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ABSTRACT 

A "Multiple Interacting Continua" method (MINC) is presented which is 

applicable for numerical simulation of heat and multi-phase fluid flow in 

multidimensional, fractured porous media. This method is a generalization of 

the double-porosity concept. The partitioning of the flow domain into 

computational volume elements is based on the criterion of approximate 

thermodynamic equilibrium at all times within each element. The thermodynamic 

conditions in the rock matrix are assumed to be primarily controlled by the 

distance from the fractures, which leads to the use of nested grid blocks. 

The MINC concept is implemented through the Integral Finite Difference (IFD) 

method. No analytical approximations are made for the coupling between the 

fracture and matrix continua. Instead, the transient flow of fluid and heat 

between matrix and fractures is treated by a numerical method. The geometric 

parameters needed in a simulation are preprocessed from a specification of 

fracture spacings and apertures, and the geometry of the matrix blocks. 

The MINC method is verified by comparison with the analytical solution 

of Warren and Root. 

reservoir engineering problems. 

Illustrative applications are given for several geothermal _ _  __ _ _ ~  ~-~ 
DISCLAIMER 

INTRODUCTION 

In this paper, we present a numerical method for simulating transient, 

non-isothermal, two-phase flow of water in a fractured porous medium. The 

method is based on a generalization of a concept originally proposed by 

Barenblatt et al. (1960) and introduced into the petr6leum literature by 
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Warren and Root (19631, Odeh (19651, and others in the form of what has 

been termed the "double-porosity" model. 

that in a fractured porous medium, fractures are characterized by much larger 

diffusivities (and hence, much smaller response times) than the rock matrix. 

Therefore, the early system response is controlled by the fractures whereas 

the late time response is influenced by the matrix. In seeking to analytically 

solve such a system, the aforesaid workers grouped all the fractures into one 

continuum and all the matrix blocks into another, resulting in two interacting 

continua, coupled through a mass transfer function determined by the size and 

shape of the blocks as well as the local difference in potentials between 

the two continua. Later, Kazemi (1969) and Duguid and Lee (1977) incorporated 

the double-porosity concept into a numerical model. For a more detailed 

description of the concept and its application, see Streltsova-Adams (19781, 

Evans (1981) and Pruess and Narasimhan (1981). 

The essence of this approach is 

Very little work has been done in investigating non-isothermal, two-phase 

fluid flow in fractured porous media. 

fracture approach to study the behavior of fissured, vapor-dominated geothermal 

reservoirs. The purpose of the present work is first to generalize the 

double-porosity concept into one of many interacting continua. We shall then 

incorporate the "multiple-interacting-continua" model (MINC) into a simulator 

for non-isothermal transport of a homogeneous two-phase fluid (water and 

steam) in multi-dimensional systems. Our approach is considerably broader in 

Moench (1978) used the discrete 

scope and more general than any previous models discussed in the literature. 

The MINC method permits treatment of multiphase fluids with large and variable 

compressiblity, and allows for phase transitions with latent heat effects, as 

well as for coupling between fluid and heat flow. The transient interaction 
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between matrix and fractures is treated in a realistic way. 

model can permit alternate formulations for the equation of motion, we shall 

assume that macroscopically, each continuum obeys Darcy's law; in particular 

we shall use the "cubic law" for the flow of fluids in a fracture (Witherspoon 

et al., 1980). While the methodology presented in this paper is generally 

applicable to multi-phase compositional thermal systems, our illustrative 

calculations were restricted to geothermal reservoir problems. 

Although the 

The numerical method chosen to implement the MINC-concept is the Integral 

Finite Difference Method (IFD; Narasimhan and Witherspoon, 1 9 7 6 ) .  In this 

method, all thermophysical and thermodynamic properties are represented by 

averages over explicitly-defined finite subdomains, while fluxes of mass or 

energy across surface segments are evaluated through finite difference 

approximations. An important aspect of this method is that the geometric 

quantities required to evaluate the conductance between two communicating 

volume elements are provided directly as input data, instead of generating 

them from data on nodal arrangements and nodal coordinates. Thus, a remarkable 

flexibility is attained by which one can allow a volume element in any one 

continuum to communicate with another element in its own o r  any other continuum. 

Inasmuch as the interaction between volume elements of different continua is 

handled as a geometric feature, the XFD methodology does not distinguish 

between the MINC method and the conventional porous medium type approaches to 

modeling. Therefore, one can combine, in the same flow region, discrete 

fractures in one part, MINC formalism in another part, and a homogeneous 

porous medium in yet another. 

The MINC scheme f o r  non-isothermal two-phase flow has been incorporated 

into a geothermal reservoir simulator called SHAFT79 (Pruess and Schroeder , 
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1980). The SHAFT79 code has been thoroughly validated against analytical and . 

numerical solutions for flow in porous media. 

shall further validate the model against the well-known Warren and Root 

(1963) solution for flow to a well in a double-porosity representation of a 

naturally fractured aquifer. 

carried out with a compositional simulator for thermal processes, called 

MULKOM, which is presently under development at LBL. 

of MULKOM has been validated against SHAFT79. 

For purposes of this paper, we 

Some of the calculations reported below were 

The geothermal version 

Our presentation is divided into five parts. We first state mass- and 

energy-conservation equations in integral form. Subsequently, the geometric 

description (discretization) of reservoir systems for purposes of numerical 

modeling is discussed. 

equilibium" within each computational volume element, we then introduce 

Employing the criterion of "approximate thermodynamic 

the basic concepts as well as the numerical implementation of the MINC 

method. Remaining parts deal respectively with the validation of the MINC- 

algorithm, and with illustrative applications to problems of interest to 

geothermal reservoir engineering. 

