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ABSTRACT 

LBL-13540 

A finite element method for the solution of two-dimensional transient 

dispersive-convective transport of nonconservative solute species in fractured 

porous media is presented. A two nodal point one-dimensional transport 

element for fractures is developed which provides a number of advantages 

relative to conventional fracture representation by two-dimensional continuum 

elements. In this method, computer storage requirements and computation time 

are reduced because of smaller number of nodal points and local and global 

matrix sizes. Usage of the two-nodal point elements eliminates the diffi­

culties that arise at fracture intersections when continuum elements are used, 

facilitates generation and modification of meshes, and provides a very effi­

cient model for fracture networks. To eliminate the oscillatory behavior 

of convective-dominated transport which is a more likely occurrence in 

fracture, a very efficient one-dimensional upstreaming method along with 

a two-dimensional method is implemented. Validity of the numerical scheme is 

established by comparison with existing one- ·and two-dimensional analytic 

solutions. 
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INTRODUCTION 

Solute transport in porous media has been the subject of extensive 

investigation in the last three decades primarily because of concern over the 

,~ quality of water supplies [Lapidus and Amundson, 1952; Ogata and Banks, 1961; 

Bredehoeft and Pinder, 1973; Sposito et al., 1979]. Due to urgent need for 

,., 
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developing new energy resources (oil shale, nuclear power, etc.) this concern 

has recently been intensified to large proportions. Also, with the recognition 

of the role of fractures in the transport of fluids [Snow, 1965; Wilson and 

Witherspoon, 1970], in the face of recent concerns over the safe disposal of 

hazardous wastes in geologic systems, the problem of contaminant transport in 

the fractured rocks has become the topic of much interest [Witherspoon et al., 

1981]. 

Both analytic and numeric methods have been used to study the transport of 

reactive and nonconservative solute species in fractured porous media. The 

analytic solutions, although important to the understanding of the fundamental 

phenomena in solute transport and also necessary for verification of numerical 

methods, suffer from the usual limitations of initial and boundary conditions 

plus the restrictions imposed by multidimensionality of transport [Neretnieks, 

· 1980; Rasmuson and Neretnieks, 1981; Tang et al., 1981]. The numerical solu­

tion of Grisak and Pickens [1980] on the other hand.models the fractures by the 

two-dimensional continuum elements with different material properties. An 

attempt is made here to solve the two-dimensional transient transport problem 

in a fractured porous media by a novel finite element method, that models the 

fractures in a discrete fashion by 2-nodal point one-dimensional elements 

developed here. This fracture element not only facilitates the mesh generation 

and numbering of the elements but greatly enhances the com~utation efficiency 

while reducing the requirement of the computer storage capacity. In addition, 
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it also eliminates the difficulty of handling fracture intersections that 

arises when continuum elements are used to model fractures. 

One of the limitations of the numerical schemes is the oscillation of the 

concentration profile in situations which transport is purely convective or 

convective dominated. Due to high flow velocities in the fractures~ the 

oscillatory behavior of sharp fronts may be more common than transport in 

porous media. In the present numerical scheme, two-dimensional and a special 

one-dimensional upstream weighting functions for the porous matrix and the 

fracture elements are implemented to prevent such oscillations. 

GOVERNING EQUATION 

The general governing equation of solute transport in a saturated porous 

medium in two dimensional Cartesian coordinate system is written as 

(1) 

where 

L differential operator 

c· concentration in the solution phase, ML-3 

Pb bulk density of medium, ML-3 

S amount of solute in the sorbed phase, MM-1 

e porosity, L3L-3 

x,z ·Cartesian coordinates, L 

t time, T 

Dxx,Dxz,Ozz dispersion coefficients, L2·T-1 
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Darcy velocities, LT-1 

first-order reaction constant, T-1 

source, ML-3 T-1 

In the above equation, the first term represents the rate of change of 

total dissolved and adsorbed mass, the second and third terms denote disper-

sian and advection in the x ~nd z directions, respectively, the fourth term is 

the mass change due to decay and finally the term, M, is artificial injection 

or withdrawal. In this equation change of mass as a result of volume changes 

due to variations of pressure is neglected. The dispersion tensor D is 

related to flow field and media properties· as [Bear, 1972] 

where 

i ,j 

q 

T 

0 •• 
1J 

q .q. 
eo .. = (a...a + D T)o .. + (al- a ) _l_J_ 

1J 1 • m 1J T q 

indicate cartesian coordinates x,z 

(q2+q2Jl/2 
X Z 

longitudinal and transverse dispersivities 

solute molecular diffusion 

tortuousity 

Kronecker•s delta function 

To solve (1), the time rate of change of the adsorbed concentrations 

must be defined. A common adsorption desorption model which is a linear 

equilibrium isotherm, expressed as 

(2) 

{3) 
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is assumed where Kd is the distribution coefficient. Substituting (3) in 

(1) results in a governing equation with only one dependent variable to be 

solved: 

(4) 

where 

is the retardation factor which is a measure of the delay of the breakthrough 

of the dissolved constituent. 

