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ABSTRACT 
Part I 

The strain energy formulation for systems undergoing phase 

transformations has, for the first time, been established by the finite 

element method. The primary advantages of this method over others are 

the removal of limitations based on elastic isotropy or homogeneity, 

and its applicability to all types of stress-free strain (including 

twinning). This method has been applied to study the strain energy 

changes associated with the phase transformation of a spherical in-

elusion. The result indicates that good numerical accuracy can be 

obtained with a reasonably small number of elements. 

Part II 

The strain energy of an inhomogeneous (m)-Zro2 precipitate 

embedded in the (c)-Zr02 matrix has, for the first time, been deter­

mined using the finite element method. It was found that the total 

strain energy can be decoupled into two parts, one contributed by the 

diagonal stress free strain and the other by the shear stress free 

strain. These two strain energies are additive for an isotropic sys­

tem. Twinning was found to reduce the shear strain energy and was 
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thus justified as a relaxation mechanism. It was found that for a 

given precipitate, the orientation relationship which gave the minimum 

strain energy changed when twinning occurred. Thus twinning can not 

be neglected when making predictions based on the minimum energy 

approach. The active transformation mode was found to be predetermined 

by the precipitate shape and thus quite different from that in a larger 

grained pure Zro2• For PSZ, the minimum strain energy is related to 

the orientation relationship (OOl)mii(OOl)c, [lOO]mll(lOO]c; the lattice 

correspondence LCC, and the twinning mode (OOl)m. 

A minimum energy approach was used to estimate the bounds on the 

h 0 -2 twinning boundary energy. It was found t at .36 ~ yT ~ 0.89 Jm • 

The twin width was found to be relatively insensitive to the particle 

size based on the free energy approach, consistent with the experimen-

tal observation. 
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Part I 

FINITE ELEMENT CALCULATIONS OF THE STRAIN ENERGY 

OF TWINNED MARTENSITE (THEORY) 
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ABSTRACT 

The strain energy formulation for systems undergoing phase 

transformations has, for the first time, been established by the finite 

element method. The primary advantages of this method over others are 

the removal of limitations based on elastic isotropy or homogeneity, 

and its applicability to all types of stress-free strain (including 

twinning). This method has been applied to study the strain energy 

changes associated with the phase transformation of a spherical in­

clusion. The result indicates that good numerical accuracy can be 

obtained with a reasonably small number of elements. 

,_, 
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1. INTRODUCTION 

1.1 Martensitic Transformations 

Martensitic transformation is a polymorphic phase transition, 

which consists of the regular rearrangement of the crystal lattice by 

a diffusionless cooperative movement of the constituent atoms. The 

product phase is known as martensite. It usually exhibits specific 

geometrical and kinetic characteristics. These characteristics may 

differ for different materials and under different conditions, but some 

common morphological, thermodynamic and kinetic features do exist. 

1} The transformations are shear-like or displacive in nature. 

Little diffusion or interchange of atoms is involved in the process. 

This is to be contrasted to some diffusion-controlled solid state 

transformations (such as eutectoid decomposition} in which the atoms 

undergo random diffusional movements of a relatively long range nature. 

Moreover, being largelydiffusionless, the martensite inherits the 

composition of the parent phase. 

2} The transformation is accompanied by a change in shape of the 

transformed region. The parameters of the macrodeformation are con­

stant for a given material. The shape change reveals itself as a 

characteristic relief effect on a plane surface. 

3} There exists an orientation relationship between the lattices 

of the parent phase and the martensite. The orientation relationship 

is a ·constant characteristic of each ma:teri.al. 

4} The martensites have a regular internal structure, usually a 

polysynthetic twi:n. 
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5) The martensite phase usually forms as a thin lenticular plate 

lying a long a habit plane of the parent phase. The habit plane is 

irregular in general, i.e., the Miller indices are not simple. 

6) Supercooling is required for the transformation to occur. 

When the supercooling is not great, only part of the specimen trans­

forms; the amount of the martensite increases with the degree of 

supercooling. Thermal hysteresis effects are usually observed for 

the reverse transformation. 

7) The rate of the martensite crystal growth is great 

(-104 - 105 em/sec), and displays no appreciable temperature 

dependence. 

8) Both athermal and isothermal transformations can proceed in. 

the same material. The nucleation rate for the former is large and 

does not display any temperature dependence. For example, martensite 

can form even at temperatures near absolute zero. The nucleation rate 

of an isothermal transformation is temperature dependent. 

9) The morphology of the martensite and the temperature at which 

the transformation occurs are strongly influenced by the applied 

stress. 

It. is to be emphasized that the features cited above may also 

appear in other phase transitions in solids. Conversely, certain 

martensitic transformations do not exhibit all of the noted character-

isti cs. These features s:hou·l d not ther.efo.re ,be ·.regarded .as ·necessary 

or sufficient for a martensitic transformation. 

,• 
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1.2 Significance of the Martensitic Transformation 

The martensitic transformation has been found in many systems 

including metals and nonmetals.1 It has been the subject of exten­

sive research, because martensite has several important applications. 

The occurrence of the martensitic transformation can drastically 

change the microstructure. Also, appreciable internal stress can be 

induced by the transformation strain. Hence the mechanical properties 

of the material are greatly influenced. The best known examples are 

the transformations that occur by quenching in the production of the 

ferrous martensites. This process generates steels with high hardness 

and other mechanical attributes. Certain martensitic transformations 

occurring near an advancing crack tip in a two phase system (such as 

partially stabilized zirconia2' 3 and austenitic FeNiAl-alloys4) 

have been found to enhance the fracture toughness. This process has 

been referred to as transformation toughening. Thus the martensitic 

transformation is of value for microstructural design. The advantages 

are especially evident for ceramics which are inherently brittle, and 

can experience order of magnitude increases in toughness. 

The martensitic transformation has also been demonstrated to 

contribute to the following interesting phenomena: thermoelasticity, 

superelasticity and the shape memory effect. 5 These effects are now 

subject to intense investigation, because of their potential applica­

tions in shape-recovery dev:i.ces, in heat ·e:ngtnes and as acoustic-a 1 

damping materials. 
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Recently, a martensitic transformation has been found to precede 

the superconducting transition in a series of superconductors with high 

critical temperatures (of A-15 structure). An understanding of the 

martensitic transformation will elucidate the nature of the super­

conducting transition, and may offer a potential means of raising 

the critical temperature. This is most desirable for practical 

superconducting materials. 

Diffusionless phase transformations are frequently associated with 

ferromagnetic transitions, paraelectric to ferroelectric transitions, 

semiconductor to metallic transitions and, order-disorder transitions. 

Development of the theory of the martensitic transformation will pro­

mote the understanding of the transitions mentioned above, and of their 

technological applications. 

1.3 Martensite Theories 

Because of the importance and complexities of the martensitic 

transformation, a large number of hypotheses, models and theories have 

been proposed to explain the peculiarities of the transformation. The 

historical evolution of the theories can be found in the review papers 

by Christian.6' 7 The modern martensite theories may be summarized 

as follows. 

The crystallography is the most extensively developed aspect of 

the martensitic transformation, as independently established by Bowles 

and :Mackenzie8' 9 and by :Wechsler, Lieberman and :Reed.lO,lt The 

models are based on an invariant plane strain assumption, which 

requires th.at the. interface- :between a martensfte pl:ate and the parent 

.• 

.• 
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phase be an undistorted and unrotated plane. The theory is phenomeno­

logical because a postulated martensite substructure is used. Never­

theless, the model predicts the habit plane of an isolated martensite 

plate with reasonable accuracy (although the predictions12 of shape 

change directions are usually less satisfactory). However, as is 

characteristic of most phenomenological theories, discrepancies often 

exist. Typical examples include the detection of different martensites 

in the same alloy and sometimes in the same sample, and often with a 

variable internal structure. Various attempts have been made to ex-

plain the scattering of the habit planes. These include the intro­

duction of a dilation parameter 6, 9, 13 a double shear mechanism, 14,15 

and an accommodation strain15 (in parent crystals). However, these 

explanations are still phenomenological and none of them are completely 

satisfactory. In addition to its phenomenological nature, the 

crystallographic theory has the following limitations. Firstly, the 

theory might not be applicable to the transformation of spheroidal 

precipitates with a finite number of internal twins, because the 

resulting martensite is not plate-like and there is no parent­

martensite interface present in the final structure. Secondly, the 

interaction of martensite plates is not considered and therefore, the 

theory can not explain the spatial arrangement of the martensite within 

the parent phase. 

Another approach, the minimum strai.n energy app.roach., ,was 

advocated by Khachaturyan, 17 and used by Shibata and Ono18 among 

others, to explain the crystallography of martens~t·e. Reasonable 
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success has been claimed. Yet none of these treatments have considered 

the effect19 of twinning, which will change the strain energy min­

imum, and shift the habit plane away from predicted values. Recently, 

two dimensional computer s imul at ions based on Khachaturyan • s approach 

have been conducted by Chen. 20 Many features of the martensitic 

transformation, including twinning, were successfully revealed. How­

ever, further work along similar lines is needed in order to address 

the three dimensional character of typical martensite transformations. 

As for the thermodynamics and kinetics of the martensitic 

transformation, four major theories have been developed: 38 

1. The mechanism of lattice softening. 21- 24 According to this 

approach, the martensitic transformation occurs due to the loss of 

mechanical stability of the parent phase, resulting from the softening 

of some generalized shear elastic constant (e.g., c• = (c11 - c12)/2) 

in the vicinity of the transition temperature. Mechanisms of phonon 

nucleation26 and elastic spinodal decomposition24 , 25 have been 

proposed to explain the nucleation of martensite. Experimental evi­

dence of the lattice softening has been obtained in A-15 compounds, 

such as v3si, Nb3Sn and v3Ga; and other alloys like In-Tl, Au-Cd, 

and Ti-Ni systems etc. However, the experimental support is limited 

to either second-order phase transitions or first-order transitions 

with little discontinuity ltransformatio~ strain <10-2). 

2-. The .cla'sstcal :nu:cleatton and growth theory: The ·rnartensitjc 

transformation is treated as a first order phase transition and its 

characteristics are -explained i'n the framework· of the classi·cal and 
0 



9 

nucleation and growth theory. There are two nucleation theories: 

homogeneous27 , 28 and heterogeneous. 29 ,30 The.former correctly in­

dicates that the isothermal nucleation rate varies with temperature in 

a C-curve fashion, increasing to a maximum·with decreasing temperature 

and then diminishing with further decrease in temperature. However, 

the calculated activation energy is far too high to be overcome by 

thermofluctuation, and the homogeneous nucleation theory can not ex-

plain the a thermal transformation at temperatures in the vicinity of 

absolute zero. 31 

The heterogeneous nucleation theory has employed a spectrum of 

pre-existent embryos to account for the athermal transformation, but 

there are quantitative difficulties (the activation energy is far too 

high for the transformation to occur32) when the theory is applied 

to isothermal kinetics. Additionally, the martensite embryo has never 

been experimentally observed. 

3. Defect assisted nucleation and growth theory: The 

quantitative difficulties encountered with the classical nucleation 

and growth theory have stimulated the formulation of theories that 

explain the transformation peculiarities using various dislocation 

mechanisms. This approach differs from the heterogeneous classical 

nucleation theory by allowing a monotonically decreasing free energy31 

(rather than an energy barrier). The embryos are surrounded by loops 

of dislocations, 33 and the .growth of the.embryo ts :ach-:tev:ed by 

expansion of the dislocation loops. Therefore, a dislocation 
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structure is developed during the growth process. In the classical 

theory, no such dislocation structure is assumed. Specific mechanisms 

have been proposed such as: pre-existing embryos of martensite 

surrounded by a dislocation loop,33 the migration of dislocations 

into an interface to form the martensitic embryo, 31 nucleation by 

cooperative faulting from groups of existing dislocations, 34 and the 

interaction of dislocations with .the transformation train. 35 How­

ever, the analysis of available experimental data concerning the in­

fluence of the initial state on the subsequent transformation36 (such 

as the development of a trusslike substructure), and the studies of 

transformation in defect free crystals37 suggest that the general 

features of the transformation can not be totally governed by the 

defect structure. 

4. Strain phase transition. 38 This approach regards the 

martensitic transformation as the self-development of a first order 

phas~ transition (the so called strain transition). The theory is 

based on the assumed existence of a coherent contact between phases in 

heterophase systems. This coherence preservation results in the 

development of the internal stress which leads to the increase in 

strain energy. This strain energy increase is a function of the shape · 

and the substructure of the transformed region and must be minimized. 

The tendency of the strain-energy increase to become less plays the 

leading ·role in the fo.rmation .of the heterophase structure. The 
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athermal and isothermal transformations are explained by the difference 

in activation energy resulting from the difference in product mar­

tensite structures. This approach, however, does not exclude the 

possibility of a combination with one of the other models mentioned 

above. 

2. THE STRAIN ENERGY OF MARTENSITE 

The central idea of the martensite transformation is based on a 

competition between the decrease in chemical free energy,and the 

increase in the elastic strain energy during the course of the 

transition. In fact, in most of the martensite theories cited above, 

strain energy is considered to be the major restraining force, and is 

directly related to most features of the transformation. Hence, in 

order to actually apply the theories to real systems, an accurate 

determination of the strain energy is required. In addition, strain 

energy calculations provide a quantitative basis for evaluation of the 

theories. Consider, for example, internal twinning. According to the 

nucleation a·nd growth theory (classical or ·defect assisted), the 

martensite embryos are not twinned; twins are formed during the growth 

process. Accordingly, before the twin forms, the embryos should be 

thermodynamically favorable (i.e., the free energy change for the 

formation of the embryos is negative). Twinning would occur as a 

subsequent process if the twinning further reduces the total free 
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energy* (the strain energy is reduced while the twinning surface energy 

increases, and the chemical free energy remains unchanged). Alter­

nately, in the strain transition theory the condition that the embryo 

without twins be thermodynamically stable is not required, because 

twinning a·lways occurs. However, the theory requires that the twin 

structure should give a minimum total free energy for the final 

configuration. 

In other areas, such as transformation toughening, strain energy 

calculations are also very useful. For example, the strain energy 

change associated with the martensitic transformation near the crack 

tip is directly connected with the increase in fracture toughness. In 

addition, the optimal size of the second phase particle** involves 

strain energy considerations. 

Important as the strain energy is, the available methods to 

evaluate it are not satisfactory. It is the object of the present 

study to develop a general scheme to determine the strain energy of 

martensite. A review of the available formulations for strain energy 

calculations is given in the next section followed by the development 

of the new approach. 

*The final size of the martensitically transformed region is unknown 
to the embryo. Hence, the twin structure that minimizes the free 
energy in the embryo does not guarantee a 'minimum free ·.energy for the 
final configuration. This situation arises because the strain energy 
is sensitive to the twin width and to the as.pect ratio of the marten­
site .crysta 1, both of whi t:h·-c:a:n than·ge as the ·transformation progresses. 

·**The toughness depends upon size., with a peak toughness occurring at 
an optimum .partfcle.·size .• 
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2.1 Strain Energy Formulations 

In the most general sense, the evaluation of the strain energy of 

twinned martensite should allow (1) the elastic constants of the 

particle and matrix to be anisotropic* and inhomogeneous,** (2) the 

stress-free strain to be arbitrary, (3) the particle shape to be 

arbitrary, (4) twins to have twin related elastic constants (i.e., 

elastic non-uniformity exists within the particle) and stress-free 

strains, and (5) interaction between the transformation induced 

stresses and the applied stress. None of the presently available 

formulations satisfy the aforementioned conditions. The principal 

difficulties arise because analytic formulations are incapable of 

allowing the twins to have anisotropic twin related elastic constants, 

while pure numerical formulations are not available. A review of the 

available procedures indicates the following 1 imitations. 