GOVERNING EQUATIONS 

For modeling purposes, it is customary to idealize geothermal reservoirs 

as systems of porous rock saturated with a single-component fluid in liquid 

and vapor form. The basic equations governing mass and energy transport in 

these systems can be written as: 
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n n n 

Equations (1)  and ( 2 )  a r e  genera l  conservat ion s ta tements ,  and hold t r u e  f o r  

a r b i t r a r y  subregions Vn, i r r e s p e c t i v e  of whether Vn i s  " large" or  

"small". Also, Vn can have a r b i t r a r y  ( i r r e g u l a r )  shape, and a r b i t r a r y  

topo log ica l  s t r u c t u r e .  Our r a t i o n a l e  f o r  present ing  t h e  governing equat ions 

i n  i n t e g r a l  r a t h e r  than d i f f e r e n t i a l  form i s  t h a t  t h i s  avoids r e fe rence  t o  a 

g loba l  system of coord ina te s ,  and t h e r e f o r e  provides  g r e a t  f l e x i b i l i t y  i n  the  

geometr ical  d e s c r i p t i o n  of t he  flow reg ion .  This  f l e x i b i l i t y  i s  p a r t i c u l a r l y  

use fu l  i n  the  modeling of f r ac tu red  porous media, a s  w i l l  be shown below. It 

i s  t o  be noted t h a t  t he  v a l i d i t y  of Equations (1)  and ( 2 )  i s  not r e s t r i c t e d  

t o  porous media. Indeed, t hese  equat ions hold f o r  a r b i t r a r y  mixtures  of rock 

and f l u i d .  In  p a r t i c u l a r ,  these  equat ions a r e  v a l i d  fo r  f r ac tu red  porous 

media and f o r  reg ions  conta in ing  only f l u i d  and no rock (and v i c e  v e r s a ) .  

To complete t h e  formulat ion given i n  Equations (1) and ( 2 1 ,  we spec i fy  

mass and energy flow terms, and de f ine  t h e  i n t e r n a l  energy f o r  a r o c k l f l u i d  

mixture.  

We assume t h a t  mass f l u x  i s  given by Darcy's l a w :  

vapor 

Here we neglec t  c a p i l l a r y  p re s su re ,  as i s  customary for geothermal a p p l i c a t i o n s ,  

although i t s  inc lus ion  i s  q u i t e  s t r a igh t fo rward .  

i s  app l i cab le  t o  porous media a s  w e l l  a s  t o  f r a c t u r e s .  Experimental and 

We note  t h a t  equat ion ( 3 )  
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theoretical work (e.g., Witherspoon et al., 1980) has established that 

laminar flow in fractures is very closely governed by Darcy's law, with 

fracture permeability given by 

d2 
kf - 12 

- - 

Energy flux contains conductive and convective terms 

and the volumetric internal energy of the rock/fluid mixture is 

The governing equations need to be complemented with a description of the 

thermophysical properties of the fluid filiing the void space. This i s  based 

on the concept of "local thermodynamic equilibrium". It is assumed that the 

transient evolution of reservoir systems proceeds through a (continuous) 

sequence of quasi-equilibrium states "at each point". A thermodynamic 

variable "at a point" is but an appropriate average value of that quantity 

over a suitably defined finite subdomain to which the given point is interior. 

Although the point is usually assumed to be at the center of gravity of the 

subdomain, its appropriate location may be a function of time (Narasimhan, 

1978; Narasimhan, 1980). Using the concept of local thermodynamic equilibrium, 

an "equation of state" can be employed to express all thermophysical parameters 

as functions of a set of primary dependent variables. For a single-component 

(one- o r  two-phase) fluid there are two primary variables, which in our 

simulator SHAFT79 are chosen to be specific internal energy u and density p .  
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Spacediscretization of Equations (1) and ( 2 )  can be obtained by introducing 

appropriate volume averages: 

J x dv = xnvn 
'n 

where x is a volume-normalized extensive quantity such as porosity, density, 

enthalpy, saturation, or moisture content and xn is the average value of x 

over Vn. Surface integrals are approximated as a discrete sum of averages 

over surface segments &: 

The sum in (7b) extends over all Vm sharing a surface segment with Vn. 

Boundary conditions are treated by introducing appropriate boundary elements 

(for Dirichlet-type conditions), or sinks and sources (for Neumann-type 

conditions). 

we have the following algebraic equations: 

Approximating time derivatives as first-order finite differences, 

- - - A t  t CFnm k+ lA + v qk+') = 0 (8 )  n n  'n m 

To assure unconditional stability, we have used a fully implicit formulation, 

with all fluxes and variable sources evaluated at the new time l eve l ,  

tk+l. 

geometric partitioning, o r  mesh {Vn; n = 1, ..., N). 
Practical solution of these equations requires specification of the 

1 
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GEOMETRIC DESCRIPTION (MESH) 

Equations (8) and (9) are valid for completely arbitrary sub-regions 

Vn, including the entire reservoir system. These equations hold whether 

the reservoir is fractured or porous or both. For a complete description, 

the reservoir volume V may be partitioned into arbitrary volume elements Vn 

(n = 1, ..., N), such that (e.g., Narasimhan, 1978) 

N 

UV" n=l = 
(10) 

However, Equations (8) and (9) are useful only if the allowable partitions 

IPV = {v,; n = 1, ..., N} (11) 

are suitably restricted on the basis of geometric and thermodynamic consider- 

ations. Generally speaking, the partitioning of the reservoir volume must be 

made in such a way that the flux terms Fnm, Gm can be expressed as 

functions of the average values of the primary thermodynamic variables in the 

volume elements Vi, ..., VN. This can be achieved if there is approximate 

thermodynamic equilibrium within each volume element at (almost) all times. 

