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MARTENSITIC TRANSFORMATIONS IN Zr0Oj:
NUMERICAL METHODS AND APPLICATIONS
Minnger Donald Huang
Materials and Molecular Research Division
Lawrence Berkeley Laboratory
and Department of Materials Science and Mineral Engineering
University of California
Berkeley, CA 94720

ABSTRACT
Part I

The strain energy formulation for systems undergoing phase
transformations has, for the first time, been established by the finite
element method. The primary advantages-of this method over others are
the removal of limitations based on elastic isotropy or homogeneity,
and its applicability to all types of stress-free strain (including
twinning). This method has been applied to study the strain energy
changes associated with the phase transformation of a spherical in-
clusion. The result indicates that good numerical accuracy can be
obtained with a reasonably small number of elements.

Part II

The strain energy of an inhomogeneous (m)-ZrO2 precipitate
embedded in the (c)-ZrO2 matrix'has, for the first time, been deter-
mined using the finite element method. It was found that the total
strain energy can be decoupled into two parts, one contributed by the
diagonal stress free strain and the other by the shear stress free
strain. These two strain energies are additive for an isotropic sys-

tem. Twinning was found to reduce the shear strain energy and was
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thus justified as a reiaxation'mechanism.v It was found that for a
given precipitate, the orientation re]ationship which gave the minimum
strain energy changed when twinning occurred. Thus twinning can not
be neglected when making predictions based on the minimum energy
approach. The.adtive transfbrmation mode was found to be predetermined
by the precipitate shape and thus quite different from that in a larger
grained pure ZrOZ. For PSZ, the minimum strain energy is related to
the orientation relationship (OOI)mH(OOI)c, [IOO]m”[IOO]C; the lattice
correspondence LCC, and the twinning mode (001) . '

A minimum'ehergy approach was used to estimate the bounds on the
twinning boundary energy. It was found that 0.36 YT < 0.89 Jm'z.
The twin width was found to be relatively insensitive to the particle

size based on the free energy approach, consistent with the experimen-

tal observation.
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FINITE ELEMENT CALCULATIONS OF THE STRAIN ENERGY
OF TWINNED MARTENSITE (THEORY)



ABSTRACT

The strain energy formulation for systems undergoing phase
transformations has, for the first time, been established by the finite
element method. The primary advantages of this method over others are
the removal of 1imifations-based on elastic isotropy or homogeneity,
and its applicability to all types of stress—free strain (including
twinning). This method has been applied to study the strain energy
changes associated with the phase transformation of a gpherica] in-
clusion. The result indicates that good numerical accuracy can be

obtained with a reasonably small number of elements.



1. INTRODUCTION

1.1 Martensitic Transformations

Martensitic transformation is a polymorphic phase transition,

- which consists of the regular rearrangement of the crystal lattice by

a diffusionless cooperative movement of the constituent atoms. The
product phase is known as martensite. It usually exhibits specific
geometrical and kinetic characteristics. These characteristics may
differ for different materials and under different conditions, but some
common morphological, thermodynamic and kinetic features do exist.

1) The transformations are shear-like or displacive in nature.
Little diffusion or interchange of atoms is involved in the process.
This is to be contrasted to‘some diffusion-controlled solid state
transformations (such as eutectoid decomposition) in which the atoms
undergo random diffusional movements of a relatively long range nature.
Moreover, being largely diffusionless, the martensite inherits the
composition of the parent phase.

2) The transformation is accompanied by a change in shape of the
transformed region. The parameters of the macrodeformation are con-
stant for a given material. The shape change reveals itself as a
characteristic relief effect on a plane surface.

3) There exists an orientation relationship between the lattices
of the parent phase and the martensite. ‘The orientation relationship
is a constant characteristic of each material. |

4) The martensites have a regular internal structure, usually a

po]ysynthetic twin.



5) The martensite phase usually forms as a thin lenticular plate
lying along a habit plane of the parent pﬁase. The habit p]ane is
irregular in general, i.e., the Miller indices are not simple.

6) Supercooling is required for the transformation to occur.
When the supercooling is not great, only part of the specimen trans-
forms; the amount of the martensite increases with the degree of
supercooling. Thermal hysteresis effects are usually observed for
the reverse transformation. |

7) The rate of the martensite crystal growth is great
(~104 - 105 cm/sec), and displays no appreciable temperature
dependence.

8) Both athermal and isothermal transformations tan proceed in.
the same material. The nucleation rate for the former is large and
does not display any temperature dépendence. For example, martensite
_ can form even at temperatures near absolute zero. The nucleation rate
of an isothermal transformation is temperature dependent.

9) The morphology of the martensite and the temperature at which'
the transformation occurs are strongly influenced by the applied
stress.

It . is to be emphasized that the features cited above may also
appear in other phase transitions in solids. Conversely, certain
martensitic transformations do not exhibit all of the noted character-
istics. These features should not tﬁerefore:be regarded'as-necessary

or sufficient for a martensitic transformation.



1.2 Significance of the Martensitic Transformation

The martensitic tradsformation has been found in many systems

including metals and nonmeta]s.1

It has been the subject of exten-
sive research, because martensite has several important applications.
The occurrence of the martensitic transformation can drastically
change the microstructure. Also, appreciable internal stress can be
induced by the transformation strain. Hence the mechanical properties
of the material are greatly influenced. The best known examples are
the transformations that occur by quenching in the production of the
ferrous martensites. This process generates steeTs with high hardness
and other mechanical attributes. Certain martensitic transformations
occurring near an advancing crack tip in a two phase system (such as

2,3 and austenitic FeNiA]-a11oys4)

partially stabilized zirconia
have been found to enhance the fracture toughness. This‘process has
been referred to as transformation toughening. Thus the martensitic
transformation is of value for microstructural design. The advantages
are especially evident for ceramics which are inherently brittle, and
can experience order of magnitude increases in toughness.

The martensitic transformation has also been demonstrated to
contribute to the following interesting phenomena: thermoelasticity,
superelasticity and the shape memory effect.5 These effects are now
subject to intense investigation, because of their potential applica-
tions in shape-recovery devices, in heat engines and as acoustical

damping.materials.



Recently, a martensitic transformation has been found to precede
the superconducting transition in a series of superconductors with high
critical temperatures (of A-15 structure). An understanding of the
martensitic transformation will elucidate the nature of the super-
conducting transition, and may offer a potential meahs of raising
ihe critical temperature. This is most desirable for practical
superconducting materials. | |

Diffusionless phase transformations are frequentiy associated with
ferromagnetic transitions, paraelectric to ferroelectric transitions,
semiconductor to metallic transitions and, order-disorder transitions.
Development of the theory of the martensitic transformation will pro-
mote the understanding of the transitions mentioned above, and of their
technological applications.

1.3 Martensite Theories

Because of the importance and complexities of the martensitic
tfansformation, a large number of hypotheses, models and theories have
been proposed to explain the peculiarities of the transformation. The
historical evolution of the theories can be found in the review papers

6,7 The modern martensite theories may be summarized

by Christian.

as follows.
The crystallography is the most extensively developed aspect of

the martensitic transformation, as independently established by Bowles

and:Mackenzie8’9 and by Wechsler, Lieberman and Reed,lo’ll* The
models are based on an invariant plane strain assumption, which

requires that the. interface between a martensite plate and the parent



phase be an undistorted and unrotated plane. The theory is phenomeno-
logical because a postulated martensite substructure is used. Never-
theless, the model predicts the habit plane of an isolated martensite

plate with reasonable accuracy (although the predictions12

of shape
change directions are usually less satisfactory). However, as is
characteristic of most phenomenological theories, discrepancies often
exist. Typical examples ihc]ude the detection of different martensites
in the same alloy and sometimes in the same sample, and often with a
variable internal structure. Various attempts have been made to ex-
plain the scattering of the habit planes. These include the intro-

9,13 a double shear mecham'sm,la"15

duction of a dilation parameter s,
and an accommodation strain15 (in parent crystals). However, these
explanations are still phenomenological and none of them are completely
satisfactbry. In addition to its phenomenological nature, the
crystallographic theory has the following limitations. Firstly, the
theory might not be applicable to the transformation of spheroidal
precipitates with a finite number of internal twins, because the
resulting martensite is not plate-like and there is no parent-
martensite interface present in the final structure. Secondly, the
interaction of martensite plates is not considered and therefore, the
theory can not explain the spatial arrangement of the martensite within
the parent phase.

Another approach, the minimum strain energy approach, was

17 18

advocated by Khachaturyan, and used by Shibata and Ono~~ among

others, to explain the crystallography of martensite. Reasonable



success has been claimed. Yet none of these treatments have considered

the effect19

of twinning, which will chéhge the strain energy min-
imum, and shift'the}habit plane away from predicted values. Recently,
two dimensional computer simulations based on Khachaturyan's approach

have been conducted by Chen.20

Many features of the martensitic
transformation, including twinning, were successfully revealed. How-

ever, further work along similar lines is needed in order to address

‘the three dimensional character of typical martensite transformations.

As for thé thermodynamics and kinetics of the martensitic
transformation, four major theories have been.developed:38

1. The mechanism of lattice softening.21'24' According to this
approach, the martensitic transformation occurs due to the loss of
mechanical stability of the parent phase, resulting from the softening
of some generalized shear elastic constant (e.g., c' = (c11 -‘clz)/Z)
in the vicinity of the transition temperature. Mechanisms of phonon

26 and elastic spinodal decompositionza"25 have been

nucleation
proposed to explain the nucleation of martensite. Experimenfal évi-
dence of the lattice softening has been obtained in A-15 compounds,
such as V3Si, Nb3Sn'and V3Ga; and other alldys 1ike In-T1, Au-Cd,
and Ti-Ni systems etc. However, the experimental support is limited
to either second-order phase transitions or first-order transitions
with 1ittle discontinuity (transformation strain <10‘2).

2. The classical nucleation and ‘growth theory: The martensitic

transformation is treated as a first order phase transition and its

characteristics are -explained in the framework of the c]assi;a] and



nucleation and growth theory. There are two nucleation theories:

27,28 29,30 The‘forr_ner‘ correctly in-

homogeneous and heterogeneous.
dicates that the isothermal nucleation rate varies with temperature in
a C-curve fashion, increasing to a maximum with decreasing temperature
and then diminishing with further decrease in temperature. However,
the calculated activation energy is far too high to be overcome by
thermofluctuation, and the homogeneous nucleation theory can not ex-
plain the athermal transformation at temperatures in the vicinity of
absolute zero.31 |

The heterogeneous nucleation theory has employed a spectrum of
pre-existent embryos to account for the athermal transformation, but
there are quantitative difficulties (the activation energy is far too
high for the transformation to occur32) when the theory is applied
to isothermal kinetics. Additionally, the martensite embryo has never
been experimentally observed.

3. Defect assisted nucleation and growth theory: The
quantitative difficulties encountered with the classical nucleation
and growth theory have stimulated the formulation of theories that
explain the transformation peculiarities using various dislocation
mechanisms. This approach differs from the heterogeneous classical
nucleation theory by allowing a monotonically decreasing free energy31
(rather than an energy barrier). The embryos are surrounded by loops

33

of dislocations,”” and the growth of the embryo is achieved by

expansion of the dislocation loops. Therefore, a dislocation
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structure is developed during the growth process.. In the classical
theory, no such dislocation structure is assumed. Specific mechanisms

have been proposed such as: pre-existing embryos of martensite

33

surrounded by a dislocation loop, 'the migration of dislocations

31'nuc1eation by

34

into an interface to form the martensitic embryo,
cooperative faulting from groups of existing dislocations,”" and the
interaction of dislocations with the transformation train.35 How-
ever, the analysis of available experimental data conéerning the in-
fluence of the initial state on the subsequent tra_nsformation36 (such
as the development of a trusslike substructure), and the studies of

transformation in defect fkee crysta1s37

suggest that the general
features of the transformation can not be totally governed by the
defect structure.

4. Strain phase transition.38 This approach regards the
martensitic transformation as the self-development of a first order
phase transition (the so called strain transition). The theory is
based on the assumed existence of a coherent contact between phases in
heterophase systems. This coherence preservation results in the
development of the internal stress which leads to the increase in
strain energy. This strain energy increase is a function of the shape
and the substructure of the transformed region and must be minimized.

The tendency of the strain- energy increase to become less plays the

Teading role in the formation of the heterophase structure. The
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athermal and isothermal transformations are explained by the difference
in activation energy resulting from the difference in product mar-
tensite structures. This approach, however, does not exclude the
possibility of a combination with one of the other models mentioned
above.

2. THE STRAIN ENERGY OF MARTENSITE

The central idea of the martensite transformation is based on a
competition between the decrease in chemical free eﬁergy,and the
increase in the elastic strain energy during the course of the
transition. In fact, in most of the martensite theories cited above,
strain energy is considered to be the major restraining force, and is
directly related to most features of the transformation. Hence, in
order to actually apply the theories to real systems, an accurate
determination of the strain energy is required. In addition, strain
energy calculations provide a quantitative basis for evaluation of the
theories. Consider, for example, internal twinning. According to the
nucleation and growth theory (classical or defect assisted), the
martensite embryos are not twinned; twins are formed during the growth
process. Accordingly, before the twin forms, the embryos should be
thermodynamica11y favorable (i.e., the free energy change for the
formation of the embryos is negative). Twinning would occur as a

subsequent process if the twinning further reduces fhe total free
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energy* (the strain energy is reduced while the twinning surface energy
increases, and the chemical free energy remaiﬁs unchanged). Alter- -
nately, in the strain transition theory the condition that the embryd
without twins be thermodynamically stable is not required, because
twinning always occurs. However, the theory requires that the twin
structure should give a minimum total free energy'for the final
configuration.

In other areas, such as transformation tougheniné, strain energy
calculations are also very useful. For example, the strain energy
change associated with the martensitic transformation near the crack
tip is directly connected with the increase in fracture toughness. In

| ' addition, the optimal size of the second phase particle** involves
strain energy considerations.

Important as the strain energy is, the available methods to
evaluate it are not satisfactory. It is the object of the present
study to develop a general scheme to determine the strain energy of
martensite. A review of the available formulations for strain energy
calculations is given in the next section followed by the development

of the new approach.

*The final size of the martensitically transformed region is unknown

-to the embryo. Hence, the twin structure that minimizes the free
energy in the embryo -does not gquarantee a minimum free -energy for the
final configuration. This situation arises because the strain energy
is sensitive to the twin width and to the aspect ratio of the marten-
site crystal, both of which+can change as the “transformation progresses.

**The toughness depends upon size, with a peak toughnéss occurring at
an optimum particle.size.
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2.1 Strain Energy Formulations

In the most general sense, the evaluation of the strain energy of
twinned martensite should allow (1) the elastic constants of the
particle and matrix to be anisotropic* and inhomogeneous,** (2) the
stress-free strain to be arbitrary, (3) thé particle shape to be
arbitrary, (4) twins to have twin related elastic constants (i.e.,
e]astic non-unifgrmity exiéts within the particle) and stress-free
strains, and (5) interaction between the transformation induced
stresses and the applied stress. None of the presently available
formulations satisfy the aforementioned conditfons. The principal
difficulties arise because analytic formulations are incapable of
allowing the twins to have anisotropic twin related elastic constants,
while pure numerical formulations are not available. A review of the
available procedures indicates the following limitations.

There are two basic formulations: one in real space and the other

39

in reciprocal space. The former was established by Eshelby. He

*The elastic constants are isotropic if their values at any given
point in the domain under consideration are independent of the refer-
ence coordinate frame; otherwise, they are anisotropic. The isotropic
elastic constants have two independent parameters. The anisotropic
constants can have from three to twenty-one independent parameters,
depending on the crystal symmetry.