There are two basic formulations: one in real space and the other 

in reciprocal space. The former was established by Eshelby. 39 He 

*The elastic constants are isotropic if their values at any given 
point in the domain under consideration are independent of the refer­
ence coordinate frame; otherwise, they are anisotropic. The isotropic 
elastic constants have two independent parameters. The anisotropic 
constants can have from three to twenty-one independent parameters, 
depending on the crystal symmetry. 

**In general the elastic constants are considered to be homogeneous 
if they do not va.ry over th~ .domain; oth·erwis~, they are inhomogeneous. 
However, in corrmon with prio.r literature on this topic, elastic in­
homogeneity is used herein to indicate ·that the inclusion and the 
matrix have different ·elastic constants. The ·term elastic non­
uniform·ity wi.ll be used to describe the case in which the ·elastic 
constants var:y with·in the inclusion or 'in the matrix. 
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successfully solved the problem of an isotropic matrix containing an 

isotropic ellipsoidal inclusion which undergoes (in the absence of its 

surroundings), a uniform transformation strain. His procedure com­

prised a simple set of imaginary cutting, straining, welding and 

relaxation· operations. Elastic inhomogeneity was nicely treated by· 

employing an equivalent inclusion concept (for details see Appendix A). 

Kinoshita and Mura40 extended the problem to the case of 

inclusions in anisotropic media and thus satisfied the conditions of 

both elastic anisotropy and elastic inhomogeneity for the ellipsoidal 

inclusion. The Kinoshita and Mura treatment also applies to inclusion 

of arbitrary shape under the assumption of elastic homogeneity. How­

ever, removal of the elastic homogeneity requirement by using the 

equivalent inclusion concept restricts the analysis to ellipsoidal 

shapes. The restriction ari~es because, for arbitrary shapes, the 

stress within the inclusion is not necessarily uniform, and the 

equivalent inclusion does not exist. 

These solutions are of limited merit for martensite calculations, 

because most martensites contain twins (or variants) and hence, the 

stress-free strains are non-uniform. Solutions that permit periodic 

stress-free strains are required for typical martensite transforma-

tions. Much effort has been devoted to the removal of the uniform 

stress-free strain requirements. Sendeckj41 solved the isotropic 

inclusion prob]em for a 1 inearly distributed stress-free strain; while 

Asaro and Barnett42 obtained the sol uti on for a polynomi a 1 stress-

free strain in :an anisotropic matrix. Subsequently, Mura, :Mari, and 

Kato43 establi.shed .... a formulati.on .f.or·.evaluating.the ·strain 'energy of 
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a uniformly anisotropic ellipsoidal inclusion with a periodically 

distributed stress-free strain, embedded in a matrix of the same 

anisotropic elastic constants. The solution for an inclusion with an 

arbitrary transformation strain can then be obtained by expressing the 

strain in terms of a Fourier series (or integral) and employing super­

position procedures. Application of the equivalent inclusion method 

to the non-uniform-stress-free strain solution in order to remove the 

homogeneity requirement is described in Appendix A. However, extensive 

numerical effort is needed to establish and solve the simultaneous 

equations, and thus to determine the equivalent stress-free strain. 

Additionally, the Mura et al. treatment can not be applied to twinned 

martensite without restriction. The limitation arises because of the 

elastic uniformity requirement. For an anisotropic inclusion, the 

twins have different elastic constants (except in special cases when 

the elastic stiffness constants possess mirror symmetry with respect 

to the twinning plane (for details see Appendix B). Hence, the con-

. dition of elastic unformity within the inclusion is not generally 

satisfied for an anisotropic inclusion. 

The reciprocal space formulation was established by 

Kh achaturyan •17 ' 44 It applies to the transformation of inclusions 

(with uniform transformation strain) of arbitrary shape embedded in an 

anisotropic matrix under the assumption of elastic homogeneity. The 

Khachaturyan approach ha·s the advantages that many inclusions are 

allowed and that the inclusion shape can be arbitrary. Thus, the twin 

related stres.s-free strains needed to analyze twinned martensite can 
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be considered by regarding each twin as a single entity. However, the 

Kachaturyan approach has the 1 imitation that elastic homogeneity i's 

required. Thus, even by considering each twin as a single inclusion, 

th-e twin related elastic constants can not be incorporated. 

In summary, in the case of a uniform transformation strain, the 

real space formulation is limited by the assumption of an ellipsoidal 

inclusion shape; while the reciprocal space formulatinn is restricted 

by the elastic homogeneity requirement. In the case of twinned 

martensite, an additional restriction of elastic isotropy is required 

in either formulation. 

In addition to these restrictions, extensive numerical effort is 

generally needed to obtain solutions using the above procedures. 

Analytic results can only be obtained for the simple cases of a uniform 

transformation strain and either an isotropic ellipsoidal inclusion 

(real space formulation) or an anisotropic plate inclusion (reciprocal 

space formulation). This has prompted us to develop a purely numerical 

scheme, which is not subject to the above restrictions. 

2.2 The Finite Element Formulation 

2.2.1 Introduction 

The finite element method45- 47 is a general discretization 

procedure for solving continuum problems, posed by mathematically 

defined statements. This method has been successfully applied to 

problems i·n many fields, such as 1 inear ·elasticity, nonlinear elas­

ticity, plasticity, creep, fluid dynamics, diffusion, heat conduction, 

and electr-omagnetism. There are v-arious finite element formulations. 
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A displacement formulation, most popular in linear elasticity, will be 

used in the present study. The displacement approach comprises the 

following basic precepts. 

1. The continuum is regarded as an assembly of a finite number 

of elements separated by imaginary lines or surfaces. 

2. The elements are interconnected at a discrete number of nodal 

points situated on their boundary. The displacements of these nodal 

points will be the basic unknown parameters of the problem. 

3. A mathematical equation in integral form is established from 

the constitutive differential equations and boundary conditions either 

by determining the variational functional _for which stationary form is 

sought or by the method of weighted residuals. 45 ,48 

4. Locally defined shape functions49 are assumed for each 

element, through which the stres~ and strain in each element are 

related to the unknown nodal displacements. 

5. Integrations of the constitutive integral equation are 

·evaluated at the element level, and the governing equilibrium equations 

of the nodal displacements are established. 

6. The solution of the governing equilibrium equation gives the 

nodal displacement, and then the stress and strain for the continuum 

are determined. 

A finite element formulation for solving elasticity problems with 

·an initi.a1 strai'n_ (which makes trar:~s"formation pr·oblems so special) has 

already been established, in pri·nciple.50 However, its major 
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application (as implanted in most finite element computer programs such 

as SAP rv51 ) has been limited to thermal stress analysis. The 

potential application to phase transformation problems has not been 

realized, and an adequate strain energy formulation has not been 

devised (perhaps because the strain energy is not of interest in 

thermal analysis). In the following section, the governing equilibrium 

equations will be established for a system involving a phase trans­

formation under external loads. A comparison with Eshelby's treatment 

will be given. Finally, the strain energy formulation will be 

developed. 

2.2.2 The Phase Transformation Problem 

The elastic phase transformation problem is characterized by a 

non-zero initial strain, which can be a thermal strain, a plastic 

strain, a transformation strain, ol any combination of these. The 

initial strain (which is the strain experienced in the absence of 

matrix constraint and when no external force is applied) will be called 

the stress-free strain, after Eshelby39 and Robinson. 52 For a 

1 inear system, the stress-strain relation can be expressed as follows: 

where ekl is the strain (with the unstrained matrix as the 

zero-strain state), ·and e~ 1 is the stress-fr-ee .,strain. (Note, 

this can be regarded as· the definition of stress-free strain). 

(1) 
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In Eshelby's treatment of cutting, straining, welding and relax­

ation· operations, 39 a surface force of the magnitude a . . n. = 
. 1J J 

Cijkle~ 1 nj; must be applied to the interface (as an imaginary load) 

during the relaxation operation. In the finite element formulation, 

however, the imaginary force term will emerge naturally from the 

analysis. 

The finite element formulation is established following the 

procedure outlined in Section 2.2.1, and adopting the notation summar­

ized in Appendix c. The continuum is subdivided into elements, with N 

nodes per element. The increase in internal strain energy of the 

system will be given in accord with the variational principle, by the 

potential energy of the external loads. Hence, for an arbitrary 

variation in strain 6e, the strain energy change is given by: 

where e is the engineering strain array, eT = (e11 e22 e33 2e23 
2e13 2e12), a is the stress array, aT= (a11 a22 a33 a23 
a13 a12), U is the displacement array, UT = (u1 u2 u3), b is 

(2) 

the body force* array, bT = (b1 b2 b3), t is the surface traction* 

array, tT = (t1 t 2 t 3), fi is the concentrated load* at node i, 

fiT= (fl f~ fj), A; is the unknown nodal displacement, 

*Body force, surface tract ion, and concentrated 1 oad are the force 
per volume, per surface· area and at a given poi·nt respectiv:ely. 
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e .. = l/2(aU./ax. + aU./ax.) and the superscript T stands for 
1J 1 J J 1 

transposition. 

The shape function which describes the spatial variation of the 

displ~cement U within an element, in terms of the nodal displacement 

A(i), is assumed to be a known function H(i) such that; 

U = H A 
~ 

By definition, e = LU, where L is a strain operator, which can be 

expressed by the matrix, 

a/ax 0 0 

0 a/ay 0 

L = 0 0 a/az 

0 a/az atay 

a/az 0 a/ax. 

a/ay a/ax .0 (4) 

(3) 
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It follows that, 

~ . 
e = LU = L.!.\tAn = ~ (5) 

where,~ =L.!:!m· Thus, 

<Se: T = IS~ (6) 

The stress-strain relation, eqn (1), can be written in matrix notation 

as: 

(7) 

oT { o o o o o 0 ) • where !m = e11e22e33 2e232e132e12 m and fro 1s the elastic stiffness 

matrix for element m, or 

0 
a=~-~ {8) 

The strain energy relation {eqn {2)) can be rewritten such that the 

integration is evaluated at the element level, 

Hence, by substituting eqns {3), {6), and {8) into eqn {9) the strain 

energy becomes; 
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-~o~ J (~ -~) dVm 

=LoA! j ~ bdVm +LoA! J ~· tdSm + ~ oA(i)T f(i) 
m m 1 

Further, since An= ~A, and o~ =oAT~, introduction of eqn (10) 

gives; 

Then, because oAT is arbitrary, the governing equilibrium equation 

becomes; 

(10) 

(11) 
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In this relation, K is the stiffness matrix of the element assemblage, 

' . 

. , 

and the load vector R includes the effects of the element body force, 

the surface traction, 

the concentrated load, 

and the stress-free strain, 



f t 0 
~dVm 
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The R0 term does not depend on the external load, and can thus be 

regarded as the imaginary load due to the stress free strain. It can 

be decomposed into an imaginary surface traction and a body force by 

partial integration (see Appendix D) 

where, 

0 0 0 

0 ' 

0 

and the "; 's ·are the directional cosi:n.es of the outward normal. The 

quantity~ in the first term assumes the same role as the 

surface traction t in R5
, and thus is· the imaginary surface traction •. _ ... ·-

I; 
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When expressed in tensor notation, the quantity~ gives cijkle~ 1 nj 
or a?. n., which is the term used by Eshleby. 39 Similarly, the 

lJ J 

quantity -LT~ in the second term can be identified with the 

imaginary body force, because it has the same effect as the body force 

bin Rb. The components in -LT£m£~ can be expressed. in tensor 
. a o a o notat1on as - ~ Cijklekl' or - ax. aij as used by Asaro and 

J J 

Barnett42 in the case of a nonuniform stress-free strain. 

It is evident, therefore, that the finite element method is a real 

space approach. However, it has important advantages relative to 

available real space methods. Specifically, elastic inhomogeneity 

poses no restriction (since each element can have different elastic 

constants), the stress free strain is arbitrary, and extern a 1 stresses 

can be imposed (through the surface traction t). When the method is 

applied to twinned martensite, each twin can consist of several 

elements, and the appropriate elastic constants and stress-free strains 

assigned to the elements. In this way, the stresses and strains in a 

twinned martensite may be determined. 

2.2.3 The Strain Energy Formulation 

The linear elastic strain energy is usually evaluated in accord 

with the following formula: 



Eel = 1/2 J LcijkleijekldV 
v 
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(1) 

However, for transformation problems in the presence of a stress-free 

strain, eqn (1) does not apply. For example, in the absence of 

external forces Eshelby derived the relation: 39 

where V 1 is the val ume of the inclusion (of arbitrary shape), and 

a~j is the stress within the inclusion, given by 

I a .. 
lJ 

( 2) 

More generally, for a stress free strain, the strain energy density u 

is given by 

1 ( 0 )( 0 .) u = -2 C . "k 1 e . . - e . . ek 1 - ek 1 lJ l.J 1 J 

or :j,n matrix notation, 
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1 T T o o o)* = 2 (£ C£ - 2£ C£ + £ C£ 

Thus, the total strain energy is; 

f 1 f( T T o o o) Eel = udV = 2 £ C£ - 2£ C£ + £ C£ dV 

1" f ( T T o) 1 f o o = 2 .l-1 £ fro£ - 2£ ~ dVm + 2 £ C£ dV 
m m 

= ~ T " J T II B T c B dV J A - 2 f B T c 0 dV I + E 2 ~ ~ -m-"iTHll m m --11R1An m s 
m 

= l AT(KA- 2R0 ) + E 
2 - - s 

or, since KA = R, 

*The stiffness coefficients form a symmetric array. 
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T 
where Es is the self energy (~ J e° Ce0 dV) which is the total strain 

energy if the matrix were rigid and Erx is the relaxation energy 

(defined to be 1 AT(~- 2~0 ). Erx is negative when the external load 

is zero. 

When ·comparing with· Eshelby•s cutting, straining, welding and 

relaxation ·operations, the Es term can be identified with the energy 

change during the straining operation, while the Erx term is the 

energy change during relaxation; there is no energy change associated 

with the cutting and welding operations. 

In the case of twinned martensite in which the stress free strains 

are constant within each twin, the self energy can be easily calculated 
1 o T o by Es = 2 £ Ce V r- When the system is free from external load (and 

if we neglect gravity), R = R
0

, the strain energy is given by 

In the above formulation, the effect of external loads is included 

in the term~ (the interaction of the applied strain with the trans­

formation is thus taken into account). In finite element procedures, 

~' ~' or R0 can be readily established. The strain energy can thus 

be determined without difficulty. 

2.2.4 Examples of the Finite Element Calculation 

The f.inite el-ement scheme des·cribed -above .was implanted into the 

existing finite -element program SAP IV. 51 The ·reliability of the 

scheme· was tested in a s·e.ri.es, .of .examples. The .examples w.ere 

..... 
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restricted to elastic isotropy because general analytic solutions for 

the strain energy of twinned martensite are not available. These 

restrictions, imposed on the input data, should not be regarded as 

limitations of the computer program. 