The classical equations of motion assume (on empirical grounds) that Fnm is 

directly related to the gradient of average fluid potentials while conductive 

heat flux is directly related to the gradient of average temperature. 

We will here follow these classical equations of motion, but our formulation 

can permit other, more general expressions. 

The expression for mass flux is given by, 

P -P m n  1 
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An analogous definition holds for the energy flux Grim which has a conductive 

and an advective component: 

In (12) and (131, different weighting procedures (e.g., harmonic weighting, 

spatial interpolation, upstream weighting) can be employed to evaluate the 

various "interface quantities," labeled with subscripts "nm". 

and (13) are appropriate for isotropic media, and for orthotropic media in 

which a principal axis of permeability coincides with the outer normal to 

the surface segment dr. 

Equations (12) and (13) can be extended by considering a set of non-collinear 

points f o r  approximating gradients of pressures and temperatures. 

Equations (12) 

For a more general orientation of the segment, 

Equations (81 ,  (91, (121, and (131, together with an equation of state 

for the pore fluid, provide a flexible "integral finite difference" (IFD) 

formulation for mass and heat flow in geothermal reservoirs, which is applicable 

t o  fractured and/or porous media. 

geometric flexibility. 

to be modeled is contained in a list of element volumes Vn, interface areas 

Anm, and nodal distances dnm, which is provided as input data. 

allows modeling of one-, two-, or  three-dimensional, regular, or  irregular 

systems with the same ease. 

only two constraints: 

thermodynamic equilibrium at (almost) all times, and (ii> for adjacent volume 

elements the line connecting nodal points coincides with a principal axis of 

permeability, and the interface area is perpendicular to this line. 

The chief advantage of the IFD method is 

The entire geometric description of the system 

This 

The partitioning of the system is subject to 

(i) within each volume element there exists approximate 
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In porous media, the variables of thermodynamic state are slowly varying 

functions of position. Therefore, approximate thermodynamic equilibrium 

exists within each "small" portion of the flow region. As a general rule, 

then, volume elements would be chosen as "small" simply-connected regions. 

Larger volume elements are acceptable in regions where spatial variations in 

thermodynamic conditions are weak, or where little detail is desired, e.g., % ~ 

at greater distance from wells. 

Conditions can be substantially different in fractured porous media. 

Extremely sharp gradients in fluid pressures, temperatures, and other thermo- 

dynamic variables may occur close to the fractures so that, to satisfy the 

requirement of thermodynamic equilibrium, one has to employ volume elements 

with extremely small volumes. Typically these elements will have widths of 

the order of a few fracture apertures. Additionally, the fractures themselves 

need to be modeled as very small volume elements. While this approach is 

conceptually straightforward, it requires detailed geometrical information 

which is seldom available from the field, and the computing effort increases 

dramatically with the increase in the number of volume elements to be handled. 

From a practical view point, therefore, the need for a simpler, more viable 

tool of analysis is clearly indicated. 

We shall now generalize the above considerations for a fractured porous 

medium with several sets of fractures in three dimensions. Our discussion is 

based on a schematic idealized model of fractured porous media, similar to 

the conceptual model of double-porosity systems originally proposed and 

developed by Barenblatt et al. (19601, Warren and Root (19631, and others. 

Wh'ile2these authors used the double-porosity model to obtain analytical 

solutions, we have taken a more general numerical approach. This makes 
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possible the treatment of coupled fluid and heat transport without invoking 

quas i-s t ead y approximat ions for int erporos it y f 1 ow. 

MULTIPLE INTERACTING CONTINUA (MINC) 

Consider a fractured porous reservoir, which we idealize as having three 

perpendicular sets of infinite, plane, parallel fractures of equal aperture 6 

and spacing D (Figure 1). 

units, in our idealization assumed to be cubes, which are bounded by fractures 

on all faces. The assumption of a regular fracture network is actually not 

The reservoir is made up of identical elementary 

essential for the method presented here. Generalizations to arbitrary 

assemblages of fractures which may be described in a statistical fashion are 

possible. This will not be pursued here, however, for the simple illustrative 

purpose on hand. 

We envision a process with large differences in thermodynamic conditions 

(temperatures, pressures, vapor saturations) between fractures and rocks, 

such as depletion of a boiling reservoir zone. The process to be modeled 

involves two aspects: 

reservoir, which proceeds almost entirely through the fracture system, and 

(ii) fluid and heat flow between rock matrix and fractures. 

conditions may vary strongly over small distances in the vicinity of the 

fractures, it appears reasonable to expect that spatial variations within the 

fracture system, or within certain portions of the matrix, may be slow 

and amenable to volume averaging. 

the flow region (e.g., certain groups of well-connected fractures or portions of 

porous blocks) into several distinct continua which interact with each other. 

Variations in thermodynamic conditions will be much less pronounced in the 

direction of a fracture than perpendicular to it. As a first approximation, 

(i) the global movement of fluid and heat through the 

While thermodynamic 

Thus we can lump appropriate portions of 
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thermodynamic conditions in t..e matrix will depen 

primarily upon the distance from the nearest fracture. Therefore, we 

shall partition the flow domain into computational volume elements in such a 

way that all interfaces between volume elements in the matrix are parallel to 

the nearest fracture. 

a restriction in the possible functional form of the time-dependence of 

thermodynamic state in the matrix. 

surfaces (of pressure, temperature, and other variables of thermodynamic 

state) are characterized by having constant distance from the nearest 

fracture. 

