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ABSTRACT
A simple but rigorous solution df the infra-red problem
is obtained. The basis of this solution is a factorization
of the Feynmanx-space operator into a product of two operators.
vThe first is a unitary operator that represents precisely the
contribution corresponding to claséical electromagnetic theory;
'Thg second 1s a residual operator that is free of infrared
problemé. This.factofization is exact: No soft-photon
approximation, or ahy oﬁher approximation, is used. Both
the unitary operator an& the residual operator are expressed
in simpie forms amenable to rigorous mathematicalvanalysis.
The central technical result of this work, namely the exact
yet é;mple otgaﬁization of all cont;ibutionq corresponding
to classical physids into unitary factors, may have other

important uses.

This work was supported by the Director, Office of
Energy Research, Office of High Energy and Nuclear
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: 1. INTRODUCTION

The infrared "catastrophe' has been analyzed by many workers, and

2 The essential idea of the more

various solutions haye been ptoposed.l’
recent ones2 is to reorganize the perturbation series in a way that
collects various infra-red-divergent terms into exponéntial factors

that drop out when either probabilities or matrix elements between
certain coherent photon states are calculated. To achieve this reorgani-
zation an "infra-red' part of the scattering amplitude is extracted,

by a sequence of steps, and is shown to have the required exponential

factors. The residual parts are analyzed, and argued to contain no

"infra-red diJergences, but the arguments are nonrigorous,  incomplete,

and very cumbersome.
The usual arguments are particularly unreliable 1if the scattering
function is being evaluated at a singular point. For in order to

achieve the desired factorization it is usually argued, first, that

‘the infra-red divergences arise exclusively from the couplings of soft

photons to external lines, and, second, that the small changes in the

‘momenta of the particles entering the central scattering region can be

neglected, since this neglect induces errors that are infra-red finite.

But if thgvscattering function is being evaluated at, for example,
the one-particle- exchange‘pole singularity they the second part of the
argument breaks down, due to the failure of the momentum-space power
series to converge, and the first part breaks down because the couplings
of the soft photons to the mass-shell ipternal line associated with the

pole singularity are important. Similarly, if the scattering function

\
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is evaluated at, for example, a triangle-diagram sinngarity associated
with a charged-particle closed loop then the couplings of soft photons
to the internal on-mass-shell lines that form the triangle diagram con-
tribute to the infra-red part of the problem. In these delicate
situations infinitesimal changes in denominator functions produce
infinite changes in critical factors. ‘

fhox_y )

Another defect of the usual arguménts is the assumption that (e
is of order k. For finite x this is true. But singularities are con-
trolled by asymptotic limits in which x has passed to infinity. Thus
the assumption is notvalid at singularities. |

In spite of these obvious difficulties several attempts have been
made>to apply fhe usual metﬁods ai singular points. Unphysical results
have been .obtained. For example, Stortow3 has claimed that the polé
singularity of the S-matrix ass&ciated with a charged particle is

converted by iﬁfra-red photons from the usual pple form (pz- mz)_1

to (o - n2)"1-8

, where B is of order of the fine-structure constant.
The effects of this sﬁppbsed failure of the pole form on the important
reduction fotmulés of field theory have been examined by Kibble& and
Zwanziger,5 who have, understandaﬁly, encountered grave.difficulties.
The purpose of the present work is to give a solution of the
infrared problem that is exaét in the sense that the reorgénization

that exhibits the required exponential factors is achieved in a

direct and simple way that keeps the whole expression together in a

closed compact form that is amenable to rigorous mathematical analysis:
No neglect of higher-order terms in the photon momenta k are required
to transform the x-space operator into a form that exhibits the
required exponential factors. And the formula, being exact, is appli-
cable also at singular points éf the S matrix. It is found that when

the coherent photon states are chosen in the physically correct way the

- dominant singularity at p2 = m2 is the usual pole with factorized

residues. This form is, in fact, vital to the interpretation of
-quantum theory, as will be discussed.

The infra-red problem is posed here as the problem of calculating
.the electromagnetic corrections to a strong-intraction amplitude
represented by a Feynman diagram D. The problem of the divergence of
the sttoygfinteraction perturbation series is thereby avoided.

The work is divided into two parts. The general formalism is
described. here, together with the analysis of the effects on probabilities
of the unitary factor that corresponds to classical electrodynamics.
The infra-red anélysis of the residual part is presented in paper II.6

The problem under consideration here 'is the infra-red problem, not
the ultraviolet one. Thus thg ultraviolet divergences are avoided by
simply introducing an ultraviolet cut off.

It is worth.noting that the essential problem under consideraéion
here, namely the exact effect of the infinite numbers of very soft‘
massless photons on the singularities of the S-matrix, is the precise
analog in quantum electrodynamics of the confinement problem in

quantum chromodynamics.



The orgsnization of the papet is as follows. The basic.formula
isrderiveduin Section 2. lhis formula expresses the Feynmsn
coordinate-space operaror ﬁgp(x) corresponding to eny original photon-
freerFeynman disgrava in wnich 511 charged particles are confined to
closed loops in the form U(L(x))F x). Here L(x) represents a space—
time polygon corresponding to a classical charged-particle trajectory
with vertices specified by x = (xl, ey xn), and_U(L(x)) is a unitary.
operator in photon spacel Acting on the uecuum U(L(x)) generates tne
coherent state corresponding to the classical electromagnetic field
vradiated by a charéed psrticle moving aroundlthe polygonallspacetime
closed loop L(x). ThevreSidual operator FD (x) is expressed as a
sum over Feynman diagram contributions corresponding to the various
possible photon—line insertions. But in r (x) the photon interactions
are via & modified coupling that usnishes linearly in k when the coupling
is into a mass—shell line. Consequently this residual function
generates no infra-red problems. ‘ '

Certain key features of the basic formula are pointed out in
Section 3. In Section 4 it is shown that when the basic formula 1is
folded into the external particle wave functions;.in order to obtain
physical scattering amplitudes, the charged-particle loops are
effectively confined to finite spacetime regions, and that, consequently,
there are no infra-red divergences in these closed loop amplitudes..
.This provides a rigorous starting point: these closed~loop amplitudes

are finite and well defined without infra-red cut-off or fictitious

photon mass.

In Section 5 the pole-factorization procedure for obtaining smpli-
tudes with charged initial and final lines is discussed in general
terms. The procedure starts with processes in which all charged particles
are confined to closed loops. Then the wave’packets of the external
particles'are shifted to infinity in a way such that certain partial
processes‘are shifted to infinity. 1f the photons were not massless
then the dominant asymptotic form in this limit would factorize

into a;unduct of separate factors. These factors can be identified as the

scattering amplitudes for the separate subprocesses, once appropriate

geometric fall-off factors are extracted. The program here is to show,

with the aid of the basic formula, that this factorization result

continues to hold also in the presence of interactions to all orders

'with massless photons, and that the geometric fall off factotsrate

exactly the same as for the case with no massless particles. This

t;pe of fell off corresponds to pole singularities, and to the fact

tnat the charged particles propagate over macroscopic distances like'

stable particles. What must be shown, then, is that the dominant

asymptotic term has exactly this factorized form, with the precise

rate of fall off that corresponds to stable charged particles, and that

the residual factors are finite. These residual factors define the

scattering amplitudes for‘processes with charged-particle external lines.
Precise formulas relating pole singularities to fall-off properties

are presented in Section 6, and the required fsctorization and fall-off

properties of the amplitudes are proved in Section 7. Probabilities

are considered first. Final infra-red photons are not observed.

Therefore the observable probability is formed as a sum over all final

infra-red photons. Consequently a unitary factor acting on ‘the final



infra-red states can be introduced, without altering probabilities. By
introducing in the infra-red subspace the unitary operator U—I(L(AX)),
wheré X is an appropriate basis point, and A is a parameter that tends
to infinity, one can cancel the dominant iﬂfta—red contribution from
v(L(x)). In particular, the bounds established in appendix B show that
for any € > 0, however emall, one can find a sufficiently small.
neighborhood @ of k = O such that the contribution of the photons
with k € @ a;e less than the fraction € of the asymptotically
dominant ;eym,.to t?e gxtent that‘the residual operator iopr(x)
introduces no inffa—;eﬂ divergences. This lattef-fact is proved in
paper II. This neglibievchatacter of the contribution of very ;oft
photons to-ptobabilitiés entails that the parts of the amplitudes that
give the doﬁi;ant contribution to probabilities have factorizatiqn
and fall-offlpfopérties analogous to those occur;ing with magsive
particles. Indeed; 1f one now inttoduces‘the-ﬁperator U—l(L(Ak))
for the entire space of final photons theﬂHSne obtains amplitudes that
factorize in the same way as do amplitudés_with only massive particles.
The introduction of thig unitary operator is physically reasonable:
it introduces into the final ph&ton states the quanéum mechanical
equivalent of the c%assical-electromagnetic field radiated by the
motion of a classical charged particle around the polygoﬁal spacetime
closed loop L(AX). »

