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Abstract

Nuclear magnetic resonance is a very useful tool for
characterizing molecular configurations through the measurement
of transition frequencies and dipolar couplings. THe measure-
ment of spectral lineshapes, spin-lattice relaxation times, and
transverse relaxation times also provide us with valuable inform-
ation about correlations in molecular motion. The new technique
of multiple qauntum nuclear magnetic resonance has numerous
advantages over the conventional single quantum NMR techniques
in obtaining information about static and dynamic interactions

of coupled spin systems.

In the first two chapters, we discuss the theoretical back-
ground of spin Hamiltonians and the density matrix formalism of
multiple quantum NMR. The creation and detection of multiple
quantum coherence by multiple pulse sequence are discussed in
chapter III. Prototype multiple quantum spectra of oriented

benzene are presented. Redfield relaxation theory and the



application of multiple quantum NMR to the study of correlations
in fluctuations are presented in chapter IV. A specific example
of an oriented methyl group relaxed by paramagnetic impurities is
studied in detail. In chapter V we present the study of possible
correlated motion between two coupled methyl groups by multiple
quantum NMR. For a six spin system it is shown that the four-
quantum spectrum is sensitive to two-body correlations, and serves
a ready test of correlated motion. 1In chapter VII we present the
study of the spin-lattice relaxation dynamics of orienting or
tunneling methyl groups (CH3 and CD3) at low temperatures. The
anisotropic spin-lattice relaxation of deuterated hexamethylbenzene,
caused by the sixfold reorientation of the molecules, is investi-
gated in chaptef VIII. The NMR spectrometers and other experi-

mental details are discussed in chapter IX.
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I

THE SPIN HAMILTONIAN

1.1 Introduction

Nuclei, as well as fundamental particles, have individual
attributes. Some examples are mass, charge, and spin. The spin
angular momentum of any particle only takes the value of a non-
negative integer or a positive half-integer in the unit of h.
For example, the spin of electron, proton, neutron, nuclei of

13C and 19F is one half. Nuclei of 2H and 14N have a spin 1,

whereas the nuclei of 12C and 16O have no spin. A particle with

spin I has a magnetic dipole moment ﬁ associated with it, and
-> >
u = hyl , (I.1)

where Y is a magnetogyric ratio of the particle. Table I.1 shows
the value of y for several common particles.l

VWe are primarily interested in the nuclear magnetic
resonance (NMR) of organic molecules; hence we shall focus
mainly on the nuclei of hydrogen and deuterium atoms--namely,
the proton and the deuteron.

The nuclear spins in a molecule can interact with neighbor
spins by direct dipole-dipole interaction, and also by indirect
spin-spin interaction via orbiting electrons. Also, they can
interact with an external static field or an oscillating magnetic
field of an electromagnetic wave. For nuclei with spins greater
than one half, the spins can interact with their local electric

field gradients, also known as nuclear quadrupole interaction.



1.2 The Zeeman interaction

In the presence of an external magnetic field, quantum
theory demands that spin cannot have an arbitrary orientation.
Only a few states are allowed and they are characterized by
the spin magnetic quantum number m. The z-component of the
spin angular momentum hIz is quantized, and I, can take on one
of a set of discrete values -I, -I+l, ..., I. The interaction
between spin and an external magnetic field Bo along the z-axis

is described by the Zeeman Hamiltonian Hz,

T > >
= =vhI Bo

z
= —yh1 B_ , (1.2)
or
Em = ~YﬁBom
= _mhwo , (I.3)

where W, is the Larmor frequency. The Larmor frequency of
several common particles is listed in Table I.l.2 In a typical

field of 50 kG, the proton has a resonant frequency at about

210 MHz. The energy levels of spin I in a magnetic field consist

of 2I+1 multiplets with an energy separation of hwo.
Because of the shielding effect of the surrounding
electrons, the nuclear spins do not experience a common magnetic

field go' They experience slightly different local fields gi's,

and3



Table I.1

The Resonance Frequency and Magnetogyric Ratio

I vy(radians/sec 10 KGauss) Frequency (MHz/1l0 KGauss)

e 1/2 1.759 x 10° 2.800 x 10°
Yo 2.675 42.577

0 1/2 1.833 29.175
Be 172 0.673 10.705
By 172 2.518 40.055
g1 0.411 6.542
e 1 0.193 3.072




H = -h'y.z-f -(1-0,)*B
z 1 i %2 o

= -hy Ii: Ii,z(l_ci,zz)Bo

= -hu_ };11,2(1-01,22) , (1.4)
where 1 is a unit tensor, and Oi is the local shielding tensor
of the second rank. The shielding is determined by the local

6

electronic structure, and has a magnitude order of 107°. It is
small but plays a very Important role in identifying molecular

structure.

1.3 The dipole-dipole interaction

The nuclear spin can interact with the magnetic field

produced by neighboring spins. The dipole-dipole interaction

is described by the dipolar Hamiltonian HD asl’3
- > ->
= L I.D '-I.
HD 1< i=<ij 7J
T > > >
I,I, 3(I,°r)(I,+r)
< 2 .4 i
= Loy, v, 0 =1 - l— (1.5)
<y 13 2 >
ij ij

where rij is the internuclear distance. is a traceless,

Pij
symmetric tensor of the second rank. Since the dipolar coupling
strength 1s much weaker than the Larmor frequency, we may ignore
the non-secular part of the dipolar Hamiltonian that does not

commute with the Zeeman Hamiltonian. The secular part (truncated

Hamiltonian) can be expressed by



H = ) D, (I, I, - iy, (1.6)
i<j » ’ j
and
hly .y
--__11.1 2 -
Dij r3 > (3 cos eij D , (1.7)
ij
where 61j is the angle between the z-axis and the internuclear
vector.

For heteronuclear dipole-~dipole interaction, the flip-flop

term I, I, + I in T may also be neglected, since it does

->
141y T I Ty In 101y
not commute with the Zeeman Hamiltonian if nuclei i and j are
different species.

Assume we have two unlike species I and S; the secular part

of the dipolar coupling between them is given by

A\

= 2D,, I S, . (1.8)
L
7R S L P

1.4 The indirect spin-spin coupling

The nuclear spins can interact with each other through the
second order effect of hyperfine coupling via electrons. The

indirect spin-spin interaction can be written as

H, = § 1.3 .1 (1.9)
J i’;.i~ijj ’ .

where Jij is a second-rank tensor.

If we neglect the non-secular part, the remaining secular

term is given by3



1-1) , (1.10

> 2 aniso
By = L P A AP I i C T S A

i<j j i<j ij

where J,, is the isotropic average of the tensor J aniso is

13 Jig i3
the anisotropic component that vanishes if the molecule undergoes

isotropic tumbling as happens in liquid phase.

1.5 The quadrupole interaction

Nuclei with spin I greater than one half possess an electric
quadrupole moment because of the non-spherical distribution of
charge on the nuclei. In the molecule, the nuclear quadrupole
moment will interact with the local electric field gradient that
is produced by surrounding valence electrons. The nuclear quad-

4
rupole interaction 1is described by

, eqQ,
1 -»> ->
Ho= L ooy L%l (1.11)
i i i
where Qi is the quadrupole moment of nucleus i and Vi a8 (a,B =
b

X,y, or z) is the second-rank tensor component of the electric
field gradient at site i. Laplace's equation demands that the

tensor X be traceless and symmetric.

In the presence of a large magnetic field, the Hamiltonian

becomes
eQ,V
i4i,zz 2 1 2 2
= —rm - +1) + = 17+
Ha - 41, (21,-1) [31; ,-L(L+D) + 50y (4 41 )
(1.12)

where ni is the asymmetric parameter defined by

n, = (v )/V 0<ngl . (1.13)

-V
i 1,2 41i,yy i,zz



>
Isz| > lvgxl 2 lvyy' are the principle values of the electric
field gradient temsor. For axially symmetric nuclear surroundings

n vanishes, and
hw
=Y i 4.2
H, Zi 35 [31] ~L(1+D] (1.14)

where the quadrupole strength w 1 is defined by

Q,

3eqQ,V
® - 11i,zz (1.15)
Q,1 4hIi(2Ii-l) ’ ‘

1.6 Discussion

In general, the Hamiltonian of a spin system consists of four

parts:

H=HZ+H_D+HJ+HQ . (1.16)

In an isotropic liquid phase, all molecules undergo rapid
diffusion and rotation. Consequently, the anisotropic parts of
the interactions, such as dipolar and quadrupole interactions
vanish in the time scale of NMR; and only the isotropic parts

remain, namely,
’ > >
= _h - . . -
H w e O 20l gt Z' 3y 1 (1.17)
i i<j
Molecules dissolved in an anisotropic solvent such as liquid
crystal are forced to align themselves in a preferential direction.

Although the molecules are free in translational motion, their

freedom of isotropic tumbling is impaired. As a result, the



anisotropic interactions do not vanish though their strength is
generally reduced.

The dipoiar interaction between solute molecules and liquid
crystal, or among solute molecules, vanishes due to fast diffusion.

Only intramolecular dipolar interaction remains.

For protons, the anisotropic spin-spin coupling Jz§iso is
negligible and HQ = 0. The Hamiltonian is given by3
. -+ >
H = -huw (1-0 )I + J,. I,-I,
o 5{_ i,zz" 1,2 EJ. 13 1 73
> >
+ . D, .(3I I, -~I,-I. s (1.18
igj iJ( i,z j,z i J) )
where
h2y,y
D,, = - ——31—1 . l—<3 cosze -1> . (1.19)
ij <> > 2 ij
ij

The coupling constant D in the laboratory frame can be expressed

ij

in terms of the ordering parameters Sas's of the liquid crystal.

The coupling constants in the molecular frame can be expressed

3,5
as

2
Ry, 2
D,. =———3—l[S <3 cos ei. -1>
ij 2<ri.> aa j,a
J

-S ) <c0528 —c0528
ce

+ >
(s ij,b ij,c

bb

< >
+ 2 Sab °°591j,a coseij,b

< >
+ 2 SaC CQSeij’a cos@ij,c

+ 2 8 <cosei

be cos8i >] s (1.20)

i,b J»c



and

<3 coseaz cos®f . " 6& > , a,8=a,b, orc , (I.21)

where eaz is the angle made by the a-axis in the molecular frame
(with respect to the field direction).

The matrix § is traceless, symmetric, and has at most five
independent components. The number of independent elements
depends on the symmetry of the molecule.3 For example, there is
only one element for the benzene molecule and methyl group. There
are two elements for the para disubstituted benzene.

The NMR study of partially oriented molecules in liquid
crystal allows us to obtain valuable information about molecular
structure by.measuring the dipolar coupling constants that depend
on internuclear distance and relative orientation. This informa-
tion is generally not available by an NMR study of molecules in

the liquid or solid phase.
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2.1 Density matrix

For a given quantum mechanical system, any pure state |w>
is a superposition of all the eigenstates Ii>,

[y> = ‘Z<ji|i> . (11.1)
i

The expectation value of a physical observable operator A

at that state is given by
<A> = <p|Aa]y> =‘Z AiA;( <jlali>

=Z'oijAji = Tr(pA) . (11.2)

where p The diagonal element Piyq of the density matrix

*

13 = aiaj.
is the population at state |i>. The off-diagonal element pij
describes the phase relation between states Ii> and |j>.

In general, the Hamiltonian of a system consists of two
parts, the static Hamiltonian Ho(t) and the fluctuating Hamiltonian
Hl(t). In most cases, the time dependent Hamiltonian Hl(t) is
much weaker than the static Hamiltonian and can be treated as a
small perturbation.

By using a high temperature approximation (B||H[| << 1) which

is generally true for a spin system, the density matrix at thermal

equilibrium can be expressed byl

po = e-BH/Tr(e“BH

)

« l-BHO ’ (11.3)
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where B = 1/kT.
The density matrix Py is diagonal in the basis set of the

eigenvectors of the Hamiltonian H The irreversible fluctuation

0
Hl(t) drives the non-diagonal element of the density matrix toward
zero at a time constant characterized by the transverse relaxation
time. The non-equilibrium distribution of the population recovers

at a different rate--called the longitudinal relaxation time.

The equation of motion for the density matris is given by

d

—_— = - h =

3¢ P(B) i[H ,0(t)] ) ( 1) (I1.4)

where the time-dependent Hamiltonian Hl(t) is neglected. The

solution for the above equation is very simple and can be expressed

by

p(t) = exp(—iHot) p(0) exp(iHot) . (11.5)

2.2 Rotating frame

The concept of rotating frame that synchronizes with the
rotation of applied radio-frequency electromagnetic wave is
convenient to use.

In the laboratory frame, the rf field along the coil is
composed of clockwise and counterclockwise components. Only
the component that rotates in the same way as the precession of
nuclear spins is effective. The other component, which is off
resonance by 2wo, can be neglected. This 1s the basis of the
rotating-wave approximation. The assumption is justified because

the strength of rf field is much weaker than the Larmor frequency W
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Assuming U is a unitary transformation operator that

transforms the wavefunction y or the denslity matrix from laboratory

frame to rotating frame:3

ly>* = uly> (I1.6)
or

o* = UpUT (11.7)
then

d

3¢ 0% = -ilH*,p*] s (11.8)
and

gt = mut + i E out

wy’ - iu(j—t vy, (11.9)

where the asterisk mark is referred to the rotating frame.
The Hamiltonian of a spins system in the presence of an rf

field at frequency w is given by

H = %z + Hrf

= - wOIZ -2 wy IX coswt s (11.10)

where wy is the strength of the oscillating field.

Using an explicit form for the unitary transformation operator

U = exp(-iwl t) ,
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the Hamiltonian at rotating frame becomes

jas}
]

Ix coszwt + w,I sin2wt

—(wo-w)lz - 2w 1Ly

1

--AwIz - wlIx , (11.11)

where Aw is the frequency offset. The term with sin2wt oscillates
at a very high frequency and is averaged to zero, and coszwt has
an average value of one half.

Evidently, the above expression shows that the effective
Hamiltonian at the rotating frame is time-independent, and that

the Larmor frequency wy is reduced to Aw.

2.3 The effect of symmetry on density matrix

For a system of N coupled spin-1/2 particles, the density

\ . N N .
matrix has a dimension of 2 x 2°. To characterize a general

2N \

quantum state for such a system, one needs to know 2~ -1 matrix
elements. Even for a system of a small number N, such as benzene,
the number of matrix elements is quite huge. Fortunately, the
actual number of independent and non-zero elements is not so large
if the spin system possesses some kind of symmetry.

Let us assume that operator R corresponds to a symmetry

operation of the system, and that the operator leaves the Hamiltonian

invariant, namely,

R Ho R+ = H (I1.12)

or

(I1.13)

L]
(@]

R, H]
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We can then show that the density matrix will also commute with

R.%

The reasons are as follows. The density matrix at an

equilibrium given by

Py = e_BHo/Tr(e—BHo) ,

is invariant under operator R, namely,

-gRH RT -gH

RpoR+ = e ° /Tr (e °

)
=p . (I1.14)
Since the radio frequency Hamiltonian Hrf has an A-type symmetry,

it also commutes with R. In the rotating frame, the demsity

matrix at an arbitrary time p(t) given by

(e - e—it(Ho+Hrf) () eit(HO+Hrf)
commutes with R, that is,

R p(t) R = p(t) , (11.15)
or

R p(t) = p(t) R . (I1.16)

The above equation can be expressed in a matrix form based on eigen-

vectors of R such as
RaapaB(t) = paB(t)RBB ’

or
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(R

aa-RBB) paB(t) =0 . (I1.17)

Thus paB(t) = 0 if o and B refer to different eigenvalues of R,
that is, no off-diagonal elements of P will connect states of a
different symmetry.

As a result, the density matrix can be reduced to a simple

block form such as

[}
o) f o, 0
..... R S
{ 1
0 ] 0(2) | 0
P [
| ]
0 ' 0 ! , (11.18)
(1)

where p refers'to i-th irreducible representation.

By using symmetry-adapted wavefunctions, we can greatly
reduce the task of evaluating a density matrix or diagonalizing
a Hamiltonian matrix.

We shall see later that no multiple quantum coherence exists

among states of different symmetry.

2.4 Two-level system and fictitious spin

The most simple and fundamental quantum system of physical
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interest is a two-level system. The system with a spin-1/2
particle in a magnetic field is a typical example. Its density
matrix is given by a 2 x 2 matrix, and can be expressed by a
linear combination of an unit matrix and the other three Pauli's

matrices a32 follows
o = 1/2(1 + P+0) i (1I1.19)

The Pauli's matrices are given by

g = , O = , O = . (11.20)

We can show that the Pauli's matrices are mutually orthogonal,
namely, Tr(Oin) = 26ij’ where éij is the Kronecker delta function.

The vector P describes the polarization and is given by
P =Tr(pd) . (11.21)

Any given quantum state is completely determined, except for an
overall constant phase, if the polarization vector is known. The
time-evolution of the polarization is governed by an equation of
motion for the density matrix or for the Pauli's matrices. Both
of these approaches are equivalent.
I3 3 > . >
Usually, we will use a spin operator I instead of 0. They

are related to each other by

e i (11.22)

>
I =

N[ =



18

We can demonstrate this important commutation relationship:

[Ia’IB] = iIY’ a,B,Y in cyclic ordering. (11.23)

-5
The motion for the operator I is given by Heisenberg's

equation

d—»_ >
¢ L = 1091] (I1.24)

where we use the usual convention h = 1,
Any physical observable can be expressed in terms of operator
T, and can be calculated by knowing the equation of motion for ?.
Since the operator I 1s so important, we shall discuss it in
more detail. Instead of a matrix representation, we may also
express 1 in the second quantization operators for boson. TFor a
two level system, there are two states |[a> and |B>. We can define
the creation operator CI which creates a particle in state [i>
out of vacuum. The annihilation operator Cj destroys a particle
in state |j>. If we define a projection operator Cij as CICj, we

-
can express the operator I in terms of them as

I = %-(ca8+cea) = %-(la><8] + |B><al)
. _ 1 - 1 -
= -3 (Cyp=Ca) = = 3 (Ja><g] - |B><al)
I =2 -c,) =% (Jar<a| - |B><B]) (11.25)
z 2 “Tao BB 2 ) )

This approach was first devised by Schwinger.
We can expand Schwinger's ideas to include any N-level system.

Given a pair of states |i> and ’j>, we can define fictitious
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spin operators in a similar way as

ij 1 . .
xH =L 4. )= 5 (<gl + [3<i])

X < Ly J4i

ij 1 _ _ i . s

I = =g (Cg5=Cip) = - 3 (g - |3><i])

ij 1 1 . e

Iz = 5 (Cii-cjj) = 5 (l1><i] - lJ)(JI) . (11.26)

We may notice that

A L S e R & LS £ N £ , (11.27)
X X y y z z

and that they are all hermitian operators. As ordinary spin
operators, the fictitious spin operators also follow a similar

communication relation:

[IlJ, Ilg] =31 , a,B,Y in cyclic ordering. (11.28)
o B Y

Since there are more than two states, the commutation relationship
of the fictitious spin operators among different states is also

important. They are listed below:

D o™ 20, if 4, 4K, @
a ’7B
2) [Izj,I:m] = 0, for any i, j, k, m
ij km i im kj ik mj
I K = = I7-6, I+ I7-8 .1
3 [.x *Tx ] 2 (6jk y dmy “jmy ik'y )
ij _km i im kj ik mj
=-= - - +
4) [Iy ,Iy ] > (6jk1y dime dijy 6ika
ij (km, _ 1 im kj ik_ mj
5) [IX ,Iy ] 5 ( éjka +6ime +6ijX GikIX )
6) (13,1 = L (5, 1ty 1M 1Hs 19

X z 2 jk'y im y ik'y jmy
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13 kmy, _ i 13 13 13 43
7) [Iy ,IZ ] - 2 ( jkIX + ime - ikIX ijX )
g) 1+ 3Ry ™o (11.29)
Z Z z 2 pA A

The above equations are very useful. In particular, they are
frequently used for finding the commutation relationship among
generators of SU(3). These will be discussed in the next section.

The time-evolution of the projection operator CaB(t) is

governed by Heisenberg's equation, and is given by

, -iw At
iHt aB !G><BI

e—th|a><8le = e

Ca,B(t) =

-iwaBt
= e CQB(O) (II1.30)

where waB = wafwB. W, and wB are the eigenfrequencies of the
states ]a> and ]B>. Consequently, the evolution of the

fictitious spin operators follows a simple relation:

ij - ij _ i .
Ix (t) Ix (o) coswijt Iy (o) 51nwijt ,

Iij(t) = Iij(o) sinw, .t + Iij(o) cosw, ,t

y X ij y ij ’

17(t) = 1.7 () . (I1.31)

The transverse polarizations Iij and Iij rotate in the fictitious
spin space at a frequency wij (Figure II.1). The dependence of
the transverse polarizations of multiple quantum coherence upon
the phase shift ¢ varies for a different order of coherence as

follows:

e z IiJ e Z = IlJ cos(m,-m,)} - IiJ sin(m,-m.)¢ ,
X i ] y i
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z _ij - iy . _ ij _
e I e IX 51n(mi mj)¢ + Iy cos(mi mj)¢ .(11.32)

Thus, n-quantum coherence has a phase shift by n¢.

2.5 Three~Level System

As we discussed previously, for any general n-level system,
the density matrix of the system has a dimension of n x n.
Because of the conservation of probability, the total population
among each state should remain constant. Consequently, to
completely specify a general quantum state of a n-level system,
we must know n2—l independent parameters about the system.

For two-level systems, the quantum state is completely
determined if we know their three polarization components. The
polarization is actually the expectation value of the Pauli's
matrices. Any physical transformation of a given quantum state
can be characterized by an unitary transformation U and is related

to the Pauli's matrices by

U=exp(i) 06) i=1,2,3 (1I.33)

Mathematically speaking, the Pauli's matrices are generators of
the SU(2) group and U is a group element.

Generally in a n-level system, any physical transformation
is characterized by a group element of SU(n). The SU(n) group
has n2—l generators.6 For each generator, it associates with a
parameter 8. Therefore, it needs n2—1 parameters to completely

specify any general quantum state.
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li>

<Iij> = 2Re
X Pij
<Iij>=—2l .
y ™ Aij

< ij>: —_—
I P.; ’Djj
XBL 816-10418

Figure II.1 Correspondence between the fictitious spin polarization

and the density matrix. The polarization in the fictitions spin
space precesses about the z-axis at the transition frequency. The
longitudinal and transverse polarizations correspond to the

population difference and phase coherence,.
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In the case of a spin-l1 particle, such as the deuteron, it

is a three~level system. Using NMR techniques on deuteron, we can

explore many interesting properties of the SU(3) group.7 There are

eight generators in all. Our choice of these generators depends
on the physical situation and convenience. Usually the generator

>
set consists of three components of the spin operator I and five

(m)

components of the second-rank tensor T , Wwhere m = 0, *1, and

+2. They have following commutation relations:

[IQ’IB] = il , 0,B, Y in cyclic ordering

v
[Iz’T(m)] - m (@)
[I+,T(m)] = Y33+ -m(m*1) p(m*1) ,  j=2 . (11.34)

The generators can be represented by matrices with states |m=l>,

[m=0>, |m=-1> as bases,

o 1 0 0 -1 0

1 _ i _
L= |1 0 1 AT 1L
0 1 0 0 1 0
1 0 0 1 0 o0

T - 0O 0o 0 S (2 S S (11.35)
0 0 -1 o o0 1
0 -1 0 0 o0 1
T(l) =Y3 [0 0 O s T(z) =v6|{0 0 O
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and T(—m) = (-l)m T". All the above generators are traceless and
Tr((-D® 1™ Wy 26,

Another usual set of generators are fictitions spin operators
given by Iéj, where ¢ = x, y, z and 1,3 = 1, 2, 3. Their matrix

representations are shown as follows:

0o 1 0 0 -1 0 1 0 0
12
=L {1 o o) ?-Lil1 o o] *2=%10 -1 o
X 2 y 2 z 2
0O 0 0 o 0 0 o o0 o
0O 0 0 O 0 o0 0O 0 0
; 1
231 o o 1] B3-%ifo o 2| ¥B-=Z210 1 o
b4 2 y 2 z 2
0 1 0 o 1 o 0 0 -1
o 0 1 0 0 -1 1 0 0
B fo o o) B¥3=2%f0 o ol =L 1{0 o o
X 2 y 2 z 2
1 0 0 1 0 0 0 o0 -1
(11.36)

The above nine operators are not linearly independent, since

113 = Il2 + 153. Nevertheless, the remaining eight operators

Zz 4

are linearly independent and form the complete set of generators

for SU(3). We can show that

13,2 _
Tr(Ia )

DO | et

Il

1%2133

L o

() = e = -2, (11.37)

Tr ( ) z "z 4
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ij. Im
and that for all other combinations Ia IB are traceless, namely,

(TT 20\
. LlLe20)

These fictitious spin operators are convenient for solving the
problem of weak, selective perturbation.

Many interesting NMR phenomena of spin-1 system arise from
the peculiar properties of transforming these SU(3) generators.
Before exploring their peculiar transformation and commutative

relationship, we shall prove two important lemmas:

Lemma 1. If operators A, B and C satisfy the following relations

[A,B] = iaC
[A,B] = -iaB
then eieA B é_ieA = B cosab - C sinaB , (I1.39)
3", i6A _ -i6A
Proof: —— (e B e ) = [AlA,...[A,B]...]]
n
n times
. . © n
eleAB:e—leA= )3 (12)' [A[A...[A,B]...]]
n=0 :
. RS »! !
= Z —-——(l?) oa"'B + z ——————(1(?) (ioc)nC
n. n!
n=0 n=1
(even) (odd)
= B cosaf - C sinub .

Lemma 2. If operators A, B, C, and D satisfy
[A,B] = iRaC

[A,C] - iaD

1l

[A,D] iaC ,
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then

eieA B e—ieA = B ~ BD(l-cosaB) - BC sinab . (11.40)
Proof:

184 5 7104 _ gy f -(—i?)—q [AlA...[4,B]...]]

n=

]
o)
+

B

n n
B-(Iilﬁ—(ia)nc+z B—(ie;)—— "D

‘ n=2
(odd) (even)

B - BD(l-cosaB) - BC sinab .

2.6 Transformation of fictitious spin operator

The transformation of the SU(2) group has a very special
property. If'A, B, and C are its generators--as are Pauli's

matrices Ox’ Oy and Gz-—their commutation relationship is given

by

[A,B] = %-C s A, B, C, in cyclic ordering.

Using Lemma 1, we can show

EieA B e—leA = B cos 8 _ C sin %— . (II1.41)

2

The transformation of a state is only half the angle of the
spatial rotation. Consequently, a 27 pulse will change the
sign of the wave function and will not bring it back to its
original state. Actually this is a special property of a
spinor that is a half-rank temsor. We can show that the

following sets of operators generate their own SU(2) groups.
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These are subgroups of SU(3):

12 .23 _13

SO AR
(2) Iiz, 1§3, 133,
3 1, 17, 1;2
DR

The following sets of operators however, generate 0(3)

groups5 (orthogonal group) that are also subgroups of SU(3)

12 12 12
EOIS S Sl sl
23 .23 .23
@ 17, 17, 17,
13 13 .13
@ 17,17, 5

They follow a different commutation relationship such as
[A,B] = iC , A, B, C, in cyclic ordering,

and
iBA ~i0A

e B e = B cosf8 -~ C sinf . (I1.42)

Unlike spinors, they make a full rotation and behave as ordinary

vectors.

2.7 Transformation of tensor operator

The transformation of a tensor operator is very important
in studying the NMR of spin-l system. Both quadrupole and dipole-

dipole interaction Hamiltonian consist of tensor operators of the



second rank. They are bilinear operators in spin operators Ia’
that is, they are formed by the product of two spin operators.
Their transformation is completely different from vectors and
spinors. A tensor of second rank two has five components T(m)
with indices m = 0, #1 and #2. The index m is the magnetic
quantum number. Because of the closure property of similarity
transformation, a spatial transformation will change any component
into a linear combination of the five components.

Using the lemma 1 and the lemma 2, we are able to show some
important transformations of the tensor operators.

iBI

~-iBI
(A) e X T(o) e *= T(O) + é? (T(2)+T(-2)+/g T(O))(COSZB—I)

- i-é? (T(l)+T(-l))sin28 ,

1O L (3 cos?p-1) - 1 28 @41y sinzg

+ %6_ P41y (cos28-1) . (11.43)

Proof: Because of follwoing commutation relatioms:

0y _ 5 /6 (1) (-1,

[1,,T . ,
(1, 2 @Dy < 2 € @@ D 2 @)
1, @ @arCD g 1) 2o BB WDy

together with the lemma 2, it is easily proven.
(0)

We may notice that the angular dependece of T is given
by the Legrendre polynomial Pz(cose). It has a zero value at

. _ _ll: o
the magic angle Gm = cos T 54.74°,
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-iBI iRI
(B) e x (T(2)—T(_2))e £ = (T(z)-T(—z)) cosB—i(T(l)—T(—l))sinB.

(I1.44)

It can be proved by lemma 1; using the following relation,

1 2@ D)y L @ (D

X
(1, 10D - 7@ gD
-iRI iRI
(C) e x (T(l)—T(_l))e X = (T(l)—T(_l)) cosB—i(T(Z)—T(_z))sinB

(1I1.45)

It can be easily proven by using a method similar to the
one used in (B).

~-ifI

iBI
(D) e x (T(1)+T(—l))e

= 2[%—(T(l)+T(_l)) cosof-i —-(T(Z) (-2) + V6 T(O)) sin2 8]

(I1.46)
- e—iBI (T(2)+T(_2)) eiBIx
- 1P 4 2 (T(Z) 24 /& 149 (1-cos28)
- 14% P4y sinzg . (I1.47)

The above relations can be proved by using

[IX,T<2)+T(_2)] (T(l) (-1 ’
[IX,E(T(1)+T(—1)] - '%(T(2)+T(_2)+/E'T(O)) ’
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and the lemmas 1 and 2.

- e-1¢Iz T(m) ei¢Iz _ @ o —imé (II.48)

It can be proved using

(r,t™7 = ur™®
z
-101
The rotation about the y axis e Y is equivalent to the
i . T
—i§ Iz —161x if IZ
transformation e e e 3 for any arbitrary rotation,

it can be characterized by several successive rotations about the

z and x axes. Consequently, we can obtain any transformation of
T(m) without too much difficulty. We shall use them quite often

in the study of spin-lattice relaxation of CD3 groups and deuteratéd

hexamethylbenzeﬁe molecules in solids.

2.8 Quadrupole echo in SU(2) space-—an analogy to Hahn spin-echo

In a recent paper,7 the eight-dimensional spin space of a
spin-1 particle is studied by NMR. It illustrates that the SU(3)
group has three kinds of SU(2) subgroups that transform under
rotation with the angles 8/2, B, and 28. The quadrupole echo that
follows a 90; -1 ~ 90; pulse sequence is actually the behavior
of the fictitious spin in the SU(2) space of rotation with angle
28. In a typical Hahn spin-echo experiment in high-resolution
NMR, the pulse sequence 90; -7 - l80; is used to refocus the
transverse magnetization that has dephased because of field
inhomogeneity.lo In a powder sample of a spin-l system, the
dephasing mechanism is caused mainly by the distribution of

quadrupole splittings over all possible orientations. Because
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of the characteristic feature of a 2f8-rotation in the fictitious
spin space, a 90; pulse is used instead of a 180; pulse to rephase
the incoherence.