and thermodynamic state is quite analogous to the approximation made by Gibbs 

in his theory of capillarity for  the boundary layer between two liquid-phases 

(Gibbs, Collected Works, 1948) .  Partitioning based on this assumption gives 

rise to a pattern of nested volume elements, which, for the two-dimensional 

We emphasize that this choice of partitioning implies 

Namely, we assume that the equipotential 

This approximation to the interaction between reservoir geometry 

case, is shown in Figure 2. 

state assigned to it. Modeling of heat and fluid flow in such a system of 

nested volume elements, or interacting continua, is straightforward within 

Each volume element has a definite thermodynamic 

the framework of the IFD method. The geometric description of the problem in 

te'rms of a set of elemental volumes Vn, interface areas Anrn, and nodal 

distances dnm can be readily obtained from a specification of the volume 

fractions +j (j = 1, ..., J) occupied by the interacting continua. 
that- j = 1 refers to the outer (fracture) continuum, we have 

Assuming 

(j = 1, ..., J) (14b) 
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In the last equation, we have 

element VJ in accordance with 

3D 1/3 - X 4 J  (14f) 

adopted an interface distance for the innermost 

the quasi-steady value of the interporosity flow 

parameter a as given by Warren and Root. Other choices are possible, but the 

impact on simulated results is negligible. The volume fraction $1 occupied by 

the fractures is determined from fracture spacing and width (Equation 14a). The 

other volume fractions are arbitrary in principle (except for the constraint 

+j = 11, and are chosen such as to provide good resolution where needed. 
J 
C 
j=1 
Thus, the outer elements near the fractures (j = 2, 3, ...I will be closely 

spaced, with larger distances appropriate for the elements away from the 

fractures (j = J ,  J-1, ... ). 

In a mesh with nested volume elements such as shown in Figure 2 ,  the matrix 

acts as a "one-way street" for fluid and heat flow, with all flow occurring out- 

ward into the fractures as production causes pressures and temperatures to 

decline in the fracture system. For some reservoir processes, e.g. in composi- 
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tional problems arising in enhanced oil-recovery operations, this appproach will 

have to be modified to permit throughflow through the matrix. 

coupling between fractures and matrix is currently being investigated. 

A more flexible 

It is desirable to further generalize the partitioning scheme outlined 

above. In reservoir regions where spatial variations in thermodynamic 

conditions are weak, it is not necessary to have separate,volume elements 

within each of the elementary units depicted in Figure 2. -Corresponding 

nested volumes in neighboring units, which are identified by an index number 

in Figure 2, will have approximately the same thermodynamic conditions, and 

therefore can be lumped together into one computational volume element. The 

geometric parameters pertaining to such a system of multiple interacting 

continua can be readily obtained from Equations (14b-f) by means of a simple 

scaling operation. Note that the number of,elementary units contained in 

- .  Vn is given by 

3 u - V / D  n 

so that the volume of continuum j within Vn is 

(15) 

Each interface area occurs u times, so that 

Lj+1 
= u A  nj,nj+l A (16b) 

The nodal distances obviously are independent of the nmber of elementary 

units so that 

j,j+l 
= d  nj,nj+l d (16~) 
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Strictly speaking, the scaling laws given in equations (16a) through 

(16~) are applicable only if Vn actually contains an integral number of 

elementary units (a  = 1, 2,  3 ,  ... 1. It is very convenient, however, to 

apply the same scaling to grid blocks of arbitrary shape or size, including 

the situation where Vn << D3 (i.e., u << 1). 

small grid blocks (Vn << D3) are desirable for spatial resolution, e.g. 

near wells, one should attempt to model individual fractures. A description 

based on average fracture spacings is appropriate in the more distant portions 

of the reservoir, where less detail is available and desirable. 

believe it useful to be able to extend a fracture description based on average 

parameters (spacings, apertures, orientations) to small volume elements, because 

this is applicable in cases where no detailed information about individual 

fractures near a well is available; furthermore, this is applicable for generic 

studies of fractured reservoir behavior. Thus we arrive at the following three- 

step procedure for defining a computational mesh for a fractured reservoir: 

(i) 

Of course, in regions where 

However, we 

Define a mesh {Vn; n=l, ..., N) based on considerations of global 
geometry, global variations of reservoir conditions and parameters, 

and desired spatial resolution, just as would be done for a porous 

medium ("primary mesh"). 

(ii> Use Equations (14a-f) to obtain the geometric parameters for a set of 

nested volume elements within one elementary unit of the 

reservoir. 

Apply the scaling laws given in Equations (15) and (16) to partition 

each volume element Vn of the-primary mesh into a sequence of inter- 

acting continua elements {Vnj; j = 1, .. . , J), and obtain volumes 

Vnj, interface areas Anj,nj+l, and nodal distances dnj,nj+l 

appropriate for the "secondary mesh". 

fractured 

(iii) 
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We have written a pre-processor program to perform t..e calculation o 

the geometric quantities for a fractured porous reservoir mesh. The program 

reads a set of volumes and "connections" (i.e., interface areas and nodal 

distances) for a "primary" mesh {Vn; n = 1, . . . , N) . This mesh can have 

regular or irregular (polyhedral) grid blocks in one, two, or three dimen- 

sions, with an arbitrary number of interfaces between grid blocks. 

primary ("interblock") connections are left unchanged, and these are assigned 

-, 

All 

to the fracture continuum j = 1. Fracture permeability and porosity are 

taken into account by means of the equivalent continuum properties: 

Each volume element is subdivided into J continua, and the appropriate J-1 

"intrablock" connections are appended to the list of interblock connections 

according to Equations (15) and (16). 

{Vnj; n = 1, ..., N; j = 1, ..., J} is then used for modeling reservoir 

behavior by means of Equations (81 ,  (91, (121, and (13). 