The dec?mposition ﬁgp(x) = U(L(x)) i:pt(x) ariges f?om a separation
of the photon coupling into two éarts, calléd the classical and quantum
couplings..The net effect of all contributions involving ;nly

classical couplings is the operator U(L(x)). These classical-photon

conttibutions.are reduced by the Ward indentities to interactions
that act only at the fixed vertices x of the original diagram D;
rather ‘than on the internal lines. In fact, the effect of all
classical photons (i.e., photons with only claséical coupling to
the loop L(x))is expressible as simply a product of scalar factors
corresponding to pairs of vertices of D, or to a pailr consisting of
a vertex of D and the initi#l and fiﬂal photon state. Compact
formulas for these factors are given. That is, the analysis yiélds
not only general results concerning factorization and:faileofg but alsé
compact explicit formulas for the quantities of intefé;ﬁ} It is,in
fact,the availabilifi : of these simple explicit forms that allow

the estimates to be carried out.
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2. THE BASIC FORMULA ' where e ig the e.m. coupling constant and
Consider first the coordinate-space Feynman amplitude v ol = - : . -1 : ‘
» _ Cu(kj’ z,) ie ziultj(zi kj) . (2.4)
corresponding to a strong-interaction djagram D. Suppose the Here

internal lines cdrrespond to a charged, spin- %5pa:tic1e closed

loop. The Feynman»ampfitude then has the form . o 2y = X =Xy 4, (2.5)
n ‘and kj is the momentum-energy of the associated photon.
D ) K .
F (xl’ cee s xn) S F= Trizl Vi(iSF(Xiy xi—l))’ (2.1) Consider now the part of the Feynman diagram D corresponding  to
the original line segment i, which runs from'xi_i to x,. Suppose
where xq = xn, the Yi are strong-interaction vertex parts, and m external photons with quantum couplings Q: (kj’ zi)(j =a, b, ...),
- _ _ are connected in the order (a, b, ...) into this line segment 1i.
- . o v dl‘p e ipi(xi xi-l) » . ’ » ‘
: %Sf(xi’ x,1) f i (2“)4 éf@+10 — . (2.2) There is a new coordinate variable xj, je(a, b, ...), for each
. ' - inserted photon. Integration over these new coordinate variables xj
Associated with this function there is.a spacetime closed loop L(x) = yields a function of x, and'xi 1 and of the momenta kj and spin
L(xi,-.,. . xn), which is the n-sided spacetime_polygdn with eyclically indices ”j of the m photons. For example"if m, = 2 then.this
ordered vertices located at the cyclically ordered set of points x = function is
Car oo ) dbp. -1 +1(p,+k_+k )
P -ip.x P x
The electro-magnetic corrections to the function FD(x) are now G(x., x, .3 k, v kb ) = i, 71 ia kb i-1
. . 1’ i-1° a’ a’ » “b (2")4
considered. A typical correction will be represented by a Feynman - ) (2.6)
diagram having many photon lines incident on each of the n internal ' L4

1 11 1
| fm &, % 20 g O, (e 20 FIE T
line segments of D. The photon coupling at any vertex that liés on a ia i "a

the portion of the charged line of D that runs between_xi_1 and xy

This function with the variables k , kb’ v , and % associated with
: a a

is now separated into its "classical” and "quantum" parts by the
) the two photons a and b suppressed will be represented by the symbol

equation- ' : ’
1 } G(z)(xi, xi-l)'
- (m,) A
For arbitrary m, the function G (xi, xi-l) is the natural
~tey = ¢l z) + Qltk,, 2, . @23 .
u uod i g generalization of the expression in (2.6) to the case where the

ordered set (a, b, ...) has m, elements.



11

(m,)

Consider next the function G 1 (xi, xi-l) and the corrections
to it associated with the classical coupling into the line segment i
of D of a photon with momentum-energy k and spin index p. This line

contains already m coupl:{ngs of Q iy';;e. The classical coupling can

i

be inserted into any one of the m, + 1 segments into which line

i

segment i is separated by these m couplings of Q type. The sum

i

of the Feynman functions corresponding these m, + 1 different possible

i
insertions of this classical coupling C;(kj, ii) into line segment 1

is
EACRIN @ |
) Gus (xi, Xy qs k) = Gu (xi, X y0 k)

2.7

where k-z = kuzu = kz, etc., and the variables associated with the
photon quantum interactions are still suppressed. This result (2.7)

is a simple consequence of theWard i&entity

4 i __ 4 1 .

Equation (2.7) can also be expressed in the more compact form

(m,) (m,) : Xy
i 1 ikx
Gu (xi, X1 k) = G (xi, xi—l) (—1e)j‘ dx,e .
X
: “1-1
(2.9
Consider next any Feynman diagram D' obtained by attaching into

each line segment 1 of D a set of m photon lines. Each

i
photon line of D' is required to begin or end on a Q-type vertex lying

on one of the n segments of D. The Feynman function correspoﬁding to

12
D' can be expressed as
D' n (mi)
FX=T1 ViG (xi, xi—l)’ (2.10)

i=1

where the momentum-energy variables (kj’ vy
of D' are suppressed.

A photon line with classical coupling may now be inserted
into any one of the mi-l- 1 segments of any one of the n original
line segments of D. The sum of the Feymman functions corresponding

to all of these ways of inserting the classical coupling is, by

virtue of (2.9), simply

' ‘ [] v. . i
b FD s 8(x, kl)‘= FD-'(x, kl)‘= F.D (x)(—ie)f dx e klx .
s W Y1 L(x). "1

: P I (L&), k). (2.11)
" 1 '

That is, the sum of the Feynman functions corre3ponding to all ways
of classically coupling a photon of momentum-energy kl and vector

component u, inte the closed loop L(x) of D' is simply the product of
ik x

1
the original function FD' (x)with ¢ie) times the line integral of e dxu
1

around the n-sided spacetime polygon L(x).
Let the total number of photon couplings in D' in the above

calculation be m = Xmi. Then the sum over s on the left-hand side of

" (2.11) 1is a sum over m + n terms, eachof which is represented by a

diagram withm + n + 1 intervals. A second photon, of momentum k2
and spin component u, can be classically coupled into this collection

in (m + n) (m + n + 1) different ways. The sum of the Fejrnman

-
3

) associated with the photons
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functions corresponding to all of these (m + n) (m + n + 1) ways of

classically coupling the second photon is

- A ] )
T F S

. D '
Z (x, k,, kz) F (x,vkl, k~2)

u1u2 U1U2

o ikx! [ 1x!
- FD(x)(—ie)z_/I:(x)dx ! lj axy, e 2. (2.12)
L(x) 2
More generally, the sum of the Feymman functions corresponding
to all possible ways of classically coupling a set of N photons into
any fixed diagram D' that is constructed from D by the addition of photon
~J

lines that couple into the loop L(x) of D is

D'
e e e Ry
, N 1k, x!
=F @' 1 _[ ax) e U1
171 “Lx) My
D, N ’
= F(x) X Jui(L(x)’ k). (2.13)

This result follows difectly from the Ward identity (2.6).

Suépbse now a photon is emitted with classical coupling from
some.point on the Fermion closed loop in D: and is absorbed with
classical coupling on some other point on this loop. Summing over
all poséible line segments of D' upon which the two ends of the
photon line cankbegin and end, .and dividing by two to.compensate for

a double counting, one obtains the contribution to the Feynman

14

function
' ' 2 —ik(x -x")
AP () = PP (%) (= %—)/ ax! f < ™y
- LG L(x) T amy® k +1¢
- D! —e2 .
=F (x) (—5—) dx"dx"iDF(x'—x'ﬁ, (2.14)
L(x)”L(x) .

where D is the scalar part of the Feynman photon propagator. Its real
part, which comes from the principal—value part of D (k) = - (k + 16)

is
. Re D_(x'- x') = L §((x'- x")2) : (2.15)
° % & g '

[] . [ [}
This gives a "Coulomb" contribution ACFD to AFD that is FD (x) times

1o(L(x)) G—J / / dx' -dx"8((x'x")2). (2.16)
L(x)"L(x)
The factor ®(L(x)) 1s the classical action corresponding to the
motion of the charged particles along the spacetime paths defined
by the polygon L(x).
The contribution from the effect of m such photons, is just

D', . y\\m . =1
F (x)(i¢(L(g))) /m!, where the factor (m!) = compensates for

. R : ]
multiple overcounting. Thus the sum of FD and all these Coulomb
corrections to it is Just

Fo(x) = P (x) exp 1 o(L(x)). (2.17)

Thus if a classical phd;on is defined to be a photon that couples into

L only via the classical interaction then the net effect of all of
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all of the vittJal claséical photons is simply to multiply the
original function FD'(x) by>the Couiomb phase factor expi@(L(x))
associated withvthebpolygon i(x).A‘

The réal (as opposed to virtual) classical photons correspond to
the.termns(kz) in iAF(k)‘= i(k24 159—1. The real classical pﬁotons that

are both emitted and absorbed on the closed loop L(x) give a contribution

to (2.14) of the form

AF”

- P e - 1 ‘(‘:‘:),, zne’“(_k.\%:(r.(x).. K3 (LGeyK)

= ) exp -%q*(n(,‘c‘))-.r(p(x)) >, © (2.18)
where

(s*’(kz}; b(ko)_§(k2) , : L (29

and
ikx'

Ju(l.(x), k) =-ief dx' e

*
-J(L(x), - k
L(x) " : u( . )

= 3}L(x), - k). (2.20)
In the final line of (2.18) a‘btacket notations similar to Kibble's is
introduced.