As may have been noticed no reference has yet been made to fractures, and 

need not be, because the governing equation holds throughout the continuum 

saturated space of which fractures represent an inhomogeneity with different 

anisotropic properties. However, if one is concerned with fracture domain 

only, equation (4) reduces to 

where s denotes the local uniaxial coordinate system along any fracture and 

Rdf represents the fracture retardation factor. Obviously, dispersion and 

advection in transverse direction within any fracture are assumed negligible •. 

This assumption seems reasonable in view of the fact that both phenomena in 

the fracture are calculated on the basis of average fracture fluid flow 

velocity. 
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INITIAL AND BOUNDARY CONDITIONS 

The following provides a set of general initial and boundary conditions: 

C(x,z,O) = · e0(x,z,O) 

"' C(x,z,t) = C on A1 x t[O,oo) 

(Dirichlet boundary condition or first kind) 

(en ac + en ac C) (en .!£ + en .!£ - c) - XX ax XZ az - qX nX - ZX ax ZZ az qz nz 

= Q(x,z,t) + (qxnx + qznz)C(x,z,t) on A2 x t[O,oo) 

(Neumann boundary condition 

or second kind) 

-(en !f.+ en !f.- q c)n - (eo .!£ + en .!£ - q c) xx ax xz az x x zx ax zz az z 

A . A 

Q( t) + ("' +"' )C A t[O ) = x,z, qxnx qznz on 3 x ,oo 

(Cauchy boundary condition or third type) 

For the fractures the boundary conditions simplify as follows: 

{Neumann boundary condition) 

(Cauchy boundary condition) 

which apply to fracture outflow and inflow points, respectively. 

(6) 
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At, A2 and A3 denote different parts of the boundary where various 

boundary conditions exist. One may note that the difference between the 

second type and the third type boundary condition is that in the former the 

amount of solute leaving is concentration dependent and therefore Q, Qs 

(the mass inflow or outflow at the boundaries due to diffusion only) and C are 

unknown quantities as denoted, while in the third type the fluid entering the 

region has known concentration and therefore, the right hand side is a known 

quantity identified by (")marks. The expression 6(x-xi, z-zi) is the 

dirac delta function which is only non-zero at x =Xi, z = Zi· 

Equation (4) along with the above initial and boundary conditions 

completely define the mixed boundary value problem to be solved;. 

SOLUTION APPROACH 

Complexity of the above convective dispersive mixed boundary value 

problem of solute transport inhibits any analytical solution attempts. 

Recent advances in analytical solution of the simplified transport phenomena 

problems [Tang et al., 1981] bring valuable contributions to the understanding 

of solute transport through fractures and accompanied diffusion into the host 

rock. However, in the more realistic problems, one needs to resort to numeri­

ca 1 approaches. In the ··1 ast few years increasing number of numeri ca 1 schemes 

have appeared. Recent advances in both finite differences [Chaudhari, 1971; 

Todd, 1972] and finite elements [Heinrich et al., 1977; Huyakorn and Nilkuha, 

1979] have developed so far as eliminating numerical difficulties encountered 

in the higher ranges of Peclet number, resulting from the oscillatory nature 

of the governing differential equation. To our knowledge, all the existing 

numerical techniques are concerned with only continuum applicationsc 

Although, these. techniques .could be applied. to fractu.res by consideration 
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of very thin continuum elements [Grisak and Pickens, 1980], practical problems 

and economical considerations on one hand, and computer storage capacity on 

the other, may inhibit such applications to fractured media. Numerical 

problems at the intersection of fractures, additional efforts in mesh genera­

tion and numbering, and higher number of nodal points and band width (which 

greatly exhaust computer storage and time) constitute some of the difficulties 

in continuum model applications to fractures. Some of these difficulties 

become even more pronounced in cases where an upstreaming technique is imple­

mented to prevent the oscillatory behavior of the numerical scheme or situa­

tions in which one is only concerned with a network of fractures. In the 

following, an upstream weighted residual finite element method capable of 

modeling fractures as line elements is presented. 

