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For the design of separation processes in the chemical 

industry, accurate prediction of fluid-phase equilibria is 

crucial. If the process design engineer does not have 

reliable thermodynamic subroutines for his process­

simulation computer programs, he must overdesign distilla­

tion columns, extraction units, etc., to minimize the asso­

ciated risk, possibly destroying the economic viability of 

the process. For mixtures of simple, nonpolar fluids (such 

as light hydrocarbons), many equations of state are avail­

able that predict vapor-liquid equilibria reasonably well. 

Unfortunately, however, many processes (e.g., coal gasifi­

cation) involve mixtures containing highly polar components 

(including water and other hydrogen-bonding fluids)7 simple 

equations of state, with standard mixing rules, predict 

very poorly the thermodynamic properties of such systems. 

This failure of simple equations of state and of sim­

ple mixing rules is due to the asymmetry of complex mix­

tures. There are two types of asymmetry: size/shape asym­

metry and intermolecular-potential asymmetry, as indicated 

in Figure 1. For the former, the molecules are character­

ized by gross differences in their physical sizes or 

shapes. One species could be a small, spherical molecule 

and the other a long-chain polymer or a much larger globu­

lar molecule. The second type of asymmetry occurs in 
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mixtures of pola.r and nonpolar molecules. 

lar potential of a polar molecule 

The intermolecu-

can be highly 

orientation-dependent, 

which occurs only when 

such as hydrogen bonding of water, 

the molecules are aligned in a 

specific orientation. 

The asymmetry of /these mixtures leads to highly non­

random molecular configurations in space. Instead of the 

traditional model of white and black billiard balls random­

ly positioned in space, a more complex model is required 

that can account for clustering of molecules into partially 

ordered, energetically favorable configurations. 

To predict phase equilibria for asymmetric mixtures, 

we propose a new equation of state that can correlate 

pure-component thermodynamic data for polar as well as for 

nonpolar fluids. More important, we have established a new 

set of mixing rules based on the local-composition concept. 

For both the pure-component equation of state and the 

local-composition mixing rules, we have made compromises 

between statistical-mechanical rigor and engineering use­

fulness. The important achievement is that we have removed 

the common assumption that a dense fluid is a random mix­

ture of spherically symmetric molecules. 

Eguation ~ State ~ Polar Fluids 

For extension to polar fluids, the most popular varia­

tion on simple equations of state is to assign a purely 

empirical temperature dependence to the equation-of-state 
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parameters. This procedure increases the number of adjust­

able parameters and creates problems when one tries to 

devise a set of mixing rules with which to calculate mul-

ticomponent phase equilibria. 

A more reasonable approach is to use molecular theory 

for estimating the effect of specific polar interactions 

and, thereby, to use parameters with at least some physical 

significance. App·ropriate mixing rules can then be deter­

mined based on idealized, but theoretically tractable in-

teractions. 

For many polar species, the most important term in the 

multipole expansion is the dipole-dipole term. Thus, we 

have chosen to lump all polar contributions to pure-fluid 

properties into a single term based on the angle-averaged 

interaction between point dipoles. To this term we assign 

a specific temperature dependence. 

We chose for our nonpolar, reference equation of state 

the Perturbed Hard Chain Theory (PHCT) of Donohue and 

Prausnitz (1978). The PHCT was developed from a truncated 

perturbation expansion in powers of reciprocal temperature 

for molecules with square-well potentials. If we include 

the effect of angle-averaged point-dipole interaction in 

PHCT, the Helmholtz energy of polar molecules is 

+ • • • , (1) 



where 

1= c 
NkT 

* 
Al = T 

5 
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5 * m 

I alm (~ ) 
m=l 

a + alm~ 1 cv*t A2 = L [ (T*) 2 
2m c(v )2 v 

m=l 
• 

The anm's and~ are universal constants (i.e., they are the 

same for all substances). The pure-component parameters 

T*, v*, c, and D are characteristic, respectively, of the 

intermolecular potential-well depth, the hard-core volume, 

the number of external degrees of freedom, and the polarity 

of the molecule. There is no dipole-dipole contribution to 

the A1 term. The symmetry of the dipole-dipole potential 

guarantees that all polar contributions must cancel if each 

orientation is considered equally likely, as assumed in 

this mean-field term. 

To close the expansion in reciprocal temperature, we 

use the discrete representation of Barker and Henderson 

(1976). It has been shown that this approximation gives 

better low-density convergence than Pad~-approximant and 

other methods. With this method, we need only the first 

two perturbation terms; the rest are estimated. The 
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discrete representation method, applied to Equation 1, is 

_A_ 
NkT 
~ A~ [ (2A2) J = NkT ·+ 2A

2 
Lexp A

1
T - 1 • (2) 

Equation 2 is our working equation for the Helmholtz 

energy of polar and nonpolar pure fluids. Through standard 

thermodynamic relations, expressions for the pressure and 

for the fugacity can be easily derived. 

we have used Equation 2 for several highly polar 

fluids (and for several nonpolar fluids with D=O). Pure-

fluid parameters are obtained from experimental equilibrium 

properties. Figures 2 and 3 show typical agreement between 

experimental and calculated properties of water. 