Real photons with classical couplings can also be émitted and
absorbgd fromthe cha;géd-fgrmion loop. It is convenient to consider
the S-mat;#x to be anvoperétor in the spéce of the external photons.
The éhoton emitted by the classicai phot&n coupling to the closed

loop L(x) is created‘ﬁ§ the operator

X 4

16
* a*x +,.2. %
a (L(x)) = J——F 2787 (kD)a (k) (-g"")I (L(x), k)
2m) u v
= <a™ J(L(x)) >. (2.21)

If M such.pﬁotons are created then the operator that creates the
final state is‘ia*-J(L)3>M(M!)-1, where the factor (M!)_1 compensates
for an overéounfing of Feynman diagrams. Thus the operator that
creates the fu;l set of final photon. states generated by the classical

éoupling to the fermion closed loop L is
. * .
C(L) = exp <a *J(L) > . . (2.22)

Similarly, the operator that annihilates the set of initial photons

. that are absorbed by the classical coupling to the closed loop L . is

AL) = exp = <3 (L)ea > , (2.23)

The full Feynman operator function corresponding to FP(x) plus
all electtomagneticvcorrectidns associated with Feyn@an diagrams

that have no charged lines other than the loop L(x) is, therefore,

. <a*-J(L(x)) >FD (x)e-<a-J*(L(x)) >
ng(x) =e op
10(L(x)) —.%Q*(_L(x))-J(_L(x)) > . (2.24a)
X e <

;D ' D' ) D'
=2XF° . . -
Here Fop (x). Fop(x) is the sum of .photon-space operators Fop(x)

that corresponds to the set of all Feynman diagrams D'.that can be

constructed by connecting onto the n internal line segments of D
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some combination of photon lines, with, however, the condition that
each photon line must be coupled at one end or the other into some
internal line segment i of D with a quantum coupling Q&(kj‘xi). The

A
operator ng(x) corresponding to- D' is constructed from the corres-

L]
ponding Feynman function FD (x, k1, ceey km) by the formula

D’
Fop(") =
4. .
m dk .
ﬁn ‘—Jz emnskdalk,):
=1 (21) I

' .
x B0 (2, Ky oees k),

(2.26b)

where a(k,) = a(-k;) = a*(k ) creates a photon of momentum-energy

B h] A

k.j if k; > 0, and the two colons imply aWick normal-ordering of the

product- of operatotvz(kj) that they enclose.

‘ As our interest 1is in. infra-red rather than ultra-violet problems
we shall multiﬁly Ju(L(x) , k) by 8(2K - lkol)S(K - Iﬁ‘), where

K is some very large number. This cut-off factor will, for example,
replace the factor 6((x1 - xé)z) that arises from (2.14), and that
occurs in (2.15), by its non—ult:a-§161é£ part, and will

render all quantitiés occurring in the above formula (2.24) well

defined.

= 13
ﬁDO
op
FD . D,
that comes from the original part (x) of the operator Fop(x).

Let (L(x)) be the part of the operator ﬁgp(L(x)) of (2.24)
Introducing, for any function f(k),’ﬁhé notation (k) = f(-k) one

obtains from formula (2,24)

Bop @) = F(x)
-x exp<a-J(L(x))>x exp.< J(L()) -a >
x exp %Q(L(x)) +J(L(x)) >
x exp 18(L(x)) .
= FP(x) u(i,_(x)). (2.25)

< ' ~D1 ~D
Consider next the part Fop[wl,..., WN] of Fop[wl,..., wN]

in (2.24) that comes from the part of fgp(x) that corresponds to-

diagrams D' having exactly one quantum coupling. The sum of the
]
terms ng(x) of (2.24b) over all diagrams D' having a single quantum
coupling to an external photon line(and no other photon coupling) is
D' dak 2, - D', -
E'Fop(x) = E'f._—— 278(k") a(k)F (x, k)

(ZW)a

=<a:Q> + <Q-:a>, (2.26)

vhere the first and second terms on the right-hand side of (4.5)

correspond to the first and second terms in

+ - .
208(k2) = 208 (k) + 2767 (), (2.27)
respectively.
- .l D' ,
The operator Fop(x) arising from the sum of Fop(x) over all D

having exactly one quantum coupling is then
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iﬁ;(x_) =<3.q > +<Q-a> +% <3-'Q>+% <QI>+ 1<3-Q > v
' (2.28)
wheré the last three terms come the_diagtams D' that have a photon’
line with one quantum coupling to L(x) and one classical coupling -
to L(x), and
e 3,008

P.V. .
'7 (2n)4 . kz

<IQ > (2.29)

where PV, stands for principal.value.
The basic formula (2.24) can be written in the slightly more

convenient form

PO () = exp @3 >Fy (Oexp<iva > ep<ia> 4 10),

_ (2.30)
where J = J(L(x)) and ¢ = ®(L(x)). The term <.Q-a>1in (2.28) commutes

through exp<J+a >, but < a:Q>does not:

{exp<3' a >’<;, Q >] = < -j’ Q> exp<3’ F: | >.'
‘ (2.31)

Thus the part of ﬁD (%) coming from iDl(x) is
op op
~p1 - -
Fop(x) = exp <aJ >exp <Jea >
x exp (%<3'J,>+ 19) (f'gt.(x) - <3-.q >)

((2.32) continued on next page)

20
= U(L(x) X<a:q > + <Q-a > ——,}' <J.q> +—§- <QeJ>

+ 1<3-Q>I";). (2.32)

Note that the sign of the contribution ascociated with the
emission of a real (as opposed to virtual) photon from a quantum
coupling to L(x), and its subsequent absorption ﬁy the classical
coupling to L(x), has been reversed. This reversal of sign is"
represented by the following change of the Feyﬁﬁan denominator
associated with the propagation of tﬁe_Q—C photon:

W ate» 0+ 10? - |'1E|2 . - (2.33)

Here k is the momentum-energy of the photon emitted by the quantum
coupling and absorbed by the classical coupling. Thus (5.11) can be

written in the form
i

e = ey (o, (2.34)

where thé subscript r stands for the retarded character of the
propagator ‘in

Ploo = <3q(e) >+ GLw)-a >

4 = uv -
T L e U T R

en® %1282

3 &
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This result can be extended immediately to fhe contributions

‘to i‘gp(x) wifh éfbitraiy numbers of quéntum coupiings. One obtains
B 6 5 s s -
- 0p ) (x))Fopr(x) ) ) (2.36)

wher‘e>f’2p;(x)‘"is the same as the f'gp(x) iﬁ (é.Z4b) ‘exceptv: 'vthat: each
FD'(il,k ""’-l’ﬁn) Ais reﬁlacéd by FrDEx,k ,...;km), which is calculatea
from tf\e Feynmaﬁ rules modified l;y, the change in denom:l\.natoi:ishov;n in
(5.-13) a:pd' v‘(5.14) for each photon line t‘h;'i;t links # quantum coupling

to L(x) to a classical coupling to L(x). This is our basie formula.
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3. FEATURES OF THE BASIC FORMULA

In this section some general features of the basic formula
(2.36) are discussed.

3.1. Isolation of Infra-red Problems.

A principal result of this work, and the paper that follows,6
is that the infra-red problems are confined‘to the operator
U(L(x)) that appears in (2.36): the residual effects involving
quantum couplings produce no infra-red divergences.

3.2. Connection to Physics.

For clarity of presentation the strong-interaction diagram D will

often be taken to be the simple one illustrated in Fig. 1.

Figure 1 A simple strong-interaction

diagram D. The dotted external lines
represent neutral particles. The solid

triangle corresponds to L(x) = L(xl,xz,x3) .
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The quantity ?Bp(x) given in (2.36) is an operator in the
photon space. It is connected to physics via the transition operator
Tgp[¢1, ey wN], which is ob;a}ned by.folding into fgp(x) tﬁe wave
functions wj(xj) of the initial and final particles of the strong-
"interaction process represenﬁed by diagram D. If j specifies a
final particle then ¥ (xj) is the complex conjugate of the usual

h|

wave function of this particle. Thus

™ 11 ée T oy, o G0, Gy
Top¥r e W 121 xij=1 LARTE) op ? :

wherei(j) is the label of the vertex i upon which external line j of

D is incident.