WEIGHTED RESIDUAL FINITE ELEMENT FORMULATION 

Since the formulation and use of upstream finite element method has been 

addressed adequately [Heinrich et al., 1977; Huyakorn and Nilkuha, 1979],-the 

numerical procedures for the matrix part of the domain of the solute transport 

problem are given briefly while those concerning fractures will be discussed 

in detail. 

The region of interest R is divided into an assemblage of smaller sub­

domains called elements. In this work, quadrilateral bilinear. isoparametric 

elements are used for spatial discretization of the porous matrix and one 

dimensional line elements for fracture representation. The dependent variable 

C is approximated in the quadrilateral elements by the relation 



-8-

(7) 

where NI' s are known bilinear functions [Zienkiewicz, 1977] and CI's are 

magnitudes of C at point I. In the line elements the approximation is 

2 
c = c = I NICI (8) 

I=1 

where 

NI = 
1+~~I 

2 for ~ = + 1 I (9) 

in which ~ is the normalized length of fracture that varies between -1 to +1 

along the length of the fracture. The weighted residual technique requires 

that 

J WIL[C(x,z,t)]dR = o 
R 

(10) 

In the commonly used Galerkin technique, the functions WI are chosen to be 

equal to the shape function NI· However, as discussed earlier, search for 

a suitable method of preventing oscillation, for cases where advection term 

dominates the dispersion term in the governing equation, has led to selection 

of'special weighting functions which are different from shape functions •. An 

account of related developments as applied to continuum is given in Huyakorn 

and Nilkuha [1979]. Application of Green's second theorem to (10) and inte-· 

grating over subregions yields . 

(11) 



• 

-9-

This expression when given in terms of subregion contributions of m 

quadrilateral elements and N-m fracture elements becomes 

[ ~ pe ~ fe] [~ pe ~ fe] dC J [ pe fe] _ f AIJ + rrJ1 AIJ C J + f MIJ + nJ1 MIJ dt + GI + GI . - 0 

where AIJ, MIJ and GI are diffusion-advection, storage and source 

matrices, respectively. Details of these terms for continuum elements 

(12) 

designated by pe here, are c~mmon knowledge and only for the sake of complete­

ness are given in the appendix. Also, as it is known, evaluation of continuum 

element matrices are done normally by Gauss's quadruture method. However, the 

details of the corresponding terms for two nodal point elements of fractures 

are developed and the closed form results are presented 

(13) 

Gfie = ~(x-x.)~(z-z.)q .c , , 51 

where I and J assume values of 1 and 2 and i designates the fracture inflow 

point. Se refers to the surface of a fracture element in the domain of 

interest R. The last term of the Afj term representsthe contribution of 

the Neumann type boundary condition at node .2 of any fracture of 2b width, 

when it is being treated implicitly. At this point we draw attention to the 

equation (6) which provides the most general conditions that can arise in 

transport problems. In considering transport problems in porous media only, 

the Neumann boundary condition is simplified by neglecting the Q(x,z,t) term. 

This is justified by the fact that, the dispersive transport at the boundary 

is much smaller than the advective transport represented by the second term. 

·-~ 
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Therefore, in the finite element formulation of the porous continuum, only the 

proper contribution of the advective term is introduced (see Appendix). 

The Cauchy type boundary condition for porous medium is normally lumped into 

a single known mass inflow term represented by Gr term in the finite element 

formulation. The choice between the latter treatment of Cauchy type boundary 

condition and its representation by a Dirichlet type boundary condition, which 

assumes the concentration of the inflow solute as constant boundary value, 

although they are not equivalent, is not straightforward and is subjective. 

In case of existence of fractures, the Cauchy type boundary condition 

can be treated similarly for fracture boundary intersections. However, the 

treatment of Neumann type boundary conditions, as explained above, may not 

always hold true for fracture boundaries. It is because, in case of high 

dispersivity fractures, import~nt mass transport to the outside environment 

can also take place by dispersion. In the numerical treatment it is very 

difficult if not impossible to account accurately for this concentration 

dependent dispersive outflow. The problem lies in the determinationof 

gradient and definition of dispersivity at the boundary point. It should be 

pointed out that for the sake of simplicity of presentation, the distribution 

coefficient and the reaction terms in the above formulation are neglected. 