**In general the elastic constants are considered to be homogeneous

if they do not vary over the domain; otherwise, they are inhomogeneous.
However, in common with prior literature on this topic, elastic in-
homogeneity is used herein to indicate that the inclusion and the
matrix have different elastic constants. The term elastic non-
uniformity will be used to describe the case in which the elastic
constants vary within the inclusion or in the matrix.
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successfully solved the problem of an isotropic matrix containing an
jsotropic ellipsoidal inclusion which undergoes (in the absence of its
surroundings), a un%form transformation strain. His pfocedure com-
prised a simple set of imaginary cutting, straining, welding and
re]axation'operations. Elastic inhomogeneity was nicely treated by
employing an equivalent inclusion concept (for details see Appendix A).

Kinoshita and Mura40

extended the problem to the case of
inclusions in anisotropic media and thus satisfied the conditions of
both elastic anisotropy and elastic inhomogeneity for the ellipsoidal
inclusion. The Kinoshita and Mura treatment also applies to inclusion
of arbitrary shape under the assumption of elastic homogeneity. How-
ever, remova] of the elastic homogeneity requirement by using the
equivalent inclusion concept restricts the analysis to e11ip§oida1
shapes. The restriction arises because, for arbitrary shapes, the
stress within the inclusion is not necessarily uniform, and the
equivalent inclusion does not exist.

These solutions are of limited merit for martensite calculations,
because most martensites contain twins (or variants) and hence, the
stress-free strains are non-uniform. Solutions that permit periodic
stress-free strains are required for typical martensite transforma-
tions. Much effort has been devoted to the removal of the uniform

41

stress-free strain requirements. Sendeckj ~ solved the isotropic

inclusion problem for a linearly distributed stress—free strain; while
42

Asaro and Barnett’™ obtained the solution for a poiynomial stress-
free strain in an anjébtrOpiC:matrix. Subsequently, Mura, Mori, and

Kato43 established.a formulation for evaluating.the strain energy of
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a uniformly anisotropic ellipsoidal inclusion with a periodically
distributed stress-free strain, embedded in a matrix of the same
anisotropic elastic constants. The solution for an inclusion with an
arbitrary transformation strain can then be obfained by expressing the
strain in terms of a Fourier series (or integral) and employing super-
position procedures. Application of the equivalent inclusion method
to the non-uniform-stress-free strain solution in order to remove the
homogeneity requirement is described in Appendix A. However, extensive
numerical effort is needed to establish and solve the simultaneous
equations, and thus to determine the equivalent stress-free strain.
Additionally, the Mura et al. treatment can not be applied to twinned
martensite without restriction. The limitation arises because of the
elastic uniformity requirement. For an anisotropic inclusion, the
twins have different elastic constants (except in special cases when
the elastic stiffness constants possess mirror symmetry with respect
to the twinning plane (for details see Appendix B). Hence, the con-

- dition of elastic unformity within the inclusion is not generally
satisfied for an anisotropic inclusion.

The reciprocal space formulation was established by

Khachaturyan.”’44

It applies to the transformation of inclusions
(with uniform transformation strain) of arbitrary shape embedded in an
anisotropic matrix under the assumption of elastic homogeneity. The
Khachaturyan approach has the advantages that many inclusions are
allowed and that the inclusion shape can be arbitrary. Thus, the twin

related stress-free strains needed to analyze twinned martensite can
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be considered by regarding each twin as a single entity. However, the

‘Kachaturyan approach has -the limitation that elastic homogeneity is

required. Thus, even by considering each twin as a single inclusion,.
the tWin related elastic constants can not be incorporated.

In summary, in the case of a uniform transformation strain, the
real space formulation is limited by the assumption of an ellipsoidal
inclusion shape; while the reciprocal space formulation is restricted
by the elastic homogeneity requirement. In the case 6f twinned
martensite, an additional restriction of elastic isotropy is required
in either formulation.

In addition to these restrictions,}extensive numerical effort is
generally.needed to obtain solutions using the above procedures.
Analytic results can only be obtained for the éimp]e cases of a uniform
transformation strain and either an isotropic ellipsoidal inclusion
(real space formulation) or ah anisotropic plate 1nc]usidn'(reciproca1
space formulation). This has prompted us to develop a purely numerical
scheme, which is not subject to the above restrictions.

2.2 The Finite Element Formﬁ]ation

2.2.1 Introduction

The finite element method?>~%7 is a general discretization
procedure for solving continuum problems, posed by mathematically
defined statements. This method has been successfully applied to
problems in many fields, such as linear elasticity, non]ineak'e]as-
ticity, plasticity, creep, fluid dynamics, diffusion, heat conduction,

and electromagnetism. There are various finite element formulations.
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A displacement formulation, most popular in linear elasticity, will be
used in the present study. The displacement approach comprises the
following basic precepts.

1. The continuum is regarded as an assembly of a finite number
of elements separated by imaginary lines or surfaces.

2. The elements are interconnected at a discrete number of nodal
points situated on their boundary. The displacements of these nodal
points will be the basic unknown parameters of the problem.

3. A mathematica] equation in integra] form is established from
the constitutive differential equations and boundary conditions either
by determining the variational functional for which stationary form is

sought or by the method of weighted residuals.45’48

49 are assumed for each

4, Llocally défined shape functions
element, through which the stress and strain in each element are
related to the unknown nodal displaceménts.

5. Integrations of the constitutive integra1 equation are
‘evaluated at the element level, and the governing equilibrium equations
of the nodal displacements are established.
| 6. The solution of the governing equilibrium equation gives the
nodal displacement, and then the stress and strain for the continuum
are determined.

A finite element formulation for solving elasticity problems with
an initial strain_ {(which makes transformation problems 0 specﬁa1) has

50

already been established, in principle. However, its major
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application (as implanted in most finite element computer programs such
as SAP IVSI) has been limited to thermal stress analysis. The
potential application to phase transformation problems has not been
realized, and an adequate strain energy formulation has not been
devised (perhaps because the strain energy is not of interest in

thermal analysis). In the following section, the governing equilibrium
equations wf]] be established for a system involving a phase trans-
formation under external loads. A comparison with Esﬁe]by's treatment
will be given. Finally, the.strain energy formulation will be
developed.

2.2.2 The Phase Transformation Problem

The elastic phase transformation problem is characterized by a
non-zero initial strain, which can be a thermal strain, a plastic
strain, a transformation strain, oﬂ/any combination of these. The
initial strain (which is the strain experienced in the absence of |
matrix constraint and when no external force is applied) will be called

39 52

the stress-free strain, after Eshelby”” and Robinson. For a

linear system, the stress-strain relation can be expressed as follows:
s =C. . (e - eo ) (1)
ij igk1Y7k1 k1 .

where 1 is the strain (with the unstrained matrix as the

‘zero=strain state), -and eﬁ] is the stress-free strain. (Note,

this can be regarded as- the definition of stress—free strain).
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In Eshelby's treatment of cutting, straining, welding and relax-—

39 a surface force of the magnitude °ij"j =

Cijk]eﬁlnj; must be applied to the interface (as an imaginary load)

ation operations,

during the relaxation operation. In the finite element formulation,
however, the imaginary force term will emerge naturally from the
analysis.

The finite element fofmu]ation is established following the
procedure outlined in Section 2.2.1, and adopting the notation summar-
ized in Appendix C. The continuum is subdivided into elements, with N
nodes per element. The increase in internal strain energy of the
system will be given in accord with the variational principle, by the
potential energy of the external loads. Hence, for an arbitrary

variation in strain &, the strain energy change is given by:
/GeTch - [sudev +/UTtdS + T oAl (2)

where ¢ is the engineering strain array, eT = (e11 €9 €33 2e23
. T
2e13 2e12), o is the stress array, ¢ = (a11 9o 033 Op3
. . T .
°13 012), U is the displacement array, U = (u1 U, U3), b is
the body force* array, bT = (b1 b2 b3), t is the surface traction¥*
1’

array, £ - (t; t, t3), f is the concentrated load* at node i,

£iT (f; f; f;), Al is the unknown nodal displacement,

*Body force, surface traction, and concentrated load are the force
per volume, per surface-area and at a given point respectively.
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eij = 1/2(an/axj + an/axi) and the superscript T stands for
vtransposition. |

The shape function which describes the spatial variation of the
displacement U within an element, in terms of the nodal displacement

A(1), is ‘assumed to be a known function H(1) such that;

Ny
0= I ayng!)
i

U=HA.
T T,T
U =AH

SUT = 6511;5; ' (3)

By definition, ¢ = LU, where L is a strain operator, which can be

expressed by the matrix,

fa/ax 0 0
0 alay 0
L = 0 0 afaz )

0 a/az é/ay'

;a/éz 0  afax;

._a./ay' a/ax '0_j ' (4)
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It follows that,

e=LlU=LHA =BA | (5)

where, Em = Lﬂm. Thus,
se! = sﬂTBT | (6)

The stress-strain relation, eqn (1), can be written in matrix notation

as:

0
o =C(c-¢ep) (7)
where °T = (e0 e° e° 2e° 2e° 2e0 ). and C_ is the elastic stiffness
Em T YR11%22%33%%23%F13%F12m =m

matrix for element m, or

°=CBA_£m3r(r)l (8)

The strain energy relation (egn (2)) can be rewritten such that the

integration is evaluated at the element level,

2 [ selav, -3 [ suToay, +3 [ sutas, +§6A(i)f(i) (9)

Hence, by substituting eqns (3), (6), and (8) into egn (9) the strain

energy becomes;



22

%:c_l_\m /(BTCBA - BIC ) dv_

. T .
=3 oy [ 7 bty + 3 aﬁzfﬂs;tdsm+25A(1) ¢ (10)
m

m 1

TJT, introduction of eqn (10)

Further, since Am = gmA, and sﬁl = 8A I

gives;

Then, because sAT is arbitrary, the governing equilibrium equation
becomes;
KA=R+RP +RS +RC =R (11)
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In this relation, K is the stiffness matrix of the element assemblage,

and the load vector R includes the effects of the element body force,

P - T

g S L LA

the surface'traction,

the concentrated load,

R = f

and the stress-free strain,.
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The B? term does not depend on the external load, and can thus be
regarded as the imaginary load due to the stress free strain. It can
be decomposed'into an imaginary surface traction and a body force by

partial integration (see Appendix D)

T

© - 23] [l 4,
m

' T, T(p O
- [T d"m]

where,
n1 0 0 0 n3 n2
N, = 0 n.2 0 n3 0 n1 ’
0 0 n3 n2 n1 0

and the ni’s'are the directional cosines of the outward normal. The
. Q . N
quantity n_c ¢ in the first term assumes the same role as the

surface traction.g-intgf, and thus is the imaginary surface traction.
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When expressed in tensor notation, the quantity n_c e

or o?j nj, which is the term used by Esh]eby.39 Similarly, the

. 0
gives C; . 1840

quantity —LTc 2 in the second term can be identified with the

imaginary body force, because it has the same effect as the body force

0

m can be expressed in tensor

. ) 0 3 o0
notation as - 5;; Cijklekl’ or - 5;; %33
42 ' ‘

b in BP. The components in -LTémg
as used by Asaro and
Barnett™™ in the case of a nonuniform stress-free strain.

It is evident, therefore, that the finite element method is a real
space approach. However, it has important advantages relative to
available real space methods. Specifically, elastic inhomogeneity
poses no restriction (since each element can have different elastic
constants),vthe stress free strain is arbitrary, and external stresses
can be imposed (through the surface traction t). When the method is
applied to twinned martensite, each twin can consist of several
elements, and the appropriate elastic constants and stress-free strains
assigned to the elements. In this way, the stresses and strains in a

twinned martensite may be determined.

2.2.3 The Strain Energy Formulation

The linear elastic strain energy is usually evaluated in accord

with the following formula:
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v :

- -

However, for transformation problems in the presence of a stress-free

strain, eqn (1) does not apply. For example, in the absence of

external forces Eshelby derived the re]ation:39
I o |
Yy

where VI is the volume of the inclusion (of arbitrary shape), and

I .

953 is the stress within the int]uSion, given by

I I 0
°j = E% Ci k(@1 - &) .

More generally, for a stress free strain, the strain energy density u

is given by
u=lc.. (e.. —e%)(e,, - e )
=7 Li5k1'%55 ~ %i3/%% T &

or in matrix notation,
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1 :f: 0o
u = '2_ UI(EI - eI)

I=1

1 1
-E(e-e) -Z-(e—eo)C(e—eo)

=% (e Ce - Ze Ce + eOCeo)*

Thus, the total strain energy is;

Ee]=fudv——f(e Ce—ZeTC "‘eCeo) dv

%—ZJ‘ (e CnE - Ze eo) de "’% feOCeodV

0
N|:>

m

T Y
ng’f dvamA-zf dV( 3

L1 aT(xa - %) + Eq

roj

or, since KA = R,

*The stiffness coefficients form a symmetric array.
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T ..
where ES is the self energy (%=./.e° CeodV) which is the total strain
energy if the matrix were rigid and Erx is the relaxation energy

(defined to be l-AT(R - 2R%). e is negative when the external load
2R R

rx
is. zero.

When'comparing_With‘Eshelby's cutting, straining, welding and
relaxation operations, the ES term can be identified with the energy
change during the straining operation, while the Erx term is the
energy change during re]éxation; there is no energy change associated
with the cutting and welding operations. |

In the case of twinned martensite in which the stress free strains

are constant within each twin, the self energy can be easily calculated

of

by ES =-%.5 .QEPV When the system is free from external load (and

I.
if we neglect gravity), R = RO,,the strain energy is given by

el =

In the above formulation, the effect of external loads is included
in the term R (the interaction of the applied strain with the trans-
formation is thus taken into account). In finite element procedures,
A, R, or 3? can be readily established. The strain energy can thus
be determined without difficulty.

2.2.4 Examples of the Finite Element Calculation

The finite element scheme described -above was implanted into the

51

existing finite element program SAP IV.”" The reliability of the

scheme was tested in a series-of examples. The .examples were

. .
L ¥
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restricted to elastic isotropy because general analytic solutions for
the strain energy of twinned martensite are not available. These
restrictions, imposed on the input data, should not be regarded as

limitations of the computer program.

1. Pure dilation of a spherical inclusion embedded in a
spherical matrix (axisymmetric element)

In the first example, the pure dilation of a spherical inclusion
embedded in a spherical matrix is considered. An analytic expression

for the strain energy is (see Appendix E)

., =2uV (e? (1+v) [1- (1I-> 19(1 - v)

el I m
where p is the shear modulus, VI the volume of the inclusion, v the
Poisson's ratio, Y] the radfus of the inclusion, Tm the radius of
the matrix, eT the unconstrained volume strain.

The iéotropy of the geometry, of the stress free strain, and of
the elastic constants, permits the strain energy to be analyzed by
considering only a small portion of the system. The finite element
mesh, shown in Fig. 1, consists of ten 4-node axisymmetric elements

51 are used to

and ten boundary elements. The boundary elements
assure the radial displacements of the points on 1ine 0B in Fig. 1 (by
1imiting their tangential displacement to zero). The ratio of the

radius of the inclusion to that of the matrix is 1:2, and the azimuthal

angle o is 10'3 rad. Other numerical data needed for the computation
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are given in Table 1. The strain energy of the system is calculated
to be 5.58 x 107 J (or 44.4 percent); this compares with an analytic
value of 5.50 x 107 J (or 43.85 percent Es)’ where E. = 4r % 107 J.

The deviation is less than 1.5 perceht,

2. Pure dilation of a spherical inclusion embedded in a
spherical matrix (3D brick element)

The seéond example (Ex. 2a) deals with the same dilational
problem, except for the choice of the finite element and the size of
the inclusion. Three-dimensional brick elements are used in order to
evaluate their performance. This exercise is conducted because three
dimensional elements are needed for the solution of twinned martensite
problems, by virtue of the lack of axisymmetry. Due to symmetry con-
siderations, only 1/8 of the sphere is analyzed. The mesh is given in
Fig. 2. Thirteen three dimensional 20 node elements are used. The
elastic energy is calculated to be 1.666 x 108 J (or 33.14 percent
Eg» where E. = 167 X 107 J). Comparison with the analytic value of
1.662 x 108 J (or 33.07 perceﬁt ES), indicates a deviation of less
than 0.22 percent.