3.3, Connection to Clagsical Physiés._
The'opérator U(L(;)) in (2.36) is.clpée;y connected to
classical-physi;:s. The phése; o (L(x)) is thélz:c.mtribution to the
classical action frbm the motion, % la Feynman, of a classical charged
‘ particle aréund the closed spacégime L(x).blThe other three
expoﬁéntial factofs combine to'give>a unitdry oberator which, when

acting on the photon vacuum; creates a coherent photon state. This

coherent state is the one associated with the classical eleétromagnetic

field radiated by a charged particle moving around the closed
spacetime loop L(x). These results follow from Kibblé'sv'
formula (15).4

3.4 Exactness of Basic Formula.

Formula (2:36) is exact. No soft-photon approximation--or any

24

other approximation--has been used to reorganize the photon
contributions into the form (2.36), in which the infrared problems

are confined to eprnentials related to classicalbphysica,

¥

ar



25
4., SMALLNESS OF THE SOFT-PHOTON CONTRIBUTIONS

IN CERTAIN SIMPLE SITUATIONS

The transition operator'Tgplwl,...,wN] is calculated by folding
the initial and final wave functions wjﬁﬂgintotheOPeratot fgp(x) of
-(2.36). . The detailed properties of the contributions to f:p(x) that

come from the diagrams.D'# D-will be examined later, in paper II.

Thus we shall concentrate here on the part ng[wl,...,wN] of

D

op(x). Because

Tgp[wl,...,¢N] that arisgé from the part FP(x) of F
all the contributions to_ng[wl,...,wN] have very simple forms it

is easy to obtain rigorous bounds on the magnitudés of various .
specified contributions to it.

We shall supposé that the wj(p) are infinitely differentiable
functions of\compact support. Then fog each external particle j there
will be ﬁ "dominant region", in which|%(x)|can be apptéciablé, and
a "tail region", in which ﬂj(x)] is very small and falling off faster
than any inverse power of the spatial distance from the dominant region.
(See feference 7 for discussions of these proﬁerties)

In calcuiating the transition amplitude the coordinate-space
= x

wave function §,(x,) is evaluated at the point , where
373 ‘ )

*3 7 *1Q
1(j) 1is the vertex of D upon which external line j of D is incident.
'ansider, for definiteness, the diagram D of Fiﬁ. 1, and the

corresponding transition amplitude igg[wl,..., ¢6].
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Suppose the supports of the six wave functions in s;/pg space
are disjoint. Then the dominant r?gions associated with the six
wave functions will be asymptotically disjoint. .In pétticulat; the
maximum of fhe aﬁsolute §alue of the product of any two wave functions
in the region lying outside a ball of Euclidean radius R centeted‘
at the origin will fall off faster than any power of R-l. Consequently
the contribution to 3?g[wl,..., w6] from-very soft photons is
negligiﬁle. » ‘ c

To see this let Ab) be the k-space region
_ 0 )
ab) = {k; [k | <2b, |R|<b}. (4.1)
And let UQ(L(X)) be the operatotAU(L(x)) with all k integrations
restricted to the region Q(b). The difference between UQ(L(x)) and
the value it would have if there were no contributions at all from

keQ photons is UQ(L(x)) -1. Henée the contribution to T:g[wl,...,w6]

from the keQ photons is
DO
Top[wl,.'.’wﬁlﬂ .
z deldxzdx3¢1(xl)¢2(xl)
g%y 9, (%)) wg(x3) b (xq)

D
(UQ(L(xl.xz,x3)) - _1) F (%), %,%,) . ‘_ 4.2)
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Let R(R) represent the x-space region

<R, 1'5{1,2,3}}. (4.3)

R(R) = [x;|x1|Eucl ‘

. DO .. .DO R
And’ define Top[wl,...w6]Q'Rand Top[wl""’wG]Q to be the parts of

T:g[wl,...,w6] arising from the integfation regions xeR and x¢R,
. Q
respectively. ’

‘The unitary operator UQ(L(x)) has unit nom. Hence for every b

the norm of Un(b)(L(x)) - 1 satisfies

@) - 1] <2, - (4.4)

LAY
The ultraviolet cut-off ensures that the functions |SF(xi - xi_1)|
are bounded. Hence |FD(x)| is bounded:
D : ' '
[P | <c. (4.5)

These two bounds, and the faster than any power of R_l fall off of
the maximum of the absolute value of the product of any two wave
functions ensures that the norm of

DO’ R(R)
Top[wl’ 0. ’wslﬂ(b)

falls off faster than any power of R_l. Hence for any ¢ > 0, however

small, there is an R = R(eg) such that for all b

DO; R(R(e))
|Top[w1,...,w6] (5 | <e/2. | (4.6)

Vo
-
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DO
Consider next the remaining part :gp,[*1,""¢6]ﬂ(b>R(R(e)).
Take b.<3:R(efJL Then the exponential factor exp 1 kx' in (2.20)
is close to unity, and its integral around the closed loop L(x)

enjoys a bound of the form
5, (6, ©] < ckr?. 4.7

Insertion of this bound into (2.14), with the ko- contour distorted
into a semi-cirle of radius 2b, gives for the absolute value of

e2/2 times the integral (2.14) a bound
Camy ' :
¢'(BR)' < 1, . ) (4.8)

where c' is some constant. Exponentiation preserves essentially this

bound: for sufficiently small b

| <olu

ey (F0) = 110 > | C2e oy, 4.9

Here | 0 > {s the photon vacuum. The boundedness of FD(XI’XZ’XB)

then ensures that for some sufficiently small

b = b(e, R(e)) = ble) >0

the following bound holds:

o . _
| < 0 1T 10y o ¥gla(hiey), R(ree)) IO > 1< er2. 4:10)

* »
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This result, combined with (4.6),Ashows that for ¢ > 0, however small,
there is a b(e) such that

l < oiTop[‘bl’"')¢6]n(b(e))|0 >‘<€- B (1‘.11)}
In other words, the contribution to the transition amplltude

ng[wl;...,wﬁl from. the very soft photons keQ(b) can be made

arbitrarily small by chooéing b sufficiently small.
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5. DISCUSSION OF INFRA-RED DIVERGERCES
True infra-red divergences do not arise if all charged
particles are confined to finite spacetime closed loops. This

fact is exploited in the procedure adopted above: the expressions

. are made free of infra~red divergences, and hence amenable to

rigorougzmaéheﬁétical analysis, by considering transition
ampliiudes 6otresponding to processes in which the charged-
particles are confined to closed loops, which are kept effectively

finite by the damping provided by the wave functions ¥ (x) of the

h]
1nit;ai and final particles.

jInftafted divergences giaditionally arise 'in processes in
which some of the initial or final particles are charged: the
momenta of initial and final particles are then restricted by mass-
shell constraints, which cause the singularities of certain Feynman
denominators at k = 0 to produce divergences.

One may, of coursé, consider a}l éh;rged particles in the
universe to be confined to closed loops. In a certain narrow
technical sense this would solve thg'infra—red divergence problem:
there would benolsttict divergences of Tgp[wl,...,wn] for the entire
universe. But this is not a physically adequate solﬁtion of the
problem, for the following reason: the closed loops, though finite,
will bé huge, and the factors ¢(L(x)) and.<:J*(L(x)) 'J(L(x))>'both

diverge logritimically under dilation of the closed loop. Thus for

loops the size of the universe these quantities are, for all

/
practical purposes, infinite. No predictions about laboratory

phemomena should depend on such numbers. The theory, to be useful,



31

must allow the predictions about local phenomena to depend only on
local specifications, not on the detailed ancient history of the .
particular electrons that are being used in some experiment. Some
factorization is required to extract the local aspects.

ﬁsually this factorization is achieved by means of the pole-
fac;orization property. In the absenece of massless particles one
can show that if the sources of various particles are far away from
a certain reaction among these particles then the only significant
part of the larger process that includes also the sources comes
from the residues of the pole-singularities associated with the
exchanged particles, The net residue is a product of separate factors,
one for each source and one for the interaction. In this way thé
descriptions of the sources of the particles of the reaction can be
effectively separated from the dgscription of the reaction among them.
Were it not for this pole-factorization property, or some similar
property, the whole univérse would have to be considered as a unit.

The residue of the pole is evaluated by restrict:l,ng’Athe exchanged
particles to the mass-shéll. But a restriction of a charged particle
to its maéé-shell bringé us back to the traditional infra-red
diQétgenceé. Thus fhe procedufe of starting from a universe in which
all particLéé are confined to closed loops does not, without further
analysis, solQe the problem. One must establish the requisite factori-
zation properties, which are in any case needed for a satisfactofy theory
of particles, and must confirm that the residues are finite. These
residues will reﬁresent the ampli;qdes for processes witp charged

external particles. We now proceed to those tasks.

e
<y
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" 6. SPACETIME POLE-FACTORIZATION PROPERTY

Suppose the initial and final momentum-energies of a many-
particle reaction are related in a manner that permits a classical

one-particle-exchange process of the kind shown in Fig. 2.