Employing the local isoparametric one-dimensional element and using the 

following weighing functions [Huyakorn and Nilkuha, 1979] 

where 

w1 = t [ (1 + ~)(3a~ - 3a - 2) + 4] 

w2 = { [(1 + ~)(-3a~ + 3a+ 2)] 

(14) 

(15) 
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and 

the closed form for the fracture integral expressions is obtained as: 

[AfiJe] = 2beoss [ 1 -1] 2bqs r-{1+a) -{1-a)] 
t -1 1 + -2- {1+a) {1-a) 

= [

(2-a/4) 
2bte 
o- (l+a/4) 

(1-a/4 )] 

(2+a/4) 

In the above expressions, B is the fracture Peclet number and t is the 

fracture length. Equation (15) for optimum a (aopt> is given by 

Christie et al. [1976]. 

{16) 

{17) 

Time integration of equation (11) is done by the mid difference finite 

difference scheme. In this method, the values of unknown are assumed to vary 

linearly with time in the time interval, t.t. The recurrence formula thus is 

of the following form: 

[
2 M. + A J ct+t.t/2 1 .. : M Ct + G = 0 
t.t IJ IJ J - t.t IJ J I (18) 

• 

COMPUTER CODE 

A Fortran IV Program for numerical algorithm of equation (12) is 

prepared. In effect, the convective dispersive code forms part of·a complete 

finite element fluid flow and transport code called 11 FLOWS" for saturated 

fractured porous media. The program first solves the fluid flow problem in 
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the region of interest, and through the use of an auxilliary finite element 

routine calculates velocities at the nodal points of the continuum elements0 

This smoothed out velocity distribution of the linear quadrilateral elements 

ensures continuity of velocity across element boundaries. Nodal point veloci­

ties are also required for the upstream scheme referred to earlier. Fracture 

element velocities are calculated directly from end point pressures. This 

average fracture velocity, in view of ambiguity of fracture nodal point 

velocities, is best suited for calculation of convective matrices and also for 

upstream calculations. In the second phase the program solves the transport 

problem using the previously calculated velocities. This part of the program 

reuses the fluid flow storage space, but due to nonsymmetric nature of 

resulting matrix equations it employs its own nonsymmetric solver. 

Developments of fluid flow analysis are assumed common knowledge and are not 

given here. 

VERIFICATION 

To illustrate the validity and accuracy of the numerical scheme and also 

to demonstrate the influence of upstream weighting functions on the oscilla­

tory behavior of convective dominated transport in discrete fractures, the 

classical transient diffusive convective equation with simplified initial and 

boundary conditions are utilized. 

One-Dimensional Transport in Discrete Fractures 

As mentioned earlier, one of the advantages of the present scheme is the 

capability of handling only discrete fractures, using two nodal point 

elements. Figure 1 shows a string of fracture with length 10 discretized into 

20 elements. 
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To check the validity of the numerical scheme, the results are compared 

with those obtained from the diffusion convection equation of the following 

form: 

ac v­ax 

where v is the average pore water velocity defined as the ratio of Darcy 

velocity to porosity. 

The appropriate initial and boundary conditions for the problem 

considered are written as: 

C(x,O) = 0 

C(CD,t) = 0 

c(o,t) = c0 

Defining the mesh Peclet number (Pe) as 

Pe = vAx o 

(19) 

(20a) 

(20b) 

(20c) 

where Ax is the space increment along the fracture, equation (5) subject to 

(20) is solved using numerical values of Ax= 0.5, v = 0.5, and D = 0.025 

corresponding to Pe = 10 which are the same as those used by Huyakorn and 

Nilkuha [1979]. The concentration profile in the the fracture at t = 6.4 is 

shown in Fig. 2 and compared to the exact solution of (19) expressed as: 

c = " Co 

1 [erfc { x-vt } + exp (vx\ erfc J x+vt }] 
"'2" 2(Dt) 172 ~~ f 2(Dt) l/2 (21) 
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The comparison between the numeric (points) and analytic (solid line) results 

shows that for small Peclet numbers, the numerical scheme gives satisfactory 

answers. It should be pointed out that the same problem was modeled using a 

row of 20 four-nodal point elements with the same spacing. The results 

matched exactly (Fig. 2) those of the two nodal point element model. 