For mixtures, we must estimate binary parameters for 

the pure-component parameters and define a set of mixing 

rules. Because we have chosen parameters with some physi-

cal significance, the choices for these binary parameters 

are straightforward. They, are 

* YT~ .c .. T~ .c .. 
T .. = 11 11 JJ JJ (1 - k .. ) (3) 

1] c .. 1) 
1] 

[ (v ~.) 1/3 + * 1/3 3 
* (vii) ] v .. = 

.. 11 

1] 2 

c .. + c .. 
c .. = J.J. JJ 

1] 2 

D .. =~DiiDjj • 1] 

Binary parameter kij (lkijl<l) is obtained from limited 

binary experimental results. 
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Local-Composition Model 

To calculate fluid-mixture properties with the common­

ly used one-fluid model, one must use a set of mixing rules 

to relate the characteristic parameters of the mixture to 

those of the pure components. Several sets of mixing rules 

have been proposed, but nearly all are based on the 

random-mixing assumption--a serious flaw. Most of these 

mixing rules are only slight variations of those proposed 

by van der Waals (1890), who first suggested the one-fluid 

mixture model, almost 100 years ago. 

In this work, we propose a significantly different 

procedure for extending an equation of state to mixtures 

(Whiting and Prausnitz, 1980, 1981; cf. Mollerup, 1981). 

Starting from the two-fluid approach (which underlies the 

Wilson, NRTL, UNIQUAC, and other liquid-state activity­

coefficient models), we have developed a consistent mixture 

theory for fluids at all fluid densities. Our local­

composition theory is based on reasonable approximations 

for the degree of nonrandomness in a fluid mixture and 

meets the close-packed-liquid and ideal-gas limits. 

We assume that gross nonrandomness occurs even in mix­

tures of nearly equal-sized molecules if their intermolecu­

lar potentials are vastly different. Further, we assume 

that this nonrandomness exists, to some extent, at all 

non-zero densities. 

First, we separate the Helmholtz energy 

ideal-gas, a repulsive (hard-sphere), and an 

into an 

attractive 

• 
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part: 

• (4) 

For molecules of nearly equal size, the repulsive 

Helmholtz energy is calculated with the one-fluid model 

because the unperturbed state (the hard-sphere fluid) is 

assumed random, i.e., all nonrandomness is caused by the 

attractive forces. 

For a binary mixture, we consider two representative 

regions in the fluid, as indicated in Figure 4. One region 

centers around a type-1 molecule, and the other centers 

around a type-2 molecule. The local compositions in these 

two regions are different. As suggested by quasi-chemical 

theory (Guggenheim, 1935), we approximate these local com-

positions using Boltzmann factors with energies charac­

teristic of the like and unlike two-body interactions: 

X •• 
___J.J. 
X •• 
~~ 

x. exp(-u .. /kT) = _J, ;;,p 
x. exp(-u .. /kT) 
~ ~~ 

x .. +x .. =l 
]~ ~~ 

, 

(5) 

(6) 

where i=l or 2. Equation 5 indicates that the local compo­

sition (xji) of j molecules around an i molecule is pro­

portional to the total number of j molecules (required to 

satisfy the mass balance) and proportional to the Boltzmann 

factor of an energy, uji' characteristic of the attractive 

ji interaction. In previous models, this energy was taken 

to be zw/2, where z is the coordination number and w is the 

energy between two nearest-neighbor molecules. For 
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liquids, this lattice-theory simplification may be reason­

able, but, for lower densities, we know that z and w are 

functions of temperature and density. For any equation of 

state of the van der Waals type, we can calculate this 

characteristic energy as a function of density and tempera­

ture: it is merely the attractive internal energy of a 

system of molecules interacting with a ji-type intermolecu­

lar potential. 

The total attractive internal energy, uattr, of the 

fluid mixture is the sum of all contributions from molecu­

lar pairs: 

• 

Equation 7 can be integrated with respect to temperature to 

calculate the attractive Helmholtz energy of the mixture 

and, then, differentiated with respect to density to pro­

duce a mixture equation of state. This procedure can be 

applied to any generalized van der Waals equation of state. 

We extend the local-composition model to multicom­

ponent mixtures by considering m different types of regions 

in the fluid, where m is the number of components. Each 

region contains a molecule of type i at its center. 

To extend our model to mixtures of large and small 

molecules, we assume that each molecule has an external 

surface area equal to qi; only this area is available for 

intermolecular attraction. If we designate the average 

attraction per unit surface area of a ji interaction as 

(7) 
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eji' the attractive energy of the fluid is 

0attr ·m m 
= L L N x. x .. q.e .. , ( 8) 

]. Jl. ]. Jl. 
i=l j=l 

where x .. is the local composition of type j molecules in a Jl. 
type i region. 

The result for the attractive contribution to the 

pressure of a multicomponent mixture of large and small 

molecules is 

m 

Pattr = ~L 
i=l 

m 

L: [
-g. ( e .. -e .. )] 

1 J1 ].1 q. x . ( e .. -e .. ) exp kT ]. J Jl. ].]. 
'=1 

x. q.e .. + ~=--------------------------------
1. J. J.J. m [ ( 

L 
-q. e 1.i-e .. )] 

x. exp 1 k- 11 
J T 

j=l 

At zero density (as well as at infinite temperature), 

our local-composition model reduces to the random-mixing 

model, as all local compositions become identical to the 

respective overall compositions. In our work, the second 

virial coefficient of the mixture has the proper quadratic 

mole-fraction dependence. The model also has a reasonable 

high-density limit, in that the infinite-pressure limit of 

the local-composion model for the van der Waals equation 

gives the Wilson equation for liquid-state activity coeffi-

cients. 

Figures S-8 show good agreement between experiment and 

calculations performed with the local-composition model for 

some typical binary vapor-liquid equilibria. In these cal-

culations, we used the equation of state given by 

• ( 9) 



-10-

Equation 2. 

Conclusion 

The work reported here increases our ability to calcu­

late high-pressure vapor-liquid equilibria for asymmetric 

systems, especially those containing one or more polar com-

ponents. 
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