (1 + 11k)

Regression on the data in Figure 4.5 results in equation

(4.7).

DV = -0.88 + WT (4.7)

155

DZ = 512 DZ = 2048
------------------------- -------------------------
r-iP/TZ 7 10 12 16 MP/TZ 7 10 12 16
------------------------- -------------------------

7 .119 .150 .163 .176 7 .033 .045 .054 .067
10 .166 .198 .210 .221 10 .048 .067 .078 .095
12 .192 .225 .237 .245 12 .059 .080 .092 .110
16 .236 .268 .277 .284 16 .078 .105 .119 .137

DZ = 1024 DZ = 4096

MP/TZ 7 10 12 16 MP/TZ 7 10 12 16

7
10
12
16

.063 .085 .098 .116

.093 .122 .135 .151

.110 .142 .155 .173

.143.177.191.207

7 .016 .024 .028 .036
10 .025 .035 .041 .053
12 .030 .042 .050 .064
16 .040 .057 .067 .083

PC : Probability of a Lock Request conflicting
With Another Lock Request

Figure 4.1

DZ = 512

MP/TZ 7 10 12 16 MP/TZ 7

DZ = 2048

10 12 16

7
10
12
16

.057 .124 .168 .230

.072 .149 .189 .242

.081 .161 .201 .246

.102 .181 .214 .247

DZ = 1024

7
10
12
16

.011 .028 .044 .086

.012 .032 .050 .104

.013 .035 .060 .113

.015 .046 .078 .141

DZ = 4096

l-lP/TZ 7 10 12 16 MP/TZ 7 10 12 16

7 .025 .057 .089 .156
10 .028 .075 .117 .181
12 .032 .086 .126 .195
16 • 042 .109 .149 •211

7
10
12
16

.005 .012 .019 .037

.006 .013 .021 .046

.005 .014 .023 .051

.005 .016 .029 .067
I

PD : Conditional Probability of a Lock Request
Causing a Deadlock after Conflict

Figure 4.2

156

DZ = 512 DZ = 2048

IvIP/TZ 7 10 12 16 MP/TZ 7 10 12 16

7 .0068 .0186 .0274 .0405
10 .0120.0295.0397.0535
12 • 015 6 • 0362 • 0476 • 0603
16 .0241 .0485 .0593.0701

DZ = 1024

7
10
12
16

.00036 .00126 .00238 .00576

.00058 .00214 .00390 .00988

.00077 .00280 .00552 .01243

.00117 .00483 .00928 .01931

DZ = 4096

MP/TZ 7 10 12 16 MP/TZ 7 10 12 16

7 .0016 .0048 .0087 .0181
10 .0026 .0092 .0158 .0273
12 .0035 .0122 ~0195 .0337
16 .0060 .0193 .0285 .0437

7 .00008 .00028 .00053 .00133
10 .00015 .00045 .00086 .00243
12 .00015.00058.00115.00326
16 .00020 .00091 .00194 .00556

PCxPD : Absolute Probability of a Lock Request.
Causing a Deadlock after Conflict

Figure 4.3

r
DZ = 512 DZ = 2048

--------------------------- ----------------------------
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
---------------------------- ------------~---------------

7 4.21 6.81 9.49 11.11 7 3.22 4.81 6.11 9.36
10 5.44 8.94 10.83 13.08 10 3.50 5.70 7.69 12.36
12 6.50 10.19 11.93 14.39 12 3.65 6.32 8.99 14.55
16 8.44 12.64 14.26 16.32 16 4.19 8.50 11.92 18.43

DZ = 1024 DZ = 4096
---------------------------- ----------------------------
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
---------------------------- ----------------------------

7 3.51 5.71 '7.37 10.83 7 3.07 4.33 5.28 7.66
10 4.25 7.54 9.75 13.89 10 3.15 4.65 5.96 9.49
12 4.75 8.71 11.43 15.79 12 3.21 5.00 6.58 10.87
16 6.04 11.49 14.53 18.92 16 3.40 5.77 7.99 14.54

WT : Average Waiting Time of a Conflicting
Lock Request after the Conflict

Figure 4.4

DZ = 512

157

DZ = 2048

IvlP/TZ 7 10 12 16 MP/TZ 7 10 12 16
---------------------------- ----------------------------

7 3.48 5.94 8.49 10.35 7 2.17 3.75 5.00 8.01
10 4.89 8.36 10.14 12.49 10 2.57 4.83 6.95 11.63
12 6.04 9.62 11.38 13.75 12 2.79 5.69 8.45 13.70
16 7.98 11.93 13.54 15.65 16 3.56 8.22 11.47 17.18

DZ = 1024 DZ = 4096
---------------------------- ----------------------------
IvlP/TZ 7 10 12 16 MP/TZ 7 10 12 16
---------------------------- ----------------------------

7 2.60 4.78 6.41 9".72 7 1.91 3.05 3.97 6.26
10 3.59 6.96 9.24 13.02 10 2.07 3.53 4.83 8.55
12 4.21 8.18 10.72 14.92 12 2.17 4.02 5.72 10.25
16 5.73 10.98 13.72 17.68 16 2.48 5.08 7.61 14.02

STD-DEV : Standard Deviation of the Waiting Times of
Conflicting Lock Requests

Figure 4.5

5. Summary

We simulated the two-phase locking in a DBMS with fairly

constant communication and 10 delays. We collected performance

data, and regressed these data into equations relating the per-

formance of the DBMS to the mUltiprogramming level, the transac-

tion size, and the database size. Using these equations we exam-

ine the interaction between the performance of a DBMS and lock-

able units size.

158

We found the performance behavior of a DBMS with random

database access distribution quite similar to that of the 20/80

access distribution -- the 20/80 system behaves as a random

access system in heavy load. In fact, the same regression models

(equations) with different coefficient values fit both access

models well except for the standard deviation of the lock request

waiting delay.

The probability of conflict of a lock request increases more

than linearly with the multiprogramming level and the transaction

size; the increase is larger with the mUltiprogramming level than

with the transaction. The probability of deadlock, the average

waiting, and its standard deviation of a conflicting lock request

also increase more than linearly with the multiprogramming level

and the transaction size. But the increase is smaller with the

multiprogramming level than with the transaction size.

The waiting delay of a conflicting lock request can be

approximated by an Erlangian distribution in the random access

model. This result can be extremely useful for researchers who

use queueing theory to model a DBMS.

The results of this study have been validated, and can be

extrapolated for database size of up to 12384, multiprogramming

level of up to 128, and transaction size of up to 32.

So far we have concentrated on the basic factors of PC, PD,

WT, and DV. We will next briefly discuss the combination of

these blocking and restart variables into system throughput, a

159

measure of performance which is more directly useful to a system

designer.

In the highly functional model used here, all system
\

resources are represented by the time to process lock requests.

Since each request consumes the.same time, we measure throughput

by number of lock requests processed by transactions which fin

ish.

In every case, throughput decreases with increasing TZ, if

MP and DZ are held constant. As noted above, for longer transac-

tions there are more conflicts, more deadlocks, and longer

delays. The message for applications program design is clear.

Transactions should be made as small as possible.

Also, throughput increases with increasing DZ if MP and TZ

are held constant. This is the "badly placed locks" case, and it

also. can be anticipated from the analysis above. For random

access of data, small granules will provide better throughput

when both blocking and-restart behavior are considered. However,

because of the increasing communications and processing costs of

lock management, the response time will increase. The optimal

granularity can be calculated from the regression equations.

Finally, throughput first increases, and then decreases with

increased MP if TZ and DZ are constant. Given a particular

granularity and transaction size, for light loads, significant

gains in throughput can be attained by increasing the multipro-

gramming level. However, as the system load becomes heavier, the

160

losses to deadlock and restart more than outweigh the gains from

increased concurrency.

6. References

[1] Gray, J.N., et al., "Granularity of Locks and Degrees of Con
sistency in a Shared Data Base", ~. ~ Working Confer
~ Qn Modelling Qf~~ Management Systems, Freuden
stadt, Germany, January 1976.

[2] Lin, W.T.K., "Performance Evaluation of Two Concurrency Con
trol Mechanisms in a Distributed DBMS", AQ1-SIGMOD l.2JU.
International Conference Qn Management Qf ~, Ann Arbor,
Michigan, April 1981.

[3] Nakamura, et al., "A Simulation Model for a Database System
Performance Evaluation", AfIPS ~. ~~ Conference,
Volume 44, May 1975.

[4] Spitzer, J.F., "Performance Prototyping
Applications", ~. ~'li Annual
Texas, October 1976.

of Data Management
Conference, Houston,

[5] Muriz, R., et al., "Concurrency in Database System - A Simula
tion Study", ~. AQ1 SIGMOD International Conference,
Toronto, August 1977.

[6] Ries, D., "The Effect of Concurrency Control on Database
Management System Performance", Ph.D. thesis, Electronics
Research Lab, University of California, Berkeley, 1979.

161

A DISTRIBUTED FILE SYSTEM: ARCIllTECTURE
SUPPORTING IDGH AVAILABILITY

D. Stott Parker
Raimundo A. Ramos

Computer Science Department
University of California
Los Angeles, CA 90024

ABSTRACT

It is difficult to maintain redundant copies of resources such as files (in the interest of
availability) while simultaneously keeping these copies mutually consistent when the
network over which they are accessed is subject to partitioning. One approach is to
sacrifice consistency during network partitions and reconcile inconsistent data later,
when the network is repaired; this attitude has been taken in the LOCUS system at
UCLA. Here we extend the "version vector" mechanism originally used to implement
this approach so as to detect inconsistency' when more than one file is used by a tran
saction. We then show how the resulting general scheme may be implemented in a way
which gives the user a consistent view of system operation, even during network
changes.

This work is supported by ONR grant N00014-C-79-0866.
Mr. Ramos is also supported by BNDE and CAPES, Brazil.

162

1. introduction

LOCUS is a UNIX-based homogeneous distributed operating system under
development at UCLA in which the design goals of network transparency and availabili
ty have been given particular emphasis. The user is to be able to access files
throughout the network without being aware of either his or the files' locations. In the
design of LOCUS it was felt that software should not require knowledge of the location
of resources, since a change in network configuration could require tedious re-writing
of code.

Redundancy is the traditional approach to increase availability of a distributed
tile system. A file can be replicated at many sites making unlikely that one user will
not be able to access one of the multiple copies of the file. However, the existence of
multiple copies brings the problem of keeping the mutual consistency of the many
copies of the tile. All updates made to one copy of a file should be propagated to all
copies. Updates originated at the various nodes must be performed in each copy.
Transmission delays and the order in which updates are applied must be taken into
account to maintain the mutual consistency of all the copies, as well as the internal
consistency of each copy.

One can say that availability increases with the number of copies of a file. This
statement is true in read-only situations. However, if updates are allowed, multiple
copies may provide no improvement when mutual consistency is emphasized. When a
network with redundant data becomes partitioned, independent updates may cause
inconsistencies to arise'. If we adopt the obvious solutiOn to this problem, of avoiding
updates completely during network partitions, then having redundant copies will not
increase availability at all.

Unfortunately, a file can be made inaccessible by network failures or site
crashes,' so availability cannot always be attained. This is true even when files are re
plicated to a high degree. In fact, a number of proposed systems respond to network
partitions by making all but one copy of each file inaccessible for the duration of the
network outage, in order to guarantee consistency of the multiple copies
[AD 76,Elli 77,Thom 78,etc.} Since one has no a priori knowledge of the kind of up
dates to be made to a file, one prevents updates to it - except possibly in one copy - so
that independent updates of individual copies are impossible. No update scheme is
effective against partitioning in guaranteeing consistency of a file, unless the file is al
ways kept accessible only in one partition.

A network partition occurs when two or more sites become temporarily isolated
from each other, and unable to communicate through the network, even though some
or all of them are operational. It is important to realize that network partitions are a
common occurrence in many applications. Networks can be interrupted for environ
mental reasons (as when a submarine submerges), or simply economic ones (a cor
poration connects its network only at night, since at that time telephone rates are
lower). Even in the Ethernet [ME 76], gateways can be inoperative for significant
lengths of time, while the Ether segments they normally connect operate correctly.
Whatever the cause of network partitions, the resulting availability vs. mutual con
sistency tradeoffs presents serious questions to system designers.

r
i

163

In LOCUS. no assumptions are made about the frequency of network partitions
other than that they are a reality and will occur at intermittent intervals. However. an
environment is assumed in which tile update rates are moderate and "conflicts" occur
only rarely. In this setting we feel that mutual inconsistency of tiles will not be a seri
ous problem. and that emphasizing the availability of copies of files over their mutual
consistency will be a workable scheme.: This is not the kind of environment. for exam
ple. characterizing a database system with high transaction rates and volatility. and
the results here will probably not be useful for that area.

The paper is organized as follows. Section 2 briefly reviews previous work on
version vectors and detection of mutual inconsistency. Section 3 provides an exten
sion of this approach which we call ''log filters" permitting the detection of mutual in
consistency of sets of tlles, not just single files. Section 4 then describes various con
siderations in integrating the above mechanisms into a consistent user interface.
These considerations lead us to an actual design in Section 5, which is consistent even
during periods of network change.

2. Detection of Single-file Mutual Inconsistency

In [PPRe 81] a technique is described for detecting (and possibly resolving) mu
tual inconsistency of multiple copies of a single fUe, involving "origin points" and ''ver
sion vectors". The technique works basically by encoding the partial order describing
the set of updates made at various sites into ·'vectors". Independent updates. leading
to incomparable versions in the partial order. have incomparable vectors as a result.
Version vectors thus may be used to detect independently made updates accurately;
they provide a better check for mutual inconsistency than various naive methods.

Put briefly, whereas previous mechanisms such as timestamps detected
sutricient conditions for a conflict to exist. version vectors seek to provide a mechan
ism detecting necessary and sutricient' conditions for conflict. The case is made that
version vectors detect as much about inconsistency as possible. given that one does
not know anything about the semantics of updates applied to the file. For example,
the equality of two copies of a file modified independently during a network partition
does not imply their mutual consistency. Note that when our bank account is debited
equally in two mutually inaccessible locations. we cannot assume that our current bal
ance is the new value stored at both these locations!

Below we review the results from [PPRe 81]. The exposition is brief. and the
reader is referred to the paper for a more thorough treatment.

Define a partition to be a subset of sites in the network in which all copies of -a given
file are maintained with mutual consistency. Note that this definition is not strictly
tied to the physical details of network failure. Instead. partitions are defined relative
to files and to the higher concept of consistency. Although two sites with different
versions of a file f may be communicating for some time, we do not consider the sites
to be in a common partition relative to f unless this difference in the two versions is
resolved.

164

Definition
An origin point OP(f) of a file f is a system-wide unique identifier which is generated

when f is created. It is an immutable attribute of f, although f's name is not. No
matter how many times f is renamed or modified, OP(f) will not change. (Here, 'T"
refers to a specific file and is not a filename.)

An origin point for a file might be something like a (creation time, creation site
number)-pair. Origin points do not uniquely sp.ecify files, but indicate when two files
are based on a common file. They permit us to distinguish between two kinds of
"conflicts" that partitioning may cause in file systems:

Definition
After a partition, a name conflict is detected if two or more files from the various par

titions are found, which have the same name but have different origin points. A ver
sion conflict is detected if two or more files are found which have the same origin
point, but have different contents and/or different names, Le., the files are different
modifications of a common original file. Generally, we say that a file conflict is detect
ed after a partition whenever either a name- or a version confiict is detected. File
conflicts are reconciled when file names again uniquely specify a file. (Equivalently,
file conflicts are resolved when mutual consistency is restored.) Reconciliation may be
achieved by individually modifying, deleting, or renaming the various copies.

Definition
A Partition Graph G(r) for any file f is a directed acyclic graph (dag) which is labelled
as follows: The source node (and the sink n,ode if it exists) is labelled with the names of
all sites in the network having copies of file f, and all other nodes are labelled with a
subset of this set of names. Each node can only be labelled with site names appearing
on its ancestor nodes in the graph; conversely every site name on a node must appear
on exactly one of its descendants. In addition, a node is marked with a 1/+" if f is
modified one or more times within the corresponding partition.

Taking into account the definition of a partition, we see each node in G(f)
corresponds to a point in time at which the labelled sites "synchronize" their informa
tion about f. All sites appearing in the node label reconcile any differences that might
exist among their copies of f. Of course, all connections in G(f) between nodes indi
cate transitions of the network under partitions or merges.

An example of a partition graph is shown in Figure 1. Here there are three
sites, A. B, C, which support f. Multiple partitions of these initially connected sites oc
cur, so that at first sites A and B can communicate, but are isolated from site C. Later
A and B become isolated, as does C, but Band C resume communication. Ultimately all
three sites are reconnected at the final node of the graph. The file f is modified first
in the ~A,B~ partition, and again in the ~B,C~ partition. Note that this sequence of
modifications should not result in a version conflict notice since site B at all times has
the latest version of f; intelligent implementation of conflict detection should realize
this fact and avoid notifying site A that their f versions confiict with the current one.

Definition
A version vector for a file f is a sequence of n pairs, where n is the number of sites at

which f is stored. The i-th pair (Si: Vi) gives the index of the latest version of f made
at site St. In other words, the i-th ve~tor entry counts the number Vi of updates to f

(

165

<A:O. B:O. c:o>

<A:O. B:O. C:O>

<A:2. B:O. C:1>

CONFLICT! Version vector
becomes <A:3. B:1. C:1> after
reconciliation at site B

Figure 1. Partition graph G(f} for f with version vectors
effective at the end of each partition

made at site Si' (Actually. any strictly monotone value will suffice for vi' such as a
timestamp from site St-> We will use letters A.B.C.... to designate site names, and will
write vectors in notation like <A: 1. B:2, C:3> .

Definition
A set of version vectors are compatible when one vector is at least as large as any oth
er vector in every site component for which they each have entries. A set of vectors
conflict when they are not compatible.

For example. the version vector <A:3. B:4. C:2> dominates <A:2. B:l. C:2> so
the two are compatible; and <A:3. B:l. C:2> and <A:2. B:4. C:2> conflict. but <A:3. B:1,
C:2>. <A:2. B:4. C:2> . and <A:3. B:4. C:2> do not conflict. since the third vector dom
inates the other two. In Figure 1 version vectors are given for f in every partition. The
vector <A:2. B:O. C:1> associated with the node labelled BC. indicates that f was
modified twice at site A, once at site C. and nowhere else. Note in particular that dur
ing the ~A.BJ partition. the file is modified twice at site A. The final merge results in a
conflict.

166

We adopt the following usage o/version vectors:

[1] Each time an update to f originates at site Si' we increment the Si-th com
ponent. of f's version vector by one. The vect.or is committed wit.h the updat.ed
file.

[2] File deletion and renaming are t.reat.ed as file updat.es. Deletion result.s in a
version of the file of length zero, for example; when aU versions of a file are of
length zero, information on t.he file may be removed from the syst.em.

[3] When version conflict.s are reconciled wit.hin a partition, the S,;-t.h ent.ry of t.he
version vector for the reconciled file is set t.o be the maximum of the Si, -th en
t.ries of all of it.s predecessors, and in addition the sit.e init.iating t.he reconcilia
tion increments it.s ent.ry. This ensures fut.ure compatibilit.y wit.h any old ver
sions of the file st.ill remaining on t.he network.

[4] When copies of a file are subsequently st.ored at. new sit.es, t.he version vect.or is
augmented t.o include t.he new sit.e information. The definition of compatibilit.y
above st.ill holds. Thus vectors are not. fixed in lengt.h, and may grow; Removal
of copies from sit.es may be handled in an analogous manner.

Name conflict.s and version conflict.s are complet.ely different in nat.ure, and are
det.ect.ed differently. Keeping t.he origin point. of a file is sufficient. t.o det.ect. name
conflicts, but. not. version conflict.s. The following result. from [PPRe 81] indicates t.hat.
version vect.ors det.ect necessary and sufficient conditions for there to be a version
conflict..

Theorem 1
A version conflict. must. be reconciled at. a node in G(f) if and only if f's version vect.ors
conflict. at that point.

As mentioned at the peginning of t.his section, t.hen, version vect.ors serve t.o encode
the partial order defined by the partition graph: If t.wo updates in t.he graph are "in
comparable", t.hen the corresponding vect.ors are incomparable as well, and confiict..

3. Log Ji'ilters and Multi-file Inconsistency Detection

In t.he previous section a mechanism has been exhibit.ed which guarantees that.
independent sets of updates to a single file f will be detected. While t.his will cover
most of the usage pat.terns likely in an operat.ing syst.ems environment., this mechan
ism is not. sufficient for detecting multi-file independent. updates. Consider Figure 2,
with the following scenario:

We have t.wo files, f and g, replicat.ed at sites A and B. A partition separates
these sites. Initially, the copies of the files are mutually consist.ent, and each has ver
sion vector <A:O,B:O>. Transaction Tl at site A reads the contents of bot.h f and g,
then modifies file f, increment.ing f's version vector t.o < A: l.B:O>. Similarly, t.ransac
tion T2 at site B reads both f and g, but decides to modify file g, incrementing gO's vec
tor t.o <A:O,B:l>. At this point, the partition ends. The syst.em discovers t.hat f and g

167

have each been modified. but only once. Using the results in §2. the system simply
propagates the indicated updates. Unfortunately. this action is not correct: if we view
f and g together as a data object (as we should in this case). we see that a conflict
should. occur.

SITE A

A:1.B:O>

<A:O.B:O>

SITE B

A:O,B:1>

Figure 2. Multiple-file conflicts are not detected by version vectors alone

3.1. Conflicts and. serializability

The problem of single-file and multi-file conflicts can perhaps best be described
in terms of the traditional notion of serializability. If we consider the transactions Tl
arid T2 above as transactions. then by permitting them to execute ''in parallel" in their
individual partitions we achieve a result which is not serializable; cf. [BS 78].

Let us assume for the rest of this paper that all work done is broken into tran
sactions which have the following structure:

[1] Initially a set S = ~f 1:sitel,f2:site2•...• fm:site"J of files is specified. giving the sites
at which the files are stored. Each of these copies are locked. for the duration
of the transaction. This set of files is the read.set of the transaction.

[2] Some subset Sf of these tiles is modified; all updates are committed simultaneous
ly. The set S' is called the writeset of the transaction. Note that the writeset is
always a subset of the readset.

[3] Messages are sent to all other sites holding copies of files in Sf, notifying them to
cpange their copies to reflect the new modifications.

[4] The transaction completes, and all its locks are released.

A given transaction 1i may thus be viewed as having essentially two actions: first, a
''lock'' instruction Lt. which locks its readset. then a "commit" instruction q which
writes its writeset.

writeset(Tl) ;:: ~f~

writeset(T2) ;:: ~g~

writeset(T3) ;:: ~h~

168

Clearly more sophisticated models of transactions are possible. and knowing
more about the transaction's structure (both syntactic and semantic [PK 79]) will be
useful in determining when conflict situations have arisen. Many extensions follow na
turally. and we omit their description here. (For example. permitting transactions to
create files is a straightforward extension, but requires handling of the ''name
conflicts" described above.) The assumption that the writeset is contained in the read
set is not unquestionable, but we make it here mainly to avoid certain NP
completeness results [Papa 79].

Note in Figure 2 readset(Tl) ;:: readset(T2) ;:: ~f.g~, writeset(Tl) ;:: ~f~, and writeset(T2) =
~g~. However. more precisely. we must distinguish between the various copies of f and
g. If we use subscripts to denote site locations. then we should say readset(Tl) ;::
IfA.gAJ. writeset(Tl) ;:: ~fA,fB~; and readset(T2) ;:: ~fB.gB~' writeset(T2) ;:: ~gA,gB~' It is im
mediate that in this case non-serializable execution is the cause of file conflicts.

This understanding is particularly important if we consider more intricate
scenarios. For example. suppose there are three transactions Tl. T2. T3 executed in
dependently in different partitions. with:

readset(Tl) =~f.gJ

readset(T2) ;:: ~g.h~

readset(T3) =~f.hJ

Although these transactions are pairwise-serializable. as a group they are not,
and their independent execution will lead to file conflicts. Most treatments of serial
izability are centered around the notions of histories or logs [Papa 79]. However in
this context such an approach is unsatisfying, not only because a global concept of
time is intangible in distributed systems [Lamp 78], but also because we are con
cerned with operation of the system during network partitions. We therefore concen
trate immediately upon graphs.

Definition
An execution graph G ;:: G(Tlo ••• I Tn) is a directed acyclic graph with nodes
~CO.Ll,Cl.L21' .. 1~.Cn,Ln+1~ where ~Li,Ci I i;::lnJ are the lock and commit opera
tions from the transactions. Co initializes. all files. and ~+l reads all files. The edges of
G are pairs (x.y) where either x =~ and y = q or operation y reads what x writes.

Definition
For any pair of vertices x. y in a directed graph G. the relation x < G y is true if

there is a path from x to y in G.

Definition
The precedence graph G of an execution graph G contains G and all edges (x.y) such
that x < G y is false and at least one of the following conditions holds:
(1) readset(x) n writeset(y) ¢ ¢
(2) writeset(x) n readset(y) ~ ¢
(3) writeset(x) n writeset(y) ~ ¢

Definition
An execution graph is serializable if its precedence graph is acyclic.

Definition
A set of files S is put into conflict if there exist transactions T ll ...• Tn whose execu-

169

tion graph is not serializable, and
n

8 n U readset(Tj) #-¢.
i=l

Now intuitively, the problem posed by Figure 2 can be eliminated by saving se
quences of version vectors for each set of files accessed by a process. With the exam
ple above, the version vectors for g,gJ at site A are < A:l,B:O> <·A:O.B:O>, while at site B
they are < A:O,B:O> < A:O,B:l>. These sequences of two vectors. viewed as single enti
ties, are clearly incompatible if we make obvious modifications to the definition of
compatibility.

If S is put into conflict then, after completion of Tl1 ••• I Tn. the version vector
sequences for the sets 8 1•.•. 18n will be (intuitively) incompatible. This is the main
insight we need to implement conflict detection in the next section. In the special
case where 8 1 = '" =8n =~fJ, we arrive at the previously-discussed result for single
tiles, which is that version vectors are sufficient for detecting conflicts.

The big difference between what is being proposed here and previous work on
serializability is that here we are concerned with accurate detection of serialization
errors after they happen (as they would during network partitions). rather than with
their prevention. Naturally. it is possible to extend the approach here as with times
tamps to prevent these errors, and version vectors could be used to implement con
currency control. However, doing so would require restricted operation during parti
tions, in which at most one partition could modify a flle. and we are more interested
here in avoiding such restrictions. Our objective is to achieve high availability.

3.2. An implementation for multi-file conflict detection

In this section we overview the version vector/log filter mechanism for detec
tion of file conflicts mentioned above. Due to space limitations we keep our presenta
tion brief; it is hoped that by analogy with previous work for the sil1gle-file case vari-
ous details of implementation will be clear. \

To detect file conflicts for f, we must now monitor all transaction sets of files S
containing f for serializability errors. This may be done as follows.

Let us imagine a log listing all process's filesets S as they are recorded. Define,
for each file f. extent(f) to be the set of files involved with f by some filesats from the
log. Formally,

e:ctent (f) = 1g I (f ,g) E R+ J
where R+ is the transitive closure of the binary relation R defined by

R =HI 1,/2) I there is an S in the log such that 11 1,1 2~ C SJ.

170

This definition expresses the "extent" of all files involved in transactions with f.· Our
idea here is to provide a simple means of findingextent(f) for all files f. Note that for
example we can easily show

Prop
~fJ is put into conflict iff extent(f) is put into conflict.

Another consequence of the above definition is that

Prop
g E extent(f) ~ extent(g) =extent(f)

Thus extent divides the set of all files into equivalence classes. We store these
equivalence classes, and update them as transactions occur. In fact the stored values
of the equivalence classes and their version vector sequences are all we need to detect
conflicts -- we do not, in particular, need the log. We call this stored set of classes a
log filter because this equivalence class maintenance can be thought of as a process
which filters the log information. Also, it turns out that the term 'filter" is used in
combinatorics to describe complete sub-partial orders. The log filter provides a sim
ple refinement of the means of saving sequences of vectors suggested in the previous
section.

Definition

A log filter LF is a family of sets, each set 8 = U I' ... ,fmJ drawn from a set of files.
LF has the following two properties:

(1) If 8,T are in LF, and S "F T, then 8 n T =,p.

(2) Each S in LF has associated with it a number of sequences of version vectors,
each sequence consisting of m concatenated version vectors or null vectors,
where m =cardinality of 8. These sequences of version vectors (or null vec
tors) give the state of files following some transaction.

This may seem somewhat abstract, but it is really very straightforward. We are
proposing a mechanism which is additional to version vectors for detecting multiple
file joint inconsistency.. The filter LF for our file system is used in the following way:

[1] Initially, LF =,p.

[2] Upon commit to a set of tiles S =Uil:site 11 ••• ,fim:sitemJ do the following
things:

(a) if 8 is contained in some set S' = ~! l:site i, ... '!m :sitemJ in the LF al
ready, attach the version vector sequence

... Viewed differently,

extent (f >=FIXPT f

l
U S

Sin log
SconCGins /

u U extent (g >]
II £ 8zCent (/)

171

to S~ where <Vi.J> is the version vector for Ii.J' and the "..." indicate that
null vectors should be used as placeholders.

(b) if 8 is not already contained in LF, incorporate 8 into LF using the fast
UNION-FIND algorithm [AHU 74, Tarj 75] ••:

8T:= ¢;
for each finS do

begin
8/ := FIND(f); /* get current extent of f */
if 8/ =¢ then 8/ =lfJ;

/* f was newly created by transaction T
- add it to the log filter */

UNION(8/,8T,8T); ,
/* add 8/ to extent of T */

end

It is assumed here that the UNION operation also incorporates ver
sion vectors sequences in the obvious way.

[3] To check if,a file is in conflict:

S := FIND(f); /* get extent in LF */
if 8 has incompatible version vector sequences
then return (CONFLICT)
else return (OK)

Here ''incompatible'' is a straightforward extension of the term in §2. We
say one version vector sequence dominates another sequence if it is greater on
all file entries where the two sequences are defined. A set of version vector se
quences are compatible if there is one which dominates all the rest; otherwise,
they are incompatible, or conflict.

[4] Entries in the log filter must be maintained as long as conflict might exist. This
implies, for example, that during network partitions the filter may have to be
fully maintained. When there are no network difficulties, however, the filter can
drain as the system becomes quiescent.

** Recall that, in the UNION-FIND algorithm, we have a collection of mutually disjoint
sets. The operation UNION(81,82,s) takes two of these sets, merges them, and names
the resulting union 8 (81 and 8 2 are destroyed). FIND(f) returns the name of the set
containing f. .

As observed in [Tarj 75] and [AHU 74], the UNION-FIND operations can be
implemented very efficiently, so that for example a sequence of N-l UNIONs and M~ N
FINDs can be executed in time essentially linear in M. The overhead of log filter
maintenance is thus small.

172

Upon reconnection of two (or more) partitions, entries from one log filter
are added to the other(s) by using repeated application of step [2] above, where
the sets S are now equivalence classes in the different log filters. The resulting
log filter may be thought of as the union of its precursors, and is "less fine" in
its partitioning of the set of all files.

We thus have a simple mechanism for detecting conflicts in a multiple-file en
vironment. In the next sections we discuss problems of implementing such a mechan
ism in a real system environment.

4. Actual Resolution of File Conflicts

Suppose now that we are pres~ntedwith a bona-fid.e file conflict. That is, follow
ing some partition we discover either two files which conflict in name, or a file which
has been modified independently at two or more sites. What can be done? As has been
noted elsewhere, there is no universal way to coalesce updates made in different parti
tions without knowledge of the update semantics. Since in many cases the semantics
are sufficiently complicated that automated recovery is not possible, some kind of
user intervention will be necessary.

The occurrence of some flle conflicts is inevitable if one accepts the philosophy
adopted here that file availability is important. Consistency and availability just ap
pear to be fundamentally incompatible goals. However, the file conflict situation does
not have to be made unpleasant for the user. As long as conflicts are handled con
sistently throughout the system, and the user's options are well-understood in any
conflict situation, occasional mutual inconsistency of files should not offset the advan
tages obtained from increasedflle availability. The philosophy behind this statement
is that inconsistency may be tolerable when one is aware of its possible extent.
(Remember: we are assuming a network operating system environment, in which up
date rates are moderate and conflicts are rare.) This section therefore discusses what
a coherent system policy on file conflicts involves, and then indicates how certain
features might be implemented:

System policy must be defined for each of the follbwing questions:

(1) When and how are file conflicts detected?

(2) Is permission to access a file altered by the fact that the file is in conflict?

(3) How are users informed of conflicts?

(4) What support does the system provide the user for r-esolving conflicts?

4.1. Detection of Conflicts

173

There are at least three times at which one might wish to detect conflicts fol
lowing a partition merge:

(a) immediately after the merge, and

(b) upon access to files,

(c) sometime after (a) but before (b).

Which is best may ultimately depend upon other policy decisions made below (for ex
ample the means by which users are informed of conflicts). However it is easy to show
that. a general system policy cannot get by with conflict detection at only one of these
three points. First, the system must cope with the case where file conflicts are detect
ed upon access, because it is always possible that the user reference a file immediate
ly following a partition merge (at the earliest point where conflict detection would be
feasible). Moreover, system policy must be defined on what to do with active processes
in dillerent partitions which are caught independently modifying copies of a file (gen
erating a conflict) when their partitions merge. Second, conversely, handling conflicts
upon access is not adequate in itself, since for example the system must check for file
deletions made in one partition which are to be propagated after the merge. Clearly
conflicts must be detected using some kind of mixed strategy which operates at times
(a), (b). and (c). .

Detecting conflicts upon file access may be 'undesirable for at least two reasons:
(1) File accesses will become slow following partition merges since all copies of an ac
cessed file will have to be consulted in checking for a conflict. (2) Detection upon ac
cess may not provide a user with sufficient warning to recover from the conflict: he
may be halfway through a long sequence of deletions and/or extensive file updates
when he finally accesses the file and the conflict is noticed. This problem will be
touched upon below in the discussion of how users are informed of conflicts.

Detecting conflicts immediately following partition merge may be undesirable
because of its high temporary expense. Merges will be followed by heavy system traffic
attempting to find name and version conflicts. Thus the system might grind to a halt
every time faulty hardware is repaired! However, as with the consistency schemes in
Section 1, it is easy to make arguments for the speed of information propagation.
Having' more information faster can never be detrimental.

Detecting conflicts gradually after merges might be implemented in several
ways. One is to check all of a user's files when he logs onto the system, and notify him
of any conflicts. Also he might be notified of repairs in network links, so that he can
check for conflicts detectable after partition merges for himself. Another scheme is
to set up detection processes which run constantly in background and, through re
peated polling of directories, ultimately find all conflicts when the system is stable.
Exactly what "gradually" might mean would be part of the system policy; one alterna
tive is to assign these background processes a priority which could be varied as a reli
ability parameter; also one can parametrize the reliability levels of files, and have the
background processes concern themselves with the highest reliability files first.

4.2. Accessibility of files in conflict

174

There are basically two alternatives for system policy on restricting access to
files which are in conflict. First, one can permit all access regardless of the conflict.
Second, then, one can restrict certain kinds of access (read, write, etc.) to certain
users as soon as conflict is detected.

Our feeling is that the first alternative makes more sense. Restricting access is
obviously inconsistent with the goal of availability, but a more compelling observation
is that tasks which were not permitted to run after a partition merge because of ac
cess restrictions would have executed perfectly normally if the merge had occurred a
few seconds later. This "discontinuous" behavior suggests real weakness in the second
approach. In those situations where consistency is more important than availability,
and version conflicts are likely, one would probably be better off prohibiting access
after netwark partitioning instead of after file conflict detection.

4.3. Infarming users af file conflicts

The first issue that must be addressed is: Wha should be informed concerning a
file conflict? Normally it might be most effective to notify the creator of a file. but
more generally one should notify all users who have created conflicting versions, or
have created different files which conflict in name. (One might even want to notify all
users who have referenced the file in conflict, if this is possible, since they may wish to
reference it again.) Whereas nameconfliets are easily resolved with multiple users
everyone simply modifies their file name - version conflicts may require a fair amount
of arbitration and possibly even intricate merging of the different file versions. This
leads to the secondary question of what must be said to users when version conflicts
arise.

The other main issue is now: How can the system react to. and inform the user
of. conflicts when they are detected? Any policy decision here will strongly impact the
system's structure. There are several possibilities. depending on when the conflict is

. detected. If the conflict is discovered upon file access, the system can:

(a) roll back the user's process (assuming that they can be ''undone'', in, the sense
of undoing a transaction), and notify the user somehow of the problem,

(b) suspend the user's process temporarily and enter an interactive routine per
mitting the user to inspect the alternative files and choose one,

(c) suspend the user's process temporarily and enter interactive conflict resolu
tion software,

(d) just make an automated selection from the available choices using a fixed,
weH-publicized heuristic, and quietly continue the user's process.

•
Approach (a) is tine in transaction-oriented environments, where transaction
processes can be re-spawned automatically to reattempt the same rolled-back task,
but is less desirable in an interactive, network operating system environment since
work can not always be recovered so easily. Approach (b) may not work for version
conflicts in some applications, since no single version of the flle may be adequate
(consider an inventory file, for example). Further. approach (c) will also not generally

175

work for version conflicts if different users have generated the differing versions, since
then some arbitration may be necessary in finding a mutually agreeable resolution of
the conflict. And clearly approach (d) will not always have the desired result, though
in many situations it will make a reasonable choice. .

In all cases the system must notify the affected users, via some kind of message
or mail, of the conflict and of its resolution if one was decided upon. (The exact na
ture of the mail or message isyet another issue.) When the conflict is detected by the
system "in background" with the users not immediately available for consultation, the
only solution seems to be to notify the users by mail of their conflict.

Note that if we are prohibiting access from files in conflict, as discussed in Sec
tion 4.2. the situation here is somewhat clearer. Since this prohibition seems unwise,
however, we will not pursue the subject further in this paper. An analysis appears in
[Rudi 80,§4.5].

4.4. System support for conflict resolution

The system must provide at least three kinds of support for handling conflicts:
(a) an interactive program for inspecting and choosing among conflicting files (Sec
tion 4.3), (b) automated detection and resolution of conflicts for tlles which will not be
accessed (e.g., a file whose copies in different partitions have been independently
deleted), and (c) a program for interactively editing and merging the various versions
of a tlle into a consistent version. These facilities are vital in that a network
transparent system tlle structure provides the user with no nice way to distinguish
between the conflicting versions (by definition, they all have the same name). Finally,
the system may wish to perform (d) automated resolution for certain types of tiles
whose structure makes reestablishment of mutual consistency routine. Directories
and mailboxes are important examples [Fais 81].

In this section we will not attempt to describe the actual recovery mechanism
used by the system in recovering from site or network failures. The actual dynamics
of recovery (whether to use a centralized or distributed algorithm, what protocols
should be employed, etc.) is a delicate problem with complex performance tradeoffs
which will have to be deferred for later study. We remark, though, that the recovery
strategy will be most effective if it handles failures of short duration differently than
those of long duration. Transient faults should not bring about the exhaustive com
parison of directories and system information at nodes in the network that one ex
pects from. recovery after long network partitions.

The system either solves a tlle version conflict automatically by calling a
conflict-reconciliation software or informs the user that real conflict was found where
automated resolution is not possible. In the latter case the user has to reestablish file
consistency. This system policy puts the burden of reestablishing file consistency
squarely on the shoulders of the user, but only when there is a real conflict which
cannot be dealt with otherwise.

User tlle conflict reconciliation might raise a lot of problems. First, there is the
problem of deciding who is the user responsible for reconciling the conflicting files.
We could say that only the owner of the tlle can perform file reconciliation. However,
for some applications it would be desirable that either a superuser or a set of users
could reconcile the tile. Seco.nd, there is the problem of inconsistencies kept for a

176

long time if the user responsible for doing reconciliation is not present or if he does
not want to decide right away. Finally, there is the problem of rolling back transac
tions of users not present. They would not be aware of the reconciliation operation
and they would not know that their transactions must be redone. It would take a long
time until the user logs in and discovers a message from the system asking him to
redo some transactions.

We might have even political battles between users. Since files are shared. each
user could decide that his updates are the correct ones. Users could have the tenden
cy to reconcile files by deleting others' updates and keeping their own updates. Users
would prefer to maintain their transactions and would ask other transactions to be
rolled back. It seems that this procedure does not work. Users will either have heavy
discussions every time a multiple copy file is inconsistent and a confiict resolution de
cision has to be made or they would create new files for own use destroying the advan
tages of having multiple file copies and reducing availability.

The advantage of automatic reconciliation is that inconsistencies would be
corrected as soon as they are detected, thus, files would be as consistent as possible.
Automatic reconciliation can be performed only by furnishing the system enough se
mantic information for each application. The system must provide to the users tools
for reconciling confiicts. Automated reconciliation procedures can be made available
using default parameters. Users can set these parameters according to the semantics
of each application. Users could get together for deciding in one user group a recon
ciliation agreement for each file. This agreement would create a standard reconcilia
tion procedure avoiding group meetings over reconciliation and avoiding long-term
complex inconsistency. Another advantage is that all users will be aware in advance of
system behavior for file conflict resolution. Moreover. inconsistencies will not be kept
for a long time since the system can call the conflict-resolution procedure just after
finding a confiict or upon partition merge. As a result. automatic reconciliation is ad
vantageous over user reconciliation achieving a system with high availability and at
the same time providing data consistency.

5. A basic system policy

In section 3 we have presented a simple multi-file confiict detection mechanism.
The proposed approach uses sequences of versions vectors and log filters. Instead of
keeping a list of sequences of version vectors for every update made in the system, log
filters are used to reduce the number .of sequences of version vectors the system
needs to store as log information. In order to detect conflicts we need keep only the
"latest" sequence, Le., those sequences which are not dominated by any ,other se
quence.

In section 4 we have discussed problems of implementing conflict detection and
problems of defining a consistent user interface. Section 4 discusses what a coherent
system policy on file confiicts involves, and then indicates how certain features might
be implemented.

177

In this section we outline a simple policy for system management of a (poten
tially inconsistent) distributed file system having the transparency properties
described above.

Files in our system must be implemented in such a way that they permit
conflict detection as in section 3.