Upstream Weighting Functions 

In situations where the transport is purely convective or convective 

dominated (large Peclet numbers), the finite element numerical solutions 

exhibit strong oscillatory behavior. To demonstrate this behavior, a Pe = 100 

was selected for the previous problem assuming other parameters remain the 

same. The oscillation of the concentration profile as compared to the 

analytic solution is shown in Fig. 3. The numerical solution is not only 

oscillatory but considerably more dispersed in the downstream portion of 

concentration profile. Using weighting functions (14), the oscillations can 

be minimized as shown in Fig. 3 by implementing aopt given by (15). These 

results are exactly the same as those obtained by Huyakorn and Nilkuha [1979]. 

Transport in Fracture and Transverse One-Dimensional Diffusion 

in the Porous Matrix 

To confirm the validity of the numerical scheme for solute transport in a 

fractured porous continuum, the analytic solutionof Tang et al. [1981] along 

with the modeled region of Grisak and· Pickens [1980] are utilized. The 

primary reason for these selections are that the analytic solution of Tang 

et al. [1981] accounts for diffusion from the fracture into the matrix and 

that they have compared their results to the numerical solution of Grisak and 

Pickens [1980]. 

.. 
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Figure 4 illustrates the schematic diagram of the observation segment of 

the modeled region and its appropriate discretization in x and z directions. 

To simulate correct behavior for the observation length of the model which is 

0.76 m, the required length of the model in view of the data used and the 

observation period involved, is at least three times the observation length as 

noted by Grisak et al. [1980]. The width of the model selected in accordance 

with that of Gri~ak and Pickens [1980] is 2 em. This length can simulate 

infinity in the x direction for the range of dispersion coefficients used for 

the porous matrix. As may be noted, the fracture in this model is represented 

by the string of two nodal point elements which coincide with the side of the 

first column of four nodal point porous matrix elements. In this representa-

tion of fractures, only average fracture velocity is used in each fracture 

element. 

The general initial and boundary conditions for the fractured porous 

continuum as shown in Fig. 4 are as follows: 

C{z,x,O) = 0 

A 

C{z,x,t) = Co 
t>O 
z=O 

ac 0 az {z,x,t) = 
z=t 

ac 0 ax {z,x,t) = 
x=d 

where d is the width of the matrix block. The model is verified with the 

analytic solution [equation {35) of Tang et al., 1981] describing solute 

transport in the fracture considering diffusion into the matrix. 

{22a) 

{22b) 

{22c) 

{22d) 
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The parameters given below were the same as those used by Grisak and 

Pickens [1980] and also by Tang et al. [1981]: 

2b = 120 pm 

e = 0.35 

al = 0.76 m 

v = 0.75 m/d 

The diffusion coefficient Dzz is assumed to be zero and the diffusion 

coefficient, Dxx' in the matrix is varied from 0 to 10-6 cm2/s. The 

concentration profiles in the fracture at the end of 4 days are shown in 

Fig. 5. The points represent the finite element solution while the solid 

lines denote the analytical solution. The agreement between the two solutions 

is generally very good. There is some discrepancy between the two solutions 

for the medium range of diffusion coefficients. Closer inspection of the 

curves reveal the largest discrepancy at around Dxx of Io-7 cm2/s and 

10-8 cm2/s which rapidly falls off for lower dispersion coefficients. 

The differences are caused by the coarseness of the mesh which dampens the 

effect of the very high gradients that develop in the medium range of the 

dispersion coefficients. Therefore, diffusive losses are reduced and conse­

quently the numerical results plot above the analytical solution. In the 

lower ranges of the dispersion coefficients, diffusive losses are.too small 

to be affected by misrepresentation of g.radi ent due to the: coarseness of the 

mesh. 

Figure 6 illustrates the concentration profiles with time in the fracture 

at 0.76 m from the source. The agreement between numeric and analytic solu­

tions for early times seems satisfactory for most cases. In the absence of 

the porous matrix, i.e., D = 0, the numerical results match perfectly those of 

the~analytical solution. This indicates optimum discretization in time and 
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space (z direction only) for transport equation in the fracture. Also trunca-

tion errors, for higher diffusion coefficients of the porous matrix, stay in 

reasonable range for the observation time considered. Based on this behavior 

of the problem, the major early time discrepancy in the case of D = 1o-10 cm2/s 

for the porous matrix could be attributed mainly to the lack of required mesh 
; 

refinement in the x direction. Few trials with reduced time steps and a 

reduced mesh (obtained from compression of the original mesh) improved the 

early time results favorably. However, a sensitivity analysis for the small 

range of porous matrix diffusion values was not performed in view of clearness 

of the obtained result. The comparison between the analytic solution of Tang 

et al. [1981] and the numeric solution of Grisak and Pickens [1980] shows that 

in the middle ranges of diffusion coefficients (1o-8 to 1o-9 cm2/s) 

considerable amount of discrepancy exists as shown by Tang et al. [1981]. 