In anothér example (Ex. 2b) the capability of the finite element
‘approach to handle problems involving elastic inhomogeneity was ex-
amiﬁed-for the same stress free strain using the same mesh. As shoWn
in Table 1, both the shear moduli and the Poisson's ratio are different
for the inclusion -and for the matrix. The matrix is extremely soft
compared to the inclusion (K. /K, = 0.025, where K and K ‘are

L
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bulk moduli of the matrix and the inclusion respectively); hence,
appreciable re]akation occurs. An analytic solution is given in
Appendix E, eqn (E-9). The strain energy is 1.207 x 107 J (2.401
percent Es’ where ES is the same as in Ex. 2a). The finite element
result gave 1.209 x 107 3 (2.406 percent Es), a deviation from the
analytic value of less than 0.2 percent. This represents a crucial
test, because the strain eﬁergy is in the range of numerical error fdr
a general numerical analysis. The capability of the finite element
method is thus confirmed.

3. Spherical inclusion undergoing martensitic transformation

The third example considered is the martensitic transformation of
a spherical inc]usibn embedded in an infinite matrix. The only non-
zero transformation strain is 713, assumed to be 1 percent. In
Ex. 3a no twinning is considered, but in Ex. 3b, one twin pair is in-
cluded in the product phase. The numerical data, listed on Table 1,

are identical to those used by Mura43

et al. The infinite matrix is
approximated by a spherical matrix with radius five times that of the
inclusion. Thirteen 20-node elements are used. The mesh is similar
to that used in Ex. 2 except that the boundary conditions are dif-
ferent. Example 3a (no twinning) and Ex. 3b (one twin pair) also
differ only in the boundary condition on the xy plane. For Ex. 3a,
the strain energy, 0.521 Es’ which deviates from the analytic value
(7-5 v)/15/(1 - v) Eg, by 2.31 percent, where £ = (1/2) u (y5)% V =
27/3 x 107 J. For Ex. 3b, the strain energy is determined as Of413

ES, which compares with Mura's value of 0.365 ES. Successive
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calculations, denotéd as Ex. 3c (no twinning) and Ex. 3d (twinning),
with further mesh subdivisions (using 19 elements), indicate respective
strain energies of 0.533 ES (only 0.013 percent from the analytic'
value) and 0.400 ES‘(83 percent above Mura's result).
3. CONCLUSION

A strain energy formulation by the finite element method has been
established. It can be implanted into existing finite element computer
programs with 1ittle effort. The primary advantages of this method
are the removal of limitations based on elastic isotropy of homo-
geneity, and its applicability to all types of stress-free strain
(including twinning). Good numerical accuracy can be obtained with a
reasonable number of elements. rHowever, for the same mesh, the accur-.
acy varies with the stress—free strain. Hence, for each case it is

important to subdivide the mesh in order to test the convergence.
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Appendix A: The Equivalent Inclusion Method

1. Ellipsoid with Uniform Transformation Strain

The concept of the equivalent inclusion was first introduced by

Eshe]by39

to solve the transformation problem involving elastic
inhomogeneity. Although his method was proposed for an isotropic
matrix, the concept also applies to the most general anisotropic case.
This methbd is an essential one for solving the transformation problem,
because all analytic formulations are derived under the assumption of
elastic homogeneity. The basic idea of Eshelby's method is that the
true inclusion (with elastic constants C:jk] and stress-free strain

*
eij) is replaced by an equivalent inclusion with the same elastic

constants Cijk] as the matrix, and an equivalent stress-free strain

egj, selected such that the usual analytic solution can be applied.
However, displacement and stress continuity across the interface of
the true inclusion and the matrix must be satisfied. This is achieved
by requiring that the stresses within the true and the equivalent in-
clusions be identical. Thus the equivalent inclusion exists if the

following equation has a solution
c T * c *
Cisk1(ek1 — &k1) = Cijealecy - eq)
or, by rearrangement of the terms,

T *

* _ c ] * /
(Cisk1 = Cisk) &1 ¥ Cizkitkr = Ciga%a (A-1)
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For an ellipsoidal inclusion with a uniform stress-free strain eI],

40

Kinoshita and Mura™™ have shown that, under homogeneity conditions,

the constrained strain eE] is also uniform, and symbolically, is

related to eI] as follows.

c T
&5 = 3i5k1%1

(A-2)

where sijk]'s are functions of the elastic constants and the geometric

shape, but independent of eI] and of location. By substituting

(A-2) into (A-1), we have

* T .. T _*
(Ci5k1 = Cigk1) Skamn®an * Cigkick1 = Cijki%k (A-3)

Eqn (A-3) represents 6 simultaneous algebraic equations with 6 unknowns

T

(te), and can be solved for the equivalent stress free strain eij'

2. Disc Martensite with a Periodic Transformation Strain .
].43

Mura et a applied the equivalent inclusion method to solve
the transformation problem of a twinned martensite disc. They ex-
pressed the true and the equivalent stress-free strain in the form of

a Fourier Series.

e:j(x) = é:j(O) + g;;é:j(n) cos(2wnx/x)
te(x) = e:;(o) + }E%e:;(n) cos(2xnx/a)
n:
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where A is the period of the alternating twins. They arrived at a set

. ek
of equations to solve for eij(n)

oo

J%
Cpqik 1kmn(0) e ( ) - eik(o) cpqik» ;é; 1kmn(J) e ( )
- :E: e::(J) cos(2wJdx/a)
J=1
* _* %* =
= Cpqik 1kmn(0) e ( ) - eik(o) Cpqik gé; 1kmn(J) e ( )

(A-4)

:E% k(J) COS(ZnJX/A)

(for details of S;,._ (j), see eqn (43) in ref. 43).

ikmn
k% _* _*
Mura et al. assumed that eik(O) = eik(O), where eik(O) are
chosen so that "all of the stresses produced by it vanish." Thus they
claimed that the first terms in the left and right side of egn (A—4)

disappeared, and eqn (A-4) becomes

5 *k S .
Cpqikggé; Sikmn(J) emn(J) - ;E; eik(J) cos(2ndx/2)

(A=5)

JZ; Sien(9) e (3) - JZ; 85, (3) cos(2mdx/a)

To solve this equation, they invoked the experimental observation that
A << disc dimension; and pointed out that, in the limiting case,

1kmn(J) = 0. Thus the equation is further reduced to
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© x
pq1k :z: e1k(J) cos(2xdx/A) = Cpq1k :é; eik(J) cos(2xJdx/a)

or, since the cosine functions.are orthogonal,

: . k% * ‘ -k -

*%k .
and eik(J) can be solved.
However, in general, when the number of twins is finite,

1kmn(J) # 0. Eqn (A-5) can then be decomposed into the following:

(Cpqik pq1k J§ 1kmn(J) emn(J) =0 (A-6)
% * _
Coqik®ik (9 = Cpqik 1k(‘]) (A=7)

For each J, eqn (A-7) represents 6 equations with 6 unknowns e*:(d);
thus, e, k(J) can be solved by eqn (A-7) alone. In general, k(J)
solved from egn (A-7) can not satisfy eqn (A-6). Thus eqn (A-5) has
no solution and the equivalent inclusion does not exist. |
However, this failure is due to the_remoVa] of the first terms on

both sides of eqn (A-4) (egn 43 in their paper as can be shown

below. Rearrangement of eqn (A-4) gives;
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oo

*k ] *%
Sikmn(o) emn(o) * gg; Sikmn(J) emn(J)

*
(Cpqik - Cpqik)

+C e::(o) + :Z: e::(J) cos(2xJdx/a)
J=1

pqik

*

= Cpqik

& (0) + 3{% &5, (3) cos(2rdx/x) (A-8)

Then by the orthogonality of the cosine function, the x independent
terms on both sides of eqn (A-8) should be equal, as should the terms
containing cos(2xJdx/A) for each J.

Then eqn (A-8) can be decomposed into the following:

o~}

* *k %
(Cpqik B Cpqik) sikmn(o) emn(o) * EE; sikmn(J) emn(J)

*

**x *
* Cpqik®ik (@) = Cpqik&ik (@) (A-9)

and
* % * =%
Cogik®ik (9 = Copiktik(J)

The latter is the same as eqn (A-7), from which e::(J) for J>1
can be solved. Thus the only unknown in eqn (A-9) is e;:(o),
which can be solved without difficulty.
Thus it is evident that without assuming e;h(o) =‘E;n(o),
eqn (A-4) can be solved and the equivalent inclusion exists for the

twinned martensite disc.
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3. Ellipsoid with Non-Uniform Stress Free Strain

The equivalent inclusion method for an ellipsoid with a non-
uniform stress free strain has not been éerious]y treated. In this
section, a systematic procedure to set up the simultaneous equations
will be described.

The transformation'Of an ellipsoid with a periodic strain has been

43 under the assumption of elastic homogeneity.

solved by Mura et al.
*% :
For a periodic strain e;n(ﬁ,i) = emn(?) exp(if-;), the constrained

strain is given by

c—>-> _ > > *k - .
eij(k,x) = Sijmn(k,x,shape) emn(k) (A-10)

" . . > . > . .
where S, is a function of k, location x, and inclusion shape.

ijmn

Now suppose 375 Ay, and ag are the lengths of the semi-axes of
the ellipsoid. Then the ellipsoid can be considered to exist within
an orthorhombic region having length 2a1, width 2a2, and height 2a3.
One set of orthogonal functions for the orthorhombic region can be of the

form:

y =Y Iﬂé) ¥ (%EZ)‘y (él&)
hk1 1( a;) 2\ a,) 3\ 3,

where'Wi's are sine or cosine functions and h, k, 1 are positive
integers or zero. Due to the permutations of sine and cosine for Wl’
WZ’ and Y¥,, there are eight orthogonal functions associated with each
set of h, k, 1. Thus a general expression for the orthogonal function

s Yy With hy ks 1 >0and 1< V ¢ 8. Since ¥ ¥,¥ can be
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expressed as a linear combination of eik';, the constrained strain
corresponding to a stress free strain of the form Ti?2W3 can also be
found as a 1inearAcombination of egj(ﬁfi) given in eqn (A-10). Take
cos(rx) cos(sy) cos(tz) (where r = n/h/al, S = nk/az, and t = n]/a3

respectively) for example,
cos(rx) cos(sy) cos(tz) = Real part of 1/43exp i(rx + sy - tz)

+ exp i(-rx + sy + tz) + expi(rx - sy + tz) + exp i(rx + sy + tz)

Real Part'%{exp(ifl-§)+ exp(iF2-§)+ exp(ifé-;) + exp(iE4-;)

1}

Real Part

4
1 7T
3 ;g; exp(1kp x)‘

where

=~y
—
L]
-
-d
+
%]
(4N
[
‘-r
=2

4+ Y

>~
x$ o W ~N
i
-
-
+
7]
1
+
ﬂ
=~

Thus the constrained strain corresponding to a stress-free strain of

*
em:(hxj) COS (rX) COs (SY) Cos (tz) can be found through egn (A-10) as
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4

C ->
eij(h,k,l,x) = 1/4 Real part of :E: 1Jmn(kp,x shape) e (hk])

Thus, in general, a relation similar to eqn (A-10) can be established

: ] *k
for a stress free_stra1n emn(h,k,1,v) th]v as shown.

c (h k,1,v x) =S,

: L 23
1Jmn(h,k,1,v,x,y,z,shap¢) emn(h,k,l,v)

Eqn (A-1) still applies for the case of a nonuniform stress-free

strain. Suppose that the stress-free strain is given by

and the equivalent stress-free strain is expressed by

elj(x):Z Sk, 10v) g,

-hklv

Then, according to egqn (A-11), the constrained strain is given by

c
eij(x) :E: S1Jmn(k hyl,v,X,Y,2, shape) emn(h k,1,v)
hkiv

Substituting all the equations listed above into eqn (A-1), the

following expression obtains;
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*
(Cijst - Cijst) = Sstmn(h k,1,v,X,¥,2,Shape) e (h ky,1,v)

z : % * 2 : *
+ C" e (h,k,],V) \l, = c-- E (h,k,],V) ‘y (A-].Z)
ijst hRIv st hklv ijst HKTv st hk1v

stmn(h k,1,v,X,¥,2,shape) is a function of x,y,z and can be expressed

*
in terms of th]v’ or

(h,k,1,v,x,y,2,5hape) = :Z: Sstmn(h k,1,v,p,q,u,w,shape) ¥
pqu

stmn pquw

By substituting this equation into egn (A-12),

*
(Cijst - cijst) E;% 5%% Sstmn(h ks1,v,p,q,u,w,shape)
**k **k
emn(h’k’]’v) wpquw * cijst EE: est(h’k’]’v) th]v

hk1

* X .
= Cijst E;% g (hakaTov) ¥puqy

Then by the orthogonality of th]v, all of the coefficients of th]v

on both sides of the equation should be equal for each set of hklv, or

*Sstmn's are not defined outside the inclusion. For the purpose

of evaluating SStmn, all the Sstmn's outside the inclusion can
be defined zero. However, to improve the numerical accuracy, a
continuous variation of Sstmn's is recommended.
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* *
(CijSt - Cijst) ;g;; Sstmn(psq,usw9hsk9]sVQShape)

%% ; k% 1
. emn(pQQausw) CijSteSt(h’k’ 3V)

*  _*

= CijSteSt(h’k’]’v) . (A-;3)

This is the final form of the equations'needed to solve for the
equiva]entvstreSS free strain e::(h,k,l,v). In principle, the
number of eduations to be solved is infinite. However, when only
finite accuracy is desired, a finite set of h,k,1,v are needed, and

eqn (A-13) can be solved.
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Appendix B: Twins and Uniformity

The martensite shown in Fig. 3 contains one twin pair, i.e., grain
B is a twin of grain A. Thus the crystallographic axes in A and B
exhibit mirror symmetry with respect to the twinning plane CD. The
elastic constants of the grain A and B are the same when referenced to
their own local coordinates. However, the elastic constants are
different when referenced to a global coordinate 0, unless they possess
the same mirror symmetry. Thus the formation of the twins usually

destroys the elastic uniformity.
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Appendix C: Symbols and Notations

In the finite element method, most of the quantitfes have many
components, and.aﬁe represented by arrays. Ahﬁarray-can be a vector
or a matrix. When a quantity does not refer to any specific node, no
superscripts or subscripts are used. On the other hand, a quantity
which refers to a specific node is expressed by using the nodal number
~as a superscript. A quantfty is g]oba] if it refers to all of the
nodal points in the system,_whi]e-it is local if it refers only to oﬁe
element. Both arrays are underlined, but the local array has an
element number és a subscript. All1 of the nodes in the system are
- globally numbered. Similarly, all of the nodes associated with an
element are locally numbered. Thus a node has a unique global number
and several local numbers. The local array is related to the global
arkay by a connectivity array46 gm (or the destination array)45
which is usually omitted in the literature. It is understood that
whenever a local array is related to a global one, the connectivity
array exists whether it is explicitly shown or not.

Take for example the nodal point displacement A for the system

shown in Fig. 4

A=A ' is the nodal point displacement without
referring to any node,




45

3
A
A3 = Ag is the nodal point displacement for the
global nodal point 3.
A3
3
Aéi) is the nodal displacement for the local node i in element 2.
A is the array of nodal displacement of all the nodes in

element 2. According to Fig. 4,

=1 with 6;1) and A' defined above.