1. Pure dilation of a spherical inclusion embedded in a 
spherical matrix (axisymmetric element) 

In the first example, the pure dilation of a spherical inclusion 

embedded in a spherical matrix is considered. An analytic expression 

for the strain energy is (see Appendix E) 

where ~ is the shear modulus, VI the volume of the inclusion, v the 

Poisson's ratio, yi the radius of the inclusion, Ym the radius of 

the matrix, eT the unconstrained volume strain. 

The isotropy of the geometry, of the stress free strain, and of 

the elastic constants, permits the strain energy to be analyzed by 

considering only a small portion of the system. The finite element 

mesh, shown in Fig. 1, consists of ten 4-node axisymmetric elements 

and ten boundary elements. The boundary elements51 are used to 

assure the radi~l displacements of the points on line OB in Fig. 1 (by 

1 imiting th·ek tangenti a 1 displacement to zero}. The ratio of the 

radius of the inclusion to that of the matrix is 1.:2, and the azimuthal 

angle·9 is 10-3 rad ..• Other numerical data needed for the computation 
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are given in Table 1. The strain energy of the .system is calculated 

to be 5.58 x 107 J (or 44.4 percent); this compares with an analytic 

value of 5.50 x 107 J (or 43.85 percent Es), where Es = 4w ~ 107 J. 

The deviation is less than 1.5 percent. 

2. Pure dilation of a spherical inclusion embedded in a 
spherical matrix (30 brick element) 

The second example (Ex. 2a) deals with the same dilational 

problem, except for the choice of the finite element and the size of 

the inclusion. Three~imensional brick elements are used in order to 

evaluate their performance. This exercise is conducted because three 

dimensional elements are needed for the solution of twinned martensite 

problems, by virtue of the lack of axisymmetry. Due to symmetry con­

siderations, only 1/8 of the sphere is analyzed. The mesh is given in 

Fig. 2. Thirteen three dimensional 20 node elements are used. The 

elastic energy is calculated to be 1.666 x 108 J (or 33.14 percent 
7 Es, where Es = 16w x 10 J). Comparison with the analytic value of 

1.662 x 108 J (or 33~07 percent Es), indicate~ a deviation of less 

than 0.22 percent. 

In another example (Ex. 2b) the capability of the finite element 

approach to handle problems involving elastic inhomogeneity.was ex-

amined- for the same stress free strain using the same mesh. As shown 

in Table 1, both the shear moduli and the Poisson's rati.o are different 

for th'e inclusion -and for th-e matrix. The matrix is extremely soft 

compared to the inc] us ion (~/K1 ~ 0.-025, wher~ -~ and K1 ·are 

. ' 

• . .:. 
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bulk moduli of the matrix and the inclusion respectively); hence, 

appreciable relaxation occurs. An analytic solution is given in 

Appendix E, eqn (E-9). The strain energy is 1.207 x 107 J (2.401 

percent Es, where Es is the same as in Ex. 2a). The finite element 

result gave 1.209 x 107 J (2.406 percent Es), a deviation from the 

analytic value of less than 0.2 percent. This represents a crucial 

test, because the strain energy is in the range of numeri.ca 1 error for 

a general numerical analysis. The capability of the finite element 

method is thus confirmed. 

3. Spherical inclusion undergoing martensitic transformation 

The third example considered is the martensitic transformation of 
; 

a spherical inclusion embedded in an infinite matrix. The only non-

zero transformation strain is yi3, assumed to be 1 percent. In 

Ex. 3a no twinning is considered, but in Ex. 3b, one twin pair is in-

eluded in the product phase. The numerical data, 1 isted on Table 1, 

are identical to those used by Mura43 et al. The infinite matrix is 

approximated by a spherical matrix with radius five times that of the 

inclusion. Thirteen 20-node elements are used. The mesh is similar 

to that used in Ex. 2 except that the boundary conditions are dif­

ferent. Example 3a (no twinning) and Ex. 3b (one twin pair) also 

differ only in the boundary condition on the xy plane. For Ex. 3a, 

the strain energy, 0.521 Es, which deviates from the analytic value 

(7-5 v) /15/(1 - v) Es, by 2. 31 percent, where £
5 

= (1/.2) 1.1 ( yi3) 2 V = 
7 2tr/3 x 10 J. For Ex. 3b, the strain energy is determined as 0.413 

Es, which compares with Mura·•s value of 0.365 E
5

• Successive 
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calculations, denoted as Ex. 3c (no twinning) and Ex. 3d (twinning), 

with further mesh subdivisions (using 19 elements), indicate respective 

strain energies of 0.533 Es (only 0.013 percent from the analytic 

value) and 0.400 Es (aB percent above Mura's result). 

3. CONCLUSION 

A strain energy formulation by the finite element method has been 

established. It can be implanted into existing finite element computer 

programs with little effort. The primary advantages of this method 

are the removal of limitations based on elastic isotropy of homo­

geneity, and its applicability to all types of stress-free strain 

(including twinning). Good numerical accur.acy can be obtained with a 

reasonable number of elements. However, for the same mesh, the accur-. 

acy varies with the stress-free strain. Hence, for each case it is 

important to subdivide the mesh in order to test the convergence. 
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Appendix A: The Equivalent Inclusion Method 

1. Ellipsoid with Uniform Transformation Strain 

The concept of the equivalent inclusion was first introduced by 

Eshelby39 to solve the transformation problem involving elastic 

inhomogeneity. Although his method was proposed for an isotropic 

matrix, the concept also applies to the most general anisotropic case. 

This method is an essential one for solving the transformation problem, 

because all analytic formulations are derived under the assumption of 

elastic homogeneity. The basic idea of Eshelby's method is that the 

* true inclusion (with elastic constants Cijkl and stress-free strain 

* e .. ) is replaced by an equivalent inclusion with the same elastic 
lJ 

constants Cijkl as the matrix, and an equivalent stress-free strain 
T eij' selected such that the usual analytic solution can be applied. 

However, displacement and stre~s continuity across the interface of 

the true inclusion and the matrix must be satisfied. This is achieved 

by requiring that the stresses within the true and the equivalent in­

clusions be identical. Thus the equivalent inclusion exists if the 

following equation has a solution 

or, by rearrangement of the terms, 

* c T * * (c. ·.kl- c. "kl) e.kl + c ... klekl = c .. klekl l.J 1.J . lJ .. ; lJ. . : . (A-1} 
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For an ellipsoidal inclusion with a uniform stress-free strain eJ1, 

Kinoshita and M~ra40 have shown that, under homogeneity conditions, 

the constrained strain e~ 1 is also uniform, and symbolically, is 

related to e~1 as follows. 

(A-2) 

where Sijkl's are functions of the elastic constants and the geometric 

shape, but independent of eJ1 and of location. By substituting 

(A-2) into (A-1), we have 

(A-3) 

Eqn (A-3) represents 6 simultaneous algebraic equations with 6 unknowns 

(eTj)' and can be solved for the equivalent stress free strain eTj· 

2. Disc Martensite with a Periodic Transformation Strain 

Mura et a1. 43 applied the equivalent inclusion method to solve 

the transformation problem of a twinned martensite disc. They ex­

pressed the true and the equivalent stress-free strain in the form of 

a Fourier Series. 

00 

* -* """' -* e~ .(x) =e .. (0) + LJ e .. (n) cos(21rnX/>.) 
lJ lJ n=l lJ 

.00 

T ** L ** e .. (x) =e .. (0) + e .. (n) cos(21rnx/>.) 
lJ lJ lJ 

n=l 

._, 
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where A is the period of the alternating twins. They arrived at a set 

** of equations to solve for eij(n) 

00 

""" ** - ~ e.k(J) cos(2wJX/A) 
J=l 1 

00 

-L e~k(J) cos(2wJX/A) 
J=l . 

(A-4) 

(for details of Sikmn(j), see eqn (43) in ref. 43). 

** -* -* Mura et al. assumed that eik(O) = eik(O), where .eik(O) are 

chosen so that "all of the stresses produced by it vanish." Thus they 

claimed that the first terms in the left and right side of eqn (A-4) 

disappeared, and eqn (A-4) becomes 

(A-5) 

To solve this equation, they invoked the experimental obs.e.rvation that 

A <<disc dimension; .and pointed out that, in the limiting case, 

Sikmn(J) = 0. "Thus the equation is further reduced to 
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or, since the cosine functions are orthogonal, 

** and eik(J) can be solved. 

However, in general, when the number of twins is finite, 

Sikmn(J) ~ 0. Eqn (A-5) can then be decomposed into the following: 

(A-6) 

(A-7} 

** For each J, eqn (A-7} represents 6 equations with 6 unknowns eik (J); 

** ** thus, eik(J) can be solved by eqn (A-7} alone. In general, e1k(j) 

solved from eqn (A-7} can not satisfy eqn (A-6). Thus eqn (A-5) has 

no solution and the equivalent inclusion does not exist. 

However, this failure is due to the removal of the first terms on 

both si.des of eqn (A-4) (eqn 43 in their paper43 ), as can be shown 

below. Rearrangement of eqn (A-4) gives; 
. 
J 
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00 

= cp*qik e~k(o) + ~ e~k(J) cos(2~Jx/~) 
J=l 

{A-8) 

Then by the orthogonality of the cosine function, the x independent 

terms on both sides of eqn (A-8) should be equal, as should the terms 

containing cos(2~Jx/A) for each J. 

Then eqn (A-8) can be decomposed into the following: 

and 

** The latter is the same as eqn (A-7), from which e.k(J) for J > 1 
1 -

** can be solved. Thus the only unknown in eqn (A-9) is emn(o), 

which can be solved without difficulty. 

**· -* Thus it is evident that without assuming emn(o) = emn(Q), 

(A-9) 

eqn (A-4) can be solved and the :equiv.alent in-clus:ion ex~sts for the 

twinned martensite disc. 
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3. Ellipsoid with Non-Uniform Stress Free Strain 

The equivalent inclusion method for an ellipsoid with a non­

uniform stress free strain has not been seriously treated. In this 

section, a systematic procedure to set up the simultaneous equations 

wi 11 be described. 

The transformation of an ellipsoid with a periodic strain has been 

solved by Mura et al. 43 under the assumption of elastic homogeneity. 
T ~ -+ ** ~ -+ -+ . For a periodic strain emn(k,x) = emn(R) exp(ik·x), the constrained 

strain is given by 

(A-10) 

II 

where S is a function oft, location i, and inclusion shape. ijmn 
Now suppose a1, a2, and a3 are the 1 engths of the semi-axes of 

the ellipsoid. Then the ellipsoid can be considered to exist within 

an orthorhombic region having length 2a1, width 2a2, and height 2a3• 

One set of orthogonal functions for the orthorhombic region can be of the 

form: 

where 'l'i •s are sine or cos-ine functions and h, k, 1 are positive 

integers or zero. Due to the permutations of sine and ,cosine for '1' 1, 

'¥2, and '1'3, there are eight orthogona-l functions associated with each 

set ·of h, k, 1. Thu.s a general expression for the orthogonal function 
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-+ -+ 

expressed as a 1 inear combination of e ik·x, the constrained strain 

corresponding to a stress free strain of the form '¥1 '¥2'¥
3 

can also be 

found as a linear combination of e~j(k·~) given in eqn (A-10). Take 

cos(rx) cos(sy) cos(tz) (where r = w/hta1, s = wk/a2, and t = wl/a3 
respectively) for example, 

where 

. 

cos(rx) cos(sy) cos(tz) =Real part of l/4\exp i(rx + sy- tz) 

-+ 

kl 
-+ 

k2 
-+ 

k3 
-+ 

k4 
.... 
X 

+ exp i(-rx + sy + tz) + expi(rx- sy + tz) + exp i(rx + sy + tz) 

= Real Part ~exp(;k1 ·X) + exp(;k2·X) + exp(ik3 ·~) + exp(ik4 .;) 

4 

= Real Part i L exp(ikp •x)l 
P=l 

'I:' ~ - tk' = r1 + SJ 
A A A 

= -ri + sj + tk 
A A A 

= ri - sj + tk 
A A A 

= ri + sj + tk 

" A "' = xi + yj -¥ zk 

Thus the constrained strain corresponding to a stress-free strain of 

** emn (h,k,l) cos trx) cos (sy) cos ttz> can be found through eqn (A-lQ) as 
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4 I ** e~j(h,k,l,x) = 1/4 Real part of~ sijmn(kp,x,shape) emn(hkl) 
P=l 

Thus, in general, a relation similar to eqn (A-10) can be established 

** for a stress free strain emn(h,k,l,v) ~hklv as shown. ~ 

c + ~ 
e;j(h,k,l,v,x) = sijmn(h,k,l,v,x,y,z,shape) emn(h,k,l,v) 

Eqn (A-1) still applies for the case of a nonuniform stress-free 

strain. Suppose that the stress-free strain is given by 

and the equivalent stress-free strain is expressed by 

Then, according to eqn (A-11), the constrained strain is given by 

c "'"' ** eij(x) = ~ sijmn(k,h,l,v,x,y,z,shape) emn(h,k,l,v) 
hklv 

Substituting all the equations 1 isted above into eqn (A-1), the 

following expression obtains; 
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* """ ** (Cijst- Cijst) ~ Sstmn(h,k,l,v,x,y,z,shape) emn(h,k,l,v) 
hklv 

""" ** * """ -* + Cijst ~ est(h,k,l,v) ~hklv = Cijst ~ est(h,k,l,v) ~hklv 
hklv hklv 

(A-12) 

Sstmn(h,k,l,v,x,y,z,shape) is a function of x,y,z and can be expressed 

in terms of ~hklv' or* 

sstmn(h,k, 1 ,v,x,y,z,shape) = .2: s;tmn(h,k, 1 ,v,p,q,u,w,shape) 
pqu 

By substituting this equation into eqn (A-12), 

(C~jst - cijst) L L s;tmn(h,k, 1 ,v,p,q,u,w,shape) 
. hk1 pqu 

** """ ** • emn(h,k,l,v) ~pquw + cijst ~ est(h,k,l,v) 'i'hklv 
hkl 

~ pquw 

Then by the orthogonality of ~hklv' all of the coefficients of ~hklv 

on both sides of the equation should be equal for each s~of hklv, or 

*Sstmn's are not defined outside the inclusion. For the purpose 
of ev-aluating S~tmn, all ttre Sstmn'·s ·out·stde the tnclusion can 
be defined zero. However, to improve the numerical accuracy, a 
continuous variat:Lon .of Sstmn • s is -recommended. 



42 

{A-13) 

This is the final form of the equations needed to solve for the 

** equivalent stress free strain est{h,k,l,v). In principle, the 

number of equations to be solved is infinite. However, when only 

finite accuracy is desired, a finite set of h,k,l,v are needed, and 

eqn {A-13) can be solved. 
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Appendix 8: Twins and Uniformity 

The martensite shown in Fig. 3 contains one twin pair, i.e., grain 

8 is a twin of grain A. Thus the crystallographic axes in A and 8 

exhibit mirror symmetry with respect to the twinning plane CD. The 

elastic constants of the grain A and 8 are the same when referenced to 

their own local coordinates. However, the elastic constants are 

different when referenced to a global coordinate 0, unless they possess 

the same mirror symmetry. Thus the formation of the twins usually 

destroys the elastic uniformity. 
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Appendix C: Symbols and Notations 

In the finite element method, most of the quantities have many 

components, and ar.e represented by arrays. An array can be a vector 

or a matrix. When a quantity does not refer to any specific node, no 

superscripts or subscripts are used. On the other hand, a quantity. 

which refers to a specific node is expressed by using the nodal number 

as a superscript. A quantity is global if it refers to all of the 

nodal points in the system, while·it is local if it refers only to one 

element. Both arrays are underlined, but the local array has an 

element number as a subscript. All of the nodes in the system are 

globally numbered. Similarly, all of the nodes associated with an 

element are locally numbered. Thus a node has a unique global number 

and several local numbers. The local array is related to the global 

array by a connectivity array46 ~ (or the destination array) 45 

which is usually omitted in the literature. It is understood that 

whenever a local array is related to a global one, the connectivity 

array exists whether it is explicitly shown or not. 