They attribute these discrepancies to the errors resulting from insufficient 

discretization in the numerical solution near the fracture interface. The 

reason for the numerical solutions, in this case, plotting below the analyti­

cal solutions may lie in the fully implicit backward difference time discreti­

zation scheme that is utilized. Considering the better results obtained here 

for the case of D = 1o-10 cm2/s, as compared to our results for the same 

case, one may note that, the mid-difference scheme used in our developments, 

as might be expected, is not responsive to the rapidly varying field variable 

~ in early times. However, convergence to the true solution and better late 

time results as seen in Figures 5 and 6 makes the latter scheme more advan-
''!! 

tageous as noted by Gureghian et al. [1980]. It should also be mentioned that 

. although implementation of most of the generally used difference schemes is a 

simple matter, it was not the goal of this work to pursue it. 
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Transport in Fracture and Two-Dimensional Diffusion in the Porous Matrix 

The absorptive capacity of the porous matrix as suggested by Tang et alo 

[1981] could act as a safety mechanism in potential contamination problems. 

This absorptive capacity not only depends on diffusive properties of the 

fracture and the medium but greatly is a function o~ fracture fluid velocity 

and porous matrix porosity. To illustrate the point, the example of Grisak 

and Pickens [1980] for Dm = 1 x 10-6 cm2/s and various fracture fluid 

ve 1 oc it i es· and matrix porosities is worked out. The concentration profi 1 es in 

the fracture at 0.2 days are shown in Fig. 8. As fracture fluid velocity 

increases, less time is allowed for diffusion into the matrix and therefore, 

higher concentrations in the fracture are observed. Figure 8 also shows that 

the effect of matrix porosity is more pronounced at higher fluid velocity. 

Highest absorptive capacity is attained at low fracture fluid velocity and 

high matrix porosity. 

In comparing the results with analytic solution of Tang et al. [1981], 

we also assumed that concentration gradient is perpendicular to the fracture. 

This was in accordance with the assumption of orthogonality in deriving the 

analytic expression by Tang et al. [1981]. Although this assumption may be 

valid and at early times the influence of diffusion in other dimension might 

be insignificant, neglecting two-dimensionality of flow for long-term real 

problems or simulations may cause serious errors. To illustrate this point~ 

the previous problem for the case of Dzz = 1 x 10-6 cm2/s is solved and 

compared to the case which Dzz was assumed to be zeroo The.result for 

concentration profiles in the fracture and also in the matrix at 0.1 em 

from the fracture are given in Table 1. Higher relative concentrations 

are observed when diffusion takes place in two dimension. The effect is 

more pronounced in the beginning of the fracture where· concentrations 

.. 
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Table 1. · Concentration profiles in the fracture and in the porous matrix 
(0.1 em from fracture) at 4 days illustrating the effect of 

. ~ diffusion in the 2-dimension in the matrix • 

Distance D = 0 nxx = 1 x 10-6 -6 0 = 1 X 10-6 . Dzz = 1 x 10 ; from zz , 
XX 

source fracture matrix fracture matrix 
(em) 

0.0 1.00000 1.00000 1.00000 1.00000 

1.5 0.96598 0.91204 0.96649 0.93227 

3.0 0.93261 0.87952 0.93325 0.88286 

4.5 0.90004 0.84790 0.90067 0.84820 

7.0 0.84774 o. 79715 0.84834 0.79777 

10.0 0.78805 0.73942 9.78862 0.73998 

31.0 0.35624 0.37266 0.35655 0.37299 

76.0 0.11965 0.12463 0.11977 0.12476 
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are generally higher. The difference between the two cases is even more 

pronounced for the porous matrix near the source. It is believed that for 

long term problems of interest, two-dimensionality of diffusion may play a 

significant role and therefore can not be ignored. 