To illustrate this, let us consider the behavior of a spin-1
system in the rotating frame at the Larmor frequency. Followed
by a 90; pulse, a net magnetization is created along the y-axis
as is shown in Figure 1I.2(a). Each spin begins to precess at a

rate of w_ as described by

Q
T 1 JHT L st + VT (112—123) sinw T
y y Q x x Q
=8 cosw.T+ S sinw. T . I1.49
y Q X Q ( )

Owing to the orientation dependence of wQ, each spin does not
precess at the same rate, and they begin to fan out as shown in

Figure II1.2(b). The effect of the second 90; pulse is to reverse

Sx’

LT
T)exp(-i > Iy)

T
i—=1I S cosw.T+S sinw
exp(i 3 1) (S, Q CxoTQ

=S cosw,. T - S sinw T (11.50)
y X

Q Q

and is shown in Figure I1I.2(c).
The spins shown in Figure 11.2(d) begin to refocus as time
goes on. At time T after the second pulse, all spins align

along the y~axis as shown in Figure I1I1.2(e),

—-iHT R iHT
e T (Sycosw T - SX51nm T)e H

Q Q

=S5 =1 (11.51)
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SZ' SZ SZ
0 T 905 pulse

2T
Quadrupole Echo

XBL gle.8lze

Figure II.2 Evolution of the fictitions spin in the SU(2) space of
rotation with angle 2B followed by a 9O°X—T—9O°y sequence 1is shown

as an analogy to the Hahn spin-echo experiment.



and a quadrupole echo can be detected.
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I11

MULTIPLE QUANTUM NMR SPECTROSCOPY

3.1 Introduction

The conventional NMR spectra are usually obtained by a
continuous wave methodl or Fourier transform of the FID following
a single pulse excitation.2 In both cases, the spectra consist of
allowed magnetic dipole radiation, that is, the transitions that
change the magnetic quantum number m by 1 or --l.3

For the dipole-coupled spin system, the NMR spectrum is
generally very complicated, not well resolved, and sometimes
difficult to analyze.4 To illustrate this, let us consider the
system of non-symmetric six dipole-coupled spin 1/2 particles.
The energy levels can be classified into several manifolds of
varying magnetic quantum number m as we have shown in Figure III.1.
The multiplet inside the same manifold is caused by the dipole-
dipole interaction. The ordinary single quantum NMR spectrum is
very complicated and has about eight hundred transitions.

For a molecule with symmetric configuration, the number of
allowed transitions becomes fewer because of the additional
selection rule imposed by the symmetry of the molecule. For
example, the benzene molecule has a hexagonal symmetry with
symmetry group D6h.5 The energy levels should be classified by
the magnetic quantum number m and also by the irreducible
representation of the symmetry group as shown in Figure IIT.2.

Because of the additional selection rule, only the transitions

within the same representation are allowed. Consequently, the
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m Number of states
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XBL 816-10413

Figure III.1 Energy level diagram of a non-symmetric six spin-1/2

system in a strong magnetic field. The multiplet splitting inside

the m manifolds is due to dipole-dipole interactions.
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BENZENE ENERGY LEVELS

|
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I

XBL 816-10412

Figure III.2 Energy level diagram of proton spins in oriented

benzene. The energy levels are classified into six classes:
Al’ A2, Bl’ BZ’ El’ and EZ’ where the El and E2 representations

are doubly degenerate.
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number of single quantum transitions is fewer and is approximately
seventy.

By examining the energy diagram of benzene, we can find three
important features of the multiple quantum NMR spectroscopy.

First of all, the number of multiple quantum transitions becomes
fewer as the number of quanta Am increases6’7. There is only a six-
quantum transition between the state with all the spins up and the
state with all the spins down. There are two five-quantum trans-
itions and seven four-quantum transitions. Since the higher multiple
quantum spectra have fewer transitions, they are much easier to
analyze. We should notice that the highest multiple quantum transition
contains no information about the dipole couplings because the assoc-
iated states are image states and have the same dipolar shift. Gener-
ally speaking, the well-resolved multiple quantum NMR spectra provides
an easier way to study molecular structure and conformation.

Secondly, since we can observe forbidden transitions (non-single
quantum transitions), more infofmation about the couplings between
spins becomes available. It allows for a much more complete determ-—
ination of the molecular structure. Besides, the measurement of the
spin-lattice relaxation time and the transverse relaxation time of
the multiple quantum transitions provides more information about
the dynamics of the system.s_lo

Thirdly, the zero-quantum transitions among the multiplet within

the manifold of the same magnetic quantum number depend on the

dipole couplings but not the Larmor frequency. Consequently they
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are independent of the external magnetic field and are free of

inhomogeneous field broadening.

3.2 Creation of multiple quantum cohexrence

Multiple quantum coherence is a non-linear process as in the
harmonic generation of a non-linear oscillator. The Zeeman coupling
between spins and the external field is a linear interaction.
Nevertheless, the dipole-dipole interaction and the quadrupole
interaction are all bi-linear and contain products of two spin
operators. They are responsible for the generation of multiple
quantum coherence.

When followed by a single strong pulse the FID S(t) is actually
a correlation function of the spin operator Ix or Iy in time,

iHt iHt

Tr(Ix e I e )

S(t)

Tr(1,(0) 1, (1))

(111.1)

2
Z exp(-iw t)|<cx!I |B>]
af X
a,B
Since IX and Iy are linear in raising and lowering oeprators I+
and I_ that are single quantum operators, the FID S(t) consists

of only single quantum coherence.

Evidently, a single pulse can excite only single quantum
transition. The simplest way to create a multiple quantum
coherence is achieved by employing two strong pulses with an
appropriate time interval. This allows the dipole-~dipole inter-

action to mix the phase coherence.
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Although there are many poésible ways to create multiple
quantum coherence, we shall direct our attention to the simplest way
of suing two pulses. Féllowing two 90° pulses of x and X phases
with time interval (Figure III1.3), the density matrix in the

rotating frame is given by

xXx L m m m
pT(T) = exp(-iiix)exp(—iHT)exp(iZIx)Izexp(-iiix)exp(iHT)exp(iEJX)

= e -iH T ~1AwTI )I e 1AWTI de i T
xp ( vy Yexp ( y) , xp ( y) xp ( vy )

= e -iH 1)1 e iB T)cosAwT + e -iH T)I e iH T)sinAwt
xp ( w1z xp( vy ) xp ( vy Iy xp ( vy

= UZ(T)cosAwT + UX(T)sinAmT s (I11.2)
2: -+ >
where H = -AwI +H , H = D,.(31, I, -I,+1. ) is the secular
z zz zz i<j 1] iz jz "1 j

part of the dipole~dipole coupling Hamiltonian, Aw is the resonance

frequency offset, and

m TT -> -
H = e -i—I )H e i—T = D..(3I, I, -1, I, . III.3
- xp ( 2 x) 2z xp ( > x) 1< 1J( iyliy li J) ( )

Similarly, if the phase of the second pulse is y (Figure

II1.3) the density matrix becomes

pxy(T) = exp(—inxT)Iyexp(inxT)COSAwT + exp(—inxT)Izexp(inxr)sinAwr
= Vy(T)cosAwT + VZ(T)sinAwT (I11.4)
where
H = E: (3 1 -; ) . (I11.5)

D
xx  1<j 1]
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90§ 90)9( 90;
|
|
T t T’ : Sx(1)
I S, (1)
e
PREPARATION EVOLUTION DETECTION
902 905 902
|
1S.(1)
T t T : X
ISy(r)
]

XBL 804-9053

Figure ITI.3 Pulse sequences for creation and detection of

multiple quantum coherence. The first two pulses establish a

phase relationship among eigenstates whose magnetic quantum number
may differ from unity. In the interval t, each multiple quantum
coherence oscillates at its own characteristic frequency. A third
pulse is applied at the end of the evolution period to transfer the
multiple quantum coherence into detectable single quantum coherence.

Signals Sx(t) and Sy(t) are detected by a quadrature detector.
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Exp(iinxT) and exp(# iHny) are even-quantum operators that
connect eigenstates with a difference in magnetic quantum number
by even number of Am. As a consequence, UZ(T) and VZ(T) are even-
quantum operators. Conversely, UX(T) and Vy(T) are odd-quantum
operators. As a special case of zero frequency offset, i.e., Aw =
o0, QX§(T) and pxy(T) contain only even-quantum and odd-quantum
coherences. Even in the presence of an inhomogeneous field, we
can apply a 7 pulse (Hahn-echo pulse) in the middle of the
preparation period to eliminate the frequency offset (Figure III.4).
Consequently, by simply arranging the phase of the pulses, we may
be able to selectively create even-quantum or odd-quantum
coherences (Figure III.4). Imperfection in the selectivity may

be caused by a deviation in the flipping angle from m/2 in the

pulses.

3.3 Examples of spin-1 and spin-3/2 particles

Our approach in the previous section can also be applied to
a isolated particle system with spin I > 1 because of the similarity
in the transformation by rotation between the quadrupole Hamiltonian
and dipole-dipole interaction Hamiltonian. Specifically, the

. . XX Xy i
density matrices p" (1) and p 7 (T) are calculated in terms of
the fictitious multiple quantum transition operators.

(1) I=1,H 3 122-1(1+1))/3

= w
Q Q
The energy level diagram 1s shown in Figure III.5a. It consists
of three states lm = =1>, lm = 0>, and |m = 1>. They are denoted

by ,l>, |2>, and I3> in sequence. Only two single quantum

transitions are allowed. The splitting 1s caused by quadrupole
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90, 90;

(MK
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XBL 816-10415

Figure III.4 Pulse sequence for selective excitation of even-

quantum and odd-quantum coherence. The phase of the 180° pulse

is arbitrary.
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Figure II1.5 Energy level diagrams of spin-1 and spin-3/2 particles.

The Zeeman levels are shifted by the quadrupole interaction.
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interaction. We may observe that the double quantum transition
between ll> and |3> contains no information about the quadrupole
strength. It is free of quadrupole anisotropy in the polycrystalline
or glassy state. As a consequence, we may obtain a high resolution
double quantum spectrum of deuterons in solids. Thus,information
about chemical shift can be obtained.

After the second 90° pulse of x and y phases the density

matrices are given by

X (1) =2 COSAMT{Ii3 cosw,T - IiB sianT}
+ V2 sinAwT{(112 + 123) cosw.T + (112—123) sinw T} ,
X X Q y ¥y Q
(I11.6)
ny(T) =-2 sinAwT{Ii3 CostT + IiB sianT}
+ /2 cosAwT{(I12 + 123) cosw.T - (I12—123) sinw T}
y y Q X X Q
(111.7)

The multiple quantum transition operators are defined in
3 ,
equation (II.26). The operator Ii describes the double quantum
coherence between states.|l> and |3>. Its intensity depends on
the pumping period T. If we assume the condition of perfect field
homogeneity and exactly on resonance, or using a Hahn-echo pulse
. . . . XX Xy

as described earlier, the density matrices p~ (T) and p" 7 (1) have
pure even-quantum and odd-quantum coherence. The above result

also applies to the general dipole-coupled spin system.

(2) I=3/2, 8 =d3 122-1(1+1))/3

Q
The energy level diagram is shown in Figure III.5b. It
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consists of a quartet |[m=-3/2>, |m=-1/2>, |m=1/2>, [@=3/2>. They

are denoted by I1>, l2>, ]3>, and [4> 1n sequence, There are three
single quantum, two double quantum, and only one triple quantum
transitions. Again, the highest order of multiple quantum transition--
the triple quantum transition--has a transition frequency independent
of the quadrupole strength.

The density matrices after the second 90° pulse are given by

pxx(T) cosAwT{Izcossz - 2123sin2dT + 2/_(113 §4)31nd1 cosdTt

+ /§(Ii3-1i4)sin2dT}

12 34 2 12_ 34

Ycos dT - ZVF(I )sindT cosdT

+ 51nAwT{/F(I

I§3(3 cossz-l) - 3Ii4sin2dT} , (111.8)

pxy(r) = sinAwT{Izcossz - 21§3sin2dT - 2/§(I§3+I§4)sindr cosdT
- /5(113-124)sin2dr}
X X
e cosAwT{/-(Il2 34)cossz + 2/_(112 34)31ndT cosdT
153(3 cossz—l) -3 I;A sinsz} . (I11.9)
The transition operators IiB, IiB, IiA, and 154 are double-

quantum operators, whereas I}];4 and Iia are triple quantum operators.

The allowed multiple quantum spectrum contains three single

quantum, two double quantum, and one triple quantum transitioms.
The dipole-dipole coupling Hamiltonian of some molecules that

contain only I = 1/2 spins may look like a quadrupole interaction

Hamiltonian. For example, the eigenstates of methyl group contain
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one quartet of A symmetry and two doublets of E symmetry.lo The

subsystem of A-symmetry quartet behaves similar to a particle of

I = 3/2; the other two doublets behave similar to particles of

I

1/2. A second example of this is the system of an isolated
pair of spin 1/2 particles. The eigenstates consist of a triplet
and a singlet. The triplet behaves similar to a particle of I =1
and the singlet behaves similar to a scalar particle without spin.
A third example is the system of tetrahedral group. It contains
one quintet, three triplets, and two singlets as quasiparticles

of spin I = 2, 1 and 0. The density matrices illustrated for
spins I = 1 and 3/2 are applicable to those quasiparticle of

triplet and quartet. The calculation of the density matrix for

scalar particle and spin 1/2 particle is trivial and will not be

discussed.

3.4 Detection of multiple quantum coherence

The multiple quantum coherence created in the preparation
period oscillate at their own characteristic frequencies in the

evolution period (Figure I1I1.3) as shown in equation (II.31), and

aB _ 0B aB .,

Ix (t) = IX coswaet - Iy s1nwa8t s

o _ af aB

Iy (t) = Iy coswaBt + IX 31nwa8t ,

By = 1%, (I11.10)
z z

where w_, is the transition frequency between states |a> and

af

8>, i.e.,

W = —(ma—mB)Aw + Da--DB

aB
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D, and DB are eigenvalues of the Hamiltonian sz on states |o>
and |[B>. The offset term in above equation indicates that the
n-quantum trénsition has a frequency offset of nAw.6

Since the multiple quantum coherence cannot be detected directly,
a monitoring /2 pulse is usually applied at the end of the evolution
period. This transfers the multiple quantum coherence into an
observable single quantum coherence that is detected at time T'
after the monitoring pulse is shown in Figure III.3,

Using the quadrature detection, signals are detected in x and

y channels such as Sx(t) and Sy(t). They are evaluated for both

pulse sequences in Figure III.3 as follows,

o _ _ oy _ _ o _ ot
1) 90X T (902) t 90x T

Sx(t)? GZB DZQB_‘(T) ogf;‘(—r') exp (-iw ot) s

s, () = Z pasm o3 X (L11) exp(- wet) (1I1.11)
2) 90; -1 - (90;) -t - 90; -1

5,.(t) = Z T T ) expldug)

Sy(t) = Z ng(w:) pgi(—T') exp (-1 gt) , (I11.12)

where p B’ paB are elements of the density matrices in the

equations (III.8) and (III.9), and

yx —r ! = . ] | . 1
paB( ™) UX( ') coshwt' + Uz( T') sinAwT . (I11.13)

Multiple quantum spectrum can be obtained by Fourier transformation

of Sx(t) and Sy(t) on variable t. Each order of multiple quantum
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spectrum can be made in separate domains because the n-quantum
transitions have a frequency that offset nAw.5 The higher order
of multiple quantum transition, however, may be broadened
substantially in the presence of an inhomogeneous field. A technique
that uses a 7 pulse in the middle of the evolution period and also
uses a phase increment in the first two pulses to create an
artificial frequency offset, can remove the inhomogeneous broaden-
ing; meanwhile it preserves the ordering of each n-quantum
transitions7 as is shown in Figure III.6.

The phase change ¢ of the first two 90° pulses in the
preparation period is equivalent to the rotation of the density

matrix by angling about z axis. It is given explicitly by
XX ) .
Py (1) —-exp(—1¢lz) UZ(T) exp(1¢Iz) coshwT
+ exp(—i¢Iz) UX(T) exp(i¢Iz) sinAwT . (111.14)

where UZ(T) and UX(T) are defined in equation (III1.2). In deriving

the above result, the following relation is used:
. . _ . . .

exp(-i 2(Ixcosqb + Iys1n¢)) exp( 1¢IZ) exp (i > IX) exp(1¢IZ)

The rotation of the operators UZ(T), UX(T) about z axis by
angle A¢ changes the phase of the multiple quantum operators in
proportion to its order m; that is, the m-quantum operator has a
phase change by mA¢ as shown in equation (I1.32). This important
property allows us to selectively monitor and pump a particular
order of coherence.

Furthermore, it is used in the TPPI method to create a

fictitious frequency offset Aw = Ap/At, where At is the inverse
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180y
. |
|
T t /2 t/2 o sy
l
¢.= kB¢ k=0,1,.00s,N=1I
b= kAt N = number of FID

Aw = A¢p/At (Fictitious frequency offset)

XBL 816-10416

Figure I11.6 Time Proportional Phase Incrementation (TPPI) pulse

sequence. The phases of the first two pulses are increased in

proportion to the time interval in the evolution period.
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of the sampling rate in the evolution period. The selective
detection of a particular order n of a multiple quantum coherence
can be obtained by summing up n multiple quantum FID's with a
different phase shift ¢k = 2 k/n, k=0, 1, ..., n-1 as shown in
Figure III.7. Actually, besides the n-quantum spectrum, the other
harmonics, such as 0, 2n, 3n, etc., are also selected out. In the
above discussion, we did not take the relaxation process into
account. Practically, T and 7' should be made shorter than T2
and be of order of the inverse of the dipolar or quadrupole
strength.

Since the intensity for each multiple quantum transition is
individually dependent on the preparation and detection periods,
an ensemble average of the magnitude spectra is usually taken for

the different values of T and T'.

3.5 Experimental spectra of oriented benzene

Small molecules dissolved in an anisotropic solvent such as
liquid crystal at the nematic phase have characteristics of high
resolution NMR. Usually, the transition has a linewidth of

approximately a few hertz to a few ten hertz

Several molecules have been studied by multiple quantum NMR
. 6,12-13 .
techniques. We, however, shall illustrate the prototype
experiments on partially oriented benzene in particular.6 We

have chosen to examine the benzene molecule because of its simple
structure, high degree of symmetry, and reasonable number of spims.
The schematic energy level diagram is shown in Figure III.2. The

energy levels are classified into several irreducible representations

of the symmetry group D6h' There are six different classes Al, A2,
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Figure I1I.7 Pulse sequences to selectively monitor a particular

order of multiple quantum spectra. Many FID's with different

phase shifts ¢k = 21k/n, k = 0, 1, ..., n-1 are added.
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, and E,, where states of E

Bl, BZ’ E and E2 representations

1 2 1

are doubly degenerate.

The ensemble-averaged magnitude spectra of multiple quantum
transitions are shown in Figure III.8. The timer intervals T
and T, were set equal for several values between 9.6 msec and
10.7 msec. The r.f. frequency are set at 5.97 kHz off resonance
so that each order of the multiple quantum spectra is well
separated by the frequency offset. The multiple quantum transitions
of a higher order have a larger linewidth because of the field
inhomogeneity. During experimentation, we found that the linewidth
is linearly proportional to the number of quanta, that is, the
six-quantum transition has a linewidth six times larger than that
of single quantum transitions. Also, since they are independent
of field inhémogeneity the zero-quantum transitions have a very
narrow linewidth of only a few hertz. The spectral lines seen
in the figure are substantially broadened because of the FID
truncation.

Using the TPPI method, the field inhomogeneity in the spectrum
can be removed, and meanwhile retain the separation of the order.

The multiple quantum spectra of benzene obtained by the TPPI
method are shown in Figure I1I11.9. Several magnitude spectra have

been averaged for differentT (or T").
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Oriented Benzene
n-Quantum NMR Spectra

{ theoretical (statistical)

e S—

'll |
b

T '-
‘JIJ.;‘\_/“..; W J‘_AI‘J‘JJ‘\_.‘ E_/"-/'L/\_/\__J‘__ .

ILHUHMWULH 1 I I

1 1 1 L
o] Aw 2Aw 3w 4hw 548w 6Aw
Frequency (Aw =5 967 kHz)

IBL 781-6770

Figure II1.8 Experimental and theoretical multiple quantum spectrum

of benzene with a three pulse sequence. The broadening of the

transitions in the top figure is caused by field inhomogeneity.
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Figure I11.9 Experimental and theoretical multiple quantum spectra

of benzene using the TPPI pulse sequence. The inhomogeneous line-
broadening was removed by a 7 pulse in the middle of the evolution

period. The artificial frequency offset i8 created by phase

cycling.
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Iv

RELAXATION OF MULTIPLE QUANTUM COHERENCE AND APPLICATIONS

4.1 Redfield's relaxation theory

The first phenomenological description of time evolution for
the spin system was proposed by Bloch, and is known as the Bloch

equation,1
L -vix3 i+ /T M )k/ 1
at = YM x - (Mxl yJ 2~ (Mz- o Tl . (Iv.1)

This equation of motion describes the evolution of magnetization

M in a strong magnetic field B. The transverse magnetizations

MX and M_ decay at a rate of l/T2, and the longitudinal magnetiza-
tion Mz recovers back to its thermal equilibrium value Mo at a rate
of l/Tl' The Block equation fails to describe a general coupled
spin system. An accurate general approach using the density matrix
formalism is contained in Redfield's studies.”’

The Hamiltonian of a general system is composed of two parts,

a static part H, and a small fluctuating part Hl(t),

0

H = HO + Hl(t) . (1v.2)

The time-dependent term Hl(t) describes the random fluctuation
of the coupling between the spin system and the bath (or the
lattice). The fluctuation is an irreversible process which
relaxes the non-equilibrium distribution of population and the
coherence among spin states back to thermal equilibrium.

The equation of motion of the density matrix p for the system

is given by
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1
P =71+ Hl(t),p] . (IV.3)

In the interaction representation with

o* = eXP(iHOt)o eXP(—iHOt) (1IV.4)
and
H; = exp(iHot) Hl(t) exp(-iHot) (1v.5)

the equation of motion becomes

4 x _
ac P

He |

* *
[H; (£),p"] . (IV.6)
To the first otder approximation, it can be shown

t
p*(t) = 7 (0) + ‘f'[nj<t'>,o*<o>]dc' : (1v.7)
0

*
By substituting the density matrix p inside the commutator of the
equation (IV.6) and by using the above approximated form, we

cbtain

t
L% - im0 ) - Jf ae ' [H) (&), [} (t"),p" (0)11;(1v.8)
0

or, by introducing a new variable T = t-t'

t

d *x * * * * *

It = —i[Hl(t),p o] - de [Hl(t), [HI(t—T),o (0)11 .(1v.9)
0

We shall take an ensemble average of the above equation and

* * N
replace p (0) by p (t). It can always be assumed that Hl(t) = 0.
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If the average is different from zero, it can be included into the
unperturbed Hamiltonian. In the case of a finite lattice

* *
temperature, we must replace p by p —po where po is the

density matrix at the thermal equilibrium,

Py = exp(-BHO)/Tr [exp(-BHO)] s B = 1/kT (Iv.10)

4
The master equation of motion becomesB’

d

Y ~1H,T 1H,T
- de [e H, (t+1) e , [H . (t),p-p 11 , (IV.11)
1 1 0
0
or

d = -~

at Po,8 = "~ Pug G'ZB' exP(i(wGB_wa'B')t)Rae’q'g'
* (OG'B'_(SCI'B'OO,O.'CI') (IV.lZ)

The relaxation matrix element RaB a'g’ is related to the
?

spectral densities of fluctuation by

S

fag,a'g' T 5,7 Moo gt Wyrgr) T Jaar gt (Wge)

* 6&&'% Y8, ng(‘*’ )+‘SBB'Z yot,ya(&yg? 1 s (IV.13)

where the spectral densities is defined by

Jug,argr = f dt exp(-iwt) <aH () [B><BT[H (t+T) [o> . (IV.14)
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If no other resonance frequencies of the system overlap the

transition waB’ i.e.,

>> R (1v.15)

lwas—(uate'l aB’d'BY ’

the rapidly oscillating function exp[i(wag—wa,g,)t] can be
neglected. The equation of motion for the off-diagonal element
paB that describes the phase coherence between states |a> and

|8> is given by

d

It P T -i Vyg paB(t) + Ras,ae OaB(t) . (IV.16)

Here waB is the transition frequency between states [a> and IB>.

The transition is characterized by a single exponential decay

rate R .
aB,aB

If another transition frequencyc%fs, overlaps the transition

waB’ namely,

> .
lwyg g rar] > Reg qigr (1v.17)
the equation of motion for paB is coupled to pa'B' and

Lo = (-iw_-R ) o R P

dt "aR aB TaB,aB’ "ol TaB,a'B' "a'R'

d (1V.18)

dt pCl'B' = (—iwa'B'_Ra'B',a'B') DO.'B'_RG.'B',GB DCIB

By solving the secular equation, the complex eigenvalues correspond
to the new transition frequencies and decay rates.

The equation of motion for the diagonal elements describes the

spin-lattice relaxation and is given by
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d ]
3t Pax = "L Ruo,88®esP0,88) -
8

(Iv.19)

Following a perturbation, relaxation of the populations towards
their equilibrium values is governed by a set of coupled differential
equations. Often, the spin-lattice relaxation is characterized by
several exponents.

We shall focus in this chapter on the transverse relaxation
of the multiple quantum coherence. The decay rate for a non-

.o ] . 3,5
degenerate transition between states |o> and [8> is given by’

- I SN
Top = Fog,o8 = o2 (-2 Jo0,0 (00 + L Iya,vaya) *L Tyg,veye)!
Y Y
_ (0 '
= I‘OLB + PaB . (Iv.20)
where
© _ 1 _
FaB = th [Jaa,aa(O) + JBB,BB(O) 2 Jaa,BB(O)] , (Iv.21)
and
o,
g = ? ) Jya,ya(“’ya) + 5 JYB,YB(wYB)] . (1v.22)
Y#o Y#B

The first term is referred to as the adiabatic term--a
special characteristic of transverse relaxation. It does not
contribute to the longitudinal relaxation. It can also be

5
expressed as
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i - j? fdr [<a 8, (6) [o>=<BTH; () B

. [<a]Hl(t—T)]a>-<8[Hl(t—T)IB>] . (IV.23)

The adiabatic relaxation involves the process that conserves the
Zeeman energy. It depends exclusively on the fluctuation of the
energy difference between the twc states |a> and |8>; it is also

known as the elastic process (Figure IV.1).

The second term (nonadiabatic term) is related to the lifetimes

5
as states |a> and |R> through 6

ta and tB
L P10 S
FGB - z(t + . ) s (IV.24)
a B
where
ti = —17 f ar L <alHy () [y><y[H (e-T) [o> exp<in 1> ,
o h® I Y#8 Y

11 J[ dt E: <8[H1(t)[7><y{Hl(t—T$18> exp<inYT>
it Y#8

w0
=

(1v.25)

The nonadiabatic term contributes to the linewidth of the finite
lifetime of states |a> and |8> caused by the longitudinal relaxation
mechanisms. Because the nonadiabatic process involves changing Zeeman
energy, they are also known as inelastic process (Figure IV.1).

The nonadiabatic relaxation 1s dominant when the fluctuation
rate is close to the Larmor frequency or its higher harmonics.
Adiabatic relaxation, however, is dominant for a low fluctuation

2
rate. In the extremely short correlation time when WoTe >> 1, both
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la>
! !

ly>, etc.

Adiabatic Broadening Life-time Broadening

XBL 816-10419

Figure IV.1 Transverse relaxation channels for the transition
between states |a> and |8>. The broadening of a transition comes
from two sources--the adiabatic broadening (elastic process) and

lifetime broadening (inelastic process).
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relaxation processes are comparable, and Tl, T2 are of the same

order of magnitude.
It can be shown that the relaxation matrix elements obey the

following identities:7

RCX.B,CI'B' = RGB,O.'B' = RG'B',UB

R =-3 R (or Y R = 0)
oot , G aa oo,
, Taa 0O YY = Toa, vy

Rug,a'8' = Rrang,Aa'g? (IV.26)

where A is the spin inversion operator. The nonadiabatic term of

relaxation rate elements follows a triangular relation

1 1 1

r <T + . .
a8 S Tay * PYB (1v.27)

Their value can be calculated from the conventionally selective T1
measurement. There are, however, no similar properties for the
adiabatic term of the relaxation rate element. The value of spectral
densities for the adiabatic relaxation process can be determined

from the multiple quantum relaxation; a complete determination of

the relaxation matrix R becomes possible by using multiple quantum
techniques.

The time-dependent Hamiltonian Hl(t) can generally be classified
into two categories. The part which is bilinear in the spin
operators represents the intradipolar interaction or quadrupolar
interaction. The part linear in the spin operators consists of an

anisotropic Zeeman interaction, and a dipolar or scalar interaction

with magnetic dipoles outside the considered system.
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The paramagnetic molecules of external impurities has unpaired
electron spin, and acts as a strong relaxation agent. The gyro-
magnetic ratio of electron spin is 658 times larger than the
proton spin. Since the relaxation rate is proportional to the
square of the electron gyromagnetic ratio, the relaxation of
electron spins is very effective with even a small amount of
impurities.

The dipole-dipole interaction between the electron spin and

the proton spin is given by

hZYIYS > - > N> A
Hl(t) = ———§—-[I'S - 3(I-v)(S*1)]
r
e @) ,(-m)
-x ¥ " y® £ (1v.28)
m==1
where
v® T, v - —-§§ L, vy o ;5 1 , (1V.29)
and

2 3
K =h7y, v /r

The random fluctuation functions f(m)(t) are given by

f(o)(t)

Fo(t) s (t) + F(t) s, (&) + F_;(t) s_(£) )

£ (0) =/2 (- 3 F () S_(0) + F (1) 5 (8) + T,(0) 5,()

£V = - w Doyt

£ (m)

It

(=) = exp(iKT) £ ey exp(-iH,T) . (1V.30)
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Here the spherical harmonic functions of the second rank Fm(t)

are defined as

=]
]

1-3 cosze ,

0
= .3 i$
F1 = 3 sin cosfe ,
- _3 2, 21i¢
F2 = 4 sin 6 e ,
F_=TF (Iv.31)
_m - m * . L[]

Using the definition of the correlation function in the frequency

domain given by

©

¢™ (mo) = 2 de D" £ ) £ () et L (1.32)
-0
we obtain
(0) 1.2 3 .2 1
G (0) =T K 1_+-—=K"1 ,
5 c 10 c l+w2T2
S C
¢V (wp) G(—l)(“’x) = 23_0 S Te l2 7+ 776 S Te .%_ 7
1+ T 1+w''T
I c s ¢C
(Iv.33)

Without losing generality, the dipole-dipole interaction between

the protons of the measured system and the unpaired electron can

6,8

be treated as a random local field. ’ It can be expressed as

Y -D® v g6y (1v.34)

Hl(t) = ~hYI 7 i i

M
Hy
o
N
p—

It

. L
14 m=0,*1
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where gi is the local field at the i~th proton site due to the

electron spin, and

hy
B, = —5 [3v,Gvp - %1, (1v.35)
i i
£

where Yi is the unit vector of Yi'

4.2 Relaxation of Weakly Coupled System

In the case of a weakly coupled spin system, the magnetic
quantum m of individual spin is a good quantum number. Any
eigenstate is a direct product of states for each individual
spin.

The longitudinal relaxation or the non-adiabatic relaxation

is completely determined from the life-time of states,

1 _ 1 dT 2: <alH, (£) [y><y|H, (t=1) o> exp(iw__T)
t 2 1 1 oy
o hT 4 Y#a

3]

L ar ¥ e YL 2N 2E (OB, LG
ay . I "p,i 9]
Z. Yo p>q 1,]

. <al1 >evlt Lo
of 1) (ly<xlr, e

ar T expliu, D ¥ T T € B (D)

Yo P,1i I P,

il
3@“‘
%k““‘\s

2
. <a'Ip,ily>| (1v.36)

Since only the autocorrelation function, BP i(t) B i(t—T), of
b ]
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=
the random field Bp at nucleus p enters the above equation, no
information on cross~correlation is available from the measurements
of longitudinal relaxation rates.

The adiabatic relaxation rate is given by8

2
o Y1 -
PaB - 2 z (masp mB’p) (ma’quB’q)
P»q
(1v.37)
f Bp’z(t) Bq’z(,t—T)aT

where o, b is the magnetic quantum number of nucleus p in the
b4

state |a>.
For an allowed single quantum transition, characterized by a
flip of spin s, the only non-vanishing contribution to Tég) is

that of p = q = s, that is,

rég) =%y12 [dt B, (6 B__(t-1) . (VI.38)

Consequently, information on cross-correlation cannot be obtained
from the adiabatic linewidth of the allowed transitions.
Nevertheless, the adiabatic linewidth of multiple quantum and
forbidden single quantum transitions depends on the cross-correlation
of fluctuating local fields between various sites. That wvaluable
information on cross-correlation can only be obtained from

multiple quantum relaxation measurements.