Take for example the nodal point displacement A for the system 

shown in Fig. 4 

is the nodal point displacement without 
referring to any node, 

.. · 



A3 
1 

A3 = A3 
2 

A3 
3 

45 

is the nodal point displacement for the 
global nodal point 3. 

~~;) is the nodal displacement for the local node i in element 2. 

A2 is the array of nodal displacement of all the nodes in 

element 2. According to Fig. 4, 

~2 = = with 8~i) and A; defined above. 

A is the array of the nodal displacement of all the nodes in the 

system. For Fig. 4, 
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A = 

.!22 is the connectivity array for element 2. From Fig. 4, 

0 0 1 0 0 0 

0 0 0 1 0 0 
.!22- = 

0 0 0 0 0 1 

0 0 0 0 1 0 

So that A2 = J2 A 
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Appendix D: Decomposition of R0 to Surface and Body Force Terms 

According to the definition 8 = LH, where L is the strain 

operator defined in eqn (4). BT is the transpose of B, and is 

expressed by BT = LTHT, where 

0 0 0 a 
az 

LT = a 0 a 0 ay az 

0 a a a 
az ay ax 

Let q stand for any of x, y, or z, then the non-zero components in LT 

can be expressed as :q• Let h and p be scalars, and represent the 

components of HT and Ce 0 respectively. Now consider the integral 

Jr:q (hp) dV. By differentiation, 

Also, according to the divergence theorem, 

J:q (hP) dV = J hP nq dS 

where nq is the directional cosine of the outward normal. Thus, 

J (~q ~ PdV = f h nq P dS - J a 
h aq P dV ( D-1) 

v s v 
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R0 is defined as 

or 

By applying eqn (D-1) for each component of R0
, 

R
0 

= p![£ · Wn•~dSm- f f\!LT(~) dVml 

where 

n = -m 

.. 



: 
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Appendix E: The Strain Energy of a Spherical 
Inclusion, in a Spherical Matrix, Subject to Uniform Expansion 

The strain energy created by the uniform expansion of an 

isotropic spherical inclusion in a finite spherical matrix is estab-

lished and compared with the analytic solution of Eshelby, Eel = 

(2/9X1 +v)/0- v)·p(eT) 2 V, for the case of an infinite matrix. 

Both the homogeneous and the inhomogeneous inclusions are discussed. 

1. Homogeneous Inclusion 

For a spherical inclusion in an infinite matrix, Eshelby showed 

that the constrained strains are given by the following expression, 

lec.. 1 T = a e .. 
1 J 1 J 

where 

a = ~ (i : ~) 
. a = i 5 ( 41--5~) 

e T = stress-free volume strain = tt e~m 
1e!. = deviatoric stress-free strain. 

1J 

For the case of a uniform expansion, 1eTj 

while :L>!n = 3k(ec- eT) = 3k(a- 1) eT. 
m . 

1 c = 1ai
1
.J. = 0 = eij 

Hence 

a~ · = 1 a ~ · + ~ ·("' a I ) c5 • • = k (a - 1 ) e T c5 • • = -PI c5 ••• 
1J lJ .J fn mm lJ lJ lJ 

(for r < a) 

(E-1) 
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where k is the bulk modulus, a~. is the stress and P1 is the hydro-
lJ 

static pressure within the inclusion. The stress distribution outside 

the inclusion is the same a~ that outside a spherical cavity subject 

to internal pressure P1, 53 

a = -P rr 
I 

I (a)3 
aee = a~~ = (P 12) r 

0' ··= 0' "'= 0'"' = 0 re 9op rop. (for r > a-) . (E-2)· 

where a is the radius of the cavity (or inclusion). According to eqn 

(A-2), the surface traction t, on a surface, radius b, outside the 

inclusion, is given by 

-+ A I 
t = a r = -P rr 

The stress distribution within r -~ b is unchanged if the matrix outside 

the sphere t = b is removed and the surface traction t is applied on 

the spheri ca 1 surface. 

The stresses within a finite matrix of .radius b can be determined 
+ + 

by -removal of the surface tra-ction. Thus a surface traction t 1 = -t 

:is ~applied nn th'E! s:pl'rerit:al 'S:utfa:c-e, 1oe~avtng ·tnat s'urface traction 
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free. For elastic homogeneity, the stress distribution resulting from .. 
the surface traction t' is simply a hydrostatic stress 

I I 
orr = a99 = a~~ = p (E-3) 

The stress distribution associated with the transformation of a 

spherical inclusion in a spherical matrix is the sum of the stresses 

given in eqns (E-1), (E-2) and (E-3). The stress distribution is as 

follows, 

for r < a 

for a < r < b (E-4) 

where t~e subscript b is used to indicate the finite matrix with 

radius b. 
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To evaluate the strain energy, only the stress within the 

inclusion is needed,39 

The ratio of the strain energy of transformation of a particle embedded 

in the spherical matrix to that in the infinite matrix is thus ~ - !i)· 
2. Inhomogeneous Inclusion 

According to the equivalent inclusion method, the equivalent stress­

free strain e!. should satisfy the following equations: 
lJ 

(E-5) 

where K*, ~*, and eT; are the bulk modulus, shear modulus, and stress 

free strain of the inclusion respectively. 

For the case of uniform expansion, the deviatoric parts of the 

strains are zero, and only eqn (E-5) has to be satisfied. Eqn (E-5) 

can be rearranged as follows, 

{£-6) 

. ' 
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In the previous section, it has been shown that the stress within 

a homogeneous inclusion is uniform, and 

I (, a3
) T 

a = -k(l- a)\1- b3 e (E-7) 

Substituting this into eqn (E-6), we have 

r• + (k - k*)(1 - o) ~ - :~)] eT- k*eT* 

Thus 

(E-8) 

where 

E, = [1 + (Q - 1) (1 - o) ~ - :! r 
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Substituting eqn (E-8) into eqn (E-7), 

I (1 a
3

) T* 1{1 a
3

) 
a_ = -k(l - a)~ - b3 ~e = -P \1 - b3 

where 

I T* P = k(l - a) ~e 

The stress distribution for a < r < b is shown in eqn (E-4) with P1 

-defined above. 

Then the energy is given by 

(E-9) 
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Table 1. Numerical data used in examples. 

rl rM llllllM eT 
T 

Eel/Es Eel/Es 
"I I "M 

YlJ Deviation. 
Example (m) (m) (GPa) (%) ( %) (FEM) (%) (an a 1 yt i c ) (% ) (%) 

1 1 2 50/50 0.2/0.2 3 0 44.38 43.75 1.5 

2a 1 5 100/100 !,! 
3 3 3 0 33.14 33.07 0.22 

2b 1 5 100/5 1 3 /0.2 3 0 2.406 2.401 0.20 

3a 1 5 100/100 !,! 
3 3 0 1 0.521 0.5333 2.31 

<.n 

!,! ~ 

3b 1 5 100/100 0 1 0.413 NA 3 3 twinning 

3c 1 10 100/100 !,! 
3 3 0 1 0.5333 8/15 0.013 

3d 1 10 100/100 !,! 0 1 0.400 NA 3 3 twinning 
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FIGURE CAPTIONS 

Fig. 1. Axisymmetric finite element mesh used in the analysis of the 

pure dilation of a spherical inclusion (example 1). 

Fig. 2. ·Three dimensional finite element mesh used for the studies 

·of the pure dilation, pure shear and twinning of a spherical 

inclusion (examples 2 and 3). 

Fig. 3. A twinned martensite exhibiting nonuniform elastic 

properties. 

Fig. 4. Nodes and elements in a finite element mesh. 
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PART II 

STRAIN ENERGY OF TWINNED Zr02 MARTENSITE 
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ABSTRACT 

The strain energy of an inhomogeneous {m)-Zro2 precipitate 

embedded in the {c)-Zr02 matrix has, for the_ first time, been deter­

mined using the finite element method. It was found that the total 

strain energy can be decoupled into two parts, one contributed by the 

diagonal stress free strain and the other by the shear stress free 

strain. These two strain energies are additive for an isotropic sys­

tem. Twinning was found to reduce the shear strain energy and was 

thus justified as a relaxation mechanism. It was found that for a 

given precipitate, the orientation relationship which gave the minimum 

strain energy changed when twinning occurred. Thus twinning can not 

be neglected when making predictions based on the minimum energy 

approach. The active transformation mode was found to be predetermined 

by the precipitate shape and thus quite different from that in a larger 

grained pure Zr02• For PSZ, the minimum strain energy is related to 

the orientation relationship {OOl)mU {OOl}c, [lOO]mU{lOO]c; the lattice 

correspondence LCC, and the twinning mode {OOl)m. 

A minimum energy approach was used to estimate the bounds on the 

twinning boundary energy. It was found that 0.36 ~ yT ~ 0.89 Jm-2• 

The twin width was found to be relatively insensitive to the particle 

size based on the free energy approach, consistent with the experimen­

tal observation. 
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1. INTRODUCTION 

1.1. Zirconia and Transformation Toughening 

The use of ceramics as structural materials has been limited by 

their inherent brittleness. In recent years, however, several toughen­

ing methods have been developed.1 Among them, stable microcrack 

growth and transformation toughening are two of the most promising 

toughening methods. However, because of the introduction of micro­

cracks in the former method, the mechanical strength is degraded. On 

the other hand, the transformation toughening method can improve the 

mechanical strength due to the presence of the compressive stresses 

resulting from the transformation. It thus seems that the transforma­

tion toughening method is more favorable and has been the subject of 

extensive investigation.2-9 

Transformation toughening is a mechanism which enhances the frac­

ture toughness by means of a stress-induced martensitic transformation. 

Systems which exhibit transformation toughening usually consist of two 

phases: e.g. precipitates of one phase embedded in the matrix of an­

other. It is· the martensitic transformation of the precipitates in the 

vicinity of the crack tip, induced by the stress field of the crack, 

that leads to the improvement of the fracture toughness. Two phase 

systems containing Zirconia, such as: partially stablized zirconia 

(PSZ), Zro2 in alumina, and_ Zro2 in mullite are the typical 

systems that can be toughened by transformation. The polymorphic 

nature of Zro2 is well known and has been the subject of many 

stu:lies (see Ref. 10 for a recent review). At atmospheric pres-
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sure, pure zirconia exists as three modifications: melt 
·2370oC 1100-1200 

cubic·--- tetragonal ----~monoclinic. The tetragonal to mon-
700-1030 

aclinic transformation is martensitic11 and accompanied by a -5%12,13 

volume strairi (which is normally deleterious). However, this trans­

formation can be avoided by the formation of cubic solid solution with 

the stabilizing oxides, notably MgO, CaO, v2o3 and Ceo2• A zir­

conia-rich portion of the phase diagram14 for the Zr02-MgO system 

is shown in Fig. 1. The cubic solution can persist to room temperature 

because of the sluggish nucleation of the MgO; this structure is known 

as fully stabilized zirconia. Partially stabilized zirconia results 

when insufficient oxide solutes are added into zirconia. In this case, 

precipitation of the low solute content Zro2 phase with tetragonal 

symmetry occurs. 12 Larger precipitates usually transform martensi-

tically to monoclinic symmetry. The transformed particles are inter-

nally twinned. However, the Ms temperature decreases with decrease in 

particle size and the smaller precipitates retain tetragonal sym­

metry.4,15 Thus the PSZ consists of precipitates of monoclinic and 

tetragonal zirconia-rich phases in a matrix of the cubic solid solu­

tion. Experiments2' 3' 4 indicate that the partially stabilized zir­

conia exhibits superior mechanical properties to the fully stabilized 

zirconia. Evidence has been presented to demonstrate that the retained 

tetragonal phase transforms martensitically to monoclinic symmetry in 

the vicinity of a stressed ·crack. The improvement in mechanical prop-

'ert~e·s i's ·bel iev.ed ·.to be attti;buted to <the .stl"es.s-i:nduced ·'transforrna.:.. 

ti.on.5- 7 ,g 



69 

1.2 The Role of Strain Energy in Transformation Toughening 

1.2.1 Strain Energy and Transformation Zone 

The retention of the tetragonal phase has been recognized to 

originate from the elastic constraint imposed by surrounding matrix. 

The transformation is prohibited because the strain energy increase 

can exceed the decrease in chemical free energy. However, under an 

applied tensile stress (especially in the vicinity of a crack tip) the 

constraint of the matrix can be relaxed, and the strain energy change 

reduced. In the extreme case, where the applied strain is larger than 

the transformation strain (e.g. near the crack tip for precipitates 

with small transformation strain) the strain energy decreases after 

transformation. Thus near the crack tip, there will be a region where 

transformation is energetically favorable i.e. the total change in the 

strain energy and the chemical free energy is negative. This region 

constitutes a transformation zone (in the case of many precipitates, 

some precipitates within this region may not be transformed because of 

the orientation dependence of the strain energy and interaction be­

tween precipitates). Since the transformation zone size is a key 

parameter in the fracture ana1ysis, strain energy evaluation is indis­

pensable in understanding the toughening mechanism. 

1.2.2 Strain Energy and Optimal Size for Toughening 

For the partially stabilized zirconia, the optimal fracture tough­

ness4 is obtained when tetragonal precipitates of a size near the 

critical size are fabricated. Thus it is important to know the criti­

cal size. Although the strain energy has be~n regarded as the major 
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restraining force that leads to the retention of the tetragonal phase, 

it alone can not explain the size effect, because precipitates of sim-

ilar shape but different size have the same strain energy density (see 

Appendix A). In addition to the strain energy, the Helmholtz free 

energy change, the twinning boundary surface energy, and the inclusion-

matrix interfacial energy all contribute to the total free energy 

change. To account for the size effect, a 11 energy terms need to be 

considered. Mechanisms such as a size dependent chemical free energy 

change {due to possible compositional differences5 ), and surface 

energy effects16 have been proposed. 

1.2.3 Strain Energy and Transformation Toughening 

In fracture mechanics,17 the fracture toughness of a given 

material can be evaluated either by calculating the stress intensity 

factor or by determining the energy release rate under the application 

of the critical load. In the latter approach, the strain energy change 

during a crack increment needs to be analyzed. In the case of trans­

formation toughening, the situation becomes more complex because both 

the transformation zone7,18 and the strain energy change7, 22 are 

dependent on the applied stress. The fracture toughness can be evalu­

ated if this critical applied stress is known. This stress is a func-

tion of the transformation stra-in, the chemical free energy change in-­

volved in tran'sformation, and the precipitate size and spatial distri­

bution. Currently, only limited information is available concerning 

these variables. Nevertheless the strain ener-gy calculation provides 

th:e :es-sentcfa~ "H:nks between "the t:ransfor.mat~-on .zone ·.s-1ze, applied 
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stress, and the transformation strain, and can be used to place bounds 

on the problem and to elucidate theoretical concepts. 