CONCLUSIONS 

In this paper we have considered the problem of two-dimensional transient 

transport of solutes in fractured porous media using an upstream finite 

element scheme. The processes of advection, dispersion, diffusion, 

adsorption, and first order reaction in the fracture and porous matrix are 

included in the mathematical model. 

The numerical algorithm first solves the fluid flow problem in the region 

of interest and then by an auxilliary finite element routine the nodal point 

velocities of the continuum elements are determined. This procedure not 

only ensures continuity of velocity across element boundaries but it is 

also required for implementation of upstream weighting functions. Fracture 

element velocities are average velocities calculated directly from end point 

pressures. Knowing the fluid flow field, the program then solves the 

transport equation using its own nonsymmetric solver. 

One .of the unique features of this study is the representation of 

discrete fractures by 2•nodal point elements. This not only facilitates 

the mesh generation and numbering of the elements but greatly enhances the 

computation efficiency and reduces the required computer storage. Further­

more, it allows us to model a system of fracture strings without being forced 

to model the neighboring porous matrix. 
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To check the validity and accuracy of the numerical scheme, 

one-dimensional advective diffusive transport of a conservative solute species 

in the fracture was solved for a small Peclet number and the results were 

compared with those obtained from appropriate analytic solutions. The agree­

ment,between the two are satisfactory (Fig. 2). Since, due to high flow 

velocities and low dispersivities, the solute transport in the fracture could 

be purely convective or convective dominated, special upstream weighting 

functions are formulated and· implemented in the numerical scheme in order to 

prevent the oscillatory behavior of concentration profiles (Fig. 3). The 

results are in agreement with those obtained by previous workers for the 

porous continuum. 

Validation of the numerical scheme for solute transport in the fracture 

with the diffusive losses into the matrix is performed by comparing the 

results to the analytic solution presented by Tang et al. [1981]. The agree-

ment between the two results is generally good for the times considered. 

Small discrepancies at early times when the diffusion coefficient in the 

porous matrix is extremely small (1 x 1o-10 cm2/s) are attributed to the 

numerical approximations involved in estimation of solute flux into the matrix 

as a result of coarseness of the mesh and largeness of the time steps through 

the insensitive nature of the mid difference scheme used in our development. 

It is also demonstrated that the velocity of flow in the fracture and 

porosity of the matrix play a dominant role in the absorptive capacity of the 

porous matrix. Highest absorptive capacities are obtained at low fracture 

fluid velocity and high matrix porosity. 

. ~ 

••• ,.,. f i 
·:;:. 
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Inclusion of two-dimensional diffusive transport in the porous matrix 

illustrates that at early times one-dimensional solute flow does not cause 

serious errors while for long term problems (i.e., radionuclide transport) we 

may encounter significant differences and two-dimensionality of diffusion in 

the porous matrix may have a pronounced effect on concentration profiles 

particularly in the vicinity of the source. 
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APPENDIX 

The diffusion-advection, storage and source matrices for the porous 

elements as defined tn equation (12) are expressed as: 

APe 
IJ = 

MPe 
IJ~ 

= 

{ aw1 [ aNJ aNJ -e -·+e --~e ax 0xx ax 0xz az 

aw1 [ aNJ +- eo -+ az zx ax 

J WINJ dR 
Re 

J w 
A3e I {-[eo ac -xx ax 

aNJ 
eo --zz az 

qxNJ] 

qzNJ}dR 

~ " " ]} ac ac " ,, + -eo -- eo - + q c n dA zx ax zz az z z 

The last integral represents the Cauchy boundary conditions. The treatment of 

Neumann type boundary conditions if done explicitly, can be accomplished like 

Cauchy boundary condition explained in GI· Full implicitness of the Neumann 

boundary condition can be brought about by either iterations, until conver­

gence, on the results of the explicit treatment or a one step fully implicit 

treatment as shown for the fracture. In the latter case the following contri­

bution needs to be added to the AIJ matrix of the porous elements where this 

boundary condition prevails 

where 
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Notice that the diffusion part of Neumann boundary condition is not 

considered because the contribution is normally negligible. Also the other 

source terms in the above presentation have not been included to make 

presentation simple. Upstream finite element treatment of porous media, as 

mentioned earlier, has been adequately explained in other publications and 

repetition is avoided. 
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Figure 1. Schematic diagram of a fracture string with 2-nodal-point element representation. 
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figure 2. Concentration profiles at t = 6.4 comparing analytic and numeric solutions for . 
Pe = 10 in a string of a fracture. (XBL 819-1326) 
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