4.3 Relaxation of Strongly Coupled System

For a strongly coupled system, the magnetic quantum number for
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each individual spin is no longer a good quantum number. The

strong couplings mix the product of spin states., Usually, observable
single quantum transitions simultaneously flip polarizations of
several spins. Therefore, both longitudinal and transverse
relaxation of allowed single quantum transitions are influenced

by internuclear correlated fluctuation. Without a doubt, the
multiple quantum relaxation measurements provide more independent

information on relaxation mechanism.é’s—11

We shall discuss in the following sections two systems of
dipole-coupled spins that are released by paramagnetic electron
spins. In both systems, the strong dipole-dipole interaction mixes
the spin states. The linewidth measurements of the multiple quantum
transitions allow a complete determination of the auto and cross-

correlated fluctuations.

4.4 Multiple quantum NMR and relaxation of an oriented CH, group

4.4.1 Introduction

We have been interested in the multiple quantum NMR of strongly
dipolar coupled spin-1/2 nuclei in oriented systems (solids and
liquid crystals). These illustrate the behavior of systems with
high symmetry--for example a CH3 group or benzene. Normally,
radiofrequency irradiation only can induce the transitions between
eigenstates that belong to the same irreducible representations of
the spin Hamiltonian. Relaxation by fluctuating random fields
may, however, induce symmetry-breaking transitions. The study
of n-quantum spectra and their relaxation should allow a complete
determination of the fluctuations, correlations, and symmetry-

breaking pathways.6 This provides a useful tool in combination
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with the elegant selective excitation and normal mode relaxation
techniques in l-quantum spectroscopy that Werbelow and Grant12
described. In the following sections we shall present an initial
study of the dipolar coupled 3-proton system (CH3 group) which is
relaxed by paramagnetic impurities, The 1-, 2-, and 3-quantum
linewidths were studied over a wiude concentration range, and the
accurate linewidth ratios allowed us to determine that the
fluctuations are correlated and are a measurement of the correlation
times.6

Section 4.4.2 describes the n-quantum spectra of a dipolar
coupled CH3 group, and Section 4.4.3 provides a concise theory of

n-quantum relaxation for this symmetry group. Experimental results

and discussion are presented in Section 4.4.4.

4.4.2 Multiple quantum spectra of methyl group

The NMR spectrum of an oriented solute in a liquid crystal is
generally dominated by dipolar structure. It is caused by the
incomplete motional averaging-out of the intramolecular dipolar
interactions. The methyl protons of acetonitrile, for example,
have a C3 symmetry with the symmetry axis perpendicular to the
proton plane. The eigenstates can be classified by their symmetry
characteristics; they contain one quartet and two doublets.13 The
observable multiple quantum transitions connect the states of the
same irreducible representation. The energy diagram and the possible

multiple quantum transitions are shown in Figure IV.2. The eigen-

states are given by:
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Figure IV.2 Energy level diagram of dipolar-coupled methyl
protons in a magnetic field. Aw is the frequency offset in the
rotating frame and d is the dipolar shift. The lower half shows

a stick spectrum of the multiple quantum transitions. The associated

relaxation rates Fij are related to their linewidths.
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where € = exp(i2n/3).

The frequencies of the allowed multiple quantum transitions in
the rotating frame (resonance offset Aw) are listed in Table 4.1.

The method used to observe the multiple quantum spectra is the
TPPI method previously described in Reference 14. 1In this method,
the frequency offset Aw is created artificially by phase increments.
A theoretical stick spectrum is shown in Figure IV.2. The intensity
of each transition depends on the length of the preparation and
mixing periods of the multiple pulse sequence, dipolar coupling
strength, and real frequency offset.

The experimental spectrum shown in Figure IV.3 exhibits the
expected multiple quantum transitions. They are all separated
accerding to order. Truncation of the multiple quantum free
induction decay limits the resolution. The actual linewidth is

less than 5 Hz.



Table 4.1

Allowed Multiple Quantum Transitions

Transition
Origin Frequency M

Al/2_A3/2 Aw-24 AM=1
A ~A Aw single quantum
-1/2 71/2 transition

a a

b b

E—1/2—E1/2 Aw
A-l/2—A3/2 20w-2d AM=2
A—3/2_A1/2 2Aut2d double gu?ntum

transition

A_3/2-A3/2 3Aw AM=3

triple quantum
transition

73
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CH3CN in EBBA
n—Quantum ¢-Separated Echo Spectra

(52=7.8125 khz)

.- -

Aw 2Aw 3w

XBL 796-10116

Figure TV.3 Multiple quantum spectrum of oriented methyl
protons. It consists of three single quantum transitions,

two double quantum transitions, and one triple quantum
transition. Truncation of the multiple quantum free induction
decay limits the resolution. Inhomogeneous broadening was

removed by echoes 1in the TPPI sequence.
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4.4.3 Relaxation by paramagnetic impurity

The effect of the NMR line broadening by the addition of
small quantities of paramagnetic species to a sample was first
observed by Bloch and others.15 This effect was interpreted
as a fluctuating electron-nuclear dipole-dipole interaction.

Even at small concentrations, this mechanism can be more important
than intra- and inter-nuclear dipolar interactions because the
magnetic moment of an unpaired electron is of the order of 10
times larger than the moment of a nucleus. We predict that the
relaxation rate should be proportional to the concentration of the
paramagnetic impurity and the square of the effective magnetic
moment of the electron on the impurity.

The dipo;e—dipole interaction between the unpaired electron

and the methyl protons is given by

1.-8 (1.-%.)Er,)
.0 R ot °r,
H(e) = 3 hiyy i3t 4 i (1V.40)
1 ._ 1's 3 5
i=1,2,3 r. r.

where YI and YS are the gyromagnetic ratios of the proton and
electron. The vector ;i defines the position of the proton as
shown in Figure IV.4. If the concentration is low, it is legitimate
to expand the above expression in &/r. Using symmetry-~adapted

operators, we obtain
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Figure IV.4 Geometry of interacting méthyl group and electron.
;i is the vector from the electron of the paramagnetic impurity
to one of the methyl protons. The vector ; defines the center
position of the methyl protons triangle with respect to the
electron. g is the vector from the center of the triangle to

one of the protons.
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u 3 1 2 3 u 3 1 2 3
W=A E*or E> for A=1, € or e . (IV.42)

The first term in the above equation contains only A symmetry
operators and connects states of the same irreducible representation
of the C3 symmetry group. The second and third terms containing
E? and E1D symmetry operators, will violate the symmetry, and
cause symmetry-breaking relaxation pathways.

Without loss of generality, the dipole-dipole interaction
between the methyl protons and the unpaired electron can be

18,19
expressed as a product of tensor operators.
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H (t) = -hy, LB = T D%y ® ¢ (D
1 I i=]§2,3 i =0, 41 i 1
1=1.2,3
- ¥ ()% y @ @, (I.43)
m=0,+1 H
u=A,E2,EP
where
(0) @ _ 1 -1) _ 1 .
Vi = Ii,z’vi = -/E (Vi,x4-lvi,y) and Vi —/E_KV x lvi,y)

(1V.44)

(m) (m)

by the same

The symmetry-adapted form VU is related to Vi

transformation as we used in equation (IV.11). The fluctuating
local field ﬁi(t) experienced by the proton spin Ti’ is produced
by the unpaired electron,

Two kinds of correlation functions are involved in our

discussion. These are the auto-correlation functions Ga(T) and

the cross-correlation function GC(T) which are given by

m . (-m) (n) _ (m)
(-1 fi (t) fl (t-T) = dmnGa (1) . (Iv.45)

-n" £, fj(n)(t—r) =6 6 W) fori#3 . (IV.46)

We can express the correlation function in terms of the molecule's

symmetry by
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(m)

i GU (1) . (Iv.47)

D% Wy My o6 6
H H mn

It can be shown that the symmetry-adapted correlation function
is closely related to both the auto-correlation function and the

cross-correlation function by

1]
=3

Ga(m) (t) + 2 Gc(m) (1) if u

¢ ™) =
H a _b
E2,E°. (IV.48)

n

¢, ™ -6 ™ if 1

‘s a a
The transitions between states ( A1/2’A—1/2)’ (El/z’ E—l/2)'
b b
and (El/Z’ E—l/2) have the same frequency. The decay of the
coherence for these degenerate transitions is generally non-
exponential and complicated. The decay rates for the non-

degenerate multiple quantum transitions are evaluated and given

as follows:

2. 3 () .1 .(1) (1) \

BTy =79y gy e ’

2, _.2 _2 (@ .5 (@, 1_ (0,2 (1 }

hTyy =h T, =530 423,77 +33a +3Ja ,

2. .20 1 .(0 .5 (1), 1. (0,2 (1)

h F12 = h F34 3 JA + 3 JA + JEa + 3 JEa /
(1V.49)

The spectral densities are related to Fourier transformations

of correlation functions by
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5,9 =26 Qw0 arr

A \
13, P =26 WPwy arn
JE3(0)= JEb(O) = 2 Ga(o)(o)(l-g) , >
JEa(l)= JEb(l) =2 Ga(l)(wl)(l-i) , / (IV.50)
where
g = GC(O)/Ga(O) = Gc(l)/Ga(l) , (1IV.51)

and Wy is the Lamor frequency of the proton. The asymmetry
parameter (or correlation parameter) £ is a measure of the extent
of the symmetry-breaking relaxation (Figure IV.5).

1) Completely correlated fluctuation, & = 1.

In this case each proton in the methyl group experiences the same
field produced by the unpaired electron. It implies that the

auto~correlation function and cross-correlation function be

equal, namely, £ = 1. We readily obtain

N

(m) _ (m)
GA (T) = 3 Ga (T) ’

(m) _ (m) _
CEa (1) = GEb (1) =0 s (1v.52)

The allowed relaxation channels are those transitions that
conserve symmetry.

(2) Completely uncorrelated fluctuation, & = O.

In this case each proton spin 1s relaxed independently by the
electron. The inter-symmetry-crossing relaxation is allowed and

the cross-correlation function vanishes; namely,



81

>

—3/2 ﬁ

- 1/2

)

172

:

~0Pdg (T g iay) dlwg)

T
j=ik

k
XBL 813-8694

Figure IV.5 Possible relaxation pathways for the triple-quantum
transition. The spectral density of A-type (symmetry-conserving)
corresponds to relaxation among states of the same symmetry.
Spectral densities of E® or Eb—type (symmetry-breaking) correspond
to relaxation between the states of A-symmetry and states of B

or Eb—symmetry.
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GA(m) (1) = GEa(m) (1) = ch(m) (1) = Ga(m) (1) ) (1IV.53)

(3) General case.

The ratios of the decay rates of multiple quantum coherences

depend on the asymmetry parameter & and the ratio of Ga(o)/ca(l)(wl)
(which depends on the correlation time Tc of the fluctuation and

the Lamor frequencies wI, w, of proton and electron). As we

S

evaluated in an earlier section, the correlation functions are

given by:
G (0)(.0) %Kz T, + T36 K2 T, é 3 s (IV.54)
IHw'T
s c
1
Ga( )( I) G ( 1)(wI) = é%-Kz T ]é 7 + g% k? T ——33—5
I+wlT € 14wt
Ic s c
(Iv.55)
where
2
h%y_vy.12
K2 = < ‘___%_§) >
r

The dependence of the decay rates on the concentration of para-

magnetic impurity is through the average distance between the
electron and methyl proton.

The ratios of the relaxation rates (independent of the
concentration of impurity in the experimental range) provide a
measurement of the correlation time and the asymmetry parameter.

To illustrate the sensitivity of the n-quantum relaxation to
the fluctuation model, the ratios of the decay rates are shown

for three extreme cases that are classified by the value of Ter
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(a) Short correlation time limit, eri << 1,

The ratios of decay rates is given by

5
T T =42
14 _ 3(1+8) 13 _ 2_._g_ (1V.56)
FlZ 2+E Fl2 2+E

Their dependence on £ is indicated by the two curves A and A’

in Figure IV.6.

(b) Long correlation time limit, wiTi >> 1,

In this case, we have

r r

F_1£=3+6g , Fli:erzg . (IV.57)
12 12

The dependence of the ratios on £ is indicated by the two

curves B and B' in Figure IV.6.

(¢) Intermediate case, w2T2 <1, w2T2 >> 1,
Iec s c
The ratios are given by
r I
14 _ 21 + 248 13 _ 17 + 14& (1V.58)
F12 13 + 6% ? F12 13 + 6§ ) )

Their dependence on &£ is indicated by the two curves C and

C' in Figure IV.6.

4.4.4 Experimental results and discussion

4.4.4.1 Samples and spectrometer

Experiments were done in a field of 42.5 KG provided by a
Bruker superconducting solenoid. The corresponding operating
frequency for protomns is 185 MHz. The pulsed r.f. power of 200

Watts generated by a tuned transmitter, produced a rotating field
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Fig. IV.6 The ratios of relaxation rates of double and triple quantum
coherences to single quantum T13/T12 and Flé/r12 depends on the corre-
lation factor £ and the correlation time TC. Curves A and A' show the

case of short correlation time limit, Jiéi<< 1. Lines B and B' show

2
the case of long correlation time limit, wi T>> 1. The intermediate

case, wi 12<< 1, mﬁ Ti>> 1, is shown by curves C and C'.
c
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of 20 G in a solenoidal coil of 8 mm in diameter. Samples of
acetonitrile (v 127 in mole) dissolved in EBBA (p-ethoxy-benzylidine
n-butylaniline), with different concentrations of di-t-butyl-
nitroxide (DTBN) radical, were observed over a range of temperature
21.5° v 23.0°C. The temperature was controlled by a feedback

system within * 0.1°. The change of the observed dipolar

splitting by temperature fluctuation caused linebroadening by

an amount less than a few hertz.

4.4.4.2 Pulse sequence

Multiple quantum transitions were observed by using the
TPPI-Echo method.14 The line broadening by field inhomogeneity
(v 1 ppm) was removed by the echo pulse20 during the evolution
period of multiple quantum coherences as we have shown in Figure
IV.7. An artificial frequency offset was created by the phase
increment of the first two 90° pulses relative to that of the

third 90° pulse. When the r.f. phase is incremented by ¢, the
15,16

n-quantum transitions '"see' this as n¢.

4.4.4.3 Spectra and results

The linewidths of multiple quantum transitions for a given
concentration of DTBN were measured by taking the averages of
the particular linewidth of spectra obtained from various T
ranging from 250 usec to 500 usec, TFour typical spectra with
different concentrations of DTBN are shown in Figure IV.8.

The full widths at half height of each transition, related
to the relaxation rate by I'/m, were found to vary linearly with

respect to the concentration of the impurity as is shown in Figure
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\/ b= Awt
XBL 794-9146

Figure IV.7 The TPPI-Echo pulse sequence is used to remove
inhomogeneous line broadening, and to restore the frequency offsét
by the time proportional phase increment. The artificial frequency
offset is merely the rate of phase increment. The time during the
period of preparation and mixing is set to be 250 psec v 500 usec.
The multiple quantum spectrum is obtained by a Fourier transformation

of the signal in time domain t.
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Fig. IV.8 The relaxation rates of multiple quantum coherences depend
on the concentration of the paramagnetic impurity. Shown are illus-
trative multiple quantum spectra with different concentrations of DTBN

in mole per cent. The frequency offset Aw/27m is 7.8125 KHz.
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IV.9. Their relations are given by linear fits:

- - ~1
r, = Ty, = (336 * 5)[clsec
I =T (565 + 10)[C]Sec™T
13 24 -
. = (850 + 90)[C]Sec ™
14

where [C] is the concentration of DTBN in mole per cent.

The ratios of the decay rates T14/F12 and P13/P12 are then:

Pl3/P12 = 1,68 £ 0.02

rlA/FIZ = 2.53 £ 0.15

4.4.4.4 Discussion

We shall now compare the various models of correlation time
Te and correlation parameter & (Figure IV.6) with these data.
The model with the condition szi << 1 is completely ruled out

since it predicts (Curves A and A' in Figure IV.6)

r,./T 1.25 - 1.50

13" 12

for £ = 0-1.

FlA/FIZ 1.50 - 2.00

2
Similarly, TIwi >> 1 is not possible since it predicts (Curves B

and B' in Figure IV.6)

/T, =2.0 - 4.0

r 12

13
for £ = 0-1,

Plélrlz = 3,0 - 9.0

By looking at Curves C and C' in Figure IV.6 we see that the
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Fig. IV.9 The linewidth of multiple quantum transitions is linearly

proportional to the concentration of DIBN. The ratios of the relax-

ation rates can be determined accurately by measuring the ratios of

the slope.
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data fits quite well with the assumption that wiri >> 1 and

2.2

wITc << 1 with £ = 1. This predicts:
I‘13/T14 = 1.63
g = l.
FlA/F13 = 2,37
The fit can be made very good by keeping & = 1, but
y = (li-wiri)-l = 0.91 £ 0.04. With these values we find
T, = (2.7 £ 0.6) x 10“10 sec.

The conclusions that £ = 1, namely, that a complete
correlation in the fluctuation is not unreasonable, since Tc v
10-10 sec; whereas the rotation time for the CH3 group (permuting
the proton positions) is of the order of ]_0-12 sec, In addition,
the average-distance between the electron spin and the methyl
protons is much larger than the dimensions of the methyl group.
Simple geometric calculations (using §/y), predict that the
extent of symmetry breaking transitions should be less than 17%.
Thus we see that the measurement of n-quantum relaxation indeed

gives a very sensitive measure of correlation and correlation

times.

4.4.4.5 Summary and comments

In a system of strongly coupled spins, we have shown that
the longitudinal and transverse relaxation of normal single
quantum transitions usually provides information about inter-
nuclear correlation functions. They alone, however, are not
adequate to determine the relaxation mechanism characterized by

a number of auto- and cross-correlation functions. The
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advantages of using multiple quantum spectroscopy to study
relaxation effect have been illustrated by the system of oriented
actionotrile in a liquid crystal matrix containing paramagnetic
impurities.

We estimate that the broadening of linewidths of paramagnetic
impurity becomes dominant over those by intra- and inter-proton
relaxation if the molar concentration of paramagnetic impurity is
larger than 0.01%. The estimated contribution of linebroadening
by symmetry-breaking channels is rather small (<1%), even with
molar concentrations as high as 35%.

The presence of the echo pulse during the evolution period
of multiple quantum coherences reverses the magnetic quantum
number m, and changes the density matrix element paB into pa'B'
where |o'>, |B'> are mirror-imaged states of |0> and |B> by
reversing m. The associated dipolar splitting and relaxation
rates, however, remain unchanged.

We shall now point out some features of completely correlated
fluctuations. The adiabatic term of the relaxation rate, originated
from the elastic scattering (energy-conserving) processes, can

be written as

T ) _ —1—5 J (1v.59)

(0)
o - ©) (m -m

2
A g)

It has a simple quadratic dependence of the decay rate on the .

number of quanta. 1In the case of a long correlation time limit

2.2 . . . , . . .
(w;T7 >> 1), the non-adiabatic contribution by inelastic scattering

Ic

processes becomes negligible. The linewidth of n-quantum
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coherence depends on N quadratically. It is a general property
of the case of completely correlated fluctuations but does not
refer particﬁlarly to the system of methyl protons. As the
correlation time becomes shorter, the non-adiabatic contribution
becomes as important as the adiabatic term. The non-adiabatic
term can be found by evaluating the lifetimes of the associated
states.

The expression of the adiabatic term in the case of completely
uncorrelated fluctuations is generally complicated. There is,
however, a simple relation if either |a> or |8> is the highest
or lowest state. In this case, the adiabatic term linearly
depends on the number of quanta of the multiple quantum coherence,

such as:

0y _ 1 (0)
T b J77(0) Ima—msl . (1v.60)
For a system of N coupled spins, the non-adiabatic term has a

simple form in the case of completely uncorrelated fluctuations:

ro=- oW . (1v.61)
af 2 I
2h

Because each spin relaxes independently, it contributes to the
decay rate equally.

There 1s only one transition between the state with all
spins up and the state with all spins down. The adiabatic term
of its linewidth depends on the number of quanta quadratically in

the case of completely correlated fluctuation, and linearly in
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the case of completely uncorrelated fluctuations.

A
4

. .
.5 Multiple quantum NMR and relaxation of two coupled methyl groups

In the previous multiple quantum NMR study of an oriented
methyl group relaxed by paramagnetic impurities, we found that
the fluctuating magnetic fields at each site of methyl protons
are correlated.6 The dominant relaxation mechanism is caused by
the A-type fluctuation that conserves the symmetry of the spin
states. The relaxation caused by the fluctuation of symmetry-
breaking types E? and Eb is negligibly small.

We have studied the multiple quantum NMR of two coupled
methyl groups at room temperature. The experiments showed no
evidence of correlated motion between them in the time scale of
a millisecond, that is, two methyl groups rotates quite
independently.21

We shall demonstrate the application of multiple quantum NMR
to the study of two dipole-coupled methyl groups in the presence
of paramagnetic electron spins. The measurements of the transverse
relaxation time for four, five, and six-quantum transitions allow
a complete determination of the fluctuation spectral densities

and relaxation pathways.

As shown in Figure IV.10, each of the two methyl groups
experiences a fluctuating magnetic field that is produced by a
distant electron spin. Since the methyl group rotates very
rapidly at a rate of 1012 Hz, the protons of same group feel an
equally fluctuating field. This assumption is reasonable and has

been verified by our previous experiments on the multiple quantum

study of an methyl group.6 Although each methyl proton of the



94

XBL 811-7663

Figure IV.10 Geometry of two methyl groups. The electron spin

S produces a large random field at each site of the methyl groups.
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same group experiences the same field, the fluctuating field at
the site of different groups may not be equal. Different degrees
of correlation between these fwo fluctuating magnetic fields Bl(t)
and Bz(t) affects the linewidth of the multiple quantum spectrum
differently.

The interaction between the methyl protons and the magnetic
field produced by the unpaired electron is given by the time-

dependent Hamiltonian Hl(t) as

<« > > > >
H (t) = - hy )3 T.B.(t) -hy )3 T 3. ()
1 I i=1,2,3 i1 I i=4,5,6 i“"2

(1Iv.62)

> -
We may rearrange the functions Ii and B, _.(t) in terms of the

1,2
symmetry-adapted form to read
-5

> > > ->
~hy (AL, + I+ T I+ T

4

H, (1)

> 1 >
- by (Tl +1,+ 15 - I, - T5 - I3 By - By

f T3 -hy. I -B
ThYp Ity T

E: -nH" vu(m) fﬁ("m)(t) (IV.63)
m 1

0,*

g,u
+ » . = . . -

where Bg is the symmetrized function, Bu is the anti-symmetrized

function

[vs)
~
rt
~
]

G (0 +5,0)

B | bt

(Bl(t) - B2(t)) s (IV.64)

ee]
~
rt
p—a
i}
R
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and

vy D o1 v D oLl (1ves)

The fluctuating function

(m) (m)
f = - h B t .66
" Yy B (0) (1V.66)
. . (m)
is related in a similar way to fi by
(m) _ (m)
fi = - h Y1 Bi (t) . (1Iv.67)

There are two distinctive kinds of correlation function--

(m)

the autocorrelation function Ga (1) and the cross-correlation

function Gc(m)(T). They are defined by

~0® £, ™M - Mo,

™ (1) = & Gc(m) (1) for i # j. (IV.68)

m (~m)
(-1) fi (t) fj o

(m)

We can introduce the symmetry-adapted correlation function G (1)

as

gy (-m) ), .\ (m)
GO (£) £, (e=1) = 66, 0G " (T) . (IV.69)

(m)

The function GU (T) is closely related to both the autocorrelation

function and cross-correlation function by

c @y 1@ v 1. @m
Ug (L) = 2 ua (T) T 2 G (T) N
(m) 1. (m 1. (m
Gu (1) = 5 Ga () - 5 Gc (1) . (1v.70)
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In the case of a completely correlated fluctuation, the fluctuating

magnetic fields at both methyl groups are equal and correlated,

The autocorrelation function is thus equal to the cross-correlation
function, hence, the antisymmetric correlation function Gu(m)
vanishes. If the fluctuating fields at each methyl group are
completely uncorrelated, the cross-correlation term should be an
identical zero. In this case, the symmetric correlation function
G (m) is equal to the anti-symmetric correlation function.

g
Generally, there are four different fluctuation spectral

(0) (1) 0 (1

density functions: Gg ’ Gg s Gu , and Gu . To completely
determine their values and the relaxation pathways, we should at
least measure the linewidth of four different multiple quantum
transitions. We shall calculate the linewidth for the two
satellite four-quantum transitions, one satellite five—-quantum
transition, and the central six-quantum transition. The four
above transitions are all of Ag—type.

By using the expression for relaxation rate in the equatiom
IV.20 and the fluctuation Hamiltonian in the equation IV.63, we

can calculate the decay rates for the nondegenerate multiple

quantum transitions. Their values are given as follows:

(1) six-quantum transition Ag(—B) - Ag(3)

h2r =183 Dy +33 Pwy+33 PVwy . av.r
g g I u I
(2) five—quantum transitions Ag(—Z) - Ag(3), Ag(—3)— Ag(2)

2. 25 _ (0) 11 - (D) 1 . (0) ERR G
hr, = Jg (0) + 5 Jg (wI) + 53 0) + 5 Iy (wI)

(1v.72)
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(3) four—quantum transitions lAg(-l) - Ag(B), 2Ag(-—l) - Ag(3),

ay 1 ay 2
A(=3) - "A ), A (=3) A, (1)

w’r, =83 Q0+ 33 Pep +3 Q0+ 35, P avm
Since there are two kinds of fluctuation Gg and Gu, we need to
consider only two types of symmetry representationms, Ag and Au'

To illustrate this, the relaxation channels for the six and five-
quantum transitions are shown in Figure IV.11.

Expressing the decay rate for the two four-quantum transitions
is very complicated. It depends on the strength of the dipole
couplings. If we change to a different sample, the dipole
coupling will also change. As a consequence, we cannot study
the effects using different concentration of impurities. Neverthe-~
less, we can show that the average value of the decay rates for
the two four-quantum transitions does not depend on the strength
of dipole couplings. Its value was given in the previous rate

equation.

(m)

It is reasonable to assume that the ratio between GC and

Ga(m) is characterized by the same correlatin parameter & as

£ = cc(o)/ca(o) - cc(l)/ca(l) . (1V.74)

We can rewrite the equations for the relaxation rates as

F2 e o (O &)
hT, = 18 G (14€) + 6 G
R2r = 13 + 126)c (P 1+ (8 + 3pc D
5 a a
I n2r4 —+786 @D 4o D (1V.75)
a a
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Figure IV.1ll Relaxation channels for 5 and 6-quantum transitions.

Pathways which connect the Ag and Au states are caused by

antisymmetric fluctuations. Symmetry-conserving relaxation

channels are caused by symmetric fluctuations.
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The explicit expression of Ga(o)(O) and Ga(l)(ml) has already
been shown in equations (IV.54) and (IV.55).
We shall 1llustrate the dependence of the relaxation rate

on the correlation parameter £ by using three extreme cases,

(a) Short correlation time, szi << 1,

In this case, one has Ga(o) = a(l) and

T T

Y6 _ 24 + 18¢ S5 _ 21 + 15¢ (1V.76)
PA 18 + 7& i PA 18 + 7¢ ¢ :

Their dependence on § is indicated by the two curves A and

A' in Figures IV.12 and IV.13.

(b) Long correlation time, wiTi >> 1.

In this case, we have Ga(l) << Ga(o) and

Te 18 + 18¢ P's 13 + 12¢

=2 , =2 = == T <> . (Iv.77)
4 9 + 7¢ T4 9 + 7¢

Their dependence on £ is shown by the two curves B and B' in

Figures IV.12 and IV.13.

(c) Intermediate case, wiri << 1, szz >> 1.

r T

"6 _ 20 + 72¢ 5 _ 76 + 57¢ (1V.78)
r, 63+ 28 > T, 63+ 28 : :

Their dependence on & is indicated by the two curves C and C' in
Figures IV.12 and IV.13.
From the linewidth measurements of four, five, and six-quantum

transitions with different concentrations of paramagnetic
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RATIO OF RELAXATION RATES
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XBL 814-9004

Figure IV.12 Ratios of relaxation rates of 6-quantum coherence

to 4-quantum coherence. T6/T4 depends on the correlation factor

£ and the correlation time TC. Curves A shows the case of the

. 2.2
short correlation time limit, wsTc << 1., Curves B shows the

case of the long correlation time limit, wrT, >> 1. The

. . 2.2 22 )
intermediate case, wITc << 1, wSTC >> 1, is shown by curve C.
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RATIO OF RELAXATION RATES
F5/r4

N W oA 0
1

N DD N NN
I
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& (correlation factor)
XBL 814-9005

Figure IV.13 Ratios of the relaxation rates of 5-quantum

coherence to 4-quantum coherence. T'S/F4 depends also on the
correlation factor & and the correlation time TC. Curves A',
B', and C' show the case of the short correlation time limit,

long correlation time limit, and intermediate case.
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impurities, we can determine the ratios of the decay rates more
accurately. The degree of the correlated fluctuation can be
calculated fiom the experimental measurements of these ratios.

By knowing the correlation factor &, we can completely determine

the relaxation pathways.

4.6 Relaxation by an external random field

As we have pointed out in the earlier discussion of the
completely correlated fluctuations, the adiabatic part of the

relaxation rate is given by

F(o) = —lf J (Iv.79)

(0)
aB oh () (ma_m

2
A 8) )
For a n-quantum transition, the adiabatic relaxation time is n
times faster than that of a single quantum transition.
This interesting phenomena can be verified by irradiating
external random electromagnetic waves at audio frequency. The
nuclear spins couple to the fluctuating magnetic field that is

produced by a tuned coil along the z-axis; its interaction

Hamiltonian is given by

H () = = h oy ( 2; I, B, (6) ) (IV.80)

The fluctuating magnetic field at audio frequency can be produced
by a noise generator. The power level and the band width of the
noise can be controlled by an amplifier and an audio frequency
filter.

Since the non-adiabatic part of the relaxation is very small,

the transverse relaxation rate is completely determined by the
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adiabatic process, and6

==t J (0 oy (ma—mB)z . (1V.81)

0‘52;1 A
The linewidth of multiple quantum transition has a simple
quadratic dependence of the decay rates on the number of

quanta.

By changing the width of the filter that corresponds to Tzl,
and the amplifier gain for the noise generator, we can system-
atically vary the spectral density of fluctuation JA(O)(O). From
the linewidth measurements of the multiple quantum transition,

the quadratic dependence can be testified.
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MULTIPLE QUANTUM NMR STUDY OF CORRELATION OF TWO METHYL GROUPS

5.1 Introduction

Molecules having two rotating groups may show coupled
motions. An interesting question for us to consider is the
characterization of conformation and correlated motion of
molecular groups which are sterically hindered. For example,
two adjacent methyl groups may exhibit some degree of correlated
motion as do two wheels in gear. The coupling of rotational
motion is very difficult to measure by microwave spectroscopy.
Although the traditional single quantum NMR can yield some
information about the molecular conformation and correlated
motions, the spectra obtained may sometimes be complicated and
difficult to analyze.l

In this chapter, we shall demonstrate the application of
multiple quantum NMR technique to the study of the potentially
correlated motion of two adjacent methyl groups in the same
molecular framework.

We shall show that four-quantum spectrum is sensitive to the
two-body correlations and distinguishes simply between the cases
of uncorrelated and correlated motion.2 The two-body correlation
also reveals in other lower order spectra, though their complexity
in the spectrum makes the assignment difficult. The number of
four~quantum transitions (five expected for uncorrelated and
seven for correlated motion) provides a ready test of the limits

for two methyl groups.



108

We shall also discuss the intermediate case, namely, when the
inverse of the correlation time of gearing motion is comparable
to the dipole coupling strength.

We should expect that the two distant methyl groups will rotate
or reorient independently. Yet, if we bring these two groups
closer, their mutual interaction will force them to move in a
copperative way. This kind of correlated motion is very interesting.
We shall see how the correlated motion affects both molecular symmetry
and multiple quantum NMR spectra.

Let us now consider a system of two methyl groups as is
shown in Figure V.la. For the uncorrelated case, these two methyl
groups move independently; their relative orientations are random.
Consequently, the dipole couplings between protons of a different
group are equal in average. mnevertheless, this is not true if
these two methyl groups move in a correlated way as do two wheels
in gear. Although each methyl group rotates very fast about its
three-fold axis, their relative orientation is in good order--as
we have shown in Figure V.1b. The methyl group on the left rotates
clock-wise, however, the right one rotates counterclockwise. A
complete correlation signifies that the gearing motion is not

interrupted.