Our conflict resolution policy is based on the notion of a transaction. Any file
update operation must be within the boundaries of a transaction, limited by begin and
end statements. The transaction-like format would be as follows:

begin;
get / 1'/2'/n

end;

The idea is that the get statement tries to establish an "environment" (some
what like the pseudo-temporal environments presented in [Reed 78]). The user is
guaranteed that this environment will exist for the duration of his transaction unless
there is a non-recoverable failure. Such a failure will lead to the transaction being
aborted.

The get statement has the following functions:

[1] The get statement informs the system the set S =U 1'/2' ...• / m J of files which the
user plans to use. These files are assumed to be read subsequently. and some
of them are eventually updated. This set S of files is the readset of the transac
tion and forms an environmentwhere the transaction is permitted to work on.

[2] The get statement checks that each of the files /i is consistent (i.e.. it does not
have a file conflict). If a file conflict is found the transaction is not executed.
The system either solves the conflict automatically by calling a conflict
reconciliation software or informs the user that real conflict was found where
automated resolution is not possible. In the latter case the user has to reestab
iish file consistency.

[3] Each file specified in the get statement is locally locked for the duration of the
transaction.

At the transaction's end. that is. when the end statement is executed the follow
ing situation occurs:

[1] The system updates the log filter.

[2] All updates are committed simultaneously. Update propagation is performed by
sending messages to all other sites holding copies of files specified in the wri-
teset of the transaction. .

[3] We might wish to check for conflicts at this point. If a file confiict is found the
transaction should be rolled back. Again. this is not really necessary. since

178

confl.icts will be detected later. However, it may be desirable to enforce con
sistency to this degree. This mechanism is appropriate for applications where
flle inconsistencies must be detected as soon as possible.

[4] The transaction completes, and all its locks are released.

The transaction solution actually solves the problems of implementing conflict
detection and deflning a consistent user interface as presented in Section 4. For ex
ample:

[1] Using log fllters is a nice way to handle the "How do we solve the after-partition
merge?" problem. File accesses would become slow following partition merges
since all copies of a file will have to be consulted in checking for a conflict.
However, using log filters, conflict detection can be done easily either on
demand or by a constantly-running background process.

[2] Using the get statement eliminates surprises in the middle of execution ('1 am sor
ry, your file is in conflict. Please log Off"). The user may be halfway through a
long sequence of deletions and/or extensive file updates when he finally
accesses one file which is in conflict. Our policy avoids this by requiring the
user to inform the system in advance of the files pe plans to use. File conflicts
can be checked at this time, giving the user an environment which is conflict
free when the transaction starts to execute.

The system policy we are proposing here can be seen as a method for imple
menting concurrency control. The difference between traditional concurrency con
trol mechanisms and our proposed method is that here we are performing detection
rather than prevention of synchronization errors. In some cases prevention cannot be
attained forcing us to use detection. For example, currently we recommend against
global locking (for the needs of a distributed file system at least). Global locking is
hard t~ be implemented and even impossible under network partition. This still leaves
us with a consistent approach if local locking is used (Le., only one process may use a
particular copy of a file) since non-serializable updates can simply be detected as
conflicts later on. Such an approach is not desirable where conflict reconciliation is
expected to occur a lot or where it is especially painful.

By checking for conflicts both'in the beginning and at the end of a transaction,
we avoid all update conflicts within partitions. If a conflict is detected at the end of a
transaction, then another user has updated one of the transaction's files. The tran
saction is not completed at all, but it is rolled back and the user informed of the prob
lem (note that this process can be easily automated).

When users are processing files independently in different partitions, one user
is notified of file conflicts whenever he starts a transaction and the partitions were al
ready merged. The transaction approach assures that once a file conflict is detected
no updates are performed at all on that file until the file is reconciled. Note that here
we are avoiding the so called "domino" effect.

179

The described transaction approach might present the two following drawbacks:

[1] First, there is the possibility of a livelock, i.e., starvation of one or more transac
tions. Suppose the following situation occurs. Transaction Tl starts executing
using file f, version < 1>. Upon execution of the get statement, in the begin
ning of the transaction, the system verifies that there is no conflict for file f. al
lowing the transaction to proceed. Assume now that transaction X starts exe
cuting using the same file f. Since transaction Tl has not finished we still have
version < 1>. While transaction X is executing, transaction Tl ends and writes
file f version < 2>. After that, when transaction X ends it will find out that a
conflict exists since tile f has been updated by someone else. Therefore, tran
saction X has to be rolled back and started again. This situation could repeat
for other transactions. Consequently, transaction X would never complete suc
cessfully and we say that X starves to death. This situation is known as a
livelock and it is illustrated by the figure below. Note that transactions Tl, T2,
and T3 complete successfully, whereas transaction X never executes up to com
pletion.

If the degree of concurrency is high, conflicts would occur frequently
causing waste of processing power, since transactions are executed up to the
end before a conflict is detected. Moreover, processing time and effort is neces
sary to roll back transactions.

The transaction approach presented here is suitable for systems with low
degree of concurrency and where conflicts occur only rarely. However, it has
been pointed out by [BSR 80] that in a large class of applications, most transac
tions require little or no synchronization at all because they never interfere
with each other. In most applications the operations of transactions are known
a priori and most of them do not conflict.

[2] Second, there is the possibility of occurring unfairness. Suppose there is one long
transaction Tl updating file f version < 1>. After a substantial amount of time,
a short transaction T2 starts, updates just one record of file f, and terminates
successfully writing tile f version <2>. Later on, when transaction Tl ends, a
conflict is detected since file f has been modified by transaction T2 having a
different version. Consequently, the system has not been fair to transaction T1.

The longer the transaction, the greater the probability of occurring a file
version conflict. The system would not be fair for long transactions due to the
presence of small transactions accessing the same files. In order to solve this
problem we do not need to limit the transaction size. The system will work well
for either small or long transactions. What we need is to have transactions with
approximately the same size. However, long transactions are not desirable, be
cause if it is necessary to roll them back more work needs to be redone.

One user might complain saying that the above transaction approach is not
suitable for him because he does not always know in advance the set of files he would
use in one transaction~ He might have subroutines which require tiles not present in
the set of files listed in the get statement at the beginning of the transaction. There
fore, the system must provide more flexibility by allowing the user to specify multiple
get statements; One transaction with multiple get statements looks like as the one

[

Tl starts using f<: 1>

T1 writes f<: 2>

T2 starts using f<: 2>

T2 writes f<: 3>

T3 start~ using f<: 3>

180

X starts using f<: 1>

X ends: Conflict!

X starts again now using f<: 2>

X ends: Conflict! TIME

T3 writes f<: 4>

X starts again now using f<: 3>

X ends: Conflict!

Figure 3. Transaction X in a livelock situation.

shown below:

begin;
get / 1'/2' ' ; . ,fn

get g 10 ' , •• grn

end;

181

Note that transactions 'still have boundaries established by the begin and end
statements. Multiple get statements would request multiple checks for version
conflicts. For each issued get statement, the system might check the version vectors
looking for conflicts. The difference between the single-get and the multiple-get is
that, in the former case, the user has no surprises in the middle of the transaction
(the transaction is not started unless there is no conflict), while in the latter case, the
user can have surprises in the middle of his transaction (''Sorry, your transaction can
not proceed. A file version conflict was found."). If a file version conflict is found after
the execution of a inner get statement the transaction has to be rolled back and
started again. This mechanism works similarly to the conflict checking performed by
the end statement. which may also cause transllctions to be rolled back and started
again. Eventually, to roll back transactions is really not necessary if we can live with
some inconsistency. The system might just declare a conflict and inform the user who
can decide either to roll back the transaction or to proceed even though the files are
not consistent. Without knowing the semantics of each application the system cannot
take this decision. One must provide the user flexible tools to help him to take the
pest solution.

Note that the single-get statement given at the beginning of the transaction as
sures a conflict-free environment when the transaction starts to execute but requires
the user to inform in advance of the set of files to be used. Multiple-get statements
give more flexipility to the user by allowing the specification of other files to be used
in the transaction. However, with multiple get statements the environment for the
transaction must be adjusted multiple times, and this adjustment is not guaranteed to
be successful.

8. Conclusions

We have shown that it is possible to implement a distributed file system which
supports redundant copies of files effectively, even in the face of network partitioning.
The kind of environment in which the results presented here will be useful are those
akin to a network operating system in which file availability is a greater problem than
mutual consistency among file copies. The proposed system is very simple in struc
ture. and involves the addition of really only a few new constructs to the file system
design: file origin points, version vectors, and the log filter. These constructs were
shown to be adequate for detecting ''file conflicts" (mutual inconsistencies) in an ex
tremely straightforward way, requiring little system overhead. Strategies for resolu
tion of detected file conflicts were then discussed. A simple conflict resolution policy
was described, based on the notion of a transaction. The resulting user interface,
although more restrictive than most interactive system interfaces, provides a con
sistent view on the state of the network and various other benefits.

References

[AD 76]

[ABU 74]

[BS 78]

[BSR 80]

[Elli 77]

[Fais 81]

[FR 72]

[Gray 78]

[BS 78]

[KR 79]

[Lamp 78]

[LS 76]

[MPM 77]

[MB 76]

182

Alsberg, P.A. & J.D. Day, ''A Principle for Resilient Sharing of Distributed
Resources," Proc 2nd Intnl. Conf. on Software Engineering, 13-15 Oc
tober 1976.

Aho, A.V., J.Hopcroft, J.D.Ullman, 'The Design and Analysis of Computer
Aigorithms", Addison-Wesley, 1974, sections 4.6-4.7.

Bernstein, P.A., Shipman, D;W., "A Formal Model of Concurrency Control
Mechanisms for Database Systems". Proc 3rd Berkeley Workshop on Dis
tributed Data Management & Computer Networks", August 29-31, 1978.

Bernstein, P.A., ShipmanD.W., Rothnie J.B., "Concurrency Control in a Sys
tem for Distributed Databases (SDD-l)", ACM Transactions on Database
Systems, March 1980.

Ellis, C.A., ''A Robust Algorithm for Updating Duplicate Databases," Proc
2nd Berkeley Workshop on Distributed Data Management and Computer
Networks, 1977, pp. 1146-158.

Faissol, S., "Operation of Distributed Database Systems Under Network
Partitions", Ph.D. dissertation, UCLA Dept. of Computer Science, July
1981.

Farber, D.J. & Heinrich, F;R, 'The Structure of a Distributed Computer
System -- The Distributed File System," Proc IeCC, 1972.

Gray, J., ''Notes on Data Base Operating Systems," in Operating Systems:
An Advanced Course, Ed. by R Bayer et al., NY: .Springer, 1978.

Hammer, M. & D. Shipman, "An Overview of Reliability Mechanisms for A
Distributed Data Base System," Spring Compcon 78, Feb 28-Mar 3. San
Francisco, pp. 63-85.

Kung, H.T. & J.R Robinson, "On Optimistic Methods for Concurrency
Control," Proc. 5th VLDB Conf., October 1979, Rio de Janeiro. To appear
in ACM TODS.

Lamport, L., 'Time, Clocks, & the Ordering of Events in a Distributed
System," CACM vol. 21,7, 558-565 (July 1978).

Lampson, B. & H. Sturgis, "Crash Recovery in a Distributed Data Storage
System."Technical Report, Xerox PARC, 1976.

Menasce, D.A., G.J. Popek & RR Muntz, ''A Locking Protocol for Resource
Coordination in Distributed Systems." Tech. Rept. UCLA-ENG-7808, Dept.
of Computer Science, UCLA, October 1977.

Metcalfe, RM. & D.R Boggs, ''Ethernet: Distributed Packet Switching for
Local Computer Networks,"CACM Vol 19, 7, 395-404 (July 1976).

[Papa 79]

[PK 79]

[PPRe 81]

[Reed 78]

[RG 77]

[Rudi 80]

[SM 78]

[Ston 79]

[Tarj 75]

[Thorn 78]

[TSF 78]

183

Papadimitriou, C.H., 'The Serializability of Concurrent Database Up
dates", Journal of the ACM, v.26, no.4. 631-653 (October 1979).

Papadimitriou, C.H.• Kung. H.T., "An Optimality Theory of Concurrency
Control for Databases", Proceedings 1979 ACM SIGMOD, Boston, May 30
June 1

Parker, D.S., Popek. G.P, Rudisin. G.• et al.. 'Detection of Mutual Incon
sistency in Distributed Systems," Proc. 5th ,Berkeley Workshop on Distri
buted Data Management and Computer Networks. February 1981.

Reed, D.P., ''Naming and Synchronization in a Decentralized Computer
System." MIT LCS Technical Report number MIT/LCS/TR-205. 1978.

Rothnie, J.B. & N. Goodman, ''A Survey of Research and Development in
Distributed Database Management", Proc. 3rd VLDB. Tokyo. October
1977. pp. 48-61.

Rudisin, G.J., ''Architectural Issues in a Reliable Distributed File System."
M.S. Thesis. Dept. of Computer Science,' UCLA, Report UCLA-ENG-B014
SDPS-80-001, April 1980.

Shapiro. R.M.• & RE. Millstein, '1i'ailure Recovery in a Distributed Data
Base System." Proc. Spring COMPCON, Feb 28-Mar 3, 1978, pp. 66-70.

Stonebraker. M., "Concurrency Control and Consistency of Multiple
Copies of Data in Distributed INGRES," IEEE Trans. on Software Engg.,
vol. SE-5, 3, 18B-194. (May 1979).

Tarjan, RE., ''Efficiency of a Good But Not Linear Set Union Algorithm",
JACM 22:2. April 1975, 215-225

Thomas, RF.• ''A Solution to the Concurrency Control Problem for Multi
ple Copy Data Bases." Proc. Spring COMPCON. Feb 28-Mar 3. 1978. pp.
56-62.

Thomas, RF.• RH. Schantz. H.C. Forsdick. ''Network Operating Systems."
Technical Report RADC-TR-78-117. Rome Air Development Center, May
1978.

185

SITE INITIALIZATION, RECOVERY, AND BACK-UP

IN A DISTRIBUTED DATABASE SYSTEM*

Rony Attar
Philip A. Bernstein

Nathan Goodman

Aiken Computation Laboratory
Harvard University .

Cambridge, Massachusetts 02138

August 1, 1981

*This work was supported by the National Science Foundation, grant number
MCS79-07762, by the Office for Naval Research, contract number
N00014-80-C-647, by Rome Air Development Center, contract number
F30602-81-C-0028, and by the Dr. Chaim Weizmann Post-Doctoral Fellowships
for Scientific Research.

186

ABSTRACT

Site initialization is the problem of integrating a new site into a

running distributed database system (DDBS). Site recovery is the prob-
I

lem of integrating an old site into a DDBS when the site recovers from

failure. Site backup is the problem of creating a static backup copy of

a database for archival or query purposes. We present an algorithm that

solves the site initialization problem. By modifying the algorithm

slightly, we get solutions to the other two problems as well.

Our algorithm exploits the fact that a correct DDBS must run a seriali-

zable concurrency control algorithm. Our algorithm relies on the concurrency

control algorithm to handle all inter-site synchronization.

187

1. THE SITE INITIALIZATION PROBLEM

Site initialization is the problem of integrating a new site into a

distributed database system (DDBS). The goal is to make the new site look

like all other sites. In particular, transactions must be able to access

data at the new site in the same way as they access data at all other sites.

The main problem is to bring the database at the new site up-to-date relative

to the rest of the system. The problem is caused by replicated data: if the

new site stores datum X and there are copies of X elsewhere in the system,

then the value of X at the new site must agree with its value in the rest

of the system. There is a simple brute force solution to the problem: just

turn off the DDBS, wait for all activity to subside, and then load the new

site's database in bulk. Our solution is almost as simple as this, but far

more practical.

Our algorithm exploits the fact that a correct DDBStypically runs a serializable

concurrence control algorithm (cf. [BG]). Concurrency control is the activity

of coordinating transactions that access a database concurrently. The goal is

to prevent concurrent transactions from interfering with each other. This goal

is usually formalized by the concept of serializability (e.g. [BSW, EGLT, Pa,

SLR, Th]): an execution of transactions is serializabZe if it is equivalent to

an execution in which transactions execute serially, one after the other with

no concurrency. Many algorithms are known for attaining this goal, e.g.

two phase Zocking and timestamp ordering.

As we will see, the site initialization problem can be neatly framed in

terms of serializable executions. Once stated in these terms, a simple

solution will stare us in the face. All we have to do is:

(1) turn on the concurrency control algorithm at the new site;

(2) tell all other sites to begin updating the replicated data at

the new site; and

188

(3) not let any transaction read a datum X at the new site until X

has been updated at least once.

These three steps are a sketch of our algorithm. The rest of the paper

fills in the details, and explains why the algorithm works. We also show

how to use the algorithm to solve site recovery and backup problems.

2. BASIC CONCEPTS

A distributed database system (DDBS) is a set of sites interconnected by

a network. Each site runs two software modules: a transaction manager (TM),

which supervises the execution of transactions; and a data manager (DM), which

processes read and write operations on data stored at the site.

A logical database is a set of logical data items, denoted X,Y,Z. A copy

of a logical data item stored at a site is called a physical data item. We

use xl, ... ,xm to denote the physical copies of X.

A transaction is a program that accesses the database by issuing READ and

WRITE operations on logical data items. For notational convenience we assume

that a transaction issues all of its READ's before any of its WRITE's.

Each transaction's execution is supervised by one TM. When a transaction

issues an operation READ (X) , its TM selects a copy of X, say x., and issues an
~

operation read(x.) to the DM that manages x .. (We use upper case for logical
1 1

operations and lower case for physical ones.) When a transaction issues an

operation

of X.

WRITE (X) , its TM issues an operation write(x.) for every copy x.
1 1

The logical data items that a transaction reads (respectively writes) are

called the transaction's readset (respectively writeset).

We mathematically model executions of transactions in a DDBS by a log.

A log describes the order in which read and write operations are processed by

189

DM's. Formally, a log is a partial order* of read and write operations.

For example,

/" r 2 [Xl) - w2 [Xl ,x2)_r3 [Xl) - w3 [zl)

WO [Xl ,X2 'Yl,Zl)·"'" ~
rl[Yl)~rl[x2)~wl[xl,x2'Yl)

is a log. Notationally, r, [x,) (resp. w. [x.) denotes the execution of a
1. J 1. J

read (resp. write) operation by transaction i on data item x"
J

The

arrows indicate the partial order, which represents the order in which opera-

operation; r
2

[xl) executed before w
2

[x
l

,x2) and r
l

[x2), but it executed

concurrently with rl[Yl); and so forth.

We place one more constraint on the allowed form of logs: for each

physical data item x., all eonflicting-operations on
1.

x,
1.

must be totally

ordered,** where two operations on X.
1.

conflict if (at least) one of them is

a write. That is, for each Xi' we know the exact order in which conflicting

operations occurred.

*A partial order is a binary relation, S;;, that is reflexive (a S;; a), anti
symmetrical (a S;; b and as;; b implies a=b) , and transitive (a S;; band
b S;; c implies a S;; c) • Traditionally, a distributed execution is modelled
as a set of sequential logs, one per DM [BG). We prefer using partial
orders because they allow operations from different DM's to be ordered and
they do not require ordering unrelated operations that can be executed con
currently at the same DM.

**A total order is a partial order in which every pair of elements are related
(Le., a S;;b or b S;;a). A total order is the same as a sequence.

190

Two logs are equivalent if they represent executions that produce

the same final database state, and if each transaction performs the same

computation in both executions. The following proposition states a

well-known, and very useful, characterization of log equivalence. We need

one more definition first. Two operations conflict if they operate on the

same physical data item and one is a write.

Proposition 1 Two logs are equivalent if they contain the same operations,

and every pair of conflicting operations appear in the same

order in both logs.

3. CORRECTNESS CONCEPTS

The correctness of any system must be defined relative to users' expectations.

Intuitively, a system is correct if it does what users want it to do. We assume

that users expect a DDBS to behave like a serial transaction processor; that

is, users expect the DDBS to behave as if it were processing transactions one

at a time, against the logical, non-replicated database. (This assumption is

adopted almost uniformly in the literature.) A DDBS is correct if it behaves

like a serial transaction processor in this sense.,

In this section we analyze DDBS correctness using the basic concepts of

Section 2.

A serial log is a total order of operations such that for every pair of

transactions, all operations of one transaction precede each operation of the

other. For example,

=

is a serial log.

191

Consider any read operation in a serial log, e.g. r
2

[x
l

] above. This

operation is said to be read-from the nearest write operation before it

while Similarly, transaction T.
1.

reads-xk- from T. if
J

T. indeed reads
1.

T. writes
J

from E.g. in T2 reads-xI-from T .
o

A serial log is one-copy equivaZent (or simply l-seriaZ) if for each trans-

action Ti , and for each ~ that T. reads,
1.

T.
1.

reads-xk-from the last trans-

action before T. that writes into any copy of X.
1.

The reader can verify that L2 is I-serial. However, if we change w2 [x
l

,x
2

]

to w
2

[x2], the resulting log is not I-serial.

is not I-serial, because reads-xI-from T , which is not the last
o

transaction before T
3

that wrote into any copy of X.

A I-serial log represents a serial execution of transactions in which the

replicated copies of each data item behave like a single logical data item.

Therefore, every l-seriaZ Zog is correct in the sense defined at the beginning

of this section.

A log is seriaZizabZe (SR) if it is equivalent to a serial log. A log is

l-seriaZizabZe (l-SR) if it is equivalent to a I-serial log. Since every

I-serial log is correct, and since every I-SR log is equivalent to a I-serial

log, every l-SR Zog is aZso ,correct.

We adopt I-SR as our basic notion of correctness for the rest of this paper.

192

4. SITE INITIALIZATION ALGORITHM

is:

If sites are never added to a DDBS and sites never fail, attaining

l-SR is little more than a concurrency control problem. All we have to do

A log is l-SR if every transaction in the log writes into

all copies of its writeset, and the log is SR.

Suppose we have a DDBS that is running correctly -- i.e. its execution

is l-SR -- and suppose we add a new site to the system. We need to integrate

the site into the DDBS in such a way that (.1) all data at the site can eventually

be read, and (2) the resulting execution remains l-SR.

In this section we describe an algorithm that accomplishes this task. First,

we use the concepts of Sections 2 and 3 to specify the kinds of executions

p~rmitted by our algorithm, and to argue that these executions are correct

(Le. satisfy requirements (1) and (2)). Then, we demonstrate an algorithm

that meets the specification.

Specification and Correctness

The logs that our algorithm will allow satisfy the following properties.

Al. Each transaction writes into all copies of its writeset, except

possibly those copies at the new site.

A2. By some time t, every data item at the new site has been written

into at least once.

(1) make sure that each transaction writes into all physical copies

of its writeset, as described in Section 2; and

(2) synchronize read and write operations using any serializable

concurrency control algorithm, such as two-phase locking.

The following proposition states the correctness of these steps in terms'

of logs.

Proposition 2

193

A3. No transaction reads a data item at the new site until that data

item has been written at least once.

A4. The log is SR.

AS. Let x be a copy of
new

x at the new site, and let T be the
x

first transaction that writes into x
new

By Al, Tx also writes

into the other copies of X. Let T'x be any transaction that

writes into any copy of x after> T wrote into that copy.
x

Then

T' must also write into xx new

Stated a bit loosely, AS simply means that once any transaction writes

into x ,all later transactions also write into x
new new

We now argue that if a log satifies Al-AS then it is correct.

(1) A2 and A3 ensure that all data items at the new site are eventually

readable, thereby attaining the first correctness requirement.

(2) It remains to prove that if log L satisfies Al-AS, then L is l-SR.

By A4, L is SRi let L
s

be any serial log equivalent to L. Consider any

reads-from relationship in L , e.g.
s T.

1.
reads-xk-from T .•

J
L looks like:

s

L =
s

and we must show that no transactions between T. and T. in L writes
. J 1. S

into any copy of X. We will show this by proving that every transaction that

follows T. and updates any copy of X, also writes into ~.J

Let TQ. be any transaction that follows T. and updates x. If
~

is
J

not a "new" data item, then TQ. writes into
~

by Al. Now suppose
~

is

"new". By Aland Proposition 1, TQ. follows T
j

in L, and so TQ. writes

into ~ by AS. In either case, since TQ. writes into ~,and since T.
1.

reads-~-from

Q.E.D.

T. (and not ~rom
J

cannot come between T.
J

and T .•
1.

194

Algorithm

Rules AI-AS form a blueprint for a simple site initialization algorithm.

Let us see how these rules can be attained algorithmically.

Al and A3 are trivial to implement. A4 is merely concurrency control.

Any serializable concurrency control algorithm can be used. The remaining

rules can be implemented as follows:

A2. For each logical data item X stored at the new site, run a copiep

transaction that reads a copy of X at an old site and writes that

value into the new copy. (I.e. there is one copier transaction

per X.) Copiers must be synchronized by the concurrency control

algorithms exactly like all other transactions.

AS. For each logical data item X stored at the new site, designate a

Beginning at somex of X at some old site.
g

(arbitrary) time t after the new site is added, the site holding

guapdian copy

x alerts all transactions that update x to write into the new copy
g g

of X also. No transaction updates a data item at the new site

unless told to do so by its guardian. (In practice, if the site holding

x fails, a mechanism is needed to appoint a new guardian copy forg

X. We do not consider this problem here.)

These five rules constitute our proposed site initialization algorithm.

This description of our algorithm may seem too abstract, mainly because

we have not pinned down the concurrency control algorithm. For definiteness,

let us see how the algorithm works in conjunction with two-phase locking.

We begin by reviewing the basic two-phase locking algorithm.

Associated with each physical data item is a set of Zocks. At any time,

the set of locks on a physical data item may contain no locks, one wpite Zock,

or a set of pead Zocks.

Suppose X.
l.

is stored at DM ..
l.

Before processing read(x.) on behalf of
l. .

transaction T., DM. must set a read lock on x. for T .• Before processing
J l. l. J

195

write (x.) on behalf of T" DM. must set a write lock on x. for T,.
~ J ~ ~ J

If DM, cannot set a lock for an operation, it delays the operation until
~

the lock can be set.* When a transaction terminates, all of :j.ts locks

are released.

Now let us see how to add a new site to the system. Suppose sites 1,2, ... ,n-1

are running properly and we wish to add site n. Site n begins the process by

sending an "I'm up" message to the DM's at sites 1,2, ... ,n-1.

Suppose the DM at site i, DM., receives an "I'm up" message from site n.
~

From then on, for each guardian copy x at DM., when DM. processes a write (x),
g ~ ~ 9

it tells the TM that issued the write to also issue a write (x) ,where x is the copy
n n

of X at the new site. (An optimization is for DM. to issue the write(x) directly.)
~ n

The DM also instructs its local TM to exec~te copier transactions for each of

its guardian copies.

lock on xn i i.e. it

The copier for x must obtain a read lock on x and a write
g g

must be synchronized like any other transaction.

DM uses the same two-phase locking algorithm as every other DM. However,
n

it refuses to process a read(x) until x has been updated at least once.
n n

For each logical data item X, a TM issues a write (x) on behalf of a trans-
n J

action that updates X, if and onZy if one of its writes on x has been acknowledged
g

by a message telling it to do so.

time.

The TM must not update x until this point in
11

*Since operations can be delayed while waiting for locks, deadlock is possible.
Deadlocks can be resolved by any of the standard techniques in [BG].

196

5. SITE RECOVERY

Site recovery is the problem of integrating a site into a DDBS when the

site recovers from failure. As for the site initialization problem, the

goal is to make the recovered site look like all other sites. Once again,

the main problem is to bring the database at the recovered site up-to-date

relative to the rest of the DDBS.

Site recovery is obviously an important problem, but it has received

little attention in the literature. One early paper on DDBS reliability [AD],

which mainly studies reliable aonauprenay aontroZ aZgorithms, disposes of

site recovery with these few words:

How the new host is brought up to date depends on the
application. It may be done by transferring to that
host the jou+nal of all updates since the host went down.
It may require transferring the database. [AD, p. 568]. (

Other related work includes [HS, LS, LSP, MPM, Th, Sk, SS]. Some of these

papers [MPM, Th] are like [AD] in that they mainly study reliable concurrency (
control. (A piece of the algorithm in [MPM] is called Single Node Recovery.

But the algorithm only recovers the concurrency control algorithm at the site,

not the database.) Other papers study atomic commitment [HS, LS, Sk, SS], site

monitoring to keep track of which sites are up [HS], and other distributed

decision problems [LSP]. Again, site recovery in our sense is not studied.

One paper that does treat site recovery is [HS]. The solution is based on

the concept of Reliable Network (Relnet), a virtual machine that guarantees

reliable message delivery despite site failures. The Relnet is intended to be

a very general facility suitable for many kinds of distributed systems. Because

of this generality, the mechanism is rather complex.

Our approach to site recovery is narrower (and, we hope, simpler) than the

Relnet approach. We are not trying to attain reliability for arbitrary distri-

buted systems; nor are we trying to solve all DDBS reliability problems. Our

goal is simply to integrate the database at a recovered site into a running DDBS.

197

Evidently, site recovery and site initialization are almost identical

problems, and the algorithm of Section 4 can be directly applied here.

There is one major caveat: our algorithm says nothing about multiple failures.

We believe the algorithm can be generalized to handle multiple failures, but

offer no hard evidence in this respect. Despite this caveat, the algorithm

of Section 4 solves a big piece of the site recovery problem.

An Optimization

When using the initialization algorithm for site recovery, an important

optim1zation is possible. It is not necessary to fire up copier transactions

for all X in the logical database. Suppose we are recovering site f.

Only those X that were updated after site f failed need to be recovered.

Any X that was not updated while f was down still has the correct value at

f when the site recovers. If a spool (or journal) of all writes to site f is

maintained while f is down, as in SDD-l [HS], then when f recovers the

following processing can be done. Scan the spool to produce a list of data items

that were written while f was down. All data items not on the list can be

immediately marked as readable at DM
f

. Copiers are executed only for data items

on the list.

Notice that we are not proposing that spooled write operations be processed

in FIFO order, as in SDD-l. If X was written several times while f was

down, only the last value should be sent to f. If earlier values are sent,

the algorithm will not work correctly.

6. SITE BACKuP

A backup database is a static copy of the database that is consistent but

potentially out-of-date. One use of backup databases is to speed up the pro

cessing of queries. By reading the static backup, a query does not interfere

with updates, and so will not be delayed or restarted for concurrency control

198

reasons. The cost is that it may read out-of-date data. Backup databases are

also useful for archiving data.

Creating a backup database is similar to initializing a new site or recover-

ing a failed site -- similar enough that we can use our initialization algorithm

to do most of the job.

We begin by pretending that the backup database is a new site being added to

the DDBS. We run the initialization algorithm to bring the backup database

up-to-date, until all data items in the backup have been written at least once.

Now we must freeze the backup, by shutting off writes to it. However, we must

shut off writes carefully, so that the backup is frozen in a consistent state.

We can do this simply by running a query that (conceptually) reads the entire

backup database, and by ensuring that no data item is written once the query

has read it. This freezes the backup copy in the state read by the query. Since

the query is synchronized by a serializable concurrency control algorithm, the

frozen state is consistent.

For example, suppose we use the two-phase locking initialization algorithm

of Section 4. When all backup data items have been written at least once, we

run a query that sets a read lock on every backup data item. (The query may

deadlock while trying to obtain its locks, and so may need to be aborted and

restarted.) When all backup data items are locked, we shut off updating by

refusing to process any more writes against the backup. The resulting backup

database is consistent and can be correctly queried without synchronization.

One problem with this algorithm is that the "shut-off" query may deadlock

repeatedly and never finish. This problem can be fixed as follows. Once the

query begins, the backup should refuse to grant any write lock requests from

transactions that have not already set a lock on some backup copy. These requests

are simply blocked, and the transactions delayed, until the query manages to

get all of its locks. Then a very counterintuitive event happens -- the lock

199

requests are unblocked, but since the backup is now frozen, the transactions

no longer need the locks!

earlier.)

7. CONCLUSION

(It does not work to unblock the transactions

We have presented an algorithm that can be used to initialize a database

at a new site in a DDBS, to recover a database at a formerly failed site, or

to create a consistent, static backup database. The algorithm is simple, yet

introduces little overhead beyond what is normally needed for concurrency

control. We therefore believe it_is a practical solution to all three problems.

The methodology that we used to describe our algorithm is also interesting,

we believe. First, we defined correctness, i.e. what it means for an algqrithm

to correctly solve the problem; this definition was stated in terms of execu

tions (i.e. logs). Second, we specified the kinds of logs that our algorithms

would allow, and proved that every allowable log is correct. Third, we des

cribed an abstract aZgorithm that meets the specification. Finally, we gave

a concrete impZementation of the abstract algorithm. These four steps,

(i) defining correct logs,

(ii) specifying an allowable subset of the correct logs,

(iii) designing an abstract algorithm that produces allowable logs,

(iv) engineering a concrete implementation of the abstract algorithm,

help structure the problem and the search for solution.

One benefit is that we can engineer new concrete algorithms for specific

systems or problems just by redoing step (iv). For example, the concrete

implementation of the backup algorithm in Section 6, may have bad performance

characteristics. By locking the entire backup database, the "shut-off" query

interferes· with many updates •.This performance problem is not inherent in the

abstract algorithm; it is just an artifact of the concrete implementation we

gave. A better implementation would use a concurrency control algorithm for

200

the backup in which queries and updates interfere less. Multiversion

concurrency control algorithms [BHR, Re, SR] are likely candidates for

this role. Engineering a backup algorithm that uses multiversion con-

currency control is by no means a trivial task. But structuring the

problem as we have done, the designer does not have to start from scratch.

1,

[AD]

[BG]

[BHR]

[BSW]

[EGLT]

[HS]

[LS]

[LSP]

[MPM]

[Pa]

[Re]

[Sk]

[SLR]

[SR]

201

REFERENCES

Alsberg, P. A., J. D. Day, "A Principle for Resilient Sharing of
Distributed Resources," Proc. 2nd IntZ. Conf. Software Eng. ,
Oct. 1976.

Bernstein, P.A., and N. Goodman, "Concurrency Control in Distributed
Database Systems," ACM Computing Surveys, Vol. 13, No.2, (June 1981).

Bayer, R., H. Heller, and A. Reiser, "Parallelism and Recovery in
Database Systems," ACM Trans. on Database Syst., Vol. 5, No. 2
(June 1980), pp. 139-156.

Bernstein, P.A., D.W. Shipman, and W.S. Wong, "Formal Aspects of
Serializability in Database Concurrency Control," IEEE Trans. Softw.
Eng., Vol. SE-5, No.3 (May 1979).

Eswarah, K.P., J.N. Gray, R.A. Lorie, and LL. Traiger, "The Notions
of C:msistency and Predicate Locks in a Database System." Commun. ACM
Vol. 19, No. 11, (Nov. 1976), pp. 624-633.

Hammer, M.M., and D.W. Shipman, "Reliability Mechanisms for SDD-l:·
A System for Distributed Databases," ACM Trans. Database Syst. Vol. 5,
No.4 (Dec. 1980),431-466.

Lampson, B., and H. Sturgis, "Crash Recovery in a Distributed Data
Storage System," Tech. Rep., Computer Science Lab., Xerox Palo Alto
Research Center, Palo Alto, CA, 1976.

Lamport, L., R. Shostak, and M. Pease, "The Byzantine Generals Problem,"
Tech. Rep., SRI International, March 1980.

Menasce, D.A.,G.J. Popek, and R.R. Muntz, "A Locking Protocol for
Resource Coordination in Distributed Databases," ACM Trans. Database
Syst. Vol. 5, No.2, (June 1980), pp. 103-138.

Papadimitriou, C.H., "Serializability of Concurrent Updates," J. ACM
Vol. 26, No.4 (Oct·. 1979), pp. 631-653.

Reed, D.P., "Naming and Synchronization in a Decentralized Computer
System",Ph.D. dissertation, Dept. of Electrical Engineering, M.LT.,
Cambridge, MA, Sept. 1978.

Skeen, Dale, "Nonblocking Commit Protocols," Pl~OC. 1981 ACM-SIGMOD
Conf. on Management of Data, ACM, N.Y., pp. 133-147.

Stearns, R.E., P.M. Lewis, II, and D.J. Rosenkrantz, "Concurrency
Controls for Database Systems," in Proc. 17th Symp. Foundations Computer
Science (IEEE), 1976, pp. 19-32.

Stearns, R.E., and D.J. Rosenkrantz,· "Distributed Database Concurrency
Controls Using Before-Values," in Proc. 198Z ACM-SIGMOD Conf. on
Management of.Data, ACM, N.Y., pp. 74-83.

202

[SS] Skeen, D., and M. Stonebraker, "A Formal Model of Crash Recovery
in a Distributed System", Proa. 5th BerkeZey Conferenae on
Distributed Data Management and Computer Networks, 1981, ,pp. 129-142.

[Th] Thomas, R.H., "A Majority Consensus Approach to Concurrency Control
for Multiple Copy Databases", ACM Trans. on Database Syst., Vol. 4,
No.2 (June 1979), pp. 180-209.

203

VIEW DEFINITION AND GENERALIZATION FOR
DATABASE INTEGRATION IN MULTIBASE:

A SYSTEM FOR HETEROGENEOUS DISTRIBUTED DATABASES*

Umeshwar Dayal
Computer Corporation of America

Cambridge, Massachusetts

and

Hai-Yann Hwang
The University of Texas at Austin
Department of Computer Sciences

ABSTRACT

Access to a heterogeneous, distributed database system can
be simplified by providing users with a logically integrated
interface or global view. There are two aspects to database
integration. Firstly, .the local schemas may model objects and
relationships differently and, secondly, the databases may con
tain mutually inconsistent data. This paper identifies several
kinds of structural and data inconsistencies that might exist.
It describes a versatile view definition facility for the Func
tionalData Model and illustrates the use of this facility for
resolving inconsistencies. In particular, the concept of gen
eralization is extended to this model, and its importance to
database integration is emphasized. The query modification algo
rithm for the relational model is extended to the semantically
richer functional data model with generalization.

*This research was partially supported by the Defense Advanced
Research Projects Agency of the Department of Defense and the
Naval Electronic Systems Command under Contract No. N00039-80
C-0402. The views and conclusions contained in this document
are those of the authors and should not be interpreted as neces
sarily representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the
Naval Electronic Systems Command or the U.S. Government.

204

1. INTRODUCTION

Retrieving information from a collection of independently
designed databases is a formidable task. The component databases
typically have different schemas, expressed in different data
models, and are implemented on different database management sys
tems, each with its own retrieval language. Formulating and
implementing queries that require data from more than one data
base poses many problems for the user. These problems include
resolving discrepancies between the databases, such as differ
ences in representation and naming conflicts; resolving incon
sistencies between copies of the same information stored in dif
ferent databases; and transforming a query from the user's
language into a set of queries expressed in the different
retrieval languages supported at the different sites.

Multibase is a system that relieves the user of many of
these problems [SMITH et al.8ll. It presents users with a logi
cally integrated global view of the data stored in the local
databases, without requiring that the databases be physically
integrated. The schema architecture of Multibase is shown in
Figure 1.1. Translating the local host schemas (LHSs) into local
schemas (LSs) in a common data model shields the users from
differences in the data models and languages. In addition, an
integration database, described by the integration schema (IS),
may be needed to record information required for integration.
For example, if the databases record the same data values in dif
ferent scales, the IS stores the mapping between the scales. The
global schema (GS) is defined as a view of the LSs and IS. The
definition of the GS incorporates directives for resolving
discrepancies and inconsistencies between the local databases.
Therefore, the GS provides users with the illusion of a homogene
ous and integrated database.

Users express their queries against the GS in a common data
language. However, since the global database is not physically
materialized, these queries must be modified into equivalent
queries against the local schemas. Since these queries are still
in the common data language, they finally must be translated into
programs that will execute on the local hosts.

In this paper, we are not concerned with the problem of map
ping the LHSs into LSs in a common model, nor with the
corresponding translation of queries. Instead, we focus on' the
issue of database integration: how to define the GS to resolve
discrepancies between the local databases, and how to modify a
global query into a query against the collection of LSs. Specif
ically, we show that the concept of generalization [SS77, MBW80,
LG78l, when coupled with extensive view definition facilities,
(exceeding even those provided by typical relational systems

205

Users

!
Global Schema

t
View Definition Facility

LSl • • • LSn Integration Schema

Mapping into a
Common Data

Model

LHSl • • • LHSn

Figure 1.1 Schema Integration Architecture

[HSW75, CGT751), is a powerful tool for database integration.
This idea was explored in [KG8l1. There it was assumed that the
local databases were disjoint (i.e., contained no entities in
common), and the use of generalization for schema integration was
demonstrated. For instance, consider two databases, one of U.S.
Ships and the other of Soviet Ships. The global schema can gen
eralize these to the entity type Ship (which has all the attri
butes common to the two specialized entity types). However, the
most interesting (and difficult) problems occur when the local
databases do overlap. It is that class of problem which we
attack here. For instance, suppose two databases, DBI and DB2,
contain data on employees and their salaries. For employees in
DBl-DB2 (or DB2-DBl), it seems c~ear that the salary value in the
global view must be derived from that in DBI (or DB2, respec
tively). However, for an employee in both databases, what should
be done if there is a conflict? The Database Administrator (DBA)

206

could decide that DBI is more credible and, hence, derive the
salary in the view from DBI. Another possibility is to include
both salaries in th~ view (since they might be salaries for two
different jobs). Other solutions might be appropriate for dif
ferent applications. The view definition mechanism must be flex
ible enough to accommodate these alternatives.

The problem of defining a global schema as a view (called a
"superview" by the authors) is also addressed in [MB8l]. Some
interesting operators (including generalization) for view defini
tion are introduced, but these are not powerful or versatile
enough for resolving inconsistencies of the kind described here.