1 8

4

Figure 2. A one-particle exchange process.
Momentum energy is conserved in each of the
two subprocess, and the intermediate particle

momentum is denoted by p.

The Feynman rules ensure that the
scatteringifuhction'of the overall process will have a pole-type

éingularity iZm(pz— mz

+ 10)-1, and that the residue of this pole
ig simply the product of the scatte;ing amplitu&es associated with
the two subprocess. The "discontinuity'associated witﬁ the pole is
the difference of the.boundary values from the upper and lower
half—planés in p2, and is therefore 2n6(p2- m2)2m times the product
of the scattering functions of the two subprocesses.

The pole character of this singularity and the fact that the

- ~o

4
”
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residue factorizés in fhis way is crucial to the interpretation of
quantum theovy. It insures that stable parficles behave as stable
particlesvshﬁuld. VSﬁppose; for éxamplé; that we fola—in the wave
functions of the initial and final particles of the overall reaction.
Then the fitét (1owéf):inéeraction can be regarded as a sﬁbreaction
in which a particle of mass m is produced; and the second interaction
can be regardéd as a subreaction in which this particle is detected.
If these two subreactions are farvapart then the rate at which the
transition ﬁrobébility decreases as the two subreactions are moved

further apart must be in accord with classical ideas about the flux

of stable particles emerging from a source that is small in comparison

to the large distance between the source and the detector.

»L‘If we éake the momeétum—space wave functions of the initial and
final particles of the overall process to bé infinitély differentiab;e
functions of small compact sﬁpport, and if the sbatfering functions -
for the th“subprocesses are non-singular in.the regions defined by
‘these small compact supports, then éhe scaftering funétion
fl(p, P3s Pys ~ Pgs = p6) of the first sﬁbprocess félded into the
wave functions 33(p3)$4(p4)¢5(p5)¢6(p6) of this subprocess will
give an infinitglyvdifferéntiable and compactly supported wave function
wl(p) of the particle preduced in this first subreaction. Similarly,
the scattering function fz(pl, Pys> = Ps —'p7, - p8) of the second
proéess folded into the wave functions El(pl)Ez(p2)¢7(p7)¢(p8) of
this subprocess wi11 giv§ an infinitely differeﬁtiable and coﬁpactly

.supported wave function Wz(— p) = ﬁz(p) of the particle detected at
the second reaction.,AThusbthe transition amp}itude associated with

the preparation of a particle represented by wave function Wl(p), and
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the subsequent detection of a particle represented by (complex con-
jugated) wave function $z(p), namely *
4

Ll d - +, 2 2 :
<3, ‘-y;1>=f(—2"§’—2.— ¥y (P)2ns” (p° —m*)2m (), (6.1)

" 18 equal to the result of folding the wave fuhctions ¢j(j =1,... 6)

of the external particles of the. overall reaction into'tﬁg discontinuity
2ﬂ5(k2)2m of thé overall scattéring function.

uWe are interested in the dépendénce of this amplitudé-onbthe
location of the detector. Thus we tf;hslatevthe wave functions
43y

by a vector 4x = v, where v2 = 1 and v0 > 0. This is achieved

) of the external ;articles of the second (detection) subprocess

- by the change

) Ax
#yleg) > o Gxg) = gy = 0

This change induces the change

. ip Ax
S - S 3
%cyﬁ & () = ¥py)

in the momentum-space functions. Then momentum-energy conservation

in the second process yields the rgspl;ing change in Ez(p):

B, > 5, = §,pre P | (6.2)

Actually, are interested in the rate of fall-off of the transition

amplitude of the overall process itself as the magnitude ¢ of the
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shift Ax tends to infinity. However, if we had used in place of

2 + 10)_1 the boundary value (pz— mz- i())_1 then this modified

2
(p-m
transition ampliﬁude'wouid fall off faster than any power of 1.7
Thus, modulo these terms that fall-off faster than any ﬁower of T

2

we may use,zin place of the actual pole form i(pz— m- + 10)_1, rather

the difference (or discontinuity)

1(p%- m? + 107 - 1(p2- n2- 10)7L = 218 (p2= md).
Then, in the notation of (6.1) and (6.2), the question becomes:

v :
what is the rate of fall off of < WZ '“?f>as T > o

T#is'quesfion is answered by.the following corollary to a theorem
proved in appendix A. Corolla;i A: Suppose Ez(p)wl(p), considered
as a function of the three-vector 3,'13 cont;nuous‘together with its
first and second derivatives, aﬁd vanishes for |;| > R < w. Then

0

" for any real v satisfying v2 = 1 and v_ > O the following limit holds:

1im (Znix)alzeimﬂ
m

T >

<$“’.¢1>=

2

= Jé(mv) wl(mv), ‘ (6-3)

In terms of probabilities this relationship becomes.

3 ' -2
1im 27T v, -
&) <8, v, >

T >

= 155 @) ||y @2, : (6.4)

e
-
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This result allows the squares of the magnitudes of the momentum
space wave functions wl(mv) and Ez(mv) to be identified as flux
densities for emission and absorbtion of particles moving in the
direction v. The factor 1"3 corresponds to fhe fact that stable
particles do not disappear or materialize while moving from the source
to the detector: the probabilities in the macroscopic domains
have the same geometric fall off as the probabilities for classical
stable particies. ‘
If one were to increase the degree of the singularity then
the fall off would become too slow.  And if one were to deérease the
degree of singularity then the fall off would becoye too fast. |
The connections described above.show that one cannot expect to
extract reliable information about the singularity structure of
a function from an approximation to it ;hat disrupts.
its asymptotic behavior in coordinate space. Fo; the asymptot.:l.‘c‘:'
structure of traﬁsitioh'émplitudes ;n coordinate space determines
the analytic structure in momentum space. 8
Storrow3 examined the question of the effect of infra:gd photons
on this pole singularity and concluded that the usual pole form

2. 2 -1 2.2 T8
(p- m” + 10) = was changed to (p -'m” + 10) , where 8 was of order
of the fine structure constant. Sﬁch a form would entail large

deviations in the macroscopic regime from the classically expected

" behavior of stable particles.
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7. TRIANGLE-DIAGRAM FACTORIZATION AND AMPLITUDES FOR PROCESSES

WITH él-lARGED INI'l‘lAL AND FlNAL PARTICLES

These pole-singularity considerations can be carried over to-
reactions such as the one illustrated in Fig. 1, in which a
charged pérticle funs around a closed loop.

Let X,, Xz,’hnd X, be the vertices of a large spacetime closed
.loop L(X). Let Pys Py and p3 be the momentum-energies of tlie three
intermediate lines, as determined by the masses my of the three
charged lines and the differences Ai of the Xi. Suppose the wave
functionsl% i(x)of the two'external particles inoident upon vertex 1
are large ih“§-neighborhood of X but have a product that falls
off faster than any power of |x - r as x moves away from Xi And
suppose that the scattering function for each of the three subreactions,
folded into the wave functionsd:;(i of the two associated external
particles, but evaluoted at the momenta pj associated with the two

appropriate intermediate particles, is non zero. This configuration

defines a transition opérafor'
.A().x) =10 ELC Puo, (7.1)
op "’1 cees Vg .

that would be expected to have contributions corresponding to the
reaction represented in Fig. 1. Indeed, if there were no infra-red

problem then A(AX) would be dominated at large A by a term that falls
-9/2

off és A , and that arises from the pole-singularities

(pi- m§ + iO)—1 corresponding to the three charged lines in Fig. 1.
Thé diagtams D' contributing to this dominant term would be7’8

those in the class CD consisting at those D' that are separated into
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three disjoint &iagrams by cutting three charged lines, one corres-

ponding to each line of D. Modulo self-energy-diagram considerations

the dominant A-Q/Z contribution to A()X) would be obtained by replacing
each of the three poles i(pj - mj + 10)-1 by the corresponding mass-
2). Indeed by factoring off (ci) 9/2

shell delta-functions 2n6‘pj - my
and an approptiaté unitary factor that does hot affect probabilities,
one would obtain a limiting value that is just the product of the

scottering functions for the three processes, with the ¢j's folded in,

evaluated of the points pj =p This is the triangle-diagram

j
generalization of (6. 3)

These pole-factorization results are not disrupted by the infra-

red photons. Equations (7.1), (3.1), and R.36) give
3 6
af _ 4 i(j)
A(AX)' fi‘]l]. d xi jgl i (Xi(j))
x U(L(x)')i:gpr(x) . i (7.2)
Let U(L(x)) be written in the form
VL) = Uy (L)) U7 (LE))

= U, (LOX) v (L))