Let us define several dipole coupling constants according to

the top configuration of the Figure V.Ib as

3= Dy T Dy

b =Dy, = Dy5 = Dy

¢ = D35 = Dyg

d =D, =0D . (v.I)

16 15
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XBL 7912-5207

Figure V.la The geometry of two adjacent methyl groups. In the
case of uncorrelated motion the two methyl groups move independently.
On the average, the couplings between protons belonging to different
methyl groups are equal. TFigure V.1b With gearing motion, the
averaged coupling between protons 1 and 4 is not equal to the
coupling between 1 and 5. Thus, there are two intermethyl

couplings and one intramethyl coupling.
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The time-averaged dipole coupling strengths are averaged over the

three possible orientations as in Figure V.1lb, and they are

W = <Dy,> = <Dgp> = <Dpg> = <Dyg> = <Dy = <Dy

SG@+b+d) . v.3)

As a result, there are two different intermethyl dipole coupling
constants for the correlated motion.

If the motion is not correlated, we need to average the
dipole couplings over an additional six different orientations.
We shall find that all of the intermethyl dipole couplings are

equal and have a value of
1 ) 1
x = 3-(v + 2w) =3 (2a + 3b + 2c + 24) . (V.4)

For both cases, the intramethyl dipole couplings are all equal
since each methyl group is identical; also, the distance between
protons of same group is equal.

The difference in the number of intermethyl dipole couplings
has a striking effect on the symmetry and the NMR spectrum, and
will be discussed extensively later.

We shall use a simple rule and diagram representations to
find out the number of possible four, five, and six-quantum
transitions for the system of two-methyl groups. The rule is
stated as:

The number of n-quantum transitions is given by the number

of combinations of non-equivalent configurations. TFor a system
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of N coupled spin-1/2 particles, the rule holds only for N, N-1,
and N-2 quantum transitions. The rule is based on the group

AmdtTr L 2Ll dcnam ol [
dlily 10L Lile LIdilS1LL1Ul> W1icC

ct
o
©
(o]
H
<
o]
=]

[aW

el
[}
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fu
[41)
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) ]

of totally symmetric representation. It turns out that the N,
N-1, and N-2 quantum transitions are of totally symmetric
representation.

As illustrated in Figure V.2, there is only one six-quantum
transition, since it connects the state with all spins up and the
state with all the spins down. A similar argument can be applied
to the five-quantum transitions. There is only one configuration
with one spin down. The location of the down spin at any one of
the six different sites is equal. Therefore, there are two five-
quantum transitions. For each case of correlated and uncorrelated
motion, the mumber of six and five-quantum transitions is the
same.

As shown in Figures V.3 and V.4, there are seven four-quantum
transitions for correlated motion and five four-quantum transitions
for uncorrelated motion. The difference results from the way we
assign the two down or up spins. For the case of uncorrelated
motion, there is only one intermethyl coupling. The assignment
with one of the two down (or up) spins to each separate methyl
group is equal. Nevertheless, it is not the case for a correlated
motion that has two intermethyl couplings. As we discussed before,
the averaged couplings <D14> and <D15> are not equal. As a
consequence, the configuration with spins 1 and 4 down is not
equal to the configuration with spins 1 and 5 down. Therefore,

there are two additional transitions for the correlated motion,
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6 — Quantum Transition

(1) mz==—=3 — m=3

5 — Quantum Transitions

(1) m=—3 — m=2

>> D> Db

XBL 803-8630

Figure V.2 Diagrams representing multiple quantum transitions.
Full (empty) circles represent up (down) spins. There is only
one 6-quantum transition and two 5-quantum transitions for both

correlated and uncorrelated motion.
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Uncorrelated Motion
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Figure V.3 Allowed 4~-quantum transitions for two methyl groups

with uncorrelated motion. There are five 4-quantum transitions.
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4 — Quantum Transitions
Correlated Motion

LA A A
A RTA

m

-

——

[¢]

AN
A

=3

N
3

(5

P[>
|
> >

[s2]

&tﬁ“bﬁb

—

_A
A
A
4

YN
A\

3
l

——ge

wf

XBL 803-8629

Fipure V.4 Allowed 4-quantum transitions for the case of

.

correlated motion. Seven 4-quantum transitions are expected.
Since there are two intermethyl couplings, the configuration in

(2) is different from the configuration in (3).



115

The four-quantum spectrum provides a direct and ready test of

the limits for the motion of two methyl groups.

5.2 Two methyl groups in correlated motion

The symmetry group for two methyl groups in correlated motion
is isomorphic to the symmetry group of cyclornropane molecule.4
In the molecule of cyclopropane as we have shown in Figure V.5,
the dipolar couplings Dl&’ D25, and D35 are all equal and
different than the value of D24, D34, D25, D36’ D16 or DlS'
Since there is a one-to-one correspondence between the dipolar
couplings for cyclopropane molecule and the two correlated methyl
groups, we do not need to find the symmetry group for the latter
case from the first principle. Instead, we can use the symmetry
group D3h of cyclopropane for it.

Using the characteristic table for D3h group,5 we can decompose
the eigenstates of m-quantum manifold into several irreducible

representations. The result is shown as follows,

- '
m 3 Al
=2 A+ A"+ E +E"
m= 1 2
1] 1 1] 1 n
= + A+ A+ + 2
m=1 34, + Ay + Ay + 3E 2
1] 1" 1} tr 15
m=0 3A; + A+ A, + 3A, + 3E

The states with negative quantum number m have the same decomposition
as their mirror states with positive m. With the above
decomposition, we can construct the energy-level diagram as shown

in Figure V.6.
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Figure V.5 (a) Methyl groups in correlated motion. (b) The
symmetry group for the system in (a) is isomorphic to the symmetry
group of cyclopropane. The average coupling constants <D14> and

< > i
D15 are different.
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Figure V.6 Energy level diagrams for two methyl groups in
correlated motion or uncorrelated motion. The number of multiple
quantum transitions can be found from the diagrams. There are
one 6-quantum, two 5-quantum transitions for both cases, but five
4—quantum transitions for uncorrelated moticn, and seven for

correlated motion.
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There are one six-quantum transition A;(m=—3) - Ai(m=3),
and two five-quantum transitions Ai(m=—3) - Ai(m=2), Ai(m=-2) -
Ai(m=3). These transitions are of Ai type. Any pair of mirror
states has a similar dipolar energy shift. The transition between
the two occurs at the center of the corresponding m-quantum domain,
and does not contain information about dipolar coupling. The
four-quantum transiticns of Ai(—2) > A£(2), A;(—Z) > AS(Z),
ZE'(—Z) -+ 2E'(2), and 2E"(-2) - 2E“(2) are mirror-state transitions.
They are located at the center of 4-quantum domain. Yet, there
are three pairs of transitions 3Ai(—l) > Ai(Z), Ai(—Z) > 3Ai(1),
which have a non-zero frequency shift. Consequently, there are
seven four-quantum transitions. The three pairs of Ai—type
transition appears on each side, and the central peak consists of
several degenerate transitions of a different type.

The dipole-dipole interaction Hamiltonian H of two methyl

groups in correlated motion is given by

ot
]

H +H_ +H
u v W

I
[=4
o1
c
He
Ca.
+
<
t
<

+ w z Wi . (V.5

Hu is the Hamiltonian for the intramethyl dipolar interaction, Hv
and HW are the intermethyl dipolar Hamiltonian. The blinear
operators Uij’ Vij’ and wij are given by the same form as

s V.., W,, =TI, 1, —%(I ) . (v.6)

i+Ij— + Iiv-Ij+

The indices 1 and j refer to different sets of protons as follows,



119

U,.: (1,3 (1,2), (1,3), (2,3),

13
(4,5), (4,6), (5,6)

Vit WD = (1L, (2,6, (3,5)

Woto 1) = (2,0, 3,0, 1,5, (2,5

(1,6), (3,6)

We can show that

HlA'(3)> = H|oaaoaa> = (é u + -rlv + —B—W) IA'(3)> v.7)
1 2- 4 2 1 *
and
HlAl'(2)> -5 1 (J1> + 2> + |3> + |[4&> + |5> + 6>
3
=0 (v.8)

where state ]i> means the state with all spins up except i-th

spin.
t
The eigenenergies for the triplet of Al(l) can be found by

matrix diagonalization of

Ty _¥ _¥ _y_¥
4 2 /2 2 2
w u 3 w u
_ - = -st v -5 - =
v w u v w
"27 72 . Tutty

and will be discussed later in the section on partially correlated

motion.
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5.3 Two methyl groups in uncorrelated motion

The symmetry group for each methyl group is D3. The molecule
with two non-equivalent methyl groups (AA'A"BB'B") forms a symmetry

group by the direct product of two D3 groups. It is represented

by
(A1 + 2E) x (A1 + 2E)

= A1 p'e Al + 2A1 x E + 2E x A1 + 4E x E . (v.10)

If two methyl groups are identical, we should include the
permutation symmetry that they share and introduce the symmetric
or anti-symmetric form for the wavefunction. The representations
Ag’ A.u signify the symmetric and antisymmetric wavefunctions of-
A1 X A1 type.' Similarly, we should classify the four-~fold
degenerate representation 4(E x E) by 4Gé and AG&. The two doubly
degenerate representations 2Al x E and 2E x Al are put together

to form a new representation 4G. We can decompose the total 26
spin states into irreducible representations Ag’ Au, 4G, AG; and
4G; as shown in Figure V.6.

By decomposing the representations of D3h for the correlated
motion into the new representations above, we can obtain the
information about the correlation between these two symmetry groups.
The correlation diagram is also shown in Figure V.6. TFor example,
representation A? is the direct sum of Ag and G'. Since G' does

1
not have states with m = 2 or 3, states Ai(2) and Ai(3) are simply

"t
jon
[
(]
+
[}
+
D
n

tates A (2) and Ag(3). In the cases of partially correlated

and uncorrelated motion, the correlated motion is frequently
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interrupted. The triplets of Ai(l) are no longer pure states and
are mixed with different representations Ag and G;. The
corresponding four-quantum transitions become broadened once
phase interruption sets in. The five and six-quantum transitions,
however, remain unaffected because their associated states are
pure states. We shall discuss the effects of phase interruption
on multiple quantum spectrum later in more detail.

As we found in the previous figure for uncorrelated motionm,
there are one six-quantum transition Ag(—3) > Ag(3), and two five
quantum transitions Ag(—2) > Ag(3), Ag(—3) > Ag(Z). The transitions
Ag(—2) - Ag(Z), Au(—2) > Au(—2), and 4G(-2) - 4G(2) are all
degenerate because they are transitions between mirror states.

There are two pairs of transitions 2Ag(—2) -+ Ag(l), Ag(—l) - 2Ag(2),
and they havé non-zero frequency shift. As a consequence, there
are five four-quantum transitions derived from the simple rule

for counting the number of N-2 quantum transitions.

The dipole-dipole interaction Hamiltonian H of two uncorrelated

methyl groups is given by

H=H + H . (v.11)

It is a special case of Eq. (V.5), when we make the coupling
constants v and w equal. The Hamiltonian Hv describes the dipolar

coupling between protons of different methyl groups. We can show

that

9
HIAg(3)> = (Fu+ V) Ag(B) , (v.12)
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HIAg(2)> =0 . (v.13)

The eigenenérgy for the doublet of Ag(l) can be found by

diagonalizing a 2 x 2 matrix, and is given by

c% i1t 3wt L v

N[

A, = - %—u - %—v *

*

As a consequence, the dipolar frequency shifts in the five and

four-quantum spectra are given by

- . 3 3
Am = 4 + (%—u + g-v + %-(% u2 + 7 v2 -3 uv)l/z).(V.l6)

From experimental four-quantum spectra, five-quantum spectra, and
the above relation, we can specifically determine the coupling

strength u and v.

5.4 Experiments

We have shown earlier that the high n-quantum spectra
distinguish simply between the cases of uncorrelated motion
(independent rotation) and correlated motion (geared rotation).
For N spins we can show that the N-2 quantum spectrum is
sensitive to the two-body correlations and has many triplets equal
to the number of different dipole couplings, (that is, the number
of different pairs of spins).3 For the system of two methyl
groups, we should make a distinction in the four-quantum
spectrum between these two cases.

The extent of the correlated motion that two adjacent rotating

methyl groups have is determined by the potential barrier of the
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coupling, and by the temperature of observation. The lifetime
T characterizes the duration of the correlation and may be
classified into three main categories: (1) completely uncorrelated

Lss 10 kHz), (2) completely correlated motion (T;l <<

motion (T;
0.1 kHz), and {3) the intermediate case. The time scale defined
here refers to the magnitude of the dipolar splittings.

For example, a sample of 2,3-dimethylmaleic anhydride (30% in
mole), dissolved in a liquid crystal solvent of p-octylphenyl
2-chloro-4-(p-heptybenzoxyloxy) benzoate, was studied by using
multiple quantum NMR techniques in a magnetic field of 42.5 KG
at 50.0°C.

An ensemble average process was performed on the multiple
quantum spectra. By using the TPPI method we were able to take
the average of each magnitude spectra. The various preparation
periods, ranged from 1.0 msec to 7.0 msec. The experimental
multiple quantum spectra of four, five, and six-quantum regions
are shown in Figure V.7.

Assuming that the intramethyl dipolar coupling constant u
is equal to 2.00 kHz and that intermethyl coupling constant v is
equal to -0.59 kHz the spectra are best fitted with the model of
completely uncorrelated motion. The calculated stick spectrum
using above parameters is shown in Figure V.7; it is in agreement
with the experimental spectra.

The molecule of 1,8-dimethylnaphthalene, with two methyl
groups in closer position, was studied. The experimental spectra
of multiple quantum transitions are shown in Figures V.8 and V.9.

The calculated stick spectrum assuming uncorrelated motion is also
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3
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| I |
4hw 50w 6Aw

Frequency (%%JT— = 8.203 kHz)

XBL 806-9852

Figure V.7 (a) Spectrum of 4, 5, and 6-quantum transitions in
dimethyl maleic anhydride. Five of the 4-quantum transition

were observed. (b) Calculates stick spectrum assuming uncorrelated
motion with intramethyl coupling constant equal to 2.00 kHz and

intermethyl coupling constant equal to -0.59 kHz.
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Figure V.8 Multiple quantum spectra of 1,8-dimethylnaphthalene

with ring protons deuterated.
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Figure V.9 The top figure shows the experimental spectra of 3, 4,
5, and 6-quantum transitions of 1,8-dimethylnapthalene. The lower

stick spectra are obtained by assuming uncorrelated motion.
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in agreement with the experimental spectra.

P I amna anda et o i
5.5 Partially correlated motion and chemical exchange process

5.5.1 Chemical exchange for J-coupled AB system

Besides nuclear magnetic relaxation, the molecular motion
also affects its NMR lineshapes. NMR has been a successful tool
in studying chemical exchange processes. In this section we shall
illustrate the first application of multiple quantum NMR study
of exchange process among two methyl groups as caused by steric
hindrance. Before any further discussion, however, we shall
demonstrate how to apply density formalism to the study of a
simple chemically exchanging system.

The motion equation of the density matrix p for a chemically

exchanging system is given by
d _ s 1 +
3¢ P = ilp,H] + = (RpR -p) (v.17)

where we neglect the T2 relaxation caused by other mechanisms.

The first term on the right-hand side is familiar. The
second term describes the effect of the chemical exchange on the
evolution of the density matrix. The unitary operator R is the
exchange operator that connects the various states or configurations
caused by chemical exchange with a correlation time 1. The
inverse of the correlation time is also known as the exchange rate.
For the system of no chemical exchange, the operator R is a unity
operator; consequently, the second term on the right-hand side of
eq. (V.17) is, as we expected, identical to zero.

By using the projector operator UGB = |a><8], we can expand
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the density matrix p into its components as

p(t) = z Pualus . (v.18)

The equation of motion for any particular matrix element of

p(t) is given by

d ~ 1 +
dt pae = -1 waspas - ? (QGB - a;gt pG'B' RO.G.' RB'B)

1 +
?'(l—RaaRBB)

= -3 waspae -
1 +
+? QZ'B' Qalgt va RB'B . (v.19)
(a'#0,B'#B)

For the case of non-degenerate transitions, namely,
lwa'B'—waBlT >> 1, the last term of the above equation is very
small and may be neglected because it consists of components

that oscillate very fast in time.

As a result, the evolution of element paB is not coupled

to other components and is given by

é%'paB = THagPas T %'paB (l-RaaREB)
= -(dw,g + raB)pue , (v.20)
or
pag(t) = 0 (0) exp(-iw t-T t) , (v.21)

where
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If there is only one other quasi-degenerate transition between

states |a'> and [B'>, i.e., Iwu,srwaslt < 1, the equations of motion

wlRB'B'pa|B|

L g

for Pag and Putgt are coupled and are given by
+
1-R R
4 (4 ao BB 1 +
at Pap = (1wa8 + T )oog * T R
+
R Pl - -2
at Pa'g’ Harp! T Porg!

t o RuaRRetPes -

(v.22)

We can obtain the eigenfrequencies by solving the secular

equation. The result is given by

i 1 +
Ay = - 5'(wa8+wa'6') -7 (2 - R aReg R
+ Loy _1 +
) {[1(wa8_wa'8') T (RauRBB Ra'a'
4 R+ =F }1/2

+ ;E'Raa'Ra'a greRag!

Rgigt

U%ﬂRE'BJ

+ )]2

(v.23)

We shall now discuss two extreme cases which have simpler results:

(i) Slow exchange limit (very large T).

In this case, we may neglect all of the higher order terms

except terms that contain 1/T. We can show

, 1
e T T (l—Ra

oRgg)

I+

iw . l
a'B' 1

(1-R )

ala'RBVBI

(v.24)
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This is just the case of non-degenerate transitons,
(i1) Fast exchange limit (very short T).
We can show that there are two eigenfrequencies and they are

given by

+
aB +wa'8') * (2-R

(v.25)

One of the above solutions with positive sign in 1/71
corresponds to exponentially increasing function in time. It is
a non-physical solution and should be omitted. The other solution
is physical and it indicates that two separate peaks in thé slow
exchange limit will coalesce into one peak in the fast exchange
limit. The new resonant frequency is the average of the two.

For example, we shall discuss the exchange system of two
J-coupled unlike spin-1/2 particles. The energy diagrams for
both slow and fast exchange limits are shown in Figure V.10. The
eigenstates and eigenfrequencies for slow exchange limit are listed

as follows:

11> = |aa> Ep = vgll-3(0,40)] + 73 ,
|2> = cosB|aB> + sinB|Ra> E, =—%+ % /(\>06)2+J2 ,

|3> = -sin|aB> + cosB|Ba> E, =-%'— %‘Y(VO5)24'J2‘ ,

l4> = |BB> E, = =Y [1—% (OAMB)] +%J ,

(v.26)

-+

aaRBB-Ra'a'RB'B')
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Figure V.10 Energy level diagrams for a J-coupled AB system under-
going chemical exchange, (a) for slow exchange and (b) for fast
exchange. There are four single quantum transitions for the slow
exchange case. Only one transition is expected for a fast exchange,
because the transitions [2> ~ 4>, |1> > |2> are degenerate, and

3> + |4>, |1> > |3> are forbidden.
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where § = O and tan2f = J/évo.

B4
Similarly, for the case of a fast exchange limit, we can show

1> = ]aa} E, = vo(l—o) + %-J R
[2> = }{|a8>4-|8u>) E, = %‘ ,
V2
l4> = |BB> E, = —vo(l—c) + %—J >
13> = %(—la8> + |Ba>) E, =-—'—‘Z— J o, (v.27)

where 0 = g, = O We notice that it is the special case with

A B'

6 =m/4.

The spectrum of the slow exchange case contains four peaks,
but only contains one peak for the fast exchange case as shown
in Figure V.11l.. We shall use density formalism to solve the
problem for the general exchange rate.

The operator R describes the exchange operation on particles
between two sites. Since R does not change the magnetic quantum

number, it can only connect states of the same magnetic quantum

number.

We can show that the states |l> and |4> are invariant under

operation R and that

R|2> = R(cos6|aB> + sinb|Ba>)
= cosf|Ba> + sinb|ap>

= cosB(sinB|2> + cosB|3>) + sinB(cosB|2> - sinb|3>)

= sin20|2> + co0s26|3> , (v.28)
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Figure V.11 Theoretical stick spectra for a J-coupled AB system
undergoing chemical exchange. There are four peaks in the slow

exchange limit but only one peak in the fast exchange limit.
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-sinf |Bo> + cosb|aB>

R|3>

cos26|2> -~ sin26|3> . (v,29)

Using |2> and [3> as a basis set, the operator R can be

represented by a 2 x 2 matrix as follows

sin26 cos26
(v.30)

-]
1
i

e}

cos26 ~sin2

We can show that the equation of motion for density matrix

elements P1o> pl3 and Pyys and Py, are coupled and are given by

{

d . 1 . 1

< 3£ P12 = "iwioPy, - % p12(1-31n28) + T P13 cos20
Jl-p = ~iw, .p -1 p,.,(1+sin28) + = p cos26 (v.3D)
dt 713 13713 T 13 12 ’ )

\

r 4 = -i -1 (1+sin26) + 1 cos26
dt P24 T TMW4Pa4 T T Ppulitsin T P34 €08

< il-p = —-iw,,p -1 0., (1-sin20) + l-o cos26 (v.32)
dt "34 34734 T "34 T 724 : )

By solving the above equation for either stationary or
transient conditions, we can obtain the spectrum for the general
case of exchange rate. The computed spectra with various values

of T are shown in Figure V.12,

5.5.2 Two methyl groups in partially correlated motion

We shall discuss an interesting system of two methyl groups
having steric hindrance. We have discussed the characteristic

features between two extreme cases of completely uncorrelated
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Figure V.12 Theoretical spectra of a J-coupled AB system. The

molecule undergoes chemical exchange with a correlation time TC

from 103 sec to 10—4 sec.
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and completely correlated motion. Particularly, we have shown
that there are five and seven peaks of 4-quantum transitions for
the first and latter cases. In this section, we shall discuss the
intermediate case when the exchange rate namely, the inverse of
the correlation time, is comparable to the dipolar coupling
strength. The six and five quantum transitions remain unchanged
because the exchange operatér does not affect their corresponding
states. That is, states |Ag (m = #3)> = lAi (m = #3)> and
IAg (m = ¥2)> = IAi (m = t2)| are also eigenstates of the
exchange operator. Since those 5- and 6~quantum spectra are
invariant they are not relevant to our discussion of the exchange
process. Particularly, we shall discuss how the correlated motiop
affects the 4-quantum spectra. The associated states of 4-quantum
transitions are shown in Figure V.13, The central peak, which
actually consists of several degenerate transitions, has a
complicated dependence on the exchange rate and thus, will not be
discussed. We shall only deal with the satellite peaks.

The exchange operators R and R' describe the interruption of
the geared motion of the two methyl groups as shown in Figure V.14.
The duration of the geared motion before interruption is the
correlation time T. To observe the effect of the geared motion
on the NMR spectrum, the correlation time should be longer than
the inverse of the dipolar coupling. Frequent interruption of
the correlated motion (between the two methyl groups) makes each
groupt rotate as if independent.

We shall assume that the correlation times for exchange processes

R and R' are identical because of the symmetry consideration. As
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Figure V.13 The relevant energy level diagram for 4-quantum
transitions is shown above. One pair of 4-quantum transitions
Ag(3) - G;(—l) and Ag(—3) - G;(l) is forbidden for the case of
uncorrelated motion. Consequently, the 4-quantum transitions for

correlated motion have one extra pair of transitionms.
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Figure V.14 The exchange operators R and R' represent the process

of slipping that interrupts the correlated motion.
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shown in Figure V.14, the exchange operators R and R' rearrange

the orderin

g of the methyl protons cyclically and can be expressed

mathematically by permutation symbols as follows
/1 2 3 4 5 6 1 2 3 4 5 6y

31 2 4 5 6 2 3 1 4 5 6

(v.33)

The original position for each proton is shifted to the

position indicated in the lower line. We may notice that R—l =

R and R' = Rz.

The state IAi(m = =3)> (=|Ag(m = ~-3)>) is invariant under

operations R and R'. The remaining three eigenstates (those with
1

m=1 and Al symmetry of special interest) are superpositions of the

following three basis functions,

la> = L (|12> + |13> + |23> + [45> + |46> + |56>)
3

Ib> = 2 (14> + 26> + |35>)
V3

le> = /% (]15> + |16> + [24> + 25> + [34> + [36>)  (V.34)
6

where state 1ij> means that the spins of i-th and j-th protons are
down. The above states are not eigenstates of the Hamiltonian in
eq. (V.5). If we separate the dipolar Hamiltonian into three
parts Hu’ Hv’ and Hw according to their different couplings u,
v and w, we can show that the matrix representations of the above

Hamiltonians with |a>, |b>, and ]c> as basis set are given by
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0 0 0
H =u 0 —% -1 R (v.35)
/2
0 -1 -1
JZ
1 1
-3 0 -5
3
HV=V 0 Z O > (V.36)
1 1
-7 0 -7
1 1 21
2 /3 2
H, =w -1 -% 0 , (V.37)
JZ
1 1
-2 0 2
and
_y_¥v _w _y_ %
42 Z 272
H= | -¥ o243 ¥ _» (v.38)
V2 V2
v W u v w .
- — - — - — _u__+._.
) /7 4 2

Calculating the matrix representations for R and R' is
straightforward, however, a few remarks should be made. TFirst
of all, !a> is an invariant state. Secondly, Operators R and R'

"
mix states |b>, |c> and another state |Al(m = 1)> of a different
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symmetry. Using |a>, [b>, [c> and [AI(m = 1)> as a basis set we

can show
1 0 0 0
0 0 1 1
V2 V2
R = . 1 1 1 s (v.39)
J 2 2
1 1 1
0 s T2 T2
1 0 0 0
0 0 1 1
V2 V2
L -
R' = . 1 1 1 , (v.40)
/7 2 2
0 _1 1 _1
V2 2 2
and
2 0 0 0
0 0 V2 0
R + R' = (V.41)
0 V2 1 0
0 0 0 -1

As we shall see later only R + R' will enter the equation of
"
motion as a whole; the exotic state |A1(m = 1)> does not mix
with the remained states since R + R' has no off-diagonal elements

in the 4-th column and row. Consequently, we can completely



142

eliminate it.

The equation of motion for exchange processes R and R' is

given by

d 1 + 1 +

3¢ P = ilp,B] + T (ROR =p) + = (R'PR' -p) . (V.42)
Let IAi(m = 3)|p|i> =Pys by using the facts RlAi(m = ~3)> =

! ' 3 3 3 ' -
IAl(m = -3)> and H]Al(m = =3)> = CE ut v+ E’w)lAl(m = =3)> =

)
EOIAl(m = -3)>, we can show that

1 ' ' 2
- = i - + - i h . .
T [+ 7 Rty PRy e - GE +Dpy - (V.43)
By rearranging the superposition between states |2> and l3> as
2 1
[2'> = %§|2> - %§l3> ,

[3'> %%|2> + %§|3> (V.44)

the operator R + R' becomes diagonal in this basis set and is

given by
2 0 0
R+R'={0 -1 0 . (v.45)
0 0 2

The equation (V.43) can be written in a simpler form as

follows
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i. 3 —]—'- ! - = i
00yt E - T [®RYD 210, =4 Y H 0 (V.46)

The corresponding secular equation can be found by using

dpi/dt = ikipi and is written explicitly as follows

% u+v+22w- A /g (v—w) /% (v+2w)
6
‘/—g- (v-w) Jusdedv+ ’g (v-w) =0
- (v+2w) /% (v-w) 3u+-§v+ -ZBL w o= A
V6

(v.47)

One remark needs to be made about matrix element Hki in the new
basis set. It is related to the old Hki in eq. (V.38) by a

similarity transformation A and

+

H(new) = A H(old) A ’ (V.48)

where

A(old) = (V.49)

o

W uJZQ
|

Wl u;:a

The solution of the above secular equation gives three 4-quantum
transition frequencies. The three satellites on the other side are
the images of these three with respect to the central frequency of

a 4-quantum transition domain.
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We shall now discuss two extreme cases of the above solutionm.
In the limit of short correlation time, I(v-w)Tl << 1, the two
methyl group move quite independently. The transitions frequencies

are given ty

Al,2=%u+%xi%(§-u2+7x2-3ux)1/2 , (V.50)
and

A3 = %-u + X+ w+ %}
where

x = (u+ 2w)/3 . (V.51)

Since T is very small, the transition with k3 is very broad in
lineshape and is very weak in intensity and thus, cannot be
observed. Actually, only two pairs of satellites can be
observed. The transition frequencies Al and AZ are also in
agreement with our previous result. The coupling x is the
averaged value of the intramethyl couplings v and w according to
their weight.

In the limit of a completely correlated motion, 1/T is
negligibly small and can be dropped out of the secular equationm.
The three roots of the secular equation correspond to the
transition frequencies. There are seven 4-quantum transitions,

including the central peak, in all.
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VI

SECOND MOMENT OF MULTIPLE QUANTUM SPECTRUM AND STATISTICAL MODEL

6.1 Introduction

In our experiments we observed that the overall intensity
for each order of multiple quantum transitions is dependent on
the preparation and detection of the coherence. Generally, it
depends on the time interval of: the preparation and detection
periods, the phase of the pulses, the frequency offset, and some
other factors. The behavior of the intensity for each order Am
seems to have some correlation with Am. The spectral width of
the multiple quantum spectra for each order seems also to have a
correlation with Am. In order to understand these general
behaviors, and other effects caused by the method of preparation
and the detection of the multiple quantum coherence should be
diminished. We should average the spectra over various conditions
for the external factors. Averaging the spectra over different
values of the preparation and the detection periods is a frequently
used method. To understand the correlation among the intensity,
spectral width, and the order of multiple quantum coherence Am,
we shall present in this chapter a statistical model. This model
assumes an equal transition intensity for each pair of states and
does not consider molecular symmetry. The theoretical predictions
of the MQ intensity and second moment versus Am are in good agreement

with the experimental results.
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6.2 Intensity of the multiple quantum spectra

In general, the single quantum spectra are usually obtained
by Fourier transformation of the FID, followed by a single excitation
pulse. The FID is actually the correlation function of the
transverse magnetization in time. In terms of the spin angular

momentum operator I, we may express the FID S(t) by

S(t) « Tr(IX p(t))

thI elHt)
X

Tr(Ixe

Tr(IX(O) Ix(t)) . (VI.1)

By either continuous wave method or pulse method, the intensity
of the single quantum transition between states |a> and IB> is
given by the value of I<allxl8>|2 or |<a!Iy[8>|2. For the case
of continuous wave method, we can easily prove the above statement
by using the Fermi golden rule. TFor the latter case, we may prove
it by Fourier transformation of the FID S(t) into a frequency
domain.

As we discussed in Chapter III, the multiple quantum FID can
be expressed in terms of the correlation function of multiple quantum
spin operators U(T) and V(-T'). Unlike IX or Iy, which contain
single raising and lowering operators I+ and 1I_, the multiple
quantum operators U and V may contain all possible orders of the
raising and lowering operators. In addition, the intensity of
the multiple quantum transition between states |o> and lB> depends

on the parameters T and T', because of the intensity is given by

UaB(T) VBa(_T')' Accordingly, the intensity of the multiple quantum
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spectra depends on the method of the preparation, and the detection
of the multiple quantum coherence. Because of the implicit dependence
of the pulse sequence, some transitions may accidentally be low in
intensity. To avoid this situation, we can take the average of
the spectra of various T and T'. In most cases the spectra were
obtained by setting T be equal to T'.

The overall intensity for each order of the T-averaging multiple
quantum spectra (of partially oriented benzene) is shown in Figure

VI.l.1

The dependence of the intensity on Am follows a gaussian curve.
It indicates that the intensity of multiple quantum spectra behaves

statistically.