Multibase uses the Functional Data Model (FDM) and DAPLEX
[SHIP8l] as its common model and mapping language for defining
the LSs, IS and GS,and for expressing global queries. In Sec
tion 2, we embellish the basic Functional Data Model with ISA
relationships (generalization). For instance, we can say USShip
ISA Ship, implying that every entity of type USShip is also of
type Ship. In addition to the conventional ISA relationship for
entities, we introduce an ISA relationship for functions. This
enhances the semantic modelling capabilities of theFDM, and pro
vides greater flexibility in defining global schemas. Our goal
in this paper is to discuss the concepts and view definition
capabilities required for database integration. Toward this
~oal, we introduce a simple nonprocedural query language that
embodies these concepts and capabilities. This language is
describe~ in Section 3. How to "smoothly" incorporate these
ideas into an existing full-blown user language such as DAPLEX is
currently under investigation. In Section 4, we catalogue vari
ous kinds of discrepancies that might exist between databases and
we illustrate the use of our view definition mechanism in resolv
ing them. Section 5 describes our query modification algorithm.
View definition and query modification in the relational model
have been studied in [STON75]. Our contribution is in extending
those ideas to the functional data model with generalization,
which is syntactically and semantically richer than the rela
tional model. For views defined by generalization, the global
query is modified into a collection of sUbqueries against the
local schemas. However, the straightforward approach of syntac
tically substituting the view definition into the query could
lead to a proliferation of irrelevant sUbqueries. The algorithm
we describe generates only the essential sUbqueries. In the
Appendix, we enhance the power of the language by giving users
control over duplicate elimination. We show that this enhance
ment has little impact on query modification.

\

207

2. THE FUNCTIONAL DATA MODEL WITH GENERALIZATION

In this Section we first review the basic model. Then we
extend it to include generalization and describe a query language
for use with it.

2.1 The Basic Model

The Functional Data Model uses two constructs: the entity
and the function. Entities are intended to represent real-world
ob~ects, and functions to represent properties of these objects
or relationships among objects.

A database schema in this model is represented by a labelled
directed mUltigraph, G, whose nodes are labelled with entity
types and edges with function names. Functions may be
singlevalued or mUltivalued.

In every state ofG, there is a finite set E of entities.
Each element of E is of a specified entity type. The extension
in E of entity type X is the set of all entities in E of type X.
(We sometimes call this the entity §Stt X). For each singlevalued
function name f: X ->Y, there is a functionf from entity set X
into entity set Y; for each multivalued function name f: X ->->
Y, there is a function f from entity set X into the power set of
entity set Y~ A state of G may also be represented by a directed
mUltigraph in the obvious way. (We distinguish between user
defined entity types and constants, i.e., system defined entity
types such as integer, real, string, Boolean. The extensions of
the constants are fixed and cannot be altered by users). An
example FDM schema is given in Figure 2.1.

2.2 Augmenting the Basic Model With Generalization

Generalization is an abstraction that groups classes of
objects with common properties into a generic class of objects
[S~77].For example, if a STUDENT entity is described by proper
ties SSNO, NAME, ADDRESS, MAJOR, GPA, and an EMPLOYEE entity by
properties SSNO, NAME, ADDRESS, SALARY, JOBHISTORY, then a gen
eric type PERSON can be formed with their common attributes SSNO,
NAME, ADDRESS. Applications that are not concerned with the spe
cial properties of students or employees need not distinguish
between them, and can, instead, treat them as persons. Thus,
incorporating the concept of generalization in the data model

•

208

Manager

o ·0
String String

o
Real

Works-in

Name

o
String

Note: For convenience, we denote the constant types by
o nodes

Figure 2.1 A Schema in the FDM

provides greater flexibility in semantic modelling. This idea
has been suggested several times in the literature (e.g., [SS77,
HM78, ROUSS79, MBW80, MB81, CODD79, HK81]).

The concept of generalization assumes even greater impor
tance for database integration in Multibase. The local schemas,
having been developed independently, may contain entities at dif
ferent levels of generalization. For example, assume that one
schema, LSI, models people as PERSON entities, whereas another,
LS2, models them as STUDENT and EMPLOYEE entities. The
integrated global schema may be satisfactorily defined neither at
the level of LS2 (if it has no information available to distin
guish between persons in LSI who are students and those who are
employees), nor at the level of LSI (for then the distinction
between students and employees in LS2 would be lost to global
users) • A reasonable solution is to include all three entity
types, viz., STUDENT, EMPLOYEE, and PERSON, in the GS with the
relationships STUDENT ISA PERSON, EMPLOYEE ISA PERSON explicitly
~efined between them.

, ,

209

We propose another (less obvious) use of generalization for
database integtation. Suppose the "same" entity type occurs in
two different schemas but with different properties. For exam
ple, suppose EMPLOYEE entities in LSI have properties SSNO, NAME,
SALARY, AGE, whereas EMPLOYEE entities in LS2 have properties
SSNO, NAME, SALARY, ADDRESS. Conventional data modelling would
suggest that the EMPLOYEE entity set in GS be defined as the
"outer join" of the entity sets in LSI and LS2. (The "outer
join" operator sets SALARY values to NULL for employees not in
the first database, and ADDRESS values to NULL for employees not
in the second database [CODD79l.) Instead, using generalization
to define the GS (as in Figure 2.2), we achieve the same effect
without introducing artificial NULL values. As we shall see in
Section 5, imposing this additional structure on the view assists
in query modification.

We extend the concept of generalization to generalization
over functions. Reconsider the example of Figure 2.2~ Suppose
that two additional· functions HOMEPHONE and WORKPHONE were
defined for EMPLOYEE entities in LSI, and a mUltivalued function
PHONES for EMPLOYEE entities in LS2. Then a convenient abstrac
tion would be to define the generic multivalued function PHONES
for the generic entity type EMPLOYEE in GS. Thus, if employee e
has workphone pI and homephone p2 in the first database, and the
set of phones {p2, p3} in the second database, then pI, p2, p3
are all included in PHONES(e) in the global view.

Proceeding formally, we extend the basic model of Section
2.1 as follows. A schema now is a triple S= (G, ISAe, ISAf)
where G is a labelled directed multigraph (as before), ISAe is a
binary relation on the nodes of G, and ISAf a binary relation on
the edges of G. A state of S is as before, except that now each
entity can be of more than one type. ISAe and ISAf obey the
axioms of Figure 2.3.

If Xl ISAe X2, then we call Xl a subtype of X2, and X2 a
supertype of Xl. The extensions of subtypes may overlap. The
Extensionality Constraint implies the following Inheritance Rule:
a subtype inherits all the functions of its supertype.

If Fl ISAf F2, then we call Fl a subfunction of F2, and F2 a
superfunction of Fl.

Figure 2.4 gives an example of integrating two local schemas
using the ISA relationships. In Section 3, we show how to define
this globql schema as a view of the local schemas.

210

1S1 1S2

OReal

o Integer

String

Emp SSNO String
o-----+-O

String

StringSSNO
J-----~D

(
\

~D String
Address

SSNO String
:>-----.-0

SSNO
00-----....0 String

Emp

SSNO
u-----~~O String

GS

~ Denotes an ISA relationship

Figure 2.2 Integration by Generalization of Entity Types

if both Fl and F2 are singlevalued
if both Fl and F2 are multivalued
if Fl is singlevalued and F2 is multivalued

211

a) Axioms for ISAe

1. Intrinsic Axiom
ISAe is a partial order, i.e., it is reflexive, antisym
metric, and transitive.

2. Extensionality Constraint
If x is an entity of type Xl and Xl ISAe X2, then x is
also of type X2.

3. Range Restriction
If Xl ISAe X2 and F: Xl -> Yl

F: X2 -> Y2,
then Yl ISAe Y2.

4. CotYPe Constraint
If x is an entity of types Xl and X2, then there is a
type X3 such that Xl ISAe X3 and X2 ISAe X3.

b) Axioms for ISAf

1. Intrinsic Axiom
ISAf is a partial order.

2. Structural Constraint
If Fl ISAf F2, and Fl: Xl -> Yl

F2: X2 -> Y2,
then Xl ISAe X2 and Yl ISAe Y2.

3. Extensionality Constraint
If F2 ISAf F2, Fl is a function from Xl to Yl, and F2 is
a function from X2 to Y2, then, for every entity x of
type Xl,
Fl(x) = F2(x)
Fl(x) .Q. F2(x)
Fl(x) € F2(x)

Figure 2.3 Axioms for ISAe and ISAf

2.3 A Query Language for the Model

The query language we Use to illustrate our ideas is a vari
ant of NQDEL, a nonprocedural language for the general network
model introduced in [DAYAL79, DB82l. (NQDEL is based on the
relational query language QDEL [HSW7Sl. We use this language

1S1:

212

1S2:

Emp Hphone Phone Emp Phones Phone

DOD 0
String String Integer Real

o
String

o DO 0
String String String Real

o
String

o

String String Real

o o 0 0 0 o
String String Integer Real String String String String Real

:::~;:~> denotes ISAe

==~ denotes ISAf

String

Figure 2.4 Integration by Generalization of Entity Types
and Functions

213

merely as an example. The techniques can be applied to other
algebraic or calculus-based languages such as DAPLEX [SHIP81].)

Queries are formulated using entity variables, which are
declared in range statements: RANGE OF <entity-var> IS <entity
type>.

Queries are retrieval statements of the form
RETRIEVE INTO <result-entity-type> «target_list»

WHERE <qualification>
<target-list> is a list of assignments

<singlevalued function name> := <term> or
<multivalued function name> := <set>;
<term> is an entity variable, a constant, a singlevalued function
applied to an entity variable, or a composition of singlevalued
functions applied to an entity variable; <set> is a multivalued
function applied to an entity variable, or an expression of the
form {<entity variable> IN <entity type> WHERE <qualification>};
<qualification> is a Boolean combination of atomic formulas of
the form <te~m> <op> <term> or <entity variable> ISIN <mul
tivalued function applied to an entity variable>; <op> is one of
the comparison operators =, <, etc.

We do not preclude entity variables ranging over constant
(i.e., system defined) entity types, such as integer, real,
string, Boolean. However, we do require that any such variable x
be bound to a finite range by an atomic formula x=f(y) or x ISIN
f(y) in every disjunct when the qualification is cast into Dis
junctive Normal Form.

The interpretation of a query RETRIEVE INTO E
(fl:=cl, ••• ,fk:=ck) WHERE qualification is as follows: construct
the Cartesian product of the ranges of all free entity variables
appearing in the query; eliminate those tuples of entities that
do not satisfy the qualification; for each of the remaining
tuples of entities, perform the target-list computations cl, ••• ,
ck; for each unique k-tuple <tl, ••• , tk> computed, create a new
entity of type E with functions fi := ti, I ~ i ~ k. (How these
entities are printed or displayed to a user is irrelevant to our
discussion.) Examples of queries are given in Figure 2.5.
Observe that the query in (i) retrieves an "unnormalized" rela
tion.

Since Multibase is
updates, although they
[DAYAL79, DB82].

a retrieve-only
could be adapted

system, we ignore
from those in NQDEL

214

Schema of Figure 2.1

i. Retrieve the Soc. Security Nos. and Names of all Employees
earning over 50K together with the Names of the Departments
they work in.
RANGE OF e IS EMP
RANGE OF d IS DEPT
RETRIEVE INTO RESULT (SSNo := SSNo(e), Name := Name(e)

DeptNames := {n IN STRING'WHERE n = Name(d)
AND d ISIN Works-in(e)})

WHERE Sal(e»50000.

11. Retrieve the Soc. Security No. and Name of every employee
and the name of each of his/her managers.

RANGE OF e,m IS EMP
RANGE OF d IS DEPT
RETRIEVE INTO WORKSFOR

(SSNo := SSNo(e), EmpName := Name(e), MgrName := Name(m»
WHERE m = Manager(d) AND d ISIN Works-in(e).

Figure 2.5 Examples of Queries

3. VIEW DEFINITION IN THE MODEL

In this Section, we describe constructs for defining the
global schema as a view of the local schemas. Facilities are
provided for including entities··from the local da,tabases into the
view, for defining new (virtual) entities, and for defining ISA
relationships on entity types and functions in the view.

3.1 Inclusion

INCLUDE <entity variable> AS <entity type> «function-list»
WHERE <qualification>. This statement causes those entities in
the range of the entity variable that satisfy the qualification
to be included in the view. The AS clause permits renaming the
type of these entities. Only the functions in the function list
are visible in the view. These functions may be renamed thus:
<function-name> AS <new-function-name>.

215

3.2 Defining Virtual Entities and Functions

i. DEFINE ENTITY TYPE <entity type> «target_list» WHERE <qual
ification>. The semantics of this state~ent are similar to
the semantics of a query.

ii. DEFINE FUNCTION <function name>
FOR <entity variable> IN <entity type>

. <assignment>

This statement is useful fotdefining new functions for pre
viously defined entity types in the view. Depending upon
whether the right hand side of the assignment is a term or a
set, the function being defined is singlevalued or mul
tivalued.

3.3 Defining Supertypes and Superfunctions in a View

Defining a Supertype X in a view 'involves the following
steps: i) Specify X1 s subtypes XI, ••• iXk. This defines the

k
extension of X to be X:= U (extension of Xi). ii> Specify a list

£:1 .

IDX of singlevalued functions that identify entities of type X.
(IDX must include the identifiers of all Xi, I ~ i ~ k.) This

k
partitions U (extension of Xi) based on IDX values, and merges

i =-j.

entities in each block of the partition. Thus, after the merge,
the following constraint holds: (Vx, x I€X) <lDX (x) = IDX (x I) => X

= Xl). Consequently, entities of subtype Xi and Xj having the
same IDX values are treated as being the same entity. Observe
that this permits us to define overlapping subtypes. iii)
Specify how the functions on supertype X are derived from those
on XI, ••• ,Xk. In addition to the constructs described in Section
3.2, two additional features are necessary.

(a) A function for X may be declared to be a superfunction
of some functions fl, ••• ,fk on XiS sUbtypes. For the example in
Figure 2.4, the relationships Hphone ISAf phones, ,Wphone ISAf
phones, phones2 ISAf phones imply the following const~aint: (V a
€ PHONE, Ve € EMP) [a € phones(e) iff [(e € EMPI AND a € PHONEI
AND (a = Hphone(e) ORa = Wphone(e») OR (e € EMP2 AND a € PHONE2
AND a € phones2(e»]].

(b) The value of a function on an entity of supertype X may
depend on the subtype(s) to which the entity belongs. For exam
ple, in Figure 2.4, the Salary function on EMP may be defined by

216

{
Sall(e), if e € EMPI - EMP2

Sal(e) = Sa12(e), if e € EMP2 - EMPI
Sall(e) + Sa12(e), otherwise

To define such conditional functions, a conditional assignment is
required.

Supertype definitions are summarized below.
DEFINE SUPERTYPE <entity-type-O> BY

<entity-type-l> ISAe <entity-type-O>, ••• ,
<entity-type-k> ISAe <entity-type-O
ID: <list of singlevalued function names>
FOR <entity variable> IN <entity-type_O>
[<list of superfunction declarations>]
[<conditional assignment list>]

A superfunction declaration is of the form
DEFINE SUPERFUNCTION <function-name-O> BY

<function-name 1> ISAf <function-name-O>, ••• ,
<function-name-p> ISAf <function-nameO>

A conditional assignment is of the form
<function name > : = CASE

<conditionl> => <terml> WHERE <qualification> I
<set 1>

<conditionN> => <termN> WHERE <qualification> I
<set N>

A condition is: <entity variable> ISIN <range>, where <range> is
a well formed set expression over entity types 1 ••• , k. The N
ranges in the CASE statement must partition the extension of
<entity_type_O>.

Figure 3.1 illustrates the use of these statements for
defining the view of Figure 2.4. (In our examples, we shall
assume that the terms of-the language are extended to include
arithmetic computations. Permitting embedded calls to arbitrary
procedures written by the DBA would provide even more flexibility
for database integration. Furthermore, it might be convenient to
extend the conditions in a conditional assignment statement to
include arbitrary formulas.)

3.4 Defining Subtypes in a View

For some applications it might be required to define spe
cializations of entity types and functions in the view.

DEFINE SUBTYPE <entity_type_O> BY
<entity_type_O> ISA <entity_type_l>, ••• ,
<entity_type_O> ISA <entity_type_k>

217

RANGE OF el IS LSl.EMP, RANGE OF e2 IS LS2.EMP
RANGE OF pI IS LSl.PHONE, RANGE OF p2 IS LS2.PHONE

INCLUDE el AS EMPI (SSNo, Name AS Namel, Age, Sal AS SaIl,
Hphone, Wphone)

INCLUDE pI AS PHONEI (No)
INCLUDE e2 AS EMP2 (SSNo, Name AS Name2, Address, Sal AS Sa12,

Phones AS Phones2
INCLUDE p2 AS PHONE2 (NO)

DEFINE SUPERTYPE PHONE BY
PHONEI ISAe PHONE, PHONE2 ISAe PHONE
ID : No

DEFINE SUPERTYPE EMP BY
EMPI ISAe EMP, EMP2 ISAe EMP
ID : SSNo

FOR e IN EMP
DEFINE SUPERFUNCTION Phones BY

Hphone ISAf Phones, Wphones ISAf Phones,
Phones2 ISAf Phones

Name := CASE
e ISIN EMPI => Namel(e)
e ISIN EMP2 - EMPI => Name2(e}

Sal := CASE
e ISIN EMPI - EMP2 => Sallee}
e ISIN EMP2 - EMPI => Sa12(e}
e ISIN EMPI n EMP2 => Sallee} + Sa12(e}

Figure 3.1 Definition of the Global Schema of Figure 2.4

FOR <entity-variable> IN <entity_type_O>
<target_list>

The extension of a subtype is the intersection of the extensions
of all its supertypes. Subtype definition is illustrated in Fig
ure 3.2.

218

Suppose that we have already defined the view of Figs. 2.4 and
3.1. We now want to define a subtype EMP12 of EMPl, EMP2.

EMP2

EMP

EMPI

DEFINE SUBTYPE EMP12 BY
EMP12 ISAe EMPl, EMP12 ISAe EMP2
FOR e IN EMP12

Sals := (s IN STRING WHERE s = Sallle) OR
s = Sa12(e)}.

Figure 3.2 Example of Subtype Definition

4. DATABASE INTEGRATION USING VIEWS AND GENERALIZATION

If the LSs were identical (i.e., contained the same entity
types and functions) and there were no conflicts among data
values, then database integration would be a trivial task. We
could define the GS to be identical to each LS, and the extension
of each global entity type or function to be the union of the
corresponding extensions in the local databases. However, in
general, there are two sources of difficulty: the LSs might not
be identical (schema differences), and data values stored in dif
ferent databases that represent the same information might con
flict (data differences). It might seem that a simple solution
to these problems is to define the GS (and its extension) to be
the disjoint union of the LSs (and their extensions). This solu
tion is unacceptable, however, for it place~ the onus of integra
tion entirely on the user, who must then understand the semantics
of all the local databases to formulate queries. In this

219

Section, we show via examples how the DBA can design global user
views to resolve various kinds of schema and data differences.

The constructs described in Section 3 may be used to define
a wide variety of views that meet a wide variety of application
requirements. The approach we adopt in our examples is to
preserve all available information from the local databases. For
specific users, the DBA may wish to suppress some of the informa
tion. Such views are easily defined, once we have shown how to
define the more exacting views that pre~erve all information.
The approach we suggest consists of two steps. First, resolve
schema differences so that the entity types of interest to the
user's application in all the LSs "look similar". Then, we com
bine these entity types using generalization; data differences
are resolved by appropriately defining the functions on the
supertype.

4.1 Schema Integration

Schema integration includes the resolution of naming con
flicts, scale differences, structural differences, and differ
ences in abstraction.

4.1.1 Naming Conflicts

Naming conflicts are easily handled by renaming. If entity
types (or functions) representing the same real-world object (or
relationship) have different names (synonyms) in different LSs,
then give them the same name. This is illustrated by the Ship
and Vessel entity types in Figure 4.1a in the GS. If the entity
types (or functions) representing different objects (or relation
ships) in different LSs have the same name (homonyms), then give
them different names in the GS. This is illustrated by the
Dead-Weight and Net-Weight functions in Figure 4.1a. (Observe
how we use generalization to merge the entities in the two data-
bases.) .

4.1.2 Scal~ Differences

The same function values might be stored using different
scales in different databases. For example, in Figure 4.1b,
Height is measured in inches in one database and in cms in the
other; similarly, Weight is measured in Ibs in one database and
is encoded on a scale of Light/Medium/Heavy in the other. These
differences are resolved by using unifying scales with the Height
and Weight functions on the supertype. For Height, since there

220

a. Naming Conflicts

LS1:

shi~D String

~[] Real

LS2: VID

~
DString

Vessel

We [] Real

ID
~=------ ••0 String

ID
U---------i~D String

OReal

Definition: Include Ship and Vessel in the view, with appropriately
renamed functions; then define Ship as the supertype.