A is the array of the nodal displacement of all the nodes in the

system. For Fig. 4,
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= > > > > I
A W NN -

_gz is the connectivity array for element 2. From Fig. 4,

S

|
o o o o
o o o o
©C O O
= = B O<
- 0O O o
o =~ O o

So that A, = J, A
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Appendix D: Decomposition of 3? to Surface and Body Force Terms

According to the definition B = LH, where L is the strain

operator defined in eqn (4). BT is the transpose of B, and is
expressed by BT = LTHT, where
3 3 3
3% 0 0 0 37 3y
T 3 ) 3
L = 0 —87 0 B_Z 0 a_x
3 3 3
0 0 %2 37 3% 0

Let g stand for any of x, y, or z, then the non-zero components in LT

can be expressed as 2, Leth and p be scalars, and represent the

ag
components of HT and Ce° respectively. Now consider the integral

f‘;—q- (hp) dV. By differentiation,

5 (hp) 0V = f(— h) Pdv + fh<_ ) dv

Also, according to the divergence theorem,

fq(hp)dv-fhpn ds

where nq is the directional cosine of the outward normal. Thus,

;]
f(aqh> .Pdv_jhandS-fhaquV (D-1)

v S . v
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B_O

is defined as
ZJT f en AV
or
° =}%J; i (W) ¢ e0av
By applying eqn (D-1) for each component of 5?,

ZJ f —m—m—mr?ldsm meLT(C ) W
s

where
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Appendix E: The Strain Energy of a Spherical
Inclusion, in a Spherical Matrix, Subject to Uniform Expansion

The strain energy created bylthe uniform expansion of an
isotropic spherical inclusion in a finite spherical matrix is estab-
1ished and compared with the analytic solution of Eshelby, Ee] =
(2/91 +v)/(1- v)-u(eT)? V, for the case of an infinite matrix.

Both the homogeneous and the inhomogeneous inclusions are discussed.

1. Homogeneous Inclusion

For a spherical inclusion in an infinite matrix, Eshelby showed

that the constrained strains are given by the following expression,

e = aeT and ‘e T

ij

c

— ]
jj =8¢

where

(1t
*=E3IN\T -
2 (4 -5y
15\ 1~

stress-free volume strain =) e
m

T
mm

o
"

'eT. = deviatoric stress-free strain.

1]
For the case of a uniform expansion 'eT. ='eb. = 'a¥. =0
> i 1J 1J
while %;q;n = 3k(e€ -e’) = 3k(a - 1) e'. Hence
' 1. I T I, . <
U.lJ: U1J+§<§O’mm> Gij=k(a Ll l)e Gij =-P G.ij M (fOY‘r‘.,&)

(E-1)
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where k is the bulk modulus, ogj is the stress and PI is the hydro-

static pressure within the inclusion. The stress distribution outside

the inclusion is the same as that outside a spherical cavity subject
to internal pressure'PI,53

Q
i

oo = ¢ = (PI/Z) <%)3

OY‘Q:-'--- d.’!’e¢ = or¢:= 0 (for r > a“) . (E-Z)

where a js the radius of the cavity (or inclusion). Accdrding to eqn
(A-2), the surface traction %, on a surface, radius b, outside the

inclusion, is given by

rr

The stress distribution within r < b is unchanged if the matrix outside
the sphere r = b is removed and the surface traction T is applied on
the spherical surface. | |

The stresses within a finite matrix of radius b can be determined
by removal of the surface traction. Thus a surface traction LI 4

is .applied on the <spherical surface, leaving ‘that surface traction
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free. For elastic homogeneity, the stress distribution resulting from

the surface traction t' is simply a hydrostatic stress

ore = %20~ s = (3) )

The stress distribution associated with the transformation of a
spherical inclusion in a spherical matrix is the sum of the stresses

given in eqns (E-1), (E-2) and (E-3). The stress distribution is as

follows,
aI—oI-oI-—PII a3
brr " b'ee b es b3
forr < a
I I I 0
b% e = b%¢ ~ b%rg T
(Ll (2>3 b3 _
b%rr b 3
r
_ 3 /3
I/a b
for a<r<b ¢ b%e = b%pé =.P (B) <E;§ + %) (E-4)
0 =,0.4 =,0.4=0
\b re  bep ~ b'rg

where the subscript b is used to indicate the finite matrix with

radius b.
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To evaluate the strain energy, only the stress within the

inclusion is needed,'39

1 1T
Ee1=-2% _f b%i3%ij 4V

' 3
§ (= 2) u,(l - %) (N2 v

The ratio of the strain energy of transformation of a particle embedded

3
in the spherical matrix to that in the infinite matrix is thus ( -93),

b
2. Inhomogeneous Inclusion

According to the equivalent inclusion method, the equivalent stress-

free strain te should satisfy the following equations:
k(e - eT) = k*(ec - eT*) ' (E-5)
u('eS. = tell) = wr(eS, - tel?)

ij - Tij ij = i

. X
where K*, u*, and eI

j are the bulk modulus, shear modulus, and stress
free strain of the inclusion respectively.

For‘the case of uniform expansion, the deviatoric parts of the
strains are zero, and only eqn (E-5) has to be satisfied. Eqn (E-5)
can be rearranged as fo]idws,

T*

(k* - k) (eS) + ke = k*e (E-6)
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In the previous section, it has been shown that the stress within

a homogeneous inclusion is uniform, and

3
oI = k(1 - a) (1 - :—3)-eT - (E=7)

Since aI = k(e® - eT), we have

3
ec=[1-(1—a)<l-a—3>]eT
b _

Substituting this into eqn (E-6), we have

3
[k* + (k - k*)(1 - a)(l - %)] el = keT*
b

Thus
e =¢ge \ (E‘8)

where

| 3!
£ = [1*(9—1)(1-«)(1—%)]

0
"
el
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Substituting eqn (E-8) into eqn (E-7),

3\ 3
ol = k(1 - a)(1 - a—3> el = -PI<1 —%>
« b b

where
Pl - k(1 -a) ge™

The stress distribution for a < r < b is shown in eqn (E-4) with PI
defined above.

Then the energy is given by

' 1 I T*

3 *
=%—k(1-—a) £<1-Z—3>(eT )2y

[ 3
-5 (H) u(l - :—3-> ge™)? (E-9)
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Table 1.

Numerical data used in examples.

| T

"1 ™M uI/"M / el Y13 Ee1/Eg Ee1/Es Deviation
Exatiple  (m) (m) (GPa) V1'M (%) (%) (FEM) (%) (analytic) (%) (%)
1 1 2 50/50 0.2/0 3 0 44.38 43.75 1.5
2a 1 5 1007100 1 3 3 0 33.14 33.07 0.22
2b 1 5 100/5 %— 0.2 3 0 ' 2.406 2.401 0.20
3a 1 5 100/100 % / % 0 1 0.521 0.5333 2.31
3b 1 5 100/100 % / % 0 1 0.413 NA

twinning

3¢ 1 10 100/100 % / % 0 1 0.5333 8/15 0.013
3d 1 10 100/100 %- / % 0 1 0.400 NA

twinning

65
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

1.

2.

Axisymmetric finite element mesh used in the analysis of the

| pure dilation of a spherical inclusion (example 1).
" Three dimensional finite element mesh used for the studies

-of the pure dilation, pure shear and twinning of a spherical

inclusion (examples 2 and 3).
A twinned martensite exhibiting nonuniform elastic
properties.

Nodes and elements in a finite element mesh.
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Fig. 3
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PART II

STRAIN ENERGY OF TWINNED ZrO, MARTENSITE
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ABSTRACT

The strain energy of an inhomogeneous (m)—ZrO2 precipitate
embedded in the (c)-ZrO2 matrix has, for the first time, been deter-
mined using the finite element method. It was found that the total
strain energy can be decoupled into two parts, one contributed by the
diagonal stress free strain and the other by the shear stress free
stfain. These two strain energies are additive for'an isotropic sys--
tém. Twinning was found to reduce the shear strain energy and was
thus justified as a relaxation mechanism. It was found that for a
given precfpitate, the orientation relationship which gave the minimum
~strain energy changed Qhen twinning occurred. Thus twinning can not
be neglected when making predicfions based on the minimum energy
approach. The active transformation mode was found to be predetermined
by the precipitate shape and thus quite different from that in a larger
grained pure Zr02. For PSZ, the minimum strain energy is related to
the orientation re]ationéhip (001)mH(001)C, [lOO]mH(lOO]Cj the lattice
correspondence LCC, and the twinning mode (001)m.

A minimum energy approach was used to estimate the bounds on the
twinning boundary energy. It was fognd that 0.36 < vy < 0.89 Jm'z.
The twin width was found to be relatively insensitive to the particle
size based on the free energy approach, consistent with the experimen-

tal observation.
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1.  INTRODUCTION

1.1. Zirconia and Transformation Toughening

The use of ceramics as structura] materials has been limited by
their inherent brittleness. In recent years, however, several toughen-
ing methods have been developed.l Among them, stable microcraék
growth and transformation toughening are two of the most promising
toughening methods. However, because of the introduction of micro-
cracks in the formef mefhod, the mechanical strength is degraded. On
the other hand, the transformation toughening method can improve the
mechanical strength due to the presence of the compressive stresses
resulting from the transformation. It thus seems that the transforma-
tion toughening method is more favorable and has been the subject of
extensiVe 1‘nve51:'igat1'on.2'g

Transformation toughening is a mechanism which enhances the frac-
ture toughness by means of a stress-induced martensitic transformation.
Systems which exhibit transformation toughening usually consjst of two
phases: e.g. precipitates of one phase embedded in the matrix of an-
other. It is the martensitic transformation of the precipitates in the
vicinity of the crack tip, induced by the stress field of the crack,
that Teads to the improvement of the fracture toughness. Two phase
systems containing Zirconia, such as: partially stablized zirconia
(PSZ), ZrO2 in alumina, and Zr0, in mullite are the typical
systems that can be toughened by transformation. The polymorphic
nature of ZrO2 is well known and has been the subject of many

studies (see Ref. 10 for a recent review). At atmospheric pres-
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2680+15°C
sure, pure zirconia exists as three modifications: melt ————
:2370°C - 1100-1200

cubic tetragonal't%%::féig;nmnoclinic. The tetragonal to mon-
0-10

oclinic transformation is martensitic

11 and accompanied by a ~5%12’13

volume strain (which is normally deleterious). However, this trans-
formation-cah'be avoided by the formation of cubic solid solution with
the stabilizing oxides, notably MgO, CaO,,YZO3 and Ce02. A zir-

conia-rich portion of the phase diagram14

for the Zr02-M90 system
is shown in Fig. 1. The cubic solution can persist to room temperature
because of the sluggish nucleation of the Mg0; this structure is known

as fully stabilized zirconia. Partially stabilized zirconia results

- when insufficient oxide solutes are added into zirconia. In this case,

precipitation of the low solute content ZrO2 phase with tetragonal
symmetry occurs.12 Larger precipitates usually transform martensi-
tically to monoclinic symmetry. The transformed particles are inter-
nally twinned. However,‘the Ms temperature decreases with decrease in
particle size and the smaller precipitates retain tetragonal sym-
metry.4’15 Thus fhe PSZ consists of precipitates of monoclinic and
tetragonal zirconia-rich phases in a matrix of the cubic solid solu-

2,3:4 jndicate that the partially stabilized zir-

tion. Experiments
conia exhibits superior mechanical properties to the fully stabilized
zirconia. Evidence has been presented to demonstrate that the retained

tetragonal phase transforms martensitically to monoclinic symmetry in

the vicinity of a stressed crack. The improvement in mechanical prop-

erties is believed to be attributed to the stress-induced transforma-

5-7,9
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1.2 The Role of Strain Energy in Transformation Toughening

1.2.1 Strain Energy and Transformation Zone

The retention of the tetfagona] phase has been recognized to
originate from the elastic constraint imposed by surrounding matrix.
The transformation is prohibited because the strain energy increase
can exceed the decrease in chemical free energy. However, under an
applied tensile stress (especially in the vicinity of a crack tip) the
constraint of the matrix can be relaxed, and the straih energy change
reduced. In the extreme case, where the applied strain is larger than
the transformation strain (e.g. near the crack tip for precipitates
with small transformation strain) the strain energy decreases after
transformation. Thus near the crack tip, there will be a region where
transformation is energetically favorable i.e. the total change in the
strain energy and the chemical free energy is negative. This region
constitutes a transformation zone (in the case of many precipitates,
some precipitates within this region may not be transformed because of
the orientation dependence of the strain energy and interaction be-
tween precipitates). Since the transformation zone size is a key
parameter in the fracture analysis, strain energy evaluation is indis-

pensable in understanding the toughening mechanism.

1.2.2 Strain Energy and Optimal Size for Toughening

For the partially stabilized zirconia, thé optimal fracture tough-~
ness” is obtained when tetragonal precipitates of a size near the
critical size are fabricated. Thus it is important to know the criti-

cal size. Although the strain energy has been regarded as the major
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restraining force that leads to the retention of the tetragonal phase,
it alone can not exp]ain‘the size effect, because precipitates of sim-
ilar shape but different size have the same strain energy density (see
Appendix A). In addition to the strain energy, the Helmholtz free
energy change, the twinhing boundary surface energy, and the inclusion-
matrix interfacial energy all contribute to the total free energy
change. To account for the:size effect, all energy’terms need to be
considered. Mechanisms such as a size dependenf chemical free energy
chahge (due to possible compositional differencess), and surface
energy effectsl6 have been proposed.

1.2.3 Strain Energy and Transformation Toughening

In fracture mechanics,17

the fracture toughness of a given
material can be evaluated either by calculating the stress intensity
factor or by determining the energy release rate under the application
of the critical joéd, In the latter approach, the strain energy change
during a'crack_increment'needs to be analyzed. In the case of trans-
formation toughening, the situation becomes more complex because both

the transformation zone7’18 7522 are

and the strain energy change
dependent on the applied stress. The fracture toughness can be evalu-~
ated if this critical applied stress is known. This stress is a func-
.fion of the transformation strain, the chemical free energy change in-
- volved in transformation, and the precipitate size and spatial distri-
bution. Currently, only limited information is available concerning

these variables. Nevertheless the strain energy calculation provides

‘the essential links between the transformation zone 'size, -appiied
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stress, and the transformation strain, and can be used to place bounds
on the problem and to elucidate theoretical concepts.

In the 1iterature5’7’9’16 the strain energy calculations have
been limited to the case in which the transformed particles do not
have internal twinning. Since internal twinning is a]most invariably
observed it must be included in the strain energy analysis. In the
following, the finite element method is used to determine the strain
energy, with emphasis on the existence of internal twinning. The size
effect is then studied.

2.  STRAIN ENERGY CALCULATIONS

The strain energy change involved in a martensitic transformation
depends on several variables: the elastic constants of the precipitates
and the matrix, the stress free strain of the transformation, the in-
ternal structure after transformation (e.g. number of twin pairs), the
shape of the precipitates, the orientation relationship, and the ap-
plied stress. To study the effect of size on the retention of the
tetragonal phase, the applied stress is set to zero. The respective
choices of the remaining variables are considered in the following
(for convenience, the monoclinic, tetragonal, and cubic zirconia solid
solution will be referred as (m)—ZrOZ, (t)—ZrOz. and (c)—ZrOé,
respectively).

2.1 Elastic Constants

The anisotropic stiffness coefficients of either (m)-Zer, or
(t)-ZrOz, or (c)-ZrO2 are not available; thus, isotropic elastic

constants are used. Table 1 gives the values of the elastic constants
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used in the calculation. Two matrices are considered: Mg-(c)-ZrO2

and Ca-(c)-ZrOz. The magnesia doped cubic so]id'solutiqn has the
higher value of Young's modu]us.lg’20 Additiona]]y, the monoclinic
phase21 has a higher Young's modulus than the cubic matrix. No data
for the tetragonal phase are available at room temperature; hence, the
elastic constants are assumed to be the same as those of the monoclinic
phase. (Since the strain ehergy associated with the tetragdna] pre-
cipitate in the cubic matrix is relatively small, this assumption
introduces a minor error).