+ e @leen) vy @) - 1) em),
7.3
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Q ’ -
where the operators‘Un(L(xﬁ and U (L(x)) are the operators obtained
by restricting the k integrations that occur in the definition \2.25)

of U(L(x)) to kef and k£Q, respectively. Then one may write
A(XX) = Adom(AX) + Arem(XX), _ . (7.4)

where #’aom(kx)'and Arem(kx) arise from the first and second terms™in

the final line of (7.3), respectively. In particular, one has

. N Q s
Ay, OOX) = UQ(L(AX)) A(X), (7.5)
. where

Aox) =

3 e X

4 - 1(1) Q =D
= ndx, nvy (x YU (L(x))F (x).
=1 e T opr

(7.6)

The probability corresponding to the transition operator A(AX)
is

POX) = Tr AOK)p, ATO0pg, o (1.

where pin and pfin are the density operators for the initial and
final photons. Final infra-red photons are not detected. Thus~

) Pgin 2Cts as a unit operator on the infra-red (i.e., kel ) parts of
the photon states. The non-infra-red (i.é., ké$) photons play no
essential role in the discussion, and can be assumed to be absent from

both the initial and final states. Thus if

pg = 10" >< 0" (7.8)
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is the operator thatbprojects all non-infra-red (k£{) photon
oscillator state vectors onto their ground or vacuum states, but
leaves unchanged all photon oscillator states corresponding to
photons with momenta kel then one may write

Pein = °g : 7.9
and .

a

&
Pin = P0 Pin,d - (7.10)

where fn. 8 specifies the initial condition of the infra-red
]
photons, but leaves unchanged all non-infra-red parts.
Suppose 2 is contained infi Then the contribution of Adom(AX)

to the probability P(AX) is
Pdom(xx)
- (< 0%[a, _O®) [of >
T )
<
P10, 550 | Agon 0| 07 )

= Tr[ < (‘)ﬁlu9 cox)aan| o >
o in’ﬁ<on|Amv(u()ujz (L~(A.X)) | oft>)

= Tef<0® | A% o7 >

8,0 B '
Pin,g <0 (47 OX) |0">1, (7.11)
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where the traces are in the space associated with the infra-red
photons, and the unitarity of UQ(L(AX)) has been used to obtain the
last line.

Let o= b) be a set of the form -
amy= e 10 <2b, [k <bh (7.12)

And suppose, as in'Section 2, that the wave functions Wj(pj) are
infinitely’&ifferentiable with disjoint comoact supports in

S}/pj space. Then it is shown in Appendix B that for some fixed A-
and for any ¢ > 0, however small,—thepe-is a b(e) such that for any
b <b(e).-and all 2 >4 the contributions to P()X) that involve

A em(AX) are less than ¢ times P(AX):

P(AX) - io (xx) < eP(AX). (7.13)

-~

This smallness of the contributions from Argn(xx) arises from the

fact that the fastet;than-any—power fall~offs of the wave functions

wj i(x) effectively confine x to a finite neighborhood of AX. Yet
- for all | << |x - Axl-l the currents J{L(x),k) and J(L(AX),R) are
neariy equal. Consequently, the operators'U(L(x)) and U(L(XX))are
nearly equal, and hence the factor (U;;(L(AX))UQ(L(x)) - 1)
appearing in Arem(AX) tends effectively to zero with the size of
a = a(b).

Tne value of b is now taken small enough so that, to some high
praudained level of accuracy, the probability P(1X) is adequately

represented by Pdom(xx). Then the remainder can be ignored: it is a
negligible fraction of the whole.
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'ﬁduations (7.liiland (7.6) show that the operator UQ(AX) drops
completely out of the calculation of P (AX) Thus no error at
all is induced in the calculation of Pd (AX) if ome reolaces the
operator FD (x) in the basic formula (2.36) by

2 ()

opr

bl

~D ’
(L)) Fope @+ (7.14)

This substitution eliminates all contributions to U(L(x)) that arise
from the photons with keQ. This elimination of keQ contributions
ensures the infra—red finiteness of P ( AX), and hence of P(AX)
itself, provided the operator FD (x) introduces no infra-red divergences.
The infra-red properties of F (x) are studied in paper II. ‘An
ultra-violet cut-off is imposed, and the possibility of a divergence
of ‘the sum over tﬁe infinite number of different diagtam'D' with
quantum coupling Q is not examined. Subject to these iimitations it
is shown that tﬁe'photon momentum-space eigenstates of the Fourier
transform F (q) of F (x) are well defined and have the usnal
triangle—diagram singularity: the dominant contribution to_the

discontinuity around the triangle~diagram. singularity surface is

evaluated as a sum over contributions corresponding to 311 ways in

which the diagrams D' can be cut into three disjoint parts by cutting

three line segments, one corresponding to each of the three internal
lines of b; end replacing the corresponding propaéator i(ﬁ+m)/p2qm+k:
by 2no(p2—m2)(ﬁ+m). This restriction of.cherged-linec to their mass~
shells produces no infra-red divergence.

To establish the important coordinate-space factotization

property consider first the vacuum-to-vacuum matrix element
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~ 1 =D
<0 lFopr(q) ] 0 >. Since the singularity at the triangle-diagram
singularity surface is normal the corresponding.asymptotic behavior

in coordinate space is also normal. Indeed, the three-particle

generalization of the theorem of Appendix A ensures that if one defines

3 6 X, :
- 4 i
F(AX) = l ndx, 0 ¢ (x )
' =1 Lty o 1D

<o| f-f,’p,<x> o>, (7.9

then

’ 3/2 =
3 2nic, A im.c ')
1im 1 <L———JL—) e L

O S A

: 3
x F(X) = 1 F

S Fi%ayPee Paa)s (7.16)

where Fi(wj(i)’pi’ p1+1) is the amplitude assdéiated with vertex 1
of D. Specifically, Fi(wj(i)’ Pys pi+1) is the scattering function
for the subprocess associated with vertex i, folded into the wave
functions wh ofvthe particles corresponding to the two external
lines of D incident upon the vertex i, and evaluated at the momenta

Py and P41 of the charged particles associated with thé two internal

lines of D incident upon i. The quantities 1 and c are specified

by
Py = my @y = X D% = Xy g, (7.17a)

and
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c =*w|}( -X | .
i 7 i-1 Mink

(7.17b)

The property of Fopr(x) just described refers to its vacuum
to-vacuum matrix element. If the initial state represented by pin,ﬁ
is the.vacuum.sfate then the operator ngr(x):in (7.6) that occurs
in the formula (7.11) for Pdom(AX) acts on the vacuum state. Then
the vacuum-to-vacuum matrix element of ngr(x) will contribute to
the probability Pdom(lx) a term

0

Pdom

(AX) =
3 6 X AX. K
4 b 1(3) i
n (@x.d'y)n
J 4 xd'y, o (wj | g3y, | (yi(j)))

=D ct
x < 0|F°pr(x) jo> <0|Fopf(y) o>

x < 0®uP (L) | <o vt (L) [ >

* fﬁ—;n'ﬁ—ﬂlvﬁki@(x))!oﬁ-ﬂ><0§—Q|U$II—Q(L(Y))'“'5—Q> ¥
(7.18)
The superscript & on UQ(L(x)) means restriction of the integrals
occurring in U(L(x)) to contributions from the photons with kéf
(i.e., to non-infra-red, photéns) and the subscript (- means
restriction‘to photons withrke(ﬁ—ﬂ) (i.e., to infra-red photons that
are not very soft). The sum over gtate; In'ﬁ_0:>is a sum over all
states of the oscillators corresponding to photons with ke(ﬁ—ﬂ).
Expression (7.18) for Pgo
quantities < 0|F2pr(x)|0 > and < Olﬁ:pr(y5|0 > with the unitary

m(Ax)combines the infra-red finite

factors corresponding to.classical photons with k¢Q.
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- . . i 1 M
I (L), k) =-fes J dx' etkx
wr x) X
3 2z 1kx 1kx
: izati ty for PO (AX) S m—e ¥ AU (o 11l
To establish an asymptotic factorization property dom =1 zifk :
. o ' 3 ikx, /= z
recall f}rst that ; e I e i( ip - 1+15;)
: : =1 £h H41
. : A , - . 3 :
Q.0 Q ’ ' =
<o'|v" (L) | 0" > L 2 TGy g 7 B (7.21)
. where Jiu(xi’ fi’ 2;+1, F) ié the patti;l cu?éent associated with
= exp ion(L(x))- vertex i of D..
' ' If each of the two currents in (7.20b) is decomposed into its
x exp ;;% <:J*(L(x)) .J(L(x)):>§, (7.19) ' three patt}al currents one o?taing nine terms in all. Each of theée
- nine terms is associated with one wiggly line in the diagram of Fig. 3;
where ) * uv : . . ; ;
P (a% I, (™) L,k 4 :
"9 (L(x)) = P.V. J 4 - 7 - X
. 2(2n) k
(7.20a)
and -
*x s k. x : uv :
<J (L)) SJ(Lx)>" = A Ju(L()_c),k)(-g )J\)(L(x),k)
- : (2n) " .
<amstdy X (. ' (7.200)

