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Abstract

Nuclear magnetic resonance is a very useful tool for

characterizing molecular configurations through the measurement

of transition frequencies and dipolar couplings. Tlie measure-

ment of spectral lineshapes, spin-lattice relaxation times, and

transverse relaxation times also provide uS with valuable inform-

ation about correlations in molecular motion. The new technique

of multiple qauntum nuclear magnetic resonance has numerous

advantages over the conventional single quantum NMR techniques

in obtaining information about static and dynamic interactions

of coupled spin systems.

In the first two chapters, we discuss the theoretical back-

ground of spin Hamiltonians and the density matrix formalism of

multiple quantum NMR. The creation and detection of multiple

quantum coherence by multiple pulse sequence are discussed in

chapter III. Prototype multiple quantum spectra of oriented

benzene are presented. Redfield relaxation theory and the

a



application of multiple quantum NMR to the study of correlations

in fluctuations are presented in chapter IV. A specific example

of an oriented methyl group relaxed by paramagnetic impurities is

studied in detail. In chapter V we present the study of possible

correlated motion between two coupled methyl groups by multiple

quantum NMR. For a six spin system it is shown that the four­

quantum spectrum is sensitive to two-body correlations, and serves

a ready test of correlated motion. In chapter VII we present the

study of the spin-lattice relaxation dynamics of orienting or

tunneling methyl groups (CH
3

and CD
3

) at low temperatures. The

anisotropic spin-lattice relaxation of deuterated hexamethylbenzene,

caused by the sixfold reorientation of the molecules, is investi­

gated in chapter VIII. The NMR spectrometers and other experi­

mental details are discussed in chapter IX.

b
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I

THE SPIN HAMILTONIAN

1.1 Introduction

Nuclei t as well as fundamental particles t have individual

attributes. Some examples are mass t charge t and spin. The spin

angular momentum of any particle only takes the value of a non-

negative integer or a positive half-integer in the unit of h.

For example t the spin of electron t proton t neutron t nuclei of

l3e and 19F is one half • 2 and 14 a spin ItNuclei of H N have

whereas the nuclei of l2C 16 no spin. A particle withand 0 have

-+
spin I has a magnetic dipole moment ~ associated with itt and

-+ -+
~ = hyI (1.1)

where y is a magnetogyric ratio of the particle. Table 1.1 shows

h 1 f f 1 ·11t e va ue 0 y or severa common part1c es.

We are primarily interested in the nuclear magnetic

resonance (ffifR) of organic molecules; hence we shall focus

mainly on the nuclei of hydrogen and deuterium atoms--namely,

the proton and the deuteron.

The nuclear spins in a molecule can interact with neighbor

spins by direct dipole-dipole interaction, and also by indirect

spin-spin interaction via orbiting electrons. Also, they can

interact with an external static field or an oscillating magnetic

field of an electromagnetic wave. For nuclei with spins greater

than one half t the spins can interact with their local electric

field gradients, also known as nuclear quadrupole interaction.
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1.2 The Zeeman interaction

In the presence of an external magnetic field, quantum

theory demands that spin cannot have an arbitrary orientation.

Only a few states are allowed and they are characterized by

the spin magnetic quantum number m. The z-component of the

spin angular momentum hI is quantized, and I can take on onez z

of a set of discrete values -I, -1+1, ... , I. The interaction

between spin and an external magnetic field B along the z-axis
o

is described by the Zeeman Hamiltonian H ,z

-+-+
H = -yh I' Bz 0

= -yhI Bz 0

or

E = -yhB m
m 0

= -mhw
0

(1.2)

(1.3)

where w is the Larmor frequency. The Larmor frequency of
o

several common particles is listed in Table 1.1.
2

In a typical

field of SO kG, the proton has a resonant frequency at about

210 MHz. The energy levels of spin I in a magnetic field consist

of 21+1 multiplets with an energy separation of hw .
o

Because of the shielding effect of the surrounding

electrons, the nuclear spins do not experience a common magnetic

-+
field B

o
3and

-+ ,
They experience slightly different local fields B. s,

1.



Table 1.1

The Resonance Frequency and }fugnetogyric Ratio

3

I y(radians/sec 10 KGauss) Frequency (MHz/10 KGauss)

e 1/2 1. 759 x 10
3

2.800 x 104

~ 1/2 2.675 42.577

n 1/2 1.833 29.175

13c 1/2 0.673 10.705

19F 1/2 2.518 40.055

2H 1 0.411 6.542

14N 1 0.193 3.072



Hz • -by'I i 0 (1-0 ) o'B
. 1 1 - -1 0

• -tty I: Ii (l-oi )Bi'z ,zz 0

• -hwo L Ii (l-0i )
i'z ,zz

(1.4)

where! is a unit tensor, and ~i is the local shielding tensor

of the second rank. The shielding is determined by the local

-6electronic structure, and has a magnitude order of 10 • It is

small but plays a very important role in identifying molecular

structure.

1.3 The dipole-dipole interaction

The nuclear spin can interact with the magnetic field

produced by neighboring spins. The dipole-dipole interaction

1 3
is described by the dipolar Hamiltonian ~ as '

\' -+ -+

~ = L IioDi·°r.
i<j - J J

-+ -+ -+ -+ -+ -+

~

tl 2 IioI. 3 (Ii or) (I. or)
= L Yi Yj

[ J - J ] (1.5)3 5
i<j r

ij
r
ij

where r
ij

is the internuclear distance. ~ij is a traceless,

symmetric tensor of the second rank. Since the dipolar coupling

strength is much weaker than the Larmor frequency, we may ignore

the non-secular part of the dipolar Hamiltonian that does not

commute with the Zeeman Hamiltonian. The secular part (truncated

3
Hamiltonian) can be expressed by
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and

(1.6)

D --ij
1 2e'2 (3 cos 8ij -l) (1. 7)

where 8
ij

is the angle between the z-axis and the internuclear

vector.

For heteronuclear dipole-dipole interaction, the flip-flop

-+ -+
term Ii+Ij _ + Ii_Ij + in Iie1j may also be neglected, since it

not commute with the Zeeman Hamiltonian if nuclei i and j are

different species.

does

Assume we have two unlike species I and S; the secular part

of the dipolar coupling between them is given by

\'
L 2Dij Ii

i<j ,Z
S.J,z

(1.8)

1.4 The indirect spin-spin coupling

The nuclear spins can interact with each other through the

second order effect of hyperfine coupling via electrons. The

indirect spin-spin interaction can be written as

H c:
J

(1. 9)

where ~ij is a second-rank tensor.

If we neglect the non-secular part, the remaining secular

term is given by3



H •J
Janiso(3 I I - 1 -1 )
ij i,z j,z i j

6

(1.10)

where J ij is the isotropic average of the tensor ~ij. J~so is

the anisotropic component that vanishes if the molecule undergoes

isotropic tumbling as happens in liquid phase.

1.5 The quadrupole interaction

Nuclei with spin I greater than one half possess an electric

quadrupole moment because of the non-spherical distribution of

charge on the nuclei. In the molecule, the nuclear quadrupole

moment will interact with the local electric field gradient that

is produced by surrounding valence electrons. The nuclear quad­

rupole interaction is described by4

H =
Q

(1.11)

where Qi is the quadrupole moment of nucleus i and Vi,aB (a,B =

x,y, or z) is the second-rank tensor component of the electric

field gradient at site i. Laplace's equation demands that the

tensor V be traceless and symmetric.
'\,

In the presence of a large magnetic field, the Hamiltonian

4
becomes

H =
Q

) )

(1.12)

where n
i

is the asymmetric parameter defined by

n~ = (V -V )/V
~ i,xx i,yy i,zz

o ~ n :0: 1 (1.13)
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"

/Vzz / > IVxxl ~ IVyyl are the principle values of the electric

field gradient tensor. For axially symmetric nuclear surroundings

n vanishes, and

H .,
Q

(1.14)

where the quadrupole strength wQ,i is defined by

3eQiVi ,zz

1.6 Discussion

(1.15)

In general, the Hamiltonian of a spin system consists of four

parts:

(1.16)

In an isotropic liquid phase, all molecules undergo rapid

diffusion and rotation. Consequently, the anisotropic parts of

the interactions, such as dipolar and quadrupole interactions

vanish in the time scale of NMR; and only the isotropic parts

remain, namely,

1

H -hw
o

r (1-0. ) I +
1,ZZ i,zz

(1.17)

Molecules dissolved in an anisotropic solvent such as liquid

crystal are forced to align themselves in a preferential direction.

Although the molecules are free in translational motion, their

freedom of isotropic tumbling is impaired. As a result, the
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anisotropic interactions do not vanish though their strength is

generally reduced.

The dipolar interaction between solute molecules and liquid

crystal, or among solute molecules, vanishes due to fast diffusion.

Only intramolecular dipolar interaction remains.

For protons, the anisotropic spin-spin coupling J~;iSO is

negligible and HQ ~ O. The Hamiltonian is given by3

where

'" -+ -++ ~ D
i

.(3I
i

I. -1.'1.)
l<j J ,z J ,Z J. J

(LIB)

D•.
1.J

= - . ! <3 cos 2e -1>
2 ij

(1.19)

The coupling constant D
ij

in the laboratory frame can be expressed

in terms of the ordering parameters SaS's of the liquid crystal.

The coupling constants in the molecular frame can be expressed

3,5as

D..
J.J

2[S <3 cos 6 . -1>aa iJ,a

+ (S S ) < 26 26 >bb- cc cos ij,b-COS ij,c

(1. 20)
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and

= ! <3 cose eo>2 az cos Sz - as a,S = a,b, or c (r.2l)

where e is the angle made by the a-axis in the molecular frame
az

(with respect to the field direction).

The matrix S is traceless, symmetric, and has at most five

independent components. The number of independent elements

3depends on the symmetry of the molecule. For example, there is

only one element for the benzene molecule and methyl group. There

are two elements for the para disubstituted benzene.

The NMR study of partially oriented molecules in liquid

crystal allows us to obtain valuable information about molecular

structure by,measuring the dipolar coupling constants that depend

on internuclear distance and relative orientation. This informa-

tion is generally not available by an NMR study of molecules in

the liquid or solid phase.
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II

THE DENSITY MATRIX AND FICTITIOUS SPT~ OPRR_ATORS

2.1 Density matrix

For a given quantum mechanical system, any pure state I~>

is a superposition of all the eigenstates Ii>,

11Ji> =[ <j Ii>. i
1

(11.1)

The expectation value of a physical observable operator A

at that state is given by

(11.2)

*where Pij = aia
j

. The diagonal element Pii of the density matrix

is the population at state Ii>. The off-diagonal element P
ij

describes the phase relation between states Ii> and Ij>.

In general, the Hamiltonian of a system consists of two

parts, the static Hamiltonian HO(t) and the fluctuating Hamiltonian

Hl(t). In most cases, the time dependent Hamiltonian HI (t) is

much weaker than the static Hamiltonian and can be treated as a

small perturbation.

By using a high temperature approximation (Sl IHI I « i) which

is generally true for a spin system, the density matrix at thermal

equilibrium can be expressed byl

ex l-SHo (II. 3)
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where 13 = l/kT.

The density matrix p is diagonal in the basis set of theo

eigenvectors of the Hamiltonian H
O

• The irreversible fluctuation

Hl(t) drives the non-diagonal element of the density matrix toward

zero at a time constant characterized by the transverse relaxation

time. The non-equilibrium distribution of the population recovers

at a different rate--called the longitudinal relaxation time.

The equation of motion for the density matris is given by2

d
dt pet) = -i[H ,p(t)]

o
(11 = 1) (11.4)

where the time-dependent Hamiltonian Hl(t) is neglected. The

solution for the above equation is very simple and can be expressed

by

pet) = exp(-iH t) p(O) exp(iH t)
o 0

(II. 5)

2.2 Rotating frame

The concept of rotating frame that synchronizes with the

rotation of applied radio-frequency electromagnetic wave is

convenient to use.

In the laboratory frame, the rf field along the coil is

composed of clockwise and counterclockwise components. Only

the component that rotates in the same way as the precession of

nuclear spins is effective. The other component, which is off

resonance by 2w , can be neglected. This is the basis of the
o

rotating-wave approximation. The assumption is justified because

the strength of rf field is much weaker than the Larmor frequency w .
o
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Assuming U is a unitary transformation operator that

transforms the wavefunction ~ or the density matrix from laboratory

3frame to rotating frame:

or

then

d
-- P* = -i[H*,p*]dt

and

(II. 6)

(II. 7)

(II.8)

*H

(II.9)

where the asterisk mark is referred to the rotating frame.

The Hamiltonian of a spins system in the presence of an rf

field at frequency w is given by

where WI is the strength of the oscillating field.

(11.10)

Using an explicit form for the unitary transformation operator

U exp(-iwI t)z
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the Hamiltonian at rotating frame becomes

*H

= -6wI - w Iz 1 x (11.11)

where ~w is the frequency offset. The term with sin2wt oscillates

2at a very high frequency and is averaged to zero, and cos wt has

an average value of one half.

Evidently, the above expression shows that the effective

Hamiltonian at the rotating frame is time-independent, and that

the Larmor frequency w is reduced to 6w.
o

2.3 The effect of symmetry on density matrix

For a system of N coupled spin-l/2 particles, the density

matrix has a dimension of 2N x 2N. To characterize a general

quantum state for such a system, one needs to know 2
2N

_l matrix

elements. Even for a system of a small number N, such as benzene,

the number of matrix elements is quite huge. Fortunately, the

actual number of independent and non-zero elements is not so large

if the spin system possesses some kind of symmetry.

Let us assume that operator R corresponds to a sYmmetry

operation of the system, and that the operator leaves the Hamiltonian

invariant, namely,

Ho
(II.12)

or

[R, H ] = 0
o

OLD)
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We can then show that the density matrix will also commute with

The reasons are as follows. The density matrix at an

equilibrium given by

-BH -BHP = e o/Tr(e 0)
o

is invariant under operator R, namely,

-BRH R+ -BH
Rp R+ = e 0 /Tr(e 0)

o

(11.14)

Since the radio frequency Hamiltonian H
rf

has an A-type symmetry,

it also commutes with R. In the rotating frame, the density

matrix at an arbitrary time pet) given by

pet)
-it (H +H f)

= e 0 r p(O)
itCH +H f)o r

e

commutes with R, that is,

or

+R pet) R pet) (ILlS)

R P (t) pet) R (11.16)

The above equation can be expressed in a matrix form based on eigen-

vectors of R such as

or
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(11.17)

Thus PaS(t) = 0 if a and S refer to different eigenvalues of R,

that is, no off-diagonal elements of P will connect states of a

different symmetry.

As a result, the density matrix can be reduced to a simple

block form such as

(1) I I
P I 0 I 0

_ _ 1_ _ _ L _
I I

o I P (2) I 0

---l--- _.~

I I

o o (11.18)

where p(i) refers to i-th irreducible representation.

By using symmetry-adapted wavefunctions, we can greatly

reduce the task of evaluating a density matrix or diagonalizing

a Hamiltonian matrix.

We shall see later that no multiple quantum coherence exists

among states of different symmetry.

2.4 Two-level system and fictitious spin

The most simple and fundamental quantum system of physical
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interest is a two-level system. The system \nth a spin-1/2

particle in a magnetic field is a t)~ical example. Its density

matrix is given by a 2 x 2 matrix, and can be expressed by a

linear combination of an unit matrix and the other three Pauli's

2
matrices as follows

-+-+
p = 1/2(1 + p·o')

The Pauli's matrices are given by

(11.19)

(II. 20)

We can show that the Pauli's matrices are mutually orthogonal,

namely, Tr(O'.O'.) = 20
i

" where 0,. is the Kronecker delta function.
J. J J J.J

-+
The vector P describes the polarization and is given by

-+ -+
P = Tr(pO') (II. 21)

Any given quantum state is completely determined, except for an

overall constant phase, if the polarization vector is known. The

time-evolution of the polarization is governed by an equation of

motion for the density matrix or for the Pauli's matrices. Both

of these approaches are equivalent.

-+ -+
Usually, we will use a spin operator I instead of a. They

are related to each other by

-+
I

1 -+
-a
2

(II. 22)
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We can demonstrate this important commutation relationship:

[Ia,I
S

] = ily ' a,S,y in cyclic ordering.

-+
The motion for the operator I is given by Heisenberg's

equation

d -+ -+
- I = i[X,1]dt

where we use the usual convention h = 1.

(II. 23)

(II. 24)

Any physical observable can be expressed in terms of operator

-+ -+
I, and can be calculated by knowing the equation of motion for 1.

Since the operator I is so important, we shall discuss it in

more detail. Instead of a matrix representation, we may also

-+
express 1 in the second quantization operators for boson. For a

two level system, there are two states la> and Is>. We can define

the creation operator C; which creates a particle in state Ii>

out of vacuum.

in state Ij>.

The annihilation operator C
j

destroys a particle

+If we define a projection operator C.. as C.C., we
1.J 1. J

-+ 5
can express the operator I in terms of them as

1
1

(C S+C )
1 (la><SI + IS><al)=x 2 a Sa 2

i i
(la><SI - Is><ol)1 = - - (C -C ) = -

y 2 as Sa 2

1 1 (I a><a I - Is><sl) (11.25)1 = 2" (Caa-CBS ) =z 2

This approach was first devised by Schwinger.

We can expand Schwinger's ideas to include any N-level system.

Given a pair of states Ii> and Ij>, we can define fictitious
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spin operators in a similar way as

i'I J
Y

i
- -2 (Ci·-C, ,)

J J 1.

We may notice that

and that they are all hermitian operators. As ordinary spin

(II. 26)

(II. 27)

operators, the fictitious spin operators also follow a similar

communication relation:

a,S,Y in cyclic ordering. (II.28)

Since there are more than two states, the commutation relationship

of the fictitious spin operators among different states is also

important. They are listed below:

1)

2)

[1
ij

1
km

]a'S 0, if i, j I k, m

0, for any i, j, k, m

3)

4)

5)

6)

"km i im kj ik rid
[11.J ,1 ] = -2 (-O'k1 +0, I +0, I -O'k1 )

x Y J x 1.ID x Jm x 1. x
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7) [I
ij

I
km

]
i

( I
ij+ I ij _ I ij _ r ij )= -2y , z jk x im x ik x jm x

8) I ij + r jk + I
kp + ... + Ism + lInn = lin (II. 29)z z z z z z

The above equations are very useful. In particular, they are

frequently used for finding the commutation relationship among

generators of SU(3). These will be discussed in the next section.

The time-evolution of the projection operator CaB(t) is

governed by Heisenberg's equation, and is given by

-iw t
C B(t) = e-iHtla><B/eiHt = e as la><SI
a,

(II. 30)

where waS = w~-wS' wa and Ws are the eigenfrequencies of the

states la> and Is>. Consequently, the evolution of the

fictitious spin operators follows a simple relation:

I ij (t) = r ij
(0) cosw .. t rij (0) siIll.J.l .. t

x x ~J Y 1J

r ij (t) = rij (0) sinw .. t + rij (0) cosw .. t
Y x ~J Y 1J

I
ij

(0)
z

(II.31)

The transverse polarizations I ij and r ij rotate in the fictitiousx y

spin space at a frequency w.. (Figure 11.1). The dependence of
1J

the transverse polarizations of multiple quantum coherence upon

the phase shift ¢ varies for a different order of coherence as

follows:

i¢I z
e

-i¢Iz
e = I

ij
cos(m.-m.)¢ - I ij sinCm.-m.)¢

x 1 J Y 1 J



i¢l
z

e
-i¢l

lij e z
y

= lij sin(m.-m.)¢ + lij cos(m.-m.)¢
x 1J y 1J
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.(II.32)

Thus, n-quantum coherence has a phase shift by n¢.

2.5 Three-Level System

As we discussed previously, for any general n-1eve1 system,

the density matrix of the system has a dimension of n x n.

Because of the conservation of probability, the total population

among each state should remain constant. Consequently, to

completely specify a general quantum state of a n-level system,

we must know n2_l independent parameters about the system.

For two-level systems, the quantum state is completely

determined if we know their three polarization components. The

polarization is actually the expectation value of the Pauli's

matrices. Any physical transformation of a given quantum state

can be characterized by an unitary transformation U and is related

to the Pauli's matrices by6

U exp (i '\"' 0 . 8 . )
L 1 1

i 1,2,3 (11.33)

Mathematically speaking, the Pauli's matrices are generators of

the SU(2) group and U is a group element.

Generally in a n-level system, any physical transformation

is characterized by a group element of SU(n). The SU(n) group

2 6has n -1 generators. For each generator, it associates with a

parameter e. 2
Therefore, it needs n -1 parameters to completely

specify any general quantum state.
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z

w··
IJ

W..
IJ

Ii>

I j >

-<I>

y

< I IJ > =
x 2Rep..

IJ

<IIJ>=-2Imp..
Y I J

<IIJ> = P -p
Z i i j j

XBL 816-10418

Figure 11.1 Correspondence between the fictitious spin polarization

and the density matrix. The polarization in the fictitions spin

space precesses about the z-axis at the transition frequency. The

longitudinal and transverse polarizations correspond to the

population difference and phase coherence.
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In the case of a spin-l particle, such as the deuteron, it

is a three-level system. Using NMB_ techniques on deuteron, we can

7
explore many interesting properties of the SU(3) group. There are

eight generators in all. Our choice of these generators depends

on the physical situation and convenience. Usually the generator

-+-
set consists of three components of the spin operator I and five

components of the second-rank tensor T(m), where m = 0, ±l, and

±2. They have following commutation relations:
8

Ij(j+l)-m(m±l) T(m±l) j=2 (11.34)

The generators can be represented by matrices with states Im=l>,

!m=O>, Im=-l> as bases,

I (01Ix = 72'

o

I

o

1

I
z

o

o

o

o

-2

o

(II. 35)

o -1

T(l) " 13 (0 0
o 0

o

o

o
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and T(-m) = (_l)m~. All the above generators are traceless and

Tr((-l)m T(m) T(-m») = 6.

Another usual set of generators are fictitions spin operators

given by I
ij

, where a = x, y, z and i,j = 1,2,3. Their matrixa

representations are shown as follows:

12
I

x

1

o

o

1
= -

2

o

-1

o o

1
= -

2

o

o

1

123 1
z ="2

0 0 1 0 0 -1

(:
0 0

113 1 (0 0 0) 113 ~ .!. ( 0 0 0) 1
13 1 0 0)= - = -x 2 y 2 z 2

1 0 0 1 0 0 0 0 -1

(II. 36)

The above nine operators are not linearly independent, since

1
13 = 1

12 + 1
23

• Nevertheless, the remaining eight operatorsz z z

are linearly independent and form the complete set of generators

for SU(3). We can show that

1
4

(11.37)
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and that for all other combinations IijIlm are traceless, namely,
a S

o (11.38)

These fictitious spin operators are convenient for solving the

bl f k 1 i b
. 9pro em 0 wea , se ect ve pertur atl0n.

Many interesting NMR phenomena of spin-l system arise from

the peculiar properties of transforming these SU(3) generators.

Before exploring their peculiar transformation and commutative

relationship, we shall prove two important lemmas:

Lemma 1. If operators A, ~ and C satisfy the following relations

[A,B] iaC

[A,B] = -iaB

e
i8A B e,-i8Athen B cosa8 - C sina8 (II. 39)

-...._----....--"[A[A, ••• [A,B] ... ]]Proof:

e i8A B e-i8A
00

L
n=O

n times

(i8)n
-0---',.,- [A[A ••• [A,B] ... ]]

n.

=L
n=O

(even)

(i8)n
n!

(i8)n
n!

= B cosa8 - C sina8

Lemma 2. If operators A, B, C, and D satisfy

[A,B] iSaC

[A,C] = - iaD

[A,D] iaC
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then

ieA -ieA
e B e = B - BD(l-cosae) - Be sinae

Proof:

(II.40)

co

e ieA B e-ieA = B + L
n=l

(ie)n
n! [A[A ••• [A,B] ••• ]]

== B + 2.
n=l

(odd)

+ I.
n=2

(even)

= B - BD(I-cosae) - Be sinae

2.6 Transformation of fictitious spin operator

The transformation of the SU(2) group has a very special

property. If A, B, and C are its generators--as are Pauli's

matrices a , a and a --their commutation relationship is given
x y z

by

i
[A,B] = "2 c A, B, C, in cyclic ordering.

Using Lemma 1, we can show

-i8A
e B 8 C . 8= cos 2" - s~n 2" (II. 41)

The transformation of a state is only half the angle of the

spatial rotation. Consequently, a 2n pulse will change the

sign of the wave function and will not bring it back to its

original state. Actually this is a special property of a

spinor that is a half-rank tensor. We can show that the

following sets of operators generate their own SU(2) groups.
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These are subgroups of SU(3):

(1) T 12
1

23 T 13
.L

x ' X '
J..Y ,

(2) 1
12

1
13

1
23

Y , y , y ,

(3) 1
13

1
23

1
12

x ' x ' y

(4) 1
12

1
13

1
23

x ' x ' y

The following sets of operators however, generate 0(3)

5
groups (orthogonal group) that are also subgroups of SU(3)

(1) 1
12

1
12

112
x ' y , z '

(2) 1
23

1
23

123
x ' y , z '

(3) 1
13 13"

1
13

.I ,
x ' y z

They follow a different commutation relationship such as

and

[A, B] iC A, B, C, in cyclic ordering,

ieA -ieA
e B e B cose - C sine (11.42)

Unlike spinors, they make a full rotation and behave as ordinary

vectors.

2.7 Transformation of tensor operator

The transformation of a tensor operator is very important

in studying the NMR of spin-l system. Both quadrupole and dipole-

dipole interaction Hamiltonian consist of tensor operators of the
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second rank. They are bilinear operators in spin operators I ~
a

that is~ they are formed by the product of two spin operators.

Their transformation is completely different from vectors and

spinors. A tensor of second rank two has five components T(m)

with indices m = O~ ±l and ±2. The index m is the magnetic

quantum number. Because of the closure property of similarity

transformation~ a spatial transformation will change any component

into a linear combination of the five components.

Using the lemma 1 and the lemma 2~ we are able to show some

important transformations of the tensor operators.

e

(11.43)

(A)
-iSIx iSIx

e = T(O) + 16 (T(2)+T(-2)+16 T(O»(cos2S-I)
8

_ i 16 (T(I)+T(-I»sin2S
4

= T(O) l (3 cos 2S-I) _ i 16 (T(I)+T(-I)sin2S
2 4

+ 16 (T(2)+T(-2»(cos2S-l)
8

Proof: Because of follwoing commutation relations:

[Ix,T(O)] = 2 ~ (T(I)+T(-I»

[Ix, ~ (T(I)+T(-l»] = 2 ~ (T(2)+T(-2)+16 T(O»

[Ix, ~ (T(2)+T(-Z)+/6 T(O)] = Z ~ (T(l)+T(-I»

together with the lemma 2, it is easily proven.

We may notice that the angular dependece of T(O) is given

by the Legrendre polynomial PZ(cos8). It has a zero value at

the magic angle 8m = cos-l ~ ~ 54.74°.
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(B)
-iBIx

e

(11.44)

It can be proved by lemma 1; using the follow~ng relation,

e(C)
-iBI

x (T(l)_T(-l)) cosB-i(T(2)-T(-2))sinB

(11.45)

It can be easily proven by using a method similar to the

one used in (B).

(D)
-iBI

x
e

2r} (T(l)+T(-l)) cosaB-i i (T(2)+T(-2) + 16 T(O)) sin2BJ

(11.46)

(E)
-iBI

x
e

The above relations can be proved by using

(rr.47)
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and the lemmas land 2.

(F)
-i¢1

e z T(m) (11.48)

-is I
Y is equivalent to the

It can be proved using

The rotation about the y axis e
_iTI I -is I i TI I

transformation e 2 z e x e 2 z for any arbitrary rotation,

it can be characterized by several successive rotations about the

z and x axes. Consequently, we can obtain any transformation of

T(m) without too much difficulty. We shall use them quite often

in the study of spin-lattice relaxation of CD3 groups and deuterated

hexamethylbenzene molecules in solids.

2.8 Quadrupole echo in SU(2) space--an analogy to Hahn spin-echo

In a recent paper,7 the eight-dimensional spin space of a

spin-l particle is studied by NMR. It illustrates that the SU(3)

group has three kinds of SU(2) subgroups that transform under

rotation with the angles S/2, S, and 2S. The quadrupole echo that

follows a 90° - T - 90° pulse sequence is actually the behavior
x y

of the fictitious spin in the SU(2) space of rotation with angle

2S. In a typical Hahn spin-echo experiment in high-resolution

NMR, the pulse sequence 90° - T - 180° is used to refocus thex y

transverse magnetization that has dephased because of field

i h
. 10n omogenelty. In a powder sample of a spin-l system, the

dephasing mechanism is caused mainly by the distribution of

quadrupole splittings over all possible orientations. Because
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of the characteristic feature of a 2B-rotation in the fictitious

spin space, a 90° pulse is used instead of a 180° pulse to rephase
y y

the incoherence.

To illustrate this, let us consider the behavior of a spin-l

system in the rotating frame at the Larmor frequency. Followed

by a 90° pulse, a net magnetization is created along the y-axis
x

as is shown in Figure II.2(a). Each spin begins to precess at a

rate of w
Q

as described by

(II. 49)

Owing to the orientation dependence of wQ' each spin does not

precess at the same rate, and they begin to fan out as shown in

Figure II.2(b).

s ,
x

The effect of the second 90° pulse is to reverse
y

(II.50)

and is shown in Figure II.2(c).

The spins shown in Figure II.2(d) begin to refocus as time

goes on. At time T after the second pulse, all spins align

along the y-axis as shown in Figure II.2(e),

S = I
Y Y

(II.51)
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Sz , Sz
90;-pulse

Sy Sy

Sx (0) Sx (b)

Sz Sz
,+ 2,

Quadrupole Echo

'"
./ Sy Sy

Sx (d) Sx (e)

XSL 8C~-9::~

Figure II.2 Evolution of the fictitions spin in the SU(2) space of

rotation with angle 26 followed by a 90 0 -T-90° sequence is shownx y

as an analogy to the }~hn spin-echo experiment.



and a quadrupole echo can be detected.
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III

MULTIPLE QUANTUM NMR SPECTROSCOPY

3.1 Introduction

The conventional NMR spectra are usually obtained by a

continuous wave method
l

or Fourier transform of the FID following

2
a single pulse excitation. In both cases, the spectra consist of

allowed magnetic dipole radiation, that is, the transitions that

change the magnetic quantum number m by 1 or _1. 3

For the dipole-coupled spin system, the NMR spectrum is

generally very complicated, not well resolved, and sometimes

difficult to analyze. 4 To illustrate this, let us consider the

system of non-symmetric six dipole-coupled spin 1/2 particles.

The energy levels can be classified into several manifolds of

varying magnetic quantum number m as we have shown in Figure 111.1.

The multiplet inside the same manifold is caused by the dipole-

dipole interaction. The ordinary single quantum NMR spectrum is

very complicated and has about eight hundred transitions.

For a molecule with symmetric configuration, the number of

allowed transitions becomes fewer because of the additional

selection rule imposed by the symmetry of the molecule. For

example, the benzene molecule has a hexagonal symmetry with

5symmetry group D6h . The energy levels should be classified by

the magnetic quantum number m and also by the irreducible

representation of the symmetry group as shown in Figure 111.2.

Because of the additional selection rule, only the transitions

within the same representation are allowed. Consequently, the
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Figure 111.1 Energy level diagram of a non-s~etric six spin-l/2

system in a strong magnetic field. The multiplet splitting inside

the m manifolds is due to dipole-dipole interactions.
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Figure 111.2 Energy level diagram of proton spins in oriented

benzene. The energy levels are classified into six classes:

AI' A
2
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I
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I

, and E
2

, where the E
I

and E2 representations

are doubly degenerate.
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number of single quantum transitions is fewer and is approximately

seventy.

By examining the energy diagram of benzene t we can find three

important features of the multiple quantum NMR spectroscopy.

First of alIt the number of multiple quantum transitions becomes

6 7fewer as the number of quanta ~m increases '. There is only a six-

quantum transition between the state with all the spins up and the

state with all the spins down. There are two five-quantum trans-

itions and seven four-quantum transitions. Since the higher multiple

quantum spectra have fewer transitions t they are much easier to

analyze. We should notice that the highest multiple quantum transition

contains no information about the dipole couplings because the assoc-

iated states are image states and have the same dipolar shift. Gener-

ally speaking, the well-resolved multiple quantum NMR spectra provides

an easier way to study molecular structure and conformation.

Secondly, since we can observe forbidden transitions (non-single

quantum transitions)t more information about the couplings between

spins becomes available. It allows for a much more complete determ-

ination of the molecular structure. Besides t the measurement of the

spin-lattice relaxation time and the transverse relaxation time of

the multiple quantum transitions provides nore information about

8-10the dynamics of the system.