In the literature5' 7' 9' 16 the strain energy calcul~tions have 

been limited to the case in which the transformed particles do not 

have internal twinning. Since internal twinning is almost invariably 

observed it must be included in the strain energy analysis. In the 

following, the finite element method is used to determine the strain 

energy, with emphasis on the existence of internal twinning. The size 

effect is then studied. 

2. STRAIN ENERGY CALCULATIONS 

The strain energy change involved in a martensitic transformation 

depends on several variables: the elastic constants of the precipitates 

and the matrix, the stress free strain of the transformation,. the in­

ternal structure after transformation (e.g. number of twin pairs), the 

shape of the precipitates, the orientation relationship, and the ap­

plied stress. To study the effect of size on the retention of the 

tetragonal phase, the applied stress is set to zero. The respective 

choices of the remaining variables are considered in the following 

(for convenience, the monoclinic, tetragonal, and cubic zirconia solid 

solution will be referred as (m)-Zr02, (t)-Zro2• and (c)-Zro2, 

respectively). 

2.1 Elastic Constants 

The anisotropic stiffness coeffi.cients of either {m)-zrn,2, or 

(t)-Zr02, or (c)-Zro2 are not available; thus, isotropic elastic 

constants are used. Table 1 gives the values of the elastic constants 
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used in the calculation. Two matrices are considered: Mg-(c)-Zro2 
and Ca-(c)-Zro2• The magnesia doped ~ubic solid solution has the 

higher value of Young's modulus.19 ,20 Additionally, the monoclinic 

phase21 has a higher Young's modulus than the cubic matrix. No data 

for the tetragonal phase are available at room temperature; hence, the 

elastic constants are assumed to be the. same as those of the monoclinic 

phase. (Since the strain energy associated with the tetragonal pre-

cipitate in the cubic matrix is relatively small, this assumption 

introduces a minor error). 

2.2 The Stress-Free Strain 

Problems associated with transformations were first successfully 

treated by Eshelby.22 In his analysis, the stress-free strain was 

used as the transformation strain based on the assumption that the 

transformed region was stress-free in the matrix before the phase 

transition. In the case of PSZ, this assumption does not apply (as 

exemplified by strain fringes observed around retained tetragonal pre­

cipitates12,15). Hence, in-this study, the stress-free strain and 

the transformation strain are not considered to be identical. Specif­

ically, the transformation strain is used to describe the dimensional 

cha·nge caused by the transformation in the absence of the constraint 

of the matrix, while the stress-free strain arises when two materials 

with different stress-free states are joined-together. In general, 

the stress..;free state of the matrix is used as the reference state, 

and a nonzero stress-free strain is assigned to the inclusions or the 

-pre~ i pi tates. For ·PSZ, the .(t)--Zr02- d ( ' ·z ·o h - d ··ff t an ·_m 1 .... r 2 ·ave ·T eren non-

J::' 
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zero stress-free strains with respect to the (c)-Zr02 matrix. The 

difference is the tetragonal to monoclinic transformation strain. The 

stress-free strain of an inclusion in the matrix is determined by the 

dimensional change between a stress-free inclusion and the hole left 

behind in the matrix after the imaginary removal of the inclusion. 

The dimension of the former depends on the lattice parameters, the 

number of unit cells, and their spatial arrangement. The volume of 

the latter can be determined by the lattice parameters·of the matrix 

and the number of matrix unit ce 11 s that wi 11 fi 11 the ho 1 e. The 

ratio of the number of matrix unit cells to the number of inclusion 

unit cells is related to the coherency of the interface. The spatial 

arrangement of the unit cells is reflected in the internal structure 

(such as dislocations, internal twinning etc.), and the orientation 

relationship. Thus the stress-free strain is a function of the lattice 

parameters of the precipitate (after and before the transformation) 

and the matrix; the precipitate~atrix boundary coherency, the lattice 

correspondence in the transformation, and the orientation relationship. 

2.2.1 The Lattice Constants 

The lattice constants depend on composition. However, no infor-

mation on the variation of lattice constants with composition is avail­

able for any of the three phases. In this study, lattice parameters 

reported by Hanni nk12 for t_he ( t )-Zr02 and ( c )-Zr02 wi 11 be used. 

(The annealing temperatures used were 1420~C for Mg-PSZ, and 1300~C 

for Ca-PSZ, typical of optimally fabricated PSZ). The lattice con­

sta·nts for (m)-Zro2 at the same composition as (t)-Zro2 are not 
' 
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available (the same composition is desirable because, according to the 

nature of the martensitic transformation, the composition is unchanged 

after the transition). Thus, the lattice constants of a nearly pure 

(m)-Zro2, reported by Patil et a1. 13 , are used. For comparison 

purposes, the lattice parameters for an essentially pure (t)-Zro2, 

reported by Patil et al., extrapolated to room temperature are also 

used. I~ the literature, two unit cells have. been used to describe 

the tetragonal phase: face centered tetragona1 23 (fct) and body cen­

tered tetragona1 24 (bet). The relation between them is as follows: 

Afct = IZ Abet and Cfct = Cbct· The fct cell is used in this study. 

The lattice parameters are given in Table 2. It has to be pointed out, 

however, that the lattice constant reported by Hannink are constrained 

values. The "real" values can not be measured because the tetragonal 

phase is not stable without the constraint of the matrix (except for 

very tiny particles < 300 ~). 25 Estimated unconstrained lattice 

constants, obtained by an iteration method (see Appendix B), are also 

included in Table 2. 

2.2.2 Boundary Coherency 

The precipitate-matrix interface is fully coherent if the lattice 

planes are continuous across the interface. In this case, there is a 

unique correspondence between the atoms on both sides of the interface. 

If dislocations exist, the correspondence between the atoms is des-

troyed, and the interface is semicoherent. In the extreme case, when 

there is no correspondence, ·the ·interface becomes i ncohe.rent. 

·"'· 
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For a fully coherent or semicoherent interface, the ratio of the 

number of unit cells in the inclusion to that in the matrix which it 

replaces can be calculated and the stress-free strain is then deter­

mined. Fully coherent tetragonal and monoclinic phases in a cubic ma­

trix constitute case A in this study. For fully incoherent tetragonal 

and monocHnic phases, the stress free strain is determined on the 

premise that the tetragonal phase is stress-free at the annealing tem­

perature. The stress-free strain for the tetragonal-matrix system at 

room temperature is then just the thermal contraction mismatch strain. 

Upon subsequent transformation to the monoclinic phase, an additional 

transformation strain is introduced. This strain is determined from 

the correspondence between the tetragonal and the monoclinic unit cells 

(which enable the transformation strain to be evaluated directly from 

the lattice constants and lattice correspondence). The stress-free 

strain for the monoclinic-matrix system is the sum of the thermal 

strain and the transformation strain. This constitutes case B. Cases 

A and B represent upper and lower bound solutions. 

2.2.3 Lattice Correspondence 

In a cooperative diffusionless transformation, all atoms in the 

same position in a unit cell move in the same way. Thus there is lat­

tice correspondence between the phases before and after transformation. 

The lattice correspondence def1nes the movement of the unit cell, from 

which the transformation strain is determined. The tetragonal to mon­

oclinic transformation has three possible lattic.e cor.respondences, due 

to the symmetry of the lattices. The c-axis in the tetragonal lattice 
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can correspond to any of the a, b and c-axis of the monoclinic lat­

tice, and are classified as lattice correspondences A, B, and C (sym­

bolically LCA, LCB and LCC) respectively. The cubic to tetragonal 

transformation involves diffusion, and has no lattice correspondence. 

However, in case A, where atomic correspondence is imposed, lattice 

correspondence can be assigned to this transformation. Because of the 

lattice symmetry, there is only one lattice correspondence for the 

cubic to tetragonal transformation. In this way, atoms in the mono­

clinic lattice can also be correlated to those in the cubic lattice, 

and a cubic to monoclinic lattice correspondence can be established. 

There is only one cubic to monoclinic lattice correspondence due to 

symmetry considerations. From this correspondence, the stress-free 

strain involving a monoclinic phase in a cubic matrix can be deter­

mined.26 There is another approach to evaluate this stress-free 

strain in case A. The stress free strain can be evaluated as the sum 

of the strains in the cubic to tetragonal and in the tetragonal.to 

monoclinic transformation. The deviation between these two methods is 

less than 1%. In this study, the former method is used. 

In case B, the transformation strain is determined by the tetra­

gonal to monoclinic lattice correspondence. 
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2.2.4 Orientation Relationship+ 

The orientation relationship in a tetragonal-monoclinic transfor­

mation has been determined by various investigators. 10 Two posssible 

orientation relationships can be summarized as follows: 

TYPE B: (100)m II {100 }fct 

[010]m II [001]fct 

TYPE C: (100)m II {100}fct 

[001]m II [001hct 

In particular, Bansal and Heuer27 claimed that type B pertains for 

transformations which occur above 1000~C and type C applies below 

1000°C. The orientation relationship usually suggests the lattice 

correspondence, especially when the angles between lattice axes of the 

two phases are small (as in the case of Zr02). Thus, type B sug­

gests LCB and type C suggest LCC. 

The orientation relationship28 between the tetragonal partici-

pates and the cubic matrix were found to be 

{100}fcc II {100}fct and (001)fct 

.<100> fcc II <lOO)fct and [001 ]fct 

The orientation relationships between the monoclinic precipitates and 

the cubic matrix can be deduced from the relations mentioned above. 

+rhe orfentation relati.onshi;p desc.ri:bes the o.rientations of the in­
clusion and the matrix, which is to be compared with the lattice cor­
.res,Pondence which provides the identification of the atoms before and 
aft-er a transformation. 
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However, it should be noted that neither type B nor type C uniquely 

determines the orientation relationship among a nonspheroidal mono­

clinic precipitate and the cubic matrix because there are two 

equivalent (lOO)fct in a tetragonal lattice. Since no pertinent data 

are available, both orientations are used in the calculation. Six 

orientation relationships between the (m)-Zro2 and the (c)-Zr02 
are possible for an ellipsoidal precipitate, as shown in Fig. 2. 

These six O.R.•s are considered in this study. 

2.2.5 The Stress-Free Strain 

Given the lattice parameters, the lattice correspondence, and 

assuming full coherency, the stress-free strain between two lattices 

is determined by the following equation26 

[(AcT B )(B*GB )(BCA) - n2 (A *GA)} (A: Xl = 0 

where A denotes the base vectors in the parent lattice, B those in the 

product lattice, (BCA) is the correspondence array (with successive 

columns referring to the basis B of the lattice vectors, CA, in the 

product lattice which corresponds with the base vector A in the parent 

lattice), (ACTB) is the transpose of (BCA), (B*GB) is the metric 

* associated with the basis B, (A GA) is the metric associated with 

basis A, n is the principal strain, and [A:X] are the principal axes. 

A geometric methoi9 and an approximation method5,16 are also 

available in the literature. 

The termal strains for case B are calculated using thermal expan-

.. d' ·t . . . t d b . p t . , t . 1 13 d 8 d . . k t , ·30 ( .. th s 1on · .a a 'rep or. e . . y .. a 1 ,, .e - a· .- .. a·nc : ur . 1c e a;. • · nt •· · e 

latter, the therma 1 expansion co·efficient of the stabil tzed zircon·ia 

..... 

-. . 
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(matrix) is assumed to be the same as that during the first thermal cy­

cle reported by Burdick et al. for the system Zr02 + 15.5 mole% MgO). 

All strains for cases A and B are listed in Table 3 for three orienta-

tion relationships. The other orientation relationships are considered 

by specifying the material axes during strain energy calculations (as 

an input to the computer program). 

2.3 Twinning 

Twinning has been recognized as a mechanism which.reduces the 

strain energy. 27 , 31 In the literature,10 ,31 ,32 ,33 (lOO)m, (llO)m and 

(llD)m twins have been observed both for the pure Zr02 and for precipi­

tates in PSZ. The (llO)m or (llO)m systems have the smaller shear com­

ponent (-0.25 compared to 0.35 for (lOO)m twinning), and should be en­

ergetically favorable when the strain energy change completely domin­

ates the surface energy. This mode of twinning has been primarily ob­

served in severely averaged particles (>0.6 p) and will not be considered 

in the present study~ (100) twinning32 ,34 has been observed in m 

slightly averaged precipitates (0.25-0.Sp). The traces of the twinning 

planes are perpendicular to the shortest axis and each precipitate con-

tains only a few twins. The surface area is thus limited, and renders 

(lOO)m a favorable. twinning mode for small precipitates.+ In a 

recent study~35 (OOl)m twinning has also been observed. Thus the 

{lOO)m and (OOl)m systems will be considered in this study. The 

traces of the experimentally observed twinning planes are perpendicular 

to the shortest ·axis. Taking the orientation relationships28 between 

precipitates and mat.rix i-nto consi-deration, the twinning plane normal 

+The {OlO}m· symmetry plane ·is not a twfnnlng pl.ane .• 



80 

must be parallel to the shortest axis of the ellipsoidal precipitate. 
-

The twinning is considered herein to be limited to this case. Lattice 

correspondences A and Care assigned to (100)m and (001)m twins respec- -, 

tively, consistent with the experimental observations by Hannink12 

(i.e. ctn ~o the shortest axis (see below)). 

2.4 The Shape of the Precipitate 

The shape of an intragranular Mg-(t)-Zro2 precipitate in a cubic 

matrix can be closely approximated by an ellipsoid with its principal 

axis parallel to the tetragonal lattice axes. Hannink12 determined 

the aspect ratio and found a1:a2:a3 = 5.5:2.2:1 where the ai's are the 

lengths of the principal axes. The shortest principal axis was iden­

tified to lie parallel to the ct axis. The precipitates of the 

Ca-(t)-Zr02 are plate-like. No specific aspect ratio was reported. 

Thus calculations of the strain energy of CaO doped precipitates have 

not been attempted. The elastic constant of the Ca-(c)--Zro2 is used 

for the matrix simply to test the effect of the elastic inhomogeneity 

on the strain energy. A spherical precipitate is also examined to un-

derstand the variation of the strain energy with shape. 

2.5 Finite Element Calculations 

The finite element method was developed in Part I. In the fol-

lowing, the additivity of the strain energy, symmetry considerations, 

and the meshes used in thi~ study are discussed. 

2.5.1 Additivity of the Strain Energy 

The superposition princi p.l e app·1 ies to the stre·ss, strain and the 

displaceme~t field, but, i:n ~general,. not to the strai;n en:ergy. 

• 
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Eshelby22 showed that for an isotropic inhomogeneous ellipsoidal in­

clusion with twinning, the strain energy can be separated into two 

groups, one being contributed by the hydrostatic and the other by the 

deviatoric stress-free strain. These two strain energies are decoupled 

and additive. However, another possibility exists. The strain energy 

can also be separated into one part contributed by the diagonal and the 

other by the nondiagonal (i.e. the shear component) stress-free strain. 

The strain energies for these two parts are also decoupled and addi­

tive. In the case of internal twinning, the additivity of the strain 

energy has not been discussed in the literature. In this study, 

through the finite element calculation, it was found that the strain 

energy of a twinned isotropic inhomogeneous ellipsoidal inclusion is 

the sum of the strain energies contributed separately by the diagonal 

and the non-diagonal part of the stress-free strain. The additivity 

also applies to the twinned isotropic orthorhombic precipitate. 