6.3 Statistical model for intensity of the MQ spectra

Let us consider a system of isolated molecules of N spin-1/2
particles, for example, benzene molecules in liquid crystal.
Because of the translational diffusion, the dipolar interaction
among different molecules is decoupled. The number of states with

n spins down is given by the binomial coefficient C(N,n) and

C(N,n) = —G\I—.%)!—"n—‘ . (VI.Z)

In terms of magnetic quantum number m, we can express the number

of states by

N!
{%(N—zm) I {%—(N+2m) I

c(N,n) = CN(rn) = . (V1,3)
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Figure VI.1 The integrated intensity of multiple quantum spectra

versus the number of quanta. The experimental data follow a gaussian

curve.
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Using Stirling's approximation for factorial,

fn n! = (x#-%) fnx-x+ % n 27 ’ (V1.4)

we will obtain an approximated form for CN(m) if m << N,

2N+1

¢y (@) = exp(-2 w/N) . (V1.5)

Y27TN

The approximation is pretty good even for N = 6 as shown in Table
VI.l. The gaussian forms of CN(m) for several N are shown in
Figures VI.2 and VI.3.

In this statistiéal model, we shall assume that the transition
between each pailr of states has an equal intensity. In addition,
we do not include a symmetry consideration. Specifically, no
selection rule caused by molecular symmetry is assumed.

The intensity of the transition between the manifold with a
magnetic quantum number m and m - Am is then given by the product
of the number of the associated states, namely, CN(m) CN(m;Am). The
overall intensity of a particular order of multiple quantum

transition is then given by
I(Am) « g Cy(m) Cy(m-tm)

1 2
Am2 : 4(m-§ Am)
N

‘[dm e e N

&Xp(-Amz/N) .

[}

R

As we expected, the intensity decreases as Am increases; it is

characterized by a gaussian as is shown in Figures VI.4 and VI.S.
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TABLE VI.1
=6
Magnetic quantum number Number of states CN(m)
3 1 1.04
2 6 5.42
1 15 15.01
0 20 20.85
-1 15 15.01
-2 6 5.42

-3 1 1.04
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Figure VI.2 The number of states of N spin-1/2 particles in each

m-quantum manifold using Stirling's approximation.

have a gaussian form.
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Figure VI.3 Number of states of ten spin-1/2 particles in each
m-manifold. The exact value of the binomial coefficient is

indicated by a circle. The gaussian curve is obtained by using

Stirling's approximation.
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Figure VI.4 Normalized overall intensity of the multiple quantum

spectra for each order m based on the statistical model (N=6).

The curve has a gaussian form.
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Figure VI.5 Normalized overall intensity of multiple quantum

spectra -for each order m based on the statistical model (N =

4, 7 and 10).
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Our prediction of the statistical model is in good agreement

with the experimental results.1

6.4 Second moment of MQ spectra

6.4.1 Introduction

The NMR spectrum in solids is generally very broad and almost
structureless. A study of lineshape and spectral width, however,
provides some information about the system. For example, second
moment measurements can provide some information about molecular
structure and motions in the solid state.2 One of the nice things
about moments study is that their values can be calculated from
the first principles, without having to find the eigenstates of
the Hamiltonian. The second moment of an ordinary single quantum
spectrum can ﬁe calculated by using the Van Vleck formula and
can be related to the molecular structure.

We generalized the expression of the second moment for usual
single quantum spectrum to the case for the multiple quantum
spectrum.

Let us consider a system of dipole-coupled spin-1/2 particles.
The Hamiltonian consists of two parts, the Zeeman Hamiltonian Hz

(0)

and the truncated dipole-dipole interaction HD ,
- (0) _ (0)
H=H +H = -dw I + Hy , (V1.6)

where Aw is the frequency-offset and

0y -

(@]

[H HD
z bl
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The FID S(t) of multiple quantum transitions is given by

3(e) = e uny M vy (V1.8)
We can decompose the multiple quantum operators U and V into
components of a different order of m, such as,

v = LU (0, (VI.9)

m
and
Tty = !
V(-t") %Vm( ") . (V1.10)

By the definition of the tensor operator, the operators Um and

Vm satisfy the following commutation relations;

[129 Um] =m Um )
[Iz, Vm] =m Vm . (VI.11)

As a consequence, we can prove easily that

iAwt T —ifwt I . |
e 2U e 2 o Qlmiwty . (VI.12)
m m
We may express S(t) in terms of Um by
. (0) ., (0)
-1 t i t
s() = ¥ ™ 1rce E U e E V) . (VI.13)
m —m

m

. 0 . .
Since HD( ) consexrves the magnetic quantum number, the non-vanishing

component in V(-T') is the one with a magnetic quantum number -m,
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V_m(-T'). We can further reduce the FID S(t) to a simple form;

(0) (9))
-1 t t
S(t) = 2: eimAwt Tr(e " U eiHD V_m)
m
imAwt
Z e Sm(t)
m
where
(0) 0)
-1 t t
S (t) = Tr(e HD U eiHD v ) . (VI.14)
m m —~m

The spectral function of the m-quantum transitons Gm(w) is the

Fourier transformation of Sm(t):
6 (w) = f TIPS (6) a (VI.15)

We define the normalized spectral function g(w) by

g(w) = V21 Gm(w)/fc(_w) dw

Y21 6 (w)/S_(0) ; (VI.16)
m m

this can be expressed explicitly by

... (0) ... (0)
. -1 t 1 t
!e-lwt dt Tr(e HD Um e HD V_m)
g, (W) = Tr(U V)
1 -iwt LN
A BT fe at ¥ 0" ™ @ v
m -m n

(VI.17)

where

b
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Using an inverse Fourier transformation, we will obtain

(0) (0)
) olvt dw_ 1 T(“iHD tU H, tv)
&n am Tr(UmV_mi rie m © -m
(VI.18)

By expanding the expressions on both sides into Taylor's series
of t and by comparing the terms of same power of t, we can obtain

this useful result for the n-th moment:

ndw _ _ (=D (n) (0) :
f 5@ & 5w T W@ D)

Mn (m) (V1i.19)

where Mn(m) is the n-th moment of the m-quantum spectrum.

Since Um and V_m depend on T and T', however, the value of
the n-th moment is not a constant. Its average value, however,
can be obtained by measuring the n-th moment of the T-averaging

multiple quantum spectra.

Particularly, we are interested in the behavior of the second
moment of the m-quantum spectrum. Based on the statistical model,
we are able to explain qualitatively the general behavior of the
second moment of the m~quantum spectrum, in terms of simple para-
meters such as the dipole couplings.

The second moment of m-quantum spectrum is given by
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(0)

1 ()]
Mz(m) = TI(U v ) Tr([HD ,[HD ’Um]JV_m)
m -m

1

' (s)) (0)
" Ty ) rEdE,,U T,
m -m

1

2 .
=Tr(UmV_m) )3 Eg <°‘lUmIB><3|V_m|a> . (V1.20)

a,B

As a special case in the ordinary single quantum NMR method,
operators U and V are the spin angular momentum operators IX
and I_, and are constant in time. The corresponding second

moment was first calculated by Van Vlieck and is expressed by3

M = Tr([HD

z Tr(I
-1 Yaf;z 3 d:]?-k ’ (VI.21)
K
where
i = 2 a-3 coszﬁjk) /Y?k

In the case of the multiple quantum NMR method, the single quantum
operator is not simply Ix or Iy' We should not expect the value

of M2 to be same as in the previous case. Because of the complexity
of the multiple quantum operators U and V, we cannot calculate the
second moment in a simple way. In the spirit of the statistical
model, however, we can assume that the transition matrix elements,

<a|Um|8> and <BIV_m}a>, are equal for each transition. Accordingly,

the selection rule due to molecular symmetry is not considered.
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We shall make another approximation on the transition
frequency EaB' We assume that the distribution of the energy
levels for a particular manifold of a magnetic quantum n can be
described by the distribution function g(w). This function is
also known as the density of state.

Let us consider two particular manifolds with distribution
functions, gl(w) and gz(w) as we have shown in Figure VI.6.

The spectrum of the transitions between two manifolds is
given by the convolution of their distribution functions, and

is expressed by

£(Q) = J[gl(w) gz(Q—w)dw . (V1.22)

Consequently, we can make an approximation on eq. (VI.19) for

second momentum by

M= jgl(w) g, (w-0) 9% dw do = jf(Q) a0 . (VI.23)

We shall now prove a theorem for the second moment of the

spectral functions that will be useful.

Theorem: The second moment of a spectral function is the additive
sum of the second moments of the distribution functions.

Proof: Assuming that the distribution functions gl(w) and gz(w)

are normalized, their second moments are given by

oi = J[(w—al)z gl(w) dw = «[(wz—ai) gl(w)dw , (VI.24)

and
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The spectrum of the transitions between the two

manifolds is given by the convolution of their distribution

functions.

Intensity « gl(wl)gz(w

162

o)

Schematic diagram for the transition between two

The function g(w) describes the distribution of
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o5 = (w-5,)7 g, (W) dw = W2-52) g, (w)du (V1.25)
2 2’ 82 2’ &1 ’ .
where @ is the average value of w, and is defined by

W = fwg(w)dw . (VI.26)

Since

‘[52 £(2)dQ

]

jgl(w)dij dQ gz(Q—w)

il

g. (w)dw ,f(,x+w) dx g, (x)
1 J 2

j gy (w)duw (Mz)

= 0, +0 , (VI.27)

we can prove that

Q= wl + w, . (VI.28)

The second moment of the spectrum is given by

o = j(QZ-QZ)'fm)dQ

]

fgl(w)dw I(Qz-(ﬁl%z)zlgz(ﬂﬂu)dﬂ

jgl(w)dwf[(xﬁn)z—(alﬁzz)]gz(x)dx

2

2 -, - -2
jgl(w)dw [02 + 2 wz(w—wl) + w —wl]

2 2
= Gl + 02 . Q.E.D. (V1.29)

As a special case, if the density of states is a gaussian, the
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spectral distribution is again a gaussian, but with a larger

width.

Using the above theorem, we can relate the second moment of
the spectrum to the distribution of the associated states by
evaluating the second moment of the density of states. The
spreading of the energy levels in the same manifold is caused

by dipole-dipole coupling. The second moment of the density

states is given by

2
02 = <HD(O) > - <HD(O)>2 (V1.30)

where HD(O) is the Hamiltonian of a dipole~dipole interaction

)

and < > is the averaged value. More explicitly, <HD(O > is the

)

trace of the Hamiltonian HD(O and is divided by the total number
of states in a particular manifold. Since the trace by any

operator does not depend on a particular choice of a basis set,

we can calculate its value without knowing the eigenfunctions.

6.4.2 Calculation of <H“(O)>

)

The truncated Hamiltonian HD(O of the dipole-dipole interaction

consists of two parts:

0) _ 1
o=y Dy 2 Iy, T, -5 (T T, +1, 1)) (VI.31)
1#3

0)

To more easily evaluate the trace of HD< , We may use some special

properties of the trace. As stated before, the trace of an
operator does not depend on the way of choosing the basis set.

We may choose the direct product of states for each spin, for
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example, |ooa...a>, |Bact...x>, and 8o on. Since the second part
of the dipolar Hamiltonian contains fli-flop operators Ii+Ij— and
Ii-Ij+’ their matrix representation using this particular set of
basis 1s off-diagonal and traceless. As a consequence, we can
completely omit this part of Hamiltonlan when evaluating the

trace of the dipolar Hamiltonian. In short hand, we can write

the dipolar Hamiltonian as

BD(O) = L 2D, LT, (VI.32)
i#j ’

We will derive an analytic form for the trace of HD(O) for each
manifold of magnetic quantum number m. For illustration purposes,

we shall first discuss several simple cases:
(1) Case of all spins up:

Tr(HD(O)) = <aa...af J 2 Dy Iy, I |aa. . .a>

"' . (V1.33)

I
N =
[

{897

1]
N
He
L

(2) Case of one spin down:

Let lk> describes the state with the k-th spin down, namely,

k> = |ao..aBa .. a>
1\
k~th spin

N
B |

0) S S
<klg, e = F 0y,

Z'Dik -
i,3#k 1

'D , (V1.34)
¥
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@) - f
3

i,j,k
? l \
- (v-2) ¥ 7 D4y - Dy
i,] »J
l 4
=5 (N-4) Y Dij . (VI.35)
i3
The subscript "," above the summation notation indicates that

the sum is taken for all indice 1i,j (or k), except i # j (# k).

(3) cCase of two spins down:

Let [kl> describes the state with k-th and 1-th spin down,

nanmely,

k1> = |oa...B...B...0>
+ 4

k-th 1l-th spin

CERURIR R I ALV i ST

{k,2} 1,3 {k,2} 1
N(N-1) L | N(N-1)  (N-2)(N-3) '
== L 50y -l - 2 -1y
i’j i j
-1 (N2 - 9N + 16) }:' D (V1.36)
4 & ij ’ ’

(4) Case of three spins down:

Similar to the previous case,

D,.
1]
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0, _ 1 '
D s L 5§ Pyt L L Oyt
{k,2,m} i,3 {k,2,m} 1

- C(N,3)%— izj D, = [CNE)-C(N-2,3)-(N-2)] ):_' D
sJ

i,j

1
12

It

(N-2) [(N—G)Z—N] z D, R (V1.37)

where C(N,3), etc., are the binomial coefficients.

Generally, for the manifold with n spins down, the trace of

(0)

HD ‘ can be shown as:

l 1
5 c(,m) }: D
i,j

ey, © y

- Z Dij [c(N,n)-C(N-2,n)-C(N-2,n-2)]

i,]
_ C(Nzn) 2 !

Since the magnetic quantum number m is related to the number of
. 1 .
spins down n by m = E—N—n, we can express the trace in terms of

m:

C. (m) '
0, __¥N 2
Tr (B)) = ey 4 - N i{j D, : (V1.39)

0)

The average value of the dipolar splitting <HD( > is given by
the value of the trace, divided by the number of states that

equals C(N,n). Finally, we obtain an analytic expression for

the averaged dipolar splitting as follows:

3
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]

<HD(O)> =31 [(N—Zn)2 - NJ Z D

2N(N-1) 5 ij
- 1 2 '
= sneecry (4@ - N i;% D (VI.40)
= %-[4 m2 - N]<D>
1
where <D> is the average dipolar couplings and <D> = Z: Dij/C(N,Z).

i,]
The value of the magnetic quantum number m is an integer or

a half-integer if N is an even or an odd number. The value varies
from ~-N/2 to N/2.

If the distribution function of the states has a gaussian
form, the distribution center is shifted away from the Zeeman

level by the amount of <HD(0)>.

(0) | (0)
Since HD is a traceless operator, the sum of Trm(HD )
is zero, namely,

N/2 ©
y Tt )y =0 . (VI.41)

m=-N/2

Accordingly, we can easily show that
(0 (0) 4
= . .42
Tr (H77) = Tr_ Hy) (VI.42)
We shall give some illustrations for the equation of the

trace of HD that we have just proved. Let us consider a

dipole-coupled system of N spins with N = 2, 3,...6.



[
(o)
(Yo

_ 4 (O
#y = Hy
(1) N =2
m=1 Tr@c.) = 1-2' D
) 13
= = - 7!
m=20 TrCKD) z Dij
(2) N=3
_3 J N
m =3 TICKD) 5 z Dij
-1 = 1 ¢
m =3 TrCKD) 2 z Dij
(3) N=4
m=2 Trlc) ==3'D
My T2 ij
m=1 Tr(J(D)=O
m=0 TrCKD) =-I'D,,
. ij
(4) N=5
_ 3 _ 1.,
m =3 TrCKD) 5 z Dij
_3 =1
m =3 TrCKD) > z Dij
=l = 31!
m =5 TICKD) z Dij
(5) N=6
=3 TrGc) =:31'D
" TV 2 ij
= - vt
m 2 TrCHD) z Dij
- - _ 1
m=1 Tr(J{D)— 7 L Dij

m=0 Tr(xX.,) = -2 L' D,,
D ij

As a special case, we can compare the results for the methyl

group or benzene molecule systems with the above equations. We
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show that they are identical.

6.4.3 Calculation of <ﬂ;2>‘and'diSCuSSion

To estimate the second moment of the density of states, we

need to calculate the trace of X 2 where

D ’
#2<z'p, [21, 1, (1,1, +1, 1.)]
D ij iz7jz 2 i+ j- i-"3+
1
' —
x Z Dkl[z IkzI,Qz T2 (Ik+IQ +Ik Ig+)] . (V1.43)

We can omit the off-diagonal elements that do not contribute to

the trace. Those elements are Ii J, zIk+I ) Iinszk—I 4 and

so on. Consequently, we can show

= ' '
Kb ' 2 Dij Iiszz)(Z Z Dkllkz Ilz)
+-l L' D,.D (I, I, 1,1 + I, I, I 1
4 ij7kL it j-"k+ 2~ i+~ "k="2+
+ Ii_Ij+Ik+IZ_ LRI IR Ioy) . (VI.

We can make further simplifications by noticing that the trace

of 1 is non-zero only if 1 = £ and j = k. Finally,

TR

we have

2
%2 2 (5 .
p = (' 2D, T )EN 2 D,L T,

1 ., 2
#g DU (T Ty T T T LTI . (VI.

The calculation of the trace of the second part is rather

easy. We can show that the matrix element for the second part

44)

45)

is non-zero for those states where spins 1 and j are anti-parallel.
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Consequently, we will obtain

1 __ g p?
1

ST ; C(N,n) (N,n)n

% C(N,n) (N-n)n <D>> . (VI.46)

The trace calculation of the first part is rather complicated.
We shall first discuss a special case and assume that all the
coupling constants are equal, that is, D, = D.
1]

In this case, we find

1
Tr(Z' 2 DijI )(Z 2 Du Kz Q )
=4D2Tr<z'1 I I I )
iz jz kz Lz
- ‘1]% p° [(N-20)2-N]% cm,n) . (VI.47)

The average values of Hbz and ﬂb are given by

2 Tr(ﬂbz) D2 D2
<J(D > = T =5 (N-n)n + == [(N-2n) —N] , (VI.48)
H> =g L= - (VI.49)

The second moment of the density of states is defined by

2
2 2 D
- <K = 2_ (N- .
<JCD > - <G> > (N-n)n . (V1.50)

Since n is related to m by
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N
m=3-n ,
we find
2 .2

2:;@- by 2
Gm = <IC> <ﬂb> =3 (4 m ) (VI.51)
o = <> = Dandon (VI.52)

m 4 '

where wm is the averaged frequency shift in the manifold with

the magnetic quantum number m.

\ : 2 .
The second moment of the density of states wm is a monotonically

decreasing function of m. Nevertheless, the averaged frequency

shift increases monotonically with m.

Assuming a gaussian form for the distribution of the states,

the density of states is given by

1

2 2
gm(w) = CN(m) — exp[-(w-wm) /20m]
m
N om?/N = (wew )220 2
x —— e e m m ,
YNTo
m

where CN(m) is the total number of states in the manifold of m.

(VI.53)

The spectral function of the m-quantum transition is given by

n

Fm(Q) = 2: —i g, (w) 8, (w-2)dw

1’72 1 2
]nl—n2|=m (VI.54)
+
E: 22N 1 2( 2+n 2) 1 9
N n, ,n N1 e 1 2 2 xp[-(Q—wn n )2/2On n,]
172 Y21mo 1’72 1’727
nl,n2
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where
2 .2
2 etad S A 2inh (V1.55)
i i I B!
and
2 2
W =D(n “-n,) . (V1.56)
nl,n2 2

The second moment of any particular m-quantum transitions

associated with the manifolds of magnetic quantum number n, and

n,, is given by

(o]
2 - | e®a 1 exp[-(~s_ %202 ]
00y 2 R ) R )
—00 27 © 0
b )
= o2 + 2 )
L R B K L)
2 2
D° N 2 2 2 2 2
= 7{'[7{'— n, -n, 1+D (nl—nz) (nl+n2) , (VI.57)
where m = nl—nz.

All transactions between any pair of manifolds of n, and
n, with m = n,-n, contribute to the m-~quantum spectrum. The

second moments of the m-quantum spectrum is given by

<«0?> fF ©) o° dQ/fF (Q)d9
m m m

2 2
[ Z (On n +u n ) CN(nl) CN(nz)
nl,nzl=m 1" 2 1" 2
ln};n - Cy(ny) € (ny)
12
= A + B s (VI.SS)
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where
2 .2 Z(n2+n2) e:cp(-.z(nzmz)l :
_ D" (N 1 2 N 1 2
A == {& - } (V1i.59)
m 2 2 2 2 2
I expl[- E-(nl +n,7)]
and
2 2 2 2
L (ny+n,)” expl- < (n, " 7)]
B_ = p?n? 1 2 N 1 2 (VI.60)

I expl- & (n) %0, 5]

Two sources contribute to the second moment of the spectrum.
Firstly, the Am term comes from the second moment of the density
of states. Secondly, the Bm term results from the averaged
frequency shift of each manifold.

Generally gpeaking, the A.m is a monotonically decreasing
function with m, whereas Bm is a monotonically increasing function
for small m and a decreasing function for large m. To illustrate
the systems of 6, 10, and 20 spins having equal couplings, the
normalized values of<dg>m, Am and Bm are plotted in Figures
VI.7-VI.9. The dependence of <QZ>m for various N is shown in
Figure VI.10.

The summations in eqs. (VI.58), (VI.59), and (VI.60) are
taken for n, and n, with nl--n2 = m and g-s ny,0, < N/2.

1 2

By suitable rearrangement of the indices, we can obtain a

symmetric form for the summation. Let n, = n,n, = n+m and x =

n + %; we can rewrite eq. (VI.59) and (VI.60) as
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Figure TV.7 This illustration demonstrates the normalized
dependence of the second moment of the number of quanta

. . . 2
assuming equal coupling constants (circle: < >m, square:

triangle: B ).
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0.8

N=10

- 1 2 3 4 S 6 7 8 °) 19

Number of Quanta XBL 813-8350

Figure VI.8 This figure is similar to Figure VI.7, except that

N = 10 (circle: <Qz> ; square: A_; triangle: B ).
m m m
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Figure VI.9 This graph is similar to Figure VI.7, except that

N = 20 (circle: <Qz> ; square: A ; triangle: B ).
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Figure VI.10 Normalized dependence of <{I >m onm for N = 5,

10, 15, and 20.
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=2 .
2 2
B =4Dp"m E Y e x , (VI.62)

2
b ¢

N-m
2
A = Z e R (VI.63)

-—

2|

The sumation in the above expressions can be approximated by
using integration to avoid the complicated calculation. Using

the definition of error function as
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X
1 —t2
erf(x) = — jd dt , (VI.64)
Y
~X
we can show that
Nem+1
2 _ 5_x2
z = e ¥V ax=ivw erf =t , (VI.65)
m 2 /.ﬁ
_ N-m+l
2
and
N-m N-m+1
2 _4 2 2 _4 2
;{: 2o XN N J[ L B2,
_._N—m _ Ne-mt+1
¥ 2
(w2
N pAr e Nembly iy e Ny L (vI.66)
8 2 /N

The approximated value for Am and Bm can be obtained:

2
n-m+1 exp (- (N-mr+l) )

2 v
A = %r-{Nz—mz—N [%—— — N 1}, (VI.67)
n e erf(——EL—O

YN
N-m+1 D’
22 1 TR exp(- (n—§+ =

B =Dm'N [5 - r— ] : (VI.68)

o YT erf( = )
YN

The value of the error function can be found in most books
of mathematical tables.4 In the special case of small m and

larger N, the value of the error function in the above expression

is approximately equal to unity.
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Using an integration approximation, the calculated value of

2
<Q™> (= A + B ) is very close to its exact value, except for
m m m
large m. The comparison is illustrated for the cases N = 6 and
10 and is shown in figures (VI.11l) and (VI.12).
We shall proceed with the discussion on the general case
without assuming that the coupling constants are all equal.

The complex calculation for the general case comes from

finding the square trace of the diagonal dipolar Hamiltonians,

] t
TrlC § 2D 1, LYC F 2D, 5, Il

i, k,2
= §: G£ ' D, - D )2  (VI.69)
7 L ij Z: ik : .
{a,B} i,j ik '
i,jEAUB

The first summation is carried out over all possible sets, with
subset A containing N-n spins up and subset B containing n spins
down. The notation AUB represents the union set of subsets A

and B.

The trace calculation is straightforward, yet tedious. The
computer program needed to perform the trace calculation for each
manifold and for the second moment of the multiple quantum spectra,
based on the statistical model, is shown in the appendix A.

The second moment of the density of states in the manifold having

magnetic quantum number n is defined by

2 2 2
o, = <Hb > - <Hb> . (VI1.70)
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Figure VI.11 Here we observe the normalized dependence of the

second moment on the number of quanta if we assume they have equal
coupling constants. The value obtained by the integration
approximation (square) is very close to the value based on the

statistical model (circle), except for large m (N = 6),
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Figure VI.12

N = 10.

This graph is similar to Figure VI.1l, except that
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It has a complicated dependence on the distribution of the
dipole couplings and can be caluclated by using the computer

program shown in the appendix.

Yet, the averaged frequency shift W in the manifold with a

magnetic quantum number m has a simple relation, and is given by

<D> 2
wn - <ﬂb>n = % (4 n"=N) R (V1.71)

where <D> is the averaged dipole coupling constant.

The second moments of the m-quantum spectrum is given by

Y 2 2
2 L (0“1"‘2 i wnl’“z) ) Gy
Q7> = : Z ’ (VI.72)
m .
o Cy(n)) Cy(ny)
172
2 2 2 .
where © n = O + 0 and w n. =W, —wn . The contribution
, 2 1 ™ i R 1,72
of <Q >m from the averaged dipolar shift woon is large for the
1’72
case with <D2> - <D>2, and has a simple form
L w? C,.(n,) C.(n,)
n,,n, N 1 N2
B = 1’72
m

T CN(nl) CN(nZ)

2
L (n,+n,)" C_(n;) C.(n,)
- <D>2 m2 1 72 N1 N2 .
T CN(nl) CN(nZ)

(VI.73)

The complicated calculation of A , which comes from 02 , 1is
m nl,nz
carried out by a computer program in the appendix.

For example, the second moments of six spin systems, that

have various sets of dipole couplings, are illustrated in Figure
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VI.13. The top curve refers to the system with all the dipole
couplings equal. This particular system has a very large
component. The bottom curve refers to the system with coupling
constants of equal magnitude, but that alternate in sign. Its Bm
component is zero. The second moments decrease monotonically with
m. The central curve is for the benzene molecule. Its coupling
constants are not all equal, but have same sign.

Another example is illustrated in Figure VI.1l4, The curve A
is a monotonically decreasing function of m, since the dipole
couplings between the two methyl protons alternate in sign and
have a small <D>.

The curve of second moments has a strong dependence on the
ratio of vy (= <D>2 /<D2>)-—as we illustrated in the comparison
between the Benzene molecule and dimethylmaleic anhydride molecule.
This is also shown in Figure VI.1l4. 1In the case A, all couplings
are equal to one and Y = 1. As more couplings have negative sign
as in the cases B, C, and D, the value of Yy decreases. For all
the above cases, <D2> is the same and equals one, however, <D>
becomes smaller in the sequence from A to D.

Even the distribution of dipole couplings has the same value
of v, although some small variation of the second moments'
dependence of m still exists. A few examples are shown in Figures
VI.15 and VI.16. 1In each figure, the value of vy is equal. It
appears that the second moments are large if several spins with
an opposite sign in coupling are in common. For example, the
system A in Figure VI.15 has two negative coupling constants

D(1,2) and D(1,3). They have a &fommon spin index 1.
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Second Moment(m)/Second Moment (3D
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Figure VI.13 Here we see the normalized dependence of the second

moment on the number of quanta (circle: equal coupling constants;

square: benzene, triangle: couplings equal in magnitude, but

alternating in sign).
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Figure VI.14 Normalized dependence of the second moment on the

number of quanta for N = 6 (A: dimethyl maleic anhydrice which

has couplings alternating in sign; B: benzene which has couplings

of the same sign).
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Figure VI.15 Normalized dependence of the second moment on the

number of quanta for N = 6 (A: all D(i,j) = 1 except two couplings
D(1,2) and D(1,3); B: D(4i,j) = 1 except D(1,2) and D(3,4)). 1In
case A the couplings having a negative sign share a common particle

1.
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Figure VI.16 Normalized dependence of the second moment on the

number of quanta for N = 6 with all D(i,j) = 1, except for three

coupling constants shown in cases A through E.
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Although there is a small variation in the function of
second moments, their overall behavior is largely determined
by the value of y (Figure VI.17). The qualitative dependence
of the second moments of the multiple quantum spectra on the
value of <D2>, <D>2, and vy predicts different behavior of the
second moments for molecules of benzene and dimethylmaleic
anhydride. The experimental spectra in Figures II.9 and V.8

show a good agreement with the statistical model for the second

moments.
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Figure VI.17 HNormalized dependence of the second moment on the

number of quanta for N = 6 (A: all coupling constants equal to
unity; B: D(i,j) = 1 except that D(1,2) = -1; C: D(i,3) =1

except that D(1,2) = D(3,4) = -1, and so on).
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VII

SPIN~-LATTICE RELAXATION OF METHYL GROUPS IN SOLIDS

7.1 Spin-lattice relaxation

As discussed earlier in chapter IV, the time-~dependent
Hamiltonian Hl(t) describes the fluctuation of the interaction
between spins and lattice. This fluctuation is responsible for
the relaxation of the spin system toward thermal equilibrium.

The spin-lattice relaxation time characterizes the recovery of
the non-equilibrium diagonal elements of the density matrix. The
diagonal part of the density matrix describes the population of
states.

In general, the spin-lattice interaction can be written as

a inner product of two tensors of rank j:

B ) = T DTV e @17, el <9 o1
wom
with
1, gmiu] ) E?gu ’
and

(m) m (-m)

(3w
There are several common forms for the tensor operator

(m) 2
(J)u



194

(1) VU is linear with respect to the spin operators, for
example, the interaction of spins with the random fluctuation
fields.

(2) VU is bilinear with respect to the spin operators of
single nuclei, such as the quadrupole interaction of nuclei with
spin I > 1 with the fluctuating electric field gradient.

(3) VU is bilinear with respect to the spin operators of two
different nuclei, such as the fluctuating spin-spin interaction.
In case (1) j = 1, and j = 2 in cases (2) and (3). The subscript
j will be dropped out in a later discussion.

The correlation functions Gﬁm)(T) are assumed to have an

exponential decay form characterized by a single correlation time

Tc,

m _(-m) (n) _ (m)
-1 fU (t) fG (t-1) = dmn duv Gu (0) exp(-T/Tc). (VI1.2)

Using the above explicit expressions for the time-dependent
Hamiltonian Hl(t) and correlation function, the master equation

of motion in equation (IV.11l) is expressed:

do j —iHOT iHOT
30 = ~ilH .ol - | dt [e H (t+41) e, [Hy(t),p-p_]]
0

and becomes

(o9
i)

=il -2 T o me) v ® e 11, iy
o u,m u o u M ©

[a ¥

t

where the spectral density Jp(m wo) is defined by the Fourier
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transform of Ggm)(T) as

2T

(m) c
Jmw)=2¢C 0) . (VII1.4)
H ° H 1+ m2 woz T 2

c

7.2 Spin thermodynamics in solids

It is generally assumed that after any disturbance the
density matrix of a dipole-coupled spin system in solids takes

the form:3
- (0)
p =1+ a, Hz + oy HD (VII.5)

due to a complete spin diffusion. The time-dependent Lagrange

multipliers a, and o, are the inverse temperatures of the subsystems

D
of the Zeeman reservoir and dipolar reservoir. As a result, the
Zeeman as well as the dipolar relaxation, is characterized by a
single exponential decay; they are not coupled.

The above traditional model, however, is not adequate for
describing dipolar solids that contain reorienting or tunneling
symmetrical groups, such as CH3, CF3, and NHA' They have a
general feature of non-exponential relaxation. -

Without losing generality, we can assume that the spin system
has no subsystems. As far as the spin-lattice relaxation is
concerned, only the diagonal part of the density matrix is
relevant. The Zeeman subsystem is characterized by the
operator IZ; each subsystem is associated with an operator.

It is convenient to define a set of n orthonormal, traceless

7

diagonal matrices 0 's,

k
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Tr 0, =0 R (V11.6)

and

Tr(OkO ) = 61 (VI1.7)

3 J )

Using high temperature approximation, we can assume that

p=1+ 2: a, 0k , (VII.8)
k

where o, = Tr(Ok o).