, ;. CI . E ^  

The mesh defined by the partition 

VALID AT ION 

From the foregoing discussion, it is clear that any simulator based on 

the IF'D - method is immediately capable of modeling a system of multiple 
interacting continua. All that is requiredz to apply...such a simulator to % . '  

fractured porous media is appropriate preprocessing 'of the geometrical 

information. 

as the basic equations solved for each volume element are the same for porous 

as for fractured media. 

No programming changes are necessary in the simulator itself, 
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Equations (81 ,  (91, (121, and (13) are readily implemented on a computer. 

Our single-component, two-phase geothermal reservoir simulator SHAFT79 

employs Newton-Raphson iteration to account for the severe non-linearities 

arising in phase transitions between liquid water, two-phase mixtures, and 

steam. The reservoir fluid is assumed to be pure water substance, and its 

thermophysical properties are represented by the steam-table equations as 

given by the International Formulation Committee (1967). The linear equations 

arising at each iteration step are solved directly, using Gaussian elimination 

and sparse storage techniques. The linear algebra is performed with the 

Harwell subroutine package "MA28", which efficiently handles non-symmetric 

matrices with random sparsity structure (Duff, 1977). This feature is 

ideally suited for our purposes, as it permits exploitation of the geometric 

flexibility of the IFD method to the fullest extent. Volume elements can be 

connected in any way desired, without any limitations as to band width or 

dimensionality of the problem. 

In order to validate the MINC algorithm, we have performed several 

simulations of isothermal fractured reservoir problems, for which approximate 

analytical solutions are available from the work of Warren and Root (1963). 

Test calculations showed that fine spatial resolution and small time steps 

were required for a good agreement between the numerical simulations and the 

analytical results of Warren and Root. 

run are given in Table I. It is an isothermal single-phase injection problem, 

with results plotted in Figure 3 .  

good, with slight discrepancies at very early times due to the discrete 

approximation which we use in the simulation to represent the flux boundary 

condition at the wellbore radius (rw = 0.10 m). 

Parameters for one of the problems 

The agreement for pressure transients is 

This approximation tends 
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to overestimate flux and sandface pressure at early times. 

of the semilog straight lines (Figure 3) we deduce kh = 2.07~10'14 

m3, in excellent agreement with the value kh = 2.08~10'14 m3 used in 

the simulation. 

a storativity parameter w = e-apd = .211. This agrees reasonably well 

with the proper value w = +2C2/(+1C1 + 42C2) = .193, considering that w 

depends very sensitively (exponentially) upon Ap. We also used simulated 

results to compute the time dependence of the interporosity coupling parameter 

a as defined by Warren and Root. 

a rapidly approaches the quasi-steady value of 60 m-2 which holds for a 

problem with three equidistant fracture sets and spacing D = 1 m. Deviations 

From the slope 

The vertical displacement Ap = 2.05~104 Pa corresponds to 

We found that near the sandface (at r = 1.125 r,) 

from quasi-steady behavior disappear at about the time when the pressure 

response changes from the early time to the -late time straight line. 

APPLICATIONS 

We have applied the MINC method to a variety of problems which are of 

interest in geothermal reservoir engineering. We present results for: (i> 

two-phase flow to a well penetrating a highly fractured reservoir with low 

matrix permeablity; (ii) depletion of a fractured, boiling geothermal reservoir; 

and (iii) production from and injection into a fractured geothermal reservoir, 

using a five-spot well pattern. In the present context, these calculations 

are intended to be illustrative rather than exhaustive. We wish to indicate 
. i  

typical problems which can be investigated with the MINC method, and our 

discussion of the results will be brief. Amore detailed analysis of the 

reservoir problems presented here can be found in Pruess and Narasimhan 

(1981) and Pruess (1981). 
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(i) Flow to a Well in a Boiling Fractured Geothermal 
Reservoir 

There has been considerable controversy in the earlier literature about 

distribution and amount of pore water in vapor-dominated geothermal reservoirs 

(Truesdell and White, 1973; Weres, Tsao, and Wood, 1977). At present, a 

general consensus appears to exist that the saturation of distributed water 

must be rather "small" (perhaps in the range from 20%-50%) in order that 

liquid water may be nearly immobile. 

higher water saturations and a mobile liquid phase are not possible in 

vapor-dominated reservoirs, because these systems produce slightly superheated 

steam, and vertical pressure gradients are close to vapor-static. 

Conventional wisdom has held that 

We performed a study of radial flow in a vapor-dominated geothermal 

reservoir.to determine whether the fractured nature of these systems would 

permit large water saturations in the matrix. In systems containing steam/water 

mixtures, there is a one-to-one correspondence between pressure gradients 

(which drive mass flow) and temperature gradients (which drive conductive 

heat flow). 

fluid convection, and by means of heat conduction. 

low, conductive heat transfer can become very significant in comparison with 

convective heat transfer, giving rise to an increase in flowing enthalpy of 

the two-phase mixture. It is therefore possible that superheated steam is 

discharged into the fractures, even though liquid water may be mobile and 

flowing in the matrix. 

Heat is transferred from the matrix to the fractures by means of 

If matrix permeability is 

Our simulation of this process employs parameters applicable to The 

Geysers vapor-dominated reservoir in Sonoma and Lake Counties, California 

(see Table 11). Water saturation in the matrix is assumed to be 70% for 



this study, but similar re llt 
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are obtained for high r ter saturations (in 

excess of 90%). 

of wellbore storage and effective wellbore radius (skin), and we apply a 

realistic production rate (Koenig and Sanyal, 1981). The basic computational 

mesh is one-dimensional, and the connection between the wellblock, the 

fracture elements, and the rock matrix is schematically depicted in Figure 4 .  

