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1. Motivation

A Hamiltunian approach to plasma dynamics has numerous advantages
over equivalert formulations which ignore the underlying Hamiltonian
structure. In addition to achieving a deeper understanding of
processes, Hamiltonian methods yield concise expressions {such as the
Kubo form for linear susceptibility), greatly shorten the length of [
calculations, expose relationships (such as between the ponderomotive ’
Hamiltonian and the linear susceptibility), determine invariants in
terms of symmetry operations, and cover situations of great generality.
In addition, they yield the Poincaré invariants, in particular Liouville —-
volume and adiabatic actions.
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II. Myth: canonical variables

The belief is prevalent, fostered by textbooks, that Hamiltcnian
methods require the use of canonically conjugate pairs of dynamical
variables (gj, Pj), whose Poisson brackets (PB) are either unity or
zero. There is still the freedom to make canonical transformations to
new variables (q,p - Q,P), while preserving the PB relations.

Tnis myth has two great difficulties: in the first place, canonical
variables are often not known, as in the case of the Vlasov field.
Secondly. even when they are known, they may be unphysical, such as
canonical momentum, which is not gauge-invariant.

I11. Reality: Poisson structure [1]

Let g(z) be an observable, expressed as a function on phase space,
with an arbitrary coordinate system. The PB of two observables
91, 9 iS given by the expression

31, 9z b = (3gy/azv)(agp/ezV) I¥V(z), (1)

where the antisymmetric tensor J need not be constant, but must be such
that the Jacobi condition:

191, 92 }, 93} + cyclic permutations = 0 (2)

is satisfied. This creates a Poisson structure; examples will be shown
below, If one knows the relation between (physical) noncanonical
variables z and (unphysical) canonical variables 7, J can be obtained by
elementary tensor analysis:

JuY = (azv/a7*)(azv/az®) Jro (3
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where the elements of J are zero or unity.
The evolution in time of an observable g is then given by
= {9, H1 ’ (4)

h

in terms of the PB (1) and a Hamiltonian H(z). These are the only
elements needed for a Hamiltonian theory.

IV. Guiding-Center Representation

Although the guiding—center description of particle motion is
conventionally an asymptotic theory, in the small parameter ¢ ~
gyrorad1us/sca1e length, the remarkable Poisson structure found by
L1tt1eJohn is exact. [2] The six coordinates of phase space are R

‘quiding—center pos1t1on in three-dimensional physical space),
P(gu1d1ng-center paralle) momentum), » (magnetic moment = gyromentum),
and e (gyrophase). The latter two are conjugate, while the “iist four
2re noncanonical. The PB is

{97.9,) = (239;/2e 3g,/au - gy <>g,) - ™, x Y5, - b(R)/B*(R)
* (vg; agy/aP - gy <= g,) B*(R)/B*(R). (5)

The modified 7ield B* is the curl of the modified potential A* = A + Pb
(for the case E=0); b is the unit vector of B, and B* = b-B*.

Observables (such as particle velocity) and the Hamiltonian are
expressed as series in e; for the latter, one has

H= %P2+ 4B(R) +0(e?),

in the case £ = 0.

Littlejohn presents the general case E # 0 in his paper. More
recently, he has used the action principle for a Lagrangian approaci[3]:

L= +R " A*(R,P,t) - 6*(R,P,u,t),

n

where
A = AR, t)+Pb(Rt)+u(Rt) R
#* = 8(R,t) +%P% + 502 (R t) + uB(R,t)
ug = E x b/B.
The Euler-| Lagrange equat1ons yield the concise form
b{b- R) Ex + R x B* ,
with
E* = -7 - aA*/at, (6)
E* = v X ﬁ*' -
The guiding—center variables are by no means limited in their

utility to adiabatic conditions. In the presence of a small-amplitude
electromagnetic wave of high frequency and short wave length {i]:



Alx,t) = A (x) + sAlx,t),
sA(x,t) = A (x) exp i [¥(x) - wt] *c.c., (7)
one uses Ao to define the variables, With the Hamiltonian perturbation
sH(z,t) = -/d3x J(xjz) - sA(x,t), (8)

one uses Kubo response theory to express the two--point susceptibility
X(x, x“;w) in terms of the PB of j(x|z), and the unperturbed

distribution f s(2) ©
K> (xx"50) = ( s(g)lmz) Is(x-x")~ 4—; !d ’“T(J(Xlzt). i(x1zy_ 0>, (9)
where @
- [4f 2
_/dzf(z)-~-), x) 4an_ x)e/m.

Knowing X, one uses the X-K theorem {5] to obta1n the ponderomot1ve
Ham11ton1an of the oscillation centert

Ky(z) = -[s/6f (2)] //d3xd3x E*(x).x7 (X,x"5w) - E(x")/4n, (o)
Ky(R.Pou) = |E( 3)[%2 + 2 0(|H,12 ug), )
D, = 2a/au * b(R)k(R) a/oP, k (x) = 7v(x)

g =w - 27(R) - k(R)- R (R,P,u),

M, 1 = [[Pb + (aark )R, + (2iaurk, b x 'k s/au] 3 (k,(200) /) - E(R) | /u,

By differentiating Ky with respect to R, P, u, one obtains the
ponderomotive drift and force, the wave-induced oscillation-center
velocity, and the gyrofrequency shift. The Lie transform used here also
yields the wave-induced increment to the gyromomentun, which is still an
adiabatic invariant.

V. Vlasov Field Theory

In the Coulomb model for a Vlasov system, the dynamical variable is
the Vilasov distribution f(z). The Hamiltonian functional is evidently

H(f) =/d62H (z) f(z) + /dsz dbz- h(z,27)f(2) f(z ), (12)
suppressing species summation. The PB can be found by sophisticated

mathematics [6], inspired guess [7], or heuristic methods [8]. On
observable functionals A(f), the PB is

(A1, A, =/d z f(z) (6A)/sf, sAr/6f } . (13)
The evolution of f is thus
f = [f:H]
= - If, H),
where Hv is the usual Vlasov Hamiltonian:
Hy(2) = Hy(2) +/d62‘ Hylz,27)F (7). (1a)
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The coupling of f(z) to the Maxwell field E(x), B(x) appears in the
PB, not in the Hamiltonian:

HFLE,B) = [dB24mi2 £(2) + [d3x (€2 + 82)j8n . (15)
On functionals A(f, E, B), the PB [A], A ] consists of three terms:
the first is (13) above, the second 15 the standard PB of
electromagnetic field theory:
/d3x (sA1/3E- x sAx/6B -  Aje=Aj) .
while the third provides the coupling:
(e/m) [dB2(st/8y) (sM/SE(r)  ehalaf (2) - Ay <= B2)
The evolution eguations for f, E, B yield the Vlasov-Maxweil system.
In contrast to the guiding-center representation, where useful

results have already been obtained, the field theory has not yet been
applied to practical problems.
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