Thirdly, the zero-quantum transitions among the multiplet within

the manifold of the same magnetic quantum number depend on the

dipole couplings but not the Larmor frequency. Consequently they
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are independent of the external magnetic field and are free of

. . _. ... .. 11
1nhomogeneous t1eLO broaoen1ng.

3.2 Creation of multiple quantum coherence

Multiple quantum coherence is a non-linear process as in the

harmonic generation of a non-linear oscillator. The Zeeman coupling

between spins and the external field is a linear interaction.

Nevertheless, the dipole-dipole interaction and the quadrupole

interaction are all bi-linear and contain products of two spin

operators. They are responsible for the generation of multiple

quantum coherence.

When followed by a single strong pulse the FID Set) is actually

a correlation function of the spin operator I or I in time,x y

S (t) ( e -iHt I e iHt )= Tr I
x x

Tr(I (0) I (t))x x

(III.I)

Since Ix and I y are linear in raising and lowering oeprators 1+

and I that are single quantum operators, the FID Set) consists

of only single quantum coherence.

Evidently, a single pulse can excite only single quantum

transition. The simplest way to create a multiple quantum

coherence is achieved by employing two strong pulses with an

appropriate time interval. This allows the dipole-dipole inter-

action to mix the phase coherence.
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Although there are many possible ways to create multiple

quantum coherence, we shall direct our attention to the simplest way

of suing two pulses. Following two 90 0 pulses of x and x phases

with time interval (Figure 111.3), the density matrix in the

rotating frame is given by

xx 7T 7T 7T 7T
P (T) Z exp(-i-

2
1 )exp(-iHT)exp(i-

2
1 )1 exp(-i-

2
1 )exp(iHT)exp(i-

2
1 )

x x z x x

= exp(-iH T)exp(-i6wT1)I exp(i~T1 )exp(iH T)
yy Y z Y yy

= exp(-iH T)1 exp(iH T)cos6wT + exp(-iH T)1 exp(iH T)sin6w1
yy z yy yy x yy

- U (T)cos6wT + U (T)sin6wT
z x

(II1.2)

where H = -~I _+ H H = L D, .0I
i

I
j

-1..i,) is the secular
z zz' ZZ i<j ~J Z z ~ J

part of the dipole-dipole coupling Hamiltonian, 6w is the resonance

frequency offset, and

Hyy
7T 7T

exp(-i-2I)H exp(i-ZI) =
x zz x

-+ -+
D.. OI. I. -1,·1.)

i <j ~J ~y J Y ~ J
(III. 3)

Similarly, if the phase of the second pulse is y (Figure

111.3) the density matrix becomes

exp(-iH T)1 exp(iH T)cos6wT + exp(-iH T)1 exp(iH T)sin6wT
xx y xx xx z xx

where

- V (T)cos6w1 + V (T)sin6wT
y z

(I11.4)

Hxx

r -+ -+
L D

i
, (31

i
I. -l

i
0 1

j
)

i<j J xJx
(IIL5)
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90 0
90~ 90 0

x x xn r-- r-- I
I

T .. I I Sx( t)J T' I
I Sy(t)
I

PREPARATION EVOLUTION DETECTION

-
T

900

y-
t

XBL B04-9059

Figure 111.3 Pulse sequences for creation and detection of

multiple quantum coherence. The first two pulses establish a

phase relationship among eigenstates whose magnetic quantum number

may differ from unity. In the interval t, each multiple quantum

coherence oscillates at its own characteristic frequency. A third

pulse is applied at the end of the evolution period to transfer the

multiple quantum coherence into detectable single quantum coherence.

Signals S (t) and S (t) are detected by a quadrature detector.
x y
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Exp(±iH T) and exp(± iH T) are even-quantum operators thatxx yy

connect eigenstates with a difference in magnetic quantum number

by even number of .&n. As a consequence, U (T) and V (T) are even-z z

quantum operators. Conversely, U (T) and V (T) are odd-quantumx y

operators. As a special case of zero frequency offset, i.e., ~w =

0, pxx(T) and pXY(T) contain only even-quantum and odd-quantum

coherences. Even in the presence of an inhomogeneous field, we

can apply a TI pulse (Hahn-echo pulse) in the middle of the

preparation period to eliminate the frequency offset (Figure 111.4).

Consequently, by simply arranging the phase of the pulses, we may

be able to selectively create even-quantum or odd-quantum

coherences (Figure 111.4). Imperfection in the selectivity may

be caused by a deviation in the flipping angle from TI/2 in the

pulses.

3.3 Examples of spin-l and spin-3/2 particles

Our approach in the previous section can also be applied to

a isolated particle system with spin I ~ 1 because of the similarity

in the transformation by rotation between the quadrupole Hamiltonian

and dipole-dipole interaction Hamiltonian. Specifically, the

density matrices pxx(T) and pXY(T) are calculated in terms of

the fictitious multiple quantum transition operators.

The energy level diagram is shown in Figure III.sa. It consists

of three states 1m = -1>, 1m = 0>, and 1m 1>. They are denoted

by 11>, 12>, and /3> in sequence. Only two single quantum

transitions are allowed. The splitting is caused by quadrupole
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2

XBL 816-10415

Figure 111.4 Pulse sequence for selective excitation of even-

quantum and odd-quantum coherence. The phase of the 180
0

pulse

is arbitrary.
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Figure III. 5 Energy level diagrams of spin-l and spin-3/2 particles.

The Zeeman levels are shifted by the quadrupole interaction.
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interaction. We may observe that the double quantum transition

between 11> and 13> contains no information about the quadrupole

strength. It is free of quadrupole anisotropy in the polycrystalline

or glassy state. As a consequence, we may obtain a high resolution

double quantum spectrum of deuterons in solids. Thus ,information

about chemical shift can be obtained.

After the second 90 0 pulse of x and y phases the density

matrices are given by

(111.6)

+ 1:2 COS~WT{(I~2 + I~3) COSWQT - (I;2_I~3) sillWQT}

(111.7)

The multiple quantum transition operators are defined in

equation (11.26). The operator 1
13

describes the double quantum
y

coherence between states 11> and 13>. Its intensity depends on

the pumping period T. If we assume the condition of perfect field

homogeneity and exactly on resonance, or using a Hahn-echo pulse
-

as described earlier, the density matrices pxx(T) and pXY(T) have

pure even-quantum and odd-quantum coherence. The above result

also applies to the general dipole-coupled spin system.

(2) I = 3/2, H
Q

= d(3 I
z

2
-I(I+l))/3

The energy level diagram is shown in Figure III.5b. It
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consists of a quartet 1~=-3/2>, !m=-1/2>, jm=1/2>, /m=3/2>. They

are denoted by 11>, 12>, 13>, and 14> in sequence. There are three

single quantum, two double quantum, and only one triple quantum

transitions. Again, the highest order of multiple quantum transition--

the triple quantum transition--has a transition frequency independent

of the quadrupole strength.

The density matrices after the second 90° pulse are given by

(III.B)

13 24 . 2
- 13"(1 -I )sl.n dT}x X

12 34 2 12 34.+ cos6WT{!:3(I +1 )cos dT + 213(1 -I )sindT cosdT
y y X X

(nI.9)

13
The transition operators 1 ,

x
14quantum operators, whereas I and
x

113 124 and 124 are double-
y' x' Y
141 are triple quantum operators.
y

The allowed multiple quantum spectrum contains three single

quantum, two double quantum, and one triple quantum transitions.

The dipole-dipole coupling Hamiltonian of some molecules that

contain only I = 1/2 spins may look like a quadrupole interaction

Hamiltonian. For example, the eigenstates of methyl group contain
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10one quartet of A symmetry and two doublets of E symmetry. The

subsystem of A-symmetry quartet behaves similar to a particle of

I = 3/2; the other two doublets behave similar to particles of

I = 1/2. A second example of this is the system of an isolated

pair of spin 1/2 particles. The eigenstates consist of a triplet

and a singlet. The triplet behaves similar to a particle of I = 1

and the singlet behaves similar to a scalar particle without spin.

A third example is the system of tetrahedral group. It contains

one quintet, three triplets, and two singlets as quasipartic1es

of spin I = 2, 1 and O. The density matrices illustrated for

spins I 1 and 3/2 are applicable to those quasiparticle of

triplet and quartet. The calculation of the density matrix for

scalar particle and spin 1/2 particle is trivial and will not be

discussed.

3.4 Detection of multiple quantum coherence

The multiple quantum coherence created in the preparation

period oscillate at their own characteristic frequencies in the

evolution period (Figure 111.3) as shown in equation (11.31), and

IaSCt) laS laS .
coswaSt SlnW stx x y a

IaSCt) laS coswaSt + laS .SlUW st
Y Y x a

IaS(t) laS (111.10)
z z

where waS is the transition frequency between states la> and

Is>, i.e.,
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Dcx and D
S

are eigenvalues of the Hamiltonian H on states la>zz

and Is>. The offset term in above equation indicates that the

transition has a frequency offset 6n-quantum of n&u.

Since the multiple quantum coherence cannot be detected directly,

a monitoring n/2 pulse is usually applied at the end of the evolution

period. This transfers the multiple quantum coherence into an

observable single quantum coherence that is detected at time T'

after the monitoring pulse is shown in Figure 111.3.

Using the quadrature detection, signals are detected in x and

y channels such as S (t) and S (t). They are evaluated for bothx y

pulse sequences in Figure 111.3 as follows,

1) 90° - T - (90°) - t - 90° - T'
X ~ X

S (t) = L P~(T) pYx( -T ') exp(-iWaSt)x a,S Sa

S (t) r xx xx
exp(-iwcxSt)= PaS(T) PSa(-T')y

a,S

2) 90° - T - (90°) - t - 90° - T'
X Y X

S (t) = L P;(T) pyx(_T' ) exp(-iwaSt)x
a,S Sa

S (t) L P~~(T) xx( ') exp(-iwaSt)P -T
Y a,S Sa

xx xy
where PaS' PaS are elements of the density matrices in the

equations (111.8) and (111.9), and

PYX(-T') = U (-T') COS6WT' + U (-T') sin6wT'as x z

(IILll)

(IILl2)

(III .13)

Multiple quantum spectrum can be obtained by Fourier transformation

of S (t) and S (t) on variable t. Each order of multiple quantum
x y
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spectrum can be made in separate domains because the n-quantum

transitions have a frequency that offset n6w. 5 The higher order

of multiple quantum transition, however, may be broadened

substantially in the presence of an inhomogeneous field. A technique

that uses a TI pulse in the middle of the evolution period and also

uses a phase increment in the first two pulses to create an

artificial frequency offset, can remove the inhomogeneous broaden-

ing; meanwhile it preserves the ordering of each n-quanturn

transitions 7 as is shown in Figure 111.6.

The phase change ¢ of the first two 90° pulses in the

preparation period is equivalent to the rotation of the density

matrix by angling about z axis. It is given explicitly by

exp(-i¢I ) U (T) exp(i¢I ) COS6WT
Z Z Z

+ exp(-i¢I ) U (T) exp(i¢I ) sin6wT (111.14)z x z

where U (T) and U (T) are defined in equation (111.2). In derivingz x

the above result, the following relation is used:

The rotation of the operators U (T), U (T) about z axis byz x

angle 6¢ changes the phase of the multiple quantum operators in

proportion to its order m; that is, the m-quantum operator has a

phase change by m6¢ as shown in equation (11.32). This important

property allows us to selectively monitor and pump a particular

order of coherence.

Furthermore, it is used in the TPPI method to create a

fictitious frequency offset 6w = 6¢/6t, where 6t is the inverse
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I
I
I
I
I
I

k=O,I, .••• ,N-1

N = number of FI D

~ w = ~¢/~ t (Fictitious frequency offset)

XBL 816-10416

Figure 111.6 Time Proportional Phase 1ncrementation (TPP1) pulse

sequence. The phases of the first two pulses are increased in

proportion to the time interval in the evolution period.
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of the sampling rate in the evolution period. The selective

detection of a particular order n of a multiple quantum coherence

can be obtained by summing up n multiple quantum FID's with a

different phase shift ¢k = 2 kIn, k = 0,1, ... , n-l as shown in

Figure 111.7. Actually, besides the n-quantum spectrum, the other

harmonics, such as 0, 2n, 3n, etc., are also selected out. In the

above discussion, we did not take the relaxation process into

account. Practically, T and T' should be made shorter than T
2

and be of order of the inverse of the dipolar or quadrupole

strength.

Since the intensity for each multiple quantum transition is

individually dependent on the preparation and detection periods,

an ensemble average of the magnitude spectra is usually taken for

the different values of T and T'.

3.5 Experimental spectra of oriented benzene

Small molecules dissolved in an anisotropic solvent such as

liquid crystal at the nematic phase have characteristics of high

resolution NMR. Usually, the transition has a linewidth of

approximately a few hertz to a few ten hertz

Several molecules have been studied by multiple quantum NMR

. 6 12-13technlques. ' We, however, shall illustrate the prototype

6experiments on partially oriented benzene in particular. We

have chosen to examine the benzene molecule because of its simple

structure, high degree of symmetry, and reasonable number of spins.

The schematic energy level diagram is shown in Figure 111.2. The

energy levels are classified into several irreducible representations

of the symmetry group D6h . There are six different classes AI' A2 ,
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T t I ,I S<p (t)

°
9r 9l

n 90y

T t

I

,I S<p (t)
I

•
•
•
•
•
•
•
•
•
•

90 90<P + 7r 90y<Pn-I n-I

I I I
I

, t ,J I S<p (t)
In-I
I

S ( t) =
total

n-I

L S<p (t)
k =° k

XBL 816-10417

Figure 111.7 Pulse sequences to selectively monitor a particular

order of multiple quantum spectra. Many FID's with different

phase shifts ¢k = 2nk/n, k = 0, 1, ... , n-l are added.
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B
l

, BZ' El , and EZ' where states of E
l

and EZ representations

are doubly degenerate.

The ensemble-averaged magnitude spectra of multiple quantum

transitions are shown in Figure 111.8. The timer intervals T
l

and T
2

were set equal for several values between 9.6 msec and

10.7 msec. The r.f. frequency are set at 5.97 kHz off resonance

so that each order of the multiple quantum spectra is well

separated by the frequency offset. The multiple quantum transitions

of a higher order have a larger linewidth because of the field

inhomogeneity. During experimentation, we found that the linewidth

is linearly proportional to the number of quanta, that is, the

six-quantum transition has a linewidth six times larger than that

of single quantum transitions. Also, since they are independent

of field inhomogeneity the zero-quantum transitions have a very

narrow linewidth of only a few hertz. The spectral lines seen

in the figure are substantially broadened because of the FID

truncation.

Using the TPPI method, the field inhomogeneity in the spectrum

can be removed, and meanwhile retain the separation of the order.

The multiple quantum spectra of benzene obtained by the TPPI

method are shown in Figure 111.9. Several magnitude spectra have

been averaged for differentT (or T').
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n =1 n=2 n=3 n=4 n=5 n=6

theoretical (statistical)

Frequency (tow = 5967 kHz)

lBL 781·6770

Figure 111.8 Experimental and theoretical multiple quantum spectrum

of benzene with a three pulse sequence. The broadening of the

transitions in the top figure is caused by field inhomogeneity.
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Figure 111.9 Experimental and theoretical multiple quantum spectra

of benzene using the TPP1 pulse sequence. The inhomogeneous line-

broadening was removed by a ~ pulse in the middle of the evolution

period. The artificial frequency offset is created by phase

cycling.
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IV

RELAXATION OF MULTIPLE QUANTUM COHERENCE AND APPLICATIONS

4.1 Redfield's relaxation theory

The first phenomenological description of time evolution for

the spin system was proposed by Bloch, and is known as the Bloch

1equation,

d ~
-M =
dt

~

(M -M )k/Tlz 0
(IV.l)

This equation of motion describes the evolution of magnetization

~ ~

M in a strong magnetic field B. The transverse magnetizations

Mx and My decay at a rate of 1/T2 , and the longitudinal magnetiza­

tion M recovers back to its thermal equilibrium value M at a rate
z 0

of l/Tl . The Block equation fails to describe a general coupled

spin system. An accurate general approach using the density matrix

formalism is contained in Redfield's studies. 2 ,3

The Hamiltonian of a general system is composed of two parts,

a static part H
O

and a small fluctuating part Hl(t),

(IV.2)

The time-dependent term Hl(t) describes the random fluctuation

of the coupling between the spin system and the bath (or the

lattice). The fluctuation is an irreversible process which

relaxes the non-equilibrium distribution of population and the

coherence among spin states back to thermal equilibrium.

The equation of motion of the density matrix p for the system

is given by
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(IV.3)

In the interaction representation with

(IV.4)

and

(IV.5)

the equation of motion becomes

To the first order approximation, it can be shown

(IV.6)

* - *p (t) :::: p (0) + jr [H~(t·).P*(O)Jdt'
o

(IV.7)

*By substituting the density matrix p inside the commutator of the

equation (IV.6) and by using the above approximated form, we

obtain

d *
dt P

t

J * * *o dt'[HI(t), [HI(t'),p (0)]];(IV.8)

or, by introducing a new variable T = t-t'

d
dt

* * *-i[HI(t),P (0)] * * *[HI (t), [HI (t-T) ,p (0)]] . (IV .9)

We shall take an ensemble average of the above equation and

* *replace p (0) by p (t). It can always be assumed that HI (t) O.
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If the average is different from zero, it can be included into the

unperturbed Hamiltonian. In the case of a finite lattice

.. ..
temperature, we must replace P by P -PO where Po is the

density matrix at the thermal equilibrium,

3 4
The master equation of motion becomes '

B ... l/kT (!V.lO)

or

co

-JdT
o

-iH T
[e 0 Hl(t+T) (IV.II)

-iwaS PaS - ~ exp(i(w S-W 'S,)t)R "
a',S' a a etB,a B

(IV.12)

The relaxation matrix element R B 'B' is related to thea ,a

spectral densities of fluctuation by

where the spectral densities is defined by

, (IV.l3)

co

JaB,a'B' = J dT exp(-iwT) <aIHl(t)!S><B'!Hl(t+T)fO>. (IV.14)
-co
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If no other resonance frequencies of the system overlap the

transition waS' i.e.,

(IV.15)

the rapidly oscillating function exp[i(WaS-Wa'S,)t] can be

neglected. The equation of motion for the off-diagonal element

PaS that describes the phase coherence between states la> and

Is> is given by

(IV.16)

Here waS is the transition frequency between states la> and Is>.

The transition is characterized by a single exponential decay

rate RaS,aS.

If another transition frequency wa'S' overlaps the transition

waS' namely,

Iw S-W 's' I » R Q 's'a a a>J,a

the equation of motion for PaS is coupled to Pa,S' and

(IV.17)

(-iw -R ) P -R Pas as,aS as as,a'S' a'S'

(-iw -R ) P -R Pa'S' a'S',a'S' a'S' a'S',aS as
(IV.18)

By solving the secular equation, the complex eigenvalues correspond

to the new transition frequencies and decay rates.

The equation of motion for the diagonal elements describes the

spin-lattice relaxation and is given by



ddt Pa,a = - r. Raa,BS(PBS-PO,BS)
S

61

(IV.19)

Following a perturbation, relaxation of the populations towards

their equilibrium values is governed by a set of coupled differential

equations. Often, the spin-lattice relaxation is characterized by

several exponents.

We shall focus in this chapter on the transverse relaxation

of the multiple quantum coherence. The decay rate for a non­

degenerate transition between states la> and Is> is given by3,5

f
aS

= R
as,aS = ;2 [-2 Jaa,SS(O) + L Jya;ya(Wya) + L JyS,yS(WyS )]

y y

where

(IV.20)

I
---2 [J (0) + J SS SS(O) - 2 J 88(0)]2h aa , aa , aa,

and

(IV.2l)

L Jya;ya (wyo.) +
yi-a

(IV.22)

The first term is referred to as the adiabatic term--a

special characteristic of transverse relaxation. It does not

contribute to the longitudinal relaxation. It can also be

5expressed as
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00

rCO) =
as

1

2h
2 JdT [<'a! HI (t) Ia>-<S IHI (t) r>sr

_00

(IV.23)

The adiabatic relaxation involves the process that conserves the

Zeeman energy. It depends exclusive!y on the fluctuation of the

energy difference between the twc st~tes la> and Is>; it is also

known as the elastic process (Figure IV.I).

The second term (nonadiabatic term) is related to the lifetimes

5 6
t a and t

s
as states la> and Is> through'

(IV.24)

where

00

1 1 J r. <al H
l

(t) Iy><y IHI (t-T) fa>-= dT exp<iw T>
t h 2 y-:;S

ay
a

_00

00

1 1 J L <sIH
l

(t) h><y IHI (t-T) [S>-= dT exp<iwSyT>t
s h 2

y-:;S
_00

(IV.25)

The nonadiabatic term contributes to the linewidth of the finite

lifetime of states let> and Is> caused by the longitudinal relaxation

mechanisms. Because the nonadiabatic process involves changing Zeeman

energy, they are also known as inelastic process (Figure IV.l).

The nonadiabatic relaxation is dominant when the fluctuation

rate is close to the Larmor frequency or its higher harmonics.

Adiabatic relaxation, however, is dominant for a low fluctuation

rate. 2 2
In the extremely short correlation time when WOT c » 1, both
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Adiabatic Broadening

la>

1.8>

Life-time Broadening

1"(> I etc.

XBL 816-10419

Figure IV.l Transverse relaxation channels for the transition

between states la> and Is>. The broadening of a transition comes

from two sources--the adiabatic broadening (elastic process) and

lifetime broadening (inelastic process).
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relaxation processes are comparable, and T
l

, T2 are of the same

order of magnitude.

It can be shown that the relaxation matrix elements obey the

7
following identities:

R = R = RaB,a'B' aB,a'8' a'B',aB

Raa,oo

RaB,a'B' = RAaAB,Aa'B' (IV.26)

where A is the spin inversion operator. The nonadiabatic term of

relaxation rate elements follows a triangular relation

(IV.27)

Their value can be calculated from the conventionally selective T
l

measurement. There are, however, no similar properties for the

adiabatic term of the relaxation rate element. The value of spectral

densities for the adiabatic relaxation process can be determined

from the multiple quantum relaxation; a complete determination of

the relaxation matrix R becomes possible by using multiple quantum

techniques.

The time-dependent Hamiltonian HI (t) can generally be classified

into two categories. The part which is bilinear in the spin

operators represents the intradipolar interaction or quadrupolar

interaction. The part linear in the spin operators consists of an

anisotropic Zeeman interaction, and a dipolar or scalar interaction

with magnetic dipoles outside the considered system.
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The paramagnetic molecules of external impurities has unpaired

electron spin, and acts as a strong relaxation agent. The gyro-

magnetic ratio of electron spin is 658 times larger than the

proton spin. Since the relaxation rate is proportional to the

square of the electron gyromagnetic ratio, the relaxation of

electron spins is very effective with even a small amount of

impurities.

The dipole-dipole interaction between the electron spin and

the proton spin is given by6

where

I
= K L (_l)ID V(m) f(-m) (t)

m=-l
(IV.28)

and

K

I Vel)
z '

1
- r= I

yz + V(-l) 1 I=72 (IV.29)

The random fluctuation functions f(m)(t) are given by6

(IV.30)



66

Here the spherical harmonic functions of the second rank F (t)
m

are defined as

1-3
2

Fa = cos e

3 coseei ¢F
l = - - sin

2

3 Z Zi¢FZ = - - sin e e4

F = F*
-m m

(IV.3l)

Using the definition of the correlation function in the frequency

domain given by

co

G(m) (row
I

) = ~ JdT (_l)m f(-m) (t) f(m) (t-T) exp(-ilmJIT) , (IV.3Z)

-'X)

6we obtain

1

G(l)(w)
I

1

(IV.33)

Without losing generality, the dipole-dipole interaction between

the protons of the measured system and the unpaired electron can

be treated as a random local field. 6 ,8 It can be expressed as

r
m=O,±l

~ (_l)m Vl~m). f~-m)(t),(IV.34)
i
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+
where B

i
is the local field at the i-th proton site due to the

electron spin, and

+
- s] (IV.35)

"-
where Yi is the unit vector of Yi .

4.2 Relaxation of Weakly Coupled System

In the case of a weakly coupled spin system, the magnetic

quantum m of individual spin is a good quantum number. Any

eigenstate is a direct product of states for each individual

spin.

The longitudinal relaxation or the non-adiabatic relaxation

is completely determined from the life-time of states,
8

00

1 1 JdT L-= exp(iw T)
t 11 2
a rIa

ay
_00

00

1 J i: L L 112 2

11 2
dT exp(iw T) YI B . (t) B . (t -T)

yla
o.y

p,q i ,j
p,l q,J

_00

• <a II Iy><y II . Ia>p,i q,J

00

h
2
y 2 B .(t) B .(t-T)

I P,l P,lp,i
exp(iw T) ,

o.y L
1

=;!

2• <a II Iy> Ip,i
(IV.36)

Since only the autocorrelation function, B .(t) B .(t-T), ofp,l p,l
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-+
the random field B at nucleus p enters the above equation, no

p

information on cross-correlation is available from the measurements

(m -m ) em ~m )
a,p B,p a,q B,qL

p,q

of longitudinal relaxation rates.

The adiabatic relaxation rate is given by8

2
YI

2

00

J B (t) B (t-T)aTp,z q,z
(IV.37)

where m is the magnetic quantum number of nucleus p in thea,p

state la>.

For an allowed single quantum transition, characterized by a

flip of spin s, the only non-vanishing contribution to reO) isas
that of p = q = s, that is,

reO) =
as B (t) B (t-T)s,z s,z

(VI.38)

Consequently, information on cross-correlation cannot be obtained

from the adiabatic linewidth of the allowed transitions.

Nevertheless, the adiabatic linewidth of multiple quantum and

forbidden single quantum transitions depends on the cross-correlation

of fluctuating local fields between various sites. That valuable

information on cross-correlation can only be obtained from

multiple quantum relaxation measurements.

4.3 Relaxation of Strongly Coupled System

For a strongly coupled system, the magnetic quantum number for
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each individual spin is no longer a good quantum number. The

strong couplings mix the product of spin states. Usually, observable

single quantum transitions simultaneously flip polarizations of

several spins. Therefore, both longitudinal and transverse

relaxation of allowed single quantum transitions are influenced

by internuclear correlated fluctuation. Without a doubt, the

multiple quantum relaxation measurements provide more independent

. 6 8-11
informat10n on relaxation mechanism. '

We shall discuss in the following sections two systems of

dipole-coupled spins that are released by paramagnetic electron

spins. In both systems, the strong dipole-dipole interaction mixes

the spin states. The linewidth measurements of the multiple quantum

transitions allow a complete determination of the auto and cross-
, 6

correlated fluctuations.

4.4 Multiple quantum NMR and relaxation of an oriented CH
3

group

4.4.1 Introduction

We have been interested in the multiple quantum NMR of strongly

dipolar coupled spin-I/2 nuclei in oriented systems (solids and

liquid crystals). These illustrate the behavior of systems with

high symmetry--for example a CH3 group or benzene. Normally,

radiofrequency irradiation only can induce the transitions between

eigenstates that belong to the same irreducible representations of

the spin Hamiltonian. Relaxation by fluctuating random fields

may, however, induce symmetry-breaking transitions. The study

of n-quantum spectra and their relaxation should allow a complete

determination of the fluctuations, correlations, and symmetry­

breaking pathways.6 This provides a useful tool in combination
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with the elegant selective excitation and normal mode relaxation

12techniques in I-quantum spectroscopy that Werbelow and Grant

described. In the following sections we shall present an initial

study of the dipolar coupled 3-proton system (CH
3

group) which is

relaxed by paramagnetic impurities. The 1-, 2-, and 3-quantum

linewidths were studied over a w~de concentration range, and the

accurate linewidth ratios allowed us to determine that the

fluctuations are correlated and are a measurement of the correlation

. 6t1IDes.

Section 4.4.2 describes the n-quantum spectra of a dipolar

coupled CH3 group, and Section 4.4.3 provides a concise theory of

n-quantum relaxation for this symmetry group. Experimental results

and discussion are presented in Section 4.4.4.

4.4.2 Multiple quantum spectra of methyl group

The NMR spectrum of an oriented solute in a liquid crystal is

generally dominated by dipolar structure. It is caused by the

incomplete motional averaging-out of the intramolecular dipolar

interactions. The methyl protons of acetonitrile, for example,

have a C3 symmetry with the symmetry axis perpendicular to the

proton plane. The eigenstates can be classified by their symmetry

13
characteristics; they contain one quartet and two doublets. The

observable multiple quantum transitions connect the states of the

same irreducible representation. The energy diagram and the possible

multiple quantum transitions are shown in Figure IV.2. The eigen-

states are given by:
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XBL 796-10115

Figure IV.2 Energy level diagram of dipolar-coupled methyl

protons in a magnetic field. 6w is the frequency offset in the

rotating frame and d is the dipolar shift. The lower half shows

a stick spectrum of the multiple quantum transitions. The associated

relaxation rates f
ij

are related to their linewidths.
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11> = IA3/2> = Ittt>

12> I:: [Al/2>
1 ItH>+ ItH»= -cl-Ht> +

13

13> = lA_liZ> =~(It~~> + I~t~> + l~~t>)

14> I:: IA_3IZ> = I'H~>

15> = IE~/2> = 1:( ItH> + £lt~t> + £*I~tt>}
13

16> IE~lIZ> =~(I~~t> + £I~t~> *= + £ IH~»

17> = IE~/Z> = 1:( ItH> + £*1 Ht> + E:1~tt>}
13

18> IE~l/2> =~( I,Ht> + E:*I~t~> + £It~~» (IV.39)

where E: = exp(i1n/3).

The frequencies of the allowed multiple quantum transitions in

the rotating frame (resonance offset 6w) are listed in Table 4.1.

The method used to observe the multiple quantum spectra is the

TPPI method previously described in Reference 14. In this method,

the frequency offset 6w is created artificially by phase increments.

A theoretical stick spectrum is shown in Figure IV.2. The intensity

of each transition depends on the length of the preparation and

mixing periods of the multiple pulse sequence, dipolar coupling

strength, and real frequency offset.

The experimental spectrum shown in Figure IV.3 exhibits the

expected multiple quantum transitions. They are all separated

accordlng to order. Truncation of the multiple quantum free

induction decay limits the resolution. The actual linewidth is

less than 5 Hz.



Table 4.1

Allowed Multiple Quantum Transitions

Transition
Origin Frequency M

A1/ Z-A3/ Z 6w-Zd till=l

A_l / Z-Al / 2 6w single quantum
transition

A_3/ Z-A_l / 2 &u+Zd

a a
6wE_l /2-El /2

b b 6wE_l /2-El /2

A_l / Z-A3/ Z 26w-Zd till=2

A_3/ 2-Al / 2 26w+Zd double quantum
transition

A_3/ 2-A3/ 2 36w till=3
triple quantum

transition

73
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CH3CN in EBBA
n-Quantum ~-Separated Echo Spectra

(~~ ::a 7.8125 kHZ)

...... --l~ ... t J ~ J ~ ~ u~~.... -
2~w

Figure IV.3 Multiple quantum spectrum of oriented methyl

protons. It consists of three single quantum transitions,

two double quantum transitions, and one triple quantum

transition. Truncation of the multiple quantum free induction

decay limits the resolution. Inhomogeneous broadening was

removed by echoes in the TPPI sequence.

36w

XBL 796-10116
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4.4.3 Relaxation by paramagnetic impurity

The effect of the NMR line broadening by the addition of

small quantities of paramagnetic species to a sample was first

15
observed by Bloch and others. This effect was interpreted

as a fluctuating electron-nuclear dipole-dipole interaction.
16

Even at small concentrations, this mechanism can be more important

than intra- and inter-nuclear dipolar interactions because the

magnetic moment of an unpaired electron is of the order of 10
3

times larger than the moment of a nucleus. We predict that the

relaxation rate should be proportional to the concentration of the

paramagnetic impurity and the square of the effective magnetic

f h 1 h " 16moment 0 tee ectron on t e Lmpur~ty.

The dipole-dipole interaction between the unpaired electron

and the methyl protons is given by

(
1..s <1, .-;,)(s.;,))
-~--3 ~ J. ~

3 5
r, r,
~ ~

(Iv.40)

where Y
I

and Ys are the gyromagnetic ratios of the proton and

~

electron, The vector r. defines the position of the proton as
~

shown in Figure IV.4, If the concentration is low, it is legitimate

to expand the above expression in o/r. Using symmetry-adapted

. 17operators, we obta~n
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s

XBL 795-10117

Figure IV.4 Geometry of interacting methyl group and electron.