b. Scale Differences

Real

String

[J

(r---.;:;.;;;..---.D String

LS2:
Emp

o Integer

~~~D Real

Wt (lbs)

ID 0u-------I~ String

LS1:
Ernp

OReal

String

StrinES IS:

Wt~s [JInteger

ode

[]String

Real

ID
'~~;"-'-~~-'D String

Wt in 0 String

r-------.[] String

GS:

Ernpl

Figure 4.1 Examples of Integration



221

Definition: Include LS1.Emp as Emp1, LS2.Emp as Emp2 in G&.
RANGE OF c IS Wtconv 11
DEFINE SUPERTYPE Emp BY Emp1 ISAe Emp, Emp2 ISAe Emp

ID:ID
FOR e IN Emp

Htincms := CASE
e ISIN Emp2 => Ht(e)
e ISIN Emp1-Emp2 => 2.54*Htinins(e)

Wtincode := CASE
e ISIN Emp2 => Wt(e)
e ISIN Emp1-Emp2 => cod~(c) WHERE

lbs~c) = Wtinlbs(e~

c. Structural differences
LS1: LS2:

Supply Supplier Supplies
Part

\
SNO !~O

0 0 0 CJ
String StYJ.ng String Str1.ng

GS:
String String

0

o
String

o
String

o
String

D
String

Figure 4.1 Examples of Integration (continued)



Include
Define

222

Definition: RANGE OF y, y' is SuPPlr
DEFINE ENTITY TYPE Part (PNo:= PNo(y»
DEFINE ENTITY TYPE Supplierl (SNo := SNO(r»
~ Supplierl := {p in Partl WHERE SNo y'1 = SNo(y)

AND PNo y') = PNo(p)})
LS2.Supplier as Supplier2 and LS2.Part as Part2.
Supplier as the Supertype ofSupplierl, Supplier2
Part as the Supertype of Part1, Part2
Supplies as the Superfunction of Supplies!, Supplies2.

d. Entity types at different levels of generalization

LSI:

Ship

LS2:

USShip ID

~~

LS3:

Soviet Ship ID

~~

GSI (least integrated):

F----.....O

ID 0..

ID
0-..-..-..-...0

o

ID""0-----.0

o

(..,

Figure 4.1 Examples of Integration (continued)



223

GS2 (most integrated):

~-..o
Shipl

ID 0-

ID0-----.0
USShip

IDJ---·O
SSliip

Other Ship

o -0
ID

USShipl SShipl USShi,p2 SShip3

0ID-O ~'O ~O
Homep~ Locatl'o 0

Definition:

Include

Include
Define

Include LS~.Ship w~th appr~priate conditions on Nationality
as OtherSh1p! USSh1pl, SSh1pl.
LSl.Ship as ~hipl.
(The ISAe links from OtherShip, USShipl, and SShipl to Shipl
are not needed in the definition of these types, but are
added merely as integrity constraints.)
LS2.USShip as USShip2, and LS3.SovietShip as SShip3.
USShip to be the supertype of USShipl ana USShip2; SShip to
be the supertype of SSh1pl and SShip3. Finally, def ine Ship
to be the supertype of Shipl, USShip and SShip.

Figure 4.1 Examples of Integration (continued)



224

e. Set abstraction and summarization

LS1: LS2:

o

o

ID
U-------+-O

Convoy

IS:

Ship

GS:

Convoy
cp-__,.;;l;I.:.:.D_-.O

·~D

o

ASOi~Convo. 0

Sh D
o

Definition: Include LSl.Convoy and LS2.Ship.
Range of c is Convoy, RANGE of a is ASSIGNMENT
DEFINE FUNCTION isamemberof

FOR § IN Ship
~ isa~eqJ.berof:= c)

WHERE ID~c) = ConvoyID(a) AND ID(s) = ShipID(a)

Figure 4.1 Examples of Integration (continued)



\
I

\

225

is a bijection between inches and cms, we can choose either func
tion; in this example, we choose cms, and include the conversion
formula from inches to cms in the view definition. For Weight,
there is no conversion formula; instead, there is a table for
converting between Ibs and encoded weights. This table is stored
in the Integration database and used in the view definition.
Observe that we use the coarser scale for the supertype. (Of
course, we could have used some other unifying scale; then we
might have had to store two conversion tables in the Integration
Database.) In more complex situations, conversion might require
calling an arbitrary DBA-defined procedure (see Section 3.2).

4.1.3 Structural Differences

By structural differences we mean that the local schema
graphs are not isomorphic. These differences include: missing
functions and entity types (i.e., differences in aggregation
[SS77]); and modelling a real-world object or relationship by an
entity type in some LSs and by a function in other LSs. Missing
functions are easily dealt with using generalization -- only the
functions common to all the subtypes are defined on the supertype
(see Figure 2.4). To integrate schemas with different entity
types and functions, first define virtual entity types and func
tions, and then use generalization. There is considerable flexi
bility in designing the GS. We illustrate one possibility in
Figure 4.1c.

4.1.4 Differences in Abstraction

The entity types and functions in the LSs may have been
defined at different levels of generalization. The natural way
of integrating these schemas is via generalization. Figures 2.4
and 3.1 give an example of integration when the functions on the
entity types are at different levels. Figure 4.1d applies this
technique to LSs with entity types at different levels. Again,
several solutions are possible, and of these we show two.

Besides generalization, the LS~ might differ in other forms
of abstraction. In Figure 4.1e, the Convoy entity type in LS2 is
a ~ abstrijction of the Ship entity type in LSI (a ship is a
member of a convoy) [HM78]. The Average Weight function on Con
voy is a summarization of the Weight function on Ship. Both of
these abstractions are handled by defining a virtual function
relating each ship to the convoy of which it is a member. This
function is defined using additional information supplied by the
DBA via the Integration database.



226

4.2 Data Integration

Once the structure of the global schema has been decided
upon, its extension must be defined in terms of the extensions of
the local schemas. But the extensions might disagree on the
value of some functions. We discuss some causes of data
discrepancy here.
1. The local databases are mutually inconsistent, but correct.

One reason for thi~ might be that entities that appear to be
the same are actually different. Consider two identical LSs
containing entity type EMP and functions EmpNo:EMP->INTEGER,
Sal:EMP->INTEGER. EmpNo is the local identifier in each data
base. Suppose there is an entity el with EmpNo(el)=l,
Sal(el)=25 in one database, and an entity e2 with
EmpNo(e2) =1, Sal(e2)=30 in the other database. Suppose that
,although entities el and e2 have the same EmpNo value, they
represent different employees in the real world. This
implies that EmpNo is not an identifier for Emp entities in
GS. This apparent discrepancy is easily resolved by con
catenating a Database_ID with the local entity_ID for use as
the global_IDe

Another reason ,for the apparent discrepancy might be
that although EmpNo is, in fact, an identifier for Emp in GS
(so el and e2 do represent the same employe'e), the two func
tions are different; e.g., they represent salaries for two
different jobs. This implies that the Sal functions are
homonyms. We can resolve this discrepancy by including both
functions (appropriately renamed) for the supertype, by
treating Sal as a superfunction, or by deriving the Sal func
tion on the supertype by some computation on the two Sal
functions on the subtypes. The third solution was adopted in
Figure 3.1.

A third reason for the discrepancy ~ight be obsoles
cence. Again, we can treat the two functions as homonyms,
and use both (renamed appropriately, e.g., current_Sal and
last_year's_Sal> for the super.type. Alternatively, we can
use the more recent value (this is easily determined if data
is timestamped). For the latter solution, Sal must be
defined as a conditional function (with the conditions
extended to include tests on timestamps).

2. The local databases are mutually inconsistent and incorrect.
In this case, we again have several options. One is to use
the more credible data. (If this can be determined a priori,
a conditional function definition, will sUffice. This solu
tion is adopted for the name function in Figure 3.1.) Alter
natively, we can specify how to compute a value from the con
flicting data, or trigger some appropriate action, e.g.,
notifying the user that a conflict has been detected. This
last alternative requires the ability to embed procedure



227

calls in view definition statements. The procedures are
invoked if necessary during execution of the modified query.

5. QUERY MODIFICATION

We have seen how to define the GS as a view of the LSs. We
now describe algorithms 'for modifying queries against the GS into
queries against the LSs. (We insist that global queries request
the retrieval of only constant entities.)

For views defined using the constructs of Sections 3.1 and
3.2 (inclusion, virtual entity type and function definition), a
straightforward extension of the algorithm described in [STON75]
will work. The main steps are: given query q, for each entity
variable x in q, do th~ following: replace the range statement
RANGE of x IS X by a collection of range statements RANGE OF xi
IS Xi, 1 ~ i ~ n, where Xl, ••• , Xn are the entity types in terms
of which X was defined; replace each occurrence of f(x) in qls
target list or qualification by its definition; finally, conjoin
the qualification of XIS definition to qls qualification.

But there are two features of queries and view definitions
in the functional model that have no relational counterparts and
must be specially dealt with. (i) Compositions of singlevalued
functions must be unraveled before query modification. Replace
g(f(x» where f: X->Y, g: Y-)Z, and x ranges over X, by g(y)
where y is a new variable ranging over Y, and conjoin y=f(x) to
the qualification. (ii) After modification, an atomic formula (x
ISIN fey»~ may become (x ISIN {Xl IN X WHERE qual}). This is
simplified to (qual with Xl replaced by x).

For views defined via generalization, query modification is
more complicated. It might seem at first that the only complica
tion is the presence of variables ranging over supertypes; for
each such variable, the query must be replaced by the union of a
set of sUbqueries, one per subtype. However there are ~wo other
issues to consider.
1. The query might refer to several conditional functions on X,

whose definitions involve different partitions of X. We have
to construct the coarsest common refinement 7l"(Le., the
greatest lower bound with respect to the refinement partial
order) of all these partitions. Then, the query must be
replaced by the union of a set of sUbqueries, one for each
block of 7l". This principle is illustrated in Figure 5.1a.
(Observe that the iange statements in the sUbqueries are not
in the syntax described in Section 3. We shall show later
how to rectify this.)



228

2. The query might refer to a superfunction f, e.g., in a for
mula x=f(y). The query must then be replaced by the union of
a set of sUbqueries, one for each pair of subranges of ~ and
y for which a subfunction of f is defined. This principle is
illustrated in Figure 5.1b. (Note that if two subfunctions
(e.g., homephone and workphone, have the same domains and the
same ranges, then we can combine the two corresponding
sUbqueries.)

Applying these two principles independently, however, would
lead to a proliferation of sUbqueries, many of which might be
irrelevant. For example, if we first apply Principle 1 to all
the entity variables in the query of Figure 4.1, we get 6
subqueries (3 subranges for e, viz., EMPI-EMP2, EMP2-EMPl,
EMPI n EMP2; times 2 subranges for PHONE, viz., PHONEl, PHONE2).
But on subsequently applying Principle 2, we discover that only 4
of these are relevant -- the (EMPI-EMP2, PHONE2) and (EMP2-EMPl,
PHONEl) pairs are rUled out by the qualification. The algorithm
we describe below avoids generating unnecessary intermediate
subqueries.

For describing the algorithm, we require the following
definitions. Let q be a query, and let x be a supertype variable
ranging over X. Let fl, ••• , fn be the functions occurring in q
either ~n a term fi(x) or in a formula x=fi(y) or x ISIN fi(y);
For each i, let ~fi be the partition of X induced by the defini
tion of fi. (If fi is a conditional function, ~fi is the parti
tion induced by the conditions in ~he CASE statement defining fi;
otherwise ~fi is defined to be {YIY is a subtype of X}.) Let
~(x) be the coarsest common refinement of all such partitions.

The subrange table SRT(x) for variable x has n+l columns. The
first column is labelled x, and the others are labelled x.fi, 1 ~

i ~ n. Each row contains a block of ~(x) and the corresponding
definitions of the functions fi for that subrange of x. (If fi
is a conditional function, this is the right hand side of the
corresponding conditional assignment. If fi is a superfunction,
this is the set of subfunctions defined over the subrange. (See
Figure 5.2 for an example.) Each row o£ the table tells us which
definition or subfunctions of fi to use for a given subrange of
the range of x.

In the query modification algorithm below, we assume that
the target list does not contain a set assignment of the form
B:=<set> where <set> contains a reference to a supertype or a
superfunction. This is not a restrictive assumption, for a query
that violates it can be replaced by two queries. Thus, replace
q: RETRIEVE INTO RESULT (A:=f(x), B:=g(y» WHERE qual;
where g:Y->->Z is a superfunction, and range of y is Y, by
ql: RETRIEVE INTO RESULT (A :=f(x), B:={z IN Z WHERE z ISIN
g(y)}) WHERE qual;
ql is now a special case of the following
q: RETRIEVE INTO RESULT (A:=f(x), B:={y in Y WHERE quaIl}) WHERE



229

Assume the LSs and GS of Figures 2.4 and 3.1.

a. Conditional function
Query: RANGE OF e IS EMP

RETRIEVE INTO WEALTHY (Name := Name (e»
WHERE Sal (e) ) SOK

The definition of Name induces the partition:

{EMPl, EMPl-EMP2}

The definition of Sal induces the partition:

{EMPl-EMP2, EMP2-EMPl, EMPI n EMP2}

Coarsest common partition = partition induced by the
definition of Sal.

Subrange .Q.f. .e.

EMPl-EMP2
EMP2-EMPI
EMPlnEMP2

Subqueries:

Namel(e)
Name2(e)
Namel(e)

Sall(e)
Sa12(e)
SaIl (e) +Sa12 (e)

1. RANGE OF e IS EMPl-EMP2
RETRIEVE INTO TEMPI (Name:= Namel(e» WHERE Sall(e»SOK

2. RANGE OF e IS EMP2-EMPI
RETRIEVE INTO TEMP2 (Name := Name2(e» WHERE Sa12(e»SOK

3. RANGE OF e IS EMPI n EMP2
RETRIEVE INTO TEMP3 (Name := Namel(e»WHERE

(Sall(e)+Sa12(e»)SOK
Then, WEALTHY := TEMPI U TEMP2 U TEMP3

Figure 5.1 Query Modification Principles



230

b. Superfunction:

Query: RANGE OF e IS EMP, RANGE OF P IS PHONE
RETRIEVE INTO Z (SSNo := SSNo(e» WHERE

1234 = No(p) AND p ISIN Phones(e)

Phones has the sub functions
HPhone : EMPI --> PHONEI
WPhone : EMPI --> PHONEI
Phones2: EMP2 -» PHONE2

Subqueries:

1. RANGE OF e IS EMPI
RANGE OF P IS PHONEl
RETRIEVE INTO Zl (SSNo := SSNo (e» WHERE

1234 = No(p) AND (p=HPhone(e) OR p=WPhone(e)
2. RANGE OF e IS EMP2

RANGE OF P IS PHONE2
RETRIEVE INTO Z2 (SSNo := SSNo (e» WHERE

1234 = No(p) AND p ISIN Phones2(e)
Then, Z=Zl U Z2

Figure 5.1 Query Modification Principles (continued)

qual; which must be replaced by the sequence

RANGE OF Y IS Y
RETRIEVE INTO TEMP (A:=f(x), B:=y) WHERE qual AND quaIl
RANGE OF t,tl IS TEMP
RETRIEVE INTO RESULT (A:=A(t), B:= {y IN Y WHERE

y=B(tl) AND A(t)=A(tl)}).

The first query retrieves a "flat" relation; then the second con
verts it into the unnormalized form requested by q.

Algorithm

Given query q

1. (i) Construct the natural join N of the following tables:

SRT(x) [x.f=y.f] SRT(y), for every pair of supertype
variables x, y, and superfunction f that occur together
in a formula y=f(x) or. y ISIN f(x) in q's qualification.

(ii) Form the product of N with SRT (x), for every
supertype variable x occurring in q and not used in (i).

2. Let T be the table constructed in 1. For each row r of T,
construct a subquery by replacing the range of each supertype
variable with the corresponding subrange given in the x entry



term
the
the

with

231

of r; each formula x = fey), or x ISIN fey), where f is a. * k
superfunction, with the formula V x = fi(y), or V x ISIN

i.:1. id.
fi(y), where {fl, ••• ,fp} is the y.f entry of r; and each
g(x), involving a conditional function g, with
corresponding definition given in the x.g entry of r (if
definition includes. a qualification, this is conjoined
the qualification of the subquery) •

3. The ranges in the sUbqueries constructed in 2 may involve set
operations. These are eliminated as follows.
i. Replace a subquery having range of e is EI U E2 by two

sUbqueries having range of e is EI and range of e is E2.
ii. Replace range of e is EI n E2 by

range of el is EI
range of e2 is E2
and conjoin ID(el) = ID(e2) to the qualification.
Replace e in every term fee) in the sUbquery by feel) if
f is defined on EI, and by f(e2) if f is defined on E2.
Similarly, replace e in every clause e = f(x) or e ISIN
f(x) by el if f : x -> EI, and by e2 if f:X->->E2, where
X is the range of x.

iii. Replace range of e is .EI - E2 by
range of e is EI
range of e2 is E2
and conjoin (Ve2) (ID(e2) ~ ID(e) to the qualification.

[Nota: this requires augmenting the simple query language of
Section 2 with-quantifiers. This extension has no effect on
query modification.) .

4. Modify the subqueries constructed in 3.

Figure 5.2 illustrates the query modification algorithm. We
omit the proof that this algorithm is correct, i.e., it modifies
a query into an equivalent collection of subqueries; and nQn
redundant, i.e., none of the subqueries generated by it produces
a result that is always empty or always subsumed by the result of
some other subquery. (The proof is by induction and case
analysis, and is given in [HWANG].)

For queries over a subtype,
intersection of its supertypes,
their definitions._.

6. CONCLUSION

replace the subtype by the
and replace its functions by

Simplifying access to a heterogeneous distributed database
system requires the definition of a logically integrated global
view of the local databases. There are two aspects to the



232

Assume the LSs and GS of Figures 2.4 and 3.1.

Query
q: RANGE OF e IS EMP, RANGE OF P IS PHONE

RETRIEVE INTO RESULT (Name := Name(e»
WHERE Sal (e) > SOK and 1234 = No(p) AND
p ISIN Phones (e)

SRT(e) :

EMPI-EMP2
EMP2-EMPI
EMPI EMP2
EMPI EMP2

Namel(e)
Name2(e)
Namel(e)
Namel(e)

.e. •.s.al

Sall(e)
Sa12(e)
SaIl (e) +Sa12 (e)
Sall(e)+Sa12(e)

.e.. Phones

{HPhone,WPhone}
Phones2

{HPhone,WPhone}
Phones2

SRT(p) :

Ji2,

PHONEI
PHONE2

Subqueries

Ji2,.Phones ~.~

{HPhone,WPhone} No(p)
Phones2 No(p)

ql: RANGE OFe IS EMPI-EMP2, RANGE OF P IS PHONEI
RETRIEVE INTO Tl (Name :=Namel(e» WHERE

Sall(e) >SOK AND 1234 = No(p) AND
(p = HPhone(e) OR p = WPhone(e»

q2: RANGE OF e IS EMP2-EMPl,RANGE OF P IS PHONE2
RETRIEVE INTO T2 (Name : = Name2 (e» WHERE

Sa12(e) >SOK AND 1234 = No(p) AND p ISIN Phones2(e)

q3: RANGE OF e IS EMPI n EMP2, RANGE OF P IS PHONEI
RETRIEVE INTO T3 (Name := Name l(e» WHERE

Sall(e)+Sa12(e) >SOK AND 1234 = No(p) AND
(p=HPhone(e) OR p=WPhone(e»

q4: RANGE OF e IS EMPI n EMP2, RANGE OF P IS PHONE2
RETRIEVE INTO T4 (Name := Namel(e» WHERE

Sall(e)+Sa12(e) >SOK AND 1234 = No(p) AND
p ISIN PQones2(e).

Then, RESULT = Tl U T2 U T3 U T4.

Each sUbquery must then be modified to eliminate the set expres
sions in the range statements, and to replace entity types and
function names with those used in the local schemas.

Figure S.2 Illustrating the Query Modification Algorithm



233

integration problem. First, the local schemas may model real
world objects and relationships differently; second, the data
bases may be mutually inconsistent~ This paper identified vari
ous kinds of structural and data inconsistencies that might
exist. It described a versatile view definition facility and
illustrated the use of this facility for resorving inconsisten
cies. In particular, the importance of the semantic modelling
concept of generalization was emphasized. It has been postulated
that the derivation of an integrated global schema from the local
schemas can be automated [MB81l. However, as we show in this
paper, there usually are many different global views that can be
defined for a given collection of local schemas. Which one the
DBA should choose depends strongly on the semantics of the local
databases and on individual application requirements. Our
approach, therefore, is more pragmatic. We suggest a two-step
procedure as a guide to the DBA: first, resolve naming conflicts,
differences in the representation of real-world objects and rela
tionships, etc., by renaming or defining virtual entity types and
functions; then, generalize to resolve differences in aggregation
and data inconsistencies.

Once the global view is defined, users can pose queries
against it. These queries have to be modified into equivalent
queries against the local databases. We described an algorithm
for query modification. The problem of optimally processing the
subqueries generated by this algorithm is currently under inves
tigation.

Acknowledgment

We would like to thank John Smith, Terry Landers, Nat Goodman,
and the other members of the Multibase group at the Computer Cor
poration of America, Ron Pinter of MIT, and Mohamed Gouda of the
University of Texas at Austin for their comments on the ideas
presented in this paper. Some of these ideas are currently being
implemented as part of the Multibase system at CCA.

7. REFERENCES

[CGT75l Chamberlin, D.D., J.N. Gray and I.L. Traiger. "Views,
Authorization and Locking in a Relational Database System".
Proc. AFIPS NCC 1975, pp. 425-430.

[CODD79l Codd, E.G. "Extending the Database Relational Model to
Capture More Meaning". ACD TODS 4:4, Dec. 1979, pp. 397-434.

[DAYAL79l Dayal, U. "Schema_Mapping Problems in Database



234

Systems". Ph.D. Dissertation, Tech. Rep. TR-11-79,Center
for Research in Computing Technology, Harvard University,
Cambridge, Massachusetts, August 1979.

[DB82l Dayal, U. and P.A. Bernstein. "On th~ Updatability of Net
work Views -- Extending Relational Views Theory to the Net
work Model". Information Systems, 7:1, 1982 (to appear).

[HK8ll Hecht, M.S. and L. Kerschberg. "Update Semantics
Functional Data Model". Database Research Rep.
Labs., Holmdel, NJ, January 1981.

for the
4, Bell

[HM78l Hammer, M. and D. McLeod. "The Semantic Data Model A
Modelling Mechanism for Database Applications". Proc. SIGMOD
Conf., 1978, pp. 26-36. -

[HSW75l Held, G.D., M.R. Stonebraker and E. Wong.
Relational Database System". Proc. AFIPS
409-416.

"INGRES A
NCC, 1975, pp.

[HWANGl Hwang, H.-Y.• , Ph.D. Dissertation, Department of Computer
Sciences, The University of Texas at Austin, (in prepara
tion) •

[KG8ll Katz, R. and N. Goodman. "View Processing in Multibase
A Heterogeneous Database System". in Entity-Relationship
Approach ~ Information Modelling ~ Analysis (P.P. Chen,
ed.), ER Institute, Saugus, Calif., 1981, pp. 259-280.

[LG78l Lee, R.M. and R. Gerritsen. "Extended Semantics for Gen
eralization Hierarchies". Proc. SIGMOD 1978, pp. 18-25.

[MB8ll Motro, A. and P. Buneman. "Constiucting Superviews". Proc.
SIGMOD, 1981, pp. 56-64.

[MBW80l Mylopoulos, J., P.A. Bernstein and H.K.T. Wong. "A
Language Facility for Designing Database-Intensive Applica
tions". ACM TODS 5:2, June 1980, pp. 185-207.

[ROUSS79l Roussopoulos,
Language for the
Trans. on Software
481-496.

N. "CSDL: A Conceptual Schema Definition
Design of Database Applications". IEEE

Engineering, 5:5, September 1979, pp.

[SHIP8ll Shipman, D.W. "The Functional Data Model and the Data
Language DAPLEX". ACM TODS 6:1, March 1981, pp. 140-173.

[SMITH et al.8ll Smith, J.M., P.A. Bernstein,
man, T. Landers, K.W.T. "Lin and E.
Integrating Heterogeneous Distributed
Proc. AFIPS NCC 1981, pp. 487 - 499.

U. Dayal, N. Good
Wong •. "Multibase -
Database Systems".



235

[SS77] Smith, J.M. and D.C.P. Smith.
Aggregation and Generalization ll

•

pp. 105-133.

"Database Abstractions:
ACM TODS 2:2, June 1977,

[STON75] Stonebraker~ M.R. "Implementation of Integrity Con
straints and Views by Query Modificat·ion". Proc. SIGMOD
Conf., 1975, pp. 65-78 •

. :," ..

', ..



236

A. CONTROL OVER DUPLICATE ELIMINATION

The calculus-based language that we described in Sections 2
and 3 always eliminates duplicates from the result of a query.
The user has no control over duplicate elimination. Sometimes,
however, duplicates may be desired in the output. Consider, for
example, the schema of Figure A.I Suppose we want to retrieve the
names of all employees. The obvious RETRIEVE statement:

RANGE OF a IS ASSIGN
RETRIEVE INTO RESULT (Name(a»

returns each name only once, although there might be many employ
ees with the same name. Adopting the "prime" option of QUEL
[HSW75]

RANGE OF a IS ASSIGN
RETRIEVE' INTO RESULT (Name(a»

will not work
assigned to
language with
solves this
becomes:

either, because now the name of an employee
two projects will appear twice. Augmenting the
an iterative statement: FOR EACH <entity variable>'
problem. The query in the above example then

RANGE OF a IS ASSIGN
RANGE OF no, na IS STRING
FOR EACH no
FOR EACH na

RETRIEVE INTO RESULT (na) WHERE ( 3 a) (SSNO(a) =no
AND Name(a)=na)

(We augment qualifications to include quantifiers, as in Section
5. )

An analogous problem arises in view definition. Suppose we
want to define the hierarchical view of Figure A.I(b) over the
schema of Figure A.I(a). We have to eliminate duplicates to
define the PROJECT entity type, but then retain duplicates in
defining EMP_IN_PROJ. Figure A.I(c) shows how to define this
view using the iterative construct (for details, see [DB82]).

Query modification is not much affected by the iterative
statement if duplicates are to be eliminated in the result of the
query. However, if duplicates are not to be eliminated (i.e., if
the query is formulated using FOR EACH), then care must be taken
in substituting for any variable whose range was defined by
duplicate elimination. Figure A.2 illustrates query modification
with two queries, one eliminating duplicates and the other not.
Observe that for the second query, the iteration over PROJECT is
replaced by an iteration over strings .in the image of the PROJNO
function, since there is one PROJECT entity per string in
PROJNO(ASSIGN) •



237

a. Schema

ASSIGN

0 0
String String String

b. View

PROJECT
PNO String

0
Employees

SSNO

EMP_IN-~ .0. String

Name -----.....0 String

c. View definition

RANGE OF a IS ASSIGN
DEFINE ENTITY TYPE PROJECT (PNO := PROJNO(a»
RANGE OF P IS PROJECT
FOR EACH P
FOR EACH a

DEFINE ENTITY TYPE EMP-IN-PROJ (SSNo := SSNo(a)~
Name := Name(a»)

AND MAP FROM P UNDER employees
WHERE PNo(p) = PROJNO(a).

Figure A.I Using the Iterative Statement



(i

238
a. Query: RANGE OF p IS PROJECT RANGE OF e IS EMPINPROJ

RETRIEVE INTO RESULT ~PNo := PNq(p), Name := Name(e))
WHERE e ISIN employees~p)

Modified query: RANGE OF a, a' IS ASSIGN
RETRIEVE INTO RESULT (PNo := PROJNO(a), Name := Name(a')

WHERE PROJNO(a)=PROJNO(a').-

After simplification: RANGE OF a' IS ASSIGN
RETRIEVE INTO RESULT (PNo := PROJNO(a'), Name :=

Name(a')).

b. Query: RANGE OF p IS PROJECT, RANGE OF e IS EMPINPROJ
FOR EACH P
FOR EACH e

RETRIEVE INTO RESULT (PNo := PNo(p), Name := Name(e))
WHERE e ISIN employees(p)

Modified query: RANGE OF a, a' IS ASSIGN, RANGE OF s IS STRING
FOR EACH s
FOR EACH a' .

RETRIEVE INTO RESULT (PNo := s, N~e := Name(a'))
WHERE s = PROJNO(a') and ~3a) (s = PROJNO(a)).

After simplification: RANGE OF a' IS ASSIGN, RANGE OF s IS STRING
FOR EACH s
FOR EACH a'

RETRIEVE INTO RESULT (PNo := S, Name := Name(a'))
WHERE s = PROJNO(a').

Figure A.2 Query Modification with the Iterative Construct



239

Selective Broadcast in
Packet-Switched Networks

David W. Wall
Computer Science Department

The Pennsylvania State University

Abstract

Many researchers in the area of distributed networks
have found it convenient to assume the existence of a facil
ity for routing broadcast messages to all the nodes in a
network, or selective broadcast messages to some subset of
those nodes. However, relatively little work has been done
on the design of such a facility. This paper extends a
mechanism developed by Dalal for total broadcast to the
problem of selective broadcast, by converting an existing
sequential algorithm on graphs into a distributed algorithm
suitable for network use. Because of this approach, the
results may provide some insight to the general problem of
designing distributed algorithms.

1. Introduction

A loosely-coupled store-and-forward network like the

ARPANET routes a message from one node to another along some

series of links starting at the source node and ending at

the destination. The problem of selecting the best route

for a given message has been considered in detail, and a

simple but effective mechanism is provided by the ARPANET

[8,9J.

This material is based upon work
National Science Foundation under Grant
Joint Services Electronics Project under
75-C-0601.

supported by the
MCS-8102278 and the
contract N-00014-



240

Much of the recent work on the effective use of such a

network has assumed the existence of a mechanism for message

broadcast, by which a node can send an identical message to

every other node in the network 7 or more generally a mechan

ism .for selective broadcast, by which the node sends an

identical message to several nodes but not necessarily to

the whole network. Broadcast and selective broadcast would

be useful in updating a distributed data base [4,9J, in

maintaining a distributed file system [3J and other distri

buted resources [1,2J, and in the use of parallel systems to

speed up problem solving in artificial intelligence [6J and

elsewhere [llJ. Unfortunately, not enough work has been

done on actually providing such a service7 no explicit

mechanism for broadcasting is available in the ARPANET.

This paper describes one approach to the design of a

selective broadcast facility. Our aim will be to consider a

total broadcast mechanism developed by Dalal [3J and then

generalize it to the problem of selective broadcast. We

will do this by examining a sequential algorithm on graphs

presented by Kou, Markowsky, and Berman [7J and modifying it

for use in a distributed environment, using Dalal's algo

rithm as a subroutine. This discussion may therefore be of

some relevance to the general problem of applying sequential

algorithms to distributed applications.



241

2. Selective broadcast

There are several easy techniques for selective broad

cast (described by Wall [12], and previously by Dalal [3] in

the context of total broadcast) that do not require any spe

cial structure to be imposed on the network beyond that

structure necessary for the single-destination mechanism

such networks already have. These techniques bear the fault

of their virtues, however - because they are general enough

to work at any time and for any destinations, without any

special preparation, they necessarily involve a certain

amount of overhead or redundancy, incurred each time a

broadcast is sent. For example, if we simply send a

separate copy of the broadcast to each destination, we may

pass several redundant copies over the same link, because

the routes from the source to several different destinations

include that link.

On the other hand, if the network is fairly stable and

broadcasting among a given group of nodes is fairly fre

quent, it may be worthwhile to impose some additional struc

ture on the network so as to make broadcasting easier. In

this way we accept some initialization time and occasional

maintenance time so that we can avoid the redundancy or

overhead of some simpler scheme.

A particularly useful structure to impose is a complete

or partial spanning tree. A spanning tree of the network is



242

a set of links that connects all the nodes without including

any cyclic paths. If there are n nodes in the network, a

spanning tree will consist of n-l links. We can route a

broadcast from node to node along the branches of a spanning

tree: The node that initiates the broadcast sends a copy

along each incident branch, and every other node forwards

the broadcast by sending a copy along each incident branch

e~cept the one on which the broadcast arrived. A broadcast

routed in this manner will be copied only n-l times, which

is the minimum since there are that many destinations. If

we select the spanning tree carefully, we can arrange for it

to have other useful properties as well.

For example, Dalal [3J considers the problem of

minimum-cost total broadcast. If we assign to each link an

estimate of the cost of sending a message across that link,

we can build the minimum spanning tree (MST) of the network

- that is, the tree for which the sum of all these costs is

as small as possible. A broadcast routed along the minimum

spanning tree will incur a cost to the network as a whole

that is as small as possible.

Dalal presents a distributed algorithm for constructing

such a tree in a network environment. The algorithm is

based on Prim's principle [lOJ that any fragment of a

minimum spanning tree, including any single vertex, is con

nected by a branch of the tree to the nearest vertex of the

graph that is not in the fragment~ that is, the cheapest



243

edge leading away from the fragment is a branch of the MST.

In Dalal's algorithm, each vertex starts by marking the

cheapest incident edge as a branch~ the larger fragments

that this creates proceed to join into still larger frag

ments, until finally some vertex discovers that there is

only one fragment, namely the MST. This description some

what oversimplifies the algorithm, which is performed asyn

chronously and need not fall into such well-defined phases.

How can we generalize this to selective broadcast?

Consider the small network in Figure 1. The heavy links are

the branches of a minimum spanning tree such as Dalal's

algorithm might find. Suppose that nodes A, B, C, and D

will be working together for a while and want to be able to

do broadcasting among themselves without bothering the rest

of the network more than necessary. We will call such a set

of nodes a broadcast group. If this group uses only the

direct links AB, BC, and CD, each broadcast will have a cost

of 50, but if the group can convince Z to join as a passive

member, then the group can broadcast via the tree consisting

of edges AZ, BZ, CZ, and DZ, at a cost of only 40. In

either case there is little resemblance between the tree

used for selective broadcast and the local portion of the

minimum spanning ~ree used for total broadcast. Note also

that a broadcast group might not form a connected subgraph,

in which case the addition of extra vertices would be una

voidable.



244

10
0

o~
10

10 Z
0

B

10 D

0

10 5

Figure 1. Network with minimum spanning tree

This leads to a generalization of the minimum spanning

tree. Given a connected weighted network, and a subset S of

the nodes in the network, a Steiner tree is a tree of net-

work links that spans all the nodes in S but is not neces-

sarily restricted to them. A minimum Steiner tree for S is

one whose cost is smallest over all Steiner trees for S.

Thus if we have a set of nodes trying to form a broadcast

group, we could build the minimum Steiner tree for that set

of nodes, and broadcasts via that 'tree would cost as little

as possible. Pnfortunately, the problem of finding a

minimum Steiner tree is NP-complete [5].

The next best thing would be to use an approximation to

the minimum tree. Kou, Markowsky, and Berman [7] present a

sequential algorithm that builds a' tree whose cost is less



245

than twice the minimum cost.

next.

3. The KMB algorithm

We turn to this algorithm

rf we are given a graph G and a subset S of the ver

tices, which we will call the set of Steiner points, the

problem is to find a good (if not necessarily minimum)

Steiner tree TH for the set S on the graph G. The algorithm

described by,Kou, Markowsky, and Berman proceeds as follows.

Step!. Build the complete-undirected distance graph Gr for

S over G as follows. The vertices of Gr are the vertices in

S. Construct an edge for Gr between every pair of vertices.

Assign a cost to each such edge by finding its endpoints in

the original graph·G and computing the cost of the cheapest

path in G between these vertices. Thus Gr represents a sum

mary of the costs of paths in G between the Steiner points.

For example, if we are using the network and broadcast

group of Figure I, we obtain the graph Gr shown in Figure 2.



246

A
o

c

Figure 2. The graph Gr

D

Step 2. Find any minimum spanning tree Tr of Gr. For exam

ple, a minimum spanning tree of the Gr in Figure 2 appears

in Figure 3. Note that there were several other choices.

A
o

o
.B

Figure 3. The minimum spanning tree Tr



247

Step~. Build the subgraph GS of the original graph G by

replacing each branch in TI by any corresponding cheapest

path in G. If such a path includes vertices not already in

Gs , add them to GS as well. For example, Figure 4 contains

such a subgraph obtained from the TI of Figure 3. Again,

note that other choices were possible for each of the

branches.

A
o

zo- ~

B

c

Figure 4. The subgraph GS

Step!. Find any minimum spanning tree TS of the subgraph

GS . Figure 5 is an example.



248

A
o

z
0

o~B

D0

/
0 0

C

Figure 5. The second minimum spanning tree TS

between two Steiner points, and so we can delete it, produc-

ing the tree in Figure 6.



249

A
o

z
0------0

B ~OD

o
I C

Figure 6. The good Steiner tree 'TH

In this example we have constructed the mini~um Steiner

tree. Kou, Markowsky, and Berman show that in general the

cost of TH is less than twice the cost of the minimum

Steiner tree. In practice it seems likely to do better than

this, as is suggested by the following result" whose proof

appears elsewhere [12].

Theorem. If a minimum Steiner tree exists that spans only

the Steiner points, then the KMB Algorithm will find a

minimum tree if it uses a suitable tie-breaking rule.

Briefly, if we break ties between edges in' favor of

those that correspond to direct edges in G as opposed to

those that represent multiple-edge paths of the same cost,

we can puild a minimum-cost Steiner tree that is also res-



250

tricted to the Steiner points, if only such a tree exists.

In this case our broadcasting will incur minimum cost, and

our broadcast group will have essentially no impact on the

rest of the network. So perhaps the KMB Algorithm is a good

algorithm to consider further.

4. Distributing the KMB Algorithm

We plainly have a head start on the problem of distri

buting this algorithm, because a good deal of the work

involves building minimum spanning trees, a problem already

explored by Dalal. Dalal's approach must be slightly gen

eralized, since it was originally developed to find the MST

of the graph whose topology corresponds to the network doing

the work, which is not the case in Step 2 of the KMB Algo

rithm. But by depending on the underlying mechanism for

single-destination message routing, we can make Dalal's

algorithm find the MST of any graph as long as there is a

correspondence between the vertices of the graph and the

nodes of the network.

We will consider the five steps of the KMB Algorithm in

turn.

Step I presents a bit of a problem. This' step dom

inates the time-complexity of the sequential algorithm, sim

ply because a cheapest path might meander through a lot of

vertices before finally reaching its destination. We must



251

find something like the transitive closure of the network if

we want to know what these cheapest paths are, even if our

broadcast group is very small. We can sidestep this issue

by depending on the network as a whole eo maintain this

information, a decision we can justify in two ways. First, .

it is possible that the network may already maintain the

information for the benefit of the underlying single

destination mechanism: the ARPANET, for example, keeps the

transitive closure of the link delays rather than the link

costs, but a network more interested in cheap routing than

in fast routing might maintain the costs instead. Second,

there will presumably be many other groups besides the one

we are currently building, and they need the transitive clo

sure of the costs as well: thus it seems reasonable not to

charge the maintenance of this information solely to the

group now forming.

Step 2 builds a minimum spanning tree of GI • As dis

cussed earlier, we can use Dalal's algorithm for this, if we

remember that the graph under consideration is not iso

morphic to the network.

Step 3 is a nuisance. It amounts to telling everyone,

including the nodes being added to the group, what the paths

are. This turns out to be a little messy, since a given

added node might appear on more than one path. Fortunately,

we can absorb this step into Step 2: whenever we declare an

edge of GI to be a branch of TI , we can send a message along



252

the corresponding network path, bringing in the necessary

added nodes and informing all concerned about the connec-

tions-of the path in what is to become GS •

Step 4 is the easiest so far~ since we are now working

with a portion of the network, we can simply use Dalal's

algorithm as it is, without any special considerations.

Finally, Step 5 prunes any unnecessary added nodes from

the tree. We can do this using a variation ofa broadcast

that we might call a convergecast. Some node performing

Dalal's algorithm in Step 4 will decide that the MST is com-

plete~ it can send a broadcast to that effect out on this

newly-built tree. When this broadcast reaches the leaves it

bounces back as follows: if a leaf is an added node, it

prunes itself by sending back a message to that effect~ if

not, it sends back a simple acknowledgement. An interior

node prunes itself if it is an added node and all but one of

its neighbors prune themselves~ it sends a message to that

effect to the remaining neighbor. Eventually these

responses converge somewhere in the middle of the tree, and

everyone who should be pruned has been pruned.

Thus it is shown (at least informally) that we can

build a low-cost Steiner tree in a distributed environment
\

by modifying the KMB Algorithm and using a slightly extended

form of Dalal's algorithm as a subroutine. A more detailed

discussion of the problems involved appears elsewhere [12].



253

5. Going ~ step further

A moment's reflection.may lead one to wonder just how

much the KMB Algorithm accomplishes with its second MST con

struction. The graph GS is likely to be pretty sparse; in

fact it is not hard to show that if there are no ties then

GS is a tree already, in which case the second MST construc

tion is not needed. This demand is too stringent, however,

and we can state a more relaxed requirem~nt that still lets

us omit that step.

Edge~. Ties between pairs of equal edges with a common

endpoint are broken consistently with respect to the other

endpoints. For example, in Figure 7 we have a pair XM and

XN of equal edges that share an endpoint X, and another pair

YM and YN that share an endpoint Y. If we are using a con

sistent edge rule, then we must break the ties in favor of

XM and YM or else in favor of XN and YN. This is not a

harsh requirement; Dalal assumes a similar tie-breaking rule

to prevent his algorithm from creating a cycle in his

minimum spanning tree.



Path rule.

254

M

X
y~

Y

o\~o
0

N

Figure 7. Applying the edge rule

The tie between a pair of equal paths whose end-

points are the same must be broken the same way if the two

paths are extended by a common edge. For example, in Figure

8 we have a pair of equal paths between M and N. If we

break that tie in favor of the upper path, we must also

choose the upper path from M through N to Z in favor of the

lower path through those points.

10

i/ \~
Moo 0 Z

~o~N

Figure 8. Applying the path rule

Given this definition of a consistent tie-breaking

rule, we can prove the following result [12].



255

Theorem. If we perform the KMB Algorithm using a consistent

tie-breaking rule, then the graph GS produced in Step 3 is a

tree.

This means that Step 4 is unnecessary.

A useful easier result is the following.

Theorem. If GS is a tree, then none of its leaves are added

nodes: that is, all its leaves are in S.

This is simply because a node gets added because it is on a

path between two Steiner points. Each such added node must

therefore have a degree in GS of at least two, and hence

cannot be a leaf. The important consequence is that if we

can omit Step 4, we can also omit Step 5.

6. Summary

By distributing the KMB Algorithm in a naive fashion,

we can build a low-cost Steiner tree suitable for use in

selective broadcast. This involves using Dalal's algorithm

twice to build certain minimum spanning trees, and using the

interesting technique of the convergecast to do the pruning

at the end.

By taking a deeper look at the sequential KMB Algo

rithm, however, we can do better. If we use a consistent



256

tie-breaking rule, we can eliminate the second MST construc-

tion and hence also eliminate the final pruning step. We

have already absorbed Step 3 into the main MST construction,

and have argued that the network as a whole should maintain

the transitive closure information computed in Step 1, for

the benefit of all broadcast groups. Thus we are left with

a single application of Dalal's algorithm, slightly compli-

cated by the fact that the input graph is not isomorphic to

the network and by the fact that the resulting tree must be

incrementally translated into a tree in the original net-

work. It still seems fair to say that low-cost selective

broadcast need not be much harder to provide than Dalal's

minimum-cost total broadcast.

A fairly obvious additional moral has been pointed out

by others in other contexts, but may nevertheless be worth

repeating. Namely, the better you understand an existing

algorithm, the better you can fit it to your application.

Acknowledgements

I would like to thank Susan Owicki for vast amounts of
/

advice and encour~ement, and my colleagues John Gilbert,
/'

Brent Hailpern,/and Sam Bent for letting me bend their ears.

//



257

References

[lJ J. Eugene Ball, Jerome Feldman, James R. Low, Richard
Rashid, and Paul Rovner. RIG, Rochester's intelligent gate
way: System overview. IEEE Transactions on Software
Engineering~, 4 (1976), pages 321-328.

[2 J David R. Boggs, John F. Shoch, Edward A. Taft., and
Robert M. Metcalfe. Pup: An internetwork architecture.
Report CSL-79-l0, Xerox Palo Alto Research Center, July
1979.

[3J Yogen Kantilal Dalal. Broadcast Protocols in Packet
Switched Computer Networks. PhD thesis, Stanford Univer
sity, April 1977. (Computer Systems Lab Technical Report
128. )

[4J Jim Gray. Notes on data base operating systems. IBM
Research Report RJ2l88 (3000l), San Jose, California, 1978.

[5J Richard M. Karp. Reducibility among combinatorial
problems. In Raymond E. -Miller and James W. Thatcher, edi
tors, Complexity of Computer Computations, ~ages 85-103.
Plenum Press, New York, 1972.

[6J William A. Kornfeld. ETHER - a parallel problem solv
ing system. Sixth International Joint Conference on Artifi
cial Intelligence, August 1979, pages 490-492.

[7J L. Kou, G. Markowsky, and L. Berman. A fast algorithm
for Steiner trees. Acta Informatica 15 (198l), pages 141
145.

[8J John M. McQuillan.
Distributed Networks.
1974 (BBN Report 283l).

Adaptive Routing Algorithms for
PhD thesis, Harvard University, May

[9J John M. McQuillan, Ira Richer, and Eric C. Rosen. An
overview of the new routing algorithm for the ARPANBT.
Sixth Data Communications Symposium, November 1979, pages
63-68.

[lOJ R. C. Prim. Shortest connection networks and some
generalizations. Bell System Technical Journal, November
1957, pages l389-l4or:-



258

[llJ Reid Garfield Smith. A Framework for Problem Solving
in a Distributed Environment. PhD thesis, Stanford Univer
sity, December 1978. (Computer Science Department Technical
Report HPP-78-28.)

[12J David Wayne Wall. Mechanisms for Broadcast and Selec
tive Broadcast. PhD thesis, Stanford University, June 1980
(Computer Systems Lab Technical Report 190).



259

PERFOID4ANCE ANALYSIS OF A SHORTEST-DELAY PROTOCOL*

Liang Li, Herman D. Hughes, Lewis H. Greenberg
Department of Computer Science

Michigan State University
East Lansing, Michigan 48824

(517) 353-5152

ABSTRACT

A generalized shortest-delay access method (SDAM) protocol
for local networks is defined and evaluated. This protocol dif
fers from a previously reported SDAM [16] in that it accommodates
a branching-bus topology instead of a single-bus network. It is
shown that for small bus-delays, SDAM performs very close to that
of M/D/l--with perfect scheduling. In this paper, the performance
evaluation of SDAM is more pragmatic in that the effects of vari
ous protocol overheads (e.g., decoding, turnaround time, initial
izing packets, etc.) are taken into account. An analysis of the
tradeoffs between exhaustive and nonexhaustive transmission dis
ciplines is also presented.

Keywords: Local network, Protocol, Virtual token, Bus propaga
tion delay, Branching-bus topology, Protocol over
head, Carrier-sensing, Exhaustive/non-exhaustive
transmission, Queueing delays

* Research supported in part by NSF - Grant No. PRM-8115413



260

1. Introduction

In a recent paper [16], Li and Hughes proposed an access
level protocol for local computer networks (LCN). This protocol
employs a scheme which is analogous to the one-directional short
est-seek-time-first (SCAN) algorithm advanced by Denning et al.
[6,7,8] and is referred to as the "shortest-delay access method"
(SDAM). Briefly, the SDAM protocol has the following properties
[16] :

• works on a single-trunk bus-structured local network,
• has a decentralized control,
• maintains conflict-free transmissions,
• uses simple algorithms and little control overheads,
• performs closely to M/D/l with perfect scheduling in ideal

cases (taking into account the bus propagation delay). In
particular, the performance of SDAM exceeds that of the
popular CSMA/CD protocol in medium to high loads,

• provides adequate services to a large number of users
(nodes) (e.g., 1000 nodes). .

Recognizing the inconvenience of a single-bus topology (e.g.,
reconfiguring the network or adding new nodes at certain loca
tions), this paper generalizes the SDAM protocol to a branching
bus network. A discussion of this generalization is presented
in Section 2 of this paper.

In Section 3, two variants of the'SDAM protocol, the closed
SDAM (C-SDAM) and the open-ended SDAM (OE-SDM~), are closely ex
amined for their relative merits. That is, the performance of
these protocols is evaluated by both analytic and simulatlon mod
els and compared to that of M/D/l with perfect scheduling. Since
the OE-SDAM provides equal access to all nodes, the performance
evaluations throughout Section 3 will focus on this protocol.

In order to claim that the implementation of SDAM is feasi
ble, the effects of the following three operating overheads of
SDAM are evaluated: the decoding/turnaround time, the carrier
sensing time, and the token-initializing packet time.

The last part of Section 3 considers two transmission disci
plines (exhaustive and non-exhaustive) which are possible for any
local network protocols. The performance differences between
these two disciplines are analyzed in terms of the distributions,
means, and variances of their respective queueing delays.

Finally, in Section 4, a summary of this paper is presented.

2. The Shortest-Oelay Access Method (SDAM) Protocol

2.1 Basic Concepts of SDAM

The underlying concept of SDAM is to reduce the delay (i.e.,
the "change-over" time) between two consecutive transmissions by
different nodes. In order to do this, the nodes on the bus must
be numbered sequentially from left to right or vice-versa. We
can then draw an analogy between the virtual-token passing of



261

SDAM and the scanning action of the read/write head of the disk
(see [6]). The token may be viewed as the disk head, scanning
across the tracks (i.e., the nodes on the bus), and en route pro