2.2 The Stress-Free Strain

Problems associated with transformations were first successfully

22 In his anaTysis, the stress-free strain was

treated by Eshelby.
used as the transformation strain based on the assumption that the
transformed region was stress-free in the matrix before the phase
fransitionf In the case of PSZ, this assumptioh does not apply (as
exemplified by strain.fringes observed around retained tetragonal pre-

12’15). Hence, in.this study, the stress-free strain and

cipitates
the transformation strain are not considered to be identical. Specif-
ically, the transformation strain is used to describe the dimensional
change'cadsed by the transformation in the absence of thé constraint
of the matrix, while the stress-free strain arises when two materials
with different stress-free states are joined. together. In general,
the stress-free state of the matrix is used as the reference state,

and a nonzero stress-free strain is assigned to the inclusions or the

precipitates. For PSZ, the (t)-Ir0, ang (m)-Zr0, have different non-
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zero stress~free strains with respect to the (c)--ZrO2 matrix. The
difference is the tetragonal to monoclinic trahsformation strain. The
stress-free strain of an inclusion in the matrix is determined by the
dimensional change between a stress-free inclusion and the hole left
behind in the matrix after the imaginary removal of the inclusion.

The dimension of the former depends on the 1atti¢e parameters, the
number of unit cells, and their spatial arrangement. The volume of
the latter can be determined by the lattice parameters of the matrix
and the number of matrix unit cells that will fill the hole. The
ratio of the number of matrix unit cells to the number of inclusion
unit cells is related to the coherency of the interface. The spatial
arrangement of the unit cells is reflected in the internal structure
(such as dislocations, internal twinning etc.), and the orientation
relationship. Thus the stress-free strain is a function of the lattice
parameters of the precipitate (after and before the transformation)

and the matrix; the precipitate-matrix boundary coherency, the lattice
correspondence in the transformation, and the orientation relationship.

2.2.1 The Lattice Constants

The lattice constants depend on composition. However, no infor-
mation on the variation of lattice constants with composition is avail-
able for any of the three phases. In this study, lattice parameters
reported by Hannink12 for the (t)—ZrO2 and (c)-ZrO2 will be used.

(The annealing temperatures used were 1420°C for Mg-PSZ, and 1300°C
for Ca-PSZ, typical of optimally fabricated PSZ). The lattice con-

stants for (m)-ZrO2 at the same composition as (t)-ZrO2 are not
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available (the same composition is desirable because, according to the
nature of the martensitic transformation, the composition is unchanged
after the transition). Thus, the lattice constants of a nearly pure

].13, are used. For comparison

(m)-ZrOz, reported by Patil et a
purposes, the lattice parameters for an essentially pure (t)—ZrOz,
reported by Patil et al., extrapolated to room temperature are also
used. In the literature, two unit cells have,been used to describe
the tetragonal phase: face centered tetragona]23 (fct) and body cen-
tered fetragonalz4 (bct). The re]ationvbetween them is as follows:
Afct = V2 Apct and Ceoy = Cpp. The fct cell is used in this study.

. The lattice parameters are given in Table 2. It has to be poihted out,
however, that the lattice constant reported by Hannink are constrained
values. The "real" values can not be measured because the tetragonal
phase is not stable without the constraint of the.matrix (except for
very tiny particles < 300 A).zsl Estimated unconstrained lattice
constants, obtained by ah iteration method (see Appendix B), are also
included in Table 2.

2.2.2 Boundary Coherency

The precipitate-matrix interface is fully coherent if the lattice
planes are continuous across fhe interface. In this case, there is a
unique correspondence between the atoms on both sides of the interface.
If dislocations exist, thé cbrrespondence between the atoms is des-
troyed, and the interface is semicoherent. In the extreme case, when

there is no correspondence, the “interface becomes incoherent.
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For a fully coherent or semicoherent interface, the ratio of the
number of unit cells in the inclusion to that in the matrix which it
replaces can be ca]cu]ated»and the stress-—free strain is then deter-

" mined. Fully coherent tetragonal and monoclinic phases in a cubfc ma-~
trix constitute case A in this study. For fully incoherent tetragonal
and monoclinic phases, the stress free strain is determined on the
premise that the tetragonal phase is stress-free at the annealing tem-
perature. The stress-free strain for the.tetragonal-matrix system at
room temperature is then just the thermal contraction mismatch strain.
Upon subsequent transformation to the monoclinic phase, an additional
transformation strain is introduced. This strain is determined from
the correspondence between the tetragonal énd the monoclinic unit cells
(which enable the transformation strain to be evaluated directly from
the lattice constants and lattice correspondence). The stress-free
strain for the monoclinic-matrix system is the sum of the thermal
strain and the transformation strain. This constitutes case B. Cases
A and B represent upper and lower bound solutions.

2.2.3 Lattice Correspondence

In a cooperative diffusionless transformation, all atoms in the
same position in a unit cell move in the same way. Thus there is lat-
tice correspondence between the phases before and after transformation.
The lattice correspondence defines the movement of the unit cell, from
which the transformation strain is determined. The tetragonal to mon-
oclinic transformation has three possible lattice correspondences, due

to the symmetry of the lattices. The c-axis in the tetragonal lattice

®
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can correspond to any of the a, b and c-axis of the monoclinic lat-
tice, and are classified as lattice correspbndences A, B, and C (sym-
bo]ica]]y LCA, LCB and LCC) respectively. The cubic to tetragbna]
transformation involves diffusion, and has no lattice correspondence.
However, in'case A, whefe atomic correspondence is imposed, lattice
correspondence can be assigned to this transformation. Because of the
lattice symmetry, there is only one lattice correspondence for the
cubic to tetragonal transformation. In this way, atoms in the mono-
clinic lattice can also be correlated to those in the cubic lattice,
and a cubic to monoclinic lattice correspondence cah be established.
There is only one cuBi; to monoclinic 1attice'correspondence due to
symmetry considerations. From this correspondence, the stresé—free
strainvinvo]ving a monoclinic phase in a cubic matrix can be deter-
mined.26 There is another approach to evaluate this stress-free |
strain in case A. The stress free sﬁrain can be evaluated as the sum
of the strains in the cubic to tetragonal and in theifetragonallto
monoclinic transformation. The deviation between these two methods is

less than 14. In this study, the former method is used.

In case B, the transformation strain is determined by the tetra- -

gonal to monoclinic lattice correspondence.

e
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2.2.4 QOrientation Re1ationship+

The orientation relationship in a tetragonal-monoclinic transfor-
mation has been determined by varioué investigators.10 Two posssible
orientation relationships can be summarized as follows:

TYPE B:  (100) I {100}
[OlO]m I [001]fCt

TYPE C: (100), I {100},
[oor], 1 L0011,

27 claimed that type B pertains for

In particular, Bansal and Heuer
transformations which occur above IOOOTC and type C applies below
IOOOfC. The orientation relationship usually suggests the lattice
correspondence, especially when the angles between lattice axes of the
two phases are small (as in the case of ZrOZ). Thus, fype B sug-
gests LCB and type C suggest LCC.

The orientation're]ationship28 between the tetragonal partici-
pates and the cubic matrix were found to be

{100} ¢ l {100}¢., and (001)¢.4

{100 ¢ | (100)¢ . and (001 ]¢.¢

The orientation relationships between the monoclinic precipitates and

the cubic matrix can be deduced from-the relations mentioned above.

*The orientation relationship describes the orientations of the in-
clusion and the matrix, which is to be compared with the lattice cor-
respondence which provides the identification of the atoms before and
after a transformation.
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However, it should be nbted that neither type B nor type C uniquely
determines the orientation relationship among a nonspheroidal mono-
clinic precipitate and the cubic matrix because there are two

equivalent (100)fct in a tetragonal lattice. Since no pertinent data

"

are available, both orientations are used in the calculation. Six
orientation relationships between the.(m)-erO2 and the (c)-Zr‘O2
are possible for an ellipsoidal pfecipitate, as shown in Fig. 2.
These six 0.R.'s are considered jn this study.

2.2.5 The Stress-Free Strain

Given the lattice parameters, the lattice correspondence, and
assuming full coherency, the stress-free strain between two lattices
is determined by the following equat1’on26

{(Ac"B)(B"GB)(BCA) - nZ(A"GA)}[A:X] = 0
where A denotes the base vectors in the parent lattice, B those in the
product lattice, (BCA) is the correspondence array (with successive
columns referring to the basis B of the lattice vectors, CA, in the
product lattice which corresponds with the base vector A in the parent
lattice), (AC'B) is the transpose of (BCA), (B*GB) is the metric
associated with the basis B, (A*GA) is the metric associated with
basis A, n is the principal strain, and [A:X] are the principal axes.
A geometric method29 and an abproximation methods’16 are also
available in the literature.

The termal strains for case B are calculated using thermal expan-

sion data reported by Patil et aﬁ;l3.and<8urdickéetKa];30 {in the

latter, the thermal expansion coefficient of the stabilized zirconia
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(matrix) is assumed to be the same as that during the first thermal cy-
cle reported by Burdick et al. for the system ZrO2 + 15.5 mole Mg0).
A1l strains for cases A and B are listed in Table 3 for three orienta-
tion relationships. The other orientation relationships are considered
by specifying the material axes during strain energy calculations (as
an input td the computer program).

2.3 Twinning

Twinning has been recognized as a mechanism which. reduces the

27,31 1n the 1iterature,10’31’32’33 (100)

strain energy. m’ (110)m and
(lib)m twins have been observed both for the pure ZrO2 and for precipi-
tates in PSZ. The (110)m or (110)m systems have the smaller shear com-
ponent (~0.25 compared to 0.35 for (100)m twinning), and should be en-
ergetically favorable when the strain energy change completely domin-
ates the surface energy. This mode of twinning has been primarily ob-
served in severely overaged particles (>0.6 u) and will not be considered
in the present study. (100)m twinm’ng32’34 has been observed in
slightly overaged precipitates (0.25~0.5u). The traces of the twinning
planes are perpendicular fo'the shortest axis and each precipitate con-
tains only a few twins. The surface area is thus limited, and renders
(100)m a favorable twinning mode for small precipitates.+ In a

recent s_tudy,,35 (001)m twinning has also been observed. Thus the
(100),, and (001), systems will be considered in this study. The

traces of the experimenta]iy observed twinning planes are perpendicular
to the shortest axis. Taking the orientation re1ationship528:between

precipitates and matrix into consideration, the twinning plane normal

+ v .
The (OIOQm'symmetry'pianE'is:nnt a twinning plane.
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must be parallel to the shortest axis of the ellipsoidal precipitate.
The‘twinﬁing is considered herein to be limited to this case. Lattice
correspondences A and C are assigned to (100)m and (001)m twins respec- .
tiveTy, consistent with the experimental observations by Hanninklz
(i.e. Ctﬂ to the shdrtest axis (see below)).

2.4 The Shape of the Precipitate

The shape. of an intragranu]ar.Mg-(t)—ZrOZ'precipitate in a cubic
matrix can be closely approximated by an ellipsoid with its principal
axis parallel to the tetragonal lattice axes. Hanninklzvdetermined
the aspect ratio and found a;:a5:2 = 5.5:2.2:1 where the ai's are the
lengths of the principal axes. The shortest principal axis was iden-
tified to lie parallel to the Cy axis. The precipitates of the
Ca—(t)—ZrO2 are plate-like. No specific aspect ratio was reported.
Thus calculations of the strain energy of Ca0 doped precipitates have
not beeh attempted. The elaétic constant of the Ca—(c)—ZrOz is used
for the matrix simply to test the effect of the elastic inhomogeneity
on the strain energy. A spherica] precipitate is also examined to un-

derstand the variation of the strain energy with shape.

2.5 Finite Element Calculations

The finite e]emént method was developed in Part I. 1In the fol-
lowing, the additivity of the strain energy, symmetry considerations,
and the meshes used in this study are discussed.

2.5.1 Additivity of the Strain Energy

The superposition principle applies to the stress, strain and the

displacement field, but, in general, not to the strain energy.
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Eshelby?2

showed that for an isotropic inhomogeneous ellipsoidal in-
clusion with twinning, the strain energy can be separated into two
groups, one being contributed by the hydrostatic and the other by the
deviatoric stress-free strain. These two strain energies are decoupied
and additive. However, another possibility exists. The strain energy
can also be separated into one part contributed by the diagonal and the
other by the nondiagonal (i.e. the shear component) stress-free strain.
The strain energies for these two parts are also decoupled and addi-
tive. In the case of internal twfnning, the additivity of the strain
energy has not been discussed in the literature. In this study,
through the finite element calculation, it was found that the strain
energy of a twinned isotropic inhomogeneous ellipsoidal inclusion is
the sum of the strain energies contributed separately by the diagonal
and the non-diagonal part of the stress-free strain. The additivity

also applies to the twinned isotropic orthorhombic precipitate.

2.5.2 Symmetry Properties

Symmetry considerations can reduce the magnitude of the region to
be analyzed in a finite element calculation and is an important factor
with regard to the minimization of computation costs. To determine the
symmetry in a transformation problem, all of the geometry, elastic
stiffness coefficients, loading, and the stress-free étrain must be
considered. The ellipsoidal precipitate with the twinning plane par-
allel to two of the principal axes, has three symmetry planes. The
isotropic e]astic~cons?ants impose no limitation on symmetry. The ex-

ternal load is zero in this study. However the diagonal and the
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shearing components of the stress-free strains have different symmetry.
The diagonal part has three symmetry planes while the shear ﬁomponent
has two symmetry planes and one antisymmetry plane (for an integer
number of twin pairs) or one symmetry and two antisymmetry planes (for
hé]f integer numbers of twin pairs). Because of the additivity of the
strain energy, the diagonal and the shearing components can. be con-
sidered separately. In either case, only one octant.of an ellipsoid
needs to be analyzed.

2.5.3 Finite Element Mesh

According to the symmetry cbnsiderations, one-eighth of an ellip-
soidal precipitate is studied. Some of the meshes used are shown in
Figs. 3-6. Three dimensional twéhty—node brick elements are used to
describe the curved ellipsoidal surface. The infinite matrix is ap-
proximated by a finite matrix which is at least five times larger than
the size of the inclusion in any direction. For the ellipsoidal in-
clusion, the aspect ratio is set to be 5.5:2.2:1, with the longest axis
in the x direction, and shortest axis in the 2 direction. The twinning
plane, whether it is (100)m or (001)m is a]wéys parallel to the xy
plane. The‘accuracies of the meshes are estimated by comparison be-
tween those obtained by the finite element method and those by the
Eshelby approach22 for the case of no internal twinning. The devia-
tion is less than 3% in all cases.

3. RESULTS
The energies associated with the diagonal terms of the stress

‘free strains are determined by the Eshelby formulation (a computer
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prdgram based on the Eshelby approach is listed in Appendix C). The
energies contributed by the nohdiagona] terms are calculated by the
finite element method, and are given in Table 4 and plotted in Fig. ?.
The total strain energies determinéd by the formula Etot (n) =

2

+S" xE where S is the shear strain and Eshear(n)

Ediag shear(")’
is the shear energy for unit shear strain for n twin pairs, are listed
in Table 5 and plotted on Figs. 8, 9, and 10. Comparison of the total
strain energies for different stress-free strains determined by dif-

ferent lattice parameters for the orientation re]ationéhip CXZ (Fig.

8) indicates a maximum deviation of 2% for case A, and of 9% for case
B from the modified Hannink values. The following discussion is based
on the stress-free strain calculated from the modified Hannink lattice

parameters.

3.1 Influence of Twinning

From Fig. 7, it is noted that the strain energy decreases as the
number of twin pairs increases. This confirms the concept that the
twinning is a mechanism to relax and to reduce the strain energy, as
pointed out by previous investigators.27’31 The variation of the
strain energy is determined by a least square curve fitting method as

1

E..(n) = —
sh aji + b

The asymptotic shearing strain energy as n » » is zero, which is con-

sistent with physical expectations.
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3.2 Precipitate Shape Effects

Comparisoh of the diagonal strain energies between spherical and
ellipsoidal precipitates (Table 6) indicates that fhe_strain energy of
an ellipsoidal precipitate can be smaller or larger than that of a
spherical precipitate, depending on ‘the orientation relationship and
the lattice correspondence. However, the shearing strain energy of a
spherical precipitate is invariably larger than that of an ellipsoid
(Table 4). The total strain energy fof a small number-of twin pairs,
in which the shearing strain energy dominates, is lower for an ellip-
- soidal inclusion. As the number of twin pairs increases, the diagonal
strain energy dominates and the spherical precipitate may have a Tower
total strain energy (for example, in the case of LCA). The comparison

is shown in Fig. 11.