~

r. is the vector from the electron of the paramagnetic impurity
1

~

to one of the methyl protons. The vector r defines the center

position of the methyl protons triangle with respect to the

electron. 6 is the vector from the center of the triangle to

one of the protons.
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+ + ++ + + +
[(1 -o-)(S'r) + (1 'r)(S'o-)

]J ]J ]J]J

+ + + ++ (1 'S)(r'o-)]
]J ]J

(VI.41)

\o1here

I = l (I + A12 + A* 13), f = l (6 + A* 62 + A6
3

)
]J /31 ]J-V; 1

a b
]J = A, E or E for A *1, E: or E (1V.42)

The first term in the above equation contains only A symmetry

operators and connects states of the same irreducible representation

of the C
3

symmetry group. The second and third terms containing

Ea and ED symmetry operators, will violate the symmetry, and

cause symmetry-breaking relaxation pathways.

'~ithout loss of generality, the dipole-dipole interaction

between the methyl protons and the unpaired electron can be

18,19
expressed as a product of tensor operators.



L
m=O,±l

"=A E
a

E
b

~ , ,

where

= _hy
I

=

-+ -+r Ii Bi(t)= L
i=1,2,3 m=O,±l

i=1,2,3

(_l)m V (m) f- (m) (t)
II II
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(_l)m V. (m) f (-m) (t)
~ 1

(IV.43)

v (0) =
i

I V (1) =
i,z' i

1 (-1) 1
(Vi + i Vi ) and V. = - (V. - i Vi )12 ,x ,y ~ 12 ~,x ,y

(IV.44)

The symmetry-adapted form

transformation as we used

V (m) is related to V. (m) by the same
~ ~

in equation (IV.II). The fluctuating

-+ -+
local field Bi(t) experienced by the proton spin Ii' is produced

by the unpaired electron.

Two kinds of correlation functions are involved in our

discussion. These are the auto-correlation functions G (T) and
a

the cross-correlation function G (T) which are given by
c

(_l)m f. (-m) f. (n)(t_T)
~ J

= <5 G (m)(T)
mn a

<5 G (m)(T)
mn c

(Iv.45)

for i # j . (IV.46)

We can express the correlation function in terms of the molecule's

symmetry by
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(IV.47)

It can be shown that the symmetry-adapted correlation function

is closely related to both the auto-correlation function and the

cross-correlation function by

G (m)(T) + 2 G (m) (T) iflJ = Aa c
G (m)(T) =

lJ
G (m) (T) _ G (m) (T) a b

iflJ E ,E .(IV.48)
a c

and

The transitions between states ( Al / 2 ,A_l / 2), (E~/2' E~1/2)'

b b
(El / 2 , E_l / 2) have the same frequency. The decay of the

coherence for these degenerate transitions is generally non-

exponential and complicated. The decay rates for the non-

degenerate multiple quantum transitions are evaluated and given

as follows:

h 2r = l J (0) + l J (1) + JEa(l)
14 2 A 2 A

h 2r = l J (0) + 2 J (1) + l J (0) + l J (1)
24 3 A 6 A 3 E

a
3 Ea

h 2r = l J (0) + 2 J (1) + l J (0) + l J a(l)
34 6 A 6 A 3 E

a
3 E

(IV.49)

The spectral densities are related to Fourier transformations

of correlation functions by



J (0) =
A

2 G (0)(0) (1+2~)
a

,
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where

J (1) = 2 G (l)(w ) (1+2EJ
A a I

(0)
J b (0) 2 G (0) (0) (1-0J a = =

E E a

J a(l)= J b (1) = 2 G
a

(1) (WI) (1-0
E E

(IV. SO)

t.: = G (0) /G (0)
c a

= G (1) /Ga (1)
c (IV.Sl)

and wI is the Lamor frequency of the proton. The asymmetry

parameter (or correlation parameter) t.: is a measure of the extent

of the symmetry-breaking relaxation (Figure IV.S).

(1) Completely correlated fluctuation, t.: = 1.

In this case each proton in the methyl group experiences the same

field produced by the unpaired electron. It implies that the

auto-correlation function and cross-correlation function be

equal, namely, t.: = 1. We readily obtain

G (m)(T) =
A

3 G (m) (-r)
a

G b(m)(T)
E

o (IV.52)

The allowed relaxation channels are those transitions that

conserve symmetry.

(2) Completely uncorrelated fluctuation, t.: = o.

In this case each proton spin is relaxed independently by the

electron. The inter-symmetry-crossing relaxation is allowed and

the cross-correlation function vanishes; namely,
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A

m

- 3/2

- 1/2

1/2

3/2

€ . . + I) JI (Wo )
J,J-

j = i, k
XBL 813-8694

Figure IV.S Possible relaxation pathways for the triple-quantum

transition. The spectral density of A-type (symmetry-conserving)

corresponds to relaxation among states of the same symmetry.

Spectral densities of Ea or Eb-type (symmetry-breaking) correspond

a
to relaxation between the states of A-symmetry and states of E

b
or E -symmetry.



G (m)(T) =
A

G a (m) (T)
E

G (m) (T)
a
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(IV.53)

(3) General case.

The ratios of the decay rates of multiple quantum coherences

depend on the asymmetry parameter ~ and the ratio of G
a

(0) IGa(l)Cw
r
)

(which depends on the correlation time T of the fluctuation and
c

the Lamor frequencies wI' Ws of proton and electron). As we

evaluated in an earlier section, the correlation functions are

given by:

G (0) (0) =
a (IV.54)

G (l)(w )= G (-l)(w ) =
a I a I

where

T
c

1

(IV.55)

The dependence of the decay rates on the concentration of para-

magnetic impurity is through the average distance between the

electron and methyl proton.

The ratios of the relaxation rates (independent of the

concentration of impurity in the experimental range) provide a

measurement of the correlation time and the asymmetry parameter.

To illustrate the sensitivity of the n-quantum relaxation to

the fluctuation model, the ratios of the decay rates are shown

for three extreme cases that are classified by the value of T .c



(a)
2 2

Short correlation time limit, W T «1.
s c
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The ratios of decay rates is given by

f 14 3 (l+fJ
f

12
= 2+~ (IV.56)

Their dependence on ~ is indicated by the two curves A and A'

in Figure IV.6.

(b)
2 2

Long correlation time limit, WIT
c

» 1.

In this case, we have

(IV.57)

(c)

The dependence of the ratios on ~ is indicated by the two

curves Band B' in Figure IV.6.

2 2 2 2
Intermediate case, WrT

c
« 1 , WsT

c
» 1.

The ratios are given by

f 14 _ 21 + 24~
f 12 - 13 + 6~

f 13 _ 17 + 14~
f 12 - 13 + 6~

(IV.58)

Their dependence on ~ is indicated by the two curves C and

c' in Figure IV.6.

4.4.4 Experimental results and discussion

4.4.4.1 Samples and spectrometer

Experiments were done in a field of 42.5 KG provided by a

Bruker superconducting solenoid. The corresponding operating

frequency for protons is 185 MHz. The pulsed r.f. power of 200

Watts generated by a tuned transmitter, produced a rotating field
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Fig. IV.6 The ratios of relaxation rates of double and triple quantum

case,

coherences to single quantum f
13

/f
12

and f
14

/f
12

depends on the corre­

lation factor ~ and the correlation time T. Curves A and A' show the
c

2 2
case of short correlation time limit, W T «1. Lines Band B' show

s c

the case of long correlation time limit, W~ r~» 1. The intermediate

w2
T

2 « 1, t} T
2

» 1, is shown by curves C and C'.
I c s c
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of 20 G in a solenoidal coil of 8 rom in diameter. Samples of

acetonitrile (~ 12% in mole) dissolved in EBBA (p-ethoxy-benzylidine

n-butylaniline), with different concentrations of di-t-butyl-

nitroxide (DTBN) radical, were observed over a range of temperature

21.5° ~ 23.0°C. The temperature was controlled by a feedback

system within ± 0.1°. The change of the observed dipolar

splitting by temperature fluctuation caused linebroadening by

an amount less than a few hertz.

4.4.4.2 Pulse sequence

Multiple quantum transitions were observed by using the

14
TPPI-Echo method. The line broadening by field inhomogeneity

(~ 1 ppm) was removed by the echo pulse
20

during the evolution

period of multiple quantum coherences as we have shown in Figure

IV.7. An artificial frequency offset was created by the phase

increment of the first two 90° pulses relative to that of the

third 90° pulse. When the r.f. phase is incremented by ¢, the

n-quantum transitions "see" this as n¢.15,16

4.4.4.3 Spectra and results

The linewidths of multiple quantum transitions for a given

concentration of DTBN were measured by taking the averages of

the particular linewidth of spectra obtained from various T

ranging from 250 wsec to 500 wsec, Four typical spectra with

different concentrations of DTBN are shown in Figure IV.S.

The full widths at half height of each transition, related

to the relaxation rate by fin, were found to vary linearly with

respect to the concentration of the impurity as is shown in Figure
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Figure IV.7 The TPPI-Echo pulse sequence is used to remove

inhomogeneous line broadening, and to restore the frequency offset

by the time proportional phase increnent. The artificial frequency

offset is merely the rate of phase increment. The time during the

period of preparation and mixing is set to be 250 ~sec ~ 500 ~sec.

The multiple quantum spectrum is obtained by a Fourier transformation

of the signal in time domain t.
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XBL 796- 10114

Fig. IV.8 The relaxation rates of multiple quantum coherences depend

on the concentration of the paramagnetic impurity. Shown are illus-

trative multiple quantum spectra with different concentrations of DTBN

in mole per cent. The frequency offset ~w/2TI is 7.8125 KHz.
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IV.9. Their relations are given by linear fits:

r
12

r
34 (336 ± 5)[C]Sec

-1= =

r13
r24 (565 ± 10) [C]Sec-1=

r
14

(850 ± 90)[C]Sec-1=

where [C] is the concentration of DTBN in mole per cent.

The ratios of the decay rates r14/r12 and r13/r12 are then:

4.4.4.4 Discussion

We shall now compare the various models of correlation time

T and correlation parameter ~ (Figure IV.6) with these data.
c

Th d 1 . h h d·· 2 2 1· 1 1 1 de mo e w~t t e con ~t~on W T« ~s comp ete y ru e outs c

since it predicts (Curves A and A' in Figure IV.6)

for ~ = 0-1.

Similarly, T~W~ » 1 is not possible since it predicts (Curves B

and B' in Figure IV.6)

for ~ 0-1,

By looking at Curves C and C' in Figure IV.6 we see that the
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Fig. IV.9 The linewidth of multiple quantum transitions is linearly

proportional to the concentration of DTBN. The ratios of the relax-

ation rates can be determined accurately by measuring the ratios of

the slope.
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data fits quite well with the assumption that W2T2 » 1 and
s c

2 2
WrT

c
« 1 with ~ = 1. This predicts:

~ = 1.

f 14 /f 13 = 2.37

The fit can be made very good by keeping ~ = 1, but

2 2 -1
y = (l+W

I
T

c
) = 0.91 ± 0.04. With these values we find

-10T = (2.7 ± 0.6) x 10 sec.
c

The conclusions that ~ = 1, namely, that a complete

correlation in the fluctuation is not unreasonable, since T ~
c

-1010 sec; whereas the rotation time for the CH3 group (permuting

the proton positions) is of the order of 10-12 sec. In additiDn,

the average-distance between the electron spin and the methyl

protons is much larger than the dimensions of the methyl group.

Simple geometric calculations (using ely), predict that the

extent of symmetry breaking transitions should be less than 1%.

Thus we see that the measurement of n-quantum relaxation indeed

gives a very sensitive measure of correlation and correlation

times.

4.4.4.5 Summary and comments

In a system of strongly coupled spins, we have shown that

the longitudinal and transverse relaxation of normal single

quantum transitions usually provides information about inter-

nuclear correlation functions. They alone, however, are not

adequate to determine the relaxation mechanism characterized by

a number of auto- and cross-correlation functions. The
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advantages of using multiple quantum spectroscopy to study

relaxation effect have been illustrated by the system of oriented

actionotrile in a liquid crystal matrix containing paramagnetic

impurities.

We estimate that the broadening of linewidths of paramagnetic

impurity becomes dominant over those by intra- and inter-proton

relaxation if the molar concentration of paramagnetic impurity is

larger than 0.01%. The estimated contribution of linebroadening

by symmetry-breaking channels is rather small «1%), even with

molar concentrations as high as 35%.

The presence of the echo pulse during the evolution period

of multiple quantum coherences reverses the magnetic quantum

number m, and changes the density matrix element PaS into Pa'S'

where la'>, Is'> are mirror-imaged states of la> and Is> by

reversing m. The associated dipolar splitting and relaxation

rates, however, remain unchanged.

We shall now point out some features of completely correlated

fluctuations. The adiabatic term of the relaxation rate, originated

from the elastic scattering (energy-conserving) processes, can

be written as

r (0)
as 1 J (0)(0) (m

N
-m

S
)2

2h2 A u

(IV. 59)

It has a simple quadratic dependence of the decay rate on the

number of quanta. In the case of a long correlation time limit

(W~T~ » 1), the non-adiabatic contribution by inelastic scattering

processes becomes negligible. The linewidth of n-quantum
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coherence depends on N quadratically. It is a general property

of the case of completely correlated fluctuations but does not

refer particularly to the system of methyl protons. As the

correlation time becomes shorter, the non-adiabatic contribution

becomes as important as the adiabatic term. The non-adiabatic

term can be found by evaluating the lifetimes of the associated

states.

The expression of the adiabatic term in the case of completely

uncorrelated fluctuations is generally complicated. There is,

however, a simple relation if either la> or Is> is the highest

or lowest state. In this case, the adiabatic term linearly

depends on the number of quanta of the multiple quantum coherence,

such as:

r (0)
as (IV.60)

For a system of N coupled spins, the non-adiabatic term has a

simple form in the case of completely uncorrelated fluctuations:

r'as (IV.61)

Because each spin relaxes independently, it contributes to the

decay rate equally.

There is only one transition between the state with all

spins up and the state with all spins down. The adiabatic term

of its linewidth depends on the number of quanta quadratically in

the case of completely correlated fluctuation, and linearly in
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the case of completely uncorrelated fluctuations.

4.5 Multi"le nuantum NMR and relaxation of two s

In the previous multiple quantum NMR study of an oriented

methyl group relaxed by paramagnetic impurities, we found that

the fluctuating magnetic fields at each site of methyl protons

are correlated.
6

The dominant relaxation mechanism is caused by

the A-type fluctuation that conserves the symmetry of the spin

states. The relaxation caused by the fluctuation of symmetry­

breaking types Ea and E
b

is negligibly small.

We have studied the multiple quantum NMR of two coupled

methyl groups at room temperature. The experiments showed no

evidence of correlated motion between them in the time scale of

a millisecond,. that is, two methyl groups rotates quite

independently. 21

We shall demonstrate the application of multiple quantum NMR

to the study of two dipole-coupled methyl groups in the presence

of paramagnetic electron spins. The measurements of the transverse

relaxation time for four, five, and six-quantum transitions allow

a complete determination of the fluctuation spectral densities

and relaxation pathways.

As shown in Figure IV.lO, each of the two methyl groups

experiences a fluctuating magnetic field that is produced by a

distant electron spin. Since the methyl group rotates very

rapidly at a rate of 10
12 HZ, the protons of same group feel an

equally fluctuating field. This assumption is reasonable and has

been verified by our previous experiments on the multiple quantum

6study of an methyl group. Although each methyl proton of the
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s

XBL 811-7663

Figure IV.lO Geometry of two methyl groups. The electron spin

S produces a large random field at each site of the methyl groups.
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same group experiences the same field, the fluctuating field at

the site of different groups may not be equal. Different degrees

of correlation between these two fluctuating magnetic fields Bl (t)

and B2 (t) affects the linewidth of the multiple quantum spectrum

differently.

The interaction between the methyl protons and the magnetic

field produced by the unpaired electron is given by the time-

dependent Hamiltonian Hl(t) as

H(t)=-hy
1 I

~

'­i=1,2,3
r

i=4,5,6

(IV.62)

-+ -+
We may rearrange the functions Ii and Bl ,2(t) in terms of the

symmetry-adapted form to read

-+ -+ -+ -+
- h Y I·B - h YI I ·B

I g g u u

L
m=O,±l

=g,u

(IV.63)

-+ -+
where B is the symmetrized function, B is the anti-symmetrized

g u

function

-+
B (t)

g

(IV.64)
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and

v (0) =
).1

I
).1,z

v (1) =
).1

. 1
- - I12 ).1,+

V (-1) = 1:.-. I . (IV. 65)
).1 12 ).1,-

The fluctuating function

f
(m) = - h Yr B).l Un) (t)

).l

is related in a similar way to f (m) by
i

f.
(m) = -fly B. (m) (t)

l. I l.

(IV.66)

(IV. 67)

There are two distinctive kinds of correlation function-­

the autocorrelation function G (m)(T) and the cross-correlation
a

function G (m)(T).
c

They are defined by

f. (-m)(t) f. (n)(t_T) =
l. 1.

f (-m)(t) f (n)(t_T) =
i j

o G (m)(T)
ron a

o G (m) (T)
mn c

for i :f j. (IV. 68)

We can introduce the symmetry-adapted correlation function G(m)(T)

as

o 0 fG(m)(T)
mn ).1).1 )J

(IV.69)

The function G (m)(T) is closely related to both the autocorrelation
)J

function and cross-correlation function by

r' (m)/~\ _ 1:. r' (m) ( \ + ; G
c

(m)(T)

[
\J \'J - \J TJ

g 2 a

G (m)(T) = 1:. G (m)(T) - 1:. G (m)(l) (IV.70)
u 2 a 2 c



97

In the case of a completely correlated fluctuation, the fluctuating

magnetic fields at both methyl groups are equal and correlated.

The autocorrelation function is thus equal to the cross-correlation

function, hence, the antisymmetric correlation function G (m)
u

vanishes. If the fluctuating fields at each methyl group are

completely uncorre1ated, the cross-correlation term should be an

identical zero. In this case, the symmetric correlation function

G (m) is equal to the anti-symmetric correlation function.
g

Generally, there are four different fluctuation spectral

density functions: G (0)
g

G (1) G (0) and G (1). To completely
g , u' u

determine their values and the relaxation pathways, we should at

least measure the linewidth of four different multiple quantum

transitions. We shall calculate the 1inewidth for the two

satellite four-quantum transitions, one satellite five-quantum

transition, and the central six-quantum transition. The four

above transitions are all of A -type.
g

By using the expression for relaxation rate in the equation

IV.20 and the fluctuation Hamiltonian in the equation IV.63, we

can calculate the decay rates for the nondegenerate multiple

quantum transitions. Their values are given as follows:

(1) six-quantum transition A (-3) - A (3)
g g

= 18 J (0)(0) + 3 J (l)(w ) + 3 J (l)(w )
g g I u I

(IV.7l)

(2) five-quantum transitions A (-2) - A (3), A (-3)- A (2)g g g g

h2rs = 2{ J
g

(0)(0) + ~l J
g

(1) (wI) + ~ J
u

(0)(0) + ~ J
u

(1) (wI)

(IV.72)
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- A (3), 2A (-1) - A (3).
g g g'

(3) four-quantum transitions lA (-1)
g

A (-3) - lA (l)t A (-3) - 2A (1)g g g g .

h2r
4

= 8 J
g

(0)(0) + ; J
g

(1) (w
r
) + J

u
(0)(0) + ; J

k
(1) (wI) .(IV.73)

Since there are two kinds of fluctuation G and G , we need to
g u

consider only two types of symmetry representations, A and A .
g u

To illustrate this, the relaxation channels for the six and five-

quantum transitions are shown in Figure IV.ll.

Expressing the decay rate for the two four-quantum transitions

is very complicated. It depends on the strength of the dipole

couplings. If we change to a different sample, the dipole

coupling will also change. As a consequence, we cannot study

the effects using different concentration of impurities. Neverthe-

less, we can show that the average value of the decay rates for

the two four-quantum transitions does not depend on the strength

of dipole couplings. Its value was given in the previous rate

equation.

It is reasonable to assume that the ratio between G (m) and
c

G (m) is characterized by the same correlatin parameter S as
a

G (0) IG (0)
c a

= G (1) IG (1)
c a

(IV.74)

We can rewrite the equations for the relaxation rates as

r
h 2r 18 G (O)(l+~) + 6 G (1)

6 a a

h 21' = (13 + , ?nr:. (0) + (8 + 30G
(1)

l
. 5 ...... _'-;10/'-'a a

h 2r = (9 + 7.;)G (0) + 9 G
(1)

4 a a
(Iv.75)
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Figure IV.II Relaxation channels for 5 and 6-quantum transitions.

Pathways which connect the A and A states are caused by
g u

antisymmetric fluctuations. Symmetry-conserving relaxation

channels are caused by symmetric fluctuations.



The explicit expression

been shown in equations

of G (0) (0) and G (1) (WI)
a a

(IV.54) and (IV.55).

100

has already

We shall illustrate the dependence of the relaxation rate

on the correlation parameter ~ by using three extreme cases.

(a) Short correlation time, w~L2 « 1.
s c

In this case, one has G (0) = G (1) and
a a

f 6 _ 24 + l8~
1'4" - IS + 7f.,

rs 21 + lS~
f
4

= 18 + 7f., (IV.76)

Their dependence on ~ is indicated by the two curves A and

A' in Figures IV.12 and IV.13.

2 2
(b) Long correlation time, wILc » 1.

In this case, we have G (1) « G (0) and
a a

f 6 18 + l8S
f

4
= 9 + 7f.,

f 5 13 + l2~
r~ = 9 + 7~

(IV. 77)

Their dependence on ~ is shown by the two curves Band B' in

Figures IV.12 and IV.13.

(c) Intermediate case,
2 2

« 1, 2 2 » l.wILe W L
S c

f
6 90 + 72S

f
S 76 + 57[,

-= -=
f 4 63 + 2St;; f 4 63 + 2St;;

(IV.78)

Their dependence on ~ is indicated by the two curves C and C' in

Figures IV.12 and IV.13.

From the 1inewidth measurements of four, five, and six-quantum

transitions with different concentrations of paramagnetic
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RATIO OF RELAXATION RATES
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Figure IV.12 Ratios of relaxation rates of 6-quantum coherence

to 4-quantum coherence. r
6
/r

4
depends on the correlation factor

E, and

short

the correlation time T. Curves A shows the case of the
c

1 , . 1" 2 2 1 C B h hcarre atlon tlme lmlt, W T « • urves sows t e
s c

2 2
case of the long correlation time limit, WrT c »1. The

'd' 2 2 1 2 2 1 hlnterme late case, WrT
c

« , WsT
c

» , is s own by curve C.
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RATIO OF RELAXATION RATES

r5 /r4
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Figure IV.13 Ratios of the relaxation rates of S-quantum

coherence to 4-quantum coherence. f
S
/f4 depends also on the

correlation factor ~ and the correlation time T. Curves A',
c

B', and C' show the case of the short correlation time limit,

long correlation time limit, and intermediate case.
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impurities, we can determine the ratios of the decay rates more

accurately. The degree of the correlated fluctuation can be

calculated from the experimental measurements of these ratios.

By knowing the correlation factor ~, we can completely determine

the relaxation pathways.

4.6 Relaxation by an external random field

As we have pointed out in the earlier discussion of the

completely correlated fluctuations, the adiabatic part of the

relaxation rate is given by

reO) =as
1

2h 2
(IV.79)

2
For a n-quantum transition, the adiabatic relaxation time is n

, f h h f'l ,.6t~mes aster t an t at 0 a s~ng e quantum trans~t~on.

This interesting phenomena can be verified by irradiating

external random electromagnetic waves at audio frequency. The

nuclear spins couple to the fluctuating magnetic field that is

produced by a tuned coil along the z-axis; its interaction

Hamiltonian is given by

- h Y
I

( L I. )B (t)
i ~, z z

(IV.80)

The fluctuating magnetic field at audio frequency can be produced

by a noise generator. The power level and the band width of the

noise can be controlled by an amplifier and an audio frequency

filter.

Since the non-adiabatic part of the relaxation is very small,

the transverse relaxation rate is completely determined by the
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6adiabatic process, and

1
=--

2h Z (IV.81)

The linewidth of multiple quantum transition has a simple

quadratic dependence of the decay rates on the number of

quanta.

-1
By changing the width of the filter that corresponds to T

c

and the amplifier gain for the noise generator, we can system­

atically vary the spectral density of fluctuation JACO)(O). From

the linewidth measurements of the multiple quantum transition,

the quadratic dependence can be testified.
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V

MULTIPLE QUANTUM ~ll1R STUDY OF CORRELATION OF TWO METHYL GROUPS

5.1 Introduction

Molecules having two rotating groups may show coupled

motions. An interesting question for us to consider is the

characterization of conformation and correlated motion of

molecular groups which are sterically hindered. For example,

two adjacent methyl groups may exhibit some degree of correlated

motion as do two wheels in gear. The coupling of rotational

motion is very difficult to measure by microwave spectroscopy.

Although the traditional single quantum NMR can yield some

information about the molecular conformation and correlated

motions, the spectra obtained may sometimes be complicated and

difficult to analyze.
l

In this chapter, we shall demonstrate the application of

multiple quantum NMR technique to the study of the potentially

correlated motion of two adjacent methyl groups in the same

2
molecular framework.

We shall show that four-quantum spectrum is sensitive to the

two-body correlations and distinguishes simply between the cases

of uncorrelated and correlated motion.
2

The two-body correlation

also reveals in other lower order spectra, though their complexity

in the spectrum makes the assignment difficult. The number of

four-quantum transitions (five expected for uncorrelated and

seven for correlated motion) provides a ready test of the limits

for two methyl groups.
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We shall also discuss the intermediate case, namely, when the

inverse of the correlation time of gearing motion is comparable

to the dipole coupling strength.

We should expect that the two distant methyl groups will rotate

or reorient independently. Yet, if we bring these two groups

closer, their mutual interaction will force them to move in a

copperative way. This kind of correlated motion is very interesting.

We shall see how the correlated motion affects both molecular symmetry

and multiple quantum NMR spectra.

Let us now consider a system of two methyl groups as is

shown in Figure V.la. For the uncorrelated case, these two methyl

groups move independently; their relative orientations are random.

Consequently, the dipole couplings between protons of a different

group are equal in average. nevertheless, this is not true if

these two methyl groups move in a correlated way as do two wheels

in gear. Although each methyl group rotates very fast about its

three-fold axis, their relative orientation is in good order--as

we have shown in Figure V.lb. The methyl group on the left rotates

clock-wise, however, the right one rotates counterclockwise. A

complete correlation signifies that the gearing motion is not

interrupted.

Let us define several dipole coupling constants according to

the top configuration of the Figure V.lb as

a = DZ4 D
34

b = D14 D25 = D36

c = D3S = DZ6

d = Dl6 DIS (V.I)
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>----2>----6

5

5~4
2

6/ 3

6
2

5 3

5 6 24
3

4 3

(0) ( b)

XBL 7912-5207

Figure V.la The geometry of two adjacent methyl groups. In the

case of uncorrelated motion the two methyl groups move independently.

On the average, the couplings between protons belonging to different

methyl groups are equal. Figure V.lb With gearing motion, the

averaged coupling between protons 1 and 4 is not equal to the

coupling betHeen 1 and 5. Thus, there are two intermethyl

couplings and one intramethyl coupling.
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The time-averaged dipole coupling strengths are averaged over the

three possible orientations as in Figure V.lb, and they are

1= 3 (a + b + d) LV.3)

As a result, there are two different intermethyl dipole coupling

constants for the correlated motion.

If the motion is not correlated, we need to average the

dipole couplings over an additional six different orientations.

We shall find that all of the intermethyl dipole couplings are

equal and have a value of

x = ; (v' + 2w) = ~ (2a + 3b + 2c + 2d) (V.4)

For both cases, the intramethyl dipole couplings are all equal

since each methyl group is identical; also, the distance between

protons of same group is equal.

The difference in the number of intermethyl dipole couplings

has a striking effect on the symmetry and the NMR spectrum, and

will be discussed extensively later.

We shall use a simple rule and diagram representations to

find out the number of possible four, five, and six-quantum

transitions for the system of two-methyl groups. The rule is

3stated as:

The number of n~uantum transitions is given by the number

of combinations of non-equivalent configurations. For a system



111

of N coupled spin-1/2 particles, the rule h~lds only for N, N-l,

and N-2 quantum transitions. The rule is based on the group

theory and holds exactly for the transitions within the manifold

of totally symmetric representation. It turns out that the N,

N-l, and N-2 quantum transitions are of totally symmetric

representation.

As illustrated in Figure v.2, there is only one six-quantum

transition, since it connects the state with all spins up and the

state with all the spins down. A similar argument can be applied

to the five-quantum transitions. There is only one configuration

with one spin down. The location of the down spin at anyone of

the six different sites is equal. Therefore, there are two five­

quantum transitions. For each case of correlated and uncorrelated

motion, the number of six and five-quantum transitions is the

same.

As shown in Figures V.3 and V.4, there are seven four-quantum

transitions for correlated motion and five four-quantum transitions

for uncorrelated motion. The difference results from the way we

assign the two down or up spins. For the case of uncorrelated

motion, there is only one intermethyl coupling. The assignment

with one of the two down (or up) spins to each separate methyl

group is equal. Nevertheless, it is not the case for a correlated

motion that has two intermethyl couplings. As we discussed before,

the averaged couplings <D
I4

> and <DIS> are not equal. As a

consequence, the configuration with spins 1 and 4 down is not

equal to the configuration with spins 1 and S down. Therefore,

there are two additional transitions for the correlated motion.
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6- Quantum Transition

( I ) m=-3 - m=3

~ ~
• •

L b.
5 -Quantum Transitions

( I ) m = -3 - m=2

A ~

A - L.
(2) m = -2- m =3

b. b.
~

•

Do
XBL 803-8630

Figure V.2 Diagr a.I!1S representing nultiple quantum transitions.

Full (empty) circles represent up (down) spins. There is only

one 6-quantum transition and two 5-quantum transitions for both

correlated and uncorrelated motion.
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-
(2)~

~

4 - Quantum Transitions
Uncorrelated Motion

m = Im=-3 ­

(I)~

La
m=3

m=-2- m=2

(5)L
~

XBL 803-8628

Figure V.3 Allowed 4-quanturn transitions for two methyl groups

with uncorrelated motion. There are five 4-quantum transitions.
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4- Quantum Transitions
Correlated Motion

m=-3-m=1

m=-I -m=3

(5~

m=2

XBL 803-8629

Ficure v.4 Allowed 4-quantum transitions for the case of

correlated motion. Seven 4-quantum transitions are expected.

Since there are two intermethyl couplings, the configuration in

(2) is different from the configuration in (3).
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The four-quantum spectrum provides a direct and ready test of

the limits for the motion of two methyl groups.

5.2 Two methyl groups in correlated motion

The sYmmetry group for two methyl groups in correlated motion

4is isomorphic to the sYmmetry group of cyclopropane molecule.

In the molecule of cyclopropane as we have shown in Figure V.S,

the dipolar couplings D14 , D2S ' and D35 are all equal and

different than the value of D24 , D34 , D2S ' D36 , Dl6 or DIS'

Since there is a one-to-one correspondence between the dipolar

couplings for cyclopropane molecule and the two correlated methyl

groups, we do not need to find the sYmmetry group for the latter

case from the first principle. Instead, we can use the symmetry

group D
3h

of ~yclopropane for it.

5
Using the characteristic table for D3h group, we can decompose

the eigenstates of m-quantum manifold into several irreducible

representations. The result is shown as follows,

m 3 A'
I

I " i "m 2 Al + A
2

+ E + E

,
" " I "m I 3A

I
+ Al + A2 + 3E + 2E

,
"

,
" "m a 3A

I
+ Al + A

2
+ 3A

2
+ 3E

The states with negative quantum number m have the same decomposition

as their mirror states with positive m. With the above

decomposition, we can construct the energy-level diagram as shown

in Figure V.6.
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5 2

\\ 4
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U
6 3 HI
6 I

\~C H2\\5 3 !C____~5U
4 2 H4 \ 64 3

H
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(0 ) (b)

XBL 813-8693

Figure V.5 (a) Methyl groups in correlated motion. (b) The

symmetry group for the system in (a) is isomorphic to the symmetry

group of cyclopropane. The average coupling constants <D
I4

> and

<DIS> are different.
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Correlated Motion
m A' A' A" A" 2E ' 2E"I 2 I 2

- 3
- 2

I -- -- --

0 -- -- -- --
I -- -- --

2
3

m

-3
-2
-I

o
I

2
3

Uncorrelated Motion

4G 4G'9 4G'u

XBL 803-8655

Figure V.6 Energy level diagrams for two methyl groups in

correlated motion or uncorrelated motion. The nUQber of multiple

quantum transitions can be found from the diagrams. There are

one 6-quantum, two 5-quantum transitions for both cases, but five

4-quantum transitions for uncorrelated motion, and seven for

correlated motion.
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t I
There are one six-quantum transition Al (m=-3) ~ AI(m~3)~

I , ,

two five-quantum transitions A1 (m=-3) ~ A1 Un=2), Al(m~-2} ~

,
~(m=3).