Figure 3. A triangle diagram with wiggly
d lines representing the classical-photon
Here x (k) is a factor that cuts out the contributions from both ‘ .
: : contributions.
infra-red and ultra-violet photons. . :

The current appearing 1n'(7.20) is . . . - .
. “Two of the nine terms are associated with each of the three

wiggly lines that run between two different vertices, and one of the
nine terms is associated with each wiggly line that begins and ends

on the same vertex.
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The contributions to (7.18) from the six terms in (7.20b) that Due to the timelike character of the differences z, = z, - xi—l
' : . n ’ -1
correspond to interactions between different vertices fall-off. for x in R(A7,2X) this Ixi - x:L—lIEucl. fall off of (7.22) in timelike
faster than )\-9. To see this, consider first a typical directions, together the bound CA-9+8n on the remaining factors, entails
A . -9
contribution of this kind to (7.20b): a faster than X ° fall off of the xeR(An.AX) contributions
. ' * §) 10
~ of <J1-1(xi—1) Ji(xi)> to the Pdom()‘x) defined in (7,.18)' On the
* Q ) jther hand, the £ ha £ |x - x|t £
< . = ) other hand, the faster than any power of |x - fall off o
Ji-l(xi-'l) \ Ji(xi)> i . ’ Eucl. 3
the product of the wave functions in (7.18) ensures thé faster than
2 [ gt YOy ) 2, @ ' -1 '
= e j e - (21r)6+(k) Xg(k) ) any power of A ~ fall off of the contributions to the integral over
(2%) '

~ : - x in (7.18) from points x not in RG",AX), since the remaining factors

’ ‘oz z
x (zi_-lv_ - z_iu_) (-g"v) (_A»_ - __ile_)
zi_l-k z i-k z,i.k zi+1.k

(7.22) . in the integrand are bounded. ~ Thus the full contribuéibn to the

probability Pgom(xx) defined in (7.18) from che parts of (7.20b) that
'cor;:espond to interactions between different vertices xg falls off
. . - . ) , -9

RO X)) = { x: |x - )‘xlEucl < A"}, where 0 <n K< A faster than A ~.

And consider first the values of (7.22) at points x in

Since the x, are.c}wsen oo that the differences x, - xi;l are all The three surviving terms in (7.20b) arise from the self-interaction

timeiike, and satisfy ‘xg _ Xg-_1| > 1, the vectors z counterparts of the integral in (7.22). These self-interaction

1 5% " %0

for points x 1in- terms, whilcvh‘ co_rrespopd to the wiggly }ines of Fig. 3'tl_1at: begin and

end on the same point, have x_, in place of x in (7.22). Hence

i i-1

R(A",).X)_ : o they have no x dependence.

Consider next the integral in (7.20a). Arguments similar to

t . On the other hand, k is light-1 th ;
must also be imelikg € other hand, s 8 ike in the those just given, and described in detail in Appendix D,

2.0
1 k). h 1 ingul f the int d 1 . :
support of § (\) ‘Hence the only singularities o © egrand in show that the contributions of (7.20a) to (7.18) arising from the sum of

. t £ th f the cut off function * _ -
(; 22) apart from those o ; products of factors J, and Jy over i 4 § fall off faster than A~
: 2 . : .

-th £ 8§(k7). t then the properties of Fourier .
% (19, are those of (i) B en the prop : provided the effect of the self-energy counter term is included.

1,8 ' * & :
that < . >
transforms ensure a Ji-l(xi-l) J (xi) falls off The sole surviving term in the limit A + = comes, therefore, only

. . -1 .
- : . *
at least as fast as |xj xj—-llEucl. in all direct:l‘.ons except from the self-interaction terms involving the product of Jg with

those on the light cone. And in these latter directions it is Ji' These terms have no x dependence. Thus the full contribution

bounded. from the factor < 0ﬁ | UQ(L(x))| 0% >to the dominant large-2X
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behavior. of Pgoﬁ(kx) defined by (7.18) is éimply a product of three The x dependence of Ms(k,x) is exp i(x-k) , where
. ) Y
independent constants, one from each vertex of D. ’
n
The final factor in the expression (7.18) for Po (AX) is a sum (xek) = T kx . (7.25)
e .. dom : Y w1l © 1(ysa)
over the states |nA >. These states can be taken to be the photon -
et : , —1A(X-k) , .
momentum eigen states |(k1,...kn)ﬁ_9>n Since the photons that Thus the function Mn(k, X) e Y depends only on the differences
. - Y AX s
contribute to Ua AL(X)) have k restricted to a region (- that x, -2X (1=1, 2, 3). The wave functions wj 1D L1e0 depend only
SN . 1A (kX)
is bounded both from above and from below these cases can be on these differences. Thus the three factors from MY(k’ X)e Y
treated by methods essentially the same as those just given: one simply modify the product of wave functions appearing in (7.16). Hence
simply treats the classical photons coupled into the three vertices that earlier result yields 1mmediaté1y also
of D like extra external particles. One may, for convenience, ' : 3/2
. : . 3 211:(ci imicil —ik(X‘k.)Y
recombine the parts kgfi and kefi-Q andconsider the matrix element 1im I ( - e e
‘ ‘ Ao §=1 i
<, .eak [URLG) [0 > = M o). (7.23) 3 6 AX
AR Y : 4 1(3)
- . x n d xi n ‘l'j (xi(j)),
i=1 3=1
This function decomposes into a sum of terms, one for each way of .
h Q
. >
coupling the set of photons (kl,..., k,) into the three vertices. x < k1""'knIU (L(x)) |0 Y
Let Y be an index that runs over the various possibilities. Let a
=D
< >
be an index that runs over the n photons, and let i(y, a) label the x 0| Fopr(x)lo
vertex into which photon g couples for possibility y. Then . 3 ' -~
. : Q
= : 7.
I Ay P Padd o, 0) 7.26)
< kpeen i [U7(LG0) fO > : where .
' Q G D = {a3 ily, o) = 1) (7.27a) .
=2 2 < > alys s Y O fy .
kr...,kh|U wLx))]o v 4
Y ' and the argument j in the last line runs over the set
Q
=Z M (k x). (7.24)
Y A

) = (43 1) = 1) L (2.27b)
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The right-hand-side of equation (7.26) is a sum of contributions,:one

for each way in which any diagram D; contributing to the left-hand
side can be cut into three disjoint parts by cutting three charged-
line segments, one corresponding to each internal line of D. The -
contribution on the right-hand side is obtained from the corresponding *
one on the left-hand side by setping A = 0 and replacing the Feynman
propagator 1(15t + mi)/(pi - mi + 1¢) ‘associated with the cut segment
by (t + mi/Zmi?t where-

T ELUA LR Y W .28
However, .the Fejnman diagrams on the left-hand side. that contain self-
energy corrections to the cut charged-line segment should be ignored,
because the renormalization counter terms exactly eliminate their

effects on this mass-shell line.

In cdnstructing

Y]
An (5, Pov Poadd Ky(y, 1))

the quantities viu/vi.k& and v l-k that arise from the classical -

‘ i+1u/vi+
coupling have been replaced first by (Xi - xi-l)u/(xi - Xi_l)-k and

( - Xi)u‘/(Xi+l - Xi)-k, by omitting terms tend to zero in the limit

X0
A » o, and then, with the aid of (7.28), byvpiu/pi-k and pi+1u/p1+1-k.

" Due to the exclusion from UQ(L(X)) of contributions from photons
with keQ the value of the energy k: of each final photon in A?Y

is greater than some fixed minimum value. Since the energy carried

.of the amplitudes from wﬁich the probability P

52 :

into and out of the subreaction i by the particles represented by the
lines of D are constrained by the compact support of the wave functions
wj(i)(pj)’ and by the fixed values of the momenta Py and Piyye the
amplitudes .
£ Sk )
1y U3 P Pint Koy, )

must vanish if the set a(y,i) has more than some finite number of

elements. Thus the sum over final photon states needed in the calcu-

iation of

9.

lim A Pdom(lx)

1s limited to states containing some finite number of photons.