2.5.2 Symmetry Properties 

Symmetry considerations can reduce the magnitude of the region to 

be analyzed in a finite element calculation and is an important factor 

with regard to the minimization of computation costs. To determine the 

symmetry in a transformation problem, all of the geometry, elastic 

stiffness coefficients, loading, and the stress-free strain must be 

considered. The elli~soidal precipitate with the twinning plane par­

allel to two of the principal axes, has three symmetry planes. The 

isotropic elastic -constants 1mpose no limitation :an symmetry. The ·ex­

ternal lo.ad is zero in this study. However the diagonal a-nd the 
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shearing components of the stress-free strains have different symmetry. 

The diagonal part has three symmetry planes while the shear component 

has two symmetry planes and one antisymmetry plane (for an integer 

number of twin pairs) or one symmetry and two antisymmetry planes (for 

half integer numbers of twin pairs). Because of the additivity of the 

strain energy, the diagonal and the shearing components can be con­

sidered separately. In either case, only one octant. of an ellipsoid 

needs to be analyzed. 

2.5.3 Finite Element Mesh 

According to the symmetry considerations, one-eighth of an ellip~ 

soidal precipitate is studied. Some of the meshes used are shown in 

Figs. 3-6. Three dimensional twenty-node brick elements are used to 

describe the curved ellipsoidal surface. The infinite matrix is ap­

proximated by a finite matrix which is at least five times larger than 

the size of the incl~sion in any direction. For the ellipsoidal in­

clusion, the aspect ratio is set to be 5.5:2.2:1, with the longest axis 

in the x direction, and shortest axis in the z direction. The twinning 

plane, whether it is (lOO)m or (OOl)m is always parallel to the xy 

plane. The accuracies of the meshes are estimated by comparison be­

tween those obtained by the finite element method and those by the 

Eshelby approach22 for the case of no internal twinning. The devia­

tion is less than 3%" in all cases. 

3. RESULTS 

The energies associated with the di agona 1 t·erms of- the stress 

·free strains are determined by the Eshelby fo.rmulati·on (a computer 

- "' 
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program based on the Eshelby approach is listed in Appendix C). The 

energies contributed by the nondiagonal terms are calculated by the 

finite element method, and are given in Table 4 and plotted in Fig. 7. 

The total strain energies determined by the formula Etot (n) = 
2 Ediag + S x Eshear(n), where S is the shear strain and Eshear(n) 

is the shear energy for unit shear strain for n twin pairs, are listed 

in Table 5 ~nd plotted on Figs. 8, 9, and 10. Comparison of the total 

strain energies for different stress-free strains determined by dif­

ferent lattice parameters for the orientation relationship CXZ (Fig. 

8) indicates a maximum deviation of 2% for case A, and of 9% for case 

B from the modified Hannink values. The following discussion is based 

on the stress-free strain calculated from the modified Hannink lattice 

parameters. 

3.1 Influence of Twinning 

From Fig. 7, it is noted that the strain energy decreases as the 

number of twin pairs increases. This confirms the concept that the 

twinning is a mechanism to relax and to reduce the strain energy, as 

pointed out by·previous investigators. 27 ,31 The variation of the 

strain energy is determined by a least square curve fitting method as 

1 

aTn + b 

The asymptotic shearing strain energy as n ~ oo is zero, which is con-

sistent with physical expectations. 
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3.2 Precipitate Shape Effects 

Comparison of the diagonal strain energies between spherical and 

ellipsoidal pre~ipitates (Table 6) indicates that the ~train energy of 

an ellipsoidal precipitate cah be smaller or larger than that of a 

spherical precipitate, depending on the orientation relationship and 

the lattice correspondence. However, the shearing strain energy of a 

spherical precipitate is invariably larger than that of ~n ellipsoid 

(Table 4). The total strain energy for a small number of twin pairs, 

in which the shearing strain energy dominates, is lower for an ellip­

soidal inclusion. As the number of twin pairs increases, the diagonal 

strain energy dominates and the spherical precipitate may have a lower 

total strain energy (for example, in the case of LCA). The comparison 

is shown in Fig. 11. 

3.3 Effect of the Shearing Plane 

Suppose the longest axis of an ellipsoid is along the x axis and 

the shortest along the z axis. Wfthout internal twinning, shearing on 

the y-z plane gives the minimum energy. However, in the case of in­

ternal twinning, shearing on the x-z plane has a strain energy less 

than that associated with shearing on the y-z plane. It is thus evi­

dent that neglect of the existence of internal twinning (as is the case 

for most strain energy calculations in the literature) obviates effec­

tive prediction of the orientation relationships and the habit plane. 
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3.4 Differences Between Transformation in Single Crystal 

(Large Grained} Zr02 and Zr02 Precipitates in PSZ 

The orientation relationship, (100}mU(100}fct and [010]mU[001]fct 

has been observed by most investigators10 in large grained monoclinic 

Zro2• However, this orientation relationship is energetically un­

favorable in PSZ. The major difference lies in the shape of the trans-

formed region. For the former, the shape of the transformed region is 

probably determined by minimum energy considerations without spatial 

restrictions. According to the stressfree strain data given in Table 

3, a minimum energy results if the transformed region is plate-like, 

and the bm (or Ct} is parallel to the plane of the plate. In the 

latter, the shape of the precipitate is predetermined, and the Ct 

axis is perpendicular to the plane of the plate. Thus the lattice 

correspondence, orientation relationships of the tetragonal to mono­

clinic transformation and the twinning plane are predetermined. This 

study indicates that lattice correspondence C (LCC}, the orientation 

relationship (001}m U (001}fct' [100]mU [100]fct' and the twinning 

plane (001}m give the minimum strain energy. 

3.5 The Effect of the Matrix 

The shear energy for the transformation in Ca-(c}-Zr02 is given in 

Table 4. It is noted that for a softer matrix (Ca-(c}Zr02}, the strain 

energy is less. The ratios of the strain energies for a Mg-(c}-Zr02 ma­

trix to that for a Ca-(c}-Zro2 matrix are 1.19, 1.12, and 1.16 for no 

twins, one twi·n pair, and two twin :pa·irs ·respe:ctive·ly. 1hts 'result i-n-

dicates that the strain energy ratio for different matrices and a sp.ec-
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ified number of twin pairs can be approximated by the strain energy 

ratio in the absence of twins. The strain energy contributed by the 

diagonal terms of the stress~free strain can be evaluated by the 

Eshelby approach (see Appendix C). Thus, for a given inclusion shape, 

once the strain energies for a given inhomogeneity are determined for 

a number of twins, the strain energy for another inhomogeneity can be 

quickly estimated. This information is useful in material selection 

and microstructure design. 

4. DISCUSSION 

4.1 Bounds on the Strain Energy 

The total strain energy changes for LCC and shearing on the xz 

plane are plotted in Fig. 8. The energy in case A is 30% higher than 

in case B, primarily because the full coherency assumption overesti­

mates the stress-free strain. The values obtained in case A are thus 

regarded as an upper bound. In case B, the stress free strains in the 

tetragonal precipitates are compressive, compared with a large tensile 

str~in in the Ct direction in case A. The difference resides from 

the relatively high thermal expansion coefficients of the tetragonal 

phase, which cause a reduction in the total stress-free strain. Case 

B constitutes the lower bound. The actual strain energy is probably 

closer to the lower bound, because diffusive stress relaxation can 

proceed at the annealing te_mperature, in the presence of excess vacan­

cies formed during the precipitation. 

... 
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4.2 The Twin Boundary Energy 

Thermodynamic considerations of martensitic transformations in-

valve considerations of the twin boundary and precipitate/matrix inter­

face energies, in addition to strain and chemical energies. The total 

change in thermodynamic potential following transformation is given by: 

or 

where ~F is the total free energy change, ~P is the chemical free en­

ergy change per unit volume, ~E(n) is the strain energy change per 

(1) 

unit precipitate volume (which is a function of the number of twin 

pairs, n), V is the volume of the precipitate, 'Tis the twin bound­

ary energy per unit surface area, AT is the total twinning boundary 

area, ~Yp is the change in the precipitate-matrix interfacial energy, 

Ap is the precipitate-matrix interface area, the superscript o in­

dicates that the value is for a reference size (for example, 1 p in 

length in the longest axis), and k is a ratio of the linear precipita~e 

dimension to the reference size. For very small precipitates, k is 

small, and the surface energy terms may dominate the free energy 

change. Conversely, for larger precipitates (larger k values) the sur-

face energy terms become negligible. The pr.ecipitate volume dependence 

of ~pV and ~E(n)V, coupled with the area dependence of yTAT and 

~yPAP' and the influence of the number of twin pairs on ~E and 

yTAT, results in a precipitate size dependent ~F. Hence, by 
·• 

associati~g transformation with a spe~ific excess driving force, -~F, 
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(e.g. in order to nucleate the transformation), the incidence of trans-

formation becomes precipitate size dependent. For example, a lower 
• bound critical size can be estimated by requiring that AF = 0.+ The 

characteristics of the critical size are exemplified by performing cal­

culations for PSZ. However, it is noted at the outset that several of 

the quantities in Eq. (1) can only be estimated at this juncture. In 

particular, since the tetragonal phase is metastable, the~chemical en­

ergy can not be determined in the absence of strain. Thus only an est­

imated value (usually invoking the assumption of a temperature inde­

pendent entropy change) is available for pure Zro2• The chemical 

energy can be approximated as follows. For pure Zro2 AH = - 1420 

cal/mole at 1478:K.36 Hence by setting A~ = 0 at the unconstrained 

transformation temperature AS can be determined. Thereafter it follows 

that A~ at room temperature ~-230 MPa (with respect to the tetragonal 
10 

phase which has a density of 6.1 g/cm3 ). A lower value of A~ 

must obtain in the presence of solutes. However, the energies of the 

cubic-tetragonal and the cubic monoclinic interfaces are not available 

(the solid/vapor interface has an energy of 0.4Jm2).25 Similarly, th~ 

twin boundary energy has not been experimentally measured or estimated. 

A minimum free energy approach for estimating bounds on the twin-

ning boundary energy.is described in this study. This approach is 

based on the assumption that, for a specified transformation, (i.e. 

+ln the ·rea 1 ·world, acoust i·c waves ·carrying energy Q are emitted 
during the course of the martensitic transformations, thus it would 
require .aF ·< ... .Q for the tr.ansformati.on to proceed.. In this case, the 
inclusions with ·size satisfying AF = 0 will not be transformed. Thus 
the condition of >AF = 0 constitutes the lower bound critical size. 
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fixed composition, chemical free energy change and the interfacial sur­

face energy change), the system will possess the number of twins that 

minimize the total free energy. The energy terms that vary with the 

number of twin pairs are the strain energy (specifically, the shear 

energy), and the overall twinning surface energy. According to this 

approach, and the experimental observation that there are usually two 

twin pairs, the following inequality is established: 

- (2) 

where AEk2 is the change in the strain energy between k and 2 twin 

pairs, V is the volume of the precipitate experimentally observed, and 

AAk2 is the change in total twin surface between k and 2 twin pairs. 

Equation 2 can be separated into two groups, depending on the sign of 

AAk2, as follows 

AEk2V 

AAk2 ~ YT (for k < 2) 

AEk2V 

AAk2 ~ rT (for k > 2) 

These two inqualities constitute the upper and the lower bounds respec-

tively. For an accurate estimation, the size, the shape and the num-

ber of twin pairs should be obtained by experiment. In this study, 

the aspect ratio determined by Hannink12 (5.5:2.2:1) is used, the 

critical size is considered to he 0 .•. 2 ~m15 and the two twin pairs 

observe_d4,15 in th.e slightly averaged particles and the stress-in­

duced transformed particles are presumed. The minimum free energy 
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2 result then yields 0.36 ~ yT ~ 0.89 J/m • The estimation could be 

improved by using information concerning the size, shape and number of 

twins obtained from the same particle. 

4.3 Size Effects 

If the value of the twin boundary energy is chosen to be 0.40 

J/m2 and the Ayp is estimated to be 0.2 J/m2, the effect of size 

on the transformation is shown on Fig. 12~ The free energy curve ver-

sus the number of twin pairs exhibits a minimum. For a low number of 

twin pairs the strain energy dominates, and the total free energy de-

creases as the number of twins increases; while, for a large number of 

twins, the surface energy dominiates and the total free energy in­

creases as number of twins increases. For a small particle, the total 

free energy is positive for any number of twin pairs, and the trans-

formation is energetically unfavorable. As the particle size in-

creases, the total free energy becomes negative for a range of twin 

pairs and the transformation is then energetically favorable. 

4.4 The Twin Thickness 

From Fig. 12, it is noted that the free energy minimum displaces 

to a larger number of twin pairs as the particle size increases. This 

minimum may be used to estimate the twin widths as a function of the 

particle size. The results are plotted in Fig. 13. The twin widths 

are found to be relatively-insensitive to the particle size, as demon-

strated in Fig. 13. The latter has been used by others to argue that 

the martensitic transformation is nucleation controlled. However, this 

study 'i'nd1c-ates that it is a natural consequem::e of the sy~tem_ attempt­

ing to minam'ize its total ,free energy. 
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4.5 The (110)m Twinning 

As discussed in section 2.3, the (110)m twins are not consistent 

with the experimental observation12 that the Ct axis is parallel 

to the shortest axis, when the trace of the twinning planes are per­

pendicular to the shortest axis of the ellipsoid as generally observed 

in slightly averaged precipitates. However, it is of interest to see 

whether the (llO)m twins are energetically favorable when the incon-
··· sistency is neglected. To remove the inconsistency, an imaginary pre-

cipitate with its shortest axis parallel to (llO)m (or (Oll)t, 

(lOl)t and {llO)t before transformation for lattice correspondence 

LCA, LCB and LCC respectively) is assumed. Since the precipitate-rna-

trix lattice orientation relationship is assumed to be unchanged, the 

stress-free strain is the same (as shown in Table 3) when referring to 

a coordinate system with x, y, z axes parallel to the {lOO}fcc axes. 

The stress free strain referring to a new coordinate system with the 

x, y, z axes parallel to the principal axes of the ellipsoid can be 

obtained by a tensor transformation. If the twinning plane (110)m is 

the xy plane, the shear strain ei2 = S/~, where S is the shear 

strain shown in Table 3. According to Table 3, ei2 ~ 5.8%. This 

strain does not change sign in the presence of twins. Hence the strain 

energy contributed by this stress free strain can not be reduced by 

twinning. According to Table 4, the strain energy per precipitate vol­

ume contributed by 1% shear on xy plane is 12.4 MPa. Therefore, for 
T e12 ~5.8%, the st,rain energy~ 420 MPa. ·This strain energy is far 

too large compared to the chemical free energy change of 230 MPa. Thus 

the (llO)m twinning is energetically unfavorable. 
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The result is consistent with the experimental observation that 

when (llO)m is the twinning mode, the twinning plane is parallel to 

the shortest axis of the ellipsoid.32 ,37• · 

5. CONCLUSIONS 

The s~rain energy of an inhomogeneous (m)-Zr02 precipitate em­

bedded in the (c)-Zro2 matrix has, for the first time, been determined 

using the finite element method. It was found that the total strain 

energy can be decoupled into two parts, one contributed by the diagonal 

stress-free strain and the other by the shear stress-free strain. These 

two strain energies are additive. Twinning was found to reduce the 

shear strain energy and was thus justified as a relaxation mechanism. 