,
These transitions are of Al type. Any pair of mirror

states has a similar dipolar energy shift. The transition between

the two occurs at the center of the corresponding m-quantum domain,

and does not contain information about dipolar coupling. The

t , "
four-quantum transiticns of AI (-2) ~ Al(Z) , AZ(-2) ~ A2(2),

, ""2E (-2) ~ 2E'(2), and 2E (-2) ~ 2E (2) are mirror-state transitions.

They are located at the center of 4-quantum domain. Yet, there
, , , ,

are three pairs of transitions 3AI (-I) ~ A
l

(2), AI (-2) ~ 3AI (1) ,

which have a non-zero frequency shift. Consequently, there are
,

seven four-quantum transitions. The three pairs of AI-type

transition appe~rs on each side, and the central peak consists of

several degenerate transitions of a different type.

The dipole-dipole interaction Hamiltonian H of two methyl

groups in correlated motion is given by

H = H + H + Hu v w

= u L u .. +v L v.. +w 2: W
iji<j 1.J i<j 1.J i<j

(v.S)

H is the Hamiltonian for the intramethyl dipolar interaction, H
u v

and H are the intermethyl dipolar Hamiltonian. The blinear
w

operators U
ij

, V
ij

' and W
ij

are given by the same form as

1~ 1..... z J Z

I
-4 (1.+1 . + I. 1 j +)

~ J- 1..-
(V.6)

The indices i and j refer to different sets of protons as follows,
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Uij
(i,j) (1,2) , (1,3) , (2,3) ,

(4,5), (4,6) , (5,6)

Vij (i,j) (1,4), (2,6), (3,5)

W.. : (i,j) = (2,4), (3,4), (1,5}, (2,5)
1J

(1,6), (3,6)

We can show that

and

(V.7)

H 1 (11) + 12> + 13> + 14> + 15> + 16>
16

o (V.8)

where state Ii> means the state with all spins up except i-th

spin.

1
The eigenenergies for the triplet of Al (l) can be found by

matrix diagona1ization of

v w- - - -
4 2

w- -
H /2

v w- 2 - 2

w

u 3 w
--+-v 22 4

u

u

/2

u-~+~
4 2

(V.9)

and will be discussed later in the section on partially correlated

motion.
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5.3 Two methyl groups in uncorre1ated motion

The symmetry group for each methyl group is Dj . The molecule

with two non-equivalent methyl groups (AA'A"BB'B") forms a symmetry

group by the direct product of two D
3

groups. It is represented

by

(AI + 2E) x (AI + 2E)

= Al x Al + 2Al x E + 2E x ~ + 4E x E (V.lO)

If two methyl groups are identical, we should include the

permutation symmetry that they share and introduce the symmetric

or anti-symmetric form for the wavefunction. The representations

degenerate representations 2A
I

x E

by 4G' and 4G'. The two doublyg u

and 2E x Al are put together

We can decompose the total 26

A , A signify the symmetric and antisymmetric wavefunctions of
g u

Al x Al type. Similarly, we should classify the four-fold

degenerate representation 4(E x E)

to form a new representation 4G.
,

spin states into irreducible representations A , A , 4G, 4G and
g u g,

4G as shown in Figure V.6.
u

By decomposing the representations of D3h for the correlated

motion into the new representations above, we can obtain the

information about the correlation between these two symmetry groups.

The correlation diagram is also shown in Figure V.6. For example,
I

representation Al is the direct sum of Ag and G~. Since G' does
g

not have states with m 2 or 3, states Ai(2) and Ai(3) are simply

the states A (2) and A (3). In the cases of partially correlated
g g

and uncorrelated motion, the correlated motion is frequently
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,
interrupted. The triplets of Al(l) are no longer pure states and

are mixed with different representations Ag
r

and G .
g

The

corresponding four-quantum transitions become broadened once

phase interruption sets in. The five and six-quantum transitions,

however, remain unaffected because their associated states are

pure states. We shall discuss the effects of phase interruption

on multiple quantum spectrum later in more detail.

As we found in the previous figure for uncorrelated motion,

there are one six-quantum transition A (-3) ~ A (3), and two five
g g

quantum transitions A (-2) ~ A (3), A (-3) ~ A (2). The transitionsg g g g

A (-2) + A (2), A (-2) + A (-2), and 4G(-2) + 4G(2) are all
g g u u

degenerate because they are transitions between mirror states.

There are two pairs of transitions 2A (-2) + A (1), A (-1) + 2A (2),g g g g

and they have non-zero frequency shift. As a consequence, there

are five four-quantum transitions derived from the simple rule

for counting the number of N-2 quantum transitions.

The dipole-dipole interaction Hamiltonian H of two uncorrelated

methyl groups is given by

H = H + H
u v

(V.ll)

It is a special case of Eq. (V.5), when we make the coupling

constants v and w equal. The Hamiltonian H describes the dipolar
v

coupling between protons of different methyl groups. We can show

that

A (3)
g

(V.12)



RIA (2» = 0
g

The eigenenergy for the doublet of A (1) can be found by
g

diagonalizing a 2 x 2 matrix, and is given by

A = - 1. u - lv ± l (2. u 2 + 7 u2 _ 3 uv)1/2
± 4 4 2 ~

122

(V.13)

CV.14)

As a consequence, the dipolar frequency shifts in the five and

four-quantum spectra are given by

fun. = 5

fun. = 4

± (1 u + 2. v)
2 4

9 5
± (4 u + 2" v

(V.15)

1/2
3 uv) ).CV.16)

From experimental four-quantum spectra, five-quantum spectra, and

the above relation, we can specifically determine the coupling

strength u and v.

5.4 Experiments

We have shown earlier that the high n-quantum spectra

distinguish simply between the cases of uncorrelated motion

(independent rotation) and correlated motion (geared rotation).

For N spins we can show that the N-2 quantum spectrum is

sensitive to the two-body correlations and has many triplets equal

to the number of different dipole couplings, (that is, the number

of different pairs of spins).3 For the system of two methyl

groups, we should make a distinction in the four-quantum

spectrum between these two cases.

The extent of the correlated motion that two adjacent rotating

methyl groups have is determined by the potential barrier of the
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coupling, and by the temperature of observation. The lifetime

T characterizes the duration of the correlation and may be
c

classified into three main categories: (1) completely uncorrelated

motion (T-l » 10 kHz), (2) completely correlated motion (T-l «
c c

0.1 kHz), and (3) the intermediate case. The time scale defined

here refers to the magnitude of the dipolar splittings.

For example, a sample of 2,3-dimethylmaleic anhydride (30% in

mole), dissolved in a liquid crystal solvent of p-octylphenyl

2-chloro-4-(p-heptybenzoxyloxy) benzoate, was studied by using

multiple quantum NMR techniques in a magnetic field of 42.5 KG

An ensemble average process was performed on the multiple

quantum spectra. By using the TPPI method we were able to take

the average of each magnitude spectra. The various preparation

periods, ranged from 1.0 msec to 7.0 msec. The experimental

multiple quantum spectra of four, five, and six-quantum regions

are shown in Figure V.7.

Assuming that the intramethyl dipolar coupling constant u

is equal to 2.00 kHz and that intermethyl coupling constant v is

equal to -0.59 kHz the spectra are best fitted with the model of

completely uncorrelated motion. The calculated stick spectrum

using above parameters is shown in Figure v.7; it is in agreement

with the experimental spectra.

The molecule of 1,8-dimethylnaphthalene, with two methyl

groups in closer position, was studied. The experimental spectra

of multiple quantum transitions are shown in Figures V.S and v.9.

The calculated stick spectrum assuming uncorrelated motion is also
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n- Quantum Spectra

n=4 n=5 n=6

J--LW'----U"-----r-,---'---------11-
4~w 5~w 66w

~w
Frequency (27T = 8.203 kHz)

XBL 8Q6-9£S2

Figure V.7 (a) Spectrum of 4, 5, and 6-quantum transitions in

dimethyl maleic anhydride. Five of the 4-quantum transition

were observed. (b) Calculates stick spectrum assuming uncorrelated

motion with intramethyl coupling constant equal to 2.00 kHz and

intermethyl coupling constant equal to -0.59 kHz.
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I
66w56w46w3/::'w2/::'w