Using the following relations,

Tr(Ok[HO,p] = Tr([ok,Holo) =0 ,

and

(m) [+ (m) - (m) |yt (m)

we can express the master equation for the density matrix in

terms of these orthonormal operators,

d -
S50 T - }; S35 o) , (VII.9)

where

(m) 4, (m)

1 |
s . =2 T J o)y tecio ,y® v ™0
ki 2 j;; U o k' p Y J

-2 L 3, oy eo,v P10, (VI1.10)

u,m
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The off-diagonal elements of the relaxation rate matrix S
describes the cross-relaxation between the two associated

subsystems.

The transition rate matrix W is related to the matrix S

by
1
j =7 z k o k B)( ’,B)WaB ’ (VII.11)
’
where waB is the transition rate between states |a> and IB>,
and
- (m) 2
Wyg = y I muw) |<a|v |8>]
H,m
=L dt <o|H, (t) [B><B[H, (t-T) |&> exp(iw ,T) . (VII.12)
§2 1 1 aB
-0
Both matrices S and W are symmetric, namely,
S5 = Sk . g = Yaa (VII.13)

The lifetime ta of state [a> is related to the elements of W by

the equations (IV.25) expressed as

1/t = Y W . (VII.14)
B#a

~
Defining a new matrix W by

g = Vo =80 )}waY , (VII.15)
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we can show that

L Wy =0 , (VII.16)

a

Wy = Wag , (VII.17)
= - 0 . .

S5 OLZ,:B 0 o 5.8 Vg (VII.18)

N

The Pauli equation for the population change is related to waB

by

d _ o]
Tt %=~ L Vg (04Py 0Pg*3,0) > (VII.19)
8

where Py is the population at state la>. The above equation is
completely equivalent to the equation (VII.9). Yet, by choosing
an appropriate set of the operators Oi's, we may obtain a better

physical picture about the relaxation mechanism,

7.3 Relaxation of protonated methyl groups in solids

The cross-correlation in the fluctuation of the dipole-dipole
interaction in solids has strong impact on the behavior of
relaxation. Generally this leads to an non-exponential spin-lattice
relaxation.

The methyl groups 1n solids undergo hindered rotation about
their three-fold symmetry axes. The first random reorientation

modulates the dipole-dipole interaction among methyl protons.
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The spin state of methyl protons consists of eight levels as
shown in Figure VII.l.8 The E° and Eb states are shifted upward
in energy with respect to A states that result from rotor-lattice
interactions. The energy splitting is ﬁwt. At high temperature,
where semiclassical description is valid, the tunneling frequency
w, is approximately equal to zero.

Because of the conservation of total population, the distribution
of population among eight levels can be described by seven
independent occupation operators Ok' It is convenient to choose
them according to physical properties. Two of them, 0l and 05,
correspond to the Zeeman and dipolar system. Another two, 04

and O correspond to the rotational polarization, being defined

6°
as the excess in population of E? over Eb states, 06 to the
tunneling sysfem, being defined as the excess in population of A
over E spin species.8 The eigenvalues of these operators are
given in Table (VII.1).

Using the above set of occupation opemators, the relaxation
rate matrix can be evaluated if we assume a three-fold random

reorientation of the methyl groups. Their values are listed

elsewhere.8

Up to now, the effects caused by the interaction among methyl
groups has not been taken into account, this leads to a spin
diffusion process at a rate much faster than the spin-lattice
relaxation.

The traditional spin temperature model, assuming a complete
spin diffusion which mixes up the A, Ea, and Eb spin states, shows

that the Zeeman and dipolar systems are the only quasi-constants
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Fig. VII.1 This figure illustrates the energy levels of the three
protons of a methyl group considering the Zeeman, intramethyl dipolar,
and tunneling interactions. The appearance of a tunneling energy in
the spin Hamiltonian is a consequence of the Pauli exclusion principle

that couples spin and rotor symmetries.
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‘Table VII.1

Eigenvaluesa of the Occupation Operators »C

a a b b
Ay By Ay Ay By Elyn By Bl
V6 ol 3/2 /2  -1/2 -3/2 1/2  -1/2 1/2  =1/2
V2 0, 1/2  -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2
V3 o3 0 1 -1 0 -1/2 1/2 ~1/2 1/2
0, 0 0 0 0 1/2 1/2 -1/2 -1/2

0, 1/2  -1/2 -1/2 1/2 0 0 0 0
V2 o6 1/2 1/2 1/2 1/2 -1/2 -1/2 -1/2 -1/2
0, 0 0 0 0 172 -=1/2 -1/2 1/2

4 The eigenvalues are for the spin eigenstates of the Zeeman and
secular dipblar Hamiltonians. At quasi-equilibrium, all of the
number operators are diagonal.

bThe identity operator which, may be taken as the eighth occupation

operator, is not needed since the total population of the spin

states is constant.

CThis table is taken from reference 8.
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of the motion.2 The density matrix at quasi-equilibrium is of

the form

p =1+ alol + aSOS .

The spin-lattice relaxation of a, and 0 are independent at a

1

high temperature when w, = 0. They relax exponentially at rates

13 and Syc. At low temperature when W, # 0, the cross-relaxation

rate S15 is not zero, and the Zeeman and dipolar systems are
coupled.7 The spin-lattice relaxation is characterized by two
exponentials.

The prediction of the above model does not agreé with the
experimental facts of the non-exponential spin-lattice relaxation.
Because of the rapid reorientation, the flip-flop terms of the
inter-methyl dipolar interaction conserve the symmetry of spin
states. The protons of the same methyl group experience the same
averaged local dipolar field than protons in neighbor methyl
groups. This is the basic assumption of symmetry-restricted spin

8,9

diffusion (SRSD). In this case, four degrees of freedom are

expected.8 Instead of equation(VII.5), the quasiequilibrium

density matrix takes the form:

o =1+ alol + oc404 + asos + a606

2

2
When (w_ +nw )™ T << 1, i.e., w, = 0 or w_ >> w_, the
t o c t o

t

Zeeman system is only coupled to the rotational polarization, and
the dipolar system is coupled to the tunneling system, as shown
in Figure (VII.2). These predictions have been verified

experimentally by discoveries of the Haupt effectlo_12 and
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= 0, the Zeeman system

is only coupled to the rotational polarization, and the dipolar

system is coupled to the tunneling system.

This leads to non-

exponential spin-lattice relaxation and the Haupt effect.
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and non-exponential spin-lattice relaxation. For an arbitrary
value of w s the relaxation of Qys Oy as, and G, are mutually

coupled as is shown in Figure (VII.3).

7.4 Relaxation of deuterated methyl groups in solids_.23

7.4.1 Introduction

The relaxation mechanism of reorienting or tunneling methyl

, R . R . 4=
groups in solids has been under intensive investigation. 20

4-6,8,17
a

The non-exponential nature of spin lattice relaxation nd

the Haupt effectlo—l2 of thermally induced dipolar polarization
can be explained as being a result of the dynamical couplings
among Zeeman, dipolar, tunneling, and the rotational polarization
systems. At high temperatures, the non-zero couplings exist only
between the Zeeman and rotational polarization systems and
between the dipolar and tunneling systems,

In this section, we shall study the system of deuterated
methyl (CD3) groups in solids. Some interesting new features
arise because of the deuterium quadrupole coupling. In a manner
analogous to the CH3 case,7 let us assume that the relevant
quasi-constants of the motion are the Zeeman, quadrupole,
tunneling, and rotational polarization systems. The dipolar
reservolr is negliligibly small in the CD3 case, In particular,
we assume, that the fluctuation of quadrupole coupling of the
deuterons, by random reorientation or tunneling of the methyl
group, is the dominant relaxation mechanism. We shall derive
the relaxation equations for the above subsystems and see which
subsystems are mutually coupled by relaxation. The full

calculation is given in Section 7.4.2. Here we shall mention
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Fig. VII.3 1In general, the lattice, Zeeman, rotational polarization,
dipolar, and tunneling systems are all coupled together. The cross-

relaxation rates S X and S vanish when 0, = 0 or ut>> w, .
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the main findings. For random reorientation at high temperatures
(i.e., 2 77°K) Zeeman, quadrupole, tunneling, and the rotation
polarization systems are predicted to be uncoupled. This is a

contrast to the CH, case. As a result, the Zeeman spin lattice

3
relaxation is expected to be exponential. TFor tunneling CD3 groups
at low temperatures (<< 77°K) the Zeeman and tunneling systems

are coupled, and consequently, the Zeeman spin lattice relaxation
is predicted to become non-exponential. The experiments that

we have done to test the calculations consist of measuring the
Zeeman spin lattice relaxation of dilute toluene, with the methyl
group having been deuterated, at liquid nitrogen and liquid helium
temperatures. The experimental results are discussed in Section
7.4.3. We mention here that the relaxation is exponential at
liquid nitrogen temperature and becomes non-exponential at liquid

helium temperature, thus verifying the unique expectations for CD3

relaxation.

7.4.2 Theory

Consider a CD, group with geometrical parameters shown in

3
Figure VII.4. Unlike the system of methyl protons, the dominant

relaxation mechanism of deuterated methyl groups is caused by the
fluctuation of quadrupole coupling through random rotation of the
reorienting or tunneling methyl groups. The much less efficient

relaxation process due to fluctuating dipolar interactions may be
neglected. The Hamiltonian of the rotating methyl deuterons in

a high field consists of a Zeeman term (Hz), tunneling term (Ht),

the time-averaged truncated quadrupole interaction (ﬁQ), and its

fluctuating nonsecular part (Hl(t)) responsible for relaxation:



/%

XBL 7912-13588

Figure VII.4 This figure shows the geometry of a methyl group.

8 is the angle between the C3 axis and C-D bond, and B is the

angle between the C3 axis and the magnetic field.
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H=Hz+Ht+H +Hl(t) .

Q

The energy level diagram with the classification of irreducible
representations of the C3 group is shown in Figure VII.5. The
truncated quadrupole interaction ﬁQ’ averaged over the random

rotation, is reduced by a factor of Pz(cose)

w
ﬁQ = 7§-P2(cose) Pz(cose)TA(O) ,

(m)

where TU is the component of the symmetry-adapted tensor

operator of the second rankl and y = A, Ea, Eb are the irreducible

representations of the C3 group,2

T(m) =T (m) + AT (m) + }\*T (m) R with u = A, Ea or Eb
! 1 2 3
for A =1, € or E*, € = exp(i2m/3) and Ti(o) =3 Iiz - I(I+1),

+ +
i =1, 2, 3. Here the tensor components T(—l) and T(_z) are

generated from Tﬁo) by commutation relation1

(m*1)
!

[<I+,T§m)>] - I i) T

As shown in Figure VII.4 B is the angle between the C3 axis
and the magnetic field; 6 is the angle between the C3 axis and
the principle axis of the electric field gradient tensor.

The fluctuating term Hl(t) can be expressed as being a
product of the symmetry-adapted tensor operators and spatial

functions,

2
w
- ) Q . (m), . (m) +
H (t) = T %Mo’
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2

53—/
Zeeman Quadrupole Dipolar Zeeman Quadrupole Dipolar
Splitting Splitting  Splitting Splitting Splitting Splitting

XBL 7912-13587

Fig. VII.5 This figure illustrates the energy level scheme with a

classification according to A, Ea, and Eb states. w, is the tunneling

splitting between the A and E states.
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where
F (0 =-3 21¢sin 6 sin B —-2 iei¢ sin26 sin28
g2 8 8 ’
. ,
F a(—l) = - {g ie21¢ sin26 sinB (Fl+cosB) + /g e1¢ sin26 (cos2RficosB) ,
E
+
F a(“z) = (z% 219 sin 8 (l+cosB) /g ieiqb sin20 sinB(;l+cosB) ,
E
and
Fp® oy @ .
E

The angle ¢ fluctuates randomly by a fast rotation of the
methyl group about the C3 axis.

The correlation functions Gﬁm)(t) are assumed to decay
exponentially and to be characterized by a single correlation

time T ,
c

w %
D F 0 5 (e = 6™ (0) exp ot/

They are evaluated as tabulated in Table VII.Z2.

For spin-lattice relaxation only the evolution of the
diagonal part Py of the density matrix is relevant.22 Based on
the Symmetry Restricted Spin Diffusion (SRSD) model,8 we can
assume that there are four degrees of freedom that characterize
the quasi-equilibrium during the relaxation process. In the high
spin temperature assumption, we can decompose OD into a set
of four traceless and mutually orthonormal operators, and the

unit operator with their corresponding Lagrange multipliers o
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Table VII.2

H

1ed o . (
y~Adapted Correlation Functions Gﬁm)(O)

sin48 sin48 (1+16 cosze c0828)

w
?gy-[sinAG sin28 (l+cosB)2

+ sin226 (c0828~c038)2]

w2
?gr-[sinAG sin28 (l—cosB)2
L2 2
+ sin 26 (cos2BR+cosB) ]

w2
———-[——sin48 (l+cosB)4

N

+ sin226 sinzB (-l+cosB)2]

w2
1-sin48 (1—cosB)4

+ sin226 sin28 (l+cosB)2]
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Pp vl o+ alol + (1202 + a303 + a404

0,, O 0., and 04 defined below, correspond to the Zeeman,

1’ 72 73

tunneling, quadrupole, and rotational polarization systems

respectively, namely,

o
1

I
IZ/ VTr(Iz)2 - Z R
V5%

_ /176 ,1 1
0. = TTT-(T11A><A|— Ig|E><E|) ,

2
0= L1 ©
3V2
1 b b
0, = & (|E®<E?|-|P<E®])

a
where ]A><Al, IE ><Ea! and others are projection operators.

The equation governing the relaxation of the system toward an

cq sy . . 7,8
equilibrium with the lattice can be expressed as ’

. e
a = =S+ (a-a"Y)
where 0 is a column-vector with components o - The symmetric

relaxation matrix S have the components ’

2 =)
1 (m) 'lrl/tc -iHT_(m) iHT
S =2 Z ) z GU (0) f dT e Tz ([0, ,e Tu e
p=e? E° m=-2 o
(m) 2T, (@) ., +(m)
J[TU 0,1,

= z: E: GU (0) . )2 5 TI‘(P[Ok,TU
uom 1+ (myo Tyt ? 1e
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where w, is the observable tunneling frequency7 and the projection

operator p = [A><A[.
The non-zero relaxation rates Skl were evaluated, yielding:
(m) (m) :
- v G © ST 2
11 7 La b 7 2" 22| T
m-1,2 u-E°,E l+(mwo+wt) T 1+(-mmo+wt) Te
" 6™ (o) i™ oy ]
S, = L. b[ b - | 162 i%mc
m=1,2 U=E",E 1+(mw0+wt) T 1+(-mwo+wt) T, ]

(m)
S - Gu (0 .(81 2 .
22 SO a. b . 2 2 ‘ﬂ c
n=0,%1,¥2 u=g ,E I+(my +w, )T
ot c
o - 6™ () 6t? (0)
33 U=Ea Eb ) + 2 3 81 Tc ,
1+(woant) TC 1+(—wo+wt) TC
TR e e
S44 = 5 162 Tc

a_b
=0 +1.+ =
m=0,%1,¥2 u=E ,E l+(mwo+wt) T,

The quadrupole system and the rotational polarization system
are characterized by a single relaxation rate 533 and 844. The
Zeeman system and the tunneling system, however, are coupled

through S.,, which is non-zero for w, # 0. The spin lattice

12
relaxation is non-exponential, in fact, a sum of two exponentials.

At high temperatures, when wt = 0, the Zeeman system and the

tunneling system become decoupled, since S12 = 0,
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7.4.3 Experimental results and discussion

The spin~lattice relaxation of toluene, when the methyl
groups is deuterated and diluted in a normal protonated toluene
matrix (v 10% by mole), was measured at liquid nitrogen and liquid
helium temperatures in a field of 42.5 kG. The corresponding
resonance frequency of the deuteron NMR is 28.4 MHz. A three-
pulse sequence 18OX-T—9OX—T'—9OY is used to measure the spin-
lattice relaxation. The first 7 pulse is used to reverse the
magnetization. The second and third 7/2 pulses are used to
generate a quadrupole echo for improving the S/N ratio and for
achieving easier detectionm.

The spin-lattice relaxation time was measured on the recovery
of the sharp singularity in the powder spectrum. The recovery
of intensity at iiquid nitrogen and liquid helium temperatures
are plotted on a semi-logarithmic scale as we have shown in
Figure VII.6. We found the relaxation to be exponential with a
T, of 1.1 2 0.1 sec at liquid nitrogen temperature. At liquid

1

helium temperature, the spin-lattice relaxation is characterized

by two exponents with relaxation rates Al and Az; AIl = 0.9 *
0.1 sec and A;l = 26 = 3 sec. Al and A2 are related to Skl by
Al + AZ = S11 + 822
Moo T S22 T Siz

S1l’ the initial slope of curve in Figure VII.6b, is measured
L1
i = + =
with S1l 12 £+ 1 sec. 812 and 822 are calcualted to be 812
-0.23 £ 0.02 sec:—l and S = 0.9 0.1 sec_l. The non~exponentiality

22
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Figure VII.6 The recovery of the intensity of the spectrum is

plotted on a semi-logarithmic scale. (a) The spin-lattice
relaxation at liquid nitrogen temperature is exponential with

Tl = 1.1 + 0.1 sec. (b) The spin-lattice relaxation at liquid

helium temperature is the sum of two exponentials.
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of spin-lattice provides us with evidence of the coupling
between the Zeeman and tunneling systems. The inter-system

coupling S is non-zero at low temperature when the tunneling

12

is in communication with the Zeeman system, i.,e., wt N wo or
v 2mo——such that both systems may eﬁchange energy through phonons
(Figure VII.7).

Finally, we briefly compared the relaxation processes between
the methyl protons and the methyl deuteron systems. In the first
case, the protons are coupled to the lattice by a dipolar inter-
action. This is a two-body interaction between protomns. The
existence of cross-correlations among the intramolecular dipolar
interactions results in coupled, namely, non-exponential spin-
lattice relaxations. In the CD3 case, however, the deuterons
are coupled to ghe lattice by quadrupole interactions that are
single particle interactions. We expect that each deuteron should
be relaxed by its own interaction with the lattice and that the
relaxation should be exponential. Then it is not surprising to
find that the relaxation of three identical deuterons is
exponential, as in the case of high temperatures. At low temperature,
however, we apparently cannot consider each deuteron independently
from the others. We are forced by the Bose-Einstein statistics
to consider the three deuterons as a collective system and to
classify the eigenstates in an appropriate manner. We then find
coupled relaxation becuase of the statistics and because when
w, # 0, the A states are lower in energy than the E states.

The above illustrates that the relaxation coupling is not

caused by cross-correlation effects,5 but rather, by what we call
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Figure VII.7 The top figure shows that the spin-lattice relaxation

at high temperature is characterized by a single exponential decay.

The bottom figure shows that at low temperature, when wt Y wo
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or

2 wo, the tunneling system is in communication with the Zeeman

system. The spin-lattice relaxation is a bi-exponential decay.
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a statistical interference. Some of the couplings in the CH3

that vanish when W, becomes zero, are of the same nature.

case’?
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VIII

ANISOTROPIC SPIN-LATTICE RELAXATION OF DEUTERATED HEXAMETHYLBENZENE

8.1 Introduction

Some molecules in solids may exhibit reorientating motion
other than thermal vibration. The motional group does not
rotate freely, but rather, jumps (or reorients) among all possible
equivalent positions., In most cases, only part of the molecule
is able to reorient, for example, the methyl group. Yet, there
are a few cases where the whole molecule may undergo reorienting
motion; some examples are benzene, hexamethylbenzene and adamantane.

Because the motional group or molecule does not tumble
isotropically, but rather, reorients about some special direction,
the spin-lattice relaxation is generally not isotropic. 1In
general, the special direction of reorientation is along the
symmetry axis of the motional group. For example, the methyl
group jumps about its three-fold axis; the benzene reorients about
its six-fold axis. Although the spin-lattice relaxation of
individual motional group is anisotropic, the spin-diffusion
among each different molecule may diminish or completely wash
out the anisotropy.

Some single crystals may greatly facilitate the anisotropy
study of spin-lattice felaxation if all the motional groups

reorient about the same direction. The single crystal of silver-
trifluoroacetate (CF3COOAg) has been studied by 19F NMR.l The
CF3 groups in the crystal all point to the same direction. The
orientation of the methyl group is determined by the measurement

of the anisotropic chemical shift of 19F.
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The three-fold reorientation of the CF3 groups creates a
fluctuating local field through the dipole-~dipole interaction.
The cross-correlated fluctuation of the local field caused by
the reorientation produces an additional pathway for the relaxation.
As a consequence, the spin-lattice relaxation of the methyl groups
(CH3 or CF3), is generally anisotropic and non-expcment::lal.1"3

Nevertheless, in the case of the deuterated methyl group
(CD3), the relaxation is characterized by a single exponential.
Unlike the dipolar interaction, the quadrupole interaction for
the spin 1 nucleus is associated with a single particle. Even
in the presénce of correlated reorientation, the cross-correlated
fluctuation between two nucleus is zero and does not contribute
to the spin-lattice relaxation.

The deuterated hexamethylbenzene (HMB—dlB) molecule in the

solid state undergoes a reorienting motion about its hexad axis

(C, motion) over a wide range of temperature--as shown by

6

second moment, Tl’ and Tlp studies of the protonated materia14-6.

As a result of this anisotropic C6 reorientation, the nuclear

spin-lattice relaxation exhibits a strong dependence on the
orientation of the molecular hexad axis with respect to the
applied magnetic field (Figure VIII.1l). The T1 anisotropy of a
single crystal of deuterated hexamethylbenzene was measured on

both sides of the T1 minimum.7 We shall present a model that

uses only the single-particle relaxation to explain the temperature

dependence of this anisotropy. In addition, from the measured

- [ . -~ o -~ » o Pt - o ~ o ~
temperature dependence of Tl over the range -85 to 70°C, the

activation energy and correlation time for the C6 motion is
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Fig. VIII.1 This figure shows a hexamethylbenzene—d18 molecule

oriented in a magnetic field with field direction along the z-axis.
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determined7 and compared with the values previously reported for

the protonated compound.

8.2 Theory

There are two motions associated with the hexamethylbenzene
molecule. In addition to the aforementioned C6 motion of the
entire molecule, each of the six methyl groups undergoes rapid
reorientation about its C3 axis. The C3 and C6 reorientations
cause fluctuations in the deuterium quadrupole interaction;
these quadrupole fluctuations are responsible for the deuterium
spin-lattice relaxation. The spin-lattice relaxation is most

efficient (T, minimum) when the rate of fluctuation is near the

1

Larmor frequency or neaxr the second harmonic of the Larmor

frequency. In the temperature range of our measurements, the

rate of the methyl group C3 motion is much larger than the rate

of the molecular C6 motion, and is far away from the Larmor

frequency. Consequently, it is a very good approximation to

neglect the contribution by the fast C3 motion to the spin-

lattice relaxation. Since the deuterium dipole-dipole coupling

is much emaller than the quadrupole interaction, we can legitimately

neglect the contribution (estimated to be less than 1%) of the

fluctuating dipolar interaction that it makes to the relaxation.
Unlike the dipolar interaction, the quadrupole interaction

is associated with a single nucleus. With this in mind, and by

ignoring fluctuations due to the fast C3 motion, the system of

18 deuterons can be simplified down to the treatment of a single

deuteron having reduced quadrupole strength and having a principal

axis along the methyl group C3 axis. Because of the fast
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reorientation of the methyl groups, the principal axis of
quantization for the quadrupole interaction is along the Cq
axis. Since the rate of the three-fold reorientation is much
faster than the Larmor frequency in the temperature range of our
experiments, the C3 motion does not contribute significantly to
the spin-lattice relaxation. As a consequence, the non-secular
time-dependent part of the Hamiltonian can be neglected. The
quadrupole Hamiltonian of a methyl deuteron, with C3 axis

parallel to the field direction, can be expressed by
H. = %—w 0 (VIII.1)

(0 2

where T =3 Iz - I(I+l1), and w, is the reduced quadrupole

Q

frequency by'C3 motion.

To include the six-fold reorientation of the whole molecule,
we can apply two consecutive transformations, exp(i g-IX) and
exp(i ¢ Iz), to the previous Hamiltonian. The new Hamiltonian,

with a C, axis along the z-direction, is given by

6
m i
191 i51 gy =151 ~i¢I
H o=e 2 e 2 Xy e 27X, 2 (VITI.2)
The quadrupole Hamiltonian for a general orientation of the
molecule (Figure VIII.1l) can be obtained by an additional

transformation exp(-i ¢ Ix),
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(3 cos G 1)T(O) {g (T(l)+T(—1))sin26

N -

1

/g P 110Dy (10526 )]

sinze T(O)—iT(l) sinb (1l-cosB)

[-

ISP
N

+ i T(—l) sin® (l+cosf) + = 2 (2)(1 cose)

+-% T(—z)(l+cose)21 exp(2i¢)

- /g [~ %—sinze T(O)—iT(—l) sind (l-cosb)
+ i T(l) sin® (1+cosB) + = 2 ( 2)(1 cos@)
+ 20D (14c0sd)?] exp(-2i0) (VIII.3)

2

where the 6 is the angle between the molecular C6 axis and the

magnetic field (Figure VIII.1).

(1 (-1) (2) (-2)

The time-independent terms in T , T s T , and T
that do not contain a fluctuating angle ¢(t) can be neglected
because they do not contribute to the relaxation, but rather,
only have a negligible second-order effect on the quadrupole
shift.

The static quadrupole Hamiltonian is then given by
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_ 1 0)
B = "2 %

P, (cosB) T . (VIII.4)

The fluctuating quadrupole Hamiltonian can be expressed

explicitly as being a sum of the products of tensor operators

(m) (~m) (t):

T and the time-dependent spatial function F
2
B <o, L D" 1™ e (VIII.5)
m=-~2
where
F(O) = %-sinze cos2d ,
F(l) = ~i {g cos2¢ sin26 - /g sin2¢ sinb ,
F(z) = - fg cos2¢ (1+c0526) + i {g sin2¢ cosb ,
and F(—m) = (--1)m (F(m))*. F(O) is included for completeness,

although it does not contribute to the T, relaxation.

1
(m) | . X
is contained in the randomly

The time-dependence of F
fluctuating angle ¢. This angle ¢ describes reorientation of
the molecule about its C6 axis with a correlation time TC. Since
all of the time-dependence enter into Hl(t) as 2¢, only one
correlation time is necessary to describe the relaxation. With
one correlation time it is impossible to distinguish sixfold
reorientation from rotational diffusion.8

Nevertheless, X-ray analysis shows that the hexamethylbenzene
molecules do have a specific sixfold equilibrium orientation.
Thus, T, can be viewed as an inverse jumping rate.

In general, the relaxation of a multi-spin system must be

(0)

described by a relaxation matrix S . Since our treatment involves
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only a single particle relaxation, the spin-lattice relaxation

rate, (that is, l/Tl) is given by the single matrix element Sll’

previously evaluated to be:

(1) (2)

Sll =6J + 24 J , (VIII.6)
where J(l) and J(Z) are the special densities:
w T
J(l) = (79)2 {%-(l—cos48) ———51—72
A I+w T
c
w T
ch) = (?892 é%—(l + 6 cos28 + cosée) -———%*—5
1+4w T.

The dependence of T (Szi) upon the angle 6 is evident from the

1

spectral densities. Tl has a minimum for the C6 axis parallel to

the magnetic field, and increases monotonically as 6 increases
up to 90° (Figure VIII.2). The anisotropy of 'I‘l depends on the
temperature because Tc is temperature-dependent (Figure VIII.3).

@)

The spectral density J vanishes when the C6 axis is parallel
to the applied magnetic field, meaning that only J(z), or the

dou He quantum transition contributes to the relaxation at this

orientation.

8.3 Experiment and discussion

All experiments were performed using a single crystal of

HMB—dlB. This greatly facilitates the study of the anisotropic

spin-lattice relaxation because all molecular C6 axes are parallel

. . - .9 o s . . C

in the single crystal. T, was measured using a saturation-recovery
pulse sequence, that is, (9O°--T')n -7~ 90°, T2 << ' << Tl in a

field of 25.8 KG that had a corresponding deuterium resonance
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Fig. VIII.2 Here we see the dependence of the relaxation rate SlIl on

the orientation of the C6 axis and the parameter ¢ defined as ¢ =

(1+m2TC2)/(1+4w2 rcz).
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Fig. VIII.3 The angular dependence of the spin-lattice relaxation rate

at two temperatures (—36°C and 7OOC) is shown along with the theoretical
fit (solid line) for three different values of the parameter € defined
in the figure. ¢ = 0.25 corresponds to the low temperature limit (i.e.

w21§>> 1) and € = 1.00 corresponds to the high temperature limit (i.e.
22

w T << 1).
c
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frequency of 16.8 MHz,

The angular dependence of the spin-lattice relaxation rate Sll
was measured at two temperatures -36°C and 70°C. The results
are shown in Figure VIII.3. With the single crystal oriented
so that all of the molecular C6 axes are parallel to the field,
(that is, 6 = 0), the temperature dependence of Sll was measured
over the range -85°C to 70°C. The observed temperature dependence
is shown in Figure VIII.4,.

For the single orientation of the C6 axes parallel to the
field, only the second ternxU(z) term) in equation (VIII.6), is
expected to contribute to the relaxation:

T

c
S = A — . (VIII.7)
11 1+4w2Tc2

Assuming an Arrhenius form for the correlation time:

T =1 exp(E_/RT); (VIII.8)
C C0 a

the data are best fitted to the above expression for Sll with

the following values:

A = (6.1%0.1) x 1080 sec?

T = (1.8 ¥ 0.3) x 10—15 sec
o

Ea = 7.8 * 0.1 kcal/mole .

where Ea is the energy of activation needed for the molecule to

reorient about its 06 axis. The theoretical fit of the data is

shown in Figure VIII.4. The deviation of the theoretical fit from
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Figure VIITI.4 The temperature dependence of the spin-lattice

relaxation rate for the HMB—dl8 single crystal oriented with

all molecular C6 axes parallel to the magnetic field. The solid

curve is the best fit of equation VIII.7 to the data.
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the data at a low temperature can result from our neglect of the
methyl group rotation (C3 motion). This rotation becomes
increasingly important at a low temperature.

Our measured activation energy for HMIB—d18 is substantially
higher than the reported value (6.7 * 0.1 kcal/mole) for the fully
protonated HMB. If we view the molecule as a torsional oscillator
that sits in a sixfold well, the activation energy for reorientation
can be expected to decrease upon deuteration. Deuteration increases
the moment of molecule inertia, thus, the torsional energy levels
are shifted down and the spacing between zero point energy and
barrier top is increased.

From the value of A given above, the effective quadrupole
strength is found to be: vQ,eff = 39.1 + 0.3 kHz. This agrees
quite well yith our measurement of the powder pattern at -170°C,

where the C, motion is essentially frozen, V o~ = 38.2 * 0.4 kHz,
Q,-170°C

6
This agreement indicates that it is valid to consider only the
methyl-group-averaged quadrupole strength as a contributing

factor to the relaxation.

There is a problem, however, in comparing the effective
quadrupole strength with the powder pattern value for HMB—dl8 at
room temperature. At room temperature, where the C6 motion is
rapid, the powder pattern value is expected to be exactly one-half
of the effective quadrupole strength. In fact, the measured value
is: vQ,25°C = 16.6 * 0.2 kHz. This is about 15% smaller than
expected. One explanation for this reduced value is that

besides the in-plane reorientation of the molecule, some

additional motion exists. One explanation for this is that the
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molecule is not constrained to lie in a plane, but rather, its C6
axls rocks about in a cone. Such an out-of-plane motion seems
unlikely, however, since measurements of the C13 chemical shielding
anisotropy in HMB do not indicate any significant change in 044 OVer
the temperature range -186°C to 23°C.ll O35 is the element of the
chemical shielding tensor that corresponds to a principal axis that
is perpendicular to the molecular plane. Additionally, Tlp
measurements that are sensitive to slow motion, have not indicated
the existence of any motion besides the C6 motion.