3.3 Effect of the Shearing.Plane

Suppose the longest axis of an ellipsoid is along'the x axis and
the shortest along the z axis. Without internal twinning, shearing on
the y-z plane gives the minimum energy. However, in the case of in-
ternal twinning, shearing on the x-z plane has a strain energy less
than that associated with shearing on the y-z plane. It is thus evi-
dent that neglect of the existence of internal twinning (as is the case
for most strain energy calculations in the literature) obviates effec-

tive prediction of the orientation relationships and the habit plane.
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3.4 Differences Between Transformation in Single Crystal

(Large Grained) Zr0, and Zr0, Precipitates in PSZ

The orientation relationship, (100)mll(100)fct and [Olo]mll[OOIJfct

10 5p large grained monoclinic

has been observed by most investigators
Zr02. However, this orientation relationship is enérgetica]ly un- .
favorable in PSZ. The major difference lies in the shape of the trans-
formed region. For the former, the shape of the transformed region is
probably determined by minimum energy considerations without spatial
restrictions. According to the stressfree strain data given in Table
3, a minimum energy results if the transformed region is plate-like,
and the bm (or Ct) is parallel to the plane of the plate. In the
latter, the shape of the precipitate is predetermined, and the Ct

axis is perpendicular to the plane of the plate. Thus the lattice
correspondence, orientation relationships of the tetragonal to mono-
clinic transformation and the twinning plane are predetermined. This
study indicates that lattice correspondence C (LCC), the orientation
relationship (OOl)m ﬂ(OOl)fct, [IOO]mH [100]fct, and the twinning

plane (001)m give the minimum strain energy.

3.5 The Effect of the Matrix

The shear energy for the transformation in Ca-(c)-—ZrO2 is given in
Table 4. It is noted that for a softer matrix (Ca—(c)ZrOz), the strain
energy is less. The ratios of the strain energies for a Mg-(c)-ZrO2 ma-

trix to that for a Ca-(c)-Zr0, matrix are 1.19, 1.12, and 1.16 for no

2
twins, one twin pair, and two twin pairs respectively. This result in-

dicates that the strain energy ratio for different matrices and a spec-

pe
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ified number of twin pairs can be approximated by the strain energy
ratio in the absence of twins. The strain energy contributed by the
diagonal terms of the stress-free strain can be evaluated by the
Eshelby approach (see Appendix C). Thus, for a given ihc]usion shape,
once the strain energies for a given inhomogeneity are determined for
a number of twins, the strain energy for another inhomogeneity can be
quickly estimated. This information is useful in material selection
and microstructure design.

4.  DISCUSSIGON

4.1 Bounds on the Strain Energy

The total strain energy changes for LCC and shearing on the xz
plane are plotted in Fig. 8. The energy in case A is 30% higher than
in case B, primarily because the full coherency assumption overesti-
mates the stress—free strain. The values obtained in case A are thus
regarded as an upper bound. In case B, the stress free strains in the
tetragonal precipitates are compressive, compared with a large tensile
strain in the Ct direction in case A. The difference resides from
the relatively high‘thermal expansion coefficients of the tetragonal
phase, which cause a reduction in the total stress-free strain. Case
B constitutes the lower bound. The actual strain energy is probably
closer to the lower bound, because diffusive stress relaxation can
proceed at the annealing temperature, in the presence of excess vacan-

cies formed during the pfecipitation.
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4.2 The Twin Boundary Energy

Thermodynamic considerations of martensitic transformations in-
volve considerations of the twin boundary and precipitate/matrix inter-
face energies, in addition to strain and chemical energies. The total
change in thermodynamic potential following transformation is given by:

‘AF = [ap + AE(n)]V + YrAr + By, Ap
or

(8FIV) = au + aE(n) *+ (ygA7 + v AD)/ (KVO) (1)
where AF is the total free energy change, au is the chemical free en-
ergy change per unit volume, AE(n) is the strain énergy change per
unit precipitate volume (which is a function of the number of twin
pairs, n), V is the volume of the precipitate, T is the twin bound-
ary energy per unit surface area, AT is the total twinning boundary
area, Ayp is the change in the precipitate-matrix interfacial energy,
Ap is the precipitate-matrix interface area, the superscript o in-
dicates that the value is for a reference size (for example, 1 u in
length in the longest axis), and k is a ratio of the linear precipitate
dimension to the reference size. For very small precipitates, k is
small, and the surface energy terms may dominate the free energy
change. Conversely, for larger precipitates (larger k values) the sur-
face energy terms become negligible. The precipitate volume dependence

of auV and AE(n)V, coupled with the area dependence of YTAT and

AYpAp, and the influence of the number of twin pairs on aE and
VTAT’ results in a precipitate size dependent aF. Hence, by

4 -
associating transformation with a specific excess driving force, -aF,

&
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(e.g. in order to nucleate the transformatidn), the incidence of trans-
formation becomes precipitate size dependent. For example, a lower
bound critical size can be estimated by requiring that A; = 0.+ The
characteristics of the critical size are exemplified by performing cal-
culations for PSZ. However, it is noted at the outset that several of
the quantities in Eq. (1) can only be estimated at this juncture. In
particular, since the tetragonal phase is metastable, the.chemical en-
ergy can not be determined in the absence of strain. Thus only an est-
imated value (usually invoking the assumption of a temperature inde-
pendent entropy change) is available for pure ZrOZ. The chemical
energy can be approximated as follows. For pure ZrO2 AH = - 1420
- cal/mole at 1478‘:K.36 Hence by setting au = O at the unconstrained
transformation temperature AS can be determined. Thereafter it fo]]owé
that ap at room temperature ~-230 MPa (with respect to the tetragonal
phase Which has a density of 6.1 g/cm310). A lower value of ap
must obtain in the presence of solutes. However, the energies of the
cubic-tetragonal and the cubic monoclinic interfaces are not available
(the solid/vapor interface has an energy of O.4./m2).25 Similarly, tﬁé
twin boundary energy has not been experimentally measured or estimated.
A minimum free energy approach for estimating bounds on the twin-
ning boundary energy.is described in this study. This approach is

based on the assumption that, for a specified transformation, (i.e.

*In the real world, acoustic waves carrying energy Q are emitted
during the course of the martensitic transformations, thus it would
require aF < .- Q for the transformation to proceed. In this case, the
inclusions with size satisfying AF = 0 will not be transformed. Thus
the condition of aF =0 constitutes the lower bound critical size.
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fixed composition, chemical free energy change and the interfacial sur-
face energy change), the system will possess the number of twins that
minimize the total free energy. The energy terms that vary with the
number of twin pairs are the strain energy (specifically, the shear
energy), and the overall twinning surface energy. According to this
approach, and the experimental observation that there are usually two
twin pairs, the following inequality is established:

8E o V + yp aA, > 0 - (2)
where AEk2 is the change in the strain energy between k and 2 twin
pairs, V is the volume of the precipitate experimentally observed, and
AAk2 is the change in total twin surface between k and 2 twin pairs.
Equation 2 can be separated into two groups, depending on the sign of

AAkz, as follows

AEk2V .

AAkZ 27 (for k < 2)
AE, .,V

AAti <7 (for k > 2)

These two inqualities constitute the uppef and the lower bounds respec-
tively. For an accurate estimation, the size, the shape and the num-
ber of twin pairs should be obtained by experiment. In this study,

the aspect ratio determined by Hanm‘nk12 (5.5:2.2:1) is used, the

critical size is considered to be 0m2,um15 and the two twin pairs

4,15

observed >~ in the slightly overaged particles and the stress-in-

duced transformed particles are presumed. The minimum free energy
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result then yields 0.36'5_YT < 0.89 J/mz. The estimation could be
improved by using information concerning the size, shape and number of
twins obtained from the same particle.

4.3 Size Effects

If the value of the twin boundary energy is chosen to be 0.40
J/mz'and the Avp is estimated to be 0.2 J/mz, the effect of size
on the transformatioh is shown on Fig. 12, The freé energy curve ver-
“sus the number of twin pairs exhibits a minimum. For a low number of
twin pairs the strain energy dominates, and the total free energy de-
creases as the number of twins increases; while, for a large number of
twins, the surface energy dominiates and the total free energy in-
creases as number of twins increases. For a small particle, the total
free energy is positive for any number of twin pairs, and the trans-
formation is energetically unfavorable. As the particle size in-
creaSes, the total free energy becomes negative for a range of twin

pairs and the transformation is then energetically favorable.

4.4 The Twin Thickness

From Fig. 12; it is noted that the free energy minimum displaces
to a larger number of twin pairs as the particle size increases. This
minimum may be used to estimate the twin widths as a function of the
particle size. The results are plotted in Fig. 13. The twin widths
are found to be relatively.insensitive to the particle size, as demon-
strated.in Fig. 13. The latter has been used by others to argue that
the martensitic transformation is_nuc]eation controlled. However, this ‘
study indicates that it is a natural consequence of the system attempt-

ing to minimize its total free energy.
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4.5 The (110)m Twinning

As discussed in section 2.3, the (110)m twins are not consistent
with the experimental observation12 that the Ct axis is parallel
to the shortest axis, when the trace of the twinning planes are per-
pendicular to the shortest axis of the ellipsoid as generally observed
in slightly overaged precipitates. However, it is of interest to see
whether the (110)m twins are energetically favorable when the incon-
sistency is neglected. To remove the inconsistency, an {ﬁaginary pre-
cipitate with its shortest axis parallel to (110)m (or (Oll)t,
(101)t and (110)t before transformation for lattice correspondence
LCA, LCB and LCC respectively) is assumed. Since the precipitate-ma-
trix lattice orientation relationship is assumed to be unchanged, the
stress-free strain is the same (as shown in Table 3) when referring to
a coordinate system with x, y, z axes parallel to the {100}fcc axes.
The stress free strain referring to a new coordinate system with the
X, ¥, z axes parallel to the principal axes of the ellipsoid can be
obtained by a tensor transformation. If the twinning plane (110)m is
the xy piane, the shear strain eIZ = S//2, where S is the shear
strain shown in Table 3. According to Table 3, eIZ-Z 5.8% This
strain does not change sign in the presence of twins. Hence the strain
energy contributed by this stresg free strain can not be reduced by
twinning. According to Table 4, the strain energy per precipitate vol-
ume contributed by 1% shear on xy plane is 12.4 MPa. Therefore, for
e{z > 5.89% the strain energy > 420 MPa. - This strain energy is far
too large compared to the chemical free energy change of 230 MPa. Thus

the (110)m twinning is energetically unfavorable.
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The result is consistent with the experimental observation that
when (110)m is the twinning mode, the twinning plane is parallel to
 the shortest axis of the e]]ipsoid.32’37.‘ |
5. CONCLUSIONS

The strain energy of an inhomogeneous (m)—ZrO2 precipitate em-
bedded in the_(c)—ZrO2 matrix has, for the first time, been determined

using the finite element method. It was found that the total strain
energy can be decoupled into two parts, one contributed by the diagonal
stress-free strain and the othér by the shear stress-free strain. These
two strain energies are additive. Twinning was found to reduce the
shear strain éhergy and was thus justified as a relaxation mechanism.
It was found that, for a given precipitate, the orientation relation-
ship which gave the strain energy minimum changed when twinning oc-
curred. Thus twinning can not be neglected when making predictions
based on the minimum energy approach. The active transformation mode
in PSZ was found to be predetermined by the precipitate shape and thus
quite different from that in a larger grained pure Zr02. .For PSZ,

the minimum strain energy is related to the orientation relationship
(001)m H(OOl)C, [IOO]mllfloo]c; the 1éttice correspondence LCC; and

the twinning mode (OOIXm. (110)m.twin$ are energeticaly unfavorable if
the twinning plane is perpendicular to the shortest axis of the ellip-
soid. |

A minimum energy approach was used to estimate the bounds on the

twinning boundary energy. It was found that 0.36 < vy < 0.89 J/m"z.

However, ‘the -shear -strain-used in the-estimation was an upper bound
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value, thus the actual bounds on the twinning boundary energy may be
lTower. The twin width was found to be relatively insensitive to the
particle size based on the minimum free energylapproach, consistént

with the experimental observation.
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APPENDIX A: The Scaling Factor for

The Strain Energy Calculation

Let systems A and B both consist of m twinned inclusions in an
infinite hatrix. The twinned particles can be regarded as consisting .
of several grains with uniform stress-free strain within each grain.
Assume thaf there are . n grains in either system. In system A, the sur-
faces of the grains are-described by

_g? (X) =0 for 1 <i<n.
Assume that the distribution and the shapes of the n grains in sys-
~tem B are similar to those in A, except for a scaling factor k (a
scaling factor is the ratio of the length between two points in system
B to that between two correspdnding points in system A). In other
words, the surfaces-of the grains in system B are described by
¢ ® = @) =0 forlcicn. (A-1)

Figure 14 shows an example of systems A and B withm =2, n = 4, and
k = 2. |

Under the assumption of no body force, the strain energy in sys-

tem B is k3 times that in system A, as shown below.

Let aA(X) be the stress distribution in system A. Then cA must
sétisfy the following conditions:
(i) The equilibrium equation o 0 (A=2)

ij,d ©
(i) Continuity of surface tractions across the grain

boundary,

Fa™x)s £;) = 0 on gh{x) = O surface (A-3) |
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(iii) The condition of compatibility within each grain

h (sR(x),55) = 0
(iv) 1im cA(x) =0

Now consider the stress distribution aB(x) = oA(X/k) in system B.

According to Eq. (A-2)

B A
g (X),ij’j -O.ij’j (X/k)/k = 0,
thus the equilibrium equations are satisfied. On the i-th grain boun-

A
i
to Eq. (A-1). Then it follows from Eq. (A-3) that

dary in system B, the surface is described by g_(x/k) = 0 according
F(PL(x/K)], €;) = 0 on g} (x/k) = 0

or
f(a®(x), e5) =0 on g5 (x) = 0.

Thus the second condition is also satisfied. Compatibility condition

contains only second derivatives of the stress component. Since

%15 = WA P o n(ePx),13) = (W (Pixik) ) = 0

7,43 T ,iJ?
and thus, o?j(x) satisfies the condition of compatibility. The
fourth condition is also satisfied.

Let EA and EB be the strain energies for system A and B re-

spectively. Then

A - %—/(eA(x) ALY Ax) dx

eB . %/(SB(x) - e 8(x)) oBx) a3«

and °

1]

1 {, Ax A, Axy .3
-2-/(5 (%)-e‘ (%))a(%)dx
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- 1€ [ (A - Fhon A ey

- k3 A

°

“Thus the strain energy for inclusions of similar shape is proportional
to the cube of the.scaling factor k. For one inclusion problem, the
strain energy can, therefore, be.normalized with respect to the inclus-

ion volume, and E/V is a constant for a given shape independent of the

inclusion size.
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_ lattice. However, the resulting constrained strains efl and ec

97

Appendix B: An Iterative Method

To Determine the Unconstrained Lattice Parameters

0f the (t)—ZrO2

For an ellipsoidal inclusion, a uniform constrained strain is de-
ve]obed if the stress-free strain is uniform. Because of the uniform-
ity of the constrained strain, the constrained inclusion responds to
the x-ray as if it consisted of a lattice with different lattice con-
stants. Thus the lattice constants determined by the x-ray diffrac-
tion method can be different from the real or the unconstrained values.
The relations between the lattice parameters of the cubic matrix
(a°), of the measured constrained inclusion (a?) and of the uncon-
strained inclusion (ai) are shown in Fig. 15 (the notation of the
strains follow Eshelby's, i.e. the superscripts T* and C denote the

true stress-free strain and the constrained strain respectively). It

follows that egz can be solved from the iterative equation
(n-1),T"
o n-
COVN Y T I A £ I
ii a° 1+ (n-l)e?i

where the superscript n and n-1 denote the nth and (n-1)th iteration.