FREQUENCY (/::,w = 13.67 KHz)
27T

/::'w

~oo~
0 0

~~~~V~ t 1 ~ IV \)~J~j l~. 1 V~ ~ JW~ .....l.t. ~... ......
I I I I I I
o

x~L : =2 -.:~ :'~

Figure V.8 Multiple quantum spectra of 1,8-dimethylnaphthalene

with ring protons deuterated.
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n=6

36w 46w 56w

FREQUENCY (~~ = 13.67 KHz)

66w

XBL 3:2-032,

Figure V.9 The top figure shows the experimental spectra of 3, 4,

5, and 6-quantum transitions of 1,8-dimethylnapthalene. The lower

stick spectra are obtained by assuming uncorrelated motion.
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in agreement with the experimental spectra.

5.5 Partially correlated motion and chemical exchange process

5.5.1 Chemical exchange for J-coupled AB system

Besides nuclear magnetic relaxation, the molecular motion

also affects its NMR lineshapes. NMR has been a successful tool

in studying chemical exchange processes. In this section we shall

illustrate the first application of multiple quantum NMR study

of exchange process among two methyl groups as caused by steric

hindrance. Before any further discussion, however, we shall

demonstrate how to apply density formalism to the study of a

simple chemically exchanging system.

The motion equation of the density matrix p for a chemically

exchanging system is given by6

i[p,H] + l (RPR+-P)
T

(V.17)

where we neglect the T
2

relaxation caused by other mechanisms.

The first term on the right-hand side is familiar. The

second term describes the effect of the chemical exchange on the

evolution of the density matrix. The unitary operator R is the

exchange operator that connects the various states or configurations

caused by chemical exchange with a correlation time T. The

inverse of the correlation time is also known as the exchange rate.

For the system of no chemical exchange, the operator R is a unity

operator; consequently, the second term on the right-hand side of

eq. (V.17) is, as we expected, identical to zero.

By using the projector operator DaS = la><SI, we can expand
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the density matrix P into its components as

LV.18)

The equatiom of motion for any particular matrix element of

p(t) is given by

d 1 L +
dt PaS = -i waSPaS - T (PaS Pa'B' Raa' RB,S)

a', S '

1 += -i waSPaS - - (l-RaaRSS )T

(V.19)

For the case of non-degenerate transitions, namely,

IWa'S,-waSIT » 1, the last term of the above equation is very

small and may be neglected because it consists of components

that oscillate very fast in time.

As a result, the evolution of element PaS is not coupled

to other components and is given by

d
dt PaS

(V.20)

or

(v.21)

~here
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If there is only one other quasi-degenerate transition between

states la'> and Is'>, i.e., Iwu,srwaSIT ~ 1, the equations of motion

for PaS and ParS' are coupled and are given by

d
dt PaS

d
dt Pa'S'

(V.22)

We can obtain the eigenfrequencies by solving the secular

equation. The result is given by

1 + + 2
- (R Raa-R , ,Ra,a,)]
T aa IJIJ a a IJ IJ

(V.23)

We shall now discuss two extreme cases which have simpler results:

(i) Slow exchange limit (very large T).

In this case, we may neglect all of the higher order terms

except terms that contain liT. We can show

(V.24)
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This is just the case of non-degenerate transitons,

(ii) Fast exchange limit (very short T).

We can show that there are two eigenfrequencies and they are

given by

(V.25)

One of the above solutions with positive sign in liT

corresponds to exponentially increasing function in time. It is

a non-physical solution and should be omitted. The other solution

is physical and it indicates that two separate peaks in the slow

exchange limit will coalesce into one peak in the fast exchange

limit. The new resonant frequency is the average of the two.

For example, we shall discuss the exchange system of two

J-coupled unlike spin-1/2 particles. The energy diagrams for

both slow and fast exchange limits are shown in Figure V.lO. The

eigenstates and eigenfrequencies for slow exchange limit are listed

as follows:

\1> lao.>
1 +'!'JEl = VO[l-Z(OA+oB)] 4

12> cosSlaS> + sinS ISo.> E2
J 1 ~ 2 2'=- - + - (\) <5) + J420

13> -sin laS> + cosSISa> E3
J _ .!. lev 0) 2 + J2'= =-4 2 0

14> Iss>
1

(oA+aB)] +!JE4
= -v [1- -

0 2 4

(v.26)
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m=-I
" 14>• ,

",,
Forbidden

"",
12> ,

m=O "13> ) 13>
/

/
/

/
/

/
/

m = I //
II>

Slow Exchange Fast Exchange
XBL 813-8518

Figure V.IO Energy level diagrams for a J-coupled AB system under­

going chemical exchange, (a) for slow exchange and (b) for fast

exchange. There are four single quantum transitions for the slow

exchange case. Only one transition is expected for a fast exchange,

because the transitions 12> ~ 14>, 11> ~ 12> are degenerate, and

13> ~ 14>, 11> ~ 13> are forbidden.
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where 0 = a -a and tanZ8 = J/OVO'
B A

Similarly, for the case of a fast exchange limit, we can show

11> = Iem> E
l

= Vo(l-cr) +1:. J4

12> = l(laS>+ ISa» E2
J=~

12 4

14> = Iss> E = -v (I-a) +'!'J
4 0 4

13> = ;(-Ias> + ISa»
3

(V. 27)E3 =0- 7; J

where a = 0A = a
B

• We notice that it is the special case with

8 = rr/4.

The spectrum of the slow exchange case contains four peaks,

but only contains one peak for the fast exchange case as shown

in Figure V.II .. We shall use density formalism to solve the

problem for the general exchange rate.

The operator R describes the exchange operation on particles

between two sites. Since R does not change the magnetic quantum

number, it can only connect states of the same magnetic quantum

number.

We can show that the states 11> and 14> are invariant under

operation R and that

R12> R(coselas> + sineISa»

= cos8lSa> + sine laS>

cose(sine/2> + coseI3» + sin8(cose!2> - sineI3»

sin2812> + cos2el3> (V. 28)
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3-1 -2C-IJI- 4-3

I----J---...

Fast Exchange

2-1
4-2

XBL 813-8517

Figure V.ll Theoretical stick spectra for a J-coupled AB system

undergoing chemical exchange. There are four peaks in the slow

exchange limit but only one peak in the fast exchange limit.
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R13> = -sinS ISa> + cosSlaS>

= cos2sl2> - sin2Sl3> (Y.29)

Using 12> and 13> as a basis set, the operator R can be

represented by a 2 x 2 matrix as follows

(

sin2S

R =

cos28

COSZ8)
= R+

-sin2

(V.30)

We can show that the equation of motion for density matrix

elements P12' P13 and P24 , and P34 are coupled and are given by

1 1
T P13 (1+sinZ8) + T P12 cos28 , (V.3l)

. (V.32)

By solving the above equation for either stationary or

transient conditions, we can obtain the spectrum for the general

case of exchange rate. The computed spectra with various values

of T are shown in Figure V.12.

5.5.2 Two methyl groups in partially correlated motion

We shall discuss an interesting system of two methyl groups

having steric hindrance. We have discussed the characteristic

features between two extreme cases of conpletely uncorrelated
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103 sec
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10- 1 sec
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Tz = I sec J = 5 Hz (O"A -O"S)1IO =30 Hz
XBL 813-8519

Figure V.12 Theoretical spectra of a J-coupled AB system. The

molecule undergoes chemical exchange with a correlation time Tc

3 -4
from 10 sec to 10 sec.
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and completely correlated motion. Particularly, we have shown

that there are five and seven peaks of 4-quantum transitions for

the first and latter cases. In this section, we shall discuss the

intermediate case when the exchange rate namely, the inverse of

the correlation time, is comparable to the dipolar coupling

strength. The six and five quantum transitions remain unchanged

because the exchange operator does not affect their corresponding

states. That is, states lAg (m = ±3» = IA~ (m = ±3» and

lAg (m = ±2» = IA~ (m = ±2)\ are also eigenstates of the

exchange operator. Since those 5- and 6-quantum spectra are

invariant they are not relevant to our discussion of the exchange

process. Particularly, we shall discuss how the correlated motion

affects the 4-quantum spectra. The associated states of 4-quantum

transitions are shown in Figure V.l3. The central peak, which

actually consists of several degenerate transitions, has a

complicated dependence on the exchange rate and thus, will not be

discussed. We shall only deal with the satellite peaks.

The exchange operators Rand R' describe the interruption of

the geared motion of the two methyl groups as shown in Figure V.l4.

The duration of the geared motion before interruption is the

correlation time T. To observe the effect of the geared motion

on the NMR spectrum, the correlation time should be longer than

the inverse of the dipolar coupling. Frequent interruption of

the correlated motion (between the two methyl groups) makes each

groupt rotate as if independent.

We shall assume that the correlation times for exchange processes

Rand R' are identical because of the symmetry consideration. As
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4 - Quantum Transitions

Correlated Motion

AI
I

Uncorrelated Motion

m =-3

m = I

m =-3

m =

'\

\
\

\
\

\
\

\

" (forbidden)
\

\
\

\
\

\
\ ,

XBL 803-8657

Figure V.13 The relevant energy level diagram for 4-quantum

transitions is shown above. One pair of 4-quantum transitions
, ,

A (3) ~ G (-1) and A (-3) ~ G (1) is forbidden for the case of
g g g g

uncorre1ated motion. Consequently, the 4-quantum transitions for

correlated motion have one extra pair of transitions.
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3

2

X8L 803·3656

Figure V.14 The exchange operators Rand R' represent the process

of slipping that interrupts the correlated motion.
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shown in Figure V.14, the exchange operators Rand R' rearrange

the ordering of the methyl protons cyclically and can be expressed

mathematically by permutation symbols as follows

2

1

3

2

4

4

5

5

,.

2

3

3 4

1 4

5

5

(V.33)

The original position for each proton is shifted to the

position indicated in the lower line.

Rand R' = RZ.

-1
We may notice that R =

The state IA~(m = -3» (=IAg(m = -3») is invariant under

operations Rand R I
• The remaining three eigenstates (those with

I

m=l and Al symmetry of special interest) are superpositions of the

following three basis functions,

la>
1 (112) + 113> + 123> + 145> + 146> + 156»-

16

Ib> 1 (114) + 126> + 135»-
13

Ic>
1 (115) + 116> + 124> + Izs> + 134> + 136» (V.34)-

16

where state lij> means that the spins of i-th and j-th protons are

down. The above states are not eigenstates of the Hamiltonian in

eq. (V.S). If we separate the dipolar Hamiltonian into three

parts H , H , and H according to their different couplings u,
u v w

v and w, we can show that the matrix representations of the above

Hamiltonians with la>, Ib>, and Ic> as basis set are given by
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0 0 0

H 0
1 1

(V.35)= u -"2u /'Z

0
1

- 1
12

1
0

1
4 -"2

0
3

0
H = v 7; (V.36)

v

1
0 1

-"2 -7;

1 1 1
-"2 -

12 2

H
1 1

0 (V.37)= w
w

12 2

1
0

1-
2 2

and

w
-tt

H
w u 3 w u

(V.38)= - 2+~2 - -
n n

v w u v+~- 2-2 - - - u -
a 4 2

Calculating the matrix representations for Rand R' is

straightforward, however, a few remarks should be made. First

of all. la> is an invariant state. Secondly, Operators Rand R'

mix states Ib>, Ic> and another state IA~(m = 1» of a different
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symmetry. Using la>, Ib>, Ic> and IA~(m = 1» as a basis set we

can show

1 0 0 0

0 "
1 1

v

12 12"
R = eV.39)1 1 1

0 2 2"12

0
1 1 1

12
-2 -2"

1 0 0 0

0 0
1 1- -

/2 /2
R' = (V.40)

1 1 1
0 - - -

12 2 2

a 1 1 1- -
212 2

and

2 a a a

a a 12 0

R + R' (V.41)

0 12 1 a

a a a - 1

As we shall see later only R + R' will enter the equation of

motion as a whole; the exotic state IA~(m = 1» does not mix

with the remained states since R + R' has no off-diagonal elements

in the 4-th column and row. Consequently, we can completely
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eliminate it.

The equation of motion for exchange processes Rand R' is

given by

d
dt P (V.42)

Let IA~(m = 3)lpli> = Pi; by using the facts RIA~(m = -3}> =
, t 3 3 3 '

IA1(m = -3» and HIAl(m = -3» = (2 u + 4 v + 2 w}IA1(m = -3)> -
t

EolAl(m = -3», we can show that

By rearranging the superposition between states 12> and 13> as

[

12'>

13'> 1;12> + Ij13> (v.44)

the operator R + R' becomes diagonal in this basis set and is

given by

2 o o

R + R' = 0 - 1 o (v. 45)

o o 2

The equation (v.43) can be written in a simpler form as

follows
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tV.46)

The corresponding secular equation can be found by using

dp./dt = iA.p. and is written explicitly as follows
J. J. J.

3
- u+v+ 2w- A
2

13 (v-w)"6

I (v+2w)
/6

13
- (v-w)
6

3 v 5 3i
-u +-+-w + -- A
2 3 3 T

12
3 (v-w)

1:.. (v+2w)
Ib
/2

3 (v-w) = 0

(v.47)

One remark needs to be made about matrix element ~i in the new

basis set. It is related to the old ~i in eq. (V.38) by a

similarity transformation A and

+
H A H(old) A(new)

where

I 0 0

A(old) 0 II -II
3 3

0 a n
3 3

(V.48)

(V.49)

The solution of the above secular equation gives three 4-quantuID

transition frequencies. The three satellites on the other side are

the images of these three with respect to the central frequency of

a 4-quanturn transition domain.
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We shall now discuss two extreme cases of the above solution.

In the limit of short correlation time, ICv-w) I « 1, the two
t

methyl group move quite independently. The transitions frequencies

are given ty

(V.50)

and

A
3

= 3 u + x + w + 3i2" T

where

x = (u + Zw) /3 (V. 51)

Since T is v~ry small, the transition with A3 is very broad in

lineshape and is very weak in intensity and thus, cannot be

observed. Actually, only two pairs of satellites can be

observed. The transition frequencies A
l

and AZ are also in

agreement with our previous result. The coupling x is the

averaged value of the intramethyl couplings v and w according to

their weight.

In the limit of a completely correlated motion, liT is

negligibly small and can be dropped out of the secular equation.

The three roots of the secular equation correspond to the

transition frequencies. There are seven 4-quantum transitions,

including the central peak, in all.
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VI

SECOND MOMENT OF MULTIPLE QUANTUM SPECTRUM AND STATISTICAL MODEL

6.1 Introduction

In our experiments we observed that the overall intensity

for each order of multiple quantum transitions is dependent on

the preparation and detection of the coherence. Generally, it

depends on the time interval of: the preparation and detection

periods, the phase of the pulses, the frequency offset, and some

other factors. The behavior of the intensity for each order 6m

seems to have some correlation with 6m. The spectral width of

the multiple quantum spectra for each order seems also to have a

correlation with 6m. In order to understand these general

behaviors, and other effects caused by the method of preparation

and the detection of the multiple quantum coherence should be

diminished. We should average the spectra over various conditions

for the external factors. Averaging the spectra over different

values of the preparation and the detection periods is a frequently

used method. To understand the correlation among the intensity,

spectral width, and the order of multiple quantum coherence Lrn,

we shall present in this chapter a statistical model. This model

assumes an equal transition intensity for each pair of states and

does not consider molecular symmetry. The theoretical predictions

of the MQ intensity and second moment versus Lrn are in good agreement

with the experimental results.
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6.2 Intensity of the multiple quantum spectra

In general, the single quantum spectra are usually obtained

by Fourier transformation of the FID, followed by a single excitation

pulse. The FID is actually the correlation function of the

transverse magnetization in time. In terms of the spin angular

momentum operator I, we may express the FID Set) by

Set) ~ Tr(I pet))
x

Tr (I (0) I (t))
x x

(vr.l)

By either continuous wave method or pulse method, the intensity

of the single qu~ntum transition between states la> and 16> is

For the casegiven by the value of l<alI 16>1
2

or l<alI 16>/2.x y

of continuous wave method, we can easily prove the above statement

by using the Fermi golden rule. For the latter case, we may prove

it by Fourier transformation of the FID Set) into a frequency

domain.

As we discussed in Chapter III, the multiple quantum FID can

be expressed in terms of the correlation function of multiple quantum

spin operators U(T) and V(-T'). Unlike I or I , which contain
x y

single raising and lowering operators 1+ and 1_, the multiple

quantum operators U and V may contain all possible orders of the

raising and lowering operators. In addition, the intensity of

the multiple quantum transition between states la> and 16> depends

on the parameters T and T', because of the intensity is given by

UaS(T) V6a (-l'). Accordingly, the intensity of the multiple quantum
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spectra depends on the method of the preparation, and the detection

of the multiple quantum coherence. Because of the implicit dependence

of the pulse sequence, some transitions may accidentally be low in

intensity. To avoid this situation, we can take the average of

the spectra of various T and T'. In most cases the spectra were

obtained by setting T be equal to T'.

The overall intensity for each order of the T-averaging multiple

quantum spectra (of partially oriented benzene) is shown in Figure

IVI.I.

The dependence of the intensity on 6m follows a gaussian curve.

It indicates that the intensity of multiple quantum spectra behaves

statistically.

6.3 Statistical model for intensity of the MQ spectra

Let us consider a system of isolated molecules of N spin-1/2

particles, for example, benzene molecules in liquid crystal.

Because of the translational diffusion, the dipolar interaction

among different molecules is decoupled. The number of states with

n spins down is given by the binomial coefficient C(N,n) and

C(N,n) N!
CN-n)!n!

(VI, 2)

In terms of magnetic quantum number m, we can express the number

of states by

C(N,n)
N!

1 1
{Z(N-2m) } ! {"2(N+2m) } !

(VI.3)
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XBL 781-6894

Figure VI.l The integrated intensity of multiple quantum spectra

versus the number of quanta. The experimental data follow a gaussian

curve.
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Using Stirling's approximation for factorial,

in n!
. 1 1

~ (x + '2) in x - x + '2 in , (VI. 4)

we will obtain an approximated form for ~(m) if m « N,

~(m) ~
2

exp(-2 mIN) (VI. 5)

The approximation is pretty good even for N K 6 as shown in Table

VI.l. The gaussian forms of cNCm) for several N are shown in

Figures VI.2 and VI.3.

In this statistical ~odel, we shall assume that the transition

between each pair of states has an equal intensity. In addition,

we do not inc~ude a symmetry consideration. Specifically, no

selection rule caused by molecular symmetry is assumed.

The intensity of the transition between the manifold with a

magnetic quantum number m and m - ~ is then given by the product

of the number of the associated states, namely, CN(m) C
N

(m-6m). The

overall intensity of a particular order of multiple quantum

transition is then given by

I (Lim) ex: L CN(m) eN (m-6m)
m

N
e

2
ex: exp (-Lim IN)

As we expected, the intensity decreases as frm increases; it is

characterized by a gaussian as is shown in Figures VI.4 and VI.s.



TABLE VI.1

N=6

Nagnetic quantum number Number of states

3 1

2 6

1 15

0 20

-1 15

-2 6

-3 1

151

CN(m)

1.04

5.42

15.01

20.85

15.01

5.42

1.04
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Figure VI.2 The number of states of N spin-1/2 particles in each

m-quantum manifold using Stirling's approximation. The curves

have a gaussian form.
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Figure VI.3 Number of states of ten spin-l!2 particles in each

m-manifold. The exact value of the binomial coefficient is

indicated by a circle. The gaussian curve is obtained by using

Stirling's approximation.
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Normal ized Incensicy of MQ Speccra
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~-quanlum lran.lllon.

5 e

XBL 813-8344

Figure VI.4 Normalized overall intensity of the multiple quantum

spectra for each order m based on the statistical model (N=6).

The curve has a gaussian form.
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Figure VI.S Normalized overall intensity of multiple quantum

spectra·for each order m based on the statistical model (N =

4, 7 and 10).

XBL 813-B342
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prediction of the statistical model is in good agreement

1experimental results.

6.4 Second momentofMQspectra

6.4.1 Introduction

The NMR spectrum in solids is generally very broad and almost

structureless. A study of lineshape and spectral width, however,

provides some information about the system. For example, second

moment measurements can provide some information about molecular

d ' , h I'd 2structure an mot10ns 1n t e so 1 state. One of the nice things

about moments study is that their values can be calculated from

the first principles, without having to find the eigenstates of

the Hamiltonian. The second moment of an ordinary single quantum

spectrum can be calculated by using the Van Vleck formula and

can be related to the molecular structure.

We generalized the expression of the second moment for usual

single quantum spectrum to the case for the multiple quantum

spectrum.

Let us consider a system of dipole-coupled spin-1/2 particles.

The Hamiltonian consists of two parts, the Zeeman Hamiltonian Hz

and the truncated dipole-dipole interaction ~ (0) ,

H -6w I
z

+ ~ (0) (VI.6)

where 6w is the frequency-offset and

o (VI,7)
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The FID Set) of multiple quantum transitions is given by

J(t) = Tr(e-iHt D(T) iHt
e V(-T')) (VI. 8)

We can decompose the multiple quantum operators U and V into

components of a different order of m, such as,

and

V(-T') = t Vm(-T')
m

(VI. 9)

(VI-IO)

By the definition of the tensor operator, the operators U and
m

V satisfy the following commutation relations;
m

[

[I , U ) =
z m

[I , V )
z m

m U
m

m V
m

(Vr.ll)

As a consequence, we can prove easily that

e
ii1wt I

z
U

m
e

-ii1wt I
z imL1wt

e U
m

(VI.12)

We may express Set) in terms of U by
m

S (t)

-iH (0) t
,imL1wt --n
L e Tr(e U

m
m

i~ (O)t

e V )
-m

(Vr.l3)

S · H (0) h· b I . h·~nce D conserves t e magnet~c quantum num er, t1e non-van~s ~ng

component in V(-T') is the one with a magnetic quantum number -m,
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V (-T') . We can further reduce the FIn Set) to a simple form;-m

Set) = L i.m1iwt
-i~ (O)t ~ (O)t

)e Tr(e U e Vm .-.m
m

L i.m&ut S (t)= e
m

m

where

S (t)
m

-i~ (0\
= Tr(e U

m

~(O\
e V )

-m
(VIoI4)

The spectral function of the m-quantum transitons G (w) is the
m

Fourier transformation of S (t):
m

We define the normalized spectral function g(w) by

g (w) = I2TI Gm(w) / JG(w) dw

= I2rr G (w)/S (0)
m m

this can be expressed explicitly by

(VIolS)

(VLI6)

g (w) =
m

-i~ (O)t

Tr(e U
m

TrCU V )
m -m

i~ (0) t

e V )
-m

= 1 Je- iwt dt \ (_i)n n Tr(n) erR (0) ,Um]V_
m

)
Tr(U V ) L. t n

m -m n

(Vr.17)

where
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T
Ir•• (0) p-- (0) .~(O) U] , ,-- ,

= "rUtL ',ltL- ,'" 1 " ••• JJV), v v ~ m -m--.-....---."
n times

Using an inverse Fourier transformation, we will obtain

iwt
e dw

2n =
1 -i~ (O)t

Tr(U V ) Tr(e
m -m

U
m

i~ (0) t

e V )
-m

(VI.18)

By expanding the expressions on both sides into Taylor's series

of t and by comparing the terms of same power of t, we can obtain

this useful result for the n-th moment:

n dw
w - =2n

(_l)n Tr(n) ([It (O),u (T)JV (-T')J)
Tr (U V ) -1) m -m

m -m

- N (m)
n

where M (m) is the n-th moment of the m-quantum spectrum.
n

(VL19)

Since U and V depend on T and T', however, the value of
m -m

the n-th moment is not a constant. Its average value, however,

can be obtained by measuring the n-th moment of the T-averaging

multiple quantum spectra.

Particularly, we are interested in the behavior of the second

moment of the m-quantum spectrum. Based on the statistical model,

we are able to explain qualitatively the general behavior of the

second moment of the m-quantum spectrum, in terms of simple para-

meters such as the dipole couplings.

The second moment of m-quantum spectrum is given by



160

M (m)
1 Tr ([~ (0) , [~ (0) , Um]]V-tIl)= Tr(U V )z
m -m

1 Tr([~ (0) , U
m

][I1> (0) , V...mD= Tr(U V )m ...m

1 L. E
2 <alu Is><slv la> (VI.20)=

Tr(U V ) a,S as m -tIlm -m

As a special case in the ordinary single quantum NMR method,

operators U and V are the spin angular momentum operators I
x

and I , and are constant in time. The corresponding second
y

moment was first calculated by Van Vleck and is expressed by3

M = 1 Tr([H CO), Ix] 2)
z Tr(I 2) -1)

x

(VI. 21)

where

In the case of the multiple quantum NMR method, the single quantum

operator is not simply I or I. We should not expect the value
x y

of M2 to be same as in the previous case. Because of the complexity

of the multiple quantum operators U and V, we cannot calculate the

second moment in a simple way. In the spirit of the statistical

model, however, we can assume that the transition matrix elements,

<alu Is> and <slv la>, are equal for each transition. Accordingly,
m -m

the selection rule due to molecular symmetry is not considered.
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We shall make another approximation on the transition

frequency EaSe We assume that the distribution of the energy

levels for a particular manifold of a magnetic quantum n can be

described by the distribution function gGw). This function is

also known as the density of state.

Let us consider two particular manifolds with distribution

functions, glew) and g2(w) as we have shown in Figure VI.6.

The spectrum of the transitions between two manifolds is

given by the convolution of their distribution functions, and

is expressed by

f($t) (VI. 22)

Consequently, we can make an approximation on eq. (VI.19) for

second momentum by

M
z

(VI. 23)

We shall now prove a theorem for the second moment of the

spectral functions that will be useful.

Theorem: The second moment of a spectral function is the additive

sum of the second moments of the distribution functions.

Proof: Assuming that the distribution functions gl(w) and g2(w)

are normalized, their second moments are given by

(VI. 24)

and
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Transition

Frequency = W
1

- w 2

Intensity ex: gl(w
1
) g2(w2)

Zeeman

Splitting

Dipolar

Splitting
XBL 813-8353

Figure VI.6 Schematic diagram for the transition between two

m-manifolds. The function g(w) describes the distribution of

states. The spectrum of the transitions between the two

manifolds is given by the convolution of their distribution

functions.
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where W is the average value of w, and is defined by

w= Jwg(w)dw

Since

JD f(Q)dD = Jgl (W)dwj D dD g2 W-{)J)

= Jgl (w)dwJ(x+l,J) dx g2(x)

= ~ gl(w)dw (w+W2 )

we can prove that

The second moment of the spectrum is given by

0
2 = ~ (D

2-n2
)f(D)dD

= Jgl (w)dw j(D2_(WI+W2)2Jg2(D-{)J)dD

= Jgl (w)dwJ[(x+w) 2-(wI-rW2) Jg2 (x)dx

J 2 - - 2 ....2= gl(W)dw [02 + 2 w2 (w-{)JI) + w -{)JI]

(VI. 25)

(VI.26)

(VI.27)

(VI.28)

Q.E.D. (VI. 29)

As a special case, if the density of states is a gaussian, the
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spectral distribution is again a gaussian, but with a larger

width.

Using the above theorem, we can relate the second moment of

the spectrum to the distribution of the associated states by

evaluating the second moment of the density of states. The

spreading of the energy levels in the same manifold is caused

by dipole-dipole coupling. The second moment of the density

states is given by

(VI. 30)

where ~ (0) is the Hamiltonian of a dipole-dipole interaction

and < > is the averaged value. More explicitly, <~ (0» is th~

trace of the ,Hamiltonian ~ (0) and is divided by the total number

of states in a particular manifold. Since the trace by any

operator does not depend on a particular choice of a basis set,

we can calculate its value without kno\ving the eigenfunctions.

6.4.2 Calculation of <~

The truncated Hamiltonian ~ (0) of the dipole-dipole interaction

consists of two parts:

~ (0) 1
D.. [2 Ii I. --2 (1.+1, +1.1.+)]

1.J Z J Z 1. J - 1. - J
(VI. 31)

To more easily evaluate the trace of ~ (0) , we may use some special

properties of the trace. As stated before, the trace of an

operator does not depend on the way of choosing the basis set.

We may choose the direct product of states for each spin, for



165

example, laaa...a>, IBaa...a>, and so on. Since the second part

of the dipolar Hamiltonian contains fli-flop operators Ii+I
j

_ and

Ii_I j +, their matrix representation using this particular set of

basis is off-diagonal and traceless. As a consequence, we can

completely omit this part of Hamiltonian when evaluating the

trace of the dipolar Hamiltonian. In short hand, we can write

the dipolar Hamiltonian as

H-- (0) -= \ 2 D I I
l) '- ij iz jz

i,&j

(VI. 32)

We will derive an analytic form for the trace of ~ (0) for each

manifold of magnetic quantum number m. For illustration purposes,

we shall first discuss several simple cases:

(1) Case of all spins up:

Tr(~(0» = <0.0. .•. 0.1 [ 2 Dij liz I, I0.0. .•• 0.>
JZ

i,&j

1 L D, ,
1

[' D
ij

= -2 ~J 2
i,&j i,j

(VI.33)

(2) Case of one spin down:

Let Ik> describes the state with the k-th spin down, namely,

Ik> = 10.0. •• 0.80. •• 0.>
t

k-th spin

<kl~ (0) Ik> c

1

L
i ,j#k

lD 1" I"2" ij - '2 '-:- Dik - :2 1... Djk
~ J

(VI. 34)



Tr(I1> (0» •
t 1 I I

I 'or 2 Dij -2 [. Dik- - 2" L "Dkj
i,j ,k i,k j,k

I
,

• r 2 Dij - . i~ Dik
i,j ,k

r' I
,

• (N-2) '2 Dij -
tj

Dij
i,j

I ~'• '2 (N-4) L. Diji,j
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(VI.35)

The subscript "," above the summation notation indicates that

the sum is taken for all indice i,j (or k), except i ~ j (j k).

(3) Case of two spins down:

Let Ikl> describes the state with k-th and l-th spin down,

namely,

Ikl> = loo... 6..• 6...a>
t t

k-th l-th spin

Tr(~ (0» 1
,

= L L Dij - L [ (Dik+Di~)2
{k,~} i,j {k,~} i

N(N-l) [' 1 _ [H(N-l) _ (N-2) (N-3)
- 1] L D..=: '2 Dij 22

i,j
2 1J

i,j

-t (N
2

- 9N + 16)

(4) Case of three spins down:

Similar to the previous case,

['
i,j

D..
1J

(VI.36)
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Tr(~(0)) 1 1

[ L D
ij L r- (Dik+D. +D. )2 ~,Q, l.1ll

{k,,Q,,m} i,j {k,.e.,m} i

1 r: [C(N~) -c (N-2 ,3) - (N-2)] ['= C(N,3) '2 D
ij D..

i,j ?-,j ~J

= J:... (N-2) [(N_6)2_N]
12 ['

i,j
D..
~J

~ ..

(VI. 37)

where C(N,3), etc., are the binomial coefficients.

Generally, for the manifold with n spins down, the trace of

~ (0) can be shown as:

D.. [C(N,n)-C(N-2,n)-C(N-2,n-2)J
~J

Tr(~ (0) =

- r:
~,J

['
i,j

D ..
~J

= C(N,n) [(N-2n)2_N]
2N(N-l)

['
i,j D ..

1.J
(VI. 38)

Since the magnetic quantum number m is related to the number of

1
spins down n by m = '2 N-n, we can express the trace in terms of

m:

Tr (H (0))
m D

CN(m) 2
[ 4 m - N]2N(N-l)

['
i,j

D ..
~J

(VI.39)

The average value of the dipolar splitting <~ (0» is given by

the value of the trace, divided by the number of states that