cesses requests referencing those tracks (i.e., triggers trans
mission of packets from the nodes). To achieve distributed con
trol and still avoid conflicts, SDAM uses a "token-direction"
code on each packet to indicate the direction of current scan.
The "virtual-token," as perceived by a node, is actually the ab
sence of any more packets following a passing packet, thus allow
ing the node to start its packet transmission. The packets that
missed the token will have to wait until the token passes the
node again.

2.2 Network Configuration

Before we describe the rules of the SDAM protocol, let us
first define a general configuration for which the algorithm will
apply.

1. The transmission medium is a single common bus (e. g. ,
coaxial cable), and is assumed error-free. The end
to-end propagation delay on the bus is a. Later we
generalize this network topology to a branching-bus
network.

2. There are N nodes connected to the bus via communica
tion interface units (CIUs), which function as de
couplers and buffers. Therefore, we may consider the
network as composed of functionally homogeneous nodes.
These nodes are numbered I to N from one end of the
bus to the other.

3. Each CIU has the carrier-sensing capability. In addi
tion, it is assumed that the CIUs can identify the
source and the destination addresses as well as the
"token-direction" code on the passing packets.

4. There is a decoding/turnaround time t that is needed
for the node to change from the receIving state to the
transmitting state. This time is independent of the
time required for carrier-sensing, which is assumed
to have length d.

5. There may be either one or two end-nodes attached to
the bus. These nodes contend for the access of the
bus as normal nodes do--only they generate a control
packet (or token-initializing packet, TIP) that con
tains a special bit pattern to initialize the token
passing. It is also possible to add this feature to
the user-nodes located on either end of the bus, so
that they serve as both user- and end-nodes.

6. The data packets are of fixed length, and each is
assumed to require one time unit to transmit. The
control packet requires c time units to transmit.



262

2.3 The SDAM Protocol for a Single Bus

There are two variants of the SDAM protocol: the first uses
both end-nodes to pass the TIP back and forth and is called the
closed SDAM, or C-SDAM; the second uses only one end-node and is
referred to as the open-ended SDAM, or OE-SDAM.

Under both SDAM variants, each user-node can be represented
as having four states (refer to Figure 1). Originally, all nodes
are in the IDLE state. When a packet is generated at a node, say
node n., the node becomes "busy" and enters the WAIT state. Whenl ... .
an end-of-packet from node n. is sensed on the channel and the
token-direction on that pack~t is the same as the packet's travel
ing direction, the node enters the READY state. After a decoding/
turnaround time t plus the cumulated carrier-sensing delays
(Ini-nj I-l)d al~ng the path, the node is ready to send a message.
But before this happens, it keeps monitoring the channel status;
and if the channel becomes busy, the node goes back to WAIT state.
Otherwise, the node enters the TRANSMIT state and stays there un
til either its buffer is emptied (for exhaustive transmission) or
some transmission limit is reached (for non-exhaustive transmis
sions), and then it returns to the IDLE or WAIT state. Note that
all packets transmitted carry the same token direction code as
that of the most recently passed packet.

For the end-node of the C-SDAM protocol, the state diagram
is the same as that of a user-node, except the end-node always
has at least one packet (the TIP) to send when the token arrives,
and the packet always carries an Dpposite token direction so as
to send the token backwards.

For the end-node of OE-SDAM, a counter of (2a + t + Nd) is
used. After generating the first TIP, the end-node activates the
counter and monitors the channel constantly. Whenever a packet
is detected, the countdown is interrupted until the packet has
passed, and a packet decoding/turnaround time t is added back to
the counter. When this counter expires, or if-the end-of~packet

from the last node of the network is sensed from the channel, the
end-node generates a new TIP and starts another round of token
passing.

2.4 SDAM on a Branching-Bus Topology

Although it is always possible to use a single bus to con
nect any set of nodes scattered in a local area, a branching bus
network is more desirable for its shorter propagation delay as
well as its flexibility in regards to future expansion and recon
figuration (refer to Figure 2). SDAM can easily be generalized
to support this topology. Since any complex branching topology
can be decomposed into simple three~branch structures, as shown
in Figure 3, it is sufficient to 'show that the algorithm of SDAl1 /
works on such a three-branch network. The reader can easily see
that the same principle applies to networks with any finite num
ber of branches.

Because there are three end-nodes El, E2, and E3 on the three
branches for the C-SDAM protocol, we need to change the token



263

III

.5
Q)

6
U
Q)

.a

6)

8 ------'-:-:-:-:-~..:.:-:-l-------I,.~ 0 ~
a Q)
Q),l(
,l( U
o III

-I-l-l-lO<
Q)

,l( 'tl II
U a
III III a
0< 0......

.... 'tl-l-l
o Q) U
I III Q)

'tl a I-<a Q) .....
MIIl'tl

8·.· . Bus still idle
TRANSMIT ~ after delay

t+ (I n. -n .I-l)d
1. J

Figure 1. The State~diagram for the User-nodes of the SDAM Protocols.
t decoding/turnaround time for the passing packet
d carrier sensing time
ni the node wishing to transmit
n. the node that transmitted last

J

o

o

o

0
0 0

0
0

0

0

0

0 0
0

Figure 2.

(a) A set of nodes in
in local area.

(h) Using a single bus
to connect the
nodes.

(c) Using a branching bus
to connect the nodes.



264

direction code from left or right to: (EI-->E2), (E2-->E3), or
(E3-->I). Each user-node will be on precisely two of such paths
(refer to Figure 3a), and its access scheme remains unchanged,
except for the new token directions. After receiving the network
token, an end-node will now generate a TIP carrying a token direc
tion that points toward the next end-node in sequence.

For the OE-SDAM protocol, two token directions are possible:
one is on branches I and 2 and the other is on branch 3. Let us
assume that the K nodes on branches I and 2 are sequentially num
bered from I to K, and the remaining (N-K) nodes on branch 3 are
sequentially numbered from K+I to N. Then the first K nodes on
branches I and 2 are treated as if they are on a single bus net
work. For each node n. on the third branch, however, a counter
of ((n.-l)d + t + 2a2 ); where a 2 is the propagation delay on
branch1 2, is used to determine when the token will arrive at node
n .• As soon as the node n. detects the end of a TIP, it activates
tBe counter and monitors tBe channel status. Whenever a packet
from branch I or 2 is heard, the countdown is temporarily inter
rupted, and a decoding/turnaround ~ime t is added back to the
counter. If instead, a packet from a node on branch 3 is sensed,
then n. switches back to the single-bus scheme described earlier.

T5 illustrate how the requests from different nodes are co
ordinated, let us assume first that the network has been up and
running for awhile. Now, suppose node i received the token at
time x and had just finished a packet transmission at time x.,
with tHe token direction pointing toward branch 2 from branch1 1
(refer to Figures 3a and 3b). After a propagation delay, the
end-of-packet signal reaches each of the following nodes: i-I,
i+l, and K+I. Nodes i-I and K+I, noticing that the packet's
traveling directions (toward branches I and 3, respectively) is
different from the token direction (toward branch 2), will re
frain from any transmission attempts. On the other hand, node
i+l will be able to go through the READY state to the TRANSMIT
state and send its packet onto the channel. Nodes i+2, i+3, ••• ~
K, although sensing the same information as node i+l, will stop
at the READY state and re-enter the WAIT state because node i+l
has already jumped ahead of them and occupied the channel. When
node i+l finally completes its transmission, the above procedure
is repeated again.

Continuing this process, the token will eventually reach the
end of branch 2. For the C-SDAM protocol, the end-node E2 simply
generates a TIP with a new token direction (E2-->E3) and sends
the token toward E30f branch 3 (refer to Figure 3a). The OE-SDAM
protocol requires node K+I on the third branch to wait for its
counter to expire; then it claims the token and passes it to
branch 3 (refer to Figure 3b).

2.5 Network Reliability under SDAM Protocol

As we have described earlier (in Section 2.3), each node ex
ecutes an identical algorithm independently according to the in
formation (e.g., channel status, token direction, etc~) provided



265

token passing
sequence

o
o

o

(al Token passing in C-SDAM. The token is passed
from El of Branch 1 to E2 of Branch 2. Then
E2 changes the token direction toward E3
instead of to El. Finally, E3 passes it back to
El and completes a cycle.

__ : token passing
sequence

-•. ~ : token passing
between branches o

o
o

(bl Token passing in OE-SDAM. The end node, El,
passes the token toward the other end o~

Branch 2. The first node on Branch 3 waits a
time-out period then starts the token passing
down to Branch 3. After another time-out
period! the left end node El recovers the token.

Figure 3. Token passing of SDAM in a branching bus.



266

through the common channel. Therefore, any single node-failure
will not affect the network's operation. However, network fail
ure could still occur if (1) the end node(s) fails to generate a
control packet; (2) there is an error in transmission (e.g., a
noise on the channel, causing a later node to start transmission
prematurally); and (3) cable failure occurs, disabling a part of
the network. For contention based schemes, there does not exist
a network token. All transmission errors may be viewed as just
another data collision and can be handled as such. But for a
token-passing scheme (e.g., 8DAM) , some procedure must be em
ployed to restore the proper network operation from network fail
ures. For the case of OE-8DAM, the error recovery procedure
stipulates that:

1. whenever a node detects an unrecognizable address or
token direction, it abandons any transmission attempts
until the next token arrives;

2. each node is preassigned a time-out value whose size
varies with the distance between the user-node and the
end node (i.e., the shorter the distance, the smaller
the time-out value);

3. if the bus has been sensed idle by a node for a period
of time longer than its time-out value, then the user
node may infer that all the nodes with smaller time-out
values have failed; therefore, it will generate a (data
or control) packet to start the token passing again.

With this procedure, any error in transmission will be han
dled by using rule no. 1, followed by the end node generating
a new token. If the end node should fail, then the user next to
this node will resume its duty after a time-out period. Any sub
sequent user-node failure can be handled by the same procedure.
In this fashion, even when the cable is physically cut into sev
eral pieces,each piece of the cable can be used to form a net
work, provided the proper cable terminators are added.

For the C-8DAM protocol, if one of the end. nodes should fail,
the other end node can detect this after a prolonged time-out
period; hence it can automatically switch to the one-end-node
OE-8DAM scheme as previously described.

3. Analysis of 8DAM Protocol

The performance of both C-8DAM and OE-8DAM for an ideal sin
gle bus case have been analyzea in a previous paper by Li and
Hughes [16] using the principle of a polling system [15]. Assum
ing nodes are uniformly located on the bus and the arrivals are
Poisson, the network's throughput-delay formula for OE-8DAM (ex
haustive transmission) is derived as

E(Delay) = o~a 8 a 8
2Nr + 2(1-8) + 2N (1 - N) (1 + Nr)

1-8 (1)

in terms of packet transmission time, where



267

N =
a =
S =

and
a

=N
r =

6 2 =

total number of nodes on the network
end-to-end bus propagation delay
network throughput in equilibrium (i.e., packet
arrival rate X packet transmission time < 1)

the change-over time between two adjacent nodes

average token passing time between two nodes (in

units of ~)
variance of token passing time between two nodes.

For a single-bus network, rand 62 can be approximated as
follows. Excluding packet transmission times and their associ
ated turnaround times, it takes the token (a+(N-l)d) time to
re~ch the last node of. the bus from the starting end-node, then
another (a+d) time to travel back to the end-node. Therefore,
the average token passing time is

r = ~ {(c+t) + [a+(N-l)d] + (a+d) }/(~)

= 2 + (c+t+Nd)/a (2 )

in terms of (a/N) , where (c+t) is the network overhead associated
with the initial TIP. The variance, 62 , can then be determined
as

(3 )

where the second squared term represents the token-passing delay
between user-node N and user-node 1.

For the generalized branching bus as shown in Figure 3, we
let

3
a = L: a.

. 1 J.J.=

where a. is the bus propagation delay on branch i, i=1,2,3.
Then eqUations (1) and (2) still hold true, but the variance
of the token passing time must be modified to:

62 - ~ {(N-2) [1-~]2 + 1· [(a2+d+~)/(~)-r]2

+ 1· [(c+t+a3+al+d+~)/(~)-r]2} (4 )

where the second squared term is the token passing delay between
the last node of branch 2 and the first node of branch 3; and the
last squared term is again the token passing delay between user~

nodes Nand l.
-For-simplicity and without loss of generality, we will still

. "",-

'I.;'· .',.,



268

assume a single-bus network for our analyses in this paper. Due
to difficulties in analytic modeling, the C-SDAM protocol will be
analyzed by simulation methods.

In the remainder of this section, we will compare the per
formances of C-SDAM and OE-SDAM in detail. Also, the performance
degradation due to various operating overheads of OE-SDAM is ana
lyzed. The exhaustive transmission discipline will be assumed
for a lour analyses unless otherwise specified.

3.1 Comparison of C-SDAM and OE-SDAM

The following parameters are used for comparisons of the
delay performance of C-SDAM and OE-SDAM.

N = 50 nodes
packet size = 1000 bits (packet time = 1)
a = 0.01, 0.1, 0.5, 1.0 for propagation delay
C = 0.03 (30 bits) for TIP
t = 0.02 (20 bit-time) for turnaround time
d = 0.002 (2 bit-time) for carrier-sensing time.

When a is small (a = 0.01), the difference in the token pass
ing time between these two protocols is also small. Therefore
their performances are very close to each other (see Figure 4).
As a increases to 0.1, the performance of C-SDAM begins to exceed
that of OE-SDAM. When a=0.5, the average delay of OE-SDAM is 12%
larger than that of CSDAM. This difference expands to 22% as a
increases to 1.0.

The C-SDAM protocol, however, has one serious performance
drawback. That is, it tends to discriminate against nodes lo
cated near either end of the bus (see Figure 5). The same phe
nomena has been observed and explained by Coffman et ale in their
analysis of the disk access schemes [7]. Therefore, although the
delay performance of CSDAM could be viewed as the "delay lower
bound" of all token-passing schemes, it is not suited for imple
mentation unless such discriminations can be justified for some
practical applications.

3.2 Comparison of OE-SDAM and Other Popular Schemes

The throughput-delay curve is compared to those of MSAP/
BRAM [4, 12] and CSMA/CD with various v values (v is the proba
bility of a busy node to attempt its transmission in a given time
slot) [19] in Figure 6. It shows that, with a small bus propaga
tion delay (a=O.Ol), in light loads SDAM performs very close to
the CSMA/CD protocol with an optimal v value, and in higher loads
SDAM exceeds CSMA/CD for all values of v. For a larger propaga
tion delay (e.g., a=O.l), the performance of CSMA/CD degrades
drastically, while SDAM maintains a very good performance. In
any circumstances, the performance of SDAM far exceeds other
collision-free protocols reported in the literature [4,12,20].

The throughput S versus the offered traffic load G (defined
as the total average-number of packets available for transmission



269

in the network) is plotted in Figure 7. Again, it shows that
SDAM is highly efficient throughout the entire spectrum of G and
remains stable (i.e., throughput does not degrade due to SDAM's
collision-free property) for high values of G.

3.3 Effect of Decoding/Turnaround Time

Sincie a decoding/turnaround time t is associated with each
transmission of a packet, we can envision the packet as being
enlarged by a ratio of t (i.e., packet time t~=l+t), with the
added portion being blank-filled. The throughput-delay curve
can then be approximated using equation (1), with S modified to
S~=S(l+t). The results are plotted in Figure 8 for t = 0.0 to
0.1 (0 to 100 bit-times). This figure shows that, for light
loads the values of t do not significantly affect the network's
performance. However, for high loads, larger t values have de
vastating effects on the average packet delay as well as the net
work's maximum achievable throughput. Generally, the maximum
network throughput is bounded above by (l-t). So, if the turn
around time is t=O.l, then the network can only achieve an aver
age of 90% throughput.

3.4 Effect of Carrier-Sensing Time

In an ideal case (as most people assume for their protocols),
the time is negligible for each CIU to detect the absence (or
presence) of a carrier and generate its own packet. Under such
an assumption, SDM1's performance is independent of the number of
nodes on the network [16]. However, this is an unrealistic as
sumption. Since all nodes on the network take turns to sense and
access the channel, each node must allow its predecessors enough
time to complete their actions before it can safely start its
own. So, the time spent in carrier-sensing by each node will
cumulate as the token is passed from node to node. Figure 9 shows
the degradation of network performance under various values of d
and N. It is clear that in a heavily populated network (N)lOO)~
even a subtle change in carrier-sensing time will have a profound
effect on the network's performance.

3.5 Effect of the Token-Initializing Packet (TIP)

In SDAM protocol, a TIP is required to initialize each cycle
of t ken-passing. This packet can be a special bit pattern that
all nodes recognize as being generated by a particular end-node;
or it can be a shortened data packet that contains nothing but a
source address and a token direction code. In any case, this
packet will occupy a fraction of the channel time, and therefore
must be considered asa network overhead. Analysis shows, how
ever, that when the number nodes on the network is large (n>50),
the size of TIP has little effect on the network's performance.
The effect of varying TIP sizes under an extreme light load
(s~O.O) is plotted in Figure 10. In higher loads, this effect
becomes negligible.



/

\

270

3.6 Effect of Exhaustive/Nonexhaustive Transmissions

In analyzing the exhaustive/nonexhaustive transmission dis
ciplines, it is important to specify the type of workload imposed
on the network. Here, we are mainly concerned about workloads
with uniform Poisson arrivals; no attempt is made to study the
situation where unbalanced loads are presented.

The exhaustive transmission discipline allows a node, upon
receiving the network token, to transmit all the packets in its
buffer, including the ones that arrived during the transmission
process. The nonexhaustive discipline, on the other hand, limits
the number of packets that a node may send at one time. In prac
tice this limit may vary from node to node, but here our focus is
directed on the case where only one packet is allowed to be trans
mitted per channel access.

Generally speaking, the exhaustive discipline provides a
better average delay and a higher throughput of the network. In
extreme cases, a busy node with a large file to transfer may
monopolize the entire channel for a long period of time, causing
networks throughput to temporarily reach 1, while making other
nodes suffer long waiting times. The nonexhaustive scheme, on
the other hand, guarantees fairness among the users and elimi
nates the above monopoly at the cost of increased token-passing
time (hence the increase of average delay). However, in light
loads (S<0.5) where the average number of waiting packets at each
node is much less than 1, these two schemes are practically the
same. Also, if the bus delay is small (a<O.l), then the perfor
mance of nonexhaustive discipline remains close to that of the
exhaustive one (refer to Figure 11). When the bus delay is large,
the difference in performance becomes significant (at a=l.O,
S=0.8, the nonexhaustive scheme is 20% worse; at S=0.9, it is 66%
worse).

In terms of the queueing delay distribution, the nonexhaus
tive discipline has a larger variance than its exhaustive counter
part. This is again due to the fact that the efficiency in con
secutive transmissions is compromised by the requirement of fair
ness. Therefore, the distribution curve is "flatter" and the de
lay values are spread wider. Figure 12 shows the queueing delay
distribution of both exhaustive and nonexhaustive transmission
disciplines at a=O.l and a=l.O. Table 1 summarizes the mean,
standard deviation, median, and the 95 percentile of each of

. these distributions.

4. Summary and Conclusion

In this paper, we analyzed the generalized "shortest-delay
access method" (SDAM) protocol previously proposed for a single
bus network [16]. The generalized network configuration now in
cludes a branching-bus topology and three protocol overheads (the
decoding/turnaround time, the carrier-sensing time, and the token
initializing packet (TIP) time), which makes SDAM more powerful
and more practical.

It is shown that the throughput-del~y formula for SDAM on a



271

branching-bus is identical to that of a singl~ bus, except that
the total bus delay a is shorter and the variance of the token
passing time may be larger. Therefore, it was possible to reduce
a complex branching-bus to an equivalent single bus configuration
so as to simplify our analysis.

Two variants of the SDAM protocol--the C-SDAM and OE-SDAM-
are analyzed. The C-SDAM, using back-and-forth token passing,
is the most efficient of all the token passing schemes. The OE
SDAM, on the other hand, employs one-way token passing and pro
vides uniform queueing delays to all nodes. When the network
propagation delay a is small and the number of users N is not
very large, these two schemes perform closely to the M/D/I with
perfect scheduling•. But their performances are most impressive
when a andlor N are large (e.g., a=I.O and N=IOOO).

Of the three overheads evaluated in this paper, the TIP
time is unique to the SDAM protocol. However, analysis shows
that the size of the TIP has little effect on network's perfor
mance. The turnaround time t, which we think should be consid
ered in every access protocol, shows a devastating effect on net
work performance. Given that the packet size is fixed and that
the workload is balanced, the maximum throughput of the network
is bounded above by (l-t), and the average queueing delay of the
packets approaches infinity as the network's throughput approaches
this limit. The carrier-sensing time d, although very small, be
comes an important factor innetwork's-performance when the ·number
of users is large. For N>IOO, even a subtle change in d will have
a profound effect on network's queueing delays. -

The exhaustive transmission discipline provides the most
efficient use of the channel time, while permitting a busy node
to monopolize the channel access. The nonexhaustive discipline,
on the other hand, eliminates such a monopoly and thus guarantees
an upper bound to a node's waiting time. Analysis shows that the
latter scheme caus~s larger mean and variance in queueing delay.
But in low loads or with a small bus delay, these two schemes are
practically the same. Therefore, the nonexhaustive discipline is
recommended. However, in high loads with a large propagation de
lay, the difference in performance could become significant, and
some form of tradeoff must be made.

In summary, the SDAM protocol provides a very efficient ac
cess method for a local network with a branching bus topology
and is worth considering for implementation, particularly to
large-scale networks.



272

REFERENCES

1. A. Abramson, "The ALOHA System--Another Alternative for
Computer Communications," AFIPS 1970 Fall Joint Computer
Conference, pp. 281-285.

2. I. Chlamtac, "Issues in Design and Measurement of Local
Area Networks," Proc. CMG-XI International Conference on
Computer Performance Evaluation, Dec. 1980, pp. 32-34.

3. I. Chlamtac, W. R. Franta, P. C. Patton, and W. Wells,
"Performance Issues in Local Computer Networks," Technical
Report 79-16, Computer Science Department, U. of Minnesota.

4. 1. Chlamtac, W. R. Franta, and K. D. Levin, "BRAM: The
Broadcast Recognizing Access Method," IEEE Trans. Comm.,
Vol. COM-27, No.8, Aug. 1979, pp. 1183-1190.

5. D. D. Clark, K. T. Pogran, and D. P. Reed, "An Introduction
to Local Area Networks," Proc. IEEE, Vol. 66, No. 11, Nov.
1978, pp. 1497-1517.

6. E. G. Coffman, Jr., and P. J. Denning, "Operating Systems
Theory," Prentice-Hall, Englewood Cliffs, N.J., 1973,
Chap. 5.

7. E. G. Coffman, Jr., L. A. Klimko, and B. Ryan, "Analysis of
Scanning Policies for Reducing Disk Seek Times," SIAMJ.
Comput., Vol. 1, No.3, Sept. 1972.

8. P. J. Denning, "Effects of Scheduling on File Memory Opera
tions," AFIPS 1967 Spring Joint Computer Coni., pp. 9-21.

9. H. A. Freeman, "Tutorial Notes: Introduction to Local Com
puter Networks," 5th Conference on Local Computer Networks,
Minneapolis, Oct. 6-7, .1980.

10. H. A. Freeman and K. J. Thurber, "Issues in Local Computer
Networks," IEEE 1979 International Communications, pp.
20.3.1-20.3.5 •.

11. L. Kleinrock, "Queueing Systems," Vol. 2, Computer Applica
tions, Wiley-Interscience, 1976.

12. L. Kleinrock and M. Scholl, "Packet Switching in Radio
Channels: New Conflict-free Multiple Accesss Schemes for
a Small Number of Data Users," Proc. ICC., June 1977,
pp. 22.1-105-22.1-111.

13. L. Kleinrock and F. A. Tobagi, "Packet Switching in Radio
Channels: Part I--Carrier Sense Multiple-Access Modes and
Their Throughput-Delay Characteristics," IEEE Trans. Comm.,
Vol. COM-23, No. 12, Dec. 1975, pp. 1400-1416.

14. L. Kleinrock and F. A. Tobagi, "Packet Switching in Radio
Channels: Part III--Polling and (Dynamic) Split-Channel
Reservation Multiple Access," IEEE Trans. Comm., Vol. COM-24,
No.8, Aug. 1976, pp. 832-845.

15. A. G. Konheim and B. Meister, "Waiting Lines and Times in a
System with Polling," JACM, Vol. 21, No.3, July 1974, pp.
470-490.

16. L. Li and H. D. Hughes, "Definition and Analysis of a New
Protocol," Proc. 6th Conference on Local Computer Networks,
Minneapolis, October 12-14, 1981.

17. T. T. Liu, L. Li, and W. R. Franta, "The Analysis of a Con
flict-Free Protocol Based on Node Clusters,fl Proc. 6th



273

Conference on Local Computer Networks, Minneapolis, Oct.
12-14, 1981-

18. R. M. Metcalf and D~ R. Boggs, "Ethernet: Distributed
Packet Switching for Local Computer Networks," Corom. ACM,
Vol. 19, No.7, pp. 395-403, 1976.

19. F. A. Tobagi and V. B. Hunt, "Performance Analysis of
Carrier Sense Multiple Access with Collision Detection,"
Proc. LACN Symp., May 1979, pp. 217-244.

20. C. Tropper, "Models of Local Computer Networks," Mitre
Corp. Report ESD-TR-80-111.



274

Delay

N = 50
30. t = 0.02

c = 0.03
d = 0.002

Analytic OE-SDAM
Simulated OE-SDAM
Simulated C-SDAM
M/D/l perfect scheduling

o
.+-

2.0

20.

5.0

3.0

1. 0 """':::'-0-.T
l
--

O
T.-

2
--

0
-'-.3--

0
"T.4--0"'.5r----0-r~6--0T~7--0....:8--0....~ _9_':"l"':_0_Thr~UghPut

50.

4.0

40.

7.0

6.0

9.0

8.0

10.

Figure 4. Delay performance of closed-SDAM and open-ended SDAM.



Delay

2.5

2.

+
-LOE-SDAM

_.- C-SDAM

I
(;)

275

N = 50
a = 0.1
S = 0.7

Middle

t = 0.02
c = 0.03
d = 0.002

0 09
? II'

919 1 1 1

I III II
+0 "1 11 1. I +.. ..

Right End

Figure 5. The packet delay versus node location on the bus.



276

L..-....:::::.....L:---.......----l...:....---'-----''----'---L..---L.----:-'-:'"---'--_S
0.2 0.3 0.4 0.5

Figure 6. The throughput-delay curve of SDAM compared to MSAP/BRAM,
CSMA/CO, and M/D/1. (N=50) (v=transmission probability per
time slot for CSMA/cD.)



277

S

1.0 - - - --- - - - --..;-;::..,;:.-------

a = 0.01

10001001010.1

MSAD/BRAM ------i~

SDAM ------• ./d

{

t-+O
c=0.03
d=0.002

0.8

0.6

0.4

0.2

Figure 7. Offered load G vs. throughput S.
(Infinite population arrivals)

Delay

50 N 50 t 0.1

40 a 0.1 t 0.08
c 0.03 t 0.06

30 d 0.002 t 0.04
t 0.02

20 t 0.0

10

5
4

3

2

Throughput
1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 S

Figure 8. The effect of turnaround time oh network's queueing delay.



278

Delay

40. t 0.02
c 0.03
a = 0.01

30. d=O.Ol

d=O.O

d=0.0005

d=O.O

d=0.0005

d=0.005

I I N
1,000

I
500

, d=0.OO2
,/ /

/ /

" "/' "./ ,-
.... //,-" d=O.OOl

__-~ ~...._ --_ .... ::::_- d=O.O
.- .... ,-

.-.-

I
10050

o

~, __ ....- M/~:- __ .-""" ",_.---:_-----,,-. ...

~--E-..;;.~,;-.;;.;;...::_;n;;-i::~ ::£.::i"~-i~=-.==-: ~~ :.~ _
1.0

2.

3.

5.0

4.0

6.0

20.

10.

9.0

8.0

7.0

Figure 9. Effect of the carrier-sensing time d versus queueing delay.



279

Delay

1.2

1.

N
S

50
0.0

t
d

0.02
0.002

1.0
L-__-'-__..J-__-'-__--'-__--'L-__"'-__..J-__...J....__-'-__--I..TIP time

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 10. The token-initializing packet (TIP) tfme versus network's
queueing delay.

a=O.l

delay

50
40

30

20

10

5
4

3

2

N
c
t
d

50
0.03
0.02
0.002

analytic exhaustive transmission
o simulated exhaustive transmission
x simulated non-exhaustive

transmission·

1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 11. Differences in the queueing delays of the exhaustive and
the non-exhaustive transmission disciplines.



%

Distribution

40

%

Distribution

8
a=O.l

-- exhaustive
- - - - non-exhaustive

a=l.O

exhaustive
non-exhaustive

N
c
t
d

50
0.03
0.02
0.002

30

5=0.5

20

10

4

2

I :;:;::>; iii 7 i I Iii I Iii iii iii~.Delayiii iii iii Iii iii Iii

N
00
o

2 4 6 8 10 12 14 16 18 20 22

5=0.9

1 2 3 4 5 6 7 8 9 10
I I I I iii i I I I I I I Delay

32 33 34

Figure 12. Distributions of queueing delays (excluding transmission time) for the exhaustive and
the non-exhaustive transmission disciplines of the OE-5DAM protocol (simulated results).



, ,
,,

Propagation Delay a = 0.1 Propagation Delay a = 1.0l :

i
I I I ~23 I 0.688 I

,------
5 0.295 0.492 0.688 0.787 0.295 0.492 0.786 I 0.893 ;I

I
Mean 1.496 1.916 2.932 4.208 10.766 2.769 3.738 5.873 8.397 17.681 i

<lJ
>.....

S.D. 0.627 1.123 2.344 1.300 6.534 13.122...., 3.996 10.987 2.183 4.287
!Il

='III
.<::x

Median 1.5til 0.3 0.4 1.2 1.8 6.0 2.3 3.4 5.6 12.2

-
95% 1.8 3.2 6.8 11.2 33.6 4.2 7.0 13.4 20.4 **

i,

I
0.492 .I 0.688 I I 0.688 I 0.786 I !

5 0.295 I 0.787 0.923 0.295 0.492 0.893 i

I
I i

j

Mean ---- 1.927 2:977 4.354 12.850 --- 3.878 6.503 10.070 29.407
<lJ
>.....

I
....,
!Il
=' S.D. --- 1.160 2.522 4.587 15.618 --- 2.391 5.292 9.229 31.736
III

.<::x
<lJ -I
C Median --- ._- 0.4 1.2 1.9 6.8 --- 2.3 4.2 6.6 18.4
0z

I 95% --- 3.4 6.8 11. 2 41.6 --- 7.6 15.0 25.8 **

I

omit **: out of range

Table 1. Distributions of queueing delays (excluding transmission time) for the exhausted and the
non-exhaustive transmission disciplines of the OE-5DAM protocol (simulated results).

!'oj

00......





283

THE BX.25 CERTIFICATION FACILITY

J. A. Melici
Bell Telephone Laboratories
Piscataway, N. J. 08854
(201) 981-2597

ABSTRACT

BX.25 is a data communications protocol which has been adopted as the standard protocol for
host access to the Bell System's Operations System Network (OSN). BX.25 is based upon the
Consultative Committee on International Telephone and Telegraph (CCITT) recommendation
X.25. This paper describes a facility to automatically test that an implementation of BX.25
conforms to the BX.25 specification. The facility, called the BX.25 Certification Facility (BCF) ,
consists of a data base of tests, software to execute the tests, and a microprocessor dedicated to
handling BX.25 communication. The output of the facility is a report which provides
information concerning the degree to which an implementation conforms to the BX.25
specification.

1. INTRODUCTION

BX.25 [1] is a data communications protocol which has been adopted as the standard protocol

for host access to the Bell System's Operations System Network (OSN) [2]. BX.25 is based

upon CCITT recommendation X.25 [3]. This paper describes a facility.to automatically test that

an implementation of BX.25 conforms to the BX.25 speCification.' The facility, called the BX.25

Certification Facility (BCF), consists of a data base of tests, software to execute the tests, and a

microprocessor dedicated to handling BX.25 communication. The output of the facility is a

report which provides information concerning the degree to which an implementation conforms

to the BX.25 specification.

The remainder of this paper is divided into nine sections. Section 2 discusses certification in

general, and defines some terms. Section 3 briefly describes BX.25. Section 4 describes the

BX.25 Certification Facility. Section 5 presents a scenario for certifying BX.25

implementations. Section 6 discusses the generation of tests and reports. Section 7 suggests

some enhancements to the facility~ Section 8 discusses "proving in" the facility. Section 9



284

describes related, work, and section 10 presents the conclusions of this paper.

2. GENERAL DISCUSSION OF PROTOCOL CERTIFICATION

Protocol certification involves executing a particular implementation of the protocol to test

whether it complies with the protocol specification [4]. The tests are derived from the protocol

specification. Only the external behavior of the protocol implementation is tested. How that

behavior is achieved is unimportant for certification purposes. Certification of a protocol is not

a formal proof of the correctness of the implementation [4]. Certification does provide a high

degree of confidence that the protocol has been implemented correctly.

Certification of data communications protocols is different from verification and validation of

protocols. Verification means demonstrating that the protocol definition is "logically" correct.

Validation, a subset of the verification problem, means the protocol definition exhibits certain

general properties, e.g., freedom from deadlock. Sunshine [5] defines validation and

verification, as well as some techniques for protocol verification.

3. BRIEF DESCRIPTION OF BX.25

BX.25 is a layered data communications protocol [6] based upon CCITT recommendation X.25.

X.25 defines the "interface· between Data Terminal Equipment (DTE) and Data Circuit

Terminating Equipment (DCE) for terminals operating in the packet mode on public-data

networks" [3]. Levels 1, 2, and 3 of BX.25 correspond to levels 1, 2, and 3 of X.25, level 1

being the physical layer, level 2 the link layer, and ,level 3 the packet layer. BX.25 is

compatible with X.25 at these levels, but differences do exist. In addition, BX.25 defines an

optional multi-link layer, and a session layer.

Level 1 of BX.25, the physical layer, specifies the physical and electrical interface between a

DTE/DCE pair, or a DTE/DTE pair. Currently either the Electronics Industry Association

(EIA) RS-232C interface, or CCITT Recommendation V.35 is utilized. This levbl provides a

bit-serial, full-duplex, point-to-point, synchronous transmission path.



285

Level 2 of BX.25, the link layer, utilizes the Link Access Procedure B (LAPB) of X.25. This

level defines procedures which provide an essentially error-free, transparent link between a

DTE/DCE or a DTE/DTE. Some functions of this level are link initialization/disconnection,

link level error control, and flow control.

Level 3 of BX.25, the packet layer, defines procedures for the interchange of packets. The

major facilities of this level are Permanent Virtual Circuits (PVC) and Virtual Calls (VC). The

major functions of this level are packet-level error control and flow control, multiplexing of

packets over the single physical link, and packet level reset and restart procedures. For

complete information about BX.25 and X.25 refer to [1], [3], and [7].

4. DESCRIPTION OF THE BX.25 CERTIFICATION FACILITY

4.1 An Abstract Model of a Protocol Certification Facility

This section presents an abstract model of a protocol certification facility. The model is

applicable to any protocol, including BX.25, and higher layer protocols.

The following description refers to figure 1. The components of this model of a certification

facility are:

• Parameterized test file - The tests necessary to certify that the protocol has been

implemented correctly. The test file is parameterized, so the same tests apply to all protocol

implementations, regardless of the values chosen for the protocol parameters. For example,

the value of the T1 timer is a parameter of BX.25 level 2.

• Parameter file - A file containing the definitions of all the parameters of the protocol, e.g.,

for BX.25 level 2, the value of the T1 timer is specified.

• Test preprocessor - The parameterized test file, and the parameter file serve as input to the

test preprocessor. The test preprocessor substitutes the values of the parameters in the

parameter file, for the parameters in the parameterized test file. The output of the

preprocessor is a test file tailored to the environment of the Implementation Under Test



286

STAGE 1:
TEST PREPROCESSING

PARAMETERIZED
TEST FILE

PARAMETER
FILE

STAGE 2:
TEST EXECUTION

REPORT
FILE

Figure 1

TEST
FILE

AN ABSTRACT MODEL OF A PROTOCOL CERTIFICATION FACILITY



287

OUT).

• Protocol certifier - The test file serves as input to the protocol certifier. The commands in

the test file direct the actions of the certifier. Based on these commands the certifier directs

the protocol handler to send a particular protocol message to the IUT, e.g., for BX.25 level 2

a DISC (disconnect) frame. The response of the IUT is forwarded to the certifier, for

analysis, by the protocol handler. The certifier automatically generates a report file.

• Report file - This file provides information concerning the degree to which the IUT

conforms to the protocol specification.

• Protocol handler - Handles all the processing associated with communicating the protocol.

The handler has two interfaces. The IUT is connected to one interface. It is over this

connection that the protocol is communicated. The certifier is connected to the other

interface. The certifier sends commands to the handler to force the transmission of a

particular protocol message. The handler transmits only when directed to by the certifier.

This allows for the purposeful violation of the protocol, to check that the IUT responds

correctly. The handler sends to the certifier a trace of all transmitted and received protocol

messages.

• Driver - To comprehensively test an implementation a driver is required. In most protocol

implementations there are certain events which must be initiated from a level above the

implementation. As an example, in BX.25 level 2, the transmission of an I frame is

initiated from the level above the BX.25 level 2 implementation. The behavior of the IUT

when these events occur should be tested as part of a certification procedure. In this model

the driver acts as the next layer above the IUT. The driver sends control signals to the IUT,

initiating events which otherwise would not occur.

• Communications equipment· The necessary equipment (e.g., modems, cables) to establish

the physical transmission path to the IUT.



288

Protocol certification is a two stage process. Stage one, test preprocessing, transforms the

parameterized test file into a test file tailored to the environment of the IUT. Stage 2, test

execution, involves running the tests in the test file against the IUT. The output of this stage

is the report file.

4.2 Implementation of the BX.2S Certification Facility

The components of the BX.25 Certification Facility correspond to the components of the· model

presented in the previous section. The facility is used to certify BX.25 level 2, or BX.25 level 3

implementations. The need to test BX.25 implementations developed as part of the Bell

Administrative Network Communications System (BANCS) [8] [9], which is the internal

switching network for the OSN, as well as BX.25 implementations which communicate on a

point to point basis, provided the stimulus for the development of a BX.25 Certification

Facility.

The following description refers to figure 2. The test preprocessor and the BX.25 certifier are

two programs which execute in user space of a VAXm ll/780 running the UNIX™ [10]

operating system.

The test file describes the expected behavior of the IUT when it is subjected to certain stimuli.

The different tests in the test file attempt to fully exercise the protocol, checking both normal

and error conditions. In particular the test file:

• Is divided into a number of separate and independent tests.

• Each test specifies when to transmit a particular frame, for BX.25 level 2 certification, or

packet, for BX.25 level 3 certification. The type of frame/packet to transmit is specified

mnemonically, e.g., disc means send a DISC frame. Moreover, any of the fields in a frame

or packet may be specified.

• Each test specifies the expected response of the IUT upon receipt of a particular frame or

packet.



PARA·
METERIZED
TEST FILE

PARAMETER
FILE

289

VAX·111780 (UNIX)

Figure 2

IMPLEMENTATION OF THE BX.25 CERTIFICATION FACILITY



290

The Test Input Language (TIL), used to write the tests, will be defined in section 6.

The PRO/TESTERl [11], commercially available from Applied Data Communications (ADC),

is a microprocessor with software dedicated to X.25 communication. The facility utilizes the

PRO/TESTER for handling the processing associated with BX.25 communication. The major

features of the PRO/TESTER are:

• Simulation of a DTE or DCE.

• Tracing of all frames/packets received from the IUT.

• Communication at level 2 of X.25 (i.e., turn level 3 off), or level 3 of X.25.

• A mnemonic command language to specify the transmission of all X.25 frames/packets,

with the capability to specify the fields in a frame/packet. Frames or packets can also be

constructed from hexadecimal.

• Either level can operate in either the automatic or manual mode. In the automatic mode

the PRO/TESTER adheres to the X.25 protocol, and accepts commands (over its

asynchronous interface) directing its actions. In the manual mode the PRO/TESTER only

transmits frames/packets when directed to do so via commands. The PRO/TESTER

operates in the manual mode for the level being certified. This allows for the purposeful

injection of errors, to test that the IUT responds correctly.

• The capability to generate Cyclic Redundancy Check (CRC) errors, and abort the

transmission of a frame.

The PRO/TESTER has two interfaces, an asynchronous interface, and a synchronous interface.

The asynchronous interface accepts commands directing the PRO/TESTER's actions.

Moreover, the trace of received/transmitted frames/packets is output over this interface.

Figures 3 and 4 show the trace information provided by the PRO/TESTER for level. 2, and

1. PRO/TESTER is a trademark of Applied Data Communications.

/



291

LINK LAYER TRACE INFORMATION:

R/T - Direction of transmission. "TRN" for transmitted, "REC" for received.

ADR - The address (either A or B) of the frame.

FRAME - The type of frame.

P/F - The poll/final bit. "P" if the poll bit is set, "F" if the final bit is set.

NS - The send sequence number of the frame.

NR - The receive sequence number of the frame.

HEX - The hexadecimal representation of the frame.

EXAMPLE:

R/T ADR FRAME P/F NS NR HEX

TRN A I-FRAME P 05 03 037A4444

Figure 3
BX.2S Level 2 Trace Information Provided

by the PRO/TESTER



292

PACKET LAYER TRACE INFORMATION:

RT • Direction of transmission. "T" for transmitted, "R" for received.

TYPE - The" type of packet.

LCN - The logical channel number of the packet.

Q - The qualifier bit."Q" if this bit is set.

o - The delivery confirmation bit. "0" if this bit is set.

M - The more data bit."M" if this bit is set.

PS - The send sequence number of the packet.

PR - The receive sequence number of the packet.

HEx - The hexadecimal representation of the packet.

EXAMPLE:

RT TYPE LCN QDM PS PR HEX

T DATA 0001 4 3 10016844

Figure 4
BX.2S Level 3 Trace Information Provided

by the PRO/TESTER



293

level 3 of X.25 respectively. In general, the trace information provided for both level 2 and

level 3 is:

• The direction of transmission (either transmitted or received).

• The type of frame or packet.

• The contents of various fields of the frame or packet. Refer to [7] for a description of the

meaning of each of the fields.

• The hexadecimal representation of the frame or packet.

The synchronous interface is used to communicate with the IUT.

The PRO/TESTER is only used to transmit and receive frames/packets. The certifier directs

the PRO/TESTER as to which frame/packet to send, based on the test file. Even though the

PRO/TESTER communicates X.25, the test file defines the expected behavior of a BX.25 IUT.

A pair of dial-up Bell 208, or Bell 212 modems provides the means for establishing the physical

connection between the PRO/TESTER and the IUT. Communication takes place at 4800 bits

per second (bps), or 1200 bps. The facility provides only one of the modems. The other

modem must be provided by the IUT.

The report file provides information concerning the degree to which the IUT conforms to the

BX.25 specification. In particular the report file:

• Indicates which tests passed or failed. If a test fails, the reason the test failed is included in

the report file.

• Provides a trace of all frames/packets exchang~d between the facility and the IUT. The

trace information provided is exactly the trace information of the PRO/TESTER.

• Optional time-stamping of frames/packets.

• Summarizes the total number of tests which passed or failed, and lists the number of failed

tests, up to some limit.



294

The exact format of the report file is specified in section 6.

To comprehensively test an IUT a driver is required. The driver acts as the level above the

BX.25 IUT. The level 2 and level 3 drivers interpret single-byte codes contained in I frames, or

DATA packets, respectively. The code may specify "do nothing", cause the IUT to go into a

particular state, or cause the IUT to send a particular frame/packet. The specifications of the

driver, and a prototype driver, written in the C language [12], are provided as part of the BX.25

Certification Facility. Figures 5 and 6 contain the codes recognized by the level 2 and level 3

drivers, respectively. Without drivers, 52% of level 2 and 74% of level 3 can be tested. The

states which cannot be tested without a driver represent "pathological cases," for example, the

REJ Sent & Station Busy state, which do not occur -very often. Thus, even though to certify an

IUT requires a driver, a fairly comprehensive test can still be performed on an IUT without a

driver.

5. SCENARIO OF OPERATIONS

This section presents a scenario for the certification of either level 2 or level 3 of BX.25. The

same scenario applies to each level. The test file and driver required to certify level 2 is

different, and independent, of the test file and driver for level 3. The scenario is:

1. The level (either 2 or 3) to be certified is determined.

2. The parameters of the BX.25 IUT are determined. The parameter file is modified

appropriately.

3. The parameterized test file (either the level 2 or level 3 test file) is preprocessed to

produce thetestrfile to be input to the BX.25 certifier.

4. The appropriate driver (either the level 2 or level 3 driver), if available, is installed on top

of the implementation to be tested.

5. Hardware communication is established via the dial-up Bell 208 modems or the dial-up

Bell 212 modems.



295

Code Action

o Do nothing

1 Send a Local Start command to the IUT

2 Send a Local Stop command to the IUT
...

3 Create a Station Busy condition for N seconds
...

4 Echo I frame back N times

5 After waiting N seconds, create a ...
Station Busy condition for M seconds

... Nand M are contained in the second and third bytes, respectively, of the I field of the I
frame.

Figure S
Codes Recognized by the BX.2S Level 2 Driver



296

Code Action

o Do nothing

1 Create a Station Busy condition on logical.
channel identifier (LCI) N, for M seconds

•2 Echo DATA packet over LCI N, M times

•3 Transmit an INTERRUPT packet over LCI N

4 Transmit a CALL REQUEST packet

• Nand M are contained in the second and'third bytes, respectively, of the User Data field of
the DATA packet.

Figure 6
Codes Recognized by the BX.25 Level 3 Driver



297

6. The BX.25 certifier is executed. The appropriate flags are set for frame/packet level

testing and time-stamping of frames/packets.

7. The report file is delivered to the BX.25 implementor.

6. GENERATION OF TESTS AND REPORTS

6.1 Generation of Tests

The BX.25 state tables, provided as part of the BX.25 specification, provide the framework for

systematically generating the tests. Tests are organized by the BX.25 states. All possible

inputs, for a particular state, are applied to the IUT. The response of the IUT, as compared

against an expected response, determines the success or failure of a particular test. The

expected response is determined from the state table, augmented where necessary by the

written description of the protocol.

Moreover, to assure the independence of tests, each test contains the proper sequence of

commands to bring the IUT from any state into the state being tested. This ensures that the

success or failure of a particular test. does not affect any other test.

For level 2, approximately 1700 tests are required. For level 3, approximately 650 tests are

required. Each test consists of approximately eight lines of Test Input Language commands.

6.2 The Test Input Language

The tests are written in the Test Input Language (TIL). There are five commands in the

language. Only one command per line is allowed. The commands are:

• The TEST command marks the beginning of a test and the end of any previous test. The

syntax is:

TEST "description of test"

The description is required.



298

• The expected-reply command specifies which frame or packet should be received next. The

syntax is:

[frame/packet type,fieldl= valuel, ... ,fieldn= valuenl
{OR [frame/packet type,fieldl= valuel, ... ,fieldn= valuen]} : nnnn

Each frame/packet type is enclosed in square brackets. The frame/packet type is expressed

mnemonically, e.g., DISC represents a disconnect frame. The frame/packet type should be

all upper-case letters. The value of a field is also expressed mnemonically, e.g., nr= 3

means the receive sequence number of the received frame should be three. This syntax

supports alternation, specified by ORing individual frame/packets together. ({...}'" is

extended Backus-Naur Form (BNF) [13] for "zero or more occurrences of.") The numerical