The constrained strain ("‘l)egi is a function of the true stress-
free strain (""l)egq, which was established by Eshelby.22 Thus, in

principle, Eq. (B-l) can be solved.
For (t)-ZrOz, additional constraint has to be imposed because

T T . A
of 11 = € which comes directly from a1 = a, for a tetragonal

2 are

(B-1)
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“different for an ellipsoidal inclusion. Consequently, the calculated
eII and e;; from Eq. (B-1) are not the same. Thus the average value
is used.in the next iteration. Furthermore, because of the difference
“in efl and egz, the measured constrained lattice constants af and

ag can not be the same. Thus the lower and the upper bound of the

measured lattice parameters are used as ai and ag respectively (where-
3 corresponds to the direction of the longest principa1-axis of the
ellipsoid). According to Hannink's data, ai: = 5.075 A, a5 = 5.079 A,
ag =5.183 A, and & =5.080 A. The iteration method converges rap-
idly to the fo]]owing values: a = 5.0766 and ¢ = 5.2037. The same val-

ues are obtained if ai = 5.076 and.ag = 5.078 are used for the measured

lattice constants.
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APPENDIX C: Listing of a Computer Program for Strain Energy

#* 3

Calculation Based on Eshelby Method

PRCGRAM TRANSF (INPUT»OUTPUT»TAPES=INPUT s TAPES=0UTPUT)

AUTHOR MING-DER HUANG
UNIVERSITY OF CALIFORNIAS3ERKELIY
MARCH 192)]

HEWHREHARRLRERER THE ESHELBY METHOD 5 HE 5 M350 30 83 396 536 3696 36 30 306 36 25 % 24 636 3¢

*% X INDOYT FOARVAT®®*

GIVE THE FCLLOWING DATA AND THF PROGRAM WILL RETURN EQUIVALENT
TRANSFORMATION STRAINsS TENSOR +STRESS INSIDE THE INCLUSIONs ANC
THE TOTAL STRAIN ENERGY

le LSsLECILASEL., (2A1+3X,7A190)
IF LS IS NOT RLAMKsTHE S TENSOR 1S PRINTED
IF LEC IS NOT 3LANKsTHE CONSTRAINED STRAIN IS PRINTED
2¢ As 3y CrISHAPE,ICOR(3)sNDIV) (3F10.0s1XsA49415)
(AsBs»C IN ARBITARY ORDER)(IF ISHAPE 135 SPECIFIEDsICOR
SPECIFIES THE AXIS NUMBER IN THE ORDER COF DECREASING
LENGTH o IF ISHAPEIS IS BLANKs ICOR IS IGNORED.)
(DEFAULT FOR NDIV=50) ' .
{ISHAPE » ICOR+AND NDIV ARF DESIGNED TO BE LEFT QLANK
AND 848,CsTO BE IN ARBITARY ORDER)

INCLUSIUN SHAPS . I3HAPE CODE
SPHERE BALL
OBLATE CAKE
PROLATE POLE

OTHER (ANY NONBLANK)

3 G(M),V(M)9G(INC),V(INC))[N.CASE OF HOMUG LEAVI G(INC)BLANK

4s THE TRANSFORMATION STRAIN E£1 €2 E3 R4 R5 R6 (6F10e0)

5e MORE DATA) USE A » G AND E TO INDICATE THE RE-ENTRY POINT

LSsLEC+CODEsLABFL. (2A1s2XsAls7A10)

CAMMON S INT/TK?

DIMENSION A{3)4GL2)sVI2)sT{3)9TT(353)95(6+6)sCI(H596)sCM(696)
1 sET(B)SETIB)9sA2(3)9ICY(3)5AA(696)+82(6)sRLUMDA(2)sLABEL(T)
2 sI1CAR(2) yAX(2)

LCGICAL MHCMOG

NATA 1CY/24351/

-~ Pl4g=4Pl  —=w=-

DI4=ATAN(1.)*1A,
P142=P14/3.

~—== NDIV IS USED TO SVALUATE FLLIPTIC INTEGRAL =-—=——=-

NDIV=50
READ(5510C09)1LS,LEC»MORE »LASEL
RZAD(551330) AXsISHAPE ,ICORs I

AX ORIGINAL INPUT,. A ORDERED AXES ==—===—===
I1F( IDNEUU) NDIV=I
IF(ISHAPEEQe4H ) 6D TO 610

----- NCNRLANK TSHAPS WILL SKIP SORTING —=---

DO 520 I=1s3
J=ICOR(I)
IF(JeNE.O) GO TO 620



520

A1C

601

602

500

C

750

19

20

100

J=1

1COR(T) =T

ACTY=AX(J)

GO TO 739

A(1)=4X(1)

AL2)=AX(1)

TCOR(1)=1

ICOR(3)=1

DO 600 =253

IF(AX(I)eGT+A(1)) GO TC 601

IFUAX(I)4LTeA(3)) GO TO 602

AL2)=AX(T)

1ICAR(2)=1

70 TO 690

AL2)=A(1)

1COR(2)=1COR(1)

ACL)=AX(TI)

1CNRI1)=1

G0 T 600

A(2)=A(7)

1COR(2)=1COR(3)

AL3)=AX(T) :

1COR(2)=1

CONT INUE _
TEST FOR SPECIAL CASE =—==-

IF(AX (1) EQeAX(2)) ICOR(2)=2

IF(AL1)EQ.A(2)) ISHAPE=4HCAKE

IF(A(2)4EQ.A(3)) ISHAPS=4HPOLE

TF(AL1)eNFLA(3)) GO TO 700

ISHAPF=4HRALL

ICOR(3)=13

DO 10 I=1,3

A2(T)=ALI)#A(])

DUM=SQRT(1+-A2(3)/A2(1))

THEDA=ASIN(DUM)

. NaR=A2(1)=-421(2)

NDAC=A2{1)-A2(73)
DBC=A2(2)-A2(3)
DACH=SQRT(DAQ)

IF(ISHAPE ,SW.4HBALL) GO TO &4
IF(ISHAPELEQ.4HCAKE) GO TO 5
IF(ISHAPZLEQe4HPOLEY G50 TO 5

=== TK2=K*¥22)1T{I)=I(I NI TT(Id)=1(1sJ)

Tx2=DAB/DAC

CALL FLLIPS({THEDAWNDIVFE)
DUV=DT4*A( 1) *A(2)*A(2) /DACH
T(1)=DUV/DAB#(F-E)
T(3)1=DUM/DBC*(A(2)*DACH/A(L)/A(3)~E)
T(21=Pl4-T(1)~-T(3)

DO 20 I=1,2

K=1+1

N0 20 J=Ks3

TTELs N =AT(I =TIV /347(A2(1)=-A2(J))
TT(Js1)=TT(IsJ)

DA 30 I=1,3

J=ICY (1)

K=ICY{(J)

THIS wAY RELATES TO ESHELBYS
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69
C

C

61

C
C

101

TT(Is)=PT43/A2(I)=TT(I+L)-TT{1,K)
READ(591001) G(1)sVI1)sG(2)sVI(2)
DO 60 I=1+6
PO 63 J=1s6
s(1 OJ)=C' o
CI(19J1=0.0
CM(I9J)=0,0
—-- DEFAULT IS THE INHOMOGENEOUS AND MHOMOG=FALSEe~======—=
MH0“°G=.=AL5F—0
IF(G(2)eNELDe) GO TO 61
- BLANK G(INCLUSION) 1S USED TO INDICATE HOMOGENEOUS CONDITION=-~
VHOVOG:. TRUE. )
GL2)=6(1)
viz2y=vil)
VM=1e-V(1)
A=345/P143/VM _
R=(1le~2e*V(1))*0,5/P14/VM
==== T AND TT USE ORDERED AXES (AX) AS INDEX,HCWEVER S USES THE INPUT
=== QORDER (A)

Cm== DEFINE S IN THE FOLLOWING =====-

40

71

NO 4G I=1,2

IR=1ICORI(])

RI=R*T({I)

K=1+1

DO 40 JU=Ks3

JR=ICOR( )

SUIRs JR)=Q#A2(J)*TT(1sJ)=R1

SIJRIIR)=Q#A( I *TT(1+J)-R*¥T ()

DO 50 I=1,3

IR=ICOR(])

SUIRYIRI=Q®A2(I)I*TT(IsI)+R*T (1)

K=IR+3

J=ICY()

M=ICY(J)

<(K9K)‘Q*(A2(J)+A2(M))*TT(J,M)+R*(T(J)+T(M))
mere=—=S DEFINITION END w==--

‘‘‘‘‘‘ DEFINE C(INCLUSION) AND C(MATRIX)===w=w—
D0 65 I=1,42
RLUMDA(T ) =24 #GUIY¥V (] )/ (1a=2,0%V(]))
DO 70 I=1,3
NO 70 J=1,3
IF(1eEQeJ) GO TO 71
CI(LeJ)Y=RLUMDA(2)

CMUT 9 JY=RLUMDA(])

GO TO 70
CI{Is+1)=RLUMDA(2)42,0%G(2)
CMITIsI)=RLUMDA(1)+2.,0%G(1)

K=1+3

CI{KsK)I=G(2)

CM(K»*K)=G(1)

CONTINUE

READ(551001) E1

WRITE(691002)AX :
WRITE(691203)G(1)sVI(1)sG(2)sV(2)
IF(LSeNEslH JWRITE(6910Ca) ((S(19J)sJ=193)91=193)9(S(1s[)sl=046)
WRITE(6+1005) EI

I F(MHOMOG) GO TO 150
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20

10v

150
1139

228

201

21v

V]
N
(&

£ 0N
[}
|

410
4900

------ THE FQUIVALENT INCLUSION MFTHOD

102

CALL MTPL(CISsET9ET969691)

------ THE FO
NO RO 1=1+3
DO 80 J=1,3
AUM=0,3
DO 90 K=1s3

DUM=DUM+(CTI(TsK)=CM(TsK))I*#S(KsJ)

AA(T s J)=nNUW

LLOWING USE THE FISH LIKE PATTERN OF C S AND §

+CM(Ts )

CALL GAUSS(AA»ETs2s8)

DO 100 I=4,

ET(L)=ET(I)/((CI(I»I)I=CM(IsT))I*S(IsI)+CMIIsI))

WRITE(69+100
GO TO 200
NN 110 I=1,
ET(I)=EI(])
IF(LECeERa

WRITE(65110C
DO 210 I=1,
S(Is»I)=S(1>»

6
6) ET

6

H ) Go To 2901
CALL MTPL(SsETsBBs6s6s1)

U188
6
I)-1.

CALL MTPL(S»ETyBBsgas691)

CALL MTPL{CMsB889ETs869691)
----- ET IS NOW THE STRESS ==—=—w-

WRITE(65120

7y ET

CALL MTPL(EIZETSEMGs19691)

ENG==Ce5%EN
WRITE(65100
WRITE(69101
READ(551009
IF(EOF(5)eN

IF({MORE.FQ.
IF{MORE NF
nNO 220 I=1,
S(IsI)=S(1],
GO TO 3
FOR SPHERE
F=014/5e/A2
F=E/3o-

DO 400 I=1,
T(I)1=P143
TT(Is1)=F
0N 413 J=1,
IF(1e€EQed)
TT(IsJ)=F
CONTINUE
CONTINUE

Gn To 2

G

8) ENG
J) LABEL
JLSsLECS

MORE s LABEL

: E.U.0) STOP
IF (MORE.EQ.1HA) GO TO 1
1HG) GO TO.2

«1HE)STOR
6 -
IN+1.
(1)

3

3
GO TO 410

F=0T4%0e5%A01) %A(3) /DAC/DACH
IF(I1SHAPE.EQ.4HPOLE) GO TO 6

F=A(3)/7A(1)

T{L)=E*A(1)*(ACOS(F)~F/A(1)*DACH)

1=3

GO TO 560
1=1 ‘
F=A(1)/A(3)
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THEDA=ALOG(F+DACH/A(3))})
T(2)=E*A(3)*(F/A(3)*DACH~ THFDA)
560 JsICcy(n)
k=ICY(J)
T{I)=PI4=T(J}=-T(J)
TIK)=T(J)
TTUIs N=ATIN=TIINI/3e/(A2(])=AD(J))}
TT(Je1)=TT(Is)
TT(Iek)I=TT(I+J)
TT(Ks1)=TT(IsJ) : |
TTUUsK)I=(PT143/42(0)=TT(1sJ))#2,25
TT(KsJ)=TT(JsK)
TT(JsJ)=TT(JsK)*3,
TT(KsXK)I=TT(JsJ)
TT(I91)=PI43/7A2(1)=TT(1sJ)=-TT(I,J)
G0 TO 2
1000 FORIMATI(3F10els1X9A45415)
1901 FORMATI(8F1lUC)
1502 EORMAT(IXsSIH®*%%% NEW SETS OF DATA ¥®BHEKIEHIEREEEEREE NN EHEREEN
11X *#THE LENGTH OF THE SEMI-AXES ARE#+3F1648)
1903 FORMATI{3Xs*THE ISOTRUPIC ELASTIC CONSTANTS ARE AS FOLLOWSH*/3X,*Myu(
IMTX) = *,]1PE18.89% NU(MTX) = *30PF10e79s*¥ MU(INC) = *¥,]1PF18.8»%
2MUCINGC) = %420F1C,7/77) ’
1004 FORUAT({3Xs#THE S TENSOR IS AS FﬁLLOWS9*/’(1X,1°3518 8//)954X+E18,.8
1/7/773X9E18¢87//91X9E188/7)
1.5 FORMAT(38Xs2HE1»14X9s2HEZ2»14X92HE39»13X93HR23913Xs3HR13913X,3HR12/3X
19y #TRUE TRANSFORMATICN STRAIN = *31P6E16+46/7/)
13v6 FORMAT(3Xs*#EQUIVALENT TRANSFORMATION STRAIN = #/30Xs1P6E16e6//)
1057 FSORMATI(3X+*#THE STRESS INSIDF THE INCLUSION IS *#/30Xs1P6E1646/7)
19u8 FORMAT(3X+s*#THE ENERGY IS #,1PE18.9///)
1909 ENPMAT(2A1+2X94197A10)
1100 FORVAT(2Xs#THE CONSTRAINED STRAIN IN INCLUSION = *#/30Xs1P6E16+¢6//)
1019 FORVAT(% —-—- THE ABQOVE CALCULATION IS FOR LABEL9%/1X»7A10///)
END
SUBROUTINE ELLIPS(XUsNsF»E)
COMMON /INT/TK2
C =—===-=- F = ELLIPTIC INTEGRAL OF THF FIRST KIND) E=2ND KIND ~=ww————w
LOGICAL IDX
FINT(SNX2)=SART(1.-TK2%SNX2)

 ———— N IS THFE SECTION NUMIER AND SHOULD 3F EVEN
C === I[BX TRUE X4 s FALSE X2 =—=—====
ITF{NeNE.N/2%2) N=N+1
NV=N=-1

H=XU/FLOAT (N)
NUM=SIN(XU)
DUM=DUM*DUM
AUM=Z INT (DUM)
F=1e+DUV
Ez]le+1e/NDUM
X=0.0

[OX=e TRUE.