equals C(N,n). Finally, we obtain an analytic expression for

the averaged dipolar splitting as follows:
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<~ (0» 1 2
,

= [(N-2n) - N] [ D
ij2N(N-l) i,j

1 [4 m
2

- N] r' Dij (VI. 40)= 2N(N-l) i,j

1. [4 2 - N]<D>= m
4

where <D> is the average dipolar couplings and <D> =

The value of the magnetic quantum number m is an

,
L D.. /C(N,2).
• . ~J
~,J

integer or

a half-integer if N is an even or an odd number. The value varies

from -N/2 to N/2.

If the distribution function of the states has a gaussian

form, the distribution center is shifted away from the Zeeman

level by the amount of <~(0».

Since ~ (0) is a traceless operator, the sum of Trm(~(0»

is zero, namely,

Accordingly, we can easily show that

(VI. 41)

Tr (H (0»
m D

= Tr (H (0»
-m D

(VI. 42)

We shall give some illustrations for the equation of the

trace of ~ that we have just proved. Let us consider a

dipole-coupled system of N spins with N = 2, 3, ... 6.
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Jf
D

=~ (0)

(1) N = 2

m = 1

m = 0

TrG1cD) = il:l D
ij

TrG1cD) = - I' Dij

(2) N = 3

3
m=Z

1
m=Z

_ 1 I
--2l: D .•

J..J

=-.!l:'D
2 ij

(3) N = 4

2 Tr(JeD)
1m = = - l: I D..2 J..J

m = 1 Tr(JeD) 0

m = 0 Tr (JeD) = -l: I D
ij

(4) N = 5

5
Tr (;v.D) =.!l:' D..m=-

2 2 J..J
3

Tr (JeD) = .! l:' D..m=-
2 2 J..J
1

Tr (JeD) -l:' D..m=- =
2 J..J

(5) N 6

m = 3 Tr(J(D) = 1:. l:' D..2 J..J

m = 2 Tr (;v.D) l: ' D..
J..J

m = 1 Tr(J(D) = _1:. l:' D ..
2 J..J

m = 0 Tr (JeD) = -2 l:' D •.
J..J

~ a special case, we can compare the results for the methyl

group or benzene molecule systems with the above equations. He
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show that they are identical .

..;.6..;.'..;.4..;:.'_3_C.:-a_1.:-c.:-u-=1.:-a_t_i_o_n-.;..of-=--<JC--l
D
f-
2

_>_,_an..;.d_d.:-i_s.:-c_u.:-s.:-s_i..;.o...;.n

To estimate the second moment of the density of states, we

2
need to calculate the trace of X

D
' where

Jf2=
D

(VI.43)

We can omit the off-diagona1 elements that do not contribute to

the trace. Those elements are IizJjzIk+I

so on. Consequently, we can show

, Ii J. I k I +' andz JZ -

+ l ~'D D (I I I I + I I I I
4 L.. ij k£ i+ j- k+ £- i+ j- k- £+

(Vr.44)

We can make further simplifications by noticing that the trace

of Ii+Ij_Ik+I£_ is non-zero only if i = £ and j = k. Finally,

tole have

Jf2
D

(L' 2 D.. 1. I. )([' 2 DLnlkzlnz)
~J ~z J z Kh h

1+­
2 L' D7. (I.+I i I. 1.+ + I. Ii+lj+I. )

~J ~ - J - J ~- J-
(VI. 45)

The calculation of the trace of the second part is rather

easy. We can show that the matrix element for the second part

is non-zero for those states where spins i and j are anti-parallel.
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Consequently, we will obtain

'T'~rl ~, D2
...... l2 L. ij

1 2= 2 L' D
ij

[C(N-n)-c(N-2,n)-C(N-2,n-2)]

1
=.,..--;~~

N(N-l) L' D~, C(N,n)(N,n)n
1J

(VI. 46)

The trace calculation of the first part is rather complicated.

We shall first discuss a special case and assume that all the

coupling constants are equal, that is, D
ij

= D.

In this case, we find

Tr(L' 2 D.,I. I, )(I' 2 D,.nIkzInz)
1J 1Z J z KJ.,:Iv

= 4 D
2

Tr(I' I, I. )(I' I
k

In )
1Z J Z Z :lvZ

2
The average values of X

D
and X

D
are given by

(VI. 47)

<Jf >
D

Tr (XD

2
) D2 D2 2 2

-::-;:~ = - (N-n)n + - [(N-2n) -N]C(N,n) 2 16

D 2
= "4 [(N-2n) - N]

(VI.48)

(VI.49)

The second moment of the density of states is defined by

D
2

= 2 (N-n)n (VI.50)

Since n is related to m by



m =

we find

N
2

n
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(VI. 51)

W
m

_ <JC>
D m

D 2
= 4£ 4m -N] (VI. 52)

where w is the averaged frequency shift in the manifold with
m

the magnetic quantum number m.

T1 d f h d . f 2 . . 11ne secon moment 0 t e ens~ty 0 states W 1S a monoton1ca y
m

decreasing function of m. Nevertheless, the averaged frequency

shift increases monotonically with m.

Assuming a gaussian form for the distribution of the states,

the density of states is given by

g (w)
m

1 22= CN(m) ----- exp[ -(w-w ) /20 ]
/2Tf(J m m

m

INno
m

2
-2m /N

e
2 2- (w-w ) /20

e m m (VI.53)

where CN(m) is the total number of states in the manifold of m.

The spectral function of the m-quantum transition is given by

F (l2)
m L Jnl ,n2 _00

In l - n2 1=m (VI. 54)

In -n I=m1 2
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where

(VI. 55)

and

(VI. 56)

The second moment of any particular m-quantum transitions

associated vnth the manifolds of magnetic quantum number n
l

and

nZ' is given by

00

= J0,Z d0, __:::..1__

-00 I2iT (/
nl,nZ

(VI. 57)

where m = nl-nZ.

All transactions between any pair of manifolds of n
l

and

nZ with m = nl-n
Z

contribute to the m-quantum spectrum. The

second moments of the m-quantum spectrum is given by

= A + B
m m

(VI. 58)
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where

A
m

and

(VI. 59)

B
m

(VI. 60)

Two sources contribute to the second moment of the spectrum.

Firstly, the A term comes from the second moment of the density
m

of states. Secondly, the B term results from the averaged
m

frequency shift of each manifold.

Generally speaking, the A is a monotonically decreasing
m

function with m, whereas B is a monotonically increasing function
m

for small m and a decreasing function for large m. To illustrate

the systems of 6, 10, and 20 spins having equal couplings, the

normalized values of <d> , A
l!l m

VI.7-VI.9. The dependence of

Figure VLlO.

and B are plotted in Figures
m

<~2> for various N is shown in
m

The summations in eqs. (VI.58), (VI.59), and (VI.60) are

By suitable rearrangement of the indices, we can obtain a

symmetric form for the summation. Let n2 = n,n
l

= n+m and x

mn + 2; we can rewrite eq. (VI.59) and (VI.60) as
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5.0

l N=6
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I
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2.0

1.0

0.0
---L L ---l __=::~
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Number of Quanla

4 5 6

XBL 813-8351

Figure IV.7 This illustration demonstrates the normalized

dependence of the second moment of the number of quanta

2
assuming equal coupling constants (circle: <~ > : square: A ;m· m

triangle: B ).
m
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Figure VI.8 This figure is similar to Figure VI.7, except that

2
N = 10 (circle: <D > . square: A ; triangle: B ).m' m m
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Figure VI.9 This graph is similar to Figure VI.7, except that

2
N = 20 (circle: <~ > • square: A . triangle: B ).
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4
E

2
m.
N

Z
m

N-m
2
L
N~

x=- -2-

4 2
-N x

e
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IUT C=, '\
\-V.L,U.l..j

Z
m

B
m

E

2
m

N
N-m
-2-

L
N-m

x=- ~

4 2
-~x

Ne
2

x (VI, 62)

where Z is the partition function and is given by
m

·Z =
m

N-m
2

L
4 2

--x
Ne (VI. 63)

x=-
N-m

2

The sumation in the above expressions can be approximated by

using integration to avoid the complicated calculation. Using

the definition of error function as
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x
2

erf(x) 1 J -t dt=- d ,
liT

-x

we can show that

N-m+l
2 4 2

J
--x 1 erf (N-m+l)N

Z = e dx = - INTI
m 2 IN

N-m+l
2

and

N-m N-m+l
2 4 2 2 4 2

L 2 --x

J
--x 2N N

dxx ·e :::: e x

N-m N-m+l
x=---

22

(N-m+l) 2

N [1N"Tr erf(N-m+l) - (N-m+l) e
N ]=

8 2 IN

(VI. 64)

(VI. 65)

• (VI.66)

The approximated value for A and B can be obtained:
m m

A
m

B
m

2
n-m+l «N-m+l) )

D2 2 2 I IN exp - N
= -4 {N -m -N [-2 - _-C-- ----"-'--__]} ,

liT erf (N-m+1)
IN

2
N-m+l «n-m+l))IN exp - N

D2
m

2N [.! _ ---------]
2 lIT erf(N-m+l)

IN

(VI, 67)

(VI. 68)

The value of the error function can be found in most books

of mathematical tables. 4 In the special case of small m and

larger N, the value of the error function in the above expression

is approximately equal to unity.
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Using an integration approximation, the calculated value of

<0.
2

> C= A + B ) is very close to its exact value, except form m m

large m. The comparison is illustrated for the cases N = 6 and

10 and is shown in figures (VI. 11) and (VI.12).

We shall proceed with the discussion on the general case

without assuming that the coupling constants are all equal.

The complex calculation for the general case comes from

finding the square trace of the diagonal dipolar Hamiltonians,

, ,
Tr[ ( 1: 2 D.. I. I. ) ( r 2 DkQ, I kz IQ,z)]

l.J l.Z JZ

i,j k,Q,

[ (1. 2: D.. L
2 (VI.69)D

ik
)

2 l.J

_{A,B} i,j i,k
i,jEAUB

The first summation is carried out over all possible sets, with

subset A containing N-n spins up and subset B containing n spins

down. The notation AVB represents the union set of subsets A

and B.

The trace calculation is straightforward, yet tedious. The

computer program needed to perform the trace calculation for each

manifold and for the second moment of the multiple quantum spectra,

based on the statistical model, is shown in the appendix A.

The second moment of the density of states in the manifold having

magnetic quantum number n is defined by

2a
n

(VI. 70)
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Figure VI.ll Here we observe the normalized dependence of the

second moment on the number of quanta if we assume they have equal

coupling constants. The value obtained by the integration

approximation (square) is very close to the value based on the

statistical model (circle), except for large m (N = 6).
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Figure VI.12 This graph is similar to Figure VI.II, except that

N = 10.
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It has a complicated dependence on the distribution of the

dipole couplings and can be ca1uc1ated by using the computer

program shown in the appendix.

Yet, the averaged frequency shift w in the manifold with a
n

magnetic quantum number m has a simple relation, and is given by

(VI.71)

where <n> is the averaged dipole coupling constant.

The second moments of the m-quantum spectrum is given by

(VI. 72)

large for the

The contributionand w = w -w
nl ,n2 n

l
nZ2

dipolar shift w isn
l

,n
2

has a simple form

where 0
2 = 0

2 + 0
2

n
l

,n2 n
l

n2
2of <n > from the averaged

m

case with <D2> - <D>2, and

(VI.73)

2The complicated calculation of A , which comes from a , ism n
l

,n
2

carried out by a computer program in the appendix.

For example, the second moments of six spin systems, that

have various sets of dipole couplings. are illustrated in Figure
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VI.13. The top curve refers to the system with all the dipole

couplings equal. This particular system has a veri large B
m

component. The bottom curve refers to the system with coupling

constants of equal magnitude, but that alternate in sign. Its B
m

component is zero. The second moments decrease monotonically with

m. The central curve is for the benzene molecule. Its coupling

constants are not all equal, but have same sign.

Another example is illustrated in Figure VI.14. The curve A

is a monotonically decreasing function of ro, since the dipole

couplings between the two methyl protons alternate in sign and

have a small <D>.

The curve of second moments has a strong dependence on the

2 2
ratio of y C= <D> /<D »--as we illustrated in the comparison

between the benzene molecule and dimethylmaleic anhydride molecule.

This is also shown in Figure VI.14. In the case A, all couplings

are equal to one and y = 1. As more couplings have negative sign

as in the cases B, C, and D, the value of y decreases. For all

2the above cases, <D > is the same and equals one, however, <D>

becomes smaller in the sequence from A to D.

Even the distribution of dipole couplings has the same value

of y, although SOMe small variation of the second moments'

dependence of m still exists. A few examples are shown in Figures

VI.lS and VI.16. In each figure, the value of y is equal. It

appears that the second Moments are large if several spins with

an opposite sign in coupling are in common. For example, the

system A in Figure VI.lS has two negative coupling constants

DCl,2) and DCl,3). They have a Common spin index 1.
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Second MomentCm)/Second Moment(0)

5.8

".5

N = 6
".8

3.5

3.8

2.5

2.8

1.5

1.8

8.6

8.8

8 2

Nu~.r o~ Quanta ~

5

\

XBL 813-B352

Figure VI.13 Here we see the noroalized dependence of the second

moment on the number of quanta (circle: equal coupling constants;

square: benzene, triangle: couplings equal in magnitude, but

alternating in sign).
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66

-I
I
I

I
I
I
I,

32

S."

<4.5

<4.0

3.5

3.0

2.6

2.0

1.5

1.0

0.5

0.0

e

Number o~ Quanta m

AI dImethyl maleIc anhydride
Bl benzene

XBL B14-B999

Figure VI.14 Normalized dependence of the second moment on the

number of quanta for N = 6 (A: dimethyl maleic anhydrice which

has couplings alternating in sign; B: benzene which has couplings

of the same sign).
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Figure VI.lS Normalized dependence of the second moment on the

number of quanta for N = 6 (A: all D(i,j) = 1 except two couplings

D(I,2) and D(I,3); B: D(i,j) = 1 except D(I,2) and D(3,4)). In

case A the couplings having a negative sign share a common particle

1.
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Figure VI.16 Normalized dependence of the second moment on the

number of quanta for N = 6 with all D(i,j) 1, except for three

coupling constants shown in cases A through E.
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Although there is a small variation in the function of

second moments, their overall behavior is largely determined

by the value of y (Figure VI.17). The qualitative dependence

of the second moments of the multiple quantum spectra on the

2 2
value of <D >, <D> , and y predicts different behavior of the

second moments for molecules of benzene and dimethylmaleic

anhydride. The experimental spectra in Figures 11.9 and V.8

show a good agreement with the statistical model for the second

moments.
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Figure VI.l? Normalized dependence of the second moment on the

number of quanta for N = 6 (A: all coupling constants equal to

unity; B: D(i,j) 1 except that D(1,2) = -1; C: D(i,j) = 1

except that D(1,2) D(3,4) = -1, and so on).



192

6.5 References

1. S. Mukamel, J. Murdoch, and A. Pines, Lawrence Berkeley

Laboratory MMRD Annual Report p. 262 (1977).

2. A. Carrington and A. D. McLachlan, Introduction to Y~gnetic

Resonance, Chapter 3 (Harper & Row, New York, 1967).

3. A. Abragam, The Principles of Nuclear Magnetism, Chapter

4> (Oxford Univ. Press, London, 1961).

4. H. B. Dwight, Tables of Integrals and Other Mathematical

Data (Mac}lillan, New York).



193

VII

SPIN-LATTICE RELAXATION OF METHYL GROL~S IN SOLIDS

7.1 Spin-lattice relaxation

As discussed earlier in chapter IV, the time-dependent

Hamiltonian Hl(t) describes the fluctuation of the interaction

between spins and lattice. This fluctuation is responsible for

the relaxation of the spin system toward thermal equilibrium.

The spin-lattice relaxation time characterizes the recovery of

the non-equilibrium diagonal elements of the density matrix. The

diagonal part of the density matrix describes the population of

states.

In general, the spin-lattice interaction can be written as

d f f k · 1a inner pro uct 0 two tensors 0 ran' J;

HI (t) L (_l)m V(m) [f (m) (t) J+
(j )w (j )w

W,m

with

[I , v(m) ] m V(m)
z (j )W (j )W

V(m) ] V(m±l)
[1+, Ij (j+l)-m(m±l)(j ))J (j )W

and

[v(m) ]+ (_l)m (-m)
(j )W V(j)ij

( 1m I ::; j) ,(VII .1)

There are several common forms for the tensor operator



(1) V is linear with respect to the spin operators~ for
).J

example, the interaction of spins with the random fluctuation

fields.
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(2) V is bilinear with respect to the spin operators of
).J

single nuclei, such as the quadrupole interaction of nuclei with

spin I > 1 with the fluctuating electric field gradient.

(3) V is bilinear with respect to the spin operators of two
).J

different nuclei, such as the fluctuating spin-spin interaction.

In case (1) j = 1, and j 2 in cases (2) and (3). The subscript

j will be dropped out in a later discussion.

The correlation functions G(m)(T) are assumed to have an
).J

exponential decay form characterized by a single correlation time

T ,
C

= 0 0 G).Jem)(D) exp(-T/T ), (VII.2)
mn lJV c

Using the above explicit expressions for the time-dependent

Hamiltonian Hl(t) and correlation function, the master equation

of motion in equation (IV,ll) is expressed:

dp
dt -i[H ,p]

o

-iH 1"
[e 0

iH 1"
o

and becomes

).J,m

dp
dt

-i[H ,p]
o

1
2

L J (m w ) [V(rn) , [v+(rn) ,p-po]]
).J 0 ).J ).J

(VIL3)

where the spectral density J (m w ) is defined by the Fourier
)J 0
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transform of G(m)(T) as
).l

2 T
C

222
1 + m W T

o C

7.2 Spin thermodynamics in solids

It is generally assumed that after any disturbance the

density matrix of a dipole-coupled spin system in solids takes

the form:
3

due to a complete spin diffusion. The time-dependent Lagrange

(VII .4)

(VII.5)

multipliers a
z

and aD are the inverse temperatures of the subsystems

of the Zeeman reservoir and dipolar reservoir. As a result, the

Zeeman as well as the dipolar relaxation, is characterized by a

single exponential decay; they are not coupled.

The above traditional model, however, is not adequate for

describing dipolar solids that contain reorienting or tunneling

symmetrical groups, such as CH
3

, CF
3

, and NH4 . They have a

4-6general feature of non-exponential relaxation.

Without losing generality, we can assume that the spin system

has no subsystems. As far as the spin-lattice relaxation is

concerned, only the diagonal part of the density matrix is

relevant. The Zeeman subsystem is characterized by the

operator I ; each subsystem is associated with an operator.
z

It is convenient to define a set of n orthonormal, traceless

diagonal matrices 0k's,7



Tr ° - °k

and

Using high temperature approximation, we can assume that

where ~ • Tr(Ok p).

Using the following relations,

and

Tr(O [v(m) [v+(m) 0 ]]) = Tr([O V(m)] [v+(m) 0 ])
k ~ '~ 'j k' ~ ~ 'j

we can express the master equation for the density matrix in

terms of these orthonormal operators,
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(VII. 6)

(VII.7)

(VII. 8)

(VII.9)

where

s ., 1-.. '\ J (m w ) Tr([O V(m)][v+(m) 0 ])
kj 2 [;.,. ~ 0 . k' ~ ~ • j

~..m

1
"" -2 L J

~,m ~
(VILlO)
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The off-diagonal elements of the relaxation rate matrix S

describes the cross-relaxation between the two associated

subsystems •

The transition rate matrix W is related to the matrix S

by

1
2 I: (Ok -Ok S)(O. -0. S)W S,a , J,a J, aa, S

(VII .11)

where WaS is the transition rate between states 10.> and Is>,

and

[
'W,m

J (m w ) I<a IvCm) Is> 12
'W 0 'W

1
= h 2

00

J (VILI2)

Both matrices Sand Ware symmetric, namely,

(VILI3)

The lifetime t of state 10.> is related to the elements of W by
a

the equations (IV.25) expressed as

L w
S#a as

'"Defining a new matrix W by

H - 0 "Was as I-, ay
y

(VILI4)

(VII .15)
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we can show that

= - L
a,S

CVIL16)

(VILl7)

(VIL18)

The Pauli equation for the population change is related to WaS

by

= - (VIL19)

where p is the population at state la>. The above equation is
a

completely equivalent to the equation (VII.9). Yet, by choosing

an appropriate set of the operators O. 's, we may obtain a better
l.

physical picture about the relaxation mechanism.
7

7.3 Relaxation of protonated methyl groups in solids

The cross-correlation in the fluctuation of the dipole-dipole

interaction in solids has strong impact on the behavior of

relaxation. Generally this leads to an non-exponential spin-lattice

1
. 4re axatlon.

The methyl groups in solids undergo hindered rotation about

their three-fold symmetry axes. The first random reorientation

modulates the dipole-dipole interaction among methyl protons.
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The spin state of methyl protons consists of eight levels as

shown in Figure VII.l.
S

The E
3

and Eb states are shifted upward

in energy with respect to A states that result from rotor-lattice

interactions. The energy splitting is nw
t

• At high temperature,

where semiclassical description is valid, the tunneling frequency

W
t

is approximately equal to zero.

Because of the conservation of total population, the distribution

of population among eight levels can be described by seven

independent occupation operators Ok' It is convenient to choose

them according to physical properties. Two of them, 01 and 0S,

correspond to the Zeeman and dipolar system. Another two, 04

and 06' correspond to the rotational polarization, being defined

as the excess in population of Ea over Eb states, 06 to the

tunneling system, being defined as the excess in population of A

over E spin species.
S

The eigenvalues of these operators are

given in Table (VII.l).

Using the above set of occupation openators, the relaxation

rate matrix can be evaluated if we assume a three-fold random

reorientation of the methyl groups. Their values are listed

8elsewhere.

Up to now, the effects caused by the interaction among methyl

groups has not been taken into account, this leads to a spin

diffusion process at a rate much faster than the spin-lattice

relaxation.

The traditional spin temperature model, assuming a complete

spin diffusion which mixes up the A, E
a

, and E
b

spin states, shows

that the Zeeman and dipolar systems are the only quasi-constants
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Fig. VII.l This figure illustrates the energy levels of the three

protons of a methyl group considering the Zeeman, intramethyl dipolar,

and tunneling interactions. The appearance of a tunneling energy in

the spin Hamiltonian is a consequence of the Pauli exclusion principle

that couples spin and rotor symmetries.
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abc
Eigenvalues of the Occupation Operators '
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A3/ 2 Al / 2 A_l / 2 A_3/ 2
a

E:l / 2
b b

El / 2 El / 2 E_l / 2

16 0
1

3/2 1/2 -1/2 -3/2 1/2 -1/2 1/2 -1/2

12 O
2

1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2

13 0
3

a 1 - 1 ° -1/2 1/2 -1/2 1/2

°4 ° a ° ° 1/2 1/2 -1/2 -1/2

°5 1/2 -1/2 -1/2 1/2 ° ° ° a

12 06 1/2 1/2 1/2 1/2 -1/2 -1/2 -1/2 -1/2

°7 a ° a a 1/2 -1/2 -1/2 1/2

aThe eigenvalues are for the spin eigenstates of the Zeeman and

secular dipolar Hamiltonians. At quasi-equilibrium, all of the

number operators are diagonal.

bThe identity operator which, may be taken as the eighth occupation

operator, is not needed since the total population of the spin

states is constant.

cThis table is taken from reference 8.
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2
of the motion. The density matrix at quasi-equilibrium is of

the form

The spin-lattice relaxation of a
l

and as are independent at a

high temperature when wt = O. They relax exponentially at rates

Sll and S55· At low temperature when wt ~ 0, the cross-relaxation

rate S15 is not zero, and the Zeeman and dipolar systems are

7
coupled. The spin-lattice relaxation is characterized by two

exponentials.

The prediction of the above model does not agree with the

experimental facts of the non-exponential spin-lattice relaxation.

Because of the rapid reorientation, the flip-flop terms of the

inter-methyl dipolar interaction conserve the symmetry of spin

states. The protons of the same methyl group experience the same

averaged local dipolar field than protons in neighbor methyl

groups. This is the basic assumption of sYmmetry-restricted spin

diffusion (SRSD).8,9 In this case, four degrees of freedom are

8
expected. Instead of equation(VII.5) , the quasiequilibrium

density matrix takes the form:

2 2
l{hen (w

t
+ n w) T «1, i.e., W = 0 or W »w, the
oct t 0

Zeeman system is only coupled to the rotational polarization, and

the dipolar system is coupled to the tunneling system, as shown

in Figure (VII.2). These predictions have been verified

10-12
experimentally by discoveries of the Haupt effect and
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Zeeman
Rotational
Polarization

LATTICE

Dipolar Tunneling

LATTICE

X8L 803-866:

Figure VII.2 At high temperatur~when wt = 0, the Zeeman system

is only coupled to the rotational polarization, and the dipolar

system is coupled to the tunneling system. This leads to non-

exponential spin-lattice relaxation and the Haupt effect.
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and non-exponential spin-lattice relaxation. For an arbitrary

value of wt-wo ' the relaxation of aI' a4, as' and a6 are mutually

coupled as is shown in Figure (VII.3).

7.4 Relaxation of deuterated methyl groups in solids. 23

7.4.1 Introduction

The relaxation mechanism of reorienting or tunneling methyl

. lid h b d' . i '. 4-20groups 1n so s as een un er 1ntens1ve nvest1gat10n.

The non-exponential nature of spin lattice relaxation4- 6 ,8,17 and

the Haupt effect
lO

-
12

of thermally induced dipolar polarization

can be explained as being a result of the dynamical couplings

among Zeeman, dipolar, tunneling, and the rotational polarization

systems. At high temperatures, the non-zero couplings exist only

between the Zeeman and rotational polarization systems and

between the dipolar and tunneling systems.

In this section, we shall study the system of deuterated

methyl (CD
3

) groups in solids. Some interesting new features

arise because of the deuterium quadrupole coupling. In a manner

7analogous to the CH3 case, let us assume that the relevant

quasi-constants of the motion are the Zeeman, quadrupole,

tunneling, and rotational polarization systems. The dipolar

reservoir is negligibly small in the CD3 case, In particular,

we assume, that the fluctuation of quadrupole coupling of the

deuterons, by random reorientation or tunneling of the methyl

group, is the dominant relaxation mechanism. We shall derive

the relaxation equations for the above subsystems and see which

subsystems are mutually coupled by relaxation. The full

calculation is given in Section 7.4.2. Here we shall mention
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Fig. VII.3 In general, the lattice, Zeeman, rotational polarization,

dipolar, and tunneling systems are all coupled together.

relaxation rates SIS' S16' S45' and S46 vanish when wt

The cross-

o or LL » W
t 0
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the main findings. For random reorientation at high temperatures

(i.e., ~ 77°K) Zeeman, quadrupole, tunneling, and the rotation

polarization systems are predicted to be uncoupled. This is a

contrast to the CH3 case. As a result, the Zeeman spin lattice

relaxation is expected to be exponential. For tunneling CD
3

groups

at low temperatures «< 77°K) the Zeeman and tunneling systems

are coupled, and consequently, the Zeeman spin lattice relaxation

is predicted to become non-exponential. The experiments that

we have done to test the calculations consist of measuring the

Zeeman spin lattice relaxation of dilute toluene, with the methyl

group having been deuterated, at liquid nitrogen and liquid helium

temperatures. The experimental results are discussed in Section

7.4.3. We mention here that the relaxation is exponential at

liquid nitrogen temperature and becomes non-exponential at liquid

helium temperature, thus verifying the unique expectations for CD
3

relaxation.

7.4.2 Theory

Consider a CD
3

group with geometrical parameters shown in

Figure VII.4. Unlike the system of methyl protons, the dominant

relaxation mechanism of deuterated methyl groups is caused by the

fluctuation of quadrupole coupling through random rotation of the

reorienting or tunneling methyl groups. The much less efficient

rel~xation process due to fluctuating dipolar interactions may be

neglected. The Hamiltonian of the rotating methyl deuterons in

a high field consists of a Zeeman term CHz), tunneling term CH t ),

the time-averaged truncated quadrupole interaction (H
Q
), and its

fluctuating nonsecular part (HlCt» responsible for relaxation:
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Figure VII.4 This figure shows the geometry of a methyl group.

e is the angle between the C
3

axis and C-D bond, and 8 is the

angle between the C
3

axis and the magnetic field.
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The energy level diagram with the classification of irreducible

representations of the C3 group is shown in Figure VII.S. The

truncated quadrupole interaction HQ, averaged over the random

rotation, is reduced by a factor of P2(cos8)

where T(m) is the component of the symmetry-adapted tensor
fl

operator of the second

representations of the

1
rank and fl

21C3 group,

= A, Ea
, Eb are the irreducible

= T (m) + AT (m) + A*T (m)
1 2 3

with fl
a b

= A, E or E

for A = 1, € or €*, € = exp(i2n/3) and T. (0) =
J.

(±l)
i = 1, 2, 3. Here the tensor components T

generated from T(O) by commutation relationl
fl

3 1~ - 1(1+1),
J.Z

and T(±2) are

T(m±l)
fl

As shown in Figure V11.4 B is the angle between the C
3

axis

and the magnetic field; 8 is the angle between the C3 axis and

the principle axis of the electric field gradient tensor.

The fluctuating term HI (t) can be expressed as being a

product of the symmetry-adapted tensor operators and spatial

functions,

2:
a b

fl=E ,E

2

.I
m=-2
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fig. VII.S This figure illustrates the energy level scheme with a

a b
classification according to A, E , and Estates. w

t
is the tunneling

splitting between the A and Estates.
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where

= -
16 . 2i¢ 2 16 i¢'8 J.e sin e sinS (±l+cosS) + '8 e sin28 (cos2B+cosS) ,

and

F b (m) =
E

The angle ¢ fluctuates randomly by a fast rotation of the

methyl group about the C3 axis.

The correlation functions G(m)(t) are assumed to decay
~

exponentially and to be characterized by a single correlation

time T ,
c

6 ,G(m) (0) exp(-t/T )
rom ~ c

They are evaluated as tabulated in Table VII.2.

For spin-lattice relaxation only the evolution of the

22
diagonal part PD of the density matrix is relevant. Based on

8the Symmetry Restricted Spin Diffusion (SRSD) model, we can

assume that there are four degrees of freedom that characterize

the quasi-equilibrium during the relaxation process. In the high

spin temperature assumption, we can decompose P
D

into a set

of four traceless and mutually orthonormal operators, and the

unit operator with their corresponding Lagrange multipliers a k ,



G (0)
Ea (0)

G (1)(0)

E
a

211

Table VII.2

The SywUletry-Adapted Correlation Functions C(m)(O)
l.1 .

2
(0) -l. 4 4 2 2

G b (0) - 64 S1.n e sin 8 (1+16 cos e cos S)
E

2

= G~;l)(O) = :~ [sin
4

e sin
2S (1+cosS)2

+ sin228 (cos2B-cosB)2]

GE~-I>CO) = GE~I) (0) = :~2 [sin4e sin
2

S (l-cosS) 2

+ sin228 (cos2S+cosB)2]

G (2) (0)

E
a

G (-2) (0)

E
a

( 2) WQ2 1 . 4 4= G - (0) = --- [- S1.n e (l+cosS)
. Eb 96 4

GE~2)(O) 0 :~2 [f sin
4e (l-cosS)"

+ sin22e sin2S (1+cosB)2]
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01' 02' 03 and 04 defined below, correspond to the Zeeman,

tunneling, quadrupole, and rotational polarization systems

respectively, namely,

° =A76 (~IA><AI- ~IE><EI)2 27 11 16

03 = _1_ T (0)
3/2 A

where IA><AI, IEa><Ea I and others are projection operators.

The equation governing the relaxation of the system toward an

equilibrium with the lattice can be expressed as7 ,8

• eq
Ct = -5' (Ct-Ct )

where Ct is a column-vector with components Ct
k

. The symmetric

7 8relaxation matrix 5 have the components '

2

[
m=-2

G (m) (0)
]..J

iHT
e

]..J rn

G(m) (0)
]..J

2T
~~--=c=--~_ Tr(P[O T(rn) J [T+(rn) 0 J)

+ )2 2 k' ]..J ]..J' .R,
l+(IDwo wt Tc