value after the colon specifies the number of seconds before which the frame/packet should

be received. If this is omitted, a default, which can be specified, is in effect. Receiving a

response other than one of the responses specified in the expected-reply command causes-

the failure of the current test. In this case the BX.25 certifier flushes to the next TEST

command; or end-of-file, whichever comes first.

• The DEFTIMEOUT command modifies the default timeout value to use for an expected-

reply command without a time value specified. Initially the default timeout is ten seconds.

The syntax is:

DEFTIMEOUT nnnn

Where nnnn is given in seconds.

• The comment command identifies everything that follows, up to the end of the line, as a

comment. The syntax is:

! text of comment

A comment whose text begins with a "!" will. appear in the report generated by the facility.

Other comments are ignored by the BX.25 Certifier.

/
/



299

• PRO/TESTER commands represent a whole class of commands. These are sent to the

PRO/TESTER, which executes them. PRO/TESTER commands are identified by being

specified in lower case letters. Most of the PRO/TESTER commands appearing in a test file

cause the transmission of a frame or packet. Any command is allowed though. Usually the

only other PRO/TESTER command appearing in a test file is "dte", used to option the

PRO/TESTER to act like a DTE. The default mode of the PRO/TESTER is DCE. Refer to

Appendix 1 for a list of the PRO/TESTER commands.

Figure 7 is a portion of a test file used to certify BX.25 level 2 implementations. The

numbering of the tests is done automatically by the test preprocessor. The numbers also appear

in the report file, and serve to allow easy reference to failed tests.

6.3 Reports Issued by the BX.2S Certification Facility

The following description refers to figure ~, a report issued by the BX.25 Certification Facility,

corresponding to the tests in figure 7. Reports for level 3 certification differ only in that

packets, instead of frames are part of the trace.

Several points should be observed about this report:

• Tests are numbered for easy reference.

• The data before the trace information is the time stamp, in seconds, that the frame was

received. Time is relative to the start of testing, beginning at time= zero.

• The trace information is exactly the trace information provided by the PRO/TESTER.

• A frame received during the transmission of a frame is marked "UNEXPECTED".

• A received frame different from an expected frame, in the expected-reply command, is

marked "INCORRECT". The frame expected also appears in the report file. This fails the

current test.

• At the end of the report, a summary of the success/failure of the tests is provided.



300

Under Test is Baddress of the IlIIplelllentation
value of T1 is 10
value of T2 is 25
value of H' is 256
value of H2 is 5
value of K is 2

The
The
The
The
The
The

II
II The follow1ng are the level 2 parallleter assignlllents:
II
II
II
II
II
II
II
II

I Set the address of the facility
dte

I Set the default tillleout to T' = '0 seconds
DEFTIHEOUT '0

TEST "Test receipt of a bad receive sequence nUlllber (n(r» in the inforlllation transfer state (55)"
disc, •
diSC,·
[UA,addr=O' ,pf=' J OR [DM,addr=01 ,pf=1 J
sablll,·
[UA,addr=01 ,pf=1 J

crr,. ,nr=05
[FRHR,addr=O' ,pf=' ,ifield=B10008)

TEST 2 "Test receipt of a set asyncronous balanced lIIode (SASH) cOlllllland in the disconnected state (51)"
disc., .,
diSC,·
[UA,addr=01,pf='J OR [DH,addr=01~pt='J

sablll
[UA,addr=O' ,pf=' J

Figure 7

PORTION OF A TEST FILE USED TO CERTIFY BX.25 LEVEL 2



301

BX.25 CERTIFICATION FACI~ITY (RE~EASE 1.0, 10/1/81)

FORMAT OF BX.25 ~EVE~ 2 TRACE INFORMATION:

TIME STAMP RIT ApR FRAME PIF NS NR HEX

Under Teat ia Baddress of the Implementation
value of Tl ia 10
value of T2 is 25
value of Nl ia 256
value of N2 is 5
value of K is 2

The
The
The
The
The
The

II
II The following are the level 2 parameter assignments:
II
II
II
II
II
II
II
II

"·TEST 1 "Teat reoeipt of a bad reoeive aequenoe number (n(r» in the information transfer state (S5)"
0000000017 TRN B DISC P 0153
0000000017 REC B DM F 011F.... UNEXPECTED ••••
00'00000018 TRN B DISC P 0153
0000000018 REC B DM F 011F
0000000019 TRN B SABM P 013F
0000000019 REC B UA F 0173
0000000019 REC A RR P 00 0311 .... UNEXPECTED ••••
0000000020 TRN B RR P 05 01Bl
0000000020 REC B FRMR F 0197Bl0008
"-TEST 1 PASSED

·"TEST 2 "Test reoeipt of a aet asynoronous balanoed mode (SABM) oommand in the disoonneoted state (Sl)"
0000000021 TRN B DISC P 0153
0000000021 BEC B DM F 011F···· UNEXPECTED ....
0000000022 TRN B DISC P 0153
0000000022 REC B DM F 011 F
0000000023 TRN B SABM 012F
0000000023 REC A RR P 00 0311·· .. INCORRECT •••• EXPECTED: [UA,addr=Ol,pf=l) ••••
···TEST 2 FAI~ED

TOTA~ NBR OF TESTS: 2
TOTA~ NBR OF TESTS THAT PASSED: 1 50J)
TOTA~ NBR OF TESTS THAT FAI~ED: 1 50J)

TESTS WHICH F4I~ED (UP TO 50):
TEST 2

Figure 8

A REPORT ISSUED BY THE BX.25 CERTIFICATION FACILITY



302

7. POSSIBLE EN~ANCEMENTSTO THE BX.2S CERTIFICATION FACILITY

Several enhancements to the BX.25 Certification Facility have been identified and are being

considered for inclusion in the facility. The enhancements are:

• Selectively suppressing portions of the report.

• Expanding the Test Input Language to include variables and elementary control structures

(e.g., if-then-else).

• Including "loadtesting," or stress testing, as part of the certification of an implementation.

• Certifying levels other than 2 and 3 of BX.25, i.e., the physical layer, the multi-link layer,

and the session layer.

8. PROVING IN THE BX.2S CERTIFICATION FACILITY

Assuring that the BX.25 Certification Facility is itself free from errors is of priII1e importance if

the users of the facility are to have confidence in the reports produced by the facility. The

following steps have been taken to achieve this goal:

• Many different implementations of BX.25 were tested on a "trial" basis. The :purpose of the

trial was to verify the correctness of the reports issued by the facility. As 'a result of the trial

some problems with the facility were discovered, and were subsequently corrected. In the

great majority of cases though, reports were accurate.

• Require that "certified" implementations report protocol problems discovered in the field to

the group responsible for operation of the facility. In this manner the facility can be

appropriately enhanced/modified, so that in the future the presence of such problems in

implementations can be detected and reported.

Implementors of BX.25 may disagree with the correctness of the reports issued by the facility.

This could happen, for instance, because of different interpretations of the BX.25 specification.

In such cases, arbitration will be performed by those within Bell Telephone Laboratories



303

responsible for the BX.25 specification. It should be noted that this has not yet occurred.

9. RELATED WORK

There has been other work in the area of certification and testing of data communication

protocols. Bartlett and. Rayner [4] discuss certification in general, and describe research

underway at the National Physical Laboratory (NPL). Fong [14] describes NTS, a test system

for DECnet. NTS is concerned with testing the user interface to DECnet. Weaving [15]

presents the reference and test center of Euronet. The center provides a reference

implementation, and a test and debug service for high-level protocols implemented on top of

X.25. Weir et. al. [16] describe X.25 test facilities available on Datapac. The m~or test facility

available is a X.25 protocol tester, which must be operated manually. Other facilities available

include network generation of alarms, line monitoring, and X.25 diagnostic codes. Piatkowski

[17] discusses the feasibility of testing ADCCP. Piatkowski concludes that a "complete and

rigorous" test on an ADCCP station is impractical because of the length of time it would take to

complete the test. Piatkowski sketches an ad hoc approach to ADCCP testing.

10. CONCLUSIONS

The BX.25 Certification Facility, a facility to automatically test that a BX.25 implementation

conforms to the BX.25 specifications, has been described. The facility issues reports to indicate

to what, degree an implementation meets the BX.25 specifications.

The facility has the following major features:

• Certification is performed with minimal human intervention (i.e., the facility is automated).

• The tests systematically test all normal conditions, and error· conditions (Le. purposeful

injection of errors) of BX.25.

• Adding tests is easy, since tests are stored in a computer file system (UNIX).

• Tests are parameterized, so the same tests can be used for all implementations.



304

• The reports issued by the facility feature tracing, time-stamping, numbering of tests for eaSy

reference, an indication of which tests passed/failed, and for failed tests, the reason that test

failed. A summary of the total number of tests, together with a list of the failed tests, is

also included in the report file.

The BX.25 Certification Facility is a powerful tool. In addition to certifying an implementation

of BX.25, it may be utilized by developers for testing during the development process.

11. ACKNOWLEDGMENTS

The author gratefully acknowledges the assistance of the following persons: A. Cline, B.

Dickman, M. Lee, L. Mulraney, T. Peterson and T. Ryan. The author would also like to thank

the referees for their valuable suggestions and comments. The high-level design of the BX.25

Certification Facility was influenced by a similar system developed at Bell Canada.



305

REFERENCES

[lJ The BX.25 Operations Network Communication Protocol Specification, Bell System
Technical Reference, pub. #54001.

[2] Amoss, J. J., "Planning for the Bell Operation Systems Network," Proceedings of the
Fifth International Conference on Computer Communications (ICCC), Atlanta, Georgia,
October 27-30, 1980. pp. 559-563.

[3] CCITT Recommendation X.25, CCITT Orange Book, Vol. VIII.2, "Public Data
Networks," International Telecommunication Union (ITU), Geneva, Switzerland, 1977.

[4] K. A. Bartlett and D. Rayner, "The Certification of Data Communication Protocols,"
Proceedings of Trends & Applications: 1980, Computer Network Protocols, National
Bureau of Standards, G/!.ithersburg, Md., May 29,1980, pp. 12-17.

[5] C. Sunshine, "Formal Techniques for Protocol Specification and Validation," Computer,
Vol. 12, No.9, September, 1979, pp. 20-27.

[6] P. E. Green, "An Introduction to Network Architecture and Protocols,'" IBM System
Journal, Vol. 18, No.2, 1979, pp. 202-222.

[7] M. S. Solomon, "X.25 Explained," Computer Communications, Vol. 1, No.6, December,
1978, pp. 310-328.

[8] D. F. Lee & J. Pasqua, "Internal Data Communications", Bell Laboratories Record, Jan.,
1980, pp. 21-27.

[9] S. Leung, "The Concept and Implementation of BANCS'" Computer, Jan., 1980, pp. 80
92.

[10] D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Comm. of the
ACM, Vol. 17, No.7, July, 1974, pp. 365-375.

[11] International Packet Technology, "X.25 Protocol Tester PRO/TEST, Revision B,"
Document XT.0002.0114, September, 1980.

[12] B. W. Kernighan and D. M. Ritchie, "The C Programming Language," Prentice-Hall Inc.,
Englewood Cliffs,.NJ, 1978. .

[13] K. Jensen and N. Wirth, "PASCAL: User's Manual and Report," Second Edition,
Springer-Verlag, New York, N.Y., 1978.

[14] Ng Pin Fong, "NTS -- A Protocol Test and Development System," Proceedings of
Computer Networking Symposium, National Bureau of Standards, Gaithersburg, Md.,
December 13, 1978, pp. 124-127.

[15] K. Weaving, "Euronet Reference and Test Center," Computer Communications, Vol. 3,
No.5, October, 1980, pp. 221-223.

[16] P. F. Weir, W. E. Prater, X. N. Dam, "X.25 Test Facilities on DATAPACK," Evolutions
in Computer Communications, Proceedings of the Fourth International Conference on
Computer Communication (ICCC), Kyoto, Japan, September 26-29, 1978, pp. 273-279.

[17] T. F. Piatkowski, "Remarks on the Feasibility of Validating and Testing ADCCP
Implementations," Proceeding of Trends & Applications: 1980, Computer Network
Protocols, National Bureau of Standards, Gaithersburg, MD, May 29, 1980, pp. 94-109.



306

Appendix 1

PRO/TESTER COMMANDS

This appendix lists those PRO/TESTER commands which cause the transmission of frames or

packets. The other PRO/TESTER commands have to do with setting up various initial

conditions in the PRO/TESTER. For complete information concerning the PRO/TESTER refer

to the PRO/TESTER manual [Ill.

LINK LAYER COMMANDS

Below are the PRO/TESTER commands to transmit frames. The general format is command,

followed by parameters, separated by commas. Angle brackets are metasymbols used to

identify those parameters which are optional. The values of the fields in the transmitted frame

are automatically set by the PRO/TESTER, except when modified by a parameter. The

meaning of each parameter is:

Parameter

•

a=hh

c=hh

d=hh

nr=hh

ns=hh

h=hex

Meaning

Set the poll/final bit.

Set the address to hh (h
represents a hexadecimal
digit) .

Set the rejected control
field of a FRMR to hh.

Set the diagnostic field of a
FRMR to hh.

Set the receive sequence
number to hh.

Set the send sequence
number to hh.

Set the I field of an I frame
to the hexadecimal value
given by hex.



307

The commands are:

Command

disc<,*> <,a= hh>

Meaning

Transmit a DISC
(disconnect) frame.

sabm<,*> < ,a= hh> Transmit a SABM (set
asynchronous balanced
mode) frame.

ua<:> <,a= hh> Transmit a VA
(unnumbered
acknowledgement) frame.

dm<,*> <,a= hh> Transmit a DM (disconnect
mode) frame.

frmr<:><,a=hh><,c=hh>,<d=hh> Transmit a FRMR (fraine
reject) frame.

crr<:> <,a= hh><,nr= hh> Transmit a RR (receive
ready) command frame.

crnr<:> <,a= hh><,nr= hh> Transmit a RNR (receive
not ready) command
frame.

i.
crej<,*> < ,a= hh> < ,nr= hh>

rr<,* > < ,a= hh> < ,nr= hh>

rnr<: > <,a= hh> <,nr= hh>

rej<,*> <,a= hh> <,nr~ hh>

Transmit a REI (reject)
command frame.

Transmit a RR response
frame.

Transmit a RNR response
frame.

Transmit a REI response
frame.

i< ,*> < ,a= hh> <,nr= hh>
<,ns= hh> <,h= hex>

Transmit an
(information) frame.

I

crc

abort

o,h= hex

Transmit a frame with a
Cyclic Redundancy Check
(CRC) error.

Transmit an aborted frame.

Transmit a frame whose
hexadecimal representation
is given by hex.



308

For example the command:

i,· ,ns== 5,h== 4444

causes the transmission of an I frame with the poll bit set, the send sequence number equal to

five, and·an I field of 4444. The values of the other fields (address, receive sequence number)

would be automatically set by the PRO/TESTER according to its current state.

PACKET LAYER COMMANDS

Below are· the PRO/TESTER commands to transmit packets. The general format of the

commands is the same as that for link layer commands. The meanings of the parameters are:

Parameter

l.... hhh

c-=hh

q

db

m

PI'"'" hh

ps-hh

Meaning

Set the logical channel
identifier (LCI) to hh.

Set the cause field to
hh.

Set the qualifier bit in
the general format
identifier (GFI).

Set the GFI and the
first four bits of the
LCI to hh.

Set the delivery
confirmation bit in the
GFI.

Set the more data bit.

Set the packet receive
sequence number to
hh.

Set the packet send
sequence number to
hh.



h=hex

309

Set the User Data field
of a DATA packet to
the hexadecimal value
given by hex.

The following are the PRO/TESTER commands to transmit packets:

Command

r<,fi= hh> <,c.. hh>

rc<,fi= hh>

c<,fi= hh> <,1= hhh>

acp<,fi= hh> <,1= hh>

int<,fi= hh> <,1= hhh> <,q>

intc<,fi= hh><,I= hhh><,q>

rst<,fi= hh> <,1= hhh> <,c- hh>

rsc<,fi= hh> <;1= hhh>

rr<,fi= hh> <,1= hhh> <,pr= h>

rnr<,fi= hh> <,1= hhh> <,pr= h>

d<,fi= hh> <,1= hhh> <,q> <,m>
<,db> <,pr= h><,ps= h><,h= hex>

clr<,fi- hh><,I= hhh><,c= hh>

clrc<,fi= hh><,I= hhh>

Meaning

Transmit a RESTART
packet.

Transmit a RESTART
CONFIRMAnON
packet.

Transmit a CALL
packet.

Transmit a CALL
ACCEPTED packet.

Transmit an
INTERRUPT packet.

Transmit an
INTERRUPT
CONFIRMAnON
packet.

Transmit a RESET
packet.

Transmit a RESET
CONFIRMAnON
packet.

Transmit a RECEIVE
READY packet.

Transmit a RECEIVE
NOT READY packet.

Transmit a DATA
packet.

Transmit a CLEAR
packet.

Transmit a CLEAR
CONFIRMATION
packet.



p,h=hex

For example the command:

310

d,l= 001 ,ps= 4,h= 44

Transmit a packet
whose hexadecimal
representation is given
by hex.

causes the transmission of a DATA packet over LCl001, with a packet send sequence number·

of four, and a User Data field of "44". The other fields (packet receive sequence number, OFI,

the M bit) would be set according to the current state of the PRO/TESTER.

The c command has additional parameters not listed here, having to do with the user facilities

selected. Moreover, there exists eacp, and eclr commands, for "extended" acp, and "extended"

clr, respectively. These commands also have additional parameters, not listed here. Refer to

[11] for more information.



311

THE DESIGN OF THE CSNET NAME SERVER

(Preliminary Report)

Marvin Solomon
Lawrence H. Landweber

Donald Neuhengen

University of Wisconsin--Madison

1. INTRODUCTION

CSNET is a new computer communications network being con
structed . that will link together University Computer Science
departments and other groups doing computer science research in
the United States. An. important component of CSNET will be a
directory service called the CSNET Name Server, which is imple
mented by a central database at the University of Wisconsin and
by software running at Wisconsin and on the computers of member
institutions. This paper describes the architecture of the name
server facility.

In early stages of CSNET, the principal use of the name
server will be to facilitate sending of electronic mail by pro
viding such services as directory assistance in locating ad
dresses of mail recipients, and aiding in forwarding mail and es
tablishment of nicknames and aliases. It is on this aspect of
the name server that this paper focuses. In later stages of
CSNET, the name server will also help support other facilities
such as file transfer and remote access to computing resources.

In the next section,
how its characteristics
server. The structure of
in [1,2].

we briefly describe CSNET
have influenced design
CSNET is described in

and explain
of the name
more detail

We have designed the name server to be implemented in a
series of phases, progressing from facilities that already exist,
through more and more sophisticated structures, to a system that
will eventually provide all desired features. In doing so, we
have attempted to be conservative in early phases, using the sim
plest structure that will fulfill the immediate needs of CSNET
users, while leaving the door open for more ambitious enhance
ments in the future. While the services described here will be
implemented with available CSNET staff and resources, we expect
the project to identify several challenging research areas.



312

Section 2 describes CSNET and discusses project characteris~

tics which have influenced the name server design. Section 3
describes name server design requirements and implementation per
formance goals. Section 4 includes definitions of terms and an
outline of' the various phases. The four phases of the name
server implementation are described in Sections 5-8. Section 9
briefly addresses the issue of mailing lists, and Section 10 pro
vides a summary and comparison to related work.

2. OVERVIEW OF CSNET

CSNET is a logical network which uses communications ser
vices provided by ARPANET [3], the commercial value-added network
Telenet, and a telephone-based mail relay service called
PhoneNet. Member institutions access the services of CSNET by
connecting a computer ("host") to ARPANET or Telenet, or if their
budget is limited and they are willing to accept reduced service,
by arranging for their host to exchange mail periodically with a
PhoneNet relay machine which is directly connected to ARPANET and
Telenet. CSNET will provide electronic mail, file transfer, and
remote login (virtual terminal) services to directly-connected
hosts. PhoneNet hosts will only have access to electronic mail
services. In addition, CSNET maintains a public Host, which is a
VAX computer connected to ARPANET and Telenet, running the UNIX
operating system, and providing mail-only accounts to individuals
who do not have access to any other CSNET member host. Although
CSNET is being subsidized in its initial stages by the National
Science Foundation, it is expected to become self-supporting in a
few years, with all members paying a fair share of the costs.

One of the challenges of CSNET is to reconcile the differ
ences between characteristics of these communications media and
provide users with as 'uniform an interface as is possible. AR
PANET provides a high-bandwidth, low-delay communications path
between computers connected to it. Telenet provides similar (but
lower bandwidth) service, but whereas the cost of an ARPANET con
nection is fixed, Telenet charges are highly dependent on the
amount of traffic. PhoneNet charges are even more dependent on
traffic, since the only fixed charges are the cost of a modem and
a telephone line. However, a much more important difference
between PhoneNet and direct connection is delay. CSNET clients
not directly connected to ARPANET or Telenet must rely on period
ic exchanges of mail with a PhoneNet relay machine for their con
nection to the network. The frequency of such exchanges may be
as low as once daily. We shall see that these wide variations in
delay (from minutes or seconds to days) is an important con
sideration in the design of the name server.



313

3. GOALS

The name server facility is designed to satisfy the follow
ing service requirements:

1.

2.

3.

4.

The system must be simple to use. While most CSNET users
will be computer science researchers, many will betheore
ticians who have little experience with computer-based mail
systems.

A sender of mail may identify a recipient in a variety of
convenient ways. A user may refer to frequent correspon
dents by nicknames of his own choosing. In addition, a
host may make available to its users aliases for other
hosts and users.

A receiver of mail may supply the information others use to
identify him. For example, he can supply his fUll name,
organization, location, title, nicknames, common misspel
lings of his name, etc.

/
Mail may be sent to any user of any host in CSNET, without
prior explicit effort on the part of the receiver, although
reduced services will be available for communication with
"unregistered" users. Similarly, CSNET user~ must be able
to communicate with others "outside" the network, in par
ticular users on hosts in the DARPA Internet address space
but not running CSNET-specific software.

5. The mail system will never force a user to use
one "mailbox" to receive mail, although a user
to establish more than one mailbox to reflect
roles. In the latter case, each mailbox may be
as representing a different "virtual user".

more than
may choose
differing

thought of

6. A user can move his mailbox to a different host computer
with a minimum amount of difficulty. Senders need not be
explicitly notified~ mail will be automatically forwarded.

7. Support will be provided for mailing lists.

In addition to these service requirements, the implementation is
designed to satisfy the following additional performance and
utility goals:

1. The system should expand gracefully to include more member
sites, additional users, and even additional networks. In
particular, anyone able to send electronic mail to the
University of Wisconsin should be" able to gain access to at
least some of the name server services.



314

2. The system design should provide for phased implementation
so that basic services can be put into place immediately,
while more sophisticated facilities may be added incremen
tally until all desired features are available.

3. Network traffic should be minimized. " Control messages
should be infrequent and user text should be sent over the
most efficient route. In particular, relaying of messages
should be minimized.

4. The system should continue to function, perhaps in a de
graded mode, if components fail.

5. Delay between the submission of a message by a sender and
its delivery to a recipient should be minimized. In par
ticular~ if the sender is on a machine that is only period
ioally connected to the rest of CSNET (a PhoneNet host),
the number of interactions between that host and the rest
of CSNET which are required to dispatch the message should
be minimized.

6. The system should work with a minimum of human interven
tion, either on the part of users or of administrative
staff.

4. DEFINITIONS

Throughout this paper, we will be talking about users and
hosts. For our purposes the term "user" always refers to a human
being (and will not, for example, be used to mean a" "user pro
gram"). A host is a computer connected to a communications net
work. Users gain access to network facilities through accounts
on hosts. For our purposes, hosts can be classified as CSNET
member hosts, that subscribe to CSNET defined conventions and run
CSNET provided software packages, and other hosts, which are ca
pable of exchanging mail with CSNET member hosts, but do not
necessarily run CSNET software. There are also CSNET run hosts
including the Service Host, a computer at the" University of
Wisconsin that maintains a central database and programs for ac
cessing it, PhoneNet relays, computers (initially at the Univer
sity of Delaware and the Rand Corporation) that periodically con
nect to other hosts to pick up and deliver mail, and the -Public
Host, a computer at the University of Wisconsin that is run by
CSNET but otherwise is treated exactly like any other CSNET
member host. Hosts may also be classified as ARPANET, Telenet,
or PhoneNet hosts depending on the principal method used to ex
change information with" the rest of CSNET. The na~e server re
lies, for many of its functions on a mail transport system, which
is a collection of protocols and programs that run on hosts and
provide the mechanism for transferring messages from sources to



315

destinations. Users normally interact with the mail transport
system through a user-interface program (UIP), which is a program
that interacts with users for composing, sending, receiving,
reading, and filing messages.

The various services and mechanisms described in this paper
comprise the name server facility. It is provided by a combina
tion of files and programs residing on the Service Host and on
other CSNET member hosts. The name server database is a database
which includes directory information for registered CSNET users
and hosts and which is distributed among a central directory da
tabase that resides on the Service Host, ~-host tables that re
side on hosts that originate mail, and ~-user tables maintained
by local mail systems on behalf of individual users. The post
master general is a collection of software that runs on the Ser~

vice Host and mediates access to and modification of the central
directory database.

\

Users may access the name server database by sending mes
sages directly to the postmaster general. However, users will
normally compose their queries by interacting with a name server
agent program, copies of which reside on CSNET member hosts. A
copy of the agent program will also reside on the Service Host
for the convenience of users on non-CSNET hosts who have
virtual-terminal access to the Service Host. The agent programs
communicate with the postmaster general using the best means
available, either by direct connection of by exchange of messages
through themail transport system. In the latter case, there is
necessarily a large delay, so users will receive a limited level
of service.

The name serve,r facility is specified (and will be imple
mented) in fqur phases. As new phases are implemented, all
features provided by earlier phases will remain available to
users. Phase 0 provides basic services and is compatible with
current addressing and naming schemes employed in the DARPA In
ternet. Phase 1 introduces a centralized directory database at
the Service Host and a directory assistance service that users
may access by exchanging mail with the postmaster general. In
Phase 2, user interaction with the directory assistance service
will be further automated. Phase 3 adds support for automatic
forwarding of mail and for mailing lists.

5. PHASE 0: BASIC SERVICES

Phase 0 provides services which are very close to those
currently available in the DARPA Internet environment. Each host
in CSNET has an unambiguous name, such as "UWISC", "UDEL", or
"WASHINGTON". A site with a local network may choose to desig
nate a particular computer to serve as a gateway host to CSNET
and assign it a name which designates the site. Arpanet hosts



316

already have unambiguous names. Hosts that currently exchange
mail using the Bell Laboratories "uucp" system also use unambigu
ous names. As sites join CSNET, they will register their hosts
with the CSNET administration, which will certify that names are
not duplicated. (By "unambiguous" we mean that no two hosts will
have the same name; there is no reason to prevent a host from
having more than one name.)

Users interact with the mail system through accounts on
hosts that are assigned user names. Each host will guarantee
that a user name unambiguously identifies one mailbox on that
host. In other words, "user name" represents some name for a
mailbox that is printable, is assigned by a host administration,
and identifies a unique mailbox on that host. Hence the pair
"user-name@host", which we call a mailbox address, can be used to
uniquely identify any mailbox in CSNET. Current mail transport
systems deliver messages based on this pair. A user who knows
the mailbox address of a recipient may always use it to specify
the destination of a message although, as we shall see, other
more convenient methods will be available in later phases.

6. PHASE 1: DIRECTORY ASSISTANCE

Phase 1 augments the basic facilities described in the pre
vious section with a "directory assistance" service. A central
directory database on the Service Host contains information about
users. Each entry in this database contains the address of one
mailbox, together with information identifying the owner of that
mailbox. This information is supplied by the owner and includes,
at a minimum, his full name and the name of his organization
(e.g., university or research lab). In addition, it may include
other keywords such as titles, aliases, and common misspellings
of the user~s name, postal address, phone number, and any other
information the user wishes to provide. Registration in this da
tabase is entirely voluntary and it is possible to communicate
with non-registered users even if their local site has not in
stalled the CSNET name server software.

The database is accessed by transmitting properly formatted
queries to the postmaster general on the Service Host. Users
will not normally communicate directly with the postmaster gen
eral but rather with an agent program that formats the request
and forwards it to the Service Host by a direct connection or by
the mail transport system. However, users of non-CSNET computers
may also query the database by mailing requests directly to the
postmaster general.

Since we intend that each user have the ability (and respon
sibility) to maintain the database entry describing him, certain
access controls must be in place from the very beginning to main
tain the integrity of the database.



317

6.1 Registering

The user adds or modifies entries in the database by in
teracting with his local agent using the commands "register",
"update", and "unregister". The local agent creates a message
containing the user request to insert, modify or delete a central
database entry and sends it to the postmaster general either
directly, or by mailing it to the address "REGISTRAR@CSNET-SH".
The postmaster general will parse the message and perform the re
quested operation.

6.2 Authentication

An important issue is authentication of a user requesting
insertion or modification of an entry. Each member organization
will provide a key (password) when it joins CSNET. This key will
be kept in encrypted form at the Service Host. The administra
tion at the site will be responsible for controlling its distri
bution and for changing it when appropriate.

A user at a member host who wishes to register himself in
the database interacts with his local agent. This agent runs as
a privileged program that has access to the site password. The
agent engages in a dialogue with the user to authenticate his
identity (for example, by asking for a .password) and verifies
that the proposed database entry is appropriate to the user (in
particular, that the "mailbox address" field properly identifies
the user). Having satisfiea itself of the validity of the re
quest, the agent formats it, encrypts it using the site password,
adds an unencrypted header identifying the local site, and for
wards it to the postmaster general. The postmaster general de
crypts the request and installs the information in the database.

This scheme delegates authority for authenticating users to
the member sites. Each site is held responsible for all database
entries that identify a mailbox located at that site. The agent
program (which is provided by CSNET) gives a mechanism for con
trolling these entries. A user cannot bypass this mechanism and
send a registration request directly to the postmaster general
because he does not know the site password. A user of a non
member computer may not mail a request for a new entry directly
to the postmaster general, nor may he add an entry by interacting
with the copy of the agent program that resides on the Service
Host (since the latter has no way of authenticating him). In
other words, only users of csnet member hosts can add entries to
the database, and they may only do it from their home machines.

Upon registration, a user may provide a password to be used
by him when modifying or deleting his directory database entry.
This password will only be required if the user initiates a
change request from a host other than his home machine. The pur
pose of this feature is to allow users to modify their database



I
)1

!
II

/1II
I I,

I I
/ ,

I ,

318

entries from hosts other than the one specified in their mailbox
address. It is particularly useful when an individual moves to a
new site and changes his mailbox address. The postmaster general
will inform the host specified in the original database entry
that the entry has been changed. This notification will provide
an additional check to insure that the change is authorized.

To perform housekeeping functions, particularly deleting of
defunct entries, a site may authorize a special trusted user
named "csnet" to perform commands on behalf of other users at
that site.

This authentication mechanism is not "airtight", but should
provide an adequate level of protection at modest cost. More im
portantly, it delegates authority for security, so that if
breaches are detected, the responsible party may be identified.

An interesting example of a fraud that is not prevented by
this scheme might be called "false advertising". The owner of
mailbox vesGo@costa-rica inserts an entry addressing his mailbox
but including keywords that match some other user, with the in
tent of fooling users into sending mail for the other user to the
perpetrator~s mailbox. This ruse would be particularly perni
cious when lookup is automated so that human users don~t normally
even look at the mailbox address returned (see Phase 2). The si
tuation is comparable (in the non-electronic world) to Marvin
Solomon putting an advertisement in the newspaper saying that the
address of the First National Bank of Madison is 850 Terry Place
(Solomon~s home address). The' name server mechanism cannot
prevent such a fraud without understanding the semantics of all
the keywords in an entry. But the injured party, if he discovers
that mail is being misdirected, can ·query the central database to
find the bogus entry. Similarly, a sender might notice that cer
tain queiies identify two entries, one of which looks suspicious,
and report the fraud. Once the fraudulent entry is found, the
culprit can be traced, at least as far as his host.

Authentication is a difficult but important area. Further
study will be required if a more elaborate scheme than that
described above is found to be necessary.

6.3 Using the Database

To access the central directory, a query is delivered to the
postmaster general or mailed to it at the address
NAMESERVER@CSNET-SH. Normally, users will use the "whois" com
mand of the agent to compose such a request. The query will in
clude lists of mandatory and optional keywords. Only entries
that contain all mandatory keywords will be selected. If more
than one entry matches, the optional keywords may be used to
select the entry with the most matches, or the postmaster general
may be instructed tO,return only entries containing at least k of



319

the optional keywords.

Keywords can be parameterized so as to allow specification
of pattern matching. Keywords may also contain "wild cards" to
allow inexact matches. For example, the keyword "landwe*er" can
be used by those not knowing whether his name is spelled as
"landweber", "landwever", or "landwebber". Upper and lower case
are considered equivalent for matching purposes, but the entries
will be displayed to the requester in the same case as they were
originally specified at registration. The requester can then
select the appropriate entry (if there is more than one match)
based on other information in the entries, land uSe the mailbox
address included in the entry to send mail.

The provision of mandatory and optional keywords is primari
ly for the benefit of the user of a PhoneNet host, to maX1m1ze
the chances of him getting the right answer on the first try.
Too few keywords will flood him with bogus matches, but too many
mandatory keywords may exclude valid matches. The ability to get
a unique match on the first try becomes particularly beneficial
in phase 2 (as we shall see).

Incidentally, directory assistance could be useful for ser
vices outside CSNET proper, such as looking up a user's phone
number or (U.S. Post Office) mailing address.

6.4 Example

Here is a sample use of the name server in phase 1: To make
it easier for others to find Marvin Solomon, he issues the "re
gister" command to the agent, which engages in a dialogue with
him to authenticate his identity and gather information about
him. It then composes and encrypts a message to REGISTRAR@CSNET
containing text something like this: .

register solomon@uwisc Marvin Solomon
University of Wisconsin Madison
Computer Sciences Department
1210 W. Dayton St. Madison WI 53706
608-262-1204
soloman csnet contractor service host public host
computer science

A user who wishei to. send mail to Solomon might issue the
command

whois solomon [csnet implementor]

where the keyword "solomon" is mandatory, but the keywords
"csnet" and "implementor" are optional. There may be several en
tries containing the keyword "solomon", but the one shown above



320

is the only one containing either of the words "csnet" or "imple
mentor". He would receive the response:

In response to <whois solomon [csnet implementor]>:

solomon@uwisc
Marvin Solomon
University of Wisconsin Madison
Computer Sciences Department
1210 W. Dayton St. Madison WI 53706
608-262-1204
soloman csnet contractor service host public host
computer science .

(The response might be abbreviated in an interactive setting.)
He could then send mail to Solomon by addressing it to
"solomon@uwisc". Existing mail user interface programs generally
have a nickname (also called "alias") facility that allows the
user to say something like:

nickname marv=solomon@uwisc

bo avoid having to remember the address.

Solomon included "soloman" as a keyword, since he knew that
people frequently misspell his name that way. The user querying
the database can also protect himself from misspelling by using a
combination of wildcards and optional keywords. For example, he
could say

whois s* wisconsin [soloman soloman salemon]

7. PHASE 2: AUTOMATED LOOKUP

Phase 2 adds services to decrease the amount of interaction
required between the human user and the central database. In
particular, the mail uip and the local agent are integrated.

7.1 Automatic Nickname Establishment

In Phase 1, responses reSUlting from central database lookup
queries are always returned directly to the user. In Phase 2,
facilities will be added to automate establishment of local nick
names.

continuing the previous example, the interaction with the
name server and the establishment of a local nickname could be
combined by issuing the command



321

nickname marv = whois(solomon [csnet implementor])

to the mail uip, which would format a request and send it to the
postmaster general. (No authentication is required since no
change to the nameserver database is being requested.) If the
query matches exactly one entry, the nickname is installed in the
user's private nickname table. If no entries or more than one
entry are returned, the response is returned to the user request
ing more information. In the PhoneNet environment, the user re
ceives notification of success or failure of nickname establish
ment in the form of a message mailed to him. A facility will
also be provided by which a local administrator can install com
monly used aliases in a table accessible to all users at a site.

Finally, the user will be able to combine query of the data
base, establishment of a nickname, and sending of the first mes
sage with a command such as

send to marv = whois(solomon [csnet implementor])

The ability to combine these operations will be particularly ad
vantageous to PhoneNet users. The initial. message will be
delivered to the PhoneNet relay containing the keyword informa
tion instead of the mailbox address in the "To" field, together
with an indication to the PhoneNet relay that a lookup is re
quired. The relay composes the query to the postmaster general
and intercepts the reply. Assuming that a unique match is found,
the relay updates the message header to include the mailbox ad
dress (leaving the keyword information in as a comment) and
delivers the message as usual. It also forwards the reply from
the postmaster general back to the originating host so that the
private nickname table of the sender can be updated. The advan
tage of this scenario is that the message can be delivered after
only one interaction between the sending host and the relay. For
example, if the sending host is only polled once each day but the
destination host is directly connected, this scheme provides
next-day delivery, assuming that the list of keywords uniquely
identifies one mailbox. The reason for requiring each database
entry to include the user's full name and institution (CSNET
member organization)J is to give the careful sender a reasonable
chance of constructing a query that will match uniquely on the
first try.

We are deliberately requ1r1ng the sender to specify both a
list of keywords and a nickname with the first (or only) message
to a given recipient· rather than allowing a syntax such as
"send to marvin solomon". The reason is efficiency: If a nick~

name Is established, subsequent transmissions are much cheaper.
If it were too convenient to send using only keywords, users
would be encouraged to use keywords every time, even to send to
users they communicate with frequently. On the other hand, a
special syntax might be provided for sending to a user just once



322

(that is, avoiding the establishment of a local nickname), pro
vided it was sufficiently awkward as to discourage its use if
there is a reasonable chance of sending to the same user again.
An example syntax might be

send to temporary-nickname = whois(marvin solomon)

with the nickname "temporary-nickname" given the special seman
tics that results of the lookup are not to be returned to the
sending site unless there is an error (such as multiple matching
entries).

8. PHASE 3: FORWARDING

Suppose an existing user is assigned a mailbox on a new
host. Under some circumstances, he may want that mailbox to be
considered different from his previous mailbox. For example, he
changed jobs. Under existing mail transport systems, a message
sent to the old mailbox (assuming it was deleted) will be re
turned to the sender with an indication that the mailbox no
longer exists. A user who is really interested in sending to him
as a person, rather than in his official capacity at his old job,
could query the database to determine his new address and resend
the mail. This situation corresponds closely to the telephone
system (where "address" corresponds to phone number). However,
under other circumstances, the user would like the change of ad
dress to be invisible to his correspondents. For example, sup
pose he is moved to a different host on the basis of an adminis
trative decision such as load-leveling, or he is temporarily
visiting another site and finds it more convenient to have mail
forwarded there (compare with the phone company"'s new "call for
warding" service).

8.1 The Forwarding Mechanism

To simplify various aspects of forwarding, each nameserver
database entry will contain a registration IDthat uniquely and
unambiguously identifies the database entry. 'This ID is included
in database entries from the start, but only comes into play in
Phase 3. (This idea was inspired by a suggestion of Denning and
Comer [4)J The mail uip will be modified to include the regis
tration ID in per-user nickname tables. For example, if a user
types

nickname marv = whois(solomon [csnet implementor])

the nickname table will store, under the entry "marv" not only
the mailbox address (solomon@uwisc), but also the registration ID
for the associated database entry.



323

The forwarding mechanism is best described by an example.
Suppose Pat Kane is at site A and has a mailbox with address
"pat@sitea". He moves to site B and is refused the name "pat" as
his mailbox name since there is already a pat there, so he
chooses the name "pkane". The mailbox pat@sitea is deleted from
site A. Users who bypass the CSNET name service entirely and
send to "pat@sitea" will have their messages returned as un
deliverable. They must learn from channels outside of CSNET
(such as word-of-mouth) that mail to Pat Kane must now be ad-
dressed to "pkane@siteb". However, Pat Kane may inform the post
master general that he has moved. (Authentication of the infor
mation will use a similar mechanism to that described above for
registering users.) His entry in the central database is updated
to indicate his new mailbox address, so that new correspondents
looking for him by keyword search will find his new address. Old
correspondents will still have mail, returned, but now senders who
use the name server can have their local mail systems recover
without manual intervention.

Suppose the sender has established an alias for Pat Kane by
the command

nickname pk = whois(pat kane)

When the nickname was established, the local tables for the
sender received an entry such as

pk : pat@sitea (CSNET-ID: 0012345)

When the sender tries sending to "pk" after Pat has moved, a mes
sage addressed to "pat@sitea (CSNET-ID: 0012345)" is sent to
SITEA, refused, and returned to sender. The sertder~s uip can
query the postmaster general to find out if there have been any
changes in entry 0012345. In this case, the postmaster general
sends the new address "pkane@siteb", the sender~s uip updates its
tables to read

pk : pkane@siteb (CSNET-ID: 0012345),

and re-sends the letter to "pkane@siteb (CSNET-ID: 0012345)".
The sending user is never bothered, all his future mail to "pk"
will be sent directly to the correct address.

One additional &omplication arises. Continuing the previous
example, suppose after Pat Kane leaves site A, Pat Able appears
and wants to be known locally as "pat". She might well be unhap
py about being told that she couldn~t use the name "pat" because
there once was man named Pat Kane who already reserved that same
name. On the other hand, SITEA will have no way of knowing
whether mail addressed to "pat@sitea" was intended for Pat Kane
or Pat Able. Once again, senders who bypass CSNET software can
still send mail, but they receive reduced services. In this



I ,I

324

case, they run the risk of a message going to the wrong person.

If SITEA is a CSNET member site, however, it will store the
registration ID of all its local users who are registered. If an
incoming message contains a registration ID that does not match
the registration ID of the addressee, the message will be reject
ed. When Pat Kane changed his address to "pkane@siteb", the
postmaster general informs SITEA the the user id "pat:0012345" is
no longer valid.

8.2 Optimizations

The update message to SITEA could include the forwarding ad
dress, and SITEA could cache forwarding addresses for recently
moved mailboxes. When the letter addressed to "pat@sitea
(CSNET-ID: 0012345)" arrives at SITEA, SITEA could then send it
directly to pkane@siteb rather than returning it to the sender.
It should still inform the sender of the change, and the sender
may well wish to check the new address with the postmaster gen
eral rather than trusting SITEA, but the delay in delivering .the
letter would still be reduced from five message-transition times
(sender to SITEA; SITEA to sender; sender to Service Host; Ser
vice Host to sender;. sender to SITEB), to two (sender to SITEA;
SITEA to SITEB). The possibility of this sort of forwarding
raises difficult problems in billing, however (e.g., who pays for
the forwarding hop and how is he billed), which are beyond the
scope of this paper.

Another optimization is based on the observation that it is
common for several users at one site to correspond with the same
person. If they all have obsolete nicknames for him, the over
head of a misdirected message can be moved from the first time
each of them sends to him to the first time any of them sends to
him. Instead of storing the entry "pk : pat@sitea (CSNET-ID
0012345)" in the nickname table for a user, we can store an entry
like "pk : 0012345" in the per-u~er table and maintain a per-host
table with the entry "0012345 : pat@sitea".

9. MAILING LISTS

All the mechanisms described thus far are techniques for
discovering the address of one mailbox. There is nothing to
prevent them from being used repeatedly and in combination to
develop mUltiple addresses on a single message, such as

send to marv,
-larry = whois(lawrence landweber wisconsin),

donn@uwisc

which names the three authors of this note by a nickname, a key
word search, and a mailbox address, respectively.



325

A related facility is the mailing list which is a name for a
list of mailboxes that are often used together. Existing user
interface programs often provide a mailing list function using
the nickname facility to do a macro expansion of a mailing list
name. In Phase 3, the CSNET name server will allow users to re
gister mailing lists in the central directory database. A mail
ing list entry is similar to other entries in that it contains a
list of keywords and a mailbox address of a user responsible for
the entry. But it also contains a list of mailbox addresses. A
request to add a mailing list to the directory contains the key