It was found that, for a given precipitate, the orientation relation­

ship which gave the strain energy minimum changed when twinning oc­

curred. Thus twinning can not be neglected when making predictions 

based on the minimum energy approach. The active transformation mode 

in PSZ was found to be predetermined by the precipitate shape and thus 

quite different from that in a larger grained pure Zro2• For PSZ, 

the minimum strain energy is related to the orientation relationship 

(OOl}m II (OOl)c, [lOO]m II [lOO]c; the lattice correspondence LCC; and 

the twinning mode (OOl),m. (llO)m twins are energeticaly unfavorable if 

the twinning plane is perpendicular to the shortest axis of the ellip-

said. 

A minimum energy approach was used to estimate the bounds on the 

twinni.ng boundary energy.. .It was found that 0.36 ~ yT ~ 0.89 J/m-2• 

-However., :the ·Shear ·str.:a:.n -'us~ed in the ·est imatiun was .an ;upper bound 
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value, thus the actual bounds on the twinning boundary energy may be 

lower. The twin width was found to be relatively insensitive to the 

particle size based on the minimum free energy approach, consistent 

with the experimental observation. 
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APPENDIX A: The Scaling Factor for 

The Strain Energy Calculation 

Let systems A and B both consist of m twinned inclusions in an 

infinite matrix. The twinned particles can be regarded as consisting 

of several grains with uniform stress-free strain within each grain. 

Assume that there are n grains in either system. In system A, the sur-

faces of the grains are described by 

g~ (x) = o for 1 < i < n. 

Assume that the distribution and the shapes of the n grains in sys­

tem B are similar to those in A, except for a scaling factor k (a 

scaling factor is the ratio of the length between two points in system 

B to that between two corresponding points in system A). In other 

words, the surfaces·of the grains in system B are described by 
B ~ A -. 

gi (x) = gi (x/k) = 0 for 1 < i < n. (A-1) 

Figure 14 shows an example of systems A and B with m = 2, n = 4, and 

k = 2. 

Under the assumption of no body force, the strain energy in sys­

tem B is k3 times that in system A, as shown below. 

Let aA(x) be the stress distribution in system A. Then aA must 

satisfy the following conditions: 

(i) The equilibrium equation a~j,j = 0 (A-2) 

(ii) Continuity of surface tractions across the grain 

boundary, 

f.(aA(:x):, ;£ 1) ·= 0 :on g·~.{x) ·'= 0 .surface (A-3) 
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(iii) The condition of compatibility within each grain 

A h (a (x),ij) = 0 

(iv) lim aA(x) = 0 
X~m 

Now consider the stress distribution a8(x) = aA(x/k) in system B. 

According to Eq. (A-2) 
B A a (x) ... =a .. . (x/k}/k = 0, 

lJ,J lJ,J 

thus the equilibrium equations are satisfied. On the i-th grain boun-

dary in system B, the surface is described by g~(x/k} = 0 according 

to Eq. (A-1). Then it follows from Eq. (A-3) that 

f(aA[(x/k}], ei} = 0 on g~ (x/k} = 0 

or 

B gi (x) = 0. 

Thus the second condition is also satisfied. Compatibility condition 

contains only second derivatives of the stress component. Since 

a~ij = (ltk2) aA(x/k},ij' h(a8(x),ij) = (l/k2)h (aA(x/k),ij) = 0 
B and thus, aij(x) satisfies the condition of compatibility. The 

fourth condition is also satisfied. 

Let EA and E8 be the strain energies for system A and B re­

spectively. Then 

and · 
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=} k3 ~(£A(y) _ £~A(y)) aA(y) d3y 

= k3 EA • 

·Thus the strain energy for inclusions of similar shape is proportional 

to the cube of the.scaling factor k. For one inclusion problem, the 

strain energy can, therefore, be.~ormalized with respect to the inclus-

ion volume, and E/V is a constant for a given shape independent of the 

inclusion size. 
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Appendix B: An Iterative Method 

To Determine the Unconstrained Lattice Parameters 

Of the (t)-Zr02 
For an ellipsoidal inclusion, a uniform constrained strain is de-

veloped if the stress-free strain is uniform. Because of the uniform­

ity of the constrained strain, the constrained inclusion responds to 

the x-ray as if it consisted of a lattice with different lattice con­

stants. Thus the lattice constants determined by the x-ray diffrac­

tion method can be different from the real or the unconstrained values. 

The relations between the lattice parameters of the cubic matrix 

(a0
), of the measured constrained inclusion (a~) and of the uncon­

strained inclusion (a1) are shown in Fig. 15 {the notation of the 

strains follow Eshelby•s, i.e. the superscripts T* and C denote the 

true stress-free strain and the constrained strain respectively). It 
T* follows that eii can be solved from the iterative equation 

* (n)e~. = 
11 

where the superscript n and n-1 denote the nth and (n-l)th iteration. 

The constrained strain (n-l)e~i is a function of the true stress­

free strain (n-l)e;~, which was established by Eshelby.22 Thus, in 

principle, Eq. (B-1) can be solved. 

For (.t)-Zr02, additional constraint has to be imposed because 
T* T* . of e11 = e22 wh1ch comes directly from a1 = a2 for a tetragonal 

lattice. However, the resulting constrained strains e~1 and ec 
22 .are 

(B-1) 
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·different for an ellipsoidal inclusion. ·Consequently, the calculated 

T* T* e11 and e22 from Eq. (B-1) are not the same. Thus the average value 

is used in the next iteration. Furthermore, because of the difference 

in e~1 and e~2 , the measured constrained lattice constants a~ and 

a~ can not be the same. Thus·the.lower and the upper bound of the 

measured lattice parameters are used as a~ and a~ respectively {where· 

a1 corresponds to the direction of the longest p~incipal axis of the 

ellipsoid). According to Hannink•s data, a~= 5.075 A, a~= 5.079 A, 
a~ = 5.183 ~' and t = 5.080 A. The iteration method converges rap­

idly to the following values: a= 5.0766 and c = 5.2037. The same val­

ues are obtained if a~ = 5.076 and a~ = 5.078 are used for the measured 

lattice constants. 
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APPENDIX C: Listing of a Computer Program for Strain Energy 
Calculation Based on Eshelby Method 

pqQGRA~ TqANSFIINPUToO~TPUToTAPE5=INPUTtTAPE6=0UTPUTl 

AUTHOR MING-DER HUANG 
UNIVERSITY uF CALIFORNIAoSERK~L~Y 

~1 Aq("H 191!1 

****************** TH: ESHELgy M~THOD ******************************* 

***I~DUT F~QVAT*** 
GIVE THE FOLLOWING DATA AND TH~ PROGRAM WILL RETURN EQUIVALENT 
TRANSFORMATION STRAINoS TENSOR oSTRESS INSIDE THE INCLUSIONt AND 
THE TOTAL STRAIN ENERGY· 

l• LStLECoLABEL• !2Alo3X,7Al0l 
IF LS IS NOT ~LANKtTH~ S T~NSOR IS PRINTED 
IF LEC IS NOT 3LAN~oTHE CONSTRAINED ST~AIN IS PRI~TED 

2• At g, CoiSHAPE,ICORI3ltNDIVl 13Fl~•OtlXtA4t4I;l 
IAoBoC IN ARBITARY ORDER!CIF ISHAPE I~ SPECIFIEDtiCOR 
SPECIFIES THE AXIS NUM~ER IN THE ORDE~ OF DECREASING 
LENGTH • IF ISHAPEIS IS 8LANKt ICOR IS IGNORED.! 

!DEFAULT FOq NDIV=50l 
CISHAPEtiCORtAND ~DIV ARF DESIGNED TO BE L~FT !LANK 
AND AtBtCtTO BE IN ARBITARY ORDER! 

INCLUSION SHAP= 

SPHERE 
OBLATE 
PROLATE 

OTHER 

!SHAPE CODE 

BALL 
CAKE 
POLE 

!ANY NONBLANKl 

3. GCMloVCMloGCINCltVCINClliN CASE OF HO~OG LEAVE GC INC!BLAN~ 
4. THE T~ANSFORMATION STRAIN El E2 E3 R4 R5 R6 16Fl0e0l 
5• MORE DATAl USE A • G AND E TO INDICATE THE RE-ENTRY POINT 

LSoLECoCODEtLAS~L. C2Alo2XoAlo7AlOl 

t"~"<A"10~' /J".IT/TI::? 
DIVENSIO~ AC3loGI2ltVI2l•TI3loTTC3o3ltSC6o6ltCIC6t6loC~I6o6l 

1 • E I C 6 l , ETC 6 l , A 2 C 3 l , ICY C 3 l t '\A C 6 t 6 l , SE! I 6 l t RLU1•1DA ( 2 l t LABEL ( 7 l 
? tiC0RI"!l tAXI?) 

LOGICAL M'-iOr-IOG 
r")l\TA. TCY/?t3tl/ 

C PI4=4PI 
Of4:ATAN!lel*l~. 

PI43=PI4/3e 
C ---- N~IV IS US~O TO ~VALUATE FLLIPTIC INTEGRAL -------

11!:liV=50 
READ15ol009lLSoLECoMOREoLA6EL 

1 q~ADC5ol000l AXtiSHAPEoiCORoi 
C AX ORIGINAL INPUT. A ORDERED AXES --------

IFCI.NEeiJl NDIV=I 
IFIISH~P~.EQ.4'-i l GO TO 610 

r ------- NC~QLA~~ !SHAPe WILL SKIP SORTING 
00 ~ 20 I= 1 t 3 
J=ICOR!Il 
IFCJeNE.0l GO TO 620 



J=T 
r ro~' r 1 = r 

5 ~0 II I I I= AX I J l 
GO TO 700 

~10 Alll=AXIll 
o\('1):AX(11 
ICORC11=1 
ICORI31=1 

100 

DO 600 1=2•3 
IFIAXIIloGToAI11l GO TO 601 
t F I A X I I I o L To A I 3 I l GO T IJ 6 0 2 
AI21=AXIll 
IC~r:?l21=t 
1';1) TO 600 

601 A(21=Aill 
ICORI21=ICORI11 
Alll=AXIIl 
I CI")R I 11 =I 
(;0 TO 600 

602 A.(?I=AI'~I 

ICORI21=!CORI31 
Al"!l=AXIII 
ICORI~I=I 

50 0 CONTINUE 
C TEST FOR SPECIAL CASE 

IFIAXIlloEOoAXI211 ICORI21=2 
IFIAI1loEQ.AI2ll ISHAPE=4HCAKE 
IF I A I 2 l • fQ • A I 3 l l IS~ APr= =4HPO LE 
!F(AilloN~.AI311 r,O TO 700 
ISHAPF=4HRALL 
ICORI31=3 

7~0 DO 10 1=1,3 
10 A2111=AIII*A!II 

DU~=SQRTI1o-A213i/A211ll 
THE~A=ASI"! I DU~~ I 
f)A~=A2111-A?I2) 

D.AC=A2 I 11-A? I~ l 
1)8C=A212l-A213l 
D.ACH=SQRT I DAC l 
IFIISHAP~.EQ.4HSALLI GO TO 4 
IFIISHAPEoEQ.4HCAKEI GO TO 5 
IFIISHAPE.EQ.4HPOLEI GOT~ 5 

C ----- TK2=K**2lTIIl=IIIllTT~I,JI=III,Jl THIS WAY RELATES TO ESHELBYS 
T'<2=DA8/DAt 
CALL ELL!PSITH~DA,~OIV,F•El 

nu~=PI4*Aill*AI21*A(~I/DACH 
Tlll=DU~/OAB*IF-El 
TI31=DUM/DSC*IA12l*DACH/Aili/AI31-El 
Tl2l=PI4-Till-TI3) 
1)0 ,2.0 1=1.2 
K =I +1 
1"!0 20 J=K•3 
TTiltJI=CT(Jl-TIIll/3o/IA21Il-A21Jll 

20 TTIJ,Il=TTII,JI . 
01'\ 1 u I= 1 , 1 
J=ICYIII 
'<=ICYIJI 
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30 TT< I • I l=PI43/A21 I >-TTl I oJl-TTI I oKl 
2 READI5ol001l GllloVIlloGI2JoVI2J 

!)0 60 I=1t6 
DO 60 J=1o6 
s<I•J>=J.o 
CIII•Jl=O.O 

60 CMIItJl=O.O 
C --- DEFAULT IS THE INHOMOGENEOUS AND MHOMOG=FALSE.--------­

'~~HO'~~OG=o=o\.LSr::-. 

IFIGI2loN~.O.l GO TO 61 
C BLANK GIINCLUSIONJ IS USE~ TO INDICATE HOMOGENEOUS CON~ITION--

61 

c 
c 

vHO.,.OG=.T~UE. 
r,(~)=r;ll) 

Vl2l=VIll 
VM=1o-VI 1l 
~=Oo5/Pl43/VM 

R=l 1o-2o*VI1l l*Oo5/PI4/VM 
T AND TT USE ORDERED AXES IAXl AS INDEXoHOWEVER S USES THE INPUT 

ORDER IAl 
c--- DEFINE S IN THE FOLLOWING ------

40 

50 

c 

65 

71 

70 
3 

1')0 40 I=1t2 
I R= I COR I I l 
RI=R*Till 
1(=I+1 
DO 40 J=Kt3 
JR=ICORIJl 
SIIRtJRl=O*A21Jl*TTIItJ)-RI 
SIJRoiRl=O*A21Il*TTIItJ)-R*TIJl 
DO 50 I= 1, 3 
I R= I COR I I l 
51 IRt IRl =O:~*A21 I l*TTI I, I l+R*TI I l 
'<:=IR+3 
J=ICYII l 
"'l=ICYIJl 
SIKoKJ=O*IA21Jl+A21Mli*TTIJ,MJ+R*ITIJl+TIMll 

-------5 D~FtNITION ENI') 
--------DEFINE CIINCLUSIONI AND CI~ATRIXJ-------'0 65 I=1t2 

R l JMO A I I l = 2 • .:i*G I I l *VI I l II 1.-2. O*V I I l l 
DO 70 1=1o3 
!)0 70 J=1o3 
IFIIoEOoJl GO TO 71 
CIIItJl=PLU~DAI2l 
CMIItJl=RLUMDA11l 
GO TO 7'J 
CIIIoil=RLU~DAI2l+2.0*GI2l 
CMIIoll=RLUMDAill+2o0*Gill 
K =1+3 
CIIK•Kl=GI2l 
CMIK•Kl=Gill 
CONTINUE 
~EADI5tl001l EI 
WqiTEI6o1002lAX 
WRITE I 6 • l::l J3 l G I 1 l • VI 1 l oG I 2 l , VI 2 l 
IFILS.NEo1H JwRITEI6o1004) IISIItJloJ=lt3lol=lo3ltiSIIoll•l=4o61 
WRITEI6olOJ5J El 
!FI~HOMOGJ GO TO 150 
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<": ------ Tl.l': !:"QUIV6.LENT INCLUSION ~~I"THOD ------
CALL MTPLICI•~ItETt6o6oll 