We emphasize that fractures are modeled as very small volume elements (see 

Equation 14a) with only fluid and no rock present, rather than as "smeared 

out" regions of large permeability. This treatment slows computations down 

by several orders of magnitude, due to throughput limitations in very small 

grid elements, but it is important fo r  a realistic modeling of the rather 

subtle interplay between fluid and heat flow near the matrix/fracture interface. 

Full details of our parameter choices and the computational procedure are 

given in Pruess and Narasimhan (1981). 

We have taken great care to include a realistic description 

Figure 5 shows results for the transient evolution of production enthalpy 

for three different values of matrix permeability, compared with a uniform 

porous medium calculation. After an initial period dominated by wellbore 

storage (approximately 800 seconds), the fractured reservoirs show a much 

more rapid rise in enthalpy than the porous medium, due to more localized 

boiling. As the production-induced pressure drop diffuses outward into the 

fracture system, an increasing share of produced fluid is replenished by 

leakage from the matrix. This stabilizes enthalpies, and it prevents the 

fractures from drying up in the higher permeability cases (b = 10-15 

m2, 10'16 m2), so that a steam/water mixture continues to be produced, 

For the low matrix permeability of k,,, = 10-17 m2, however, the fractures 

are *depleted rapidly of fluid reserves, giving rise to superheated conditions. 
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This case is the most difficult computationally, as it involves propagation 

of a sharp steam/two-phase interface through small grid elements in and 

adjacent to the fractures. This severely limits attainable time steps, 

and we have only been able to simulate a few hours of physical time. Nonethe- 

less, we feel that it is apparent from the calculations that the low matrix 

permeability of k, = 10-17 m2 is quite sufficient to sustain the 

applied realistic production rate. 

of superheated steam is compatible with the presence of highly mobile 

liquid water in a lorpermeability matrix. 

We conclude from this study that production 

(ii) Depletion of a Boiling, Fractured Geothermal Reservoir 

We consider a closed rectangular reservoir, 7 km x 3 km in extent, with 

a well field of 1 km2 area. 

discretized into 21 volume elements of 1 km x 1 km. This mesh is identical 

to that used by Bodvarsson et al. (1980) for a study of the Baca geothermal 

field in New Mexico. 

m3, presumably dominated by fracture permeability. 

For the numerical simulation, the field is 

Field evidence suggests a kh of about 1.83 x 10-12 

We conducted a parameter 

study of this field, treating it as a fractured porous medium and investigating 

the effect of matrix.permeability upon sys.tem response. In order to avoid 

the need for handling fracture elements of extremely small volume, we abandoned 

the cubic-law relation (4) in favor of treating fractures as somewhat extended 

regions of approximately 0.2 m width. 

and porosity were assigned to the fracture continuum. 

the calculations are given in Table 11. The volume fractions used for the 

MINC mesh were $1 = 0.01, 4'2 = 0.04, $3 = 0.15, 44 = 0.40, and 05 = 0.40. 

We believe that the "smearing out'' of the fractures will have some influence 

Field-estimated values of permeability 

The parameters used in 

on the early response of the system but not on the late-time behavior. 



-22- 

Some r e s u l t s  of t h e  s imula t ions  a r e  given i n  F igs .  6 and 7.  Two bas i c  

d e p l e t i o n  p a t t e r n s  are observed, depending on whether mat r ix  permeabi l i ty  i s  

low o r  high.  

t o  the  v i c i n i t y  of t h e  f r a c t u r e s ,  while  high k, (km = 9x10'17 m 2 ;  10-15 m 2 )  

i s  accompanied by b o i l i n g  occurr ing  deep wi th in  the  mat r ix ,  analogous t o  what 

has  been observed f o r  porous media (Pruess  e t  a l . ,  1979). 

For low ma t r ix  permeabi l i ty  (k, = 10-17 m2) b o i l i n g  i s  confined 

The combined in f luence  of mat r ix  permeabi l i ty  and flowing en tha lpy  l eads  

t o  i n t e r e s t i n g  two-phase mob i l i t y  e f f e c t s .  Consider,  f o r  example, t he  two 

cases :  (D, k,) = (150 m ,  9 ~ 1 0 - 1 ~  m 2 ) ,  and (50 m ,  1x10'17 m 2 ) .  

t h e  ma t r ix  can provide the  same mass flow support  a t  t he  i n i t i a l  vapor 

s a t u r a t i o n  of 0.01. 

causes  a s u b s t a n t i a l  i nc rease  i n  enthalpy (F ig .  7 ) .  This ,  i n  t u r n ,  l eads  t o  

a reduct ion  i n  mob i l i t y  followed by loca l i zed  b o i l i n g  and a rap id  d e c l i n e  i n  

f l u i d  pressure .  Decreasing the  f r a c t u r e  spacing t o  D = 5 m provides a 

ten-times l a r g e r  ma t r ix - f r ac tu re  contac t  area, but  i t  has  l i t t l e  i n f luence  on 

conduct ive enhancement of  flowing enthalpy -or pressure  dec l ine .  Therefore ,  

i t  appears t h a t  ma t r ix  permeabi l i ty  i s  a f a r  more important parameter than 

f r a c t u r e  spacing i n  c o n t r o l l i n g  r e s e r v o i r  longevi ty .  It might appear from 

Fig.  6 t h a t  porous-medium-type r e s e r v o i r s  w i l l  always have g r e a t e r  longevi ty  

than  equiva len t  f r ac tu red  r e s e r v o i r s .  This  conclusion i s  not  v a l i d ,  however, 

s i n c e  the  r e s u l t s  i n  Fig.  6 and 7 are inf luenced by d i s c r e t i z a t i o n  e f f e c t s .  