words as well as de~criptions of the members, specified by any
convenient means (i.e., keywords, nickname, or mailbox address).
On receiving such a request (which must pass the usual access
checks), the postmaster general resolves each member to an ad
dress and stores the list of addresses. If any member specifica
tion fails to resolve to a unique address, the request will be
returned to the sender for correction.

When a mailing list is installed, the postmaster general
will send a message containing the names of all the members to
each member. (There might be circumstances under which this no
tification should be suppressed.) Similarly, a change in the
mailing list will generate a notification to all parties in
volved. In Phase 3, any change-of-address notice to the postmas
ter general will also cause changes to all lists that contain the
obsolete address.

10. COMPARISON TO OTHER WORK

Several reports have been published on "name servers" for
computer networks [5,6,7]. A particularly interesting related
name server design is the Xerox Clearinghouse [8], which may use
mail transport services provided by the Grapevine [9] system.
While Grapevine is primarily a mail transport system, it also
provides for naming, authenticating, and locating people,
machines, and services in a multi-network environment. The Clear
inghouse is a system for naming and locating objects in a distri
buted environment. Both of these systems are designed to operate
in an inter-network environment with associated databases and
services distributed among different machines on different net
works. Therefore, many of the complications that concern the au
thors of these papers, such as how to find a name server, do not
arise in our context, in which there is a unique name server at a
well-known address. On the other hand, these systems are
designed for environments in which message-passing is cheap and
quick, and in which broadcast is a viable means for locating ser
vices. It is not clear how to apply their techniques in an en
vironment in which a single message "hop" can take more than a
day.



326

Another difference has to do with how the sytems are to be
used. Clearinghouse objects (including mailboxes) have a three
p'art Il name ll of the form object@domain@organization. Our strategy
for mailbox addresses is similar, unambiguous host name together
with a username that is unambiguous relative to the host. In the
Clearinghouse system, a three-part name is used to obtain infor
mation about the associated object. Besides wildcard characters,
which may be used to aid in matching a name, the user is not pro
vided with any assistance in locating the desired database entry.
In our system, the primary goal is to facilitate lookup of mail
box addresses based on incomplete information. Hence, it is not
necessary to know any particular piece of information such as the
user~s complete name to locate his entry.

11. SUMMARY

We have presented a detailed specification of a name server
facility for CSNET and have sketched out the algorithms for im
plementing it. The facility is implemented by a postmaster gen
eral program running on the Service Host and local agent programs
running on local hosts. The facility will be implemented as a
series of enhancements to existing services, each adding more
convenience for users. It assumes a mail transport system that
can deliver a message when presented with a list of destination
addresses. It also allows for interactive database access in
cases in which the user or the user~s host is capable of direct
connection to the Service Host.

We have deliberately avoided discussing issues involving the
mail transport system, such as routing, mail relays, mUlticast
delivery, or reply-to-sender, except as they are directly related
to the name server, but we do not believe that the name server
facility creates any new problems in these areas since address
specifications ultimately resolve to addresses in the style al
ready in use. We have also not tied the name server specifica
tion to a particular mail interface program.

The techniques for implementing the algorithms described
here are well understood, and tools (such as a flexible filesys
tem, inverted indices, and encryption programs) ~re already in
place in the operating system for the Service Host. Therefore,
we feel that the name server can be implemented quickly and begin
to provide services to users soon. Phase 1 of the name server is
currently being implemented with test release scheduled for Janu
ary 1982.



327

12. ACKNOWLEDGMENTS

We gratefully acknowledge helpful comments from Vint Cerf,
Keith Lantz, and Jon Postel. Continuing discussions with Doug
Comer, Peter Denning, and Mike Litzkow have been have been very
valuable in crystalizing many of the ideas in this paper.

13. REFERENCES

[1] Lawrence H. Landweber, "CSNET - A computer research
work," Proposal to the National Science Foundation,
tober, 1980).

net
(Oc-

[ 2] L. Landweber and M. Solomon,
CSNET-DN-8l-l, University of
Sciences (August, 1981).

"The structure of CSNET,"
Wisconsin--Madison Computer

[3] L. G. Roberts and B. D. Wessler, "Computer network develop
ment to achieve resource sharing," Proceedings of SJCC, pp.
543-549 (1970).

[4] P. Denning and D. Comer, The CSNET user environment, Comput
er Science Department, Purdue university (July, 1981) unpub
lished note.

[5 ] J. R. Pickens, E. J. Feinler,
mental network information
lEN 103, SRI International,
1979) •

and J. E. Mathis, "An experi~

center name server (NICNAME),"
Menlo Park, California (May

[6] J. R. Pickens, E. J. Feinler, and J. E. Mathis, "The NIC
Name Server--A datagram based information utility," Proceed
ings 4th Berkeley Workshop on Distributed Data Management
and computer Networks, (August 1979 on Distributed Data
Management and Computer Networks) ) •

[7] J. Postel, Internet Name Server, Information Sciences Insti
tute, University of Southern California (May 1979).

[8] D. C. Oppen and Y. K.Dalal, "The Clearinghouse: A decen
tralized agent for locating named objects in a distributed
environment," Technical Report OPD-T8l03, Xerox Office Pro
ducts Division (October 1981).

[9] A. Birrell, R. Levin, R. Needham, and G. Schroeder., "Gra
pevine, Ii Proceedings· of the 8th ACM Symposium on Operating
Systems Principles" (To-appear;-December, 1981)-.-





329

ON THE CORRECT AND EFFICIENT SCHEDULING

OF TRANSACTIONS IN A HIGHLY PARALLEL DATABASE MACHINE*

Ravindran Krishnamurthy
IBM Thomas J. Watson Research Center

Yorktown Heights, New York, 10598

Umeshwar Dayal
Computer Corporation of America,

Cambridge, Mass.

Abstract

This paper proposes a two-step techniqu,e for producing correct and highly parallel

schedules for MIMD, (multiple instruction stream, multiple data stream) database machine. A

parallel program schema model for transaction systems is presented. The concept of correct

(Le. serializable) executions existing in cocurrency control theory for the sequential model is

extended to this parallel model. The model is used to derive minimally constrained schemas for

optimal scheduling. This constitutes the first step of the two-step technique. In the second

step, the transactions are partially interpreted to enhance parallelism. A high level query

language is chosen, for which a set of transaction modification rules are presented. A practical

scheduling algorithm is proposed to obtain a highly parallel schema.

1. Introduction.

Parallel (i.e. multiple instruction-stream, multiple data stream) database machines such as

DIRECT, have been proposed with the objective of enhancing processor utilization and

* Most of this work was done while the authors were associated with the Computer Science
dept. at The University of Texas at Austin, Austin, ix.



330

achieving high transaction throughput [DeW78]. Improving processor utilization requires the

efficient scheduling of transactions (for parallel execution) on available processors. But a

parallel execution of transactions requiring access to shared data, can lead to race conditions

and inconsistent states of the database, unless some synchronization (concurrency control)

mechanism is used [EGLT76]. This underscores the importance of both synchronization and

efficient scheduling to achieve correct (Le. serializable) and maximally parallel executions.

The DIRECT machine uses locking in the front-end as its synchronization mechanism.

However, this seems unduly restrictive and may even be prohibitive for very high throughput

machines. No other synchronization mechanisms for parallel database machines have been

proposed in the literature. On the other hand, a wealth of concurrency control theory has

been developed for centralized and distributed data base systems, assuming a sequential model

of execution [BSW80, Papa79, BSR80). In this paper, we extend this theory to a parallel

model of execution and use it to derive the minimal set of precedence constraints for schedul

ing.

Our model of a database system is shown in figure 1.1. Users submit transactions (each

consisting of several steps) to the system. A set of these transactions, called a transaction

system, is input to the scheduler, which exa~ines the transactions for potential conflicts and

imposes a partial order on the transaction steps. The scheduler outputs a precedence' graph

(called a schema) corresponding to this partial ordering, for execution on the database

machine. The transaction system is then executed by the machine using some low-level

processor allocation policy. We are concerned here with the problem of representing a

transaction system using minimal precedence constraints so that any execution satisfying these

constraints is correct. An execution is correct if and only if it is serializable, Le. equivalent to

some serial execution. In the existing concurrency control theory for the sequential model of

execution, both in centralized and distributed systems, a transaction is modelled as a sequence

of operations. The execution of a transaction system in the centralized case is also modelled

as a sequence of operations, perhaps with steps of different transactions interleaved in it. This

sequence is called a history. A given history is serializable if and only if it is computationally

equivalent to a serial history, which defines a total ordering on the transactions in the system

[BSW79, Papa79]. In the distributed case, an execution is modelled as a set of histories, one

for each site. A distributed execution is ·serializable if and only if the history at each site is

serializable and the equivalent serial histories at all sites impose the same total ordering of

transactions.



331

transactions G result.. SCHEDULER - DB machine,
from users

T i = (til'ti2' .... tikJ = a sequence of transaction steps.
I

T = set of all transaction steps.

G = Schema output by the scheduler.

Fig. 1.1 Model of a database management system.



332

A sequential ordering of transactions steps does not exploit the full power of a parallel

machine. Gouda [Gou80] has extended this sequential model of a transaction and a transaction

system to a directed acyclic graph (DAG). The edges of the DAG impose precedence const

raints on conflicting pairs of transaction steps. In the first part of this paper, we formalize this

model using parallel program schemata theory [Ke1l73] and extend the notion of serializability

to this model. We then derive a minimal set of precedence constraints for a transaction system

to satisfy this correctness criterion.

Most proposed concurrency control mechanisms use uninterpreted transactions, Le. they

use only syntactic information such as the read and write sets of the operations in the

transaction steps. It has been shown in [KP79] that greater concurrency can be achieved if

semantic information is· utilized in addition to purely syntactic information. In the second part

of this paper we show how to exploit semantic information to modify transaction steps and

thus increase parallelism even further. For example, in an airline reservation system, if there

are five (simultaneous) requests for seats on a particular flight, most systems of today will

satisfy these requests one by one. We present an algorithm that modifies these requests so

that instead of executing sequentially, they can run in parallel. This is accomplished by

making one request to update the number of reserved seats in the database by 5 and making

all the others only read the database. Thus, all the five requests can be made to run 'in parallel.

Thus, this paper proposes a two-step technique for producing correct and highly parallel

schedules: first, construct a schema with minimal precedence constraints; then, modify it using

semantic information to increase parallelism.

Section 2 presents a parallel program schema model of a transaction and defines the

notion of syntactic and semantic equivalence of schemata. Using this, the scheduler, the

schema for a transaction system, and an execution of a transaction system are. formally

defined. In section 3, correctness criteria are presented for each of these, together with a

method for syntactically constructing a correct execution schedule with minimal precedence

constraints. Section 4 extends the theory to incorporate semantics by partially interpreting the

transaction steps. Here, a high level query language like QUELO [HSW73] and a class of query

processing strategies is chosen; a set of transaction modification rules are proposed for

transforming the schema (Le. the execution schedule) in this environment. A viable scheduling

algorithm is proposed to obtain a highly parallel schema.

2. Model of a Transaction System



333

In this section we adapt the general model of parallel program schemata developed in

[Ke1l73] to database transaction systems. First section reviews the terminology, followed by

the presentation of the formal model of a transaction system. We first review the terminology

and then present the formal model of a transaction system and discuss the properties of the

model.

2.1. Terminology

The database is viewed as a shared memory DB, consisting of a countably infinite

number of cells or data items. Transactions and transaction systems are modelled as schemata,

defined over a set of operations. Each transaction step is an operation, and henceforth, we

use these two terms synonymously. Assqciated with each operation tjj,(jth step of the

ith transaction) are two finite sets D(tij)~DB the domain of t jj and R(tij)~DB, the range of

twIntuitively, each operation reads the elements of its domain, performs some computation on

them, and writes into the elements of its range. Also associated with tij , is a terminator, an

atomic event (Le., indivisible and mutually exclusive) that represents the commitment of the

operation.

The domain and range of an operation provide purely syntactic information. To express

the semantics of the operation (Le. the actual computation performed by it), an interpretation

is required. An interpretation for an operation set defines a universe of values and an initial

assignment of values to the database DB; and, for each operation tij , a set of functions which

map D(tij ) into R(tij ).

2.2 Formal Model

As we are interested initially in developing a model based purely on syntactic information,

a schema is defined independent of any specific interpretation. In section 4 we extend this

concept to incorporate partially interpreted operations.

A parallel program schema, (or simply a schema) over a transactions system f7, is a

directed acyclic graph G= (T,E), where T is the set of all transaction steps in f7, and the edges

in E represent precedence constraints on the transaction steps in T. The schema specifies

those steps which may be executed concurrently. An operation can be enabled for execution

only after all its predecessors in G have been terminated. So we see from figure 1.1, that the

database machine executes the transaction steps in any order, consistent with the precedence

constraints of G. So a schema is to be viewed as a set of directives for the database machine.

\
\



334

Given that the database machine has executed a transaction system 9', we represent that

execution as a directed acyclic graph. Intuitively, the execution graph depicts the order in

which the transaction steps of 9' were executed. So for every transaction step t jj that

preceded another transaction step tkP ' there is an edge (tij,tkP ) in the execution graph X. We

observed earlier that any execution ~ permitted ~ ~ schema G satisfies .the precedence

constraints in G. So, G must be a subgraph of X. Furthermore, note that an execution is a

partial order, because some of the transaction steps were executed in parallel.

In particular, we are interested in a special kind of non-parallel execution that imposes a

total ordering of transactions and whose graph is the transitive closure of a chain. In this

execution, only one transaction step is executed at any time and each transaction is run to

completion before the next transaction is started. Such an execution depicts a sequential

execution of transactions in a uni-processor environment and is called a serial execution. This

is defined as follows: For a transaction system 9', and a permutation p of {l,2,3,... ,n}, (where

p is viewed as a function), a serial execution corresponding to p, (denoted SXp)' is an

execution in which all transaction steps of Tp(j) are executed before any transaction step of

Tp(k) is executed, iff p(j)<p(k). Further, if a schema G+ = SXp for some permutation p, then

G is called a serial schema.

The serial execution is a non-interleaved execution of transactions. Therefore, it is said

to be correct because it preserves database consistency (assuming that each transaction

executed by itself, starting from a consistent state leaves the database in a consistent state)

[EGLT76]. If we can show that a given execution X is computationally equivalent to some

serial execution, then we can guarantee database consistency. First we define the notion of

computational equivalence.

2.3. Computational eguivalence

To formally define the notion of computational equivalence, we must first define compu

taton sequences. Properties of a schema (or an execution) can be inferred from the properties

of the associated set of computation sequences. This technique was used in parallel program

schema theory and we adopt the same technique here. A computation seguence (or comp) for

a schema G (or an execution X), is a string x € HIST such that x is a total order consistent with

the partial order defined by the schema G (or the execution X). Intuitively, a comp is a

sequence of terminations representing a permissible order in which the effects of the transac

tion steps could be committed.



335

For an execution X (or a schema G), the set of computation sequences corresponding to

X (or to G) is denoted by COMP(X) (or COMP(G». If X is an execution permitted by G,

then G is a sub-graph of X. Consequently, any comp of X is a comp of G, i.e.

COMP(X) !;COMP(G). Therefore, COMP(G) represents all possible committing sequences of

any execution permitted by G.

2.3.1. Semantic Equivalences: Intuitively, we expect two computation sequences X,YE HIST to

be equivalent if for every interpretation, they behave identically; Le. starting with the same

state of the database DB, x assigns the same sequence of values to every data item d in DB as

y does. Since this must be true for all interpretations, we can formally define this equivalence

using the notion of an Herbrand interpretation [Mann74]. Herbrand interpretation for the dth

data item, (denoted Hd(x», is an encoding of the final value of the dth data item after the

termination of the computation sequence x, under the Herbrand interpretation. Given two

comps: x,YEHIST, they are said to b.· . o'lated by the equivalence relation Ec iff the sequence

of values stored in data item d in both cases are the same. This can be formalized by defining

a trace for each data item as follows:

where

if d;R(xj)

if dER(x j),

jX is that prefix of x whose length is i, Xj is the ith symbol in the string x and A is the empty

string.

Informally, TRACEd(x) represents a trace of the values stored in data item d during x

under Herbrand interpretation. Two comps x,y EHIST are said to be related by the equiva

lence relation Ec iff for every data item dEDB, TRACEd(x) = TRACEd(y). This is denoted

by x=y(Ec). Thus we have a notion of computational equivalence relating any two computa

tion sequences of HIST. We would like to infer properties of the schema based on the

properties on COMP(G), using this notion of computational equivalence. But it would be

difficult to use this semantic definition of the equivalence relation. Algorithmic checking

requires a syntactic characterization.

2.3.2. Syntactic equivalence: An equivalence relation Ed that corresponds to Ec is adapted

from [Papa79]. Two transaction steps tij and tk1 are said to be conflict free if



336

Intuitively, if two transaction steps are conflict-free then their order of execution relative to

each other is immaterial. We define a symmetric relation~ as follows. Let x,y€HIST.x~y

iff y is obtained from x by switching two adjacent conflict-free operations. We define the

syntactic equivalence relation Ed to be the reflexive-transitive closure of~. (Since ~ is

symmetric, Ed is an equivalence relation.) It has been shown in [Kris81] that two comps are

equivalent under Ee if and only if they are equivalent under Ed' Equivalence of comps under

Ed (and hence under Ee ) can be tested in O(n2
) time.

2.4 Properties of ~ Schema

We use the equivalence relations Ee, EH to infer properties of a schema G from the

properties of COMP(G). This is motivated by the fact that every execution X permitted by

G, is associated with a set of computation sequences that is a subset of COMP(G). For

instance, if we can .show that every computation sequence in COMP(G) is in some sense

correct, then every execution permitted by G is associated with computation sequences that

are all correct. Two properties proposed in [Ke1l73] are of interest. These are equivalence

and determinacy of schemata.

Given any equivalence relation E on HIST and two schemata G} and G2 on a transaction

system g, G} and G2 are said to be E-equivalent, (written G} 5G2(E», iff

Vx€COMP(G 1) 3y€COMP(G2 ) [x5y(E)] and Vy€COMP(G2) 3x€COMP(G1) [x5y(E)]

Intuitively, both the schemata represent sets of computations that are equivalent under E. The

equivalence of schemata also implies that their COMPs represent the same equivalence classes.

The other property of interest is the determinacy property of a schema. Given any

equivalence relation E on HIST, a schema G is said to be E-determinate if for all

x,YECOMP(G), x5y(E). In other words, COMP(G) is contained in a single E-equivalence

class of HIST. Intuitively, Ee-determinacy ensures that all comps produce the same result

under any interpretation of the transaction steps. In particular, if G1 or G2 is determinate

then GI5GiE) implies both are determinate and are contained in the same equivalence class

of HIST.

We are particularly interested (as we shall see in the next section), in detecting whether a

schema is determinate. This problem is solved as follows. A schema G is said to be

conflict-preserving if for every pair of conflicting transaction steps tij and tkf , either (tij,tkf ) or



337

(tkf,t ij ) is an edge of E+ (where G+ = (V, E+), is the irreflexive, transitive closure of G).

Intuitively, conflict preserving implies that all conflicting transaction steps are totally ordered;

consequently, they cannot be executed in parallel. Then, as shown in [Kris81], Schema G is

conflict preserving iff it is Ee-determinate. Thus, Ee-determinacy and therefore,

Ee-equivalence with a determinate schema, can be checked efficiently.

3. Correctness criteria for executions, schemata, and schedulers

The concept of serializability has been used as the correctness criterion in the sequential

model of execution [EGLT76,Papa79,BSW79,PBR771 A given history is said to be serializa

ble iff it is computationally equivalent to some serial history. In this section, this correctness

critedon is extended to executions in the parallel model. Recall in the parallel model, the

execution of a transactions system by a database machine is represented by a DAG, X =
(T,Ex). We first define correct (i.e. serializable) executions. Then, we define correct schema

to be that which permits only correct executions. Finally, a correct scheduler is one which

presents the database machine (see Figure 1.1) with a correct schema.

3.1 DSR-class

An execution X is said to be DSR-serializable (or-in DSR-class)t iff there exists a serial

execution, SXp such that XsSXp (Ee ). Intuitively, DSR-serializable implies that there is a

serial execution SXp to which every computation sequence in COMP(X) is equivalent. So,

irrespective of the specific order of commits that may have occurred in the database, we are

guaranteed serializability. Furthermore, every execution X in DSR-class is a determinate

execution, as SXp is determinate (trivially!). Therefore, the recognition problem for DSR-class:

given an execution X, is X a member of DSR-class, is polynomially sovable. This can be seen

as follows. First check if X is determinate, (as shown in the previous section, check if X is

conflict preserving). If not, then X is not in DSR-class; otherwise, determine if for any

computation sequence x€COMP(X), xsSXp (ED) for some SXp , using the algorithm given

in [Papa79]. Thus we have shown that there is an efficient solution to the recognition problem

for DSR-class.

t In [Kris81], serializability has been extended to SR-class, and is shown that most schedul

ing problems are intractable. As most schedulers in practice use a proper subset of the

DSR-class, we restrict our attention to this class.



338

3.2 Correctness criteria for a schema

A schema G is said to be DSR-serializable if every execution permitted by G is DSR

serializable. We observed in the previous section that for any execution X permitted by a

schema G, COMP(X) must be a subset of COMP(G). Further, that a schema G can itself be

viewed as an execution that satisfies all the precedence constraints. It follows directly from

these observations that a schema G is DSR-serializable iff G (when viewed as an execution),

is a member of DSR-class. As there is an efficient solution for the recognition problem for

DSR-class, the schema recognition problem is also polynomially solvable.

.3.3 Correct and effiCient schedulers

We now turn to the problem of designing correct and efficient schedulers. The scheduler,

as shown in figure 1.1, takes as input a transaction system g, and outputs a schema G that is

to' be us~d by the database machine. Intuitively we would like to guarantee that every schema

produced by the scheduler is correct. If correctness were our only goal, it would be easy to

design schedulers. For example, a trivial scheduler that guarantees serializability is one that

outputs only a serial schema. This is, however, too restriCtive a mechanism for practical value

and defeats the very purpose of parallel execution in the database machine. Clearly, therefore,

in addition to correctness, there is the requirement of efficiency. We would like to design a

scheduler that, for a given transaction system, produces a schema that is the '''best'' (with

respect to some performance criteria) of all the schemata in the DSR-class. In this subsection

we discuss the problem of constructing a correct schema that imposes a minimal set of

precedence constraints. Lastly we dicuss the problem of efficient scheduling.

3.3.1. Schema for ~ transaction system: Here we present a sytactic procedure to obtain a

serializable schema, corresponding to a given serial execution SXp ' Given a serial history SXp'

we define a serialization ~ (abbreviated SR-graph) of SXp ' Gp .,,; (Vp,Ep)'

where Vp = T and Ep = {(xi,Xj) I i<j in SXp and xi and Xj are not conflict free.} It follows

from the definition of Gp that every comp in COMP(Gp) is Ecequivalent to SXp' or in other

words that Gp is DSR-serializable. (This is formally proved in [Kris81].) Further it is also

shown in [Kris81] that none of the precedence constraints in Gp is unnecessary. That is, if

any non-transitive edge of Gp is deleted, thenGp is not DSR-serializable. Therefore, Gp

represents a set of necessary and sufficient constraints to assure correctness.

The reader should note that in the above discussion we assume that we are given a serial

execution, SXp to whiCh all the scheduled executions must be equivalent, and we construct a

Gp that is both necessary and sufficient. But there are n! such serial executions. In [Kris81] it



339

is shown that the problem of choosing a p that procuces the "best" shcema, for all interesting

optimality measures is intractable. As the motivation for finding the "best" sch~ma is effi

ciency, (but finding the "best" schema is a hard problem), we present in the next section a

method for transforming a given schema to a "better" schema, by partially interpreting the

transactions. We also show that the .transformed schema will have better processor utilization

characteristics.

4. Scheduler Using Partially Interpreted Transactions

In figure 1.1 we presented a model in which the scheduler was defined to output a schema

G for the transaction system ff using only syntactic information, namely readsets and writes

ets. Thus, the two, parameters of the model are the restriction on the output and the level of

information in the input. The assumption that the scheduler outputs a schema G, restricts the

scheduler's domain of optimization to the DSR-class and this optimization problem was shown

to be intractable in [Kris8l]. It is also shown there that relaxing this assumption (by increasing

the domain of optimization to SR-class) does not simplify the problem. In this section, we

relax the other parameter of the model namely the level· of information in the input to the

scheduler. We had assumed that the scheduler uses purely syntactic information (Le. readsets

and writesets of the transaction steps) for input to the algorithm. We now redefine the

scheduling problem by modifying the input to the scheduler. This section shows how semantic

information can be used to make the problem simpler. This approach is motivated by a result

from [KP79] that a scheduler using semantics is less restrictive than a scheduler using syntactic

information alone.

Our approach is to construct a schema that is serializable and then to optimize it using

semantic information. Semantic information is incorporated by partially interpreting the

operations. Thus, each transaction step is assumed to be a statement in a high level query

language. We develop a set of rules for transaction modification. Each modification trans

forms a schema (for a given transaction system) into an equivalent schema which is better

according to some performance measure. Initially, this measure is assumed to be the diameter

of the schema (i.e. the longest path in the schema). This measure is significant because it

represents the response time, assuming an unlimited number of processors and unit cost per

transaction step. In practice, however, the number of processors in the database machine are

limited and the transaction steps have varying costs. Hence, in section 4.5 we present an

algorithm that takes both of these factors into account.

4.1 Environment



340

The database is assumed to consist of a single relation R. In a database with more than

one relation, R can be thought of as the product of all the relations. Each tuple of R has a

unique identifier (TID) and corresponds to a data item of the memory. Transaction steps. are

assumed to be statements written in some high-level relational calculus based language, such as

OUELO [HSW75]. As the exact syntax is not of concern here, we represent each type of

statement in the following manner:

1. MODIFY: MOD(targrn , qrn' R)

2. INSERT: INS(targj, qj, R)

3. DELETE: DEL(qd' R)

In each statement the qualification q is a predicate that selects a subset of the relation R

to be the operand of the operation; the target list, targ, defines the computations to be

performed on the operand. In OUELO, the qualification is a boolean combination of the form

<term><op><term>, where a term is an attribute, a constant, or an arithmetic function (e.g.

+,*) of other terms; and <op> is an arithmetic comparison operator (e.g. =,~). The target

list is a list of (attribute, term) pairs. Observe that we have not included a RETRIEVE

statement. A retrieval can always be treated as the insertion of new tuples into a part of the

database. This is achieved by including the user's terminal to be part of the database

[PBR77 ,BSW79].

Before we formally present the transformation, let us consider an example that illustrates

the goal of the transformation. The original schema (figure 4.1) consists of three statements to

be executed sequentially. Our objective is to transform this schema into the parallel schema of

figure 4.1. For the two schemata to be equivalent, the transformed schema must be determi

nate. This implies that the transformed schema must be conflict preserving. The reader will'

readily discern that in the form shown in figure 4.1, TS is not conflict preserving. In the

sequel, we describe a query processing strategy under which TS is in fact conflict preserving.

Without loss of generality'we assume that a target list specifies every attribute in R. This

assumption and our earlier assumption that the database contains only one relation do not

restrict the applicability of the theory; they are made merely to simplify the formalism.

Let Ox be the set of tuples selected by qualification qx; and TARGx be a function

corresponding to target list targx' such that, TARGx(Ox) is the set of tuples generated by

evaluating targx on the selected tuples Ox' For a single tuple t, TARGx(t) is defined in the

obvious manner. Figure 4.2 tabulates the effect of each operation.



341

ORIGINAL SCHEMA

t): DEL «age=16), R)

t2 : MOD «age> = 16), (salary=salary+ 1k), R)

t3: INS «salary=2Sk), (name=name), R)

TRANSFORMED SCHEMA

t( DEL «age= 16), R)

t2: MOD «age> 16), (salary=salary+ lk), R)

t3: INS ««salary+ lk>=2Sk) and (age> 16» or «salary>=2Sk) and (age< 16»),

(name=name), R)

Figure 4.1 An example of the transformation.

The folIowing table lists the effects of each operation. Rand R' are the relations before

and after the execution. Also let Ox = {t I teR and t satisfies qx}.

TARG x is the function corresponding to targx. Ros and RTS are the resulting relations after

an execution permitted by OS and TS respectively.

MOD (targrn • qrn' R)

INS (targj. qj. R)

DEL (qd' R)

Figure 4.2

R' = (R-Orn ) uTARGrn(Qrn)

R' = R uTARGj(Oj)

R' = R-Od

Effects of the operations.



342

We consider a general class of query processing strategies in which each operation is

performed in two steps (as shown in figure 4.3 ); a qualification step q that selects the tuple

ids (TIDs) of the R-tuples satisfying the qualification q; then, an effect step e that performs

the operation specified by the target list on the tuples whose TID's were selected by q. For

this class of query processing strategies, the time taken to evaluate the qualification (step q) is

likely to be much greater than the time taken for step e. Also, step q does not update the

database. These two observations make it a prime candidate for execution in parallel with

other qualification steps (appropriately modified, as described below).

Consider an ordered pair of operations with the precedence constraints shown in figure

4.4 Suppose this pair can be modified to an equivalent schema (shown in figure 4.5 ) such that

Te], Te2' Tq], and Tq2 cart be syntactically determined. Then, the modified operation pair

has smaller diameter and so is better according to our measure of parallelism.

In developing the transformation, we use a canonical representation of the update

operation (see figure 4.6). In this representation qd and qi are the qualifications that select

the tuples to be deleted and inserted respectively; ed and ei are the corresponding effects. It

is obvious that the insert and delete operations can be modelled by choosing appropriate q's.

To model modify operations, we require two assumptions. (1) The terms in a target list are

constants. (2) every insert (ei) creates a new tuple for relation R. Thus, every new tuple that

is inserted into R is assigned a new TID. Under these assumptions, a modify operation is

modelled as the deletion of old tuples and the insertion of new (modified) tuples with new

TID's. These assumptions assure the conflict preserving property of the transformed schema.

We argue in section 4.3 that an implementation can infact relax these two assumptions, and

still ensure the conflict preserving property.

With this canonical model of an operation, we define an elementary schema called an

operation pair as shown in figure 4.7 For this elementary schema, we derive in the next

subsection, an equivalent schema with greater potential for parallelism (Le. smaller diameter).

4.2. Transformation of an Operation Pair in Series

Given a schema OS, (original schema), for an operation pair in series, shown in figure

4.7, we can find an equivalent schema TS, (transformed schema), as shown in figure 4.8 In

this transformed schema Ted], Ted2, Tei], Tei2, and Tei2/] are .the transformed operations

whose readsets/writesets and target list functions are defined in figure 4.10. This trans

formed schema evaluates the qualifications based on the original relation R, to get TQd],

TQi], TQd2/], TQi2/], TQi2 and TQd2. (These symbols are defined in figure 4.9). Using



o

Fig 4.3 Model of an operation

Fig 4.5 Modified schema for an

ordered pair of operations.

343

Fig 4.4 Schema for an ordered

pair of operations.

Fig 4.6 Canonical representation

of an operation graph.



344

these sets of TIDs, the readsets and writesets of the effect steps (as shown in 4.10) can be

determined.
o

The algorithm for the transformation is as follows. This algorithm takes input parame

ters from the original schema and outputs the parameters of the transformed schema.

Input:

Output:

oqi l , oqi2• oqd l • oqd2• TARG ii • TARGi2 ·

tqi l ,tqi2• tqd l , tqd2 • tqi2/ 1• tqd2/ 1• TARGil , TARGi2• TARGi2/i·

It is easy to see that each of tqi l • tqi 2• tqd l • tqd2• TARG ii and TARGi2 is identical to the

corresponding input parameter. To calculate tqi2/ 1 and tqd2/ 1, we note the following. Each

qualification can be viewed as a predicate calculus formula. Obtain a new formula tqd 2 / 1

from oqd2 by substituting for each attribute the corresponding term given in TARGil . It is

straightforward to see that the set of tuples selected by this modified formula, tqd2/ 1 ' is,

infact the set, TQd2/ 1 defined in figure 4.10. Similarly, we can obtain tqi2/ 1 from oqi2 by

substituting from TARGii . We can also obtain TARGi2/ 1 by substitution; as TARGi2 / 1 is a

composition of functions, we can substitute for every attribute in

TARGi2 the corresponding term in TARGil to get the required target list.

Thus, we have described a syntactic procedure for transforming a serial schema to a more

parallel schema. To explain the intuition behind this (seemingly complicated) transformation.

four examples are presented below. In the subsequent discussion the reader will find it helpful

to keep in mind the terminology given in figures 4.9 and 4.10, along with the observations

recapitulated below.

1. The two schemata are Ee-equivalent if the net effect in both the cases is to delete

the same set,of tuples and insert the same set of tuples.

2. The set of tuples deleted in each schema is the union of the writesets of the delete

(effect) steps.

3. The set of tuples inserted in each schema is the union of the writesets of the insert

(effect) steps. Each tuple written by an insert (effect) step has new a TID and

the set of all tuples written is determined by the readset.

4.2.1. Case 1:Delete-delete pair: A pair of delete operation in series is shown in figure 4.11

and the corresponding transformed schema is shown in figure 4.12 For the two schemata to be

Ee-equivalent. we have to guarantee that the net effect in both cases is to delete the same set

of tuples from the relation R. In the schema given in figure 4.11 the set of tuples deleted is

the union of the set of tuples deleted by the two steps (i.e. OQd l and OQd2).The set of tuples

deleted by the transformed schema (given in 4.12) is the union of the tuples deleted in the two



345

Fig 4.7 Schema (OS) for an operation pair.

Fig 4.8 Transformed schema (TS) for an operation pair.



• corresponding to the readsets there is a writeset of new TID's

Figure 4.9 List of symbols and their associated meanings.



347

Tuples selected by q's in the original schema:

OQi] = {t I tER and t satisfies oqi l }

OQd] = It t tER and t satisfies oqd]}

OQi 2 = {t I tE(R - OQd,)uOQi] and t satisfies oqii2

OQd2 = {t I tE(R - OQd]) uOQi, ,and t satisfies oqdi2

Read/write sets for e's in the original schema:

OEi l = OQi l

OEd] = OQd,

OEi2 = OQi 2
OEd2 = OQd2

Tuples selected by Tq's in the transformed schema:

TQik = It I tER and t satisfies tqik } k = 1,2

TQdk = {t I tER and t satisfies tqdk } k = 1,2

TQi 2/ J = {t I tER and TARGiJ(t) satisfies tqi2}

TQd2/ J = {t I tER and TARG iJ (t) satisfies tqd2}

Read/write sets for Te's in the transformed schema:

TEi)

TEi2
TEi 2/ J

= TQi J - TQd 2/ J
= TQi2 - TQd J
= TQi J n TQi2/ J

TEd J = TQd J
TEd2 = TQd2 - TQd J

Target lists for the Tei's in the transformed schema:

The target lists for TEi J and TEi2 are the same as in the original schema.

The target list for Tei2/ J is the composition of TARGiJ with TARGi2 .

Figure 4.10 OE's, OQ's, TE's, and TQ's



348

steps Ted] and Ted2. The set of tuples deleted by Ted] (i.e. TEd], which is the same as

TQd]) is the same as OQd] . But the set of tuples selected by Tqd2 is not necessarily the

same as the set selected by Oqd2, as the step Tqd2 might have selected some of the tuples in R

that are deleted in step Oed]. So the writeset for the transformed step is TEd2= TQd2-TQd I .

All the tuples selected by oqd2 will also be selected by tqd2; and hence, will also be in the set

TQd2; so the same set of tuples are deleted in both cases.

4.2.2. Case 2:Delete-Insert Pair: A pair of operations, consisting of a delete followed by an

insert is shown in figure 4.13 and the corresponding transformed schema is shown in figure

4.14 In the original schema, the set of tuples OQd t is deleted and the new set of tuples

TARGi2 (OQi2) is inserted. We have to guarantee that the same sets of tuples are deleted and

inserted by both schemata. It is easy to see that TQd1=OQd1 so the same set of tuples is

deleted. But tqi2 selects all the tuples selected by oqi2, and some more of the tuples in R that

are deleted by the step Oed]. Hence, the writeset for Tei2 is TQi2-TQd1. Thus the sets of

tuples inserted in the two schemata are the same; i.e. TARGi2(OQi2)=TARGi2(TQi2-TQd]).

4.2.3. Case 3:Insert-Delete Pair: A pair of operations consisting of an insert followed by a

delete is shown in figure 4.15, and the corresponding transformed schema is shown in figure

4.16 We have to guarantee that the same sets of tuples are inserted and deleted in both the

schemata. First we observe that every tuple selected by the step Oqi] is also selected by Tqi l .

But some of the tuples inserted by the step Oei], (i.e. in the set TARGi ] (OEj])), are selected

by step Oqd2 and subsequently deleted by the Oed2. This set of (deleted) tuples is TARG i ]

(TQd2/]); as TQd2/] is the set of tuples, tER such that TARGi](t) satisfies oqd2. Therefore,

the net effect of the in~ertion operation is to insert the set of tuples TARGj] (TQi l -TQd2/]).

Thus, the two schemata insert the same set of tuples.

The set of tuples in the original relation R that is selected by oqd2 (i.e. OQd2) is also

selected by tqd2; i.e. OQd22TQd2. The extra tuples in OQd2 are those inserted by step Oei]

and these tuples are not inserted at all in the transformed schema. Therefore, the net effect is

that the same set of tuples is deleted in both the schemata.

4.2.4. Case 4:Insert-Insert Pair: A pair of insert operations is shown in figure 4.17, and the

corresponding transformed schema is shown in figure 4.18 To show the equivalence of the two

schemata, we need to guarantee that the same set of tuples will be, inserted in both cases. We

first observe that the set of tuples selected by oqi] is also selected by tqi]; consequently the

set of tuples inserted by Oei] is inserted by Tei]. The set of tuples selected by oqi2 can be

partitioned into two sets: those tuples that belong to the original relation R and those that are



Figure 4.11: Delete-delete pair

Figure 4.13: Delete-insert pair

349

TEd l .. TOd1• TEdZ - TOef2 - TQd1

Figure 4.12: Transformed delete-delete pair

TEd l - TOd1, TEiz .. TQiz - TQd l

Filure 4.14: Transformed delete-insert peir



Fjpre 4.15: lnsert-delete pair

Fipre 4.17: IDsert-insert pair

350

Figure 4.16: Transformed inlert-delete pair

TEil • TOil' TEiz - TQiz•
TEi2/ 1 -TOil uTQi2/1

Piaure 4.18: Transformed iDsert-lDsert pair



351

inserted by the step Oei!' The former set of tuples is exactly the set TQi2 and the latter is the

same as the set of tuples selected by step Tqi2/ 1. Therefore the set of tuples inserted by Tei2

is TARGi2 (TQi2), and that inserted by Tei2/ 1 is TARGi2 (TARGil (TQi2/ 1». So, it is easy to

see that the same set of tuples is inserted by both the schemata.

4.2.5. Informal proof of the transfor:mation: In this section we present an informal proof of

the transformation. Given a schema OS, (original schema), for an operation pair in series,

shown in figure 4.7, we can find an equivalent schema TS, (transformed schema), as shown in

figure 4.8 The validity of the transformation is proved formally in [Kris8l]. Here, we attempt

an intuitive justification. (The reader will find it helpful in following this explanation if

he/she refers to the example in figure 4.19) TEd l = TQd l is seen from cases 1 and 2. The

justification for TEi l = TQi l - TQd2/ 1 is given in case 3 and is not contradicted by case 4.

TEi2 =TQi2 - TQd l is shown in case 2 and is not contradicted by case 4. The expression for

TEd2 is due to case 1 and is not contradicted by case 3. Lastly, the validity of the expression

for TEi2/ 1 is given in case 4. Thus the transformed schema performs the same deletions and

insertions on R as the original schema. And, significantly, the transformed schema allows

greater parallelism amongst the qualification steps, which, by our assumption, are more time

consuming than the effect steps.

4.3 Implementation considerations

The reader may have noticed that the figure 4.19 does not satisfy the two assumptions

that were made in developing the above theory. These were:

1. Only constants were allowed as terms in a target list;

2. All inserted tuples had new TID's.

Both these assumptions were used to ensure that the schema for the transaction system ff was

conflict preserving. We show here that we can relax these assumptions by adopting the

following implementation. Associated with each tuple are two flags: a delete flag and an

insert flag, whose use is described below. Step ed sets the delete flags of all those tuples

which are selected for deletion but do not have their insert flags set. These tuples are then

deleted during the execution of the next transaction system. Step ei always creates new tuples

for insertion and sets their insert flags. If ei is part of a modify operation, the.n it reuses the

old TID; otherwise, it generates a new TID. (This implies that at any point in time, there

might be two versions of a tuple both having the same TID). In reading an existing tuple x, in

order to compute a tuple y for insertion, ei uses that version x which does not have its insert



r-

352

OQd) = {l,2} OQd2 = p, 8, 9}OQi) = {3, 6, 7}OQi2 = {S, 6, 10}

OEd) = {l,2} OEd2 = p, 8, 9}OEi) = {9,10,Il}OEi2 = {12,13,14}

TQd) = {l,2} TQd2 = {2;7,8,9}TQi) = {3, 6, 7}TQi2 = {l, 5, 6}

TQi2/) = {7} TQd2/) = {9}

TEd) = {l,2} TEd2 = p, 8} TEi) = {3, 6} TEi2 = {S, 6}

TEi2 /) = {2}

Fig. 4.19 An example of the transformation of an operation pair



353

flag set. Further, the insert flag is reset in these tuples at the beginning of the next transac

tion system.

So any step ed writes only delete flags, and therefore the writesets of ed's are pairwise

disjoint with the read/write sets of ei's; we already know from the transformation that the

wdtesets of ed's are mutually disjoint. The insert flag ensures that the readsets of ei's are

pairwise disjoint with the writesets of ei's. Creating new tuples ensures that the writesets of

ei's are mutually disjoint. Therefore, the schema is conflict preserving and the theory of

section 4-2 still holds.

Before we proceed to generalize this transformation, we present the (airline reservation)

example cited in the introduction. Two (simultaneous)requests for seats on flight TWAI 01 of

August 11, 1981 is made. Each request is modelled as a modify operation given in figure 4.20

As both of them are updating the no_seats, they must be exec~ted sequentially; so this set of

two requests is modelled as a pair of operations in series. The canonical form of the modify

operation is the deletion of the old tuple and the insertion of the new tuple (with no_seats

decremented by 1). The parameters of the original and the transformed schema are shown in

figure 4.20. Intuitively, the transformed schema does the following: If there are two seats

available, the old tuple is deleted and a new tuple (with no_seats = no_seats-2) is inserted;

if there is only one seat available then the old tuple is deleted and a new tuple (with no_seats

decremented by l)is inserted; lastly, if there are no seats available then no change is made.

This is achieved by computing the appropriate read/write sets dynamically. If there are two

seats available then we see that TEd} and TEi2/} are the only nonempty'sets and the target

function for Tei2/} is to decrement no_seats by 2. If there is only on~, seat or no seats at all

then appropriately the correct read/write sets are calculated.

4.4. Generalized transformation

We have shown how to transform a pair of operations into a schema having greater

parallelism. The transformed schema is not quite in the canonical form of an operation (figure

4.6) because the set of effect steps has more than one target list. Thus, if this operation pair

is part of a bigger schema and we want it to participate in further transformation with

successor nodes, the transformation of section 4.2 cannot be directly used. We now show how

to generalize the transformation. First we generalize the concept of an operation pair. This

generalization is shown in figure 4.21 The first stage has k insert nodes and f delete nodes.

The second stage has m-k insert nodes and n- f delete nodes. The transformation and the

associated read/write sets are given in figure 4.22 The intuitive justification for the read/write



354

Reservation request:

We have two requests for reservation on flight TWAIOI on the II August, 1981. One such

request is shown below.

Mod«(flight=TWA I01 )and(date=081181 )and(no_seats>O», (no_seats=no_seats-I ),R)

This is modelled as t\\'o such operations in series.

Original schema:

Schema is the graph shown in 4.7. The parameters of the schema are shown below.

oqi]. = oqi 2 = oqd] = oqd 2 = «flight = TWAlOI)and(no_seats>O»

TARG il = TARG i2 = (no_seats = no_seats-I)

Transformed Schema:

Schema is the graph shown in figure 4.8. The parameters of the schema are given below.

tqi] = tqi2 = tqd] = tqd2 = «flight = TWAIOI)and(no_seats>O»

tqd 2/] = tqi2/] = «flight = TWAIOl)and(no_seats - 1>0»

Using the above predicates, we can calculate the read/write sets as follows (assuming that

there are two seats available).

TEi] = TEi2 = TEd] = TEd 2 = 1>

TEd] = TEi::!/] = The tuple for flight TWAIOl

TARG i2 /1 = (no_seats = no_seats - I - I)

The reader can easily verify that the transformation is correct for the case when there is only

one seat available.

Figure 4.20 Airline reservation example.



355

sets is the same as before. TEda , a = 1,2....[, are the same as OEda since both TQda and

OQda select tuples from the original state of R. TEia, a= 1,2...k, is the set of tuples in TQia

and not in TQdb/ a for any b € {f + 1,f + 2,.... n}, because the tuples in TQdb/ a are to be

subsequently deleted in the step Oedb of the second stage of OS. Hence, those tuples which

are inserted and subsequently deleted in OS are not inserted at all in TS. Consequently,

TEda , a = [ + 1,f + 2,....n, are the sets of tuples to be deleted from R and contain only those

tuples which are not already deleted by the first stage. TEia, a=k+l,k+2,...m, are the tuples

in R from which the steps Oeik+ l' Oeik+2 ' ....Oeim created new tuples. So TEia consists of

only those tuples which were not deleted in the first stage. As before,

TEda/b, a = k + 1,......m ; b = [ + 1,.,n, is the set of tuples that were inserte~ in the second

stage based on tuples that were inserted in the first stage. Thus the transformed schema

performs the same insertions and deletions as the original schema, but has greater parallelism.

Furthermore, the transformed schema is in the generalized canonical form of figure 4.21, and

so can be used in subsequent transformation.

4.5 Algorithm for scheduling using transformation

Until now we used the diameter of the schema to be the performance measure. This was

justified on the basis that we assume that there are unlimited number of processors and each

transaction step takes unit time. In this section we relax these two assumptions.

First let us relax the infinite processors assumption. Suppose that the database machine

has k processors. Once the scheduler has constructed a schema representing minimal prece

dence constraints, it now remains to assign available processors to execute the nodes of the

DAG. To maximize processor utilization, it is important to ensure that at every point in time,

as many of the k processors as possible are busy. We shall show how to transform the schema

to meet this objective.

We have to select k nodes to execute on the k processors. Assuming that each node takes

unit time to execute, all k nodes will complete at the same time. At some point in this

process, if there are m<k nodes ready for execution, then we can use the generalized transfor

mat.ion developed above to obtain k nodes in parallel. To do this, let n be the number of

nodes that can be enabled for execution after the m nodes have been executed. From these n

nodes choose n'= minimum(n,k-m) nodes. Then we can view the DAG as shown in figure

4.23 We see that there are no edges from level 1 to level 0, and from level 2 to either level 1

or O. To this graph, add edges between every node at level 0 to every node at level 1 (this is

not necessarily how the algorithm will be implemented). It is obvious that the graph is still



356

Drepresents all the directed edges in the cross product.

Fi g. 4. 21 Schema for gene ral i zed ope ra t ;on pai r



357

TEi = TQi -U n TQdb/ aa a b=l +1

TEda =TQd
a

1
TEi a = TQi ci -U TQdbb=l

1
TEd = TQda - U TQdba b=1

TEi alb = TQi b (\ TQi alb

a=1,2, .•• k

a = 1,2'H.1

a = k+1,k+2, .••m

a = 1+1,1+2, .•. ,n

a = k+1,k+2 , .•• ,m
b = 1,2, .•. ,k

Fig. 4 • 22 Transformed schema for generalized operation pair
along with the read/write sets.



358

acyclic and the added edges do not contradict any existing precedence constraints. Now the

set of nodes at level 0 and level 1 conforms to the generalized canonical form of figure 4.21

So we can apply the generalized transformation to get m+n' nodes in parallel. The trans

formed graph is shown in figure 4.21 If m+n'<k, then this process of transformation can be

repeated until k parallel nodes are available.

Thus, these transformation can be used repetitively to reduce the diameter of the schema.

Infact, the diameter can be reduced to 2 for any schema. But it is clear that reduction in the

diameter may not be without cost; the number of nodes increases and so does the complexity

of each node. It might be more appropriate to pick an optimality measure that takes into

account the processing costs of the nodes (instead of the unit cost per node that we have

assumed so far). Several cost measures for query processing have been proposed in the

literature [HY79,Ya079]. These are based on physical parameters such as file sizes, attribute

selectivities, storage and access methods. Given any cost measure that imposes a total

ordering on the set of schemata, we apply the schema transformation described in this section

only if it is beneficial to do so, i.e. only if the estimated cost of the transformation is less than

that of the original schema, For example, let the number of disk accesses be a true estimator

of time taken by an operation. Also, let us assume that we have a technique for calculating the

number of accesses required by an operation; i.e. that, we can estimate the time required for

each operation. Using this estimate we can now modify the algorithm as follows: Once again
I

let the original DAG be viewed as shown in figure 4.23. In this figure, let

'1'1 = time estimated for the longest operation among the m nodes.

'1'2 = time estimated for the longest operation among the n nodes.

'1'3 = time estimated for the rest of the schema.

So the total time estimated for the original schema is '1'1 + '1'2 + '1'3' We apply the transforma

tion to get k>=m+n'>m nodes in parallel, only if the longest operation in the resulting set of

(n'+m) nodes (that are ready for execution), takes no more than '1'1 units of time. Therefore,

the total time estimated for the transformed schema to execute is '1'1 + '1'3<'1'1 + '1'2 + '1'3'

Hence, this algorithm transforms the schema only if it can reduce the response time of a

transaction system. Thus, it is shown that we can devise a practical algorithm to schedule the

transactions efficiently and attain high processor utilization.

5. CONCLUSION

In this paper, we developed a parallel program schema model of transaction systems for

parallel database machines. The concept of serializability, which is generally accepted as the



mnodes

359

rest of the schema

Fig. 4.23 Origina1 DAG

m+n' nodes

rest of the schema

Fig. 4.24 Transformed DAG



360

correctness criterion in the existing concurrency control theory for the sequential model, was

extended to our model. We proposed a two-step technique for producing correct and highly

parallel schedules: first, obtain a schema that imposes a minimal set of precedence constraints

on correct executions; then, transform the schema using semantic information to increase

parallelism. Although the model developed in this paper is theoretical, we believe it to be of

practical utility -- the proposed scheduling technique can be applied to any MIMD machine

such as DIRECT (DeW78).

Several interesting performance related questions may be posed here. We described the

scheduler as a single, centralized process. Will this become a bottleneck? Alternatively, given

ample resources and the parallelism inherent in the system, will it be beneficial to partition the

system and distribute the scheduling activity over several processes. Our theory is independ

ent of whether the scheduler is centralized or distributed. Further, we have implied a batched

mode of operation for the machine. Each transaction system can be thought of as a batch.

This has the advantage that while one transaction system is being executed, the scheduler can

be working in parallel on the· next transaction system. Clearly, the selection of transactions to

comprise a transaction system is a crucial factor affecting performance. An alternative to

batching is to dynamically schedule transactions as they arrive. Will this improve perform

ance? Simulation studies or queueing analysis can provide the answers to these questions.

The transformation presented in section 4 produces nodes that must be capable of evaluating

arbitrarily complicated set expressions. The complexity of some of these nodes may be

reduced by refining the nodes (i.e. replacing each by a more detailed subgraph) and then

detecting common subexpres~ions across nodes of the subgraphs. As we pointed out before, a

cost based on physical database parameters, must be attached to each node. When this is

done, it can be determined when it is beneficial. to transform a given schema.

Lastly, in section 4 we ignored the problem of eliminating duplicate tuples when an insert or

modify operation is executed. We treat this as a special case of integrity checking. Integrity

checking could be implemented as part of the effect step of an update operation. However, a

more intriguing possibility is to use query modification (as suggested in [ston75]), together

with the schema transformation of section 4, to perform integrity checking in parallel with the

execution of the update (for example, tuples which are being duplicated can be flagged for

subsequent deletions). Working out the details of this modification is a topic of future

research.



361

REFERENCES

BSR80 P.A. Bernstein, D.W. Shipman, J.B. Rothnie, "Concurrency control in a System of
Distributed Databases (SDD-1)" ACM TODS, vol. 5, no. I, 1980.

BSW79 P.A. Bernstein, D.W. Shipman, W.S. Wong, "Formal Aspects of Serilaizability in
Database Concurrency Control", IEEE-TSE, vol. 5, no. 3, 1979, pp. 177-187.

DeW78 D.J. DeWitt, "DIRECT - A Multiprocessor Organization for Supporting Relation-
al Database Management Systems" Proc. of the 5th Annual Symposium on
Computer Arch., Apr. 78, pp. 182-189.

EGLT76 K.P. Eswaren, J.N. Gray, R.A. Lorie, 1.1. Traiger, "On the Notions of Consisten
cy and Predicate Locks in a Relational Database System", CACM, vol. 19, no.
11, 1976

GOU80 M.Gouda, "Simultanity in Distributes Databases", Technical Report, Dept. of
Computer Sciences, Univ. of Texas, Austin, TX, Oct. 1980.

HSW75 G.D. Held, M.R Stonebraker, E.Wong, "INGRES - A Relational Database
System", Proc. AFIPS NCC, 1975, pp. 409-416.

HY79 A.R Hevner, S.B. Yao, "Query Processing in Distributed Database System", c

IEEE-TSE, vol. 5, no. 3, 1979, pp. 177-187.

Kris81 RKrishnamurthy, "Concurrency Control and Transaction Processing in a Highly
Parallel Database Machine", Doctoral dissertation in Dept. of Computer Sci
ences, Univ. of Texas (in preparation).

Ke1l73

KP79

Mann74"

Papa79

PBR77

Ston75

Ya079

RM. Keller, "Parallel Program Schemata and Maximal Parallelism. Part 1:
Fundamental Results", JACM, 1973, vol. 20, no. 4, pp. 696-710.

H.T. Kung, C.H. Papadimitriou, "An Optimality Theory of Concurrency Control
for Database", Proc. of 1979 SIGMOD conf., Boston, Mass., May 1979.

Z.Manna, "Mathematical Theory of Computation", McGraw Hill,1974

C.H. Papadimitriou, "Serializability of Database Updates", JACM, vol. 26, no 4,
1979, pp. 631-653.

C.H. Papadimitriou, P.A. Bernstein, and J.B. Rothnie, "Some Computional
Problems related to database Concurrency Control", Proc. of Theoretical Com
puter Science, Waterloo, Aug. 77.

M.R Stonebraker, "Implementation of Integrity Constraints and Views by Query
Modification", Proc. of ACM-SIGMOD IntI. Conf. on Management of Data, San
Jose, 1975, pp. 65-78.

S.B. Yao, "Optimization of Query Evaluation Algorithms", ACM'-TODS, vol. 4,
no. 2, 1979.





'.
363

PROMISING APPROACH TO DISTRIBUTED QUERY PROCESSING

by

C.T. Yu, K. Lam, C.C. Chang and S.K. Chang

Department of Information Engineering
University of Illinois at Chicago Circle

Chicago, Illinois 60680
U.S.A.

Author's present addresses:
C.C. Chang, S.K. Chang and C.T. Yu, Department of Information

Engineering, University of Illinois at Chicago Circle, Chicago,
Illinois 60680, U.S.A.

K. Lam, Department of Statistics, Hong Kong University, Hong Kong

This research was supported in part by a grant from NSERC of Canada
and in part by a grant from US Army under contract MDA 903-78-C-0293



364

An important problem in distributed DBMS is to find an efficient stra

tegy to process queries referencing data in different sites. Algorithms

have been suggested by Wong [WONG), Revner and Ya,o [REYA], Yu, Lam and

Ozsoyoglu [YLOZ] and Chiu and Ro [CRRO]. The algorithm by Wong obtains a

local optimal solution; that by Revner and Yao obtains the optimal solution

for single domain relations and is a heuristic for more general queries,

the algorithm by Yu et. al. and that by Chiu and Ro are very similar and

obtain optimal solutions for tree-queries which is a subclass of queries,

first studied by Bernstein and Chiu [BECR]. The recognition of such

queries have been studied in [BECR,BEGO,YUOl,YU02]. Other algorithms have

been suggested by Goodman et. al. [GBWR], Kerschberg, Ting and Yao [KTYA]

and Epstein and Stonebraker [EPST). The algorithm by Goodman et. al.

serves as a heuristic algorithm for general queries; the algorithm by

Epstein and Stonebraker emphasizes on joins instead of semi-joins; the

algorithm by Kerschberg is applicable on a star network configuration.

In this paper, we provide a promising approach to distributed query

processing. The approach yields optimal strategies for a subclass of com

monly issued queries in fully connected networks and is applicable to gen-,

eral queries.

In section 2, we discuss the difficulties to answer even the simplest

type of queries optimally. This motivates us to attack the problem of dis

tributed query processing in a specific way as outlined in section 3. In



365

section 4, optimal strategies to fully reduce a relation for frequently

issued queries are obtained in a fully connected network. The algorithm is

generalized to other types of queries in section 5. Finally, in section 6,

a comparison is done with the algorithm given in SDD-l. Experimental

results show that a significientaverage improvements ranging from 14% for

3 relations to 60% for 11 relations are achieved by our algorithm.

A relational database model [CODl,COD2,DATE] is assumed throughout

this paper.

II DIFFICULTIES OF THE PROBLEM

In this section, we will explain the difficulties in processing a dis

tributed query optimally. This will motivate the approach we take in later

sections.

In processing a distributed query, transmission cost is usually very

significant. The transmission cost is the summation of all the costs in

volved in transferring data from one site to another. Specifically, the

cost for tranferring X amount of data from one site to another is co+cl*X,

where the total transmission cost given above is the same as the total cost

referred to in [HEYA]. An important factor that needs to be considered is:

choosing a copy of each relation referenced by the query. In a distributed

database, some relations may be duplicated for efficiency and for reliabil

ity reasons. During the processing of a distributed query, it is necessary

to select a copy of each relation referenced by the query so as to reduce

the transmission cost. It is now shown that processing optimally the sim

plest type of distributed queries referencing relations with multiple

copies in a distributed database is a NP-hard problem [HOSA,KARP,COOK].

Thus, it is extremely likely that any algorithm which guarantes optimal



366

processing of even the simplest type of distributed queries will run in

exponential time.

Details are specified as follows.

Let {Rl, ••• ,Rm} be single-domain relations referenced by a query,

{SI, ••• ,Sn} be computer sites and each Ri may have one or more copies in
rn-I

the n sites. The query has the qualification .(1 (Ri.A = Ri+l.A) where A is
&:l r

the common joining domain between the relations and "." denotes the projec-

tion operation, i.e. the query requests all common tuples among the m rela-

tions.

The total transmission cost Eroblem (T-T problem) can be stated as

follows: Given relations {Rill~~m}, sites {Sill~i~n}, each Si containing

some relations, (if a relation appears in two or more sites, identical

copies of the relation exist at the sites), the average size of a value in

the common joining domain Av, the total number of possible distinct values

in domain A, IAI, and the transmission parameters cO and cl~ find a stra-

tegywhich minimizes the expected total transmission cost.

The above problem can be reduced to the Minimum-subset-2roblem (M-S

problem) which is known to be NP-complete [AHUL].

Lemma 2.1: The total transmission cost problem is NP-hard.

Proof: We now show that for any given instance of the M-S problem, there is

a corresponding instance of the T-T problem such that a solution for the

latter problem provides a solution to the former.

For any given m elements {el,e2, ••• ,em} and n subsets {Tl, ••• ,Tn} in

the MrS problem, the following instance of the T-T problem is constructed:

m relations {Rl, ••• ,RID}, n sites {SI, ••• ,Sn} such that there is a 1-1



367

correspondence between ei and Ri t l~i~m and Ti and Sit l~i~n and set Ti

contains element ej iff site Si contains a copy of relation Rj. Further-

more t cO and cl are chosen such that cO > m*cl*Av*IAI t i.e' t the start-up

cost dominates the transmission cost. The selectivity of each relation is

arbitrary.

Let g be the minimum number of sites that contain all the relations

and h be the number of sites in an optimal strategy for the T-T problem.

Then t we claim g=h. Suppose not t then g<h. Consider the following stra-

tegy: find the common tuples of the relations in one of the g sites before

transmitting the resulting relation to the next site and repeat this pro-

cess until all the g sites are visited. (Note: the data at the last site is

not transmitted.) This strategy has Eexpected total transmission cost ~

g-I
(g-l)*cO + cl*IA/*L(Av) < g*cO.

l::&1

The optimal strategy has expected total transmission cost> (h-l)*cO 2

g*cO t a contradiction.

Thus, an optimal strategy for the instance of the T-T problem must

visit the minimum number of sites containing at least one copy for each

relation. Since a site and a relation in the T-T problem corresponds to a

set and an element in the M-S problem, an optimal solution for the T-T

problem yields the minimum number of sets for the M-S problem. [J

In general t a query has two components: the output component and the

qualification component. The qualification component selects the tuples of

the referenced relations that satisfy the qualification, while the output

component specifies the attributes of the selected tuples to be outputted

to the user. Specifically, queries discussed in this paper are of the form

similar to those in [BECH,HEYA,etc.].



368

{(RLAil,Rj.Aj1, •••• ) In (Rk.Ak1=Rt.Atl)}

where the qualification component is a conjunction of equality clauses of

the form () (Rk.Ak1=Rt.At1) and the output component is (Ri.Ai1, Rj.Aj1,

... ) .
It has been shown [HEVN] that even if each relation referenced by the

query has a single copy in the distributed database and the attributes of

the relations referenced in the qualification of the query are the same

attribute (i.e. when restricted to the qualification of the query, the

relations are single-domain relations), the problem of finding an optimal

strategy under this restriction is still NP-hard.

III OBJECTIVE

In view of the difficulties discussed in the last section in process

ing a distributed query optimally, the following restrictions are imposed

on the remaining part of this paper:

(1) It is assumed that some algorithm pre-selects one copy of each rela

tion referenced by a query before our algorithm (to be described) is in

voked to produce a query processing strategy. The rationale for making

this assumption is due to Lemma 2.1.

(2) The processing of each query is divided into two stages: The first

stage is to concentrate on the qualification component of the query. Spe

cially, we eliminate data from the referenced relations by making use of

semi-joins (Ri semi-join Rj is the result of joining Ri with Rj and then

projected back on the attributes of Ri) [BECH,BEGO]. The second stage is

to decide which relations, that are referenced in the qualification, are

really needed to be sent to an assembly site to produce the answer speci

fied in the output component of the query. The reasons to separate the



369

processing into two stages are: (i) the ideas to be presented will be

easier to understand and the separation is natural since one stage deals

with the qualification while the other deals with the output, (ii) if the

stages are not separated, then the problem is NP-hard, even if the qualifi

cation part involves simple queries only [HEVN). On the other hand, the

qualification part can be performed optimally in polynimial time for many

common queries, as demonstrated in the next section.

(3) Different relations referenced by a query reside in different sites.

If two or more relations reside in one site and if these relations have

common joining attributes, then they will be joined together using local

processing. Since local processing cost is likely to be small compared to

transmission cost, it is usually cost-effective to merge the relations

together. If the relations in a site do not have common joining attri

butes, they will be treated as if they are in different sites. Clearly,

the cost estimate for such a situation will not be higher than that as if

the relations are in the same site. It is further assumed that attributes

of relations which do not appear in the query are eliminated by local pro

cessing before the strategies to be described in later sections act on the

relations.

We believe that most users, in particular the casual users, will not

submit highly complicated queries as it may be beyond their means to formu

late such queries. As a result, we propose an optimal strategy to fully

reduce a relation (a relation is fully reduced with respect to a query if

all the tuples that do not satisfy the qualification of the query are elim

inated) for a simplified type of queries in a fully connected network in

Section 4.

The approach we suggest is applicable to more general queries. It is



370

hoped that the approach will yield optimal or close-to optimal query pro-

cessing strategies for many common queries. We believe that an exhaustive

enumeration algorithm to yield optimal strategies will not be feasible as

the nnumber of possible configurations is much more than 2 for n relations

[CHIU] •

IV OPTIMAL STRATEGIES FOR COMMON QUERIES ON FULLY CONNECTED NETWORK

In this section, a fully connected network is assumed. We seek an

optimal strategy to fully reduce a relation which appears in the qualifica-

tion of a query. In other words, the first stage of query processing dis-

cussed in (2) of section 3 is given in this section. The qualification of

the query under consideration is

tn-I n-l[.n (Ai .A=Ai+l. A)] (\ [ n (Bj .B=Bj+l. B)]" (I .A=Am .A) (\ (I .B=Bn .B)
&=1 Sa,

i.e. there are m+n+l relations, m single-domain relations have a common

joining domain A, n single-domain relations have a common joining domain B

and I is a 2-domain relation whose A domain joins with the m A-relations

and whose B domain joins with the nB-relations.

A strategy which fully reduces one of the m+n+l relations and which

incurs minimum communication cost is sought: the cost of transmitting X

amount of data from one site to another is cO+cl*X where cO and cl are con-

stants [HEYA] and the total communication cost of a strategy is the summa-

tion of the costs of transmitting data in the strategy. Let OPTS(m,n,I,Y)

denote an optimal strategy where m is the number of A-relations, n is the

number of B-relations, I is the 2-domain relation and Y is one of the rela-

tions to be fully reduced. Each strategy, including an optimal strategy,

can be considered as a directed graph, where the vertices of the graph are

the relations, and each edge of the graph, say (Ri,Rj) denotes the



371

transmission of the relation Ri to the site containing relation Rj. When

Ri reaches the site, the relations Ri and Rj are joined according to the

qualification. If some relation, say Rk, is sent to the site containing Ri

before Ri is transmitted, then only the part of Ri which joins with Rk is

transmitted to Rj.

:l.
Example i ..!.: Consider the qualification of a query: .n (Ai .A=Ai+1.A). The

. 's,
following strategy AI-->A2-->A3, which sends Al to the site containing A2,

eliminates tuples from A2 which do not satisfy AI.A=A2.A to obtain a small-

er relation Ai, sends the reduced A2 to the site containing A3 and elim-

inates tuples from A3 which do not satisfy AZ.A=A3.A to obtain 13. This A3

is a fully reduced relation as any tuple in A3 which does not satisfy the

qualification of the query will not appear in A3.

The cost of AI-->A2 is cO+cl*IAII*a where IAII is the number of tuples in

Al and a is the size of a tuple. IAII can also be written as al*/AI where

aI, the selectivity of Al is defined to be lAlli/AI and IAI is the number

of possible distinct tuples in domain A. IA21 is estimated to be

al*a2*IAI, where a2 is the selectivity of A2. It is assumed in the estima-

tion that distinct values of Al and A2 are distributed independently.

Thus, the cost of A2-->A3 is cO+cl*al*a2* IAI *a. The total communication

cost of the strategy is (cO+cl*IAII*a) + (cO+cl*al*a2*IAI*a). The estima

tion of costs given here is consistent to those given in [HEYA,YLOZ]. []

An exhaustive 'search to find an optimal strategy among all possible

Strategies can be very expensive as the number of strategies is highly

e.xponen tial • As a first step, we find same inherent properties of an

Optimal strateg~ so that any strategy which does not satisfy these proper-

t~es cannot be an optimal strategy and can therefore be eliminated from

Consideration.



372

Some inherent properties of an optimal strategies are (Proofs of these

properties can be found in [YLOZ]):

Property 4.1: All A's and B's appear exactly once, while I may appear once

or more.

Suppose Y is the first relation to be fully reduced in a strategy. In

order to fully reduce Y, each relation appearing in the qualification must

be sent to the site containing Y directly or indirectly via sites and merg-

ing with relations contained in these sites. Thus, for each relation,

there is a directed path from that relation to Y.

Property ~.1: All A-relations and the I-relation must lie in a single path

leading to Y; similarly, all B-relations and the I-relation must lie in a

single path leading to Y. The path containing the A's and the path con-

taining the B's may intersect at I or they may be the same path.

Example ~.1:

(a) In A2--)Al--)I--)B2--)B3--)Y,
"/

Bl

there are 2 paths A2--)Al--)I--)B2--)B3--)Y and Bl--)I--)B2--)B3--)Y.

They intersect at I, then merged into one path.

(b) In Al--)A2--)I--)Bl--)B2--)B3--)I--)Y, the two paths containing the A's

and the B's are actually only one path.

(c) Al--)A2--)I--)Y cannot be an optimal strategy,

)1
B2 Bl

because the B's are in 2 paths, violating Property 4.2. []

Property ~.l: The A's must appear in ascending order of their sizes in the

path leading to· the first fully reduced relation Y; S"1milarly, the B's must



373

appear in ascending order of their sizes also. Starting from this point, we
I

order the A's and the B's such that IAII<IA21< ••• <IAmI and IBll<IB21< •••

<IBnl •

Example i.l: The strategy in Example 4.2(a) violates Property 4.3, because

Al and A2 are in descending order of size; the strategy in Example 4.2(b)

satisfies Property 4.3. []

Property 4.4: Every vertex has out-degree of one (one edge leading away

from the vertex) except Y whose out-degree is O.

Property i.1: Only the vertex representing the first occurrence of I may

have in-degree (the number of edges going into the vertex) greater than

one.

Example i.i:

AI-->I-->A2-->I-->B2-->Y is a possible optimal strategy
./'

BI

while

AI-->I-->A2-->I-->B2-->Y

BI/

is not possible to be an optimal

strategy since there are two

edges (one due to BI, the other due to A2) going into the second

occurrence of I. Cl

By Property 4.3, the first fully reduced relation in an optimal stra-

tegy is Am or Bn or I. Thus, an optimal strategy is one of the following 3

forms:

OPTS (m,n,I,Am)

OPTS (m,n,I,Bn)

OPTS (m,n,I,I).



374

Consider OPTS(m,n,I,Am). The vertex immediately preceding Am cannot

be a B-relation since a B-relation cannot merge with Am directly. In fact,

this vertex must be either I or Am-I, by Property 4.3.

Subcase 1: If the vertex is Am-I, then the set of reiations preceding Am-I,

together with Am-I, form a substrategy involving the m-l A-relations

{Al,A2, ••• ,Am-l}, the n B-relations {Bl,B2, ••• ,Bn} and the I-relation.

This substrategy is optimal among all substrategies ending at Am~l and

involving the same subset of relations (otherwise a better substrategy fol

lowed by the data transfer to Am will produce a better strategy) by dynamic

programming principle and is denoted by OPTS(m-l,n,I,Am-l).

Subcase 2: If the vertex is I, then again we have an optimal substrategy

involving the same subset of relations. This substrategy is denoted by

OPTS(m-l,n,I,I), since the last vertex in the substrategy is I.

Both substrategies process the same set of relations and the relation

immediately following each of these substrategies is Am. Thus, the amount

of data transmitted from each of those substrategies to Am is identicai and

can be denoted by X. Thus, OPTS(m,n,I,Am) is either Am preceded by

OPTS(m-l,n,I,I) or Am preceded by O~TS(m-l,n,I,Am-l). Let C(strategy) be

the cost of the strategy. Then,

C(OPTS(m,n,I,Am)) = (cO+cl*X) +

min {C(OPTS(m-l,n,I,Am-l)),C(OPTS(m-l,n,I,I))}

Pictorially, OPTS(m,n,I,Am) is

Am <---- min {OPTS(m-l,n,I,I),OPTS(m-l,n,I,Am-l)} (4.1)

where the cost

OPTS(m,n,I,Bn) is

functions are not explicitly written. Similarly,



375

Bn (----min {OPTS(m,n-1,I,I),OPTS(m,n-1,I,Bn-1)} (4.2)

Consider OPTS(m,n,I,I). If the first fully reduced relation I has in

degree 1, then the relation immediately preceding I can be either Am or Bn.

The two subcases are respectively

I (---- Am (---- min {OPTS(m-1,n,I,I),OPTS(m-1,n,I,Am-1)} (4.3)

I (---- Bn (---- min {OPTS(m,n-1,I,I),OPTS(m,n-1,I,Bn-1)} (4.4)

If the first fully reduced relation I has in-degree 2, then by Property 4.2

the optimal strategy is

OPTS(m,O,O,Am)

/
I

~OPTS(O,n,O,Bn)

(4.5)

From (4.1)-(4.5), OPTS(m,n,I,Y) can be computed in constant time if

OPTS(m-1,n,I,I), OPTS(m-1,n,I,Am-1), OPTS(m,n-1,I,I), OPTS(m,n-1,I,Bn-1),

OPTS(m,O,O,Am) and OPTS(O,n,O,Bn). This suggests the following method to

obtain the optimal strategy.

Consider the 2-dimensional figure in Figure 4-1, where the point (i,j)

denotes 3 optimal strategies involving {A1, •••Ai,B1, ••• Bj,I} ending in Ai,

Bj and I. From equation (4.1)-(4.5), the optimal strategies at (m,n) are

obtainable from those at (m-1 ,'n) , (m,n-1), (m,O) and (0 ,n). Thus, if we

compute all optimal strategies at (xl ,x2), x1+x2=t, and at the boundary

points (i,O), (O,j), l~i~n, l~~m, (the optimal strategies at the boundary

points involving essentially single-domain relations are easily computable

[HEYA]), then the strategies at (y1,y2), y1+y2=t+1 are easily computable.

Starting from t=l, we progress to t=m+n when the optimal strategy for the

query is obtained. This can be shown to take O(mn) time [YLOZ].



376

The algorithm can be generalized to obtain optimal strategies to

reduce relations for tree queries (see [CHHO t YULO]). However t the algo-

rithm generalized in that direction is not as easy as the one given as fo1-

lows to program and does not take into consideration the cost of sending

relations to the assembly site.

V GENERAL ALGORITHM

Before an algorithm to process a general query is presented t a query

graph will be defined to facilitate the description of the algorithm.

A set of relations are of the same kind if the set of relations have

the same set of joining attributes in the qualification of the query. For

example t relations AI, A2 t ••• tAn are of the same kind t because they have

the same joining attribute A in the qualificaton of the query discussed in

the last two sections. Vertices of a query graph denote relations of the

same kind while edges of the graph denote the joining of the relations

appearing in the qualification of the query.

A query graph G=(VtE) defined here is similar to that defined in

[BECH]t except that each vertex consists of the set of relations of the

same kind. In other words t the edges between relations of the same kind in

the [BECH] definition of a query graph are not shown in the present query

graph and all relations of the same kind are merged into a single vertex.

Example ~.!: A query graph as defined in [BECH] can be

I ---- Al ---- A2

"BI

":82 --- B3

According to the presentdefinition t the query graph is



377

where! represents the set of relations of the same kind having

the same joining attribute A, i.e., Al and A2 and

Arepresents BI, B2 and B3. a
Notation: A vertex, if underlined, represents a set of relations of the

same kind, while a vertex which is not underlined represents a single rela-

tion.

Section 4 gives optimal algoritms to fully reduce a relation for query

graphs of the form

I ----- A"B-
The same method is applicable to query graphs of the form

J

41""'-P:.! fo·· 2.

where J is a relation having

attributes A,B,C, ••• ,S.

Let query graphs of this form be called tree of height.!. (where J is the

root and each vertex in the tree is one edge away from J). We now describe

a query processing method making use of the optimal strategies to process

8ubqueries whose tree-query graphs are trees of height 1 as substrategies.

The method consists of 2 key steps.

In the first step, a relation, say R, is reduced as much as possible

by semi- joins. If the query is a tree-query [BECH,BEGO,YUOl,YU02], then

the relation will be fully reduced otherwise it is only partially reduced.



378

In the second step, a set of relations which are needed to construct the

answer as defined in the output component are identified. Then, this set of

relations are possibly reduced by R and used to produce the answer at the

result site. Details of the steps are given as follows.

Step l: To reduce a relation as much as possible.

l.l Construct a query graph G=(V,E) from the qualification part of the

query. /* each vertex is a set of relations of the same kind */

1.2 If G is cyclic, choose a spanning tree T=(Vt,Et), otherwise G is a

tree, set T=G /* see for example [YUOl,YU02,BEGO] */. Designate a

vertex]. whose joining attributes are not subset of the joining attri-

butes of any other vertex in Vt as the root of T.

l.l Decompose T into a number of subtrees of height 1, plus a set of

relations of the same kind.

Example ~.~: Suppose we have the following query graph,

we can choose the spanning tree T as,

T: J

-~

! "'K L
!!J\ /1 -

suppose the root of T is ~, then T can be decomposed into



subtree 1

subtree 2

subtree 3

379

K1

(\
.ll _

J1

~
1 .! ..k

where II is the smallest

relation in I

where K1 is the smallest

relation in K

where J1 is the smallest

relation in.:L

and relations of the same kind in 1, namely {J1,J2, ••• ,Js}. [J

1.4 Starting from the bottom of tree T toward root ~,-- ,

For each subtree,

a) for every leaf L of the chosen subtree,

1f Lhas a joining attribute outside the joining attributes

of its father r1, assume the smallest relation in i is f1,

then (i) if the cost of f1-->other relation is greater than

. the cost of r1-->f1-->other relation

then do r1-->f1 first,

(ii) send the relations in i. in ascending order of sizes.

(in step b, whenever i is referenced, only the last

reduced relation in i is used)

b) apply the optimal strategy given in section 4 to the chosen

subtree.

When root.!. is reached, all relations of the same kind in the root are

sent in ascending order of sizes /* as given in [HEYA], sending rela-

tions of the same kind in ascending order of sizes is optimal */



380

Example 5.3: Using Example 5.2, assume that only the joining attributes of

Jl of subtree 3 do not contain that of some of its sons, say, the joining

attributes of Jl is ABCDG; of 1 is ABC; of ~is DE; of ~is EG, we apply

the optimal strategy to subtree 1 to reduce 11; then to subtree 2 to reduce

Kl; as for subtree 3, we consider whether (Jl-->the smallest relation in

~->other relation) has lower cost than (the smallest relation in ]t->other

relation), if yes, (Jl-->the smallest relation in~) is done first. Then,

Hevner-Yao's algorithm is applied to reduce ~ to one relation. The same

process is done for~. And then, we apply the optimal strategy to subtree

3; finally, Hevner-Yao's algorithm is applied to reduce the relation in !'

namely Js. At the end of the reduction, Js is the smallest relation in J. CJ

Step~: Identify the set of relations needed to be sent to assembly or

result site to produce the answer, and use the relation which is reduced as

much as possible in Step 1 (Js in Examples 5.2 and 5.3), to reduce the set

of identified relations, then produce the answer at result site.

1.1 All output relations are identified (a relation is an output

relation if it contains one or more output attributes). Then, all
,

vertices that contain output relations and those vertices that appear

in cycles /* only if the query is cyclic */ are identified. A minimum

connected graph Gl=(Vl,El), which is a subgraphof the spanning tree

T,connecting the identified vertices and ~ is formed. Designate £as

the root of Gl. Finally, the smallest relation in each vertex of Gl

/* except root vertex */ is identified. /* only the output relations

and the smallest relation in every vertex of Gl are needed to produce

the answer, see Example 5.5 */

~.l For the identified relations of the same kind as the first rela-

tion which has been reduced as much as possible (say Js),



381

if no relations are identified, Js is sent directly

to assembly site or result site.

else (1) for every identified relation, say Ji, has an

output attribute (or attributes) outside the joining

attributes of Js,

if Js--)Ji--)some site

Ji-------)some site,

has a lower cost than

then Ji is reduced by Js before being sent to

assembly site or result site.

(2) if no sending of Js is involved for all Ji's,

then send Js to the largest Ji.

Example 5.4: Using the same query graph as Example 5.2, suppose the

output relations are B2 and Jl, then the minimal connected graph Gl

can be

Gl: J

r/['Lr - -
.11.

and the set of identified relations is the output relations Jl, B2,

and the smallest relation of 1, say 13; of lh say B4; of b say K4; of

~, say L2. Suppose Js is the relation that has been reduced as much

as possible in step 1, since there is only one identified relation Jl

in~, J1 is reduced by Js (check Step 2.2).

2.3 Consider the subtree of height 1 with the root of the tree as Js

and the leaves as I,!, ... etc ••

For each identified relation 11 ,12, ••• of 1,

Kl,K2, ••• of.,K., etc ••



if

382

. Js--)Ii---)some site

Ii--------)some site,

has a lower cost than

then Ii is reduced by Js before being sent to

assembly si te.

1.~ Repeat Step 2.3 for subtrees of height I with roots being the

smallest relation of 1, the smallest relation of ~, etc •• and the

leaves of the subtrees are the immediate descendants of I, .K"etc •• in

tree GI of the query graph, until all identified relations in VI has

been considered. /* in effect, the identified relations are reduced

from root Js towards the leaves of tree GI */

~.i /* decide whether an assembly site other than the result site is

worth having */ Let X be the largest identified relation after the

reduction up to and including Step 2.4, and MI, M2,

other identified relations

... , Mt are the

if MI ---) X ---) result site

./
Mt

than

MI ----------) result site

• ,4
Mt X

has a lower cost

then the former strategy is used with the site containing

X being the assembly site,

otherwise the latter strategy is used with the result site

as the assembly site.

Example 5.5: tIsing Example 5.4, suppose the output relations (those con-

taining one or more output attributes) are B2, 12 and JI, we find the



383

minimal connected graph G1 is the sa~e as in Example 5.4. Suppose B4, I),

K4 and L2 are the other identified relations.

First, the strategy (Js---)J1---)some site) is chosen. Then the strategy

with the lower cost among (Js---)I3---)some site) and (I3---)some site) and

among (Js---)I2---)some site) and (I2---)some site) are choosen. And the

I strategy with lower cost among (Js---)K4---)some site) and (K4---)some

site) and among (Js---)L2---)some site) and (L2---)some site) are chosen.

Let Ii be the smallest I-relation, which can be either 12 or 13. Then the

strategy with smaller cost among (Ii---)B2---)some site) and (B2~--)some

site) and among (Ii---)B4---)some site) and (B4---)some site) are chosen.

We will not reduce any of the relations in ~, f, ~ and ~, because at the

time Js was reduced, relation 13 already satisfied the -part of qualifica-

tion involving 1=., ,!, £. and .1 and relation K4 already satisfied the part of

qualification involving Q, ! and K (please refer to the algorithm given in

[BEeR] which sends the relation from the leaves to the root such that in-

termediate results satisfy the subqueries of the given query). Suppose the

result site is different from that containing J1, 12, 13, B2, B4, K4 and L2

and B2 is now the largest relation. Then the strategy with the lower cost

among

J1~

12 -----~ B2 -----) result site

I3~\
B4 K4 L2

and J1~

I\~~i\t
B2 B4 K4 L2

site

is chosen.



384

In effect, our algorithm is similar to that given in [BECH] where

reduc tions are perfonned from the leaves to the root and backwards, except

that we perfonn optimization for subtrees of height 1 and only some rela

tions (the identified relations in Step 2.1) are reduced and then sent to

the assembly or result site.

VI COMPARISON WITH SDD-1

SDD-1 is a distributed database system [TODS]. We now compare the

perfonnance of our algorithm with the query processing algorithm given in

[ p. 34, GBWR].

Our algorithm and theirs are not entirely compatible. As a result,

the following conditions are added to make the comparison meaningful:

(1) When a multiple domain relation, say I, is reduced by a single-domain

relation, say A, the projection of I on another domain, say B, can be es

timated by a number of methods [GBWR,HEYA,YLOZ]. We make use of the esti

mation method given by SDD-1.

(2) In SDD-1 all relations referenced by the query are sent to an assembly

site and the result site is not mentioned, while our algorithm sends only

some of the relations to the result site. In the comparison, it is assumed

that all relations are sent to a site containing one of the relations.

This will usually incur higher transmission costs to strategies produced by

our algorithm.

Only queries whose qualifications of the fonn given in section 4 are

considered, because we believe most users, especially casual users, do not

usually submit queries involving relations of more than three kinds (or

queries having height greater than 1). Different number of A-relations and



385

B-relations are tried, where for each set of the same number of A & B-

relations and a single I-relation, 50 different combinations of relation

sizes (which are randomly generated) are experimented. It· is· found that

(1) the average improvements of our algorithm over that of SDD-1 vary from

14% to 60%, and (2) when the number of relations increased, the improvement

also increases. Figure 6-1 plots the improvements against the relations

used. Improvement is defined to be

(total amount of data transferred by SDD-1)
- (total amount of data t~ansferred by our algorithm)

------------..-.........----------..---------------------------------------- * 100%•
(total amount of data transferred by our algorithm)

VII CONCLUSION

We have shown that the process of selecting one copy for each relation

for the simplest type of queries in order to minimize the cost of transmis-

sion is NP-hard. We have presented an approach to distributed query pro-

cessing, making use of dynamic programming. The processing of queries is

broken down into two stages. (1) eliminate useless data from a relation as

much as possible by semi-joins, then, (2) the relation obtained from the

first stage is used to reduce relations that are really needed to produce

the answer to the query.

We believe our approach is rather promising, because the reduction of

a relation using semi-joins for common queries (trees of height 1) is per-

formed optimally by our algorithm, which is applicable to general queries.

Thus, optimal strategies are provided for stage 1 for many common queries.

Although the algorithm may not yield optimal strategies for all tree

queries, the algorithm is easy to program. In stage 2, our algorithm

avoids sending unnecessary relations to the assembly site or the result

site. As a result, transmission cost is cut down. Rather significient



386

improvement of our algoritloo over SDD-l is provided experimentally, even

when the benefit of our algorithm in stage 2 is not considered in the ex

periments.



387

REFERENCES

[ACDG] Adiba, M., Chupin, J.C., Demolombe, R., Gardarin, G. and Bihan,
J .L., "Issues in distributed database management systems: a technical over
view," International Coference on Very Large Databases, Berlin, pp. 89-110,
1977.

[ARUL] Aho, A., Roperoft, J. and Ullman, J.D., "The Design and Analysis of
Computer Algorithms," Addison-Wesley, 1974.

[BABB] Babb, E., "Implementing a relational database by means of special
ized hardware," ACM TODS, VoL 4, March 1979, pp. 1-29.

[BECR] Bernstein, P.A. and Chiu, D-M.W., "Using semi-joins to solve rela
tional queries," JACM.

[BEGO] Bernstein, P.A. and Goodman, N., "Full reduc~rs for relational
queries using multi-altitute semi-joins," Centre for R~'search in Computing
Technology, Harvard University, July 1979.

[CHAK] Chandy, K.M., "Models of distributed systems," International Confer
ence on Very Large Databases, Tokyo, pp. 105-120, 1977.

[CREU] Cheung, T. Y. "Two methods of resolution for general equi- join
queries in distributed relational database," Tech. Report, University of
Ottawa, Department of Computer Science, 1981.

[CRRO] Chiu, D.M. and Ro, Y.C., "A methodology for interpreting tree
queries into optimal semi-join expressions," Harvard University, Dec. 1979.

[CRIU] Chiu, D.M., "Optimal query
bases," Ph.D. Thesis, Division
1980.

interpretation for distributed data
of Applied Sciences, RarvardUniversity,

[CODl] Codd, E.F., "A relational model for large shared databases," CACM,
pp. 377-389, 1970.

[COD2] Codd, E.F., "Further normalization
model," in Database Systems, Prentice RaIl,
33-64, 1972.

of the
Englewood

database relational
Cliffs, N.J. pp.

[COOK] Cook, S.A., "The Complexity. of theorem-proving procedure," Proc. of
third ACM Symposium on Theory of Computing, 1971, pp.151-158.

[DATE] Date, C.J., "An Introduction to Database Systems," Addison Wesley,
Reading, MA, 1977.

[EPST] Epstein, R. and Stonebraker, M., "Analysis of distributed database
processing strategies," IEEE, 1980, pp. 92-101.

[GBWR] Goodman, N., Bernstein, P.A., Wong, E., Reeve, C. and Rothnie, J.B.,
"Query processing in SDD-l: A System for Distributed Databases ," Computer
Corporation of America, 575 Technology Square, Cambridge, MA, Oct. 1979.

[REVN] Renver, A.R., "The optimization of query processing on distributed



388

database systems," Ph.D. Dissertation, Department of Computer Science, Pur.
due University, Lafayette, Indiana, 1980.

[HEYA] Hevner, A.R. and Yao, S.B., "Query processing in distributed data.
base system," IEEE Transactions on Software Engineering, May 1979, pp.
177.-187.

[HOSA] Horowitz, E.and Sahni, S., "Fundamentals of Computer Algorithms,"
Computer Sciences Press, 1979.

[KARP] Karp, R., "Reducibility among combinatorial problems," Complexity of
Computer Computations, Plenum Press, N.Y., 1972, pp. 85.-104.

[KTYA] Kerschberg, L., Ting, P.D. and Yao, S.B., "Optimal distributed query
processing ," Bell Laboratories, Holmdel, N.J ••

[KULE] Kung, H.T. and Lehman, P.L., "Systolic (VLSI) arrays for relational
database operations," Department of 'Computer Science, Carneg ie'-Mell on
Univ., Pittsburgh,~~ennsylvenia15213.

[LULU] Luk, W.S. and Luk, Lydia, "Optimal query processing strategies in a
distributed database system," Department of Computer Science, Simm Traser
Uni., Burneby B.C., Canada.

[ROG1] Rothnie, J.B. and Goodman, N., "A survey of research and development
in distributed database management," International Conference on Very Large
Database, Tokyo, pp. 48.-62, 1977.

[ROG2] Rothnie, J. B. and Goodman, N., "An overview of the preliminary
design of SDD.-1: A system for Distributed Databases ," Berkeley Workshop on
Distributed Data Management and Computer Networks, Berkeley, 1977.

[TODS] ACM, TODS, March 1980, pp. 1.-68.

[WONG] Wong, E., "Retrieving dispersed data from SDD.-1: A System for Dis
tributed Databases," Berkeley Workshop on Distributed Data Management and
Computer Networks, Berkeley, 1977.

[YLOZ] Yu, C.T., Lam, K. and Ozsoyoglu, M., "Distributed query optimization
for tree queries," Dept. of Information Engineering, University of Illinois
at Chicago Circle, Oct. 1979, revised July 1980.

[YU01] Yu, C.T. and Ozsoyoglu, M.Z., "An algorithm for tree-query member
ship of a distributed query," IEEE Compsac, Chicago, Nov. 1979, pp.
306-312.

[YU02] Yu, C.T. and Ozsoyoglu, M., "On determining tree-query membership of
a distributed query," Department of Computing Science, University 6f Alber
ta, Nov. 1979.



389

(m,n)

• (m ,n-I)

._-...(m-I,n)
B's in

ascending

order of

sizes

A's in
ascending
orde'r of
sizes

Figure 4.1 Illustrates how the optimal strategy
is obtained

./



IMPROVEMENT

%

59.4
60

40

50

30
Gl
'U

I ~5
w0 \0

en 0
!!i 20I
0

~,.
enen I 14.0,.

10

(5A,5B)( 5A,4B)( 4A,4B)(2A,2B) (3A,2B) (3A,3B) (4A,3B)

% OF IMPROVEMENT OF OUR METHOD OVER SDD-l

(2A,IB)(lA,IB)
0,' ; , • I I t I • ,

(The I-relation
is understood)

Amount of data transferred by SDD-l - Amount of data transferred by our algorithm
Improvement = -----------------------------------------------------------------------------------------

Amount of data transferred by our algorithm

Figure 6.1







I

I
r:

I'

f
J
~'
I

l

\,

,
I

I

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.



_.~
~

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

'->

"