C ------ THE FOLLOWING USE THE FISH LI~E PATTERN OF C S AND S ------­
')0 80 I=lt'3 

qO 
~0 

15() 
IP 
~ao 

c 

c--
4 

410 
4::>0 

. ., 

6 

1)0 80 J=lo3 
I')UII.I=O.O 
DO 90 K=1•3 
I)UM=DUM+ICIIIoKJ-CMIItKll*SIKtJ) 
AAITtJI=I')!JV+(!VII•J) 
CALL GAUSSIAAt~Tt~t6l 

DO 100 I=4t6 
E T I I-1 =E T I I I I I I C I I I • I 1-CM I Y, I I I *S I I ti I +CM I It I I I 
W~ITE16•10061 ET 
GO TO 200 
Dl') 110 1=1.•6 
ETIII=EIIIJ 
IFILEC.EQ.!H l GO TO 201 
CALL MTPLIS•ET.~B,6o6tll 
WRITEC6tll001bS 
DO 210 I=it6 
SCitl!=SCitii-le 
CALL MTPLCS•ET,BB•6•6•11 
CALL vTPL(CMo89oET•6•6•ll 

----- ET IS ~OW THE STRESS -------
'.IIQITEI6tlJ071 ~T 
CALL vTPLIEioEToEMGt1t6t1l 
F:NG=-O•';*~NG 
WRITEC6o10081 ENG 
W~ITE<6•10t01 LABEL 
READI";tl0091LStLEC• MORE•LABEL 
IFCEOFC51.NE.O.Ol STOP 
IFI~OREeEO.lHAI GO TO 1 
JF(VOREeFO.lHG) GO T0.2 
IFC~ORE .~F.1HFISTOO 

no '20 I=!•6 
SIItii=SIIoll+!• 
GO TO 3 

FOR SPHERE 
E=Ol415eiA;?(J) 
F=EI3. 
1)0 400 1=1·3 
T(.JI=PI43 
TTCI.Y!=F 
')/') 41J J=1o3 
IFCieEQeJI GO TO 410 
TTCioJI=F 
CONTINUE 
CONTINUE 
G0 TO 2 
E=014*0•~*Alll*AC3liDACIDACH 
IFCISHAPE.E0e4HPOLEI GO TO 6 
F=AI3J1Aill 
TCli=E*Aili*IACOSIFI-FIACl!*DACHI 
1=3 
GO TO 560 
I =1 
F =AI 1 ) I A I 3 I 

.~ 



1::JO.:i 
1001 
1.;Jz 

1003 

1004 

10-'6 
10J7 
10v8 
1009 
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THE~A=ALOGIF+DACH/AI3ll 
Tl2l=E*AI3l*IF/AI3l*DACH-THEDAl 
J=ICYIII 
I(=ICYIJl 
TIIl=PI4-TIJl-TIJl 
TIKl=TIJ) 
TTIItJ):ITIJl-TIIJl/3e/IA?IIl-A'IJll 
TTIJtll=TTIItJ) 
TTl I tKl=TTI I ,J) 
TTl'<• I l=TTI I tJl 
TTIJtKl=IPI43/A21Jl-TTIItJll*J.25 
TT!KtJl=TTIJtKl 
TTIJ•Jl=TTIJtKl*3• 
TTIKt'<l=TT(J,JJ 
TTl I' I l=PI43/A21 I )-TTl I tJl-TTI I oJI 
GO TO 2 
FO~~ATI3FlueOo1XoA4t415l 
FOR :-1 AT I 8 Flu • 0 l 
~ORMATI1Xo51H***** NE~ SETS OF DATA ****************************I 

llXt*THE LENGTH OF THE SEMI-AXES ARE•o3Fl6.81 
FORMATI3Xt*THE ISOTROPIC ELASTIC CONSTANTS A~E AS FOLLOWS*/3Xo*MUI 

lMTXl = *t1PE18.8•* NUC~TXJ = *oOPFl0.7o* MUCINCI = *t1PE18.8o* 
Z~UIINCI = *•~~Fl0e7//l 
FO~·~ATI~Xo*T~E S TENSO~ IS AS F~LLOWS9*/311XtlP3El8e9//},~4XoE18e8 

1//73XtEl8•8//91X•E18•8//I 
FORMATI38Xt2HE1ol4Xt2HE2ol4Xt2HE3tl3Xo3HR23tl3Xo3HRl3ol3Xt3HRl2/3X 

lo*TRUE TRANSFORMATION STRAIN = *tlP6El6.6//l 
FO~~ATI3Xo*EOUIVALENT TRANSFOR~ATION STRAIN = *130XolP6El6e6//l 
~ORMATI3Xo*THE STRESS INSIDE THE INCLUSION IS */30XtlP6El6.6//l 
FOR~ATI3Xo*THE ENERGY IS *•lPEl8e9///l 
~0~~ATI2Alo2XtAlt7Al01 

ltOJ ~OR~ATI~Xo*THE CONSTRAINED STRAIN IN INCLUSION= */30XolP6El6e6//l 
tJlJ ~o~~ATI* ---- THE ABOVE CALCULATION IS FOR LABEL9*/1Xt7Al0///l 

END 
SUBROUTINE ELLIPSIXUtNoFoEI 
cov~~ON /I~HIT'<Z 

C ---- ~ = ELLIPTIC INTEGRAL OF TH~ FIRST KIND) E=2ND KIND --------­
LOGICAL I::>X 

r 
c 

~INTISNX?l=S0qTile-T'<Z*SNX?I 

N IS TH~ SECTION NUM9ER AND SHOULD 3E EVEN 
IDX TRUE X4 , FALSE X2 -----­

IFI~·NEoN/2*21 N=N+l 
N~=N-1 

H=XU/FLOATINI 
I)UV=SINIXIJI 
DU'-1=DUV*DU'-1 
r)U'..,=EINTI')U\11 
l='=l.+I')UV 
~ = 1 • + l • /I)U \1 

X=O.O 
IDX=.TR.UE. 
DO 1 v I= 1 • N~ 
X=X+H 
~uv:SINIXI 

')IJV=DUM*')UV 
')UM=EIMTII")UMI 
I F I I D X I GO T (') 1 
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E=E+2•*~U'-1 
F=F+2.1DJ~ 

I OX= • TRUE. 
GO TO 10 
E=E+4.*!)UV 
F=F+4./f)UV 
IDX=•FALS=:. 
CO!'ITI NUE 
H3=Ht3• 
E=E*H3 
F=F*H3 
RETUR"' 
C'N') 
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SUBROUTIN~ MTPl!AtBtCtLtMtNl 
DIMENSION A(L,~ltB!M,NloC!LtNl 

C C=AB 
DO 10 I=ltL 

'1)0 10 J=ltN 
x=o.o 
')0 20 K=ltl-1 

20 X=X+AIIoKl*g!KoJl 
C<T•Jl=X 

lu CCNT.II\Iu=: 
RETURN 
EIIID 
SUBROUTINE GAUSSIAt9tN~Q,NDMl 

C GAUSS ELI~INATION ----------
~IM=:NSIO~ A(I\I0MtN0V),g(~DV) 

DO 400 N=loN=:Q 
BINJ=B!NJ/AIN•Nl 
IFINeEO•NEQl GO TO 500 
NL="'+l 
DO 300 J=NLtNEQ 

~0~ AI"'•Jl=A<N•~l/A!Nt"'l 
00 400 I=NL•"'EQ 
9 I I l =B< I l-A( I t"'l*B(N l 
:">0 400 J="'L•NEI') 

400 A!ItJl=A!IoJl-AIIoNl*A!NtJl 
500 1\ll =~! 

1\1=1\!-1 
IF!N.=:a.Ol RETURN 
DO 600 J=NLtNEQ 

600 B!Nl=31Nl-A(N,Jl*B<Jl 

tOO 
I 17 

GO TO 500 
E '.II) 

..•. 
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Table 1 
Isotropic Elastic Constants 

Material Young's Modulus Shear Modulus Poisson's Ratio 

E(GPa) G(GPa) 

Mg:-(c)-Zr02 192 73.7 0.302 

Ca-(c)-Zr02 149 58.4 0.279 

(m)-Zro2 244 96.5 0.265 

. (t)-Zr02 244 96.5 0.265 

:: 



.- . Material . Reference 

Mg-(c)-Zr02 Hannink 

(m)-Zro2 Hannink 

Mg- ( t) -Zr02 Hannink 

Modified 
Hannink 

(t)-Zr02 Patil and 
Subbarao 
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Table 2(a) 
Lattice Constants 

A(~) 

5.080 

5.1415 5.2056 

5.077 

5.0766 

5.0893 

c(~) 8(degree) 

5.3128 80.7 

5.183 

5.2037 

5.1752 



Material 

Mg-(c)-Zr02 
(t)-Zro2 
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Table 2(b) 
Thermal Expansion Coefficient 

6 a 1 (x10 ) 

11.49 

11.6 

6 
a 3 {x10 ) 

16.08 

... -.. 
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Table 3. The Stress-Free Strain (x1a2) 

Case+ a.R.+ System Data* eu e22 e33 e13 
-~ 

A cxz C-m a.86595 2.47244 4.24915 8.34572 
C-t H -o.as9a55 -a.059a55 2.a2756 a. 
C-t M -a.a675a -a.a675a 2.4353a a. 
C-t p a.183a7 a.183a7 1.874a2 a. 

B AXZ C-m H 4.3a253 2.51779 -1.78559 8.26297 
(LCA) C-m M 4.31272 2.52646 -2.18a44 8.24638 

C-m p 4.a491a 2.26999 -1.63528 8.25961 

BXYL ( e12) 
B (LCB) C-m H a.91a35 4.29555 -2 .a4119 -8.35a65 

C-m M a.91888 4.3a437 -a.6a39a -8.35136 
C-m p a.66643 4.a4345 -a.a5274 -8.330.47 

CXZ C-m H a.91734 2.51779 1.53a37 8.26578 
B (LCC) C-m M a.92724 2.52646 1.12232 8.24975 

C-m p a.67208 2.26999 1.68568 8.26189 

B C-t -a.a152a -a.a152a -a.64a16 a. 

+In Case A, all the precipitate-matrix interfaces are fully coher-
ent, while in Case B, the (t)-Zra2 precipitate is stress-free at the 
annealing temperature. 

+The orientation relationships are defined in Fig. 2. 
*Data indicate the data source for the lattice constants of 

{t)-Zra2: H for Hannink, m for modified Hannink, and P for Patil 
et al. 
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Table 4. Shear Energy per Unit Precipitate Volume (in MPa) 
for 1%: Shear Stress-Free Strain · 

Shape Matrix Shear S.E. S.E.(1) S.E.(2) S.E.(3) S.E.(4) 
{no twin) 

Ellipsoid Mg-(c)-Zr02 xz 5.87917 2.0796 1.28952 0.99315 0.83267 
(5.5:2.2:1) 

YZ 5.48827 2.87697 1.57579 1.19083 0~98462 

XY 12.40154 12.40154 12.40154 12.40154 12.40154 

Ca-(c)-Zr02 xz 4.92790 1.85574 1.11566 0.87616 0.73521 

Sphere Mg-(c)-Zr02 xz 8.82230 6.59681 3.57199 2.52702 2.04090 

(The data are plotted in Figs. 7a, 7b, 7c) 
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Table 5(a). Total Strain Energy+ Per Unit Precipitate 
Volume (in MPa) (ellipsoidal inclusion 5.5:2.2:1) 

:. Twinning Orientation 
plane Relationship Case 6E(no Twin) 6E (1) 6E(2) 6E(4) 

100 AXZ A 694.75 430.11 375.08 343.26 
B 670.87 412.49 358.76 327.69 

100 AYZ A 623.09 441.21 350.58 309.41 
B 598.22 420.64 332.16 291.96 

001 cxz A 534.81 270.16 215.13 183.37 
B 476.01 217.41 163.64 132.55 

001 CYZ A 526.85 344.97 254.34 213.17 
B 469.83 292.11 203.56 163.32 

010 BXY(L) A 1046 not applicable 
(Symmetry B 1015 
plane) 
(no Twinning) 

010 BXY(S) A 1110 not applicable 
(Symmetry B 1081 
plane) 
(no Twinning) 

+The values are based on modified tetragonal lattice constants meas-
ured by Hannink • The matrix is Mg-(c)-Zr02. 

• 
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Table 5(b}. Total Strain Energy Per Unit Precipitate 
Volume (in MPa} (spherical inclusion} 

Twinning Orientation 
plane Relationship Case &E &E(1) &E(2} &E(4} 

no Twinning 

"'" 

100 AXZ A 785.22 . 630.21 419.53 312.89 
or AYZ B 764.68 613.34 407.65 303.53 

001 cxz A 785.22 630.21 419.53 312.89 
or CYZ B 670.23 518.77 312.91 208.70 

010 BXY(L} 
(Symmetry or A 785.22 not applicable 
plane} BXY(S} "B 735.33 not applicable 
(no Twinning} 

• 
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Table 6. Strain Energy Per Unit Precipitate Volume (in MPa) 
Contributed by the Diagonal Stress-Free Strain 

(for Monoclinic inclusion in Cubic Matrix) 

.. • ii. Orientation 
Ediag 

Ell ipso1dal 
Ediag 

Spherical 
Relationship Case inclusion inclusion 

AXZ A 299.74 205.74 
B 272.17 167.30 

AYZ A 255.31 205.74 
B 226.10 167.30 

CXZ A 139.80 205.74 
B 76.98 72.36 

CYZ A 159.07 205.74 
B 97.41 72.36 

BXY(L) A 197.24 205.74 
B 151.28 122.58 

BXY( S) A 260.94 205.74 
B 217.56 122.58 

• 
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FIGURE CAPTIONS 

Fig. 1. Zirconia-rich portion of the phase diagram for the Zr02-Mg0 

system. 

Fig. 2. Six possible orientations of the ellipsoidal monoclinic phase 

embedded in the cubic phase. The X and Z axes are parallel to the 

longest and the shortest axes of the ellipsoid respectively. The 

X, Y, Z directions are the <100} directions in the cubic phase. 

Fig. 3-6. Finite element meshes used in the study of the strain energy 

of the twinned martensite. 

Fig. 7. The shear strain energy per unit precipitate volume per 1% 

stress-free shear strain for the ellipsoidal precipitate with as­

pect ratio 5.5:2.2:1. 

7(a) the effect of the shearing plane (for Mg-(c)-Zr02 matrix) 

7(b) the effect of the different matrices (XZ shear plane) 

7(c) the effect of the precipitate shapes (XZ shear plane). 

Fig. 8. Comparison of the total strain energies per unit precipitate 

volume of the ellipsoidal particle (5.5:2.2:1) embedded in 

Mg-(c)~Zro2 for different stress-free strains based on different 

lattice parameters for orientation relationship CXZ. 

Fig. 9. Total str-ai"n energy per unit precipitate volume for an 

ellipsoidal particle with the aspect ratio (5.5:2.2:1). 

9(a) coherent particle (Case A) 

9{b) incoherent particle (Case B). 

Fig. 10. Total strain energy per unit precipitate volume for a 

spherical particle. 

.. 
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Fig. 11. Comparison of the total strain energies between a spherical 

and an ellipsoidal incoherent particles. 

Fig. 12. The variation of the total strain energy of an ellipsoidal 

particle (5.5:2.2:1) as a function of the particle size and inter­

nal twinning. 

Fig. 13. The twin width as a function of the particle size. 

Fig. 14. Similar systems A and B with m = 2, n = 4, k = 2. 

Fig. 15. The relation between the constrained and the unconstrained 

lattice constants. 
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