Thus, i n  t he  porous medium case ,  mass and energy are produced from t h e  e n t i r e  

wel lblock,  while i n  t h e  f r a c t u r e d  porous medium case  production is made from 

a small por t ion  (1% by volume) of t he  w e l l  block. 

t h a t  f r ac tu red  r e s e r v o i r s  may have g r e a t e r  longevi ty  i n  some cases  than 

equiva len t  porous media r e s e r v o i r s .  

In  both cases  

In  the  case  of small  mat r ix  permeabi l i ty ,  hea t  conduction 

The next example shows 



-23- 

(iii) Five-Spot Production and Injection 

For a more realistic assessment of two-phase reservoir depletion, we 

investigated a five-spot production-injection strategy for the reservoir 

discussed in the previous example. The mesh as given in Fig. 8 takes advantage 

of flow symmetry. 

above depletion example. The production-injection rate was 30 kg/s, correspond- 

ing to the more productive wells in the Baca reservoir. 

The MINC volume fractions, $j, were the same as in the 

The results show that without injection, pressures Will decline rapidly 

in all cases. The times after which production-well pressure declines below 

0.5 MPa are: 1.49 yrs for a porous medium; 2.70 yrs for D = 150 m, k, = 

9x10'17 m2; and 0.44 yrs for D = 50 m, k, = 1 ~ 1 0 ' ~ ~  m2. 

fractured reservoir with large k,,, 

than a porous reservoir. 

Note that the 

(9x10'17 m2) has a greater longevity 

The results obtained for 100% injection demonstrate the great importance 

of injection for reservoir pressure maintenance in fractured reservoirs 

with low permeability. Simulations of 90 years for the porous medium case 

and 42 years for the case I) = 50 m, 

depletion or catastropic pressure declines in either case. These times are 

significantly in excess of the 30.5 years needed to inject one pore volume of 

fluid. Our results show that the temperature profiles for the porous-medium 

case and the fractured-porous-medium case agree remarkably well, showing an 

excellent thermal sweep for the latter (see also Bodvarsson and Tsang, 1981). 

We are currently investigating thermal sweep efficiency in dependence upon 

fracture spacing, as well as the nature of thermal breakthrough when a 

prominent, short-circuiting fault or fracture exists between the production 

and injection wells. 

= 10-17 m2, showed no thermal 
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CONCLUSIONS 

1. 

2 .  

3 .  

4 .  

5 .  

We have presented a "multiple interacting continua" method (MINC) for 

numerically modeling fluid and heat flow in fractured porous media. 

This method is conceptually similar to, and is an extension of, the 

well-known double-porosity approach. 

The MINC method can be implemented with any simulator based on an 

"integral finite difference" formulation. The geometric description 

of fractured reservoirs is handled by a pre-processor program. 

Systems of different dimensionality with regular or irregular geometry 

and fractured or porous regions can be treated on equal footing. 

The MINC method was validated by comparison with the analytical 

solution of Warren and Root. Practical applications are demonstrated 

for a number of geothermal reservoir problems. 

We find that fractured geothermal reservoirs may produce superheated 

steam even if the rock matrix has large water saturation and a mobile 

liquid phase. 

is more strongly dependent upon matrix permeability than upon fracture 

spacing. Full reinjection is essential for pressure maintenance in 

fractured liquid-dominated reservoirs with low permeability, and 

excellent thermal sweeps appear possible. 

We are currently investigating applications of the MINC-method to 

compositional thermal problems in reservoirs with irregular and 

statistical fracture distributions. 

The depletion behavior of fractured geothermal reservoirs 
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NOMENCLATURE 

A: 

A, : 

C: 

c f :  

CR: 

d, : 

dr  : 

D: 

F: 
N 

grim: 

G,: 

h: 

h: 

h6 : 

k: 

k: 

kf : 

Area [L2] 

Area of i n t e r f a c e  between volume elements n 

and m [L2] 

F lu id  compress ib i l i t y  [LT2/M] 

Frac ture  compress ib i l i t y  [LT2/M] 

Spec i f i c  hea t  of rock [L2/T2OTEMPI 

Distance between nodal po in t s  n and m [L] 

Surface segment [ L ~ I  

Frac ture  spacing [L] 

Mass f l u x  vec to r  [M/TL2] 

Mass f lux  from volume element m i n t o  n [M/TL2] 

Mass f lux  of 0-phase [M/TL2] 

(B = l i q u i d ,  vapor)  

Grav i t a t iona l  vec to r  [L/T2] 

Energy f l u x  vec to r  [M/T3] 

Normal component of g r a v i t a t i o n a l  a c c e l e r a t i o n  

between volume elements n and rn [L/T2] 

Energy f lux  from volume element m i n t o  n [M/T3] 

Spec i f i c  en tha lpy  [L2/T2] 

Height of r e s e r v o i r  [L] 

Spec i f i c  en tha lpy  of $-phase [L2/T2] 

Superscr ip t ,  i n d i c a t e s  kth t i m e  s t e p  

Absolute o r  i n t r i n s i c  permeabi l i ty  ,[L2] 

Absolute permeabi l i ty  of a f r a c t u r e  [L2] 

k,: Absolute permeabi l i ty  of rock mat r ix  [L2] 
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kB: Rela t ive  permeabi l i ty  wi th  r e fe rence  t o  t h e  

B-phase 

k2: Equivalent  continuum permeabi l i ty  f o r  f r a c t u r e s  

[L21 

K: Heat conduc t iv i ty  [L/T30TEMP] 

N n: Unit  normal v e c t o r ,  po in t ing  inward 

p: F lu id  p re s su re  [M/LT2] 

IP: Symbol des igna t ing  p a r t i t i o n  

q: Rate of mass product ion per  u n i t  volume [M/L3T] 