Also, we can explain that the principal axis of the quadrupole
interaction of a CD3 group is not perpendicular to the molecular
C6 axis. This 1s possible if the three deuterons of the CD3 group
experience different local electric field gradients, so that when
they are averaged over the C3 motion, the effective quadrupole axis
lies outside the molecular plane. For a free C3 rotor, the average
could never be out of plane, but in HMB, where there are many methyl-
methyl steric interactions, the methyl groups can be staggered in

such a way that some groups give above-plane averages, whereas

others give below-plane averages.
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IX

THE SPECTROMETERS

All the experiments on multiple quantum NMR and the experiments
of deuterated methyl groups at low temperatures were done on the
B-spectrometer. Only the experiments on the deuterated hexamethyl-

benzene were carried out on the a-spectrometer.

9.1 The B spectrometer

9.1.1 Magnet

The B spectrometer has a superconducting magnet with a 3.5
inch bore from Bruker. It is operated at 42.5 KGauss and has a
proton resonance frequency at 185.0 MHz and a deuterium resonance
frequency at 28.4 MHz. The magnet has both superconducting and
room temperature shims. The field can be shimmed to less than
l ppm over a 1 cm3 region. The field is very stable and no other

field or frequency locking is necessary.

9.1.2 Pulse generation

The proton RF is generated by mixing the 30 MHz IF from a
General Radio 1061 frequancy synthesizer with 155 MHz from the
same synthesizer. Only the upper sideband is kept. The 30 Miz
IF is generated by tripling the synthesizer's 10 MHz reference
signal. The low frequency for deuteron is generated directly by
a Hewlett-Packard 3320A. The RF is passed through the commercial
quadrature hybrids and switches to produce four phases (x, X, y
and ;). The x and X channels are fed into a Daico 100D0898 phase

shifter. This produces a phase shift in any multiple of 2m/256.
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The output goes to the high power transmitter (a class C cavity-
tuned transmitter or AR model 100/model 200) and provides a pulse

of up to 200 watts.
The timing of the pulses and the data acquisition is

controlied by a 16-step pulse programmer that is interfaced with

a NOVA 820 computer.

9.1.3 Receivers

The signal from the probe is first amplified by a commercial
wideband low noise (noise figure nO2L5 dB) preamplifier (Avantek
UTO-511, UT0-512) with about 35 dB of gain. The output is mixed
and filtered to N MHz, amplified with a variable gain IF strip up
to 70 dB (RHG EVT 3010), and then mixed with 30 MHz down to audio

frequencies with two phases (0° and 90°).

9.1.4 Digitizers

The audio signals in two channels are digitized by a pair of
analog-digital converters (Datel SHM2 S/H in series with 10 bit
Datel ADCE10B A/D). The digitized signal is transferred to a

NOVA 820 computer at a maximum rate of 3 Usec per point,

9.1.5 Probe

The double resonance probe used has a single coil, double-tuned
configuration, with a Q of v 150 for protons. The solenoid coil
contains eight turns of 18 gauge uninsulated copper wire (8 mm x
15 mm) .

The probe head is covered by a glass dewar to provide thermal
isolation. Temperature control is achieved by regulating the flow

of heated air (or cooled N2 gas for low temperatures) into the dewar
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trough vacuum jacketed tube. The gas is heated by a resistive
heater at the end of the tube. The temperature is constantly
sensored by a copper/constantan thermocouple and compared to a
reference setting. A differential voltage between the two is used
to drive the current source (up to 3 amps) for the constantan
heating coil. The temperature may be regulated to within #0.2°C

over the range -175°C to 150°C.

9.2 The o spectrometer

The spectrometer has a Westinghouse superconducting magnet of
25.8 KGauss with 2.5 inch bore. The corresponding resonance
frequency for deuterium is 16.8 MHz. The deuterium’RF is generated
directly from a General Radio 1164-A frequency synthesizer that

provides IF at 30 MHz.

The audio signal is digitized by an 8 bit Biomation transient
recorder model 802 at an maximum rate of 0.5 psec per point. All
other aspects of the a spectrometer are very similar to the B

spectrometer.
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60

70
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2393

program anisct]

This procrar calculates the anisotropic spin=lsttice relaxation rate for

hexarethylterzene=gl8

theta: angle between the Cb-axis of the molecule and the magnetic field

epsilo: parameter defineo by the ratio betweer spectral densities
J(w) ano J(2w)

8: spin=lattice relaxation rate

dimensior 8(60,10)

open(unit=01l,name="anisoti.val’,typez=’new’)

do 100 k=1,51

theta=(k=],)23,14150265/7100,

x1=cos{theta)s»?

x2=ccs(theta)xsi

agn 60 i=1,6

epsilo=(i=1,)2C.15+2,25

az=b.rtepsilo/{(1,+ensilo)

b=(1.-ecsilecl)/(1.+epsilo)

s(k,i)=1,4axxl=hnx?

continue

snqle=theta*”C,/3,14159245

write(l,70)arale,(sfk,i),iz1,¢)

format (tx,f8,.3,6(2x,f5.4))

continue

close(urit=0l)

st op

end
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proqram chlexc

camplex c(3), €(3)

write(6,2)

format{(10x,"enter the value of 72 (in sec): “,%)
read(5,a)t?

format(f10,0)

write(6,25)

format(10x,"enter the value of max. omegs (in Fz): 7,3)
read(5,27)xmax

format(fin,0)
onen(unit=C1,name="chlexc.qata’,type=’0l1d”,reaconly)
do 30 i=1,3

read(1,29)cli)

forrmat (f13,6,5%x,113,6)

continue

close(unit=n})
oocen{unit=01l,name="chlexc,.val’,type="new’)

do 100 kk=t,P0Q0

omeqa=(kke=d0],)/7400,2xmrax

dn 40 i121,3
t(idscmelx(0,,=1,)/(crelix{omeqa,~1./7t2)=c(i})
continue

sum=cabs(f(1)+¢(2)+¢(3))

write(],60)omeca,sum

format(3x,110,3,5x,413,6)

continue

closeluri4=C]))

ston

end
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31
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program ch3fid

complex a(&,fP)

oimensijor tau(3),iph(3),angle(3V,phase(3),sx(100),8y(100)
open{unitz0tl,neme="chlfigd,cata’,typez"0ld’,reaconly)
pi=3.,141%92¢5

read(1,1)cx

format(f10,0)

write(6,c)

format (10x,"The value of dipole coupling (Khz): ‘,%)
write(o,3)ax

format(1x,f10,4)

omecad=cx*1000,0

read(1,8)nculse

format (i)

HP‘te(bvln)

format(/,10x,°The number of the pulses: *,%)
write(b,1')nculse

format (1x,i?)

co Y10 n=i,rculse

read(1,10%)ich(n)

format(ic)

read(1,106)arale(n)

format (f10n,0)

rea4(1,107)chase(n)

format(f10,0)

if(n.ma.reoulsel)go to 119

read(1,107)tau(n)

format(f10,0)

cnntinue

dgo 10 nz=l,rpulse

write(6,12)

forrmat(/,10x,°The phase & anqle of the pulses: °)
writel6,13)n

¢ormat (15x, °Fulse no.’,12,5x, phase U or 1(x or y): *,9%)
write(e,18)ich(n)

farmat (1x,12)

write(6,17)

format(1S¥,%ancle of flip (in cegree): ‘,%)
write{6,1%9)argls(n)

forrat(ix,f10,4)

write(b,16)

format (1Sx,°cheseshift of the pulse (in deporee): “,%)
write(os,cN)chase(n)

format (Ix,f10,4)

it (n.ec.nculse) go te 30

write(é6,c2)

format(/,10x,°The evolution tire tau (microseccno): )
write(6,29)n

format (1Sx, tau(’,i12,7)= 7,%)

write(6,26)tau(n)

format(1x,f10,4)

continue

read{(1,31)¢t;5

format (1x,1310,0)

write(6,32)

format(/,10x,°The time increment (microsecond): “,3)
write(6,33)¢ti

format(ix,t1C,4)

read(1,34)nfro

format(id)

241
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42

43

55
60
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80
90

write(6,35)
format(/,10x,°The total no, of FID: *,$)
write(6,36)nfic
format(1x,i)

read(
forma
weite

format(/,10x,°The no,

write

1,37 )narg
t(i3)
(6,28)

(6,39)nanc

format (1x,13)

close(urit=01)
ranas=nang .

The tollcwings are the
nangl=naro+tl

do 40 nf=l,rfic
sx(nf)=n,

sy(nf)=n,

continue

do 60 is=1,rancl

0o 42 nl=1,R

do 42 n?2=i,*R
a(nl,n2)zcrpclix(0,,0,)
continye
a(l,1)zcrerIx(1,.5,0,)
8(2,2)=cenIx(Nn,5,0,)
8(3,3)=crplx(=0,5,0,)
a(d,u)scrplx(=1,5,0,)
a(5,5)=¢crelx(0.5,0,)
albst)zenptx(=0,5,0,)
O(7:7)=CNC‘1(0.§,”.)
al8,8)=cnplix(=0,5,0,)

of angles between 0 8 90: °,8)

initial density matrix elements of Iz

ranqlezN,S+pir(ia=1,)/rano
p2cos=1.5+cos(rangle)*#2=-0,5

d=ome
dn S50
irnas
thets
tpsta
phi=p
call

cal)
conti

gac*plccecs

k=l,nrulse
szich(k)
zanclel(k)*pi/120,
ulk)x] , Ce=6
hase(r)

unirot{a,ipnase,theta,ohi)
jf(k.,eo.rculse) ao to 50

timevol(a,tpra)
nue

The following calculatesr the trace Ix & Iy of FID

t=tins
0o S5
call

call

sx{(nft
sy(nft
conti
conti
do RO

t.0e=¢

nfz1,nfic
tirevol(a,t,0)
tracexy(a,trl,te2)
Yztritsx(rft)
Y=tr2+sy(rf)
nue
nue

nf=1,nfic

writel(6,70)sx(nf),svint)
format(/,15x,"trace(ArIx)= *,f10.,3,10x, "trace(Ax]ly)=

conti
call
call
stop
end

nue
‘gplot(sx,nfio,25)
tgplot(sy,nfig,25)

‘0130.,8)
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11

12
13
14
15
16
17
18
19

en

22

cu

26

27
30

31
32
33
34
35
36

243

proagram chlir

dimensicr tau(3),iph(3)sanqle(3),phase(3)
open(unit=0t,name="chlfic.cata’,typez‘new’)

write(é6,2)

format(1Ux, “enter the value of dinole coupling (Khz): *,%)
read(S,4)ox

format(f10,0)

write(1,5)ax

tormet(Ix,f10,0)

write(6,7)

format(//,10x,’enter the number of the oulses: “,$%)
resad(S,8)npulse

tformat(i2)

write(1,G)npulse

format(1x,i2)

write(6,11)

format(//,10x,%enter the phase, angle, phaseshift of the pulses: ‘)
do 30 n=l,npLlse

write(6,12)n

format(/,15x,“°Pulse no. ri2,5x,“phase 0 or 1(x or y): %,8)
read(S,13)ich(n)

format(i2)

write(1,12)icn(n)

forrmat(ix,i2)

write(6,1%)

format (1Sx,“ancle ot flio (in cegree): “,%)
read(S,1¢)ancle(n)

format(f30n,n)

write(l,17)araqle(n)

format (1x,f1C,0)

Ufi(!(brl;‘)

format(1S9x,°chaseshift of the pulse: “,%)
rean(S,1S)chase(n)

format(f10,0)

write(1,20)chase(n)

format (1x,f10,C)

if (p,ec.npulse) qo te 30

write(6,c2?)

format(//,10x,°enter the evolution time tau (ricrosecond): °)
write(6,24)n

format (/,15x,°taul(’,i2,7)= *,8)

read(5,2€6)tauvfr)

format (f10,0)

write(1,27)tau(n)

format (1x,110,.0)

continue

write(b,31)

tformat(//,10x,“enter the time increment (microsecond): “,8)
read(S,Xc)ti

format(f10,0)

write(1,33)¢i

format(ix,*%10,0)

write(6,34)

format(//,1Nx, enter the totsl no. of FID: “,%)
read(S,3%)nfig

format(id)

write(1,36)nfic

format(1x,i4)

write(6,3F)

format(//,10x,”enter tne no. of angles betweer 0 &8 90: “,%)



39

40

read(5,3S)naro
format(il3)
write(1,80)nang
format(ix,i3)
close(urit=01)
stop

end
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50

15
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100
110

subroutine urirot(a,{phase,theta,phi)

This prograr calculates the transformation of the initial
matrix 8 by culse with phase x or v (iphase=
sng phaseshift ohi,
complex a(8,8),v(8),a0(8,8)
comolex crodysum

dimensior u(2,8)

call phaseshft(a,phi)

z=thets/2.

ulls1dscos(z)ned
ull,2)==cos(2)+222gin(z)23,%20,5
ul1,3)=cecs(z)*sin(2z)a224+3 220,5
u{l1,8)s=gin(z)ax}

ul2,tdz=u(1,2)

u(2,2)22,.%cos(2)r(1.5%cos(z)a¥*2-1,)
U(2,3)=2,.,08ir(2)*(1,925in(z)*n2=1,)

u(2,8)=u(1,3)

u(3d,1)=u(t,3)

u(3,2)==ul(2,3)
ul(d,3)=u(2.2)

u(3,d)=u(1,2)

u(d,1)==yl1,4)
ufd,2)=u(1,)

uld,3)==u(1,2)
uld,dI=u(l, 1)

u(S,5)=ces(2)

u(S,6)s=sir(z)
u(6,5)=z=-0(5,¢)
ulb,8)=u(s,<)

u(7,7)=0(5,%)

u(7,8)=u(S,¢)

ulB8,7)=u(6,5)

u(B,8)=u(6,6)

do 80 i=1,°f

dgo 75 j=1,8

sum=cmptx{(0,,0,)

do S0 m=1,8
do 4% n=yi,8

prod=ulm,i)te(r,n)xu(n,j)

sum=gunr4croc
continue
continue
ah(i,j)=sun
continue
continue

do 110 i=1,R
do 100 j=1,°F
(i, )=8t (i, )
continue
continue

if(iphase.ec.1) qo to 300

@z0,5*%0,5

vil)=empix(=¢g,~q)
v(2)zcmelIix(gr=g)

vi(3)zecmplx(orq)

v(d)zcmelx(=g,¢)

v({5)=v(2)
v(6)=v(3)
v({T)=v(2)
v(8)=v(3)

The output is written over s,

245

density
angle thete



200
205
300

100

150

100

150

do 205 i=1,8
do 200 j=1,8

aCisjl=conjglv(i))nab(i,jlav(j)

continue

continue

call phaseshft(a,=phi)
return

eng

subroutine rhaseshft(a,ohi)
complex a{8,E),a)(8,8),~(R)
z1=cos(1,5*rni)
22=2sin(1.,5%2nhi)
23=cos(0,52phi)
24=8in(0,S%xphni)
w(tdscrpix(z1,22)
wl2)semeIx(22,24)
w(3)=corja(w(2))
wl(dY¥=corjalw(1))

w(S)zw(2)

w(b)sw(2)

wi(7)=w(2)

w(BI=w ()

do 100 i=1,17

do 10N jJj=1,FR

at(is])=conjeclw(i))ealr,sjdrw(j)

continue

do 150 i=1,P
do 159 j=1,°P
ali,sil=al(i,j)
continue
return

ena

subroutire timevol(a,t,d)
comolex a(8,8),w(BR),a1(AR,8)
z21=coslecrt)

z2=sin(c*t)
wi(l)zemplx(2y,=-22)
w(2)=ecrctx(21,22)
w(3)=w(?)

w(8)zw(1)
w(S)zcmplix(1,,0,)
wl(o)z=cmcix(1,,0,)
w(7)z=emcIx(1,,0,)
w(B8)z=cmeix(1,,0,)

do 100 i=1,8

do 100 j=1,8

at(i,])=conjg(m(id)*alisj)awu(])

continue :
do 150 i=t,P

do 150 j=1,R
a(i,jdlzali(i,})
continue

return

end
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subroutire tracexv(e,tri,tr2)
complex 2(8,8),yi(8,8)
dimensior xi(8,R)
xi(1,2)=3,220,5/2.
xi(2,1)zxi(1,2)
xi(2,3)=1,

xi(3,2)=1,
xi(3,8)=xi(1,2)
xi(8,3)=xi(1,2)
xi(S,6)=0.5

xi1(6,5)=20,5

xi(7,8)=0,5

xj(B8,7)=0,%
yi(1e2)=crpIx(0,,=3,220,5/2.)
yi(2s1)=coriclyi(1,2))
yiles3)=ecreglx(Cop=1.)
vi(3,2)zcrelinli.,1.)
yil(3,4)2yi(1,2)
yi(d,2)=yi(2,1)
yil(5,6)=cretx(0,,=0.5)
yi(6,5)=cmrpglx(0,,0,%)
yi{7,R)=yi(5,8)
yi(R,7)=yil(6,5)

sumi=0n,

suym2=0,

do 100 w=1,"7

do 100 nz1,P
sumi=suri+al(m,rdexiln,m)
sym?z=surctaln,ri2viln,n)
continue

trlizayr]

tr2=sun?

return

end
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subroutine ciscni(h,un,nm)
subroutire fcr complex matrix diagonization
h: matrix element arrays
nm: cimersicr ¢f the watrix
un: unitary transform ratrix which diagonizes the given matrix h
comolex h(rm,ne),un(nr,nm),ull,ulm,uml ,umm,th,tu
nmm=nm~-1
qQn=nwr
range=1,0e=2
do 20 i=1,nr
cgo 10 J=1,nn
10 unli,j)=0,
20 un(i,i)=t,
snorr=0,
ao 30 i=l,ner
IREARA!
ago 30 j=i,rr
3o arorm=ancrr+repal(h(i,jl*conjg(hli,j)))
if(anorr,le.rance) return
anorr=scrt(2.xanorm)
snormx=gnormtrange/an
ingd=0
thr=anorn
490 the=thpr/cn
50 gn RO 1=i,nmn
111+
do RO m=11,nn
if (cabs(h(l,m)).1t,thr) qgo to RO
ino=)
agiffzreal(nlo,r)=n{1,1))
if(drft.ec.n,) nift=], 0e=15
ar=0,5¢%atan(=2,.*real(h{(1,m))/0iff)
8i=0.S*atan(=2,%a3imag(h(1,m¥)/ciff)
sinizssin{ai?
cosi=cos(ai)
sinr=sir(ar)
cosrzcos{ar)
ull=cmplix(cosrecosSi,sinrrsini)
ulmz=cmplx(sirrrcosti,cosrrsini)
umrlzcrplx(=sinr*xcosi,cosr*sini)
umm=crplx(cosrtcosi,=sinresini)
go 60 j=1,nr
th=ull*h (1, i)eulm*n(m, )
him, idzumtsh(l,j)tummehim,j)
h(l,j)=tk
60 continue
go 70 i=1,nm
th=conjg(ull)xh(i,))+conjolulm)en(i,m)
hCismizcenjglurt)sh(i,1)+conjg(ummish(i,m)
hi(i,1)=th
tuzcorje(ull)ayn(i,1)tconialulmdxun(i,m)
un(i,m)z=corjglumtdrun{i,1)¢conjo(umm)run(i,m)
un(f,1)=tu
70 continue
80 continue
{tf(ind.ec,.0) go to 100
ind=0
go tc S50
100 if(thr.ot,sanorrx) qc to 40
return

0oo0onn
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end
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1e
30

31
a0
So

60
o
85
90

95

100
105
110

proaram cireth

This procram calculates the inter=proton distances, scaling factor
S matrix elements for u, v, anc w couplings for the single crystal

of 1,R=cinethylnaphthalene

ogimensior x(213:3),vec1(3,3.3,3),dist(3'3,3),0(3.3):univ(3;3;3;3)

dimensicr 8(2,5),8u(S),sv(5),8w(5)
x(1,1,1)23,62°2
x(1,1,2)=~-1.851
x(1,1,3)=6,308
x(1,2,1Y22,.225
x(1,2,2)==2.56¢
x(1,2,3)=6,215
x(1,3,1)=2,4844
x(1,3,2)==1,704
x(1,3,3)=27,3%1
x(2,1,1)=04,2C5
x(2,1,7)z~2,CR2
x(2,1,3)=4,073
x(2,é,1)22,81¢8
x(2,2,2)==-2.P7%
x(2,2,3)=4,2585
x(2,3,1)33,62R
x(2,3,2)==¢ 447
x(2,3,3)=3,05R
write(o,%)

format(“1°,5x,°1ist of the coorcinates of nethyl! proton’,$3)

write(b,8)

format(2x, xti,fsk), i21,2, j=a,b,c, k=xsv,2°,77/)
an SC i=1,2

oo 40 j=1,3

dge 3Ju k=1,3
writel(e,10)i,),kox(i,j,k)
1or#af(51,’l(',il:"',ilf'.',il,')= ‘e f7.3,%)
continue

write(o,21)

format(1x,/)

continue

continue

g0 90 j1=1,3

don RS j231,7%

do R0 k=1,3

i1f(jl,0e.i2) ac to ol

vect (1,j1,j2,k)=x{(3,jl,k)=x{1,j2,%)
vect (2,]j1,j2,k)=x(2,j1,x)=x(2,j2,%)
vact(3,jl,jle¥d=x(1,jl,%)ex(2,]2,k)
continue

continue

continue

ago 110 i=1,3

do 10S Jji=3,2

do 100 J2=1,3

sum=U.

do 95 k=1,3
sum=sumtvect (i, jl,jl k) **?

continue

dist(i,]l,12)=|um*n0.5

continue

continue

continue

write(6,111)
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115
116
130
115
140
145§
150
151
152

153

160
180
170
185
1R6
190
195
200
20t

202

format(1x,/7/7)

write(6,112)

format(°1°,5x,°11st of the vectors & distance tetween”’)
write(6,113)

format(8x,“proton vect(i,j1,j2,%), i=1=1,2=2,1=2",%)
write(6,114)

formet(2x,”j1,j2=8,bscs kZ=x,y,27,77)

do 150 i=1,3

do 145 j1=1,3

do 140 j2=1,3

ago 130 k=z1,3

1f(i.eq.3) gc to 115

if(jl.ge,j2) gc to 140
write(6,116)i,]10)2rkovect(i,jil,j2,k)
fO"NOt(Sl,'V(',}(ilp"')lill')z "'7.313)
continue

write(6,13%9)i,j1,i2,dist(i,}1,j2)
fof""ét(]Oll'CiStanCC('lilr'r',ila"'lill')= r17.%,7)
continue

continue

cnontinue

writel(6,151)

format(®1°,7/,5x,"1ist of the girectional cosire 0f“,s3)
write(6,152)

format(2x,’vector in the molecular frame qgiver’,$)
write(6,193)

format(2x,“by unit vector a(i,k)",//)

a(l,1)=0,827

8(1,2)==0,8¢1

a(1,3)=0,277

8(2,115=0,29%

a(2,2)=C,157

8(2,3)=0,941

8a(3,1)=0_R%4

8(3,2)=0,4R%

8(3,2)=0_160

do 200 iz=1,3

do 195 ji1=1,3

do 190 jeo=1,2

do 18RS kzi§,?

ifli.eq.3) qc to 169

if(jl.ce.j2) aqc to 190

ter=0,

do 1&0 mz21,3
trztrevect(i,jl,j2,m)2ralx,m}/qist(i,j1,j2)
continue

univ(isjilej2,k)=tre
Ul‘ite(bll70)ifjlriZI*'UniV(iljiljelk)

format (Px, uriv(’,3Ci1,7°,%),i1,%)= “,$7.3,%)
continue

write(6,186)

format(1x,/)

continue

continue

continue

write(6,201)

tormat(“1°,5x,°1ist of S S=matrix elements s(r,n)*,$)
write(6,202)

format(2x, mz1=1,2-2,1=-2, n=1,5",//)

do 255 i=1,%
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205

24ao0
250

255

256

260
270

275
100

101

3o

sumi=0,

sum2=0,

sum3=n,

sumd=0,

sumS=0,

do 250 ji1=1,3

do 240 j2=1,3

it(i.ea.3) go to 205

1¢(jl.ge.}2) go to 240
ddd=oist(i,j1,)2)%23
saz3,*univ(irsjl,ic,1)en2=1,
sumlzsuri+sa/dcd
lo=univ(i,111]2:2)'*2-univ(i,)1,52,3)*'2
sum2=surd+sa/dcd
ta:uriv(i,j1,12,1)*univ(i'11,i?r?)*?.
sum3zsgurl+ga/dca
sa=univ(i,jl,j2,1)2univ(i,jl,j2,3)=2,
sumidssurld+ga/dco
sa:univ(i,)1,]2.2)'univ(i,i1;i?;S)*?.
sumS=surS+sasond

continue

continue

if(i.eo0.2) rw=9,

if(i1t.3) r=2,

s(i,sllzsuml/rm

s(i,2)zsum2/rn

s(i1,3)=surl/rm

s(i,dl=surl/rm

s(i,5)=sur%/rm

cnntinue

HPi(C(br?Eb)

format(1x,/)

do 300 r=§,3

do 270 n=1,S

write(6,ce0)r,r,s(m,n)
format(Sx,"s(%,i1,%,%,i1,7)= *,tb,4,%)
continue

write(6,275)

format(ix,/)

continue

write(6,301)

format(®1°,/7/,%x,%1list of the Sematrix elements’,$)

write(€,302)

format(2x, 0f usvsw couplinas’,//)
sumi=0,

sum2z0,

sum3z0,

sumizi,

sumS=0,

do 350 j=1,3

ddd=cist(3,j,j)ex3
sb=3.xuriv(3,j,j,1)xa2=1,
sumissurl+st/decd
sbzuriv(3,j,j,2)*x2=unriv(d,j,j,3)xx2
suml=sur+sh/doqd
shzuniv(3, ), i, 1)xuniv(3,},},2)%x2.
sum3=surl+st/dcd
sb=univ(3,j,j,1)xuniv(3,j,j,3)x2,
sumldz=surd+sh/dca
sbzunivi(3,i,j,2)runivi{3,j,;j,3)22,
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t

is5¢

3160

361
3190

sumSssurSesb/dcd
continue

sv(l)=surt/3,
sv(2)=sur2/%,
sv(3)=sunr3/3,
sv(d)zsura/3,
sv(S)=sunS/3,

do 390 n=t,S
suln)=(s({i,n)+s(2/n))72,

swin)=(s(3,n)*G =syv{n)23 )/6,
writel(6,360)r,su(n),sn,svin)

format('x,/7,Sx,"su(’,1),
writel(b,2¢1)r,swln}
format (I10x, sw(”,i1,°)=
continue

stop

end

‘Yz P L,fR U, Ux,8v(7,i8,7)=

ALY D)

‘ytB.d,S)
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15
S0

gimensior o(7,7)
open{unit=01,name="varmain,data’,type="new’)
writel(o,¢e)

format(ix, " erter the number of spins=’,%)
read(S,4)nsrcin

format(ic)

write(i,é)nscinr

format(1x,12)

do S0 izl,nscir

do SO0 j=l,nscir

it(j.le.i) cc to S0

writel(b,10)i,j

format(1Cx,’enter the value of d(°,i2,°+%,12:¢°)
read(S,12)c(i,j)

format(fin,9)

write(1,18)cli,])

format(tx,f3C,3)

continue

closelurit=nt)

stonr

end

-

v 3)
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15

20

25

30
S0

60
100

120
2no

220
300

255

proQram pauss

\yrite(brlo)

formet(10x, enter the number of spins: “,3)
resd(5,1%)n

tormat (i2)

ra=n

write(6,20)

format{(10x,’enter the wrax of display: *,83)
read(5,2%)xmax

format(¢10,0)

Calculation ¢cf Yw intensity - for each order
open(unitz=01,nare="asussi, val’,type="new’)
ni=n+l

do S0 k=1,nt

xzk=1,

ysxtx/rn

fxzexp(=y)

write(1,30)x,¢tx
format(10x,f10,4,10x,f13.6)

continue

close(urit=01)

Calculatior cf MO intensity = gaussian curve
ocen{unitz=0i,name="gauss,.val’,typez‘new’)
do 100 &=1,401

x=(kel1,)/7800 ¢xmax

ysxtx/rn

tx=exp(~y)

write(1,¢0)x, #x

forfrat('ix'113.(:,l('x.fl}.b)

continue

close(unitznyi)

Calculation cf the aprroximate nrumher of states for each manifola
by Stirling”s formuls

open{unit=C1,name="gaussé.val’,tynez"new’)

do 200 k=1,2an+1,?

rm={k=1.,*n)/c.

cx=2.**(rntl ., )/sart(2.23 . 1416*rn)rexp(=2.2rmarn/rn)
write(1,120)rm,cx

format (Sx,f12,€6,10x,f13.86)

continue

close(unit=0])

open(unit=0l,neme="causs3, val’,typez"new’)

do 300 k=1,800

r=(k=201,)/7200,%xmax/2,
cxs2.**(rnetl, ) /sart(2.*3,.1dib6ern)sexp(=2.*r*r/rn)
write(1,220)r,cx

format (Sx,f13,6,10x,113.6)

continue

closelunit=01)

stop

end
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&n

50

S5
€0

10
20

30

256

proarar heigen

This procrar calculates the eigenvalues of the 3Ix3 matrix for the
Gequantur transitiorms of two methyl groups in gartially correlated
motion, OCutput storec in file chlexc,dats

tau=1/g, the correlaticn time for the gearing moticon
dipole ccuplincs u, vy w in Hz

corplex h(3,2),un(3,3),q

uz=1186,

v==2¢&Rd,

w==4G4

write(6,2)

format{(1Cx,’enter the correlation time tau: “,¥)
read(5,%)tau

format (f§3.0)

azcmelx(0,,1./tau?

h(1,1Y=1,52usvel, tw

h(1,2)=1,7328(v~"w)/b,
h(1,3)z(vtc.*w)/sart(e,)
h(2s2)=3,2u/c v/ T,45,xu/3 43,24
h(2,3)=1,4148+2(v=w)/3,
h(3,2)=T 4yt rav/3, ¢4 ,2w/3,

h{2,1)=h(1,2)

h(3,1)=h(1,3)

nh(3,2)=n(2,%)

write(6,40)c

fnrn‘af(//./,'ir,’o= ',f".‘," 3 “rf10.3,7)
call agiacri(bh,ur, %)
open{urit=0l,name=’chlexc.aata’,typez"new’)
do b0 21,3

urite(b.E”)i,h(i,i)
format(1Cx,eicenvalue (7,i2,%)= *,¢10,.3,5x,"¢ i *,110,3)
weite(1,S%)h(i,4)

format (Ix,t12.6,5x,%1%,0)

continue

closelurit=01)

stop

end

subroutire ciagnilh,un,nm)
coamplex r{nr,nrd,un{nr,nm),ull,ulm,uml ,umm,th,tu

" Amm=nm=}

an=nr

range=i,Ce=2

do 20 i=1,nw~

oo 10 j=l,nm

un(i,])=0.

un{i,i)=1,

anors=0,

oo 30 i=},nnmn

iizied

dn 30 j=ii,nn
enorr=arcrrtreal (h(i,j)rconjg(h(i,}j)))
jf(anorr,Ye,ranqe) return
snorrsscrt(2,%xanofm)
anormx=asrorrtrange/an
tnag=0



257

thrzanornm

a0 thrzthe/on
50 do 80 1=1,nmn
IREARD

do A0 m=11,nn
{1 (cobs(h(1,m)) it thr) go to BU
ino=1 )
diffzreal(h{m,r)=n(1,1))
if(ditf.ec.0,) ditf=1,0e=15
ar=0,5%atan(=2,.treal(h(1,m))/dift)
2i=0,Sxatan{=2 . 2aimaqg(h(1,m))/agiff)
sinizsin(ai)
cosizcos(si)
sinrssir(sr)
cosr=cos(ar)
ullzcmplx{ccsracosissinrxsini)
ulmz=cmecIx(sinrrtcosiscosrssini)
umlz=crplx{=sinrxcosi,cosresini)
umm=cmplx(cosrtcosi,=sinrasini)
do 60 J=3i,nn
thsulY2h (1, i)¢uimen(m,j)
him, jlzumlisnh(t,j)+ummanim,j)
h(l,j):th

60 continue
do 70 i=1,nm
thzconjglult)xh(i,V)+conjglulm)xh{i,m)
h{i,m)z=cenjgluml)sn(i,1)¢conjolummdIxh(i,m)
h(i sl)=th
tuscorjc(ull)ryn(i,)4+conjqlulmd)runii,m)
un{ism)sconjclumitrunli,l)tconiglumml)euyni(i,m)
unl(i,l)=ty