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7
where w

t
is the observable tunneling frequency and the projection

operator p = IA><AI.

The non-zero relaxation rates Sk£ were evaluated, yielding:

L
m-l,2

cyn) (0) J
J.1 2

3m T
c

elm) (0) J
J.1

2 2 162
1+(-IIiD +w ) T

o t c

T27'
I ill mT c

[
0=0,±1,±2

\' [c(l) (0)
La b 11 +

W=E,E l+(w +w )2T 2
o t c

ell) (0) J
J.1 81 T

l+(-w +w )2T 2 c
o t c

L
m=O ,±l, ±2 [

c(m) (0) J
Lab J.1 2 2 162 T c

J.1=E,E l+(mw +w ) T
o t c

The quadrupole system and the rotational polarization system

are characterized by a single relaxation rate S33 and S44. The

Zeeman system and the tunneling system, however, are coupled

through S12' which is non-zero for wt # O. The spin lattice

relaxation is non-exponential, in fact, a sum of two exponentials.

At high temperatures, when w
t

= 0, the Zeeman system and the

tunneling system become decoupled, since S12 = O.
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7.4.3 Experimental results and discussion

The spin-lattice relaxation of toluene, when the methyl

groups is deuterated and diluted in a normal protonated toluene

matrix (~ 10% by mole), was measured at liquid nitrogen and liquid

helium temperatures in a field of 42.5 kG. The corresponding

resonance frequency of the deuteron NMR is 28.4 MHz. A three-

pulse sequence l80x-T-90
X
-T'-90y is used to measure the spin­

lattice relaxation. The first ~ pulse is used to reverse the

magnetization. The second and third ~/2 pulses are used to

generate a quadrupole echo for improving the SiN ratio and for

achieving easier detection.

The spin-lattice relaxation time was measured on the recovery

of the sharp singularity in the powder spectrum. The recovery

of intensity at liquid nitrogen and liquid helium temperatures

are plotted on a semi-logarithmic scale as we have shown in

Figure VII.6. We found the relaxation to be exponential with a

T
l

of 1.1 ± 0.1 sec at liquid nitrogen temperature. At liquid

helium temperature, the spin-lattice relaxation is characterized

by two exponents with relaxation rates Al and AZ; A~l = 0.9 ±

0.1 sec and A;l = 26 ± 3 sec. Al and A2 are related to Sk~ by

=

S the initial slope of curve in Figure VII.6b, is measured
11'

-1
with Sll = 12 ± 1 sec.

-1
-0.23 ± 0.02 sec and

S12 and S22 are ca1cua1ted to be S12 =
-1

S22 = 0.9 ± 0.1 sec The non-exponentia1ity
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Figure VII.6 The recovery of the intensity of the spectrum is

plotted on a semi-logarithmic scale. (a) The spin-lattice

relaxation at liquid nitrogen temperature is exponential with

T
l

= 1.1 ± 0.1 sec. (b) The spin-lattice relaxation at liquid

helium temperature is the sum of two exponentials.
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of spin-lattice provides us with evidence of the coupling

between the Zeeman and tunneling systems. The inter-system

coupling 812 is non-zero at low temperature when the tunneling

is in communication with the Zeeman system, i.e., w
t
~ W

o
or

~ 2w --such that both systems may exchange energy through phonons
o

(Figure VII.7).

Finally, we briefly compared the relaxation processes between

the methyl protons and the methyl deuteron systems. In the first

case, the protons are coupled to the lattice by a dipolar inter-

action. This is a two-body interaction between protons. The

existence of cross-correlations among the intramolecular dipolar

interactions results in coupled, namely, non-exponential spin-

lattice relaxations. In the CD
3

case, however, the deuterons

are coupled to the lattice by quadrupole interactions that are

single particle interactions. We expect that each deuteron should

be relaxed by its own interaction with the lattice and that the

relaxation should be exponential. Then it is not surprising to

find that the relaxation of three identical deuterons is

exponential, as in the case of high temperatures. At low temperature,

however, we apparently cannot consider each deuteron independently

from the others. We are forced by the Bose-Einstein statistics

to consider the three deuterons as a collective system and to

classify the eigenstates in an appropriate manner. We then find

coupled relaxation becuase of the statistics and because when

W
t

1 0, the A states are lower in energy than the Estates.

The above illustrates that the relaxation coupling is not

caused by cross-correlation effects,S but rather, by what we call
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Zeeman

M (t)= Ce- At
z

LATTICE

Zeeman Tunneling

wt ..... Wo or 2wo

LATTICE

XBL 803-8661

Figure VII.7 The top figure shows that the spin-lattice relaxation

at high temperature is characterized by a single exponential decay.

The bottom figure shows that at low temperature, when w ~ w or
t 0

2 w , the tunneling system is in communication with the Zeeman
o

system. The spin-lattice relaxation is a bi-exponential decay.
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a statistical interference. Some of the couplings in the CH
3

7 8case' that vanish when wt becomes zero, are of the same nature.
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VIII

Al~ISOTROPIC SPIN-LATTICE RELAXATION OF DEUTERATED HEXAMETHYLBENZENE

8.1 Introduction

Some molecules in solids may exhibit reorientating motion

other than thermal vibration. The motional group does not

rotate freely, but rather, jumps (or reorients) among all possible

equivalent positions. In most cases, only part of the molecule

is able to reorient, for example, the methyl group. Yet, there

are a few cases where the whole molecule may undergo reorienting

motion; some examples are benzene, hexamethylbenzene and adamantane.

Because the motional group or molecule does not tumble

isotropically, but rather, reorients about some special direction,

the spin-lattice relaxation is generally not isotropic. In

general, the special direction of reorientation is along the

symmetry axis of the motional group. For example, the methyl

group jumps about its three-fold axis; the benzene reorients about

its six-fold axis. Although the spin-lattice relaxation of

individual motional group is anisotropic, the spin-diffusion

among each different molecule may diminish or completely wash

out the anisotropy.

Some single crystals may greatly facilitate the anisotropy

study of spin-lattice relaxation if all the motional groups

reorient about the same direction. The single crystal of silver-

. 19 1trlfluoroacetate (CF
3

COOAg) has been studied by F NMR. The

CF
3

groups in the crystal all point to the same direction. The

orientation of the methyl group is determined by the measurement

of the anisotropic chemical shift of 19F.
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The three-fold reorientation of the CF
3

groups creates a

fluctuating local field through the dipole-dipole interaction.

The cross-correlated fluctuation of the local field caused by

the reorientation produces an additional pathway for the relaxation.

As a consequence, the spin-lattice relaxation of the methyl groups

( ) 1-3CH3 or CF3 ' is generally anisotropic and non-exponential.

Nevertheless, in the case of the deuterated methyl group

(CD
3

) , the relaxation is characterized by a single exponential.

Unlike the dipolar interaction, the quadrupole interaction for

the spin 1 nucleus is associated with a single particle. Even

in the presence of correlated reorientation, the cross-eorrelated

fluctuation between two nucleus is zero and does not contribute

to the spin-lattice relaxation.

The deuterated hexamethylbenzene (liMB-dIS) molecule in the

solid state undergoes a reorienting motion about its hexad axis

(C6 motion) over a wide range of temperature--as shown by

4-6second moment, T
l

, and TIp studies of the protonated material .

As a result of this anisotropic C
6

reorientation, the nuclear

spin-lattice relaxation exhibits a strong dependence on the

orientation of the molecular hexad axis with respect to the

applied magnetic field (Figure VIII.l). The T
l

anisotropy of a

single crystal of deuterated hexamethylbenzene was measured on

7
both sides of the T

l
minimum. We shall present a model that

uses only the single-particle relaxation to explain the temperature

dependence of this anisotropy. In addition, from the measured

temperature dependence of T
I

over the range -85 to 70°C, the

activation energy and correlation time for the C
6

motion is
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y
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XBL 803-8658

Fig. VIII.l This figure shows a hexamethylbenzene-d
18

molecule

oriented in a magnetic field with field direction along the z-axis.
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7
determined and compared with the values previously reported for

the protonated compound.

8.2 Theory

There are two motions associated with the hexamethylbenzene

molecule. In addition to the aforementioned C
6

motion of the

entire molecule, each of the six methyl groups undergoes rapid

reorientation about its C
3

axis. The C3 and C6 reorientations

cause fluctuations in the deuterium quadrupole interaction;

these quadrupole fluctuations are responsible for the deuterium

spin-lattice relaxation. The spin-lattice relaxation is most

efficient (T
l

minimum) when the rate of fluctuation is near the

Larmor frequency or near the second harmonic of the Larmor

frequency. In tpe temperature range of our measurements, the

rate of the methyl group C
3

motion is much larger than the rate

of the molecular C
6

motion, and is far away from the Larmor

frequency. Consequently, it is a very good approximation to

neglect the contribution by the fast C
3

motion to the spin­

lattice relaxation. Since the deuterium dipole-dipole coupling

is much smaller than the quadrupole interaction, we can legitimately

neglect the contribution (estimated to be less than 1%) of the

fluctuating dipolar interaction that it makes to the relaxation.

Unlike the dipolar interaction, the quadrupole interaction

is associated with a single nucleus. With this in mind, and by

ignoring fluctuations due to the fast C3 motion, the system of

18 deuterons can be simplified down to the treatment of a single

deuteron having reduced quadrupole strength and having a principal

axis along the methyl group C3 axis. Because of the fast
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reorientation of the methyl groups, the principal axis of

quantization for the quadrupole interaction is along the C3

axis. Since the rate of the three-fold reorientation is much

faster than the Larmor frequency in the temperature range of our

experiments, the C3 motion does not contribute significantly to

the spin-lattice relaxation. As a consequence, the non-secular

time-dependent part of the Hamiltonian can be neglected. The

quadrupole Hamiltonian of a methyl deuteron, with C
3

axis

parallel to the field direction, can be expressed by

(VIlLI)

where T(O) = 3 I
z

2 - 1(1+1), and w
Q

is the reduced quadrupole

frequency by. C3 motion.

To include the six-fold reorientation of the whole molecule,

Tf
we can apply two consecutive transformations, exp(i 2 Ix) and

exp(i ¢ I ), to the previous Hamiltonian. The new Hamiltonian,
z

with a C
6

axis along the z-direction, is given by

i¢Iz
e

-i 2!. I
2 x

e
-i¢Iz

e (VIII. 2)

The quadrupole Hamiltonian for a general orientation of the

molecule (Figure VIII.I) can be obtained by an additional

transformation exp(-i ¢ I ),x
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+ i T(-l) sin8 (1+cos8) +! T(2) (1-cos8)2
2

/6 _ 16 . 2 (0) (1)- 4 [- 4 Sln 8 T· -iT - sinS (1-cos8)

+ i T(l) sine (1+cos8) +! T(-2) (1-cos8)2
2

(VIII. 3)

where the 8 is the angle between the molecular C6 axis and the

magnetic field (Figure VIII,l).

The time-independent terms in T(l), T(-l), T(2), and T(-2)

that do not contain a fluctuating angle ¢(t) can be neglected

because they do not contribute to the relaxation, but rather,

only have a negligible second-order effect on the quadrupole

shift.

The static quadrupole Hamiltonian is then given by
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(VIII. 4)

The fluctuating quadrupole Hamiltonian can be expressed

explicitly as being a sum of the products of tensor operators

T(m) and the time-dependent spatial function F(~)(t):

where

1=-w3 Q

2

I:
m=-2

(VIII. 5)

16
sin2e -

16 sine-i "8 cos2ep 7; sin2ep

16 2
i

/6
case"8 cos2ep (l+cos e) + "4 sin2ep

and F(-m) = (_l)m (F(m))*. F(O) is included for completeness,

although it does not contribute to the T
l

relaxation.

The time-dependence of F(m) is contained in the randomly

fluctuating angle ¢. This angle ep describes reorientation of

the molecule about its C
6

axis with a correlation time T
c

. Since

all of the time-dependence enter into HI (t) as 2ep, only one

correlation time is necessary to describe the relaxation. With

one correlation time it is impossible to distinguish sixfold

reorientation from rotational diffusion.
8

Nevertheless, x-ray analysis shows that the hexamethylbenzene

molecules do have a specific sixfold equilibrium orientation. 9

Thus, T can be viewed as an inverse jumping rate.
c

In general, the relaxation of a multi-spin system must be

described by a relaxation matrix S(O). Since our treatment involves
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only a single particle relaxation, the spin-lattice relaxation

rate, (that is, l/Tl ) is given by the single matrix element Sll'

previously evaluated to be:

(VIII. 6)

where 3(1) and 3(2) are the special densities:

.1

1"c

1"
C

-1
The dependence of T

l
(Sll) upon the angle e is evident from the

spectral densities. T
l

has a minimum for the C
6

axis parallel to

the magnetic field, and increases monotonically as e increases

up to 90 0 (Figure VIII.2). The anisotropy of T
l

depends on the

temperature because 1" is temperature-dependent (Figure VIII.3).
c

The spectral density 3(1) vanishes when the C
6

axis is parallel

to the applied magnetic field, meaning that only 3(2), or the

dou ae quantum transition contributes to the relaxation at this

orientation.

S.3 Experiment and discussion

All experiments were performed using a single crystal of

HMB-d
IS

' This greatly facilitates the study of the anisotropic

spin-lattice relaxation because all molecular C
6

axes are parallel

in the single crystal.
9

I was measured using a saturation-recovery
1

pulse sequence, that is, (90 0 -T ') - T - 90 0 T «T I «T in a
n ' 2 1

field of 25.8 KG that had a corresponding deuterium resonance
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Fig. VIII.2
-1

Here we see the dependence of the relaxation rate Sll on

the orientation of the C
6

axis and the parameter £ defined as £ =

(1+w2
T 2)/(1+4w2

T 2).
c c
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Fig. VIII.3 The angular dependence of the spin-lattice relaxation rate

o 0
at two temperatures (-36 C and 70 C) is shown along with the theoretical

fit (solid line) for three different values of the parameter € defined

in the figure. € = 0.25 corresponds to the low temperature limit (i.e.

2 2
Wi» 1) and € = 1.00 corresponds to the high temperature limit (i.e.c

2 2
W i « 1).

c
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frequency of 16.8 MHz.

The angular dependence of the spin-lattice relaxation rate SII

was measured at two temperatures -36°C and 70°C. The results

are shown in Figure VIII.3. With the single crystal oriented

so that all of the molecular C6 axes are parallel to the field,

(that is, e = 0), the temperature dependence of Sll was measured

over the range -8SoC to 70°C. The observed temperature dependence

is shown in Figure VIII.4.

For the single orientation of the C
6

axes parallel to the

field, only the second term 0(2) term) in equation (VIII.6), is

expected to contribute to the relaxation:

T
C

A ---:2=----:::-2
1+4w T

c

Assuming an Arrhenius form for the correlation time:

T = T exp(E /RT);
c c a

o

(VIII.7)

(VIII.8)

the data are best fitted to the above expression for Sll with

the following values:

A (6.1 ± 0.1) 1010 -1x sec

(1. 8 ± 0.3) -15
T x 10 sec

c
0

E = 7.8 ± 0.1 kcal/molea

where E is the energy of activation needed for the molecule to
a

reorient about its C
6

axis. The theoretical fit of the data is

shown in Figure VIII.4. The deviation of the theoretical fit from
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Figure VIII.4 The temperature dependence of the spin-lattice

relaxation rate for the lllID-d
l8

single crystal oriented with

all molecular C
6

axes parallel to the magnetic field. The solid

curve is the best fit of equation VIII.7 to the data.
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the data at a low temperature can result from our neglect of the

methyl group rotation (C3 motion). This rotation becomes

increasingly important at a low temperature.

Our measured activation energy for HMB-d18 is substantially

higher than the reported value (6.7 ± 0.1 kcal/mole) for the fully

protonated Frrffi. If we view the molecule as a torsional oscillator

that sits in a sixfold well, the activation energy for reorientation

can be expected to decrease upon deuteration. Deuteration increases

the moment of molecule inertia, thus, the torsional energy levels

are shifted down and the spacing between zero point energy and

barrier top is increased.

From the value of A given above, the effective quadrupole

strength is found to be: VQ,eff = 39.1 ± 0.3 kHz. This agrees

quite well with our measurement of the powder pattern at -170°C,

where the C6 motion is essentially frozen, VQ,_170 0 C = 38.2 ± 0.4 kHz.

This agreement indicates that it is valid to consider only the

methyl-group-averaged quadrupole strength as a contributing

factor to the relaxation.

There is a problem, however, in comparing the effective

quadrupole strength with the powder pattern value for H}ffi-d18 at

room temperature. At room temperature, where the C
6

motion is

rapid, the powder pattern value is expected to be exactly one-half

of the effective quadrupole strength. In fact, the measured value

is: VQ,25 0 C = 16.6 ± 0.2 kHz. This is about 15% smaller than

expected. One explanation for this reduced value is that

besides the in-plane reorientation of the molecule, some

additional motion exists. One explanation for this is that the
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molecule is not constrained to lie in a plane, but rather, its C
6

axis rocks about in a cone. Such an out-of-plane motion seems

unlikely, however, since measurements of the C
13

chemical shielding

anisotropy in HMB do not indicate any significant change in a
33

over

11
the temperature range -186°c to 23°C. a

33
is the element of the

chemical shielding tensor that corresponds to a principal axis that

is perpendicular to the molecular plane. Additionally, TIP

measurements that are sensitive to slow motion, have not indicated

the existence of any motion besides the C
6

motion.

Also, we can explain that the principal axis of the quadrupole

interaction of a CD
3

group is not perpendicular to the molecular

C6 axis. This is possible if the three deuterons of the CD3 group

experience different local electric field gradients, so that when

they are averaged over the C3 motion, the effective quadrupole axis

lies outside the molecular plane. For a free C3 rotor, the average

could never be out of plane, but in H}lli, where there are many methyl-

methyl steric interactions, the methyl groups can be staggered in

such a way that some groups give above-plane averages, whereas

others give below-plane averages.
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IX

THE SPECTROMETERS

All the experiments on multiple quantum NMR and the experiments

of deuterated methyl groups at low tecperatures were done on the

B-spectrometer. Only the experiments on the deuterated hexamethy1-

benzene were carried out on the a-spectrometer.

9.1 The B spectrometer

9.1.1 Magnet

The B spectrometer has a superconducting magnet with a 3.5

inch bore from Bruker. It is operated at 42.5 KGauss and has a

proton resonance frequency at 185.0 MHz and a deuterium resonance

frequency at 28.4 MHz. The magnet has both superconducting and

room temperature shims. The field can be shimmed to less than

31 ppm over a 1 cm region. The field is very stable and no other

field or frequency locking is necessary.

9.1.2 Pulse generation

The proton RF is generated by mixing the 30 MHz IF from a

General Radio 1061 frequancy synthesizer with 155 MHz from the

same synthesizer. Only the upper sideband is kept. The 30 }lliz

IF is generated by tripling the synthesizer's 10 MHz reference

signal. The low frequency for deuteron is generated directly by

a Hewlett-Packard 3320A. The RF is passed through the commercial

quadrature hybrids and switches to produce four phases (x, ~, y

and y). The x and x channels are fed into a Taico lOOD0898 phase

shifter. This produces a phase shift in any multiple of 2n/256.
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The output goes to the high power transmitter (a class C cavity­

tuned transmitter or p~ model lOO/mode1200) and provides a pulse

of up to 200 watts.

The timing of the pulses and the data acquisition is

controlled by a l6-step pulse programmer that is interfaced with

a NOVA 820 computer.

9.1. 3 Receivers

The signal from the probe is first amplified by a commercial

wideband low noise (noise figure ~ 2.5 dB) preamplifier (Avantek

UTO-5ll, ulO-5l2) with about 35 dB of gain. The output is mixed

and filtered to ~ MHz, amplified with a variable gain IF strip up

to 70 dB (P~G EVT 3010), and then mixed with 30 }lliz down to audio

frequencies with two phases (0° and 90°).

9.1.4 Digitizers

The audio signals in two channels are digitized by a pair of

analog-digital converters (Datel SHM2 S/R in series with 10 bit

Datel ADCE10B A/D). The digitized signal is transferred to a

NOVA 320 computer at a maximum rate of 3 ~sec per point.

9.1.5 Probe

The double resonance probe used has a single coil, double-tuned

configuration, with a Q of ~ 150 for protons. The solenoid coil

contains eight turns of 18 gauge uninsulated copper wire (8 mm x

15 mm).

The probe head is covered by a glass dewar to provide thermal

isolation. Temperature control is achieved by regulating the flow

of heated air (or cooled N
2

gas for low temperatures) into the dewar



238

trough vacuum jacketed tube. The gas is heated by a resistive

heater at the end of the tube. The temperature is constantly

sensored by a copper/constantan thermocouple and compared to a

reference setting. A differential voltage between the two is used

to drive the current source (up to 3 amps) for the constantan

heating coil. The temperature may be regulated to within ±O.2°C

over the range -175°C to 150°C.

9.2 The a spectrometer

The spectrometer has a Westinghouse superconducting magnet of

25.8 KGauss with 2.5 inch bore. The corresponding resonance

frequency for deuterium is 16.8 MHz. The deuteriumTRF is generated

directly from a General Radio 1164-A frequency synthesizer that

provides IF at 30 HHz.

The audio signal is digitize~ by an 8 bit Biomation transient

recorder model 802 at an maximum rate of 0.5 ~sec per point. All

other aspects of the a spectrometer are very similar to the B

spectrometer.
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progre"' er,;sctl
c T~js procrew calculates t~e anisotropic Inin-lattice relexetion rate tor
c h~x~wethylterlene-aI8

c theta: an9le hetween the Cb-ax;s of the ~olecule end the ~agnetic field
c epsilo: ~araweter d~tinea ny the ratio bet_een IPectral densitiel
c J(w) anO J(Zw)
c S: IP;n-lattice relaxation rete

dimension .(00,10)
open(un;t=OI,name='~n;sotl.val',type='new')

do 100 1r=I,51
theta=(k-I.)-3.14ISQ2oS/100.
xl=cos(tt>eta)·-?
x2 =cos ( t ,., eta) - • IJ

00 bO i=I,6
epsilo=(i-I.)-C.15t~.2S

a=b •• eps; lo/( l.t~ns; '0)

b=(I.-ecsilc)/(I.teos;)o)
s(lr,i)=I.ta.xl-h-x2

60 cnl'ltinue
anQle=th~te*I~0./3.1415~265

wr;te(I,7~)arQle,(slk,;),;=1,6)

70 tormet(lx,tP.3,b(2x,f9.Q»
100 continue

close(ur;t=OJ)
stop
end



progr~1I' ch3exc
c"molex c(3), f(3)
write(6,2)

2 for~at(IO.,·enter t~e valu~ 0 1 T2 (in .~c): ',j)
rell<i('i,Il)tZ

~ format(fIO.O)
write(6,2S)

2~ format(IOx,'enter the value of lI'~x. o~ega (in ~7): ',S)
reecH5,27"(lI'ax

27 formllt(fIO.O)
o~en(unit=Cl,neme=·ch3e.c.aat~·,type=·old',reaconly)

do 30 i=I,3
rl'!a"!(1,2G)c(n

2Q forll'at(f13.6,~x,f13.b)

30 cC\ntinue
close(unit=nl)
ooen(unit=OI,nllll'e=·cn3e xc.val·,tyce=·new·)
dO 100 U=I,pnO
o~eqa=(kk-anl.)/~no•• xll'~x

d" /JO i=I,3
f(i)=cmclx(0.,-1.)/(c"plx(o~eaa,-1./t2)-c(i»

40 continue
.um=cab~(f(I)+f(2)+f(3»

write(I,t.O)o"eca,Su~

00 fC\rmat(3x,flC.3,Sx,113.b)
100 continu"

cloge(u,...,-t=r.) )
IItOr"

end
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p,.09rall' ch3f;d
comolex a(tI,P)
oim~n~ior t8~(3),iph(3),anQle(3l,~hase(3),.x{IOO),.y{100J

onen{unit:Ot,n.me=·ch~f;d.Oatll·,tYPe:·old·,,.eaconly)

pi:).lqt~nc5

rea,1(I,IJcx
format (flO.O)
.. ,.ite(b,c)

c format(tOx,'The value of dipole coupling (Khz): ',S)
.. rite{b,3)ox

3 for"'at(lx,fl0.4)
omeaad:c.·IOOO.~

,. .. llt1(I,P.)nc:ulse
e f~,.mllt(i~)

.. ,.ite(t>, tf~)

10 format (/,10.,·T h e nu",be" of the pulses: ',~)

.. rite(b, II )n~ulsf'

II format(I.,i')
00 110 n:l,n~ulse

r .. ad(I,lr~)i~h{n)
105 format(ic)

rea~(I,IOn)8r9Ie(n)

lOb fn,.",at(fln.o)
rea~(1,I07).ha.e(n)

107 fnr"'at(fIO.O)
;f(n.~a.,.p~lse)co to IIJ
resrl(l,JOP)tau{n)

IDe for mat(1I n • 0 )

110 c",.,tinuE'
dn ~V n:l,rc:~lse

w,.;te{b,I?)
I? for",at(/,IOx,'The phase ~ anale of the pul ... s: .)

wri t e(b,I.:1),.,
III format(I~.,·Fulse no.·,ir,5.,·pha~e 0 or l(x or v): ',$)

.. ritf'(t:-,]'i)i~hCn)
l'i f,.,r"'atCI.,i?)

.. r it .. C to, 17 )
17 for"'at(I~.,·ancle 01 flip (in oegree): ',~J

.. ritE'(b,IQ)~rol .. (n)
II' for ... at(l.,flf.ll)

writeCb,IG)
IQ fnr"'at(IS.,·rhe,eshift of the pulse (in deoree): ',~)

.. ,.ite(b,~n)c:hase(n)
20 format(I.,fIO.Il)

if Cn.ec.nc:ulse) go t~ 30
.. rit,odb,cZ)

22 format(/,lOx,'The evolution tiwe tau (microseccno): .)
write(b,?/l)n

211 for ... atCI5v,·tllU(·,i2,·)= ',c:)
writeCb,2b)tau{n)

2b fo,.",at(lx,fl0.1l)
30 continue

read(l,3lHi
31 for"'a t (I.,fl0.0)

write(b,32)
32 format(/,lO.,·The t'II'e incr"II'ent (microsecond): ',S)

.. ,.ite(b,33)ti
33 format(I.,fIC.Q)

r .. 8 rl (I,31l)01io
3Q for"'at(i4)
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.rfte(b,3S)
35 f~r~atl/,tOx,'The total no. of rID: ',S)

",rite(b,3o)ntic
36 format(lx,iO)

reIl111,37>nlll'g
37 format(;3)

wI'He(br38)
3~ format(/,lOx,'The no. of llngles b~t",een 0 & 90: ',S)

wrfte(o,3Cl)nenl=
3q format(1.,i3)

close(ul";t=Ol)
rana=na,.,c.

c The follc.;n~s are the ;n;t;al dena;ty matriA elements of Iz
nlln91=nl!lf'9+1
do LlO nf=I,l"tic
a.(nf)=I).
ey(nf)=n.

lIO continue
do 60 ;8=1,l"lI ncl
00 ilL' 1"1=1,11
do 112 n?=I,I'
1l(nl,n2)=cw~lx(O.,0.)

lie cont;nu~

a( I, 1 )=cwrl,,( 1.5,0.)
e(2,?1=cwnlxl n.5,'l.)
a(3,3'=CWDI.(-~.5,O.'

e(tl,4)=cwcl.(-1.5,O.)
1l(5,S'=cwclxIO.S,O.)
.fb,b)=cwcl,,(-O.5,O.)
a(7,7)=cwclx(0.~,0.)

.(8,8)=c"clx(-0.5,0.)
113 rlln~le=n.5*~i*(;l!I-l.)/rana

cccos=I.5·cos(rllnqle)**c-O.5
d=ome9l1c*c2ccs
0" ';0 k=l,nr'l.lsl'
;C'nlls .. =ic"lk)
thetll=lll"clt(k)*pi/l~P.

tC'=tllu(k)*I.Ce-6
p"i=p h llse(l")
call un;rot(ll,;pnllse,theta,oni)
;flk.eo.f'~ulse) 00 to 5U
call ti .... vollll'tp'nl

50 continue
C T"e follo~in~ c~lculllte~ the trllC" Ix & Iy of FID

t=ti*l.Oe-b
do 55 nf=l,nfic
call tiwevolla,t,O)
call tracexy(a,tf't,tr2)
ax(nfl=trltsx(r f )
ev(nfl=tr2t~Y(l"f)

55 continue
60 continue

do AO nf=l,nfic
writefb,70)sy(,.,f),sy(nf)

70 formlltl/,15x,'tra~efA*Ix)= ·,fl0.L1,IOx,'trllceIA*Iy)= ',fl0.a)
eo continue
qO cllll IQPlot(I.,nfio,25)

call loplot(ly,nfio,25)
etoo
end
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prOQrlllll ch3;1"
diMen.iol" ta~(3),iphl3),anQlel3),ph!l.e(3)

o~enlunit=OI,ne~e='ch3f;d.d!lte',type='new')

write(6,2'
format(10x.'!nt~r the value of dipole couplin9 (~hZ): ',5)
rea:H5,4)oll
format(fIO.O)
writell,S)o.
format(lx,fIO.O)
",rit~(6,7)

format(II,10.,'enter the number of the oul.e.: ',S)
readl5,I')npulsl'
forlPat(i2)
write(I,G)npul.e
forlllllt(lx,i2)
",rite(6,\1>
for",at(II,I~k,'enter the ohase, angle, phasl'shift of the pul.es:
do 30 n=\,no~lse

w,.ite(6,12)n
fnrlllat(/,IS.,'Pulse no.',i2,511,'phase 0 or ll. or v): ",S)
read('5,13)iptdn)
for",at(i2)
wr;te(\,11)i~h(n)

for,,"I'ItCb,i2)
writelo,\<:)
formatC\Sll,'encle o~ flio (in oegree): ',S)
read(~,lt)an~leCn)

format (110. 0 ).

write(I,17)~rnle(n)

10 rm e t ( I • , 11 C • r. )
write(o,lll)
for"'at(15.,'pheseshift 01 the PUISf': ',1)
rf'ad(~,IG)~hese(n)

fnrmat(fln.o)
w,.i t e(\,20)phase(n)
for"'et (tw,no.C)
if (n.ec.npwlse) 00 t~ '0
write(o,2:?)
for 10 a t ( I I , 1 (I k , , en tel" the e V" I uti 0 n t i III l' t e u (II"; c I" 0 6 e con d): ')
write(0,24)n
format(/,IC,1l,'tau(',i2,')= ',S)
reaM(C;,2t:Hlll;(r)
formet(fl f1 .r.)
w,.ite(I,27)teuCn)
forma t ( tw, 11 0 .0)
continue
.. ";te(0,31)
formatCII,IO.,'enter the time increment (microsecond): ',5)
readl5,32H i
forNlet (110.n)
wri t e(I,33Hi
form e t ( tw , flO. 0 )
write(t>,3IJ)
forlllet(II,lnk,'enter the totel no. of FlO: ',~)

reed(<;d5)l"fid
for~et(illl

wri te(.1 ,30)nfic
form.t(I.,ill)
write(o,:!")
format(II,IO.,'enter tne no. of anQles bet_eel" 0 & qO: ',S)
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~ea1(5,3C;)n8r9

3q fO~~8t(;3)

wr;te(J,aO)nlln~

UO for~8t(1.,;3)

close(u"it=Ol)
ItOr"
end
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aubrouti~~ u~irot(a,ip~ase,th~ta,phi)

c This procra~ c.lculat~. the transformation of the initial density
c Matr;x a ~y ~ulse wlt~ phase x or Y (;phase: 0 or 1), angle theta
C 8nd phaseshift ohio The output is written over a.

co~pl~x aC6,e"v(8),ab(8,8)
co~ol~x ~rod,lum

d;.ensio~ u(e,f'
call phaleshft(a,ohi)
z:theta/2.
uCl,t'=cosCz)**3
uCt,Z)=-cosCz)**Z*sin(z)*3.**0.S
u(I,3)=cc,(z)*s;n(z)**Z*3.**O.S
u(1,1l)=-s;nCz)**3
u(Z,l)=-uCt,C>
uCZ,2)=Z.*cosCz)*(1.~*col(z)**2-1.)

u(Z,3)=2.*sir(z)*(1.5*sin(z)**2-1.)
uCZ,Il)=uCl,"5)
uC3,l)=u(1,3)
uO,2'=-uC2,3)
u(3,3'=u(Z,2J
uC:3,1l)=u(1,Z)
u(ll, l)=-uft ,41)

u(Il,Z'=u(1,:t)
uCIl,3)=-uCl,Z)
uClI,lll=uCl,l)
u(S,S)=ccs(z)
u(S,o)=-sirCz)
uCb,S)=-",(S,t'
u(i),t,)=u(5,<;l
uC7,7)=u(<;,':)
u(1,~)=u('S,t)

u(8,7'=u(b,<;l
u(lI,e)=u(b,b)
do liD i=l,f'
do 15 j=l,~

su~=cmplx(O.,O.'

do ~O ",=I,e
do lI5 n=l,f'
pro1=u(w,;)*e(w,n)*u(n,j)
au"'=sun-+crod

at; continue
Sr) continue

ah(i,j)=suIT
15 continue
6(\ continue

do 110 i:l,P
do 100 j=l,P
aCi,j'=at(i,j)

100 continue
110 continue

;f(iohase.eo.l) 00 to 300
9=0.5*.0.5
vCl):c",r.lx(-~,-Q)

v(Z'=c",~l)(g,-~l

v. C3) =C" ~ 1 x (0 , Q )

y(ll)=c",pl.(-Q,,)
v(S)=v(Z)
yCo'=v(3)
y(7)=v(Z)
vCIIl=v(3)



do ';>05 f:l,fl
do ?on J:l,e
aCi,J)=cc~jo(vCi»*ab(;,j)*v(j}

200 continu~

205 cC'ntinufO
300 call phalel~ft(a,-phi)

return
end

.ubrout;~e ~hales~ft(a,ohi)

cnmplex aC8,e),al(e,8),.(~)

zl=ccs(l.'i*r t';}

z2=sin( 1.5*nh;)
z3=cos(O.')*~I'I;)
zll=sin(0.5*p"';)
w(I)=c~.. lx(zl,z2}
w(2)=cmclx(z3,zll)
w(3)=co n jgC""C2»
.Clll=conjoC""C I} 1
.(5)=.(2)
wCb):""c:n
w(7)=",,(2)
.. C8l=.C!)
do Ion ;=I,~

do lOll J=I,I'
.1(;,J}:conjGC~Ci»·.Cl,jl*""Cj)

100 contir')ue
do 150 i =I, I'
do 151) 1=1,1'
aCi,j)=-.I(;,j)

150 continu~

return
ent1

.u~routir~ t;mevol(a,t,d)
comolex eCe,e),.(R),aIC~,R)

zl=cos(c*t)
z?=sin(c*t)
wCI)=cm~I.C11,-12)

w(2)=cw~I.(11,z?)

.. O)=""C?)

.. Cll)= .. (1)

wCS)=cmpl.CI.,O.)
wCb)=cmcl.(I.,O.)
",,(7)=cmcl.Cl.,0.)
w(8)=cmrl.Cl.,O.)
do 100 i=l,fl
do 100 J=I,13
.ICi,)=con)l;c"rj)}*eCj,j)*""CJ)

100 continu~

do 15(\ i =I , I'

do 150 J=I,II
.Ci, j)=lI!Ci,~)

150 continu~

r .. turn
end
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.ubrout;r~ tracexv(a,trl,tr£')
comple. efe,p),y;(8,B)
o;mensior xi(A,p)
11';(1,2)=3.**0.5/2 •
• ;(2,1)=xiCl,2)
11';(2,3)=1.
11';(3,;:»=1.
x;(3,ll)=.;(1,2)
11';(4,3)=11'; C! ,2)
x; (0:;,6)=0.5
xi (l,,'i):O.S
Il; (7,P)=(1.5
xiCB,7)=O.5
yi(I,2)=c~r.l.(O.,-3.**O.5/2.)

y;(2,1)=con;c:fy;(1,2»
y;(2,3)=c~~1.(C.,-1.)

y;(3,2)=c"~1.(L.,I.)

yin,il)=y;(I,?l
y; (IJ,:q=yi (2,1)
y;('i,6)=c"~1.(O.,-~.5)

y;(h,'i)=c"~l.(O.,O.~)

y; (7,I'l)=y; (S,b)
y; (1'l,7)=y; CI,,'iJ
suml=O.
su",2=CI.
ao 100 ... :1,1'1
at' 100 n=l,P
suml=~u~l+ef",r)*.;(n,m)