DO 10 I=Tl+NM
X=X+H
DUM=SIN(X)

N UM=DUMENYM
DMUM=ETNT (DUM)
IF(IDX) Go Tn 1



E=zE+2.%DUM -
F=F+24/DUM
IDX=e TRUE,
GO TO 1&
1 E=E+4 ,¥DUV
F=F+4,/DUV
IDX=eFALSE .
10 CONTINUE
H3=H/3.
E=E*H3
F=F#H3
RETURN
cND
SUBROUTINE MTPL(AsBsCoel sMsN)
DIMENSION A(LsM)sB(MeNI»C(LIN)
C =—=== (=A8
DO 10 I=1l,L
"N0 10 J=1sN
X=000i
NnD 20 K=1si4
2C X=X+A(1+X)#3(KsJ)
- Clleyy=X
10 CCNT.INUE
RETURN
END
SUBROUTINE GAUSS(As3sNEQINDM)
¢ ==== GAUSS ELIMINATION —=——=e=e--
NIMENSINN A{NDMyNDM) 4R (ND™)
DO 400 N=1,NEQ
BI(N)=8{(N)I/A(NsN)
IF(NeEQeNEQ) GO TO §00
NL=N+1
D3 300 J=NLsNEQ
CP M AINsJI=A{NsJ)/A(NSN)
D0 400 I=NLINEQ
8(I)=B(I)-A{TsNI*B(N)
N0 40C J=NLNEN
499 AlTsU)=A(19J)=ACT sNI*A(NII)
500 NL =N
N=N~-1
IF(NeSQe0) RETURN
DO 600 J=NLINEQ
8970 BIN)I=3(N)-A(NsJ)*B(J)
GO TO 500
END
120
117
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Table 1 -
Isotropic Elastic Constants
Material Young's Modulus Shear Modulus Poisson's Ratio
E(GPa) G(GPa) v
Mg--(c)—ZrO2 192 73.7 ~0.302.
~ Ca-(c)-2r0, 149 58.4 10.279
(m)-ZrO2 244 96.5 0.265
-(t)-Zr02 244 96.5 0.265
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Table 2(a)
Lattice Constants

Material Reference A(R) b(A) c(A) 8 (degree)
Mg-(c)—ZrO2 Hannink 5.080 - - -
(m)-Zr‘O2 Hannink 5.1415 5.2056 5.3128 80.7
Mg-(t)-Zr0, Hannink 5.077 - 5.183 -

Modified '

Hannink 5.0766 - 5.2037 -
(t)-Zr0p Patil and

Subbarao 5.0893 - 5.1752 -
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‘Table 2(b)
Thermal Expansion Coefficient
. ) 6 ‘ 6
Material g (x10%) aq (x107)
Mg—(c)-Zroz” - 11.49 -
(t)-ZrOz‘ 11.6 16.08
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Table 3. The Stress-Free Strain (x102)

Case* 0.R.* System Data* ey e22 e33 e13
A CXZ C-m 0.86595 2.47244 4.24915 8.34572
C-t H -0.059055 -0.059055 2.0275% 0.
C-t M -0.06750 -0.06750 2.43530 0.
Cc-t P 0.18307 0.18307 1.87402 0.
B AXZ C-m H 4.30253 2.51779 -1.78559 8.26297
(LCA) C-m M 4.31272 2.52646 -2.18044 8.24638
C-m P 4.04910 2.26999 -1.63528 8.25961
: BXYL (e12)
B (LCB) C-m H 0.91035 4,29555 -2.04119 -8.35065
C-m M 0.91888 4.30437 -0.60390 -8.35136
C-m P 0.66643 4.,04345 -0.05274 -8.33047
CXzZ C-m H 0.91734 2.51779 1.53037 8.26578
B (Lce) C-m M 0.92724 2.52646 1.12232 8.24975
C-m P 0.67208 2.26999 1.68568 8.26189
B C-t -0.01520 -0.01520 -0.64016 O.

*In Case A, all the precipitate-matrix interfaces are fully coher-
ent, while in Case B, the (t)-ZrO2 precipitate is stress-free at the

annealing temperature.

*The orientation relationships are defined in Fig. 2.
*Data indicate the data source for the lattice constants of
(t)-Zr0p: H for Hannink, m for modified Hannink, and P for Patil

et al.
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Table 4. Shear Energy per Unit Precipitate Volume (in MPa)
for 1% Shear Stress-Free Strain

Shape Matrix Shear S.E. S.E.{(1) S.E.(2) S.E.(3) S.E.(4)
(no twin)

%I]ipsoid ?g—(c)-ZrOg - X2 5.87917 2.0796 1.28952 0.99315 0.83267
5.5:2.2:1 .

Yz 5.48827 2.87697 1.57579 1.19083 0.98462

XY 12.40154 12.40154 12.40154 12.40154 12.40154

Ca-(c)-Zr0p (XZ 4.92790 1.85574 1.11566 0.87616 0.73521

Sphere Mg-(c)-2r0p XZ | 8.82230 6.59681 3.57199 2.52702 2.04090

(The data are plotted in Figs. 7a,.7b, 7c¢)
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Table 5(a). Total Strain Energy* Per Unit Precipitate
Volume (in MPa) (ellipsoidal inclusion 5.5:2.2:1)

Twinning Orientation
plane Relationship Case aE(no Twin) AE(1) AE(2) AE(4)

100 . AXZ A 694.75 430.11 375.08 343.26
B 670.87 412.49 358.76 327.69
100 AYZ A 623.09 441.21 350.58 309.41
B 598.22 : 420.64 332.16 291.96
001 CXZ A 534.81 270.16 215.13 183.37
B 476.01 217.41 163.64 132.55
001 CYz A 526.85 344.97 - 254.34 213.17
B 469.83 292.11 203.56 163.32
010 BXY(L) A 1046 not applicable
(Symmetry B 1015
plane)
(no Twinning)
010 BXY(S) A 1110 not applicable
(Symmetry B 1081
" plane)

(no Twinning)

*The values are based on modified tetragonal lattice constants meas-
ured by Hannink. The matrix is Mg-(c)-Zr0O2.
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Total Strain Energy Per Unit Precipitate

Volume (in MPa) (spherical inclusion)

Twinning Orientation

(no Twinning)

plane Relationship Case AE aE(1) aE(2) AE(4)
no Twinning
100  AXZ A 1 785.22 - 630.21 419.53 312.89
or AYZ B 764.68 613.34 407.65 303.53
001 CXZ A 785.22 630.21 419.53 312.89
or CYZ B 670.23 518.77 312.91 208.70
010 BXY(L) )
(Symmetry or A 785.22. not applicable
plane).  BXY(S) - B 735.33 not applicable
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Table 6. Strain Energy Pér Unit Precipitate Volume (in MPa)
Contributed by the Diagonal Stress-Free Strain
(for Monoclinic inclusion in Cubic Matrix)

- . Edi Edi
Orientation E]]ip;ggdal Sphe;?ga1
Relationship Case inclusion inclusion
AXZ A 299.74 205.74
B 272.17 167.30
AYZ A 255.31 205.74
B 226.10 ‘ 167.30
CXZ A 139.80 205.74
B 76.98 o 72.36
cYz A 159.07 205.74
B 97.41 72.36
BXY(L) A 197.24 205.74
B 151.28 122.58
BXY(S) A 260.94 205.74
B 217.56 122.58
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FIGURE CAPTIONS

Fig. 1. Zirconia-rich portion of the phase diagram for the Zr02-M90
systém. _

Fig. 2. Six possfb]e orientations of the e]]ipsoida]'monbc]inic phase
embedded in the cubic phase. The X and Z axes are parallel to the
longest and the shortest axes of the ellipsoid respectively. The
X, Y, Z directions are the (100) directions in the cubic phase.

Fig. 3-6. Finite element meshes used in the study of the'strain energy
of the twinned martensite. |

Fig. 7. The shear strain energy per unit-precipitate volume per 1%
stress-free shear strain for the ellipsoidal precipitaté with as-
pect ratio 5.5:2.2:1.

7(a) the effect of the shearing plane (for Mg-(c)—ZrO2 matrix)
7(b) the effect of the different matrices (XZ shear plane)
7(c) the effect of the precipitate shapes (XZ shear plane).

Fig. 8. Comparison of the total strain energies per unit precipitate
volume of the ellipsoidal particle (5.5:2.2:1) embedded in
Mg-(c)_-ZrO2 for different stress-free strains based on different
lattice parameters for orientation relationship CXZ.

Fig. 9. Total strain energy per unit precipitate volume for an
ellipsoidal particle with the aspect ratio (5.5:2.2:1).

9(a) coherent particle (Case A)
vg(b) incoherent particle (Case B).
Fig. 10. Total strain energy per unit precipitate volume for a

spherical partic]e;
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Fig. 11. Comparison of the total strain energies between a spherical
and an ellipsoidal incoherent particles.

Fig..lz. The variation of the total strain energy of an ellipsoidal
particle (5.5:2.2:1) as a function of the particle size and inter-
nal twinning.

Fig. 13. The twin width as a function of the particle size.

vFig. 14, Similar systems A and B withm =2, n =4, k = 2.

Fig. 15. The relation between the constrained and the unconstrained

lattice constants.



3000

{ |
LIQUID
Q‘\_ ~~~~~ — -
\\\.\ -—§§§~~
S e
2500} ~ ——— _
. 370 CUBIC ss+ ~T
(-] ~ \
g | , N \\ ______ -1
S 20001 S\ GuBiC ss P ]
7
< \|CUBIC SS N y |
n \+ TETR. S8 \\ | 7. CUBIC SS + MgO
= \TETRAGONAL SS M. .7
W YL gt -
= 15001 400 N T
[ es__ _TETRAGONAL SSmg0
MONOCLINIC ZrO,+ MgO
1000L i |
0 10 20 30

MgO, MOLE %

Fig. 1

XBL 8Ill -6928

8LL



B, XY(L)

B, XY(S)

C,YZ

119

Fig. 2

XBL 8111-693I



120

XBL 8110-12231

Fig. 3



121

4
/.
(4
>
L4
g
L4
4
(d
L4
>
o
]
4
L d
&
LJ
~
:
|4
b
3
-~
-
L
-
3
3
o
[

*
.t

"

Cisswogy
1]

———

Fig. 4

XBL 8110-12229



122

Fig. 5

XBL 8110-12228



123

Fig. 6

¥

XBL 8110-12230



SHEAR ENERGY/PRECIPITATE VOLUME (MPa)

N

N

)

00)

D

124

oy _

NUMBER OF TWIN PAIRS

Fig. 7a

] 2 3 4 5

XBL8I6-5867



SHEAR ENERGY/PRECIPITATE VOLUME (MPa)

125

Mg- (c)-ZrO,

EMg/ECa =1.15

CO —(C)-ZrOZ

| | | | |

l 2 3 4 S
NUMBER OF TWIN PAIRS

Fig. 7b XBL 816-5868



SHEAR ENERGY/PRECIPITATE VOLUME (MPa)

126

ELLIPSOID

(5.5=2.2 =1)

| l

2 3
NUMBER OF TWIN PAIR:

Fig. 7¢

I .
4 S
S

XBL 8165869



TOTAL STRAIN ENERGY/ PRECIPITATE VOLUME (MPa)

127

300 I I I B

CHEMICAL FREE ENERGY
(approx.)

S CENAD cEEE RN G IR G G, RN IR G = G

—

200

—
prncs
e

100 ’
0 l > 3 4 5

NUMBER OF TWIN PAIRS

Fig. 8 XBL8I1I-6932



TOTAL STRAIN ENERGY/ PRECIPITATE VOLUME (MPa)

1200

128

B, XY (S)
1000~ B,XY (L)
800}
600
400
— AXZ
--------- A,YZ
200~ 00 === ===c C.YZ
C,XZ
0 I R B B !
0 | 2 3 4 5

NUMBER OF TWIN PAIRS

, XBL 816-5870
Fig. 9a



129

TOTAL STRAIN ENERGY/PRECIPITATE VOLUME (MPa)

O

B, XY (S)
B, XY (L)
- A, XZ
------- A,YZ
---------- C,YZ
C,XZ
| | | |
2 3 4 5

NUMBER OF TWIN PAIRS

Fige 9b XBL 8'6- 587'



130

< 1200—

folole] ——— COHERENT PARTICLE
—— INCOHERENT PARTICLE

800
600

400

200

TOTAL STRAIN ENERGY/PRECIPITATE VOLUME (MPa

| | | | |

I 2 3 4 S
‘NUMBER OF TWIN PAIRS

XBL816-5872

@
O

Fig. 10



131

o
Q
O

T T ¥ I

—_— SPHERICAL PARTICLE

~=-=-= ELLIPSOIDAL PARTICLE
800 | T

600}

400

200 So ‘} B

TOTAL STRAIN ENERGY/PRECIPITATE VOLUME (MPa)

o

‘ 2 3 4 5
NUMBER OF TWIN PAIRS

@

Fig. 11 XBL8III-6933



TOTAL FREE ENERGY CHANGE/PRECIPITATE 'VOLUME (MPa)

100

80

60

40

20

132

PARTICLE SIZE, a:
ol2u 0.64

O2u

6
NUMBER OF
TWIN PAIRS

0.44u

XBL 816-5866

Fig. 12



400

133

Ap =230 MPa
a Y =0.4Jm2
ot
T
=
= 200
p
=
—
0 | | | | | ]
0] 0.2 04 0.6 0.8 1.0

PARTICLE SIZE, a (um)

Fig. 13 XBLBI6E-5873



- 134

SYSTEM A | <N\ s
X f.
< .\

SYSTEM B | /\

— 2h
'L—z'l JA 2d —

Fig. 14
XBL 8111-6934



135

MATRIX: - : {

' oS=a®(1+e5)
CONSTRAINED: | : i

01=0°(|+e{'{*)
UNCONSTRAINED: t

XBL 8111-6935
Fig. 15



136

To my parents, my wife Lily, and my daughter Emily



137

Acknowledgement

The farmer can not take all the credit for the harvest. He would
thank God and Goddess for the abundant year. He would thank the sun,
the moon, the rain, and the earth for providing the energy, nutritidn,
and support needed for the proper growth of the crops. He would also
thank the people who make the farming tools and chemicals for their
products which make farming feasible. In fact, with appreciation for
what he experienced and recognizing that no event in the world can be
isolated from the others, he is thankful to everyone for everything.

This work has been inspired, encouraged and supported by the people
around me in Berkeley. Without their contribution, this work would not
have been possible. I find myself feeling the same way as the farmer.

Among all, I wou!d like to express my deepest gratitude to my ad-
visor, Professor Anthony G. Evans and to Professor Alan W. Searcy for
their able guidance, encouragement and support. Their stimulating in-
spiration and enthusiasm brought this work into being.

I would also Tike to express my sincere thanks to Professor Iain
Finnie and Professor Didier R. Defontajne for their valuable advice and
stimulating discussions on this work.

The computer program developed in this study is based on the finite
e]emgnt program SAP IV. I am in debt to the authors of the PROGRAM SAP
IV, Professor K. J. Bathe, Professor E. L. Wilson, and Professor F. E.
Peterson. Special thanks must go to Mr. Ken Wang of the Department of

Civil-Engineering, who made the program available to me.



138

I am pleased to thank Mr. Francis C. Lin who first advised me to
use SAP IV.

A special deep appreciation is extended to Dr. Y. C. Chen

and Dr. Paul F. Chen for their kindly assistance during the early de-
velopment of the computer program. Without their help, this work would
have been dead in its initial stagé.

Many thanks to the colleagues in our research gfoup and department,

who provided interesting discussions and a pleasant working atmosphere.
I would like especially to thank Dr. Keh-Minn Chang, Dr. Stephen T.

Tso, Dr.Shu-Sheng Chiang and Dr. Ming-Hwei Hong for the very fruitful
discussions and constant encouragement.

I am pleased to thank Ms. Mary Besser for her kindly assistance
with the typing of the first draft.

Many thanks to the technical typ-
ing staff, Jean Wolslegel and June DeLaVergne, for the careful prepara-
tion of this manuscript.

I would like especially to thank my parents, my brothers, and most

of all my wife. wifhout their love, understanding, and encouragement,
this work would not have been possible.
I am in debt to Venerab]é C. M. Chen. His encouragement inspired
me with the confidence that there must be a solution, which is the key

to the persistent research that finally leads to success.

This work was supported by the Director, office of Energy Research,
Office of Basic Energy Sciences, Materials Science Division of the U.

S. Department of Energy under Contract No. W-7405-ENG-48.



This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

4



TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720