70 continue

a0 continue
it(ing.ec,.0) ac to 100
ing=0
Qe te SO

100 if{(thr,ct.arcrnx) co to 40
return
end



subroutine irvrax(a)

complex a(3,3),b(3,3)

complex cet
det=a(1,1)%23(2,2)*a8(3,3)+a(1,2)*a(2,3)*a(3,1)
det=cet+s(1,3)*a(2,1)*a(3,2)=a(1,3)2a(2,2)%a(3,1)
deY=OCt"C(1'1)‘8(213)’8(3)2)'6(]r?)'O(E'1)‘5(3(3)

- bf1,1)=8(2,2)*a(3,3)=2(2,3)*a8(3,2)

b(1,2)==a(2,1)2a(3,3)+a(2,3)*xa(3,1)
bll1,3)=a(2,1)*8(3,2)-8(2,2)*a(3,1)

b(2,1)==8(1,2)%a(3,3)+a(3,2)*a(3,3)
b(2,2)=8(1,1)*8(3,3)=a(1,3)%8(3,1)

b(2,3)=~a(1,1)28(3,2)+a(3,1)2a8(1,2)
b(3,1)=a(1,2)*a(2,3)~2(1,3)*a(2,2)

b(3,2)==a(1,1)*a(2,3)+al(1,3)2a8(2,1)
bf3,3)=a(1,1)%a(2,2)=8(1,2)2a(2,1)

dgo 10 i=1,3

do 10 j=1,3

alis,jlz=t(i,jl/cet

continue

return

end
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subroutire irvrax(a)
complex a(2,2),b(2,2)
complex cet
det=a(1,1)%xa3(2,2)~a(1,2)%xa(2,1)
b(l,l):a(E,Z)
b(1,2)=-08(2,1)
b(2,1)=~a(1,¢)
b(2.2)=a(1,1)

do 10 iz1,2

do 10 j=1,2
a(irsjldz=bl(isj)/cet
continue

return

end
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60

70

75
go

8s
200

350

420

subroutine lesctt(n,ncata,x)

dimensior a(20,20),b(20,20),x(7,20,3)

dimensicr secmcm(8),summ(3,8),err(8)

This subcrogram calculates the least souare fit for a
simultaneocus linear ecuations

write(o,10)

format(//,10x,°Yhe least sauasre fit for seconc moment’,$)

write(6,12)

format(2x, x(1)sdavenr?2, x{(2)=dsaave’,/)
nn=2

mm=1

de 200 k=1,n

do 46 i=l,nr

0go 45 j=t,nn+l

sum=0,

do 2?0 kr=1,rcata

sumzsumr+x(k, km,i)xxl{x,bem,j)/x{k,km,3)} 222
continue

summ(i, j)ssunm

nnizsnn+t

if (j.ec.nrl) ¢o to 4C
ali,jlzsumm(i,})

qo to 45

blir,1)=sumr(i,3)

continue

continue

call matinv(e,rn,b,*m,cet)
k1zk=1

sh=0,

0o 70 ka=1l,nrcata

sa=0,

do 60 iz=1,rn

8532840 (i, 1) 2 x(kykmsi)/x(kyokn,3)
continue

shTsh+(sa~1,)*a?

continue

n4sez=ncata~-t

err{k)=(sh/nca)**0,5

do RO i=1,nn
write(o,758)x1,i,b(i,1)
format(étx, ' h(*,i2,°,%,i2,%)= “,¢10,4,%)
continue

write(&,85)k1,err(Kx)

tormat(10x, “error(®,12,°)= *,e10,3,7)
continue
open(unit=01,name="var.val’,typez"new’)
go S00 kr=zl,rdata

sc=0,

do 350 izi,nr
sc=sc+b(i,1)ax(1,km,i)

continue

an 450 k=1,n¢+]

sa=h,

go 420 i=t:nr
ln=sa*h(‘:l)‘x(k,kmri)/sc
continue

k1=k=1 :

{t(k]l.ec.n) sazo0,

if(kl,ec.n) y2=n,
y2=x{k,km,3)/x(1,km,3)
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430
450
500

Hr‘ite(l'u}O)kllVgrl»O

format (1x,i2,5x,f13,6,5x%x,f13,6)
continue

continue

close(unitz=01)

return

end
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subroutire Ignrlot(data,ndata,ivyscal)
dimersior cata(100),ic08(100,50)
data istar,itlanksihyche/*x”," %,%="/
write(6,8)(ihyche, k=1,100)
S format(1Cx,100A1)
omax=cate(l)
ominzcate(1)
do 10 k=2,ndats
if(datal(x).gt.cmax) drax=datal(k)
if(aatal(k). lt,cmin) grinz=datalk)
10 continue
if((grir/orax).ce.0,99) ge to 120
ao 20 i=l,rcete
datsa(idz(cate(i)=dmin)riyscal/(omax=dmin)
20 continue
co 2% i=t,ncate
do 25 j=l,iyscal
inos(i,jl=itlark
25 continue
do 40 iz=l,moats
itest=iyscal+l
1n itest=itest~]}
if((itest=cata(i)),ge.0.5) nc to 30
inos(i,itest)=istar
an continue
do AU i=l,iyscal
j=iyscal+i=;

en write(6,90)(ipc3fk,j),k=1,ndata)

S0 farmat (1Gx,1C041)
write(6,1n0){(ihvohe,kz21,100)

1ne forrat(1ux,10CAY1)

120 return

end



S7

17

a3
83

13

12

33

109

205
66
347

21

X}

18
6r
135
222

19

subroutire matinvia,nn,b,mm,cget)

dimensior 8(20,20),b(20,20),ipvot(20),index(20,2),pivot(20)

common igvot,index,pivot

eauivalence (irow,jrow),(icol,sjcol)

cat=1,

do 17 j=l,0nn

ipvot(jlr=n

do 135 i=tl,nr

t=0.

do 9 J=1,nn
it(irvot(j).ea.1) go to 9
do 23 k=j,nn

if(fevot(k)=1) 03,23,8]
if(abs(t).ce.ats(al(j,k))) 0o to 23
irow=]

icol=k

tzalj,x)

continue

continue
iovot{iccl)zipvot(icol)+l
if(irom.ec.,icol) ao teo 109
det==get

do 12 1=1,rn

tzalirow,!)
alirow,1)=alicct,t)

a(icol, )=t

f¥(mr le.0) co to 109

0o 2 Y=1,nr

tzb(irow,1)
bfirow,1)=r(iccl,1)
b(icol,1)=t

index(i,1)=irom
index(i,c)=icol
pivot(i)zal(icol,icol)
det=nettcivet (1)
alicol,iccldzt,

do 20% 1z1,rn
a(icol,1)=al(iccl,1)/pivot (1)
it({me ,1e,0) ¢ to 347

go S2 1=1,mnm

blicol, V)=t (icel,1)/pivot (i)
de 13% 11=21,rn
if(11.,ec.icol) go to 135
tzaflltl,icol)

a(ll,icecl)=C,

do 89 1=1,nn
8(11,1)=g(1),V)=alicol,¥)2t
if(mr,1e.0) ¢o to 135

do 68 1zi,wme
p(11,1)z(11,1)=b(icol,V)nt
continue

do 3 iz1,nn

I=znnei+l
if{incex(1,1).,ea.,1nocex(1,2)) Qo to
jrow=incex(1,1)
jcol=inoex(1,2)

do 549 k=1,nr

t=zalk,jrew)
af(k,jrow)=a(k,jcol)
a(k,Jjcol)=t
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549 continue
3 continue
81 return

end



20

in

120
130

155
160

265

proaram wewert

the procrar to calculate the second moment of sultiple quantum spectra
of n cougclec spin=1/2 particles assuming ecua! coupling constants based
on statisticel model

dimensior 2(%0), b(50),a(50),0meqga(50),8arome(%0),ratome(S0)
dimersion ratsce(50)

write{6,e)

format(10x,"enter the number of spins: “,%)

read(5,4)n

format(i1)

dn 100 kzi,n+1

mok=-1

xz={nem)/2.

28=0,

bs=0,

zsszstexc (=Ud , xx*x2/n)

bs=bstexp (=l axsxxld/n)axra2,

x=x+l,

if (x=(n=r)/2.) 20,26,30

rm=m

rnEnN

z(k)=zs*expg(errex2 /rn)

b(k)sd ,stganrnl/2s

a(k)z=(prelemaxld=d 2xDs/28)/4,

omeaa(k)sal(k)+b (k)

sarore(k)=crecal(k)**0,5

ratore(k)=creqal(x)/omeca(l)
ratscr(k)=sarone(k)/scrome(l)

centinue

write (6,110)

format(//,2x, rurver ctf sSpins n’,3x, “me=quantur m’,6x,°8(m)*,$)
write (€,11%)

format(11x,’tc(n)*,10x,"0megqa(m)’,4x, “sarome(m)’,$)
write (€,116) .
format (Sx, orecal(r)/oreqa(0)’,4x,’sarome(r)/scrore(0)”)
oo 130 k=1i,n41

mzk=-1
write(6,120)r,7n,a(k),t(k),omega(x),sarome(k),ratome(k),ratsar(k)
format (10x,i3,11x,i3,Ux,4(Ux,e10,4),2(5x,el0,4))
continue

onpen{unit=01,name="worent.val’,typez"new’)

o 1e0 k=1,n+1

k1=k=1

raticaza(k)/cmecall)

ratiobzt(k)/cmegall)
write(1,155)k1,ratore(k),ratios,ratiob
format(I1x,i3,3(5x,110,5))

continue

closel{unit=z0n1)

ston

end



10

20

25
1n

4n
50

subroutire plot(cats,noatasscale)
dimensior data(100)

data star,blank/’*x%,” °/
write(6,%)

format(1t+1)

dmaxzgatel(i)

gaminzdata(l)

0o 10 k=cZ,noste
if(data{k),ct.omax) dmax=data(k)
if(datalk) ,Yt,emin) ominz=data(k)
continue

if(anin/cmax,1e,0.,99) g0 to 25
do 20 k=1,ncate

gatal(k)=(oata(k)=3min)*100,/(dmax=dmin)

Q~ to 30

lenath==0

oc 40 k=i,nceata
length=cata(k)+*scale

write(6,50)k,(tlank,ma1,1ength=1),star

torrat(iIx,1%,0x,100481)
return
end
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25

30

40

80
S0

oroarsm cloti

dgimensior ocasta(100),ip08(100,50)
Cata istar,fitlank/"»*,% °/
ndata=10

do S k=l,ncata

data(k)=k

dmax=data(l)

ominzgata (1)

dgo 10 k=Z2,ndate

if(data(k).qot .cmax) drax=dstalk)
if(data(k).1t.omin) orinzcats(k)
continue

do 20 i=l,ndate
cata(id=(cata(i)=admin)*50,/(omax=dmin)
continue

do 25 i=l,ndate

do 25 j=1,5"

ipos(i,jl)=zitlark

continue

do 40 iz=i,ndate

itest=51

itestzitest~]
if((itest=cata(i)).o0e.0.5) qo to 30
ipos(i,itest)=istar

continue

dn RO i=1,50

j=S1=i
write(6,5")(incs(k,jlek=1,ndata)
format(10x,1C0RA1)

stop

end
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100

openl(unit=01,name="rel.val’,typez"new’)

dgo 100 i=1,101
x=(i=1,)/7100,
£1=(20.+418,2x)/(18,+47,.2x)
$2=(21.415,2x)/7(18,+7.%x)
$3=(1R,+18 ,2x)/(9,47 ,*x)
£4=(13,412,2x)/(9.47 .2x)
fE=(90.,472.2x)/7(063,.+428,.%x)
t6=(76,457 .*x)/7(63,428,*x)
urite(lr20)x,f1,f2,f3,f‘1,f5,f6
format (1x,f8,4,6(5x,f1C.5))
continue

closel(unjt=01)

stop

end
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program siteex

This procrar cslculates the lineshape of ordinsry single quantum
spectrur for the exchanging system of J=couplec AB spins
rj: J coupling constant

t2: trarsverse relaxation time

tau: inverse of the exchange rate

delta: ciftererce in the resonance freauency tetween A and B spins
xmax: max, velue of the frecuency display

comolex a(2,2),8lpnal,alphs?

write(ob,c)

format(10x,“enter the value of T2 (in sec): ‘,%)
read(S,a)t2

formet (f10,0)

write(6,10)

format(10x, enter the value of tau (in sec): *,¥%)
read(5,1c)tac

format(fin,n)

write(6,1%)

format (1Cx,“enter the value of chemical shift frea. :°,$)
read(S,1€)celta

format(f10,0)

write(6,c0)

format(10x, enter the value of J coupling (in Fz): “,%)
read(5,22)rj

format(f11,.0)

write(6,2%)

format(10x, “enter the value of max, omega (in kz): *,8)
read(5,727)xmax

format(fi0,0)
ooen(unitz0l,nare="siteex,val’,type="new”)
c=sart{(celtan*2+prjex2)s2,

81=0,5%p;/c

ci=0,Sxcelta/c

oo 100 kk=1,80¢C

omeqa=(kk=401_)/400 , Axmrax

sum=0,

go 60 8z=1,2

if{m,ec.1) cc to 30

if(m,e0.2) cc to ‘0

xazrj/cd.=c=oneca

xharj/2.+c=0oreca

Qo to S0

xazrj/c.=ctorega

xh=rj/2.4tctoneca

alphal=crelx(1./7t2+4(1,-s1)/tau,xa)
slpha2=zcrelx(1,/7t24¢(1.481)/t8u,xb)

a(i,1)=slrhal

a(2,2)zalcharc

a(1,2)zcrelx(=c1/tau,0,)

a(2,1)=a(1,2)

call invrax(a)
sum=gumr+(al(1,3)+a(2,1))%(1,+4s81)+(a(1,2)+8(2,2))*(1,~s1)
continue

write(1,70)orecar,sum

tformat (Ix,2(%x,f13,.7))

continue

close(unit=01])

stop

end



€1
50

¢ funct

20

30
S0

proQram sceccn
write(6,1)

format(Sx,”’erter 0 or 1 for correlated motion cr’,$)

urite(b,‘?)
format(ix,
read(5,2)logic

format(ic)

jf(logic.ec.1) go to 3
alarge=3,504212,013e3
aamall=0,953Ia12,013e3
rnorm1=2,73,

rnorn2=1,/3.

go to 4

slargexz) 790212 ,0]3e3
asmall=1 790212 ,.013e3
rnorr1=0,%

rrorn22C,S

write(o,t0)

format(ilUx, enter the mrax
read(5,¢%)arax
format(f)10,0)
write(6,5)alarce,asnall

format{(1x,/,%x,”alarge=z “, 1R, 2,5x, ssmall=

write(b,t)encrrl,rnornm?

format (5S>, rrorml= “,f0.2,5x, rnorm?o=
open{unit=0l,name="specin,val’,tynez’new”)

oo 50 i=t,50C

uncorrelated motion:

freauency:

yz(i=251,)/250 *xamax/alarce

xz=y*alarce
z=x/asmall

“0%)

‘%)

‘r18.2,%)

“9t6.2,777)

gr=funct(z,asmall)srnecrritfunct(y,alarge)*rnorn?

write(1,f))x,ar

format(Sx,f313.¢6,10x,113,.06)

contipue
close(uritst])
ston

end

follows,
functior funct(y,a)
yolus=0,5+ahs(y)
yminus=0 ,S~abts(y)
\'f(abs(y)-l.OO() 5;5'3
funct=0,000
Qo to 50
if(abs(y)=0.500) 10,30,20

tunct=(1,./scrt(yminus)+l./sart(yplus))/a

Qo to S50
tunct=l,/(a*sart(yplus))
Qo to S50
funct=1,./(a*sart(0,0005))
return

end
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program troclct

I This pDrogcrar plots the data in file “trplot.data’
oimensior oata(120),ipos(120,50)
data ister,itlank,ihyphe/"x%,7 *,%="/
cdata jyscal/c0/
open(unit=01,namex="trolot.data”",type=‘0ld’,reaconly)
read(1,1)ncata,ymax,yrin

1 format(il,2e13,.6)
do 2 k=1,ncete

2 rescd(1,3)ceta(k)

3 tormat(el13.6)

close(urit=nl)
write(6,8)(inyche, x=1,120)
8 format(1Cx,12041)
do 20 is1,rcate
dgata(i)s(cata(id=yrin)2riyscal/(ymax~ymin)
20 continue
do 25 i=1,rocate
do 29 jsi,iysca)
ipos(i,J)=iblark
25 continue
do 40 1=1,ndata
itest=iyscaltl
30 itest=itest=1
if((itest=-cata(i)),ce.0,5) co to 30
ipos(i,itest)=istar
40 continue
dgo RO iz=i,vyscal
jeivscal+i-i

8n writel(6,90)(inos(x,j)sk=1,ncdata)

30 format (1Cx,12021)
write(ée,100)(ihyphe,k=1,120)

100 formet (1Cx,12081)

120 st oo

end



272

program var
dimensior d(7,7),hdave(8),hotsav(8),hcdsav(8),sigma(8),bn(8)
dimensior hcissv(R),secmom(8),x(7,20,4)
c This progcrar cslculates the second moment of the multiple aquantum
c spectra for each order m, The nuymber of spins: 3 to 7,
open{unit=01,name="var.data’,type="o0ld’,reasonrly)
read(1,2)naats
2 format(i2)
do 100 kw=1,roats
resd(1,5)n
5 format(i2)
do 16 i=1l,n
gn 15 j=i,n
if(i.oce.j) oc to 15
reaan(1,13)c(i,))

13 format (f10,3)
15 continue
16 continue
Qo to 15
write(b6,29)n
20 format(3ix,///,25xs"nurber of scins: °,i2,//)

do 30 i=),r

do 25 j=1,nr

if(i.ge.j) agc to 25
write(b6,22) vsirali,i)

22 format(23x,°c(*,i2,%,7+12,°): %,2%x,110.3)
2% continue
30 continue
15 call subri(n,d,dsur,dave,osa0ave,hdave,hofsav,camra,)
call sutr2(m,d,dsum,hcave,hofsav,hdsav,hdisav,siqms,bn)
gn to 65
werite(6,40)
4o format(///,6x,°m"yVUx, hdave(m)’,12x, "hdsavim)’,12x, sigmalm) )

do 606 k=1,r+}
re=0,Srrek ]
write(6,50)rn,hdavelk),hosav(k),siama(k)

S0 format(/,3x,t4,1,3(10x,f10,3))
60 continue
65 call sutrd(n,br,hdsavshadisav,hdave,siama,camma,secmom)

ao 70 k=l,n
x(k,km,i)=caver*?
x(k,xm,2)=cscave
x{kskmr,3)=secmem(k)

70 continue

100 continue
close(urit=n1)
call lesctt(mn,rdata,x)
stop
end
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c12
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60
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program varcel

dimensior 0(7,7)

Thig Prograr generates ranoum dipole couplings for N coupled
soing within drax snd omin
open(unit=01,name="varmain,data’,type="new’)
write{e&,2)

format(10x, enter the total nurber of spins:’,$)
read(S,4)rspin

format(ig)

write(1,S)nspin

format(1x,12)

writel(s,10)

format(1Cx,"enter the rax, of oirole coupling:’,%)
resad(S,1c)corax

format(f10,0)

write(6,15)

format(1(Cx, “enter the rin, of cipole coupling:®,$)
read(S,17)orin

format (f1n,0)

write(6,19)

farmat(10x,“enter rancom numter k=’,$)
read(S,20)k

tormat{(1x,16)

write(ée,21)

format(1Cx,’enter rancem nurber m=",8)
read(5,2¢)n

format(ix,i¢€)

do SO0 i=l,nsfir

go S0 j=i,rspin

it(j.le.i) cc to 50

x=ran(k,n)

if(x-O.S)ES,FUu?b

d(i,jl=1.

go tc &°

d(isjid==1,

an to 50

continue

do 100 iz1,nspin

gn 100 j=1,ns0in

if(jeleai) cc to 100

write(1,€60)a0(i,j)

format (1x,f10.3)

continue

closel(urit=01)

ston

end
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dimensicr a{S5,5),3pasum(5,5),hcave(S),hotsav(S),ecn(S),hdisav(sS)

dimensior hosav(5),sigra(5S)

write(6,1)

format(//,10x,’enter the number of spins: “,%)
read(5,%)n

formati{ic)

write(b,19)

format(//,10x,’enter the dipole couplings dli,}j): 7))
go 1% i=i,n

do 15 j=1,n

if(i.,ge.j) gc to 15

writef6,12)i,]

tormat(/,10x,7°c(®¢iCs ¢ ri2:,7)= *,8)
read(S5,13)o(i,j)

format (fE,.2)

continue

write(e,1€)r

format(//,10x, numrer of soins: “,i2,//,°11i8t cf dipole courlinas’)

do 1 i=1,r

co 18 j=i1,n

it (i.ge.j) co to 1%
-rit€(6117)ilird(ili)
format(/,10x,%cl ri2s s 0i2,°): “4lv,e10,.4)
continue

co 20 iz=1l,r

dli,i)=0,

continue

an 30 i=1,n

o 30 j=t,n

if(i.le.ji) cc to 30
dfisjlscljsi)

continue

dsumzn,

dsasums=0,

do 4¢ i=1,r

oo 40 izj,r

if(i.oe.j) ¢c tn 40
dsumz=gsun+cli,j)
gsasur=cscsunmtclisjlas?
drnasum(i,jl=C,

continue

cne=n2{r=1)/2.
dsvesasun/cnc
dsaoavez=cscsun/cnl

do S50 k=1i,m+]

sn=k=1
hdeve(k)=z=0,25*caver((n=22sn)*22=-3n)
hofsav(k)=0.5#»cscaverx(n=sn)rsn
continue

en(1)=n

do 60 kz=2,r
cn{k)zcn(r=1)2(n=¥r+1)/k
continue
hdisav(1)=0,252ggums»?
do 70 i=1,r

do 70 =i,r

do 70 k=1,nr

if (i.qe.j) ¢o to 70
dpesum{i,J)=coasum(i,jl+ali,x)+dljek)=dli,])=c(],i)
continue
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600
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640
€50

trsohdaz=n,

do 80 1=1,n

do B0 j=1,n

if(i.ae.j) gc to B0
trsahcstrsche+(0,Sxgsur=doasum(i,j))an?
continue

hdisav(3)=trsahd/cn(2)

trsohdg=0,

do 90 i=1,n
trsqhd=tresohc+(0,52dsum=0,5v0pgsum(i,j))ne?
continue

hdisav(2)strsahn/cn(l)

i$(n=3)110,100,14"

hdisav(d)=toisav(l)

it(n=8)120,120,130

hdisav(d)z=hgisav(2)

hdisav(S)zhdigssv(l)

if(n=S)150,140,150

hdisav(l)=hoisav(})

ndisav(S)=hdisev(2)

hdisav(€)=hdisav(l)

do 160 k=1,n+
hdssv(k)zhcisavik)+hofsav(k)
sigmal(k)s(hcdsav(x)=ragave(k)x22)*xn,5
continue

write(b6,600)ceve,1sq0ave
format(//,10x,’0ave= ‘, e10,4,10x,°dscave=x ‘,el10,4)
write(o,€10)

format(//,3x,°n",12x, “haave(m)”,12x,°hdsavir)’,12x, s8igmal(m)’)
go 650 k=1l,nt1

rmz0,5%n=k¢]
write(b,e30Vrm,hdave(k),ndsavik),siama(k)
format(/,3x,e10,4,3(10x,e10,4))

continue

ston

end
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proqgram varir

This procrar enters the number of spins n and the dirole couplings
d(ir,}) fcr the calculateion of program var,

gimensicr c(7,7) °
open{unit=01l,name="varrasin.,dats’,type=‘new’)
write(b6,1) .
torrat(lx,/,10x,"enter the number of spins(3 tc 7): *,3)
resad (5,5)r

format(id)

write(l,e)n

format(1x,i2)

write(6,10)

format(ix,/,10x,’enter the dipole couplings d(i,j): %)
do lo is1,nr

do 1S j=1,r

if (i.0e.j) co to 15

write(6,12)1,) )

format (1x,/,80x,°3( 2312+ %,7¢32,:°%)= *+%)
read(S,13)cli,})

format (f10,0)

write(1,18)c(i,})

format(1x,¢10,3)

continue

continue

close(urit=s01)

stop

end
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progorar varrair

dimen

sior c(7,7),hdave(B),hofsav(B),hdsav(B),sigma(8),bn(8)

cimension hdisav(B),secmom(B),x(7,20,4)

This procranr calculates the second moment of the multiple quantunm

spect
opend
resad(
forms
cdo 16
dgo 15

ra for esch order m, The number of spins: 3 to 7.
units0l,namez"varmain.data’,type="old’,resdonly)
1,5)”

t(i2)

i=ti,nr

i®l,n

if(i,ce.j) gc to 15

read(
forma
conti
conti
close
Qo tc
write
forma
do 30
do 25

1,13)0(i, i)
t(f10,3)
nue
nue
(urit=ny)
15
(hy20)n
t(ix,///7,2%x+s"nurter of spins: ‘,12,//)
i:l,n
i=1.r

if(i.ce.j) gc to 25

write
forma

(6,22) i,jeali,j)
t(ZSxy'c('.i?,',',iZ"): ’02X1410.3)

continue
continue

call
call
write
forme
an &0
rm=0,
write
forma
conti
call
stor
end

sutri(n,0,d8um,dave,dscave,ndave,hofsav,garma,)

subrZ2(n,d,osur,hcave,hofsav,hdsav,hcisav,sigma,bn)

(betin)

t(/7//74x,°m’ 140, haave(r)’,12x,°hdsavim)’,12x, “siama(m) )
kzi,r+]

Sam=k+4]

(¢,S0)rm,hadave{k) ,hgsav(k),sigma(k)
t(/,3x,14,1,3(10x,110,3))

nue

subr3I(m,bn,hdgav,haisav, hcave,sigma,qgamma,secrom)
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subroutire subri(n,g,csum,dave,dsaave, hdasve,hofsav,gamma)

dimension d(7,7),hosve(B),hofsav(A)

278

The subrcutire calculate the averaged values of the trace of the dipole
hamiltoniar anc the scuare of the dipole hamiltonisn for each manifold

dO ?0 i=l'n

d(_) 10 j=1ll‘

it(j.ae.i) gc to 10
ali,jl=c()ei)

continue

d(i,id)so,

continue

dgumz0,

dsasum=0,

go S0 i=i,n

co 40 jzlyﬁ
dsum=dsur+c(i,j)/2,
osgsum=cscsur+c (i, jIx*2/2.,
continue

continue

rPN=D

enez=rnr(rn=1,3)/2,
davezdsur/cns
dsgave=cscsun/cn2
gamma=(cscave=cavex*?2)/dsaave
write(b,e0) cave,dscavescamma

format(////,3x,°dave= *,110,3,7x,”dsqaves ‘,f10,3,7x, gamma=

do 70 k=1,n+}1

'n:k-l.

hdave(k)=sC.252caver((rn=2 ,*sn)222=rn)
hofsav(k)=0,Sxcrgaver(rn=sn)*sn
continue

return

end

subrcutire subr?2(n,d,csum,rdave,hofsav,hosav,hcisav,siams,bn)

“r$10.3)

girensicr c(7,7),ncave(R),hofsav(R),ndisav(R),tn(8),dpasum(7,7,7)

dimensicr hcsav(B),sigralk)

This sutcrograr calculates the variance of the dipole hamiltonian

for esch manifclag, sigmas <Hrx2>e<H>*+2,
do 100 i=z1,n

do 100 J=t1,n

do 100 k=1, n

dpasum(i,jrk)=0,

do 150 i=1,pr

do 140 j=1,n

if(i.gt.j) gc to 140

do 130 k=1,n

iflj.gt.k) gc to 130

dlijk=0,

do 120 1=1,n
alijk=dlijkec(i,V)+alj,V)+0(k,1)
continue

doasur(i,j,k)zcnasumr(i,j,k)=d(i,j)r2.,=c(j,k)22ed(f,k)x24d1i]k

continue
continue
continue
trsand=0,
do 220 i=21,n
do 210 jJj=i,n
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if(i.ce.}) gc to 210

do 200 k=1t,n

if(jece.k) gc to 200
trsahdztrschc+(0,.S5xdgun=dpasum({,j,k)Ixn2
continue

cantinue

continue

rAZn

bn(1)=1,

go 250 kz2,m4}

brn(k)=pon(k=1)x(rn=k+2.)/(k=1,)

continue

hdisav(ad)=trsohd/bn(4)

Calculation cf tne averaced value of the scuare of the diagonal
part of cicolar hamiltonian with 3 spins down, The value is given sboue
by hoisav(d),

trsann=C,

do 310 i=1,n

do 300 j=i,n

i¢(1.0e.}) qc to 300
ooez=(apasur(i,i,jltopasum(i,j,jid)+2=xadli,,jl))/3.
trsahcstrschc+(0,.5%dsur-opa)r+?

continue

continue

hdisav(3l)=trsahd/nn(3)

The value of hcisav(3) is the averaged value of the scuare of the
diagonal rart ¢t cinolar hariltonian with 2 spins down,
trsaho=0,

do 400 iz=i1,n

doaszdoasun(i,i,1)/3%,
trsahgstrsche+ (0, Srgsur=dpas) tx?

continue

hdisev(Zl=trsahd/bn(2)

hisav(1)=0,25rdsume+?

The atove values of hcisav(2) and hdisav(1l) for 1 and 0 spnin down,
regspectively,

izn=2

go tofS0C,d431C,430,d50,470),1
hdisav(®)=haisav(])

go to S00

hoisav(é)=hcisav(l)

hAisav(S5)=hcisav(2)

Qo to SCO

hdisav(7)=hcisav(l)

hdisav(¢)=hnigav(2)

hAdisav(S)zhcisav(3)

Qo to 500

hdisav(8)z=hoisav(l)

haisev(T7)=hoisav(2)

hgisav(é)=hoisev(3)

hdisav(S)zhdisav(4d)

go S10 k=z1,mn+1

hAasav(k)zhgisav(x)ehofsav (k)
sigms(k)=(hdsav(k)=hdave(k)ax2) 2205

continue

return

end

subroutire surr3{n,bn,hdsav,hdisav,hdave,siama,camra,secmom)
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oimensicr bn(R),hdave(8),hdsav(R),hdisav(B),secmom(8),hofsav(8)
dimensicr raticf(8),sicra(R),sigmem{8),pigrom{(8),rb(&),ra(R)
Calculation ¢cf the second moment of m=auantum spectra with given secona
moments for each pair of manifolos of magnetic qQuantum number mi and m?2
so that mi=a2=r.

do 46 j=1,n+1

izj=1

upsumn=0,

dowsum=0,

usum=10,

psum=0,

kf=n=1i+)

0o 20 k=1,k*¥

Ki=k+i

hki=ndsav({k)thcsav(ki)l=2.*hdave(k)*hdave (ki)
tkiz=bn(k)*bn(iki)

skiz=sigralk)i*2+sigmalki)*»?2
pkizhdisav(k)+hdisaviki)=hdave(k)*x2~hdaave (ki)**2
pkishki-hefsavi(V¥)=hofsav(ki)

upsumr=upsur+bki*nki

dowsumZdowsum+bky

usumIusunmttkitsk)

psum=psumrtbkixpky

continue

secmon (j)zupsur/oowsur

siaror{j)zusum/dowsum

pigreor(jl=psum/dowsum

continue

write(6,50)

format(//,3x, “n=quantun’,7x, “secrom(m)”’,3)

writel(6,51)

format{(Sx, secromi{m)/secmom(0)’,5x, sigmon{m)/secmom(0)“,%)
write(6,%2

farmat(6x, “picorom(m)/secmom(0)”)
open(unitz=01,name=’var,.val‘,type="new’)

dn 70 j=1,n+1 .

mzj=1 )

ratio(jl=secron(j)/secmom(1)

ra(jl)=sicmecr(j)/secror(l)

rh(j)zpicmor(j)/secron (1)
write(6,60)mr,secmom(jl,ratio(jl,raCjl),rh(j)
format(/,5%x,12,9x,f10.3,8x,f10.3,13%x,f10.3,15x,%10.3)
write(1,£65)m, ratio(j) o

format(Sx,12,5x,%13,7)

continue

close(unit=01)

return

end