Sll",?=surr<'+a(rr,r)*v; (n, .. )

100 cont;nu~

trl=surrl
t,,2=surr2
rl"turn
er'\d
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.ubrouti~e oia~ni(h,u~,n~)

c .ubrouti~e fer co~ole. ~atri. diaQonization
c n: ~atri~ ele~ent arrays
c "m: eimersicr of the watri.
C un: u~itery transform watri. whiCh diaQonizes the given matrix h

co~ole~ n(~~,nw),un(n~,n~),ull,ulm,u",l,umm,th,tu

"",,,,=n,,,-1
an=n",
rance=1.0e-ll
do 20 i=l,n",
do 10 j:l,n",

In un(i,j)=O.
20 unCi,i)=I.

anor",=(1.
00 30 i=I,~.,.11'

i i =H 1
do 30 j=I,,.,,.

30 anorw=a~cr"'treal(h(i,j)*conjQ(h(;,j»)

iflanorll'.le.ra~ae) return
anor",=scrtC?*anor",)
anor~x=8~orll'-ranQe/an

i rllj= 0
thr=anorll'

40 tnr=tnr/en
Sn on AO 1=I,n",,,,

1 1=1 t 1
do AO m=11 ,n",
if (cabs(hCl,m».lt.thr) 00 to AO
; ,",0= 1
oiff=re8Ifhr",,"')-~ll,1»

itCd,tf.ec.O.) n;tt=1.Oe-15
ar=O.S-at~~f-?*reaICh(l,m»/diff)

.i=n.S*ate~(-2.*a;ma9Ch(l,m»loift)

.ini=sin(a;l
co.i=cos(~i)

.inr=sirfilr)
C('lsr=cos(ar)
ull=c",pl.fcosrocosi,.;~r*sini)

ul"'=cmpl.(s;rr-cos;,cosr*s;n;)
u~l=c.,.pl.(-s;nr*cos;,cosr*s;ni)

umm=C"'Dlxfc('lsr-cos;,-~inr*sin;)

oC' 60 j=l,n,.
th=ull*h(l, j)tulm*h(m,j)
hfm, j)=ull',oh(l,jltUlrm*h(m,j)
n(l,j)=n

60 continue
do 70 ;=I,n.­
th=conj~full)*hf;,l)tconja(ulm)*h(;,m)

h(i,Il'):ccnjg(u wl)*h(;,l)tco n jo(u mm )*h(;,m)
nf;,I)=th
tu=conjc(ull)*un(i,l)tconio(ullr)*unf;,m)
un(i,",)=corj~(uml)*un(i,l)tconjo(umm)*un(i,m)

un(i,I)=tu
70 continue
eo continue

it(ino.ee.O) QO to 10~

ind=O
gO t C 50

100 if(thr.ot.anor",x) 00 to 40
return
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end
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prOQr8'" oill'~th

C This procra~ calculates the inter-proton dilta~cea, SC8ling factor
c 5 .atrix elewents for u, v, anc w couplinqs for the lingle cryltal
c of I,~-ci"ethylnaphthalene

o;"'ensior x(2,3,3),vect(3,3,3,3),ni~t(3,3,3),a(3,3),univ(3,3,3,3)

di"'ensier 1(~,5),SU(S),5v(5),aw(~)

x(I,I,1>=3.02<'
x(1,1,2)=-1.eSI
x(1,1,3)=0.308
x(I,2,1'=2.225
x(1,2,2)=-2.'S6t
dl,2,3)=f-.<'15
x(1,3, 1 )=2.11lJ:l
x(1,3,2):-1.701J
xll,3,3)=7.!l~1

x(2,1,1):0.7<;<;
x(2,1,?):-2.C A 3
x(2,1,3)=0.073
x(2,2, 1 )=2.eH
x(Z,2,2)=-2.P75
x(2,2,3)=/J.2';<;
x(2,3,l)=3.6~1\

x(2.3,2)=-2.lJ IJ 7
x(2,3,3)=3.C51\
wdte(o,5)

'5 for"'at('I',~.,'list of th~ coorcinates of ",ethyl proton',S)
write(o,l:)

b forwst(2x,'xti,l,k), i=I,2, j=a,o,c, k=X,y,l',II)
00 c:,C i=I,2
00 110 j=I,3
dC' 3li k=I,3
write(o,ln)i,j,k,x(i,j,k)

10 for"'at(5x,'x(',il,',',il,',',il,')= ',f7.3,S)
.30 continue

wri t e(o,31)
31 format(lx,/)
/JO continve
50 continue

On 90 j1=1,3
dl:' ,AS j2=1,1;
dn AO k=I,3
if(jl.oe.i?) oc to ou
v ec t l I , j J , j ?, Ie ) =II ( 1 , j I, k) - x ( J , j 2, k )

vect(?,jl,j2,k)=xI2, jl,k)-x(c,j2,k)
bO v~ct(3,jl,j?,k)=x(l,jl,k)-1l(2,j2,k)

80 continue
8<; contInue
qO co",ti"'ue

0<' 1 10 i =1,3
do IDe; j1=1,:!
do Ion j2=1,3
lum:O.
dl'l Q5 k=I,3
.u~:su",tvect(i,jl,j2,k)·*?

q<; co"'ti"'ue
dilt(i,II,J2)=lum**O.5

100 continue
lOS continue
liD continue

write(b.ili)
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111 fo,.~.t(lx,lll)

w,.iteC6, liZ)
112 fo,.~.tC'I',Sx,'II.t 01 the vectors l dl.tance tet ..een')

writeCbrll3)
113 for~at{e.,'proton vect{i,Jl,J2,~), ;=I-I,2-2,1-2',S)

wrHe(brlIQ)
114 fo,.~at(2x,'Jl,Jc=8,~,c, k=x,y,z',II)

00 150 ; =1,3
do 145 JI=I,3
00 1110 J2=1,3
00 130 k~I,3

if(i.eo.3) ge t~ 115
;f(Jl.oe.J21 ge to 140

115 wr;teC6,116)i,Jl,i2,k,vect(i,jl,j2,k)
116 fo,.~at(5.,'v(',3Cil,','),ll,')=',17.3,1)
1'\0 continue

.. rite(b,1351;,il,j2,dist(i,/I,j2)
1~5 format(IOK,'cistanc~(',il,',',i],',',il,')=',17.3,/)
1£10 continue
las continue
150 continu~

Iotrite(6.tSll
1~1 for~at('I',11,5.,'list of the cirectional cosire of',$)

Iot";te(b, ]52)
152 10rm8t(2x,'vecto~ in the molecular fra~e oiven',$)

Iotrite(6,153)
153 format(c.,'hy unit vector 8Ci,k)',II)

8(1,11=0.1127
a(1,2)=-0.tH·]
a(1,3)=0.?77
a(C',] )=-0.2<1<;
8(c,2)=C.157
8(2,3)=0.<11.1]
a{3,ll=O.P5.:J
a{3,Zl=0.llP<;
8(3,3)=0.1'10
do zon i=l,3
dn 1<15 /1=1,3
do l<1n j<'=1,3
do pI'; k=I,~

;f(i.eo.3) QC to Ib~

if{/I.ee.i2) ac to 1<10
]60 t,.=O.

do 1!:i0 ,,=1,3
tr=tr+vect(i,jl,J2,m)*a(K,m)/~ist{i,Jl,j2)

1/10 continue
univ(i,jl,j2,kl=t,.
Iotrite{b,170)i,jl,j2,k,u n iv(i,jl,jZ,k)

170 format(p.,'univ{',3(il,','),il,')= ',f7.3,S)
1115 continue

IotrHe{b,18b)
lAb format(I.,/)
1<10 continue
1<15 continue
ZOO continue

.. riteCo,201l
201 format('I',~x,'lllt of 5 S-matri. elements I<",n)',$)

lot,.ite{b,?02l
202 format(2.,'w,=I-I,Z-2,1-2, n=I,S',II)

do ?SC; 1=1,",
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aUlIll=O.
aUIIl2=O.
av .. 3=O.
avlftll=O.
svlft5=O.
do 2S0 jl=I,3
do 2110. j2=1,3
;f(l.ea.3) 00 to 20~

if(jl.oe.J2) 00 to 240
20S ddd=oist(I,Jl,j2J**3

s,,=3 •• Ur'l i V (I, j 1, IZ, 1 J ** 2-1.
sVlftl=sv"I+llJ/dCci
s,,=vr'l;v(i,jl,j2,2)**2-u n ;v(i,jl,j2,3)**2
su"'e=su,,2+slJ/dcd
s,,=uriv(i,jl,j2,1)*univ(i,jl,IZ,2)*?
SUfll3=9Ull':!+llJ/dca
slJ=ur'liv(i,jl,j2,1)*un;v(;,jl,je,3)*?
SUIII!l=surrIJ+SlJ/dco
sa=ur'liv(;,jl,j2,2)*un;v(i,jl,j2,3)*2.
su,"c;=sutf5+slJ/a~d

200 continue
250 continue

i1(i.eo.:!) r,,=q.
;t(i.It.3) rtf=:!.
sCi,t )=su,.l/r",
ICi ,Z)=suII'.2/r",
a(i,3)=suII'3/r",
sf i ,Ul=su,.ll/rm
a(;,S)=su'l'':/rm

255 c"ntinue
writeCb,;>"'e,)

25b formatll.,/)
do 100 ,,=1,3
de- 270 r'l=t,c,
write(h,2~0)tf,r,sl~,n)

2hO 10r",lJt(~.,'s(',;I,',',;1,'J= ',fo.ll,S)
270 continue

wr;teCb,275)
275 for",,,t(I.,/)
300 continue

write(b,301)
301 for",,,tl'I',II,=x,'l;st of the S-fIIatr;x elefller'lts',S)

ar;te(b,302)
302 form"tl2x,'of v,v,. coupl;r'los',II)

sumt=O.
aulft?=O.
lu",3=O.
lu",n=o.
IU/llC,=O.
do 150 j=I,3
ddd=oilt(~,J,j)**3

1~=1.*u,.,;v(3,j,j,I)**Z-I.

au,"l=su"'l+s~/dcd

Ib=ur;v(3,J,j,Z)·*Z-u,.,;v(3,j,j,3)**2
SU/ll2=9U,,2+1~/do0

1~=un;v(3,J,j,I)*un;v(3,j,j,2)*Z.

IUfll3=surr3+1~/dcd

Ib=un;vf3,j,J,1)*univ(3,j,j,3)*Z.
IU",a=surrll+sr/rlcn
Ih=un;v(3,I,j,2)·univ(3,J,j,3)~2.
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su~~=su~S.Sb/dcd

3'5C cnntinut!
sv(t)=surr1/3.
sv(2)=surr2/~.

sv(3)=suII'3/3.
svCLl)=su,,4/3.
svC';):suII'Cj/3.
dCl 3C10 n=t,"i
.u(n):Cs(1,~).sC2,n»/?

sw(n)=Cs(3,~)*~.-~v(n)·3.)/6•
• r;te(~,3rO)r,suCn),n,sv(nJ

360 fnr"'''tC'",/,~",'su(',il,'l= ',ff.lI,II/",'svC',il,'): ',18.11,'0
.rite(b,~61)r,sw(n)

3~1 for~8tClr",'sw(',;1,')= ',f~.4)

3QO cC\nt;nut!
atop
el"d
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dilrlenSlor 0(7,7)
ooen(unit:Ol,ne~e:'var.&;n.rlate',tyoe='new')

w,.;te(o,c)
2 for~et(l.,'e,.ter th~ numoer of soins:',5)

rl'&-HS,Q)nSl:'in
Q formet(ic)

writl"(l,e)ns~i,.

b fnrmat(1.,i2)
do SO ;=l,nsci,-
do SO j=l,nu:;,­
;f(j.le.;) gc to ~O

wrlte(o,ll);,i
10 formet(le.,'enter the velue of d(',i2,',',i2,'):',5)

reerl(S,lelc(;,j)
12 fnrmet(fl().~)

w,.i teC I tlS)r:( i,J)
Ie; fo,. ... at(lx,fIC.3)
';0 continue

close(uni t='11)
stOf'
end
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progre'" ClllUSII
w";te(b,IO)

10 for",et(IO.,'enter the nU~ber of Iplnl: ',$)
re80(<;,15)n

Ie; for~lIt(12)

r,,=n
",rlte(0,20)

20 formllt(10x,'enter the ra" of dlspl.y: ',S)
re.d('5,25) .... "

25 for"'at(fIO.O)

c Calcul.tlon cf ~w intensity - for each order
open(unlt=Ol,ne~e='9I1Ulsl,v81',type='ne.')

nl=n+l
do '50 k=l,nl
"=1<.-1.
y=x·"/rn
f.=e.o(-y)
.ritf'C1,3fl).,f.

30 format(IOx,fl0.4,10.,fI3,6)
sn continue

cloSI"(ul"lt=OI)

c Calcu'lltlol" cf ~Q Intensity - QlIusslan curve
ooen(unlt=nl,na~e='~auss.va,·,type='new')

do 10n 1<:1,401
,,=(Ir-l.)/400,.xma.
y=.*.lrn
f.=e.p(-y)
.. rite(I,(;(\).,f.

60 for~at(5ll,fI3,t,10.,f13.bl

IflO continue
close(unit=OI)

c Calculation cf the ao~roxim~te num~er of states for each "'lInlfol0
c bv Stirlin~'s for~ull1

ooe n (unit=Cl,nll me='gauss2.val',tyne='ne w')
do 20n 1<:1,2.n+l,2
r,.,=(It-l,-n)/c.
c.=2.**(rn+l.)/sart(2,.3.141b*rn)·e.p(-2 •• r",.r~/rn)
write(I,120)r~,c.

120 fnr"'lIt(~ll,fl~,t,lOll,fI3.b)

2no continue
close(ul"it=Ol)

onen(unit=01,na me='9aUls3.vlIl',type='new')
do 100 1<=1,110n
r=(1<-201.)1200.*."'lIx/2.
cx=2.**(rn+l.)/sa r t(2.·3.14Ib*rl">*exp(-2.*r*r 1 rn)
write(I,220)r,cx

220 for",at(S.,f13.b,lOx,f13.6)
300 COl"tinue

close(unlt=011
Itoo
end
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proora'" t-f!;Oefl
lhi. procra'" calculates the eigenvalues of the 3,3 ~atr;, for the
4-Quentuw transit;onl of t~o methyl groups in ~8rtially correlated
Motion. Cut~ut stored in file ch3e~c.dat8

dipole ccupl;ncs u, v, w in HZ

3

5

1 (1

2(i

30

co~plex h(3,~),un(3,3),q

u=1IQ6.
v=-2t: AIl •
• =-lIGll.

write(b,~)

formet(IC.,'enter the correlation time tau: ',3)
rel'ld(S,'S)tau
fo,."'atCfl'LO)
o:cm~l,fO.,l./tau)

hfl,I)=I.S-u+v+?*w
hfl,21=1.732*fv-.)/6.
h(1,3):fv+2.*w)/sort(~.)

h(2,2)=3.*u/c.+v/3.+S.*w/3.+3.*~

h(?,3)=I.11)1l*fv-.)/3.
h(3,3)=!.*u+c.*v/3.+11.*w/3.
h(2,n=hCI,n
h(3,1'=hlh3)
h(3,2)=td?,"t)
wr;te(b,aO)c
fnr~8t(III,~.,'o= ',fa.I,'+ ',fI0.3,/)
call oiacni (h,Ul',")}
open(urit=vl,nem~='cn3e.c.o~ta',type='ne.')

do bl' i=I,3
writefb,~n)i,h(i,;)

formatll~x,'eiCf!nvBlue (',i?,')= ',fln.3,~x,·+

wr;te(I,5~)hl;,i)

for~Btll.,fI3.t:,5i,fl~.b)

cont;nuf'
clo!lle(ul'it=111)
stOI:'
erorJ

lubroutlre eia~ni(h,un,n"l

complex t-(ro",n"),unfn w,nm),ull,ulm,uml,umm ,th,tu
n",m=nm-!
Cln=nw
r"noe=1.Ce-2
do 20 ;=1,,,,,
00 10 j=l,n"
un(;,J)=O.
un ( ; , ; ) =1 •
anorll'=O.
oC' 10 ;=I,n"w
H=HI
dn 30 j=;;,row
eroorll'=a r c r ll'+reel(h(i,j)*co n jo(h(;,j»)
if(anorw.le.ranqe) return
eroorll'=scrtl2.*anorm)
anor".=arorll'*ranoe/an
;nd=O



thr=anorrr
GO t~r:thr/o~

50 do eo l=l,n~rr

11:1+ 1
00 "0 ",:I',nrr
if (cebs(h(l,m».lt.thr) 00 to Bu
ino:1
d; ff=reel (h(If, .. )-h (1,1»
ifCdiff.eo.O.) diff=I.0e-15
ar=O.S"'eten(-?*real(h(l,m»!diff)
ai=O.5*eten(-?*.;~e9(h(1,m»!diff)

lin;:.in(ei)
COli:cOlleO
linr:lI;r(erl
COlr=cOller)
ul1=c~p1.(ccsr·CO.;,5;~r*s;n;)

ul",=c",~lx(s;,.r*c09;,co.r*s;ni)

u~l:c~pl.(-I;nr*coli,cosr*sin;)

umm=Clllpl.(colr*cos;,-s;nr*s;ni)
do bO j=l,nrr
th=ul1*~(l,j)+ul"'.h(m,j}

h(m,j):urrl*h(l,J)+u mm *t>( .. ,j}
h(l,P:th

bO continue
do 70 ;=1,n",
th=conjQ(ul1)*h(;,l}+conjg(u'm)*h(i,~)

h(;,m}=ccnlg(urrl)*n(;,l}+conjo(UIII~).h(;,m}

h(1,1):tl-
tu=co~jc(1I11)*\In(;, 1)+conjQ(u1~}"'un(; ,~)

un ( i ,,,) =con j C( \I Ill' )'" u n l ; ,I} +con i a l umm ) * u n l ; , n.)

ur'<;,' ):tu
70 continue
BO continue

if(;nd.ec.C) ac to 100
ina=O
Qn tc 50

100 ;f(thr.ct.e"crrrx) 00 to qO
return
end
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.ub~outi~~ ;~vwax(a)

eo~o'ex 1(3,~),b(3,3)

eOlllPlex cet
det=a(I,I)*a(2,?)*aC3,3)+a(I,2)*a(2,3)*aC3,1)
oet=oet+e(1,3)*aCZ,1)*e(3,Z)-a(I,3)*a(2,2)*a(3,1)
det:oet-8(1,1)*eC2,3)*a(3,2)-a(I,?)*.(2,l)*&(~,3)

bf1,1)=e(2,2)*e(3,3)-8(2,31*.(3,2)
b(I,2)=-a(2,1)*&(3,3)+a(2,3)*&(3,1)
b(1,3)=a(2,1)*a(3,2)-&(2,2)*&(3,1)
b(2,1)=-a(1,2)*8C3,3)+a(3,2)*a(I,3)
0(2,2)=&fl,I)*e(3,3)-a(1,1)*8(3,1)
b(2,3):-a(1,1)*8(3,2)+a(3,1)*1(1,2)
b(3,1):e(I,2)*I(Z,3)-I(I,3)*8(2,2)
b(3,2)=-e(I,I)*a(2,3)+8C1,3)*e(2,1)
bf3,3):a(I,I)*e(Z,Z)-e(I,2)*a(2,1)
0010 ;=1,3
dt) 10 j=1,3
afi,j):tCi,j)/cet

10 continue
return
e"a
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.ub~out;~e ;rvwaxC.)
co~plex .C2,c),bC2,2)
cl'l~olex eet
det=aC!,!)*a(2,2)-aC!,2'*a(c,l)
b(I,1)=aCZ,Z)
bCl,2)=-aC2,1)
b(2,1):-.CI,2)
bC2,2)=aCl.l)
do 10 ;zl,2
de- 1 0 j =1 , 2
.Ci,j)=bCi,j)/cet

10 continue
~l"turn

end
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lubrouti~e lescft(n,noata,x)
di~ensior a(20,20),b(20,20),x(7,20,3)
d;~ens;cr lec~c~(~),lu~~(3,O),err(B)

c This lubcrogra" calculates the least seuare fit for 8

c .i~ulta~eous linear eouations
lol"; te(o, PI)

10 for~at(II,10x,'The lealt seuare fit for lecond ~o~ent',S)

lolrite(b,12)
12 for~.t(2x,'x(1)=daYe**2, x(2)=dsQ~Ye',/)

nn=2
",~=1

drl 200 1r=1,~

do lib i=l,nr,
do /l5 j=l,n~tl

IU~=O.

do ?O 1c1l'=1,~cata

lu~=sull'+x(k,Ic~,i)·.(k,km,j)/.(Ic,~~,3)**2

20 continue
lum", (;,j) =SU"
nnl=nl"+1
;f (j.ec.~~l) ~o to 40
aC;,j )=sumrr(;,J)
00 to lI'5

40 b(;,1)=su~Il'Ci,3)

IlCj cont inu~
46 continu~

call ",at;ny(e,rn,n,~~,oet)

Icl=lr-l
Sh=O.
do 70 Ic,,=l,r-cata
la=o.
do bO i=l,r.n
la=sa·b(i,l)*.(k,k~,i)/.(k,IrIl',])

60 continue
Ir-=s~t(se-l.)*·?

70 continue
n-111=~cllta-l

errCk)=(s~/~ca)**0.5

drl PO ;:I,fln
writeCo,7S)kl,;,b(i,1)

7'5 format(~.,'h(',i2,',',i2,')= ',fl0.11,~)

e(l COfltinue
wrlt~Ct,e5)kl,err(kl

ee; formatCIOx,'e,.,.o,.C',12,')= ',eI0.3,/)
200 co~tinue

open(unit=Ol,~ame='Yar.Yal',type=·ne.·)

On '500 1c1l'=I,rdata
Ie =('\.
do 350 i=l,nr'
le=lc t b(i,l)·x(l,lcm,i)

3'50 continue
0" lJ'jO k=l,~tl

1,,=1\.
00 020 i=l,flr
la=sa t b(i,l)*xCk,km,i)/lc

420 continue
kl=~-l

i1(lrl.ec.n) la=O.
;f(lcl.eo.fl) y2=r.
y?=.(k,k.,3)/.(I,k~,3)
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wr;te(1,Q30)kl,v2,sa
430 fOr~8t(1~,i2,5x,f13.o,5x,f13.6)

450 continue
500 continue

close(ur,;t=Ol)
return
end
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aUbroutire ,,~lot{d~ta,ndata,iYsca')

diMe~sio~ oata{IOO),icos{100,50)
data lstar,lt'ank,l~yche/'*',' ','-'/
~riteCb,=){ihy~he, ~=I,IOO)

S for~at{lC.,100~1)

Cl",a.=oat~Cl)

Cl",i~=oat~(Jl

do 10 ~=2,ndata

If{dataC~).Qt.cMax) dwax=data{k)
;f{nata{k).lt.cmln) dw;n:data{k)

10 contir'lUI!
;f(Cdw;r/ow~.).oe.O.qq) 00 to 120
t:!r> 20 1=1,~~~t~

d8ta{i)={cat~{;)-0min)*;yscal/{omax-d",;n)

2n continue
00 2~ l=t,n ... ate
do 2S j=l,iyscal
1005 ( ; , J ) =it , a ~ k

25 cnntinue
do 40 1=1''''oata
;test=iyscaHI

30 itest=itest-I
if«itest-oHt~(i».ge.O.5)~c to 30
inos(I,;test)=i~t8r

un C('lnt I nul'
do AO 1=1,lyscal
j=iysca 1i l-i

en write(6,Gn)CiDc9(~,j),k=l,nrlata)

GO f('lrmatllC.,lcaLl)
w r I t e ( to, I 1'\ 0 ) I ; h '\I 0 I, e, Ie =1 ,In u )

Inc f('lrwatC1Lx,10CAt)
I?O r~turn

end
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lubrout;re ~atinv(a,~n,b,~~,det)

di~enalor .(20,20),h(20,2~),ipvot(20),;nd~x(?O,2),p;vot(20)

co~~on ;~vot,in~ex,o;vot

eau;valence (;ro .. ,Jro .. ),(;col,jcol)
57 o"t=t.

do 1 7 J=1 , n r
17 ;pvot(jl=n

do 135 ;=I,nr
t=O.
do q )=I,nn
;f(;~vot(j).eQ.l) QO to q

13 do 23 k=l,nn
;f(;~vot(k)-I) Q3,23,Pl

43 ;f(ab.(t).~e.ats(a(j,k»)90 t~ 23
87, ;ro.,=1

;col=k
t=a(j,k)

23 cont;nue
9 cont;nue

;ovot(;ccl)=;pvot(;col)+1
;1(;ro... eo.;co1) aD to 10Q

73 det=-oet
do 12 l=I,,,n
t=e(;ro .. ,1)
a(;ro .. ,l)=a(;ccl,l)

I? a(;col,l)=t
If(~w.le.n) ~o to 10q

33 00 ? l=I,~w

t=h(;ro .. ,l)
b(;ro .. ,l)=r(;crl,l)

2 b(;col,l)=t
109 index(;,I)=;ro ..

;nd"xC;,C)=;col
p;vot(;)=a(;col,;colJ
det:n ... t1t~;v("'t(i)
1(;co 1 ,;ccl)=I.
dn 20S 1=1,,,,,,

205 a(;col,l)=a(;ccl,I)/D;vot(')
;f(~w.le.n) ~("' to 3u7

66 00 ~2 1=I,ww
52 b(icol,I)=t(iccl,I)/o;vot(;)
3117 dt:' 13<: 11=I,rn

;Ull.eo.;col) qo to 135
21 t=~(11,;col)

a(1I,;col)=O.
dn I\q l=l,nn

eQ a(I',l)=e(ll,I)-a(;col,l) 1t t
i1(~w.le.O) '0 to 135

1/\ do 6B l=I,~w

bP b(II,1)=t(11,1)-b(;col,1) 1t t
135 continue
222 dn 3 1=I,nn

l:nn-;+1
;f(;noe_(1,1).eQ.;no .... (1,2) go to :3

IQ )ro .. =;nce.(l,l)
;co 1=inoe.(1,2)
do 'SQq k=l,nr
t=a(k,jrc .. )
• (k,; ro,,) =a (~, j co 1 )
a(k,jco 1 )=t
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Sllq continUl!
3 cont;nul!
81 I'l!turn

end
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procH 11111 Ifclrer t
c the pro~relf to calculate the lecond .o~ent of lfu1tiple Quentu~ IPectre
c of n cou~lec IPin-t/2 pertic1es eSlumina eauel coup1ino conltant. baaed

on atatiatic.1 ~0~e1

dilfensior l(~O), b(SO),e(SO),olfeQe(SO),aorome(~O),reto~e(50)

dimen,ion ret,cr(SOl
w r i t e'( 0 , i )

2 for~.t(tO.,'enter the nu~ber of lo;n,: ',S)
reed(S,Q)n

Q format(i3)
11 dn tor 1<=I,n i l

..=k-l
1I:-(n-III)/l'.
zs=o.
05=(\.

20 ls=zsiellrC-U.*1l**2/n)
bs=hsiell~C-U.*1l**2/n)*1l**l'.

11=11+1.
if (1l-(n-If)/2.) 2 o ,l'0,30

30 r ... =m
rl'l=n
Z(k)=z~*ell~(-rlf**2./rnJ

0(k)=U.*ts*w**l'lz5
eCk)=Cn**?-If**2-Q.*bs/z~l/U.

omeaeCk)=~(k)+r(k)

lorOlfe(k)=clfl!ceCkl**O.S
retolre(k)=clfeoeCk)/ome~a(IJ

ratscrCk)=saro"e(k)/scromeC1)
100 Ct-ntinue

writ'" (t:,ttO)
110 forwat(II,211,'nUlfoer cf s~;n5 n',3.,'m-ou~ntulf 1II',01l,'e(m)',5)

write (/:,1t<;)
115 format(ll.,'t(n)',IO.,·ome~a(m)·,Q.,·soro",e(III)·,S)

write (/:,11t»
lib f~rmat(C;ll,'olfeca(~)/owe~~(O)·,u.,·sorom",(",)/scrolfe(O)·)

o~ 130 k=l,nil
m=k-I
writ",(b,I?O)r,n,a(k),t(k),omeQsCk),sorome(k),ratome(k),retlor(w)

170 for",at(lr.,i3,ll.,i3,Ull,UCU.,eIO.4),2(Sll,el0.4»
130 continue

onen(unit=Ot,na~e=·~owent.val·,type='new')

00 leo 1<:1,,,i1
kl:I<-1
retioa=a(k)/c lll eoa(l)
retiob:t(k)/c lll eqa(l)
write(I,ISS)kt,reto"'e(I<),rat;oe,rstio~

t<;5 formet(I11,;3,3(S.,fl0.S»
160 continue

close(unit=nl)
210 ItoI'

end



.u~rout;re plotCdate,noata,scele)
O;~ens;or dete(IOO)
d~te ster,~lenk/'*',' '/
wr;te(b,';)

5 for~at(I~I)

d"'Il'(=oateCl)
O",;n=date(1)
On 10 lr.=',noete
;f(date(k).9t.o~ax) d~ax=date(k)

;f(data(.).lt.c~ln) o~;n=dllteCk)

10 cC'nt ;nue
;f(~~;n/C~Il'(.le.O.qQ) 00 to 25
ri('l 20 k=l,nOllte

20 oat~(k)=lollt8(k)-im;n)*'OO./(d~a.-rl~in)

01" to 30
2S lenct~=~0

30 0('1 00 k=l,nceta
le ngth=cete(k)*scale

an .. r;te(b,5n)k,(tlanlr.,~=1,lenqth-I),star
~n for~at(1.,i"ax,100a1)

return
enO
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DrOQre", r::lotl
di",~naior oate(100),ipoa(100,50)
dete iater,itlank/'*',' '1
ndeta=10
do C; 1c=1,ncete
dllte(Ic)=k
Olllall=d8te(l)
d",in=Clete(l)
do 10 1c=2,ndate
if(dataCk).ot.o",all) d~ell=data(k)

if(deta(Ie).lt.o""n) owin=dataCk)
10 continu~

do 20 i=l,ndatll
date(i)=(oetll(i)-Cl",in)*50./(Cl",all-dmin)

2~ continue
do 25 i=l,ndlltll
00 2~ j=I,<;1')
ipos(i,j)=illark

25 continue
do L10 i=l,nOllte
Heat=51

30 itest=itest-l
if(Citest-cllt~(i).ge.0.5)00 to 30
ipos(i,itest)=istar

40 continu~

cln 1\0 i=I,5(\
;=51-i

80 ~riteC6,GI')Cincs(k,j),k=l,no.t8)

qO forlllatCI011,lCOa1J
atop
end
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OD~n(unlt=Ol,n.~e='rel.val',type='new')

do 101) i=l,lOt
x=(I-I.)/lOO.
fl=(20.+18.-.)/(18.+7.*x)
f2=(21.+15.*x)/(18.+7.*x)
f3=CIA.+te.*x)/CQ.+7.*x)
fQ=(13.+12.*.)/(Q.t7.*x)
f5=(QO.+72.*x)l(03.+2e.-x)
f6=C76.+57.*.)/(b3.+ze.*x)
write(1,ZO).,fl,f2,f3,f~,f5,f6

ZO for~~tClx,fB.a,6(5x,flC.5»

100 ccontinue
closeCun;t=Ot)
stop
end
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progrllll' s;teex
c Th;s pro,rew cllcullltel the lineshepe of ord;nlry single QUllntu~

c spectruw for the IxchanginQ syste~ of J-c~uplec AS spins
c rJ: J coupl ;n9 constant
c t2: transverse relllxllt;on time
c tau: ;nversp. of the exchanop. rate
C deltll: c;ffprprce in the resonanc~ frequenCY tet-een A and B sp;ns
c xmax: ~.x. value of the freouency displllY

comolex eC2,2),lllphlll,llpha?
"riteCb,i:)

2 formatCI0x,'enter the value of T2 (in sec): ',S)
rf"lldC5,o)t2

4 formatCflo.O)
write Cb,1 0)

10 format(IOx,'enter the value of tau Cin sec): ',S)
read(<;,l?ltlll.

12 formllt(fI0.~)

writeCb,l"-)
15 for"'atC1Cx,'enter the value of chemiClll shift free. :',S)

relldCS,lt:)oe l tll
16 formlltCfl0.0)

.. ,.iteCb,c O)
20 formlltClnx,'ent~r the value of J coupl;nQ C;n ~l): ',,)

readCC" 22) r j
2? formatlfl~.O)

w,.iteCb,2C;)
25 for~lltCICx,'enter the vlllue of II'BX. omeqa (in ~l): ',S)

read('i,?7 )xWIlX

27 format(flO.O)
onen(un;t=OI,na",p.='~;tee•• val',type='new')
c=.art(celtB··2+rj-*2)/?
sl=O.S-rJ/c
cl=0.5*r."lte/c
eo Ion kk=I,!'~C

omeqa=Ckk-401.)/~~O.*x",ax

sum=O.
00 60 .=I,c
if(m.eo.l) cc to 30
ifCm.eo.2) cc to ~o

30 xll=rjI2.-c-olI'eca
xh=rj/c.+c-o ft ec3

00 to 50
40 xll=,.j/2.-c+ofte~a

xh=rJ/2.+c+olI'eca
50 1l1phel=clI'cl.(1./t2+(I.-~1)/tau,xlI)

.lphIl2=cII'~lxl'./t2+(I.+SI)/tllu,xb)

a( 1,1 )=1l1rhal
1l(2,2)=1I1~ha;:

a(I,2)=cII'rlx(-cl/tau,O.)
a(2,1)=a(I,2)
call inVII'IIX(lI)
sum =8 Ill" + ( II ( I , I ) +a ( 2, 1 ) ) * l I • +5 1 ) + ( a ( 1 , " ) + II ( 2 , 2) ) * ( I • -.1 )

60 continue
"r;te(I,70)Oll'e~~,sum

70 formllt(3x,2(Sx,f13.7»
100 continue

closeCun;t=OI)
stop
end
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pro~ra'" Ipeeen
",rite(6,I)
formllt(S.,'erter 0 or 1 for correlated IIlotion cr',S)
.. ,.ite(6,C;)

9 format(lx,' "neorrelatea IIlot;on: ',$)
read(S,2)locie

2 for"'.t(i2)
if(looie.ec.l) go to 3
.large=3.S0Q*12.013e3
.,,,,al1=O.QS3*12.013e3
I"nor"I=2./3.
rnor,,2=1./3.
go to Q

3 .'1l,.Qe=I.79~*12.013e3

.5"'ftll=I.79~*12.013e3

rnor"I=O.':
rno,.,,2=('.1;
wr;te(b,t/'l)

60 for~lIt(lu.,'enter the "ax f,.eouenev: ',J)
read(C,,6':)1I"lIl1

6~ forllllltffl0.u)
u .. r;te(b,5)1I11l"oe,as~all
5 formllt(lx,I,~.,'1I11lrQe= ',f~.2,~.,'lIs"'1I11= ',fe.2,1)

wr;te(b,t)rner""rnor,,2
6 formllt(C,),'rror"l= ',fc.2,SlI,'rnorm?= ',f6.2,111)

onenfun;t=Ol,nllllle='sp~crln.vlll',tyne='new')

on 0;0 ;:1,5/'1C
v=(;-251.)/250.*lI mll V /all1rge
x=Y*1I1arct>
z=./lIs"·all
Qn=funct(l,lIS lll 1l11).rncr"'ltfun ct(y,alllrQe)*r nor,,2
.. r;te(I,I'\).,ar

el formllt(5x,fl~.6,10.,fI3.b)

50 cont;nu~

close(unlt=r.I)
ston
end

C f\;nct follo,"5.
funct;or funct(y,A)
ynlus=O.5+lI h s(y)
Vlll;nus=~.5-lIrs(y)

;f(ab5fy)-I.OOC) 5,5,3
3 funct=O.O/'l~

~C' to 50
5 ;f(Abs(y)-O.50C) 10,30,20
I 0 f \I net = fl. Is crt ( VIII; n u &) + I .1& art (y p 1us) ) I a

\=10 to 50
20 funet=I./fll*&Ort(yplu5»

QO to 50
30 funct=I./(lI*sort(O.OOOS»
50 return

end
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progrll", trclct
C Th;s cro,rll~ plots the dllte in file 'trplot.dllte·

o;",ens;or olltlllt20),ipOI(120,50)
dllta ister,itlenk,ihyphe/'*',' ','-'/
a ... ta ;ysclIl/'501
open(un;t=Ot,nll~e=#trclot.dlltll·,type=·old·,reaconly)

ree~(t,l)nallta,y",a.,y~;n

formllt(i!,2et3.6)
dn 2 k=l,nClltll

2 rellrl(t,3)cllte(k)
3 fnr~lIt(e!3.6)

closeo(ur.it=O!)
write(b,P)(ihV~he, _:1,12 0 )

e formU(tC.,120At)
do ?O i=t,l"rllte
alltll(i)=(cate(il-y~in)*iyscal/(yma.-ymin)

20 continue
do 25 ;=I,f"oatll
ao 25 j=l,iyscll 1

;po~(;,J)=;bll1rk

2<; continue
do tlO i:l,nOllta
itest='YSCllltl

30 itest=itest-l
;f«itest-rata(i».~e.o.5)co to 3u
;pos(i,;test)=;st~r

110 continue
do AO ;:l,IYlcal
j:iYIClI lt l-i

PO write(b,Gr.)(ioos(k,j),k=1,n0ata)
qO for~8t(tC.,12nAl)

write(e,1 0 0llitlypl,e,k=t,120)
100 formlltl!C.,t20Al)
1<'0 ston

end
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("'09ram var
d;~en.icr d(7,7),hdave(8),hof.ev(~),hd.ev{e),.;g~a(8),bn(8)

di~ens;cr hcisav(A),.ec~om(8),x(7,20,Q)

c Thi. procra~ calculates the lecond moment of the multiple ouentu~

c I~ectra for each or~er m. Th~ number of spins: , to 7.
open(unit=OI,name='var.data',type='old',rea~orly)

rt!'ltd(\,2)ndata
2 format(i2)

do 100 kw=l,rdata
reedCl,S)n

S format{i2)
do 1b ; =1, n
dn 1S ; =! , n
if(i.ge.;) pc to 15
relH1(!,13)c(i, j)

13 format(fIO.3)
15 continue
16 conti"ul"

QO to }'S
IIIriteCb,21)n

20 forlllat(I.,111,2~.,'nuwberof IPins: ',i2,II)
do 3u ;=I,r
do 25 ;=I,n
if(i.ge.j) aC to 2,
IIIrit .. {b,2?) i,;,d(i,j)

22 format(23x,'c(',i2,',',i2,'): ',2.,fl0.3)
2e; continu~

30 cont'inue
35 c~11 sur.rl(n,n,dsu~,dave,Olaave,hdave,hof5av,ca",wa,)

call sutr2ln,d,dsum,hcave,hof~av,hdSltv,hdisav,&iQma,~n)

gn to be;
w,.itt;(t-,llO)

II 0 for III at ( III , ~ x , , m' , ILl. , , hd a ve ( Ill) , , 12. , • hd s e v ( "' ) , , 1211 , , s i 9 III It (Ill) , )

do be, 1<=I,r+1
r",=0.5-r-Ic+1
""rite(b,~O)r",hrtave(k),hCl5ev{Ic),5ia"'a(")

50 for"'at(/,:h,f4.l,3lI0 .. ,fl0.3»
bO continue
be; CAll surr3{n,br,~dsav,hCli5av,~dave,s;allla,oalllma,sec",om)

do 70 k=l,n
.Ck,k""I)=c8ve-*2
1l(k,lcll',2)=cscave
1l{k,km,3)=secmcm(k)

70 continue
100 continue

closc(urit=lIl)
call lescft(n,r~lItll'x)

ItoP
end



proora'" varCl:l
diJr'f'nsior oC7,7>

c This pro~raw gener.tes ranou'" dipole couplinos for ~ coupleO
c loins within dwax end omin

ooenCunit=OI,name='var"'ain.~ata',tv~e:'new')

wI"it~Ce,2)

2 formatCIOx,'ent@r the total nuwber of Ipins:',S)
r@aliCS,£l)n.pin

£l f"rmatCi2)
writefI,5)nu::i'"

S forma t Clx,i2)
c wrlte(b, Ill)
clO formatCltx,'ent@" the wax. of oipole couplino:',S)
c realiC~,lc)cwax

cl2 for"'atCfIO.O)
c writeC6,1~)

ciS for~at(ICx,'ente" the win. of oipole coupI1no:',,)
c readCG,17)c~in

cl7 for"'atC1111. 0 )
wI";teCbrlq)

lq f~"~at(10x,'enter "ancom nu~te" k:',S)
readC5,20)k

21' for"'llt C1 x, ; td
w,.ite(t,,21)

21 f"r~at(ICx,'entf'r r~nco~ nu~h@" m:',S)
read(S,22)"

2? fo","atClx,i~)

do 50 i=I,"'5I:ir
00 C; 0 i =1 , "!Ill:'i "
if(j.le.i) cc to 50

2£1 x=ra"'(~,")

;f(x-0.5)25,2 Q ,26
?5 d(i,j)=I.

go te 'i"
26 O(i,j)=-I.

00 to so
50 continue

00 100 i=l,n,pi,.
00 10" j=l,nsoin
if(i.l!'.i) cc to 100
.rite(l,eO)o(i,j)

60 10""'at(I,,,11G.3)
100 cont i nut'

close(unit=OI)
.ton
end
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di~ens;cr oCS,S),~palu~C5,S),~aave(5),hoflavC5),cnCS),~d;sevC5)

di~ensicn hOlav(5),siq~a(S)

write(b,1)
formatCII,IO.,'enter the nu~ber of spins: ',1)
reerieS,'::)n

5 for~atlic)

write(b,1lJ)
10 formet(II,ln.,'enter the dipole couplinQI oCi,J): ')

do 15 i: I ,1"1
do 15 j:l,n
if(;.ge.jl 90 to IS
write(b,12);, J

12 formatC/,lOx,'cC',;2,',',i2,'): ',S)
reecH5,1:!)0(;,j)

l' formatCf~.2)

15 continue
writeCb,lto)r

1~ formatlll,10.,'numrer of so;ns: ',i2,1/,'I;st cf dioole coupl;nol')
do I~ ;:1,1"1
do Ie J:I,n
;f (i.~e.j) ~o to I~

write(b,17);,j,cCi,j)
17 for~atl/,10.,'c(·,i2,',',;2,'):',I.,eI0.4)
If' continul?

00 20 i=l,r
dfi,il=C.

20 continue
an ,0 ;=1,1"1
no 30 j:I, ...
;fC;.le.j) oc to 30
d(i,j):clj,i)

30 continue
dsum:fl.
dso,u"':I'.
do 11(; i=l,r
00 !I(i ;=i,r
if(i.oe.J) cc t') 1.j0
dsu"'=ds,"," +c: (;, j)
asosu~=cscs~"+c(i,i)**2

dnllsuIIIC;,i)=C.
(jr) continue

cn2=n*Cr-l)/Z.
dalle=(jsu"lc ... Z
dSOlllle=CScsu"lcn2
do <;0 1<=1, ... +1
11"1:1<-1
hrlalle(k)=O.25*calle*(C ... -2*sn)**2-sn)
hofsavCI<):0.5*csodIlP*Cn-sn)*sn

50 continue
cnCI):n
do 60 r=2,r
cnC~)=cn(~-I)*(n-~+I)/I<

bO continue
hrlisaIlCI)=0.2~*dev... **2
do 70 ;=I,r
do 70 1=1,1"1
do 70 1<=1,,.,
if (;.ce.J) co to 70
dpasuml;,J)=cP8su mCi,j)+o(i,I<)+d(I,Ir)-dCi,I)-c(J,i)

7r) continue



trsoht1=O.
do 80 t=l,n
do 1'\0 j=l,n
ifCi.oe.j) gc to 80
trIQho=trschctCO.S*dlur-do8su~(i,j»**2

eo conti ... ue
ndilev(3)=trlohd/cnC2)
trsohd=O.
do qO i=l,,,
trlohd=trsohct(0.5*Olur-0.5*oo.su~Ci,j»**2

qO conti ... ue
ndis8v(2)=trsoh~/cn(1)

;fCn-3)11n,100,11r:l
100 hrlisavCU)=~oisftv(l)

ItO ;f(n-Q)130,120,130
1?0 hdilav(U)=hOisav(2)

hrlilftvC~)=hdisav(l)

130 if( ... -<;1150,IQn,t';o1'
IUO hdisav(U)=hoisav(~)

ndis.v(S)=hrl;sev(2)
hdisev(c)=hdi •• v(l)

ISO do 101' k=l,ntl
hds.v(kl=hcilaVrk)thof6~V(k)

I;Q~.(kl=(hc'.V(k)-~OltveCk)**2)**0.~

160 continue
~r;te(b,tOO)c.ve,~soavp

000 for~.tCII,1I'k,'o8vt'= " el0.U,10k,'dsoave= ',el0.Q)
~r;tt'(b,tIO)

b 10 for Ill. t ( II , 3 k , 'II ' , 12k, '" d It \I e ( ~ ) , , 12k, , "d 5 a v (II') , , 12k, '. ; g", e (~) ')
00 650 L-=I,nt,
r",=O.5*,,-ktl
~rite(b,t~0)rm'''1~ve(k),''dsAV(k),I;a~a(k)

oUO for~.t(/,3k,el0.~,3(lnk,~10.u»

6<;0 CC'lntinue
stoo
end
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proQram var;,.,
c lhis orocraw enters t~e number of spins n and the dipole couplings
c d(;,J) fer thf' calculate;on of progral'l var.

o;mens;cl" c(7,7)
open(unlt=OI,na"'e='var~a;n.rlata',type='new')

wrHe(o,l)
for~at(I.,I,IO.,'enter the nu~ber of IPlns(3 tc 7): ',S)
r@Oed (5,5)r

5 format(iZ)
w";te(l,t:)n

b f~r~at(1.,;2)

wr;teCb,1t)
10 format(I.,I,IO.,'enter the rl;pole coupling, d(;,j): ')

do Ib ;=1,1"
do IS j=l,r
if (;.Qe.j) ~o to 15
""rite(6,IC'>i,j

Ie f~r"'at(1.,/,lOx,·?(',i2,',',;2,')= ',S)
rea'".l(5,1:!)c(;,j)

1~ fnrmat(fl~.O)

"",.;te(I,I~)c(;,j)

111 fnrmatCh,flO.))
15 cont;nlJe
1ft cnnt;nu~

close(u,..; t=(\I)
stoo
e ... d
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proQra" var"ai,..
oi~pns;or o(7,7),noave(B),nofsav(8),nosav(8),s;Q~a(8),bn(8)

o;mpnsior ndisav(R),lecmom(~),.C7,20,4)

c This pro~r811' calculatel tne leconrl mo~pnt of thp multiple Qu.ntu~

C Inpetre for pecn orrier m. ln~ number of IP;"S: 3 to 7.
oppnCunit=OI,n.me='var~ain.rlata',type='old',reerlonly)

r~llrlCI,5Jn

S format(i2)
00 16 ;=I,r
0015 j=I,f'
if(i.op.j) QC to 15
rf"ariCI,131oCi,jl

13 format(fl0.3)
1'5 cnntirue
16 cortirue

clospCu,.it='lI)
Q(l tc 3<;
writeCn,2 n )r

20 formatCl.,111,2~x,'nu"berof spins: ',;2,11)
do 30 i=l,n
do 25 j=I,,..
if(i.oe.jl gc to 25
.riteCti,2?) i,i,d(i,jl

2;> formatC23x,'cC',i2,',',i2,'l: ',2x,fl0.3)
2<; continue
3n continue
3'5 c~ll sutrl(n,o,rlsum,davf",dsOllve,nrlave,hofsllv,gell'ma,)

CAll su~r2(r,rl,~su",hcave,noflev,~rlsllv,noisllv,sigmll,bn)

writeCb,1l0)
40 form8tCIII,t.,'II",I~.,'nOllveCII')',12x,'hOsavCml',12x,'1;Qme(m)')

0" t>O ~=I,,..tl

rm=O.'5-r-ktl
.r;teC6,~0)rll',ndaveCk),hosev(k),I;QmeCkl

50 for mat(/,3x,fll.l,3(lO.,flO.3»
00 contirue
0'5 CAll suhr3(n,hr,h1sav,noiS8V,hcave,s;Qma,Qemma,seclI'om)

atol:'
erd
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.ubrouti~e luhrl(n,d,csu~,dave,dlo8ve,hdave,hofI8v,ga~~a)

di~enlio~ dC7,7),hdaYel8),hofsav(~)

c The lubrcutire calculate the aversQed values of the trace of the dipole
c hamiltonian anc the souare of the dipole ha~iltonian for each _anifold

do ? 0 i =1 , n
do 10 J=I , ...
if(j.oe.;) pc to 10
(1(i,j)=cCj,i)

10 continue
d(;,;':O.

20 continue
dsulII:O.
dlolu",:O.
do <;0 i=l,n
do 110 j=I, ...
dsu~:dsu~~c(i,j)/2.

dSQsu~=cscsuw+c(i,i)*·2/2.

uO continue
~O continue

rn=n
cn?:rn*Crn-I.)/?
dllVe=dsuw/cnc
dsoave:clclu*/cn2
q~mllla:(cloAve-cave*·2)/dsoave

write(o,e O) csve,dsQsve,oalllllla
bO forIllAtCI/II,3x,'daye= ·,tI0.3,7x,'dsQave= ',fIO.3,7x"Qa~m8= ',fl0.3)

do 70 1e:I,n.1
In=~-l.

hrlllve(k):O.2~·cav~*«rn-~.*sn)**2-rn)

hcflavCk)=O.~*c~Qave*(rn-sn)*sn

70 continue
rP.turn
end

lubrcutire su~r?(n,rl,csu~,~rlave,notsav,~osAv,~risav,siQma,bn)

di~~nsi~r cC7,7),~o~v~(A),nofsav(A),nrl;sav(A),tn(8),dpasum(7,7,7)

dimen,icr ncsav(B),si~~al~)

c This su~cro~ra" c~lculates the vAriance of the dipole hamiltonian
c for each ~anifcld. si~"a= <~**2>-<H>*.2.

do 100 i=l,n
do 100 1=1,,,
do 100 ~=l,n

Ino dpssum(i,j,k)=O.
do ISO i =I, n
do 140 j =I , n
H(i.gt.j) QC to luo
dn 13 0 k=l,n
if(j.gt.k) gc to 130
dlijk=O.
dn 120 1=I,n
dlijk=d1 ijktc(i,l)t~ll,l)to(k,l)

120 continue
dpa.u~(i,j,k)=cn•• u~(i,j,k)-d(i,j)*2.-o(J,k).2-d(i,k).2tdlijk

130 continue
140 continue
150 continu~

trlono=O.
00 220 ;=I,n
do 210 j=l,n
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d(i.pe.JJ QC to 210
dt" 200 k:',n
If{J.oe.k) QC to 20n
tr.ohd:trlohc+{O.~*~,uw-dDasum(i,J,k»**2

200 cont;nu~

2'0 cont;nu~

2t'0 continue
r,.,=n
bn{I)=I.
00 250 k:?, ... +1
b,.,(k)=onCk-l)*(rn-k+2.)/(k-l.)

2'50 continue
hrlisavca):trlohd/hn{U)

c Calculation cf tn~ ~ver8oed v~lu~ of th~ souare of th~ diagonal
c part ot c;~o18r ha~;ltonian ~;th 3 sp;ns rlo~n. The value ;s Q;ven aboue
c bv hoisavCUl.

trsont1=!).
do 310 ;=1,1'1
do ~OO j=l,n
if(i.o~.j) aC to 300
ooe=Capa8u"{i,i,j)+opasum(i,j,j)+2*dC;,j»/3.
trIQhc=trschc+(0.~·dsuw-aoa)··2

3/'10 continue
310 continue

hrl;sav(3)=trsahrl/nnC3)
c Th~ value of hcisav(3) ;8 the averaged value of the lauare ot the
c d;aoonal cart cf o;nolar h~~iltonian ~;th 2 sp;n, oo~n.

trsaha=O.
00 aoo i=I, ...
doas=t108su wC;,;,i)/3.
trsahd=trschc+C/'I.'5*asu"-doas)**?

/lOU continue
hdisev(2)=tr,ohd/~nC2)

hrlisavCI)=().2~.~su~··2

c The atove values of hc;s~v(t') and hrl;sev(l) tor 1 and 0 ,n;n do~ ... ,
c r_s~ectively.

;=1'1-2
gO to(50C,4IC,(J,(J,~50,/j70),;

/l10 hdisav(~)=hr.isav(l)

go to 500
U30 hrlisavC~)=h~isav(l)

hA;sav(~)=hcisav(2)

IH' to ~cn

U~C hrl;S8v(7)=hc;sav(l)
hdisav(~)=hni8av(2)

hrlis8V(~)=hc;sav(3)

00 to 500
U70 hjisav(P)=ht"isav(l)

hn;sav(7):hoisav(2)
hdisav(o)=ha;sev(3)
hrl;lav(~)=hd;I'V(4)

500 00 510 k=l,n+l
hrlsav(k):hols~v(k)+hofsev(k)

.iomeCk)=Chdsav(k)-hdave(k)**t')**o.~

510 continue
return
e"d



c
c
c

c

20

40

50

51

5?

6')

7fl

80

o;mens;cr bn(R),h~ave(e),hdsav(~),hd;sav(8),secmom(B),hofsav(8)

d;mens;cr r~t;c(8),s;crra(8),siQmcml8),piqmom(e),rb(~),ra(R)

C~lculation cf the second moment of m-auantum spectra with given
moments for eac~ oair of m~nifolos of magnetic Quantum number ml
So that rrl-.,.2=rr.
do 110 j=l,ntl
; =j-l
ur>SUIT.=O.
dowsum=O.
usum=/).
psum=O.
kf=n-;+l
00 20 1<=I,k 1

ki=k+;
hk;=ndsav(~)thcsav(l<i)-2.*hdave(k)*hd~ve(k;)

tH=bn(k)*bnlk;)
sk;=siQrra(k)**2+s;aT.a(~il**2

pki=hrlisav(k)thrl;savlkil-~dave(k)**2-hoave(ki)**2

pk;=hk;-hcfsBv(kl-hofsav(ki)
ur>sulT=u~sulTttk;*hk;

dowsum=dc~surr+tki

usum=usulTtrk;*ski
psum=osulT+tki*~k;

continue
secmorr(j)=ursurr/oo~surr

siamolT(j)=usvrr/dowsum
~;amc.,.(jl=psLm/do~sum

continup
write(b,SO)
f " I'm a t l I J , ~ x , , rr - a 'J ant u rr. ' , 7 x , , 5 e c IT' 0'" ( IT· ) , , $ )

wr;te(6,51)
format(~x,'seclTomlm)/secmorr(O)',5x,'siqmOIT(m)Jsecmom(0)',$)

write(b,52)
fnrmat(bx,'pialTomlrr)/secmom(O)')
open(un;t=Ol,name='var.val',lype='new')
tin 70 j=l,n+l
m=j-l
ra t io(jl=seClTorr(j)/secrnom(l)
rrl(j)=sic mc.,.lj)JseC'l"orr(l)
rh(j)=~icmolT(j)/secmorr(l)

wr;te(b,eO)IT,secmnm(j),ratio(j),ra(j),rh(j)
f n rmat l / , '3 x,;2 , q x , flO • 3 , 8 x , flO. 3, 1 3 x, flO. 3, 1 5 x , flO. 3 )
wr;te(1,t5)IT,ratiolj)
format(5x,i2,Sx,f13.7)
continue
close(unit=Ol)
return
end
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