Q: Rate of energy product ion per  u n i t  volume [1/LT3] 

qn: Rate of  mass product ion per  u n i t  volume from 

re : 

rw : 

r; : 

8 :  

SQ : 

SQr : 

S i r :  

t: 

T: 

U: 

U: 

element n [M/L3T] 

Rate of energy product ion per u n i t  volume from 

element n [1/LT3] 

Outer r a d i u s  of  r e s e r v o i r  [L] 

Wellbore r a d i u s  [L] 

E f f e c t i v e  wel lbore r a d i u s  [L] 

Skin 

Liquid s a t u r a t i o n  

I r r e d u c i b l e  l i q u i d  s a t u r a t i o n  

I r r e d u c i b l e  vapor s a t u r a t i o n  

Time [TI 

Temper at  u r  e [ OTEW 1 

S p e c i f i c  i n t e r n a l  energy of t h e  f l u i d  [L2/T2] 

I n t e r n a l  energy contained i n  t h e  rock-f luid 

mixture  per  u n i t  volume of  t h e  medium [M/LT2] 
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v,v: 

Vn : 

X: 

IJ: 

PB : 

P :  

Volume [ L ~ I  

Volume of element n [ L ~ I  
Any volme-normalized extensive quantity 

Average value of x over volume element Vn 

Interporosity coupling parameter (Warren and Root) [ 1/L2] 

Phase ( B  = 11: liquid; B = v: vapor) 

Closed surface bounding volume element n [L2] 

Aperture of a fracture [L] 

Interporosity flow parameter (Warren and Root) 

Viscosity [M/LT] 

Viscosity of phase 8 [M/LT] 

Mass density [M/L3] 

Mass density of rock [M/L3] 

Mass density of B-phase [M/L3] 

Porosity 

Porosity of fracture 

Porosity of rock matrix 

Porosity of matrix continuum (c am) 

Porosity of fracture continuum 

Fractional volume of the jth: continuum 

Double-porosity storativity parameter 

’ 
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TABLE I: Isothermal Water Injection into a Double- 
Porosity System 

T =  
P =  

9 =  
D =  
6 =  
h =  

@f  = 
am = 

kf = 
k =  
a1 = 

62 = 

Cf = 

k2 

240 OC 

6.078 MPa 
.025 kg/s 
1.0 m 
5x10'5 m 
1.0 m 
1 .o 
.05 
208x10'12 m2 
10-17 m2 
.OS 
15x10'5 
208x10'16 m2 
10-7 Pa-1 

P =r 1.123~10'4 Pa*s 
C = 1.273~10'9 pa-1 

Mesh: rw = 0.10 m 
16 elements with At = 3.5~10'2 m 
100 elements with Arm+l = f*Arm, such that 
re = 5000 m 
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M U  11: Parreterr U r d  in Simulatimr 

Radial Flow Problem Depletion Problem 

Format ion 

rock grain dearity 
rock rpecific heat 
rock heat conductivity 
poror i ty 
permeability x thicknear 
reservoir thicknerr 
matr ix permeability 

Fr ac turer 

three orthogoaal rete 
aperture 
rpac ing 

permeability per fracture 
equivalent continuum 

equivalent continuum 
permeabi li ty 

porosity 

Re la t ivc Permeab i 1 it y 

Cor e y-c urve r 

Ini t i d  Conditions 

temper a ture 
liquid raturation 

Production 

wellbore radiur 
akin 
effective wellbore radiua 
uellborc atorage voltme 
production rate 

Inject ion 

rate 
enthalpy 

2400 kg/r3 
960 J/kg°C 
4 WoOc 
.08 
13.4~10'12 -3 

2600 kg/m3 
950 J/kg O C  

2.22 w/m O C  

.10 
1.83~lO-~~ m3 

2x10'4 1 (a) 

62/12 - 3.3~10'9 d (a) 

2kfa/D - 26.8~10'15 m2 

50 m 5 m, 50 m ,  150 m 

6d0-15 m2 

3 6 1 ~  - 1.2~10-5 .10 

T - 2430C 
sg - 702 

300 O C  

99% 

(a) fracturer modeled ea extended ragi- of bigb perraability, vith a vidty of = .2 m 
(b) rectangular rererpoir 
(c) five-rpot 
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XBL 813-2725 

Fig. 1 Idealized model of a fractured porous 
medium. 

Fig. 2. Basic computational mesh for fractured 
porous media (two-dimensional case). 
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Fig. 3 Pressure transients for Warren/Root problem. 

Fig. 4 Schematic diagram of mesh used for radial flow 
problem. 



-36- 

28 

286 

2.4 

0 
2.2 

- 2.0 

2 1.8 
1.6 

1,4 

1.2 

2 
Tr 
Q - 
c 
W 

0 

- ' 0 0 0  0 0  I I I - 
Uniform porous medium 

- Fractured medium - 
A k=io'15m2 

- 0 k=10-I6m2 
o k =  10"7m2 

0 
- 

- - 
00 0 O "  - 0 0  o o o  

0 0 0 0  
- 

OOoo 

0 
0 

0 
- 0 - 
- A ~ A  AAA 

0 A A A  A A A M  
A A * A  A A A  

0 AAA A 
- - 

A 
O A * .  

2?* 
- - 

4 .  I I I I 

Fig.  5 Enthalpy t r a n s i e n t s  f o r  r a d i a l  f low problem. 

Fig. 6 P res su re  d e c l i n e  f o r  areal d e p l e t i o n  problem. 
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Fig.  7 Produced en tha lpy  f o r  areal d e p l e t i o n  problem. 

7 Production well 

& Injection well 

XBL 8010-12543 

Fig. 8 Mesh f o r  f ive-spot  w e l l  p a t t e r n .  