Equation (7.26) exhibits an asymptotic factorization property

0
do

] (] : }
This quantity Pdom(XX).is the contribution to Pdom(kx) from the infra-

m(AX) is constructed.

red-finite matrix element<:0|§gpr(x)]0 >. Consider next thé contri-
bution from the matrix element < klﬁgpr(x)10 >. The analysis of
paper II shows that the dominant singularity-on the triangle-diagram
surface of the Fourier transform of this function is normal.- Thus

the three-particle generalization of the theorem of Appendix A

glves
3 [,2mie 3/2 in c A
1im I ( ) e
Ao 4=1 U7y
3 AX . .
J n dax P i(j)(x ) (7.29 cont. on p. 53)
14 1(3)



54

53
g+ ¥ + m
D : _ (8 + m)Q (k, 2)
x <k|l7‘opt(x) o> E . . o+ k) —md
o - - oG me, - Brhta
F. (K)F,F _ Yy T z.kK T (2p-k)
1 2°3
. ' z"u p+m
+F;F, (k) F, : o » . = (-ie)'Bﬁ.+ m)(yu - 2.0 2p-Kk
+F, F,F (k) ’ : (7.29) :
12 3 A . ) : - X
‘ @Gy .k) 2p-k]
where ) :
| 4
- G +m(- ,s+m) T
, ‘ ( 1e)[ 2p- )(Yu sz)
: zu(2p'k) 1
is the function occurring in (7.16), and + + m)(ZPH T zek ) 2p-k
= N .. + - —
F (k) = Fi(wj(i)’ Pi(1)® k) ) (7.31) e (6] +"’)(Yp 7ok ) T
is the amplitude for the process in which a photon of momentum- - ; = (-ie) [(ﬁ + m)Yu Zs'k ] . (7.32)
energy k is emitted by the part of the reaction at vertex i that
is represented by igpr' . The last line follows from the facts that k2 vanishes, and that
The traditional infra-red analysis suggests that an infra-red P, = mvu is parallel to Vu = 2z /l |» as prescribed by (7 28).

divergence might arise from the coupling of the soft-photon of ‘ This result shows that the quantum coupling into the mass-
momentum k onto the external on-mass-shell charged line of the : i shell line has one extra power of k in the numerator, relative to
reaction at vertex i. However, the coupling of an external photon the usual Yu coupling. This extra power of k eliminates the usual
of momentum k into ?B r must be via a quantum-coupling Qu(k’ z), infra-red divergence. In fact, it is precisely this eitra power
which, for a coupling into the mass-shell charged line, occurs in the of k in the quantum coupling of photons into mass-shell lines,

context together with the occurrence of the retarded (rather than Feynman)

propagator foi Q-C photons, that is the basis of the proof given
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in paper II that the mopentum—space matrix elements of ?gpr(p) and
their discontinuities are infra-red finite.

By virtue of the inﬁra—red'finiteness ofligpr(pj the photons
fepresentedbyitwill notvlead to any infra-red problems. The p, 15

assumed, for simplicity, to be the vacuum projector.. Thus the matrix
element .

0% =< of A7 oxe, A OB o > (7.33)

will be infra-red-finite.
Equations (7:4) through (7.11) show that Mgo(kx) is a copttibution
'POO (AX) to P (AX). It has no 1hfra-red“anomolies, and hence falls
dom dom ‘

9

off at the normal A~> rate. On the other hand, the equations.

Pdom(xx) =

o N
= TrAdom(Ax) pinAdom(}F)pfin’
= 7.35
Aion®B = 1004700, .‘ (7.35)

- Q
and (7.33) show that the full contribution to ngm(xx) = MOO from

final photons with keQ arises exclusively from the single final coherent

state UQ(AX)IOn > . Ssimilarly, the full contributionvagm(XX) to .

pdom(xx) arising from the infra-red-finite matrix element

Q X Qt f;,
<kpla” Ompy AT 0D g >, |
wﬁerelkn > 1s|k1,..., kp > with all kieﬂ, is carried exclusively by
fhe single final coherent s.tate,U-Q()\X)|kn > . Thus if one wants to use

final photon states that give dominant contributions to the asymptotic -
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large-A behavior of the probability then one cannot choose as the
basis of the final keQ photon space, the usual momentum: states
lk9:>= I(kl,..., kn)Q >. ‘Fot the use of these final states would
introduce factors <:k'Q|UQ(L(AX)) |kn>> that all approach zeto as

A> ®, The more approprlate basis for the final ke photon states is

the set of coherent states UQ(L().X))|I<n > : each of these carries the

full contribution to Pdom(lx) associated with the éortesponding infra-
red-finite matrix element < kdIAnr(Ax)pinApf(Ax) |k93>. By using

these coherent states one obtains for the individual final-state

9/ 9

matrix elements the A~ 2 fall-off property that corresponds to the A~
fall-off property.of the probabilities.

Use of these coherent states UQ(L(XX))Ikn > is dictatéd also by
physical considerations. For the unitary operator UQ(L(XX)) incorporates
into the final photon states the quantum mechanical counterpart of
the keQ part of the classical electromagnetic fieid radiéted by the
closed ioop L(AX). These classical contributions physically dominate
the small k, large-A behavior; and hence they must be dncorporated into
the final states if the resulting matrix elements are fo have any -
physical signifiéance in the limit A + =,

These coherent states UQ(L(XX))lkn > may be compared to ;hose
used by Storrow, Kibble, Zwanzigér, and by Kulish»and Faddeev. In the
closed-loop case, where no charged-patticles occur initially or |
finally, these authors use the normal étates |k ?. But the use of

these states would, as just mentioned, give the individual matrix

elements spurious damping factors that suppress the dominant large-2X
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behavior in coordinate space and conseqﬁently disrupt the analytic
structure in momentum space.

Similarly, in the analysis of the pole-diagtja-m siﬁgulérity Storrow
Ausé& cohereﬁt statés that correspond to plécing both écatteriné
centers of the pole-diagram process at a common point, namely the origin

of spacetime. This choice effectively neglects effects of the factors

ikx . o -
e i in the expression (7.21) for the current. These exponential

factors shift the parts of the current that correspond to separate

scattering processeé to the points x, where these separate processes

i
occur, . Placing these separate contributions the origin is mathemati-
cally and physically inappropriate when the critical question is the

form éf a limit in which the separate subprocesses are shifted in

different-directions to infinity. flox

Storrow's neglect of the factors e stems from an analogous
step made by Yennie,Fraﬁtéchiand Suﬁra,? who argue that terﬁs
.containing the difference factors (1 - eikx),acquirea cdﬁvergence
factor k in the ;nfra—red“regime, and hence can be placed with the
infra-red convergent terms. Thié is an awkward step, since it
disrupts momentum-energy conservation, and hence is more than Just
a shift of smali terms into thg fesidual collection. For it makes
_the infra<red function large where it formerly vanished.
In any case this step is certainly not permissible when one

~is iInterested in the singularity structure. For in this case one

must deal simultaneously with the regime

x fixed, k > 0

hence kx > 0, o . (7.36)

" we use the basis U(L(AX)) | (k
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as well as the regime

k small, x » =

hence kx » «. 7 .37

One cannot keep making k smaller>and smaller as x becomes largef and
larger, because then the ponclusions would Lold only at the point
k = 0, where the Feymman functions are ill-defined. The methods
developea in‘the presen; paper cover the simultaneously both of these
two regimes.

To obt.:ain nice f;ctorization results for amplitudes analogous
to the fa&tdtrization results for proﬁabilitigs established above
let us consider the physically appropriate matrix elements. It is
only in the very soft domain ke that the choice ofvfinai states
UQ(L(AX))I n > is essential, but any abrupt change of representation
at some arbitrary point would introduce spurious complications. Hence
1o ku ) > .

The effect of this new choice of basis states 1s to replace the

unitary oéerator UQ(L(x)) in (7.26) by
+ Q
UT(LOD) U, (LOX)IT(L))

= @O0 L), (7.38)
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where the operator Ug(L(AX)) from (7.5) and (7.11), which drops out
of probabilities but contributes to matrix élements, has been
reinstated. one arising from each partial current Ji’ ié{1,2,3} . The asymptotic
l“lquation (B.37) of Appendix B gives . - factor associated in (,7.264') .with vertex i is denoted by
Q'
, Ay Oy P Poatd Kaqy, -
Q Q : :
U f(L_().X))U (L(x)) _ . The effect of the factor exp - :l'r(X-k)Y in (7.26") is to replace

the arguments x, in the operators that contribute to

- . ) i
= exp<a’-(J(L - 3ean))>t ' '
exp ~a ( ( ‘x)) - (L ))) A‘Iy(""j(i)’ Pys> Pyyys ku(y 1)) by xg = )‘Xi. Thus 1f subscript 1

means restriction to contributions from the partial current Ji then .

-< g R |
X exp . (J‘L(x)) J(L()‘X))) ‘a> the classical-photon contribution to A?; arises from the operator
. : . : + Qo :
x'exp - %<(J,¢.(x)) - (o)t (L) - J(L(Ax)))>n ' (Un COXEAX)) U (L("_i - xxi))) 1
. : h ok . Q
_ = exp<a +(J (x; ~AX)) - 31(0))> ,
x exp -1 #(3(L(0), ILOX))", (.39 |
where exp - <(J1(x1 - A%y - Ji(o))* -a >t
a 1., * BN o ' :
°, J))° = '2’<(J +3) - .(J - 370 _ (7.40) exp - %qji(xi-‘ Axp) - 31(0))*'
and . ‘

<a¥ - . (7.41) 6 =A%) - 3 (0)F

r

uv C
J e AWCETBMW g

e a% 1% |52

+

: . exp - 30,6, - %) + 3, (00 "
Equation (7.26)_with UQ(L(x)) replaced by Un+(L(AX))Un(L(x)) is

v : . ’ 0
called (7.26'). Arguments essentially the same as those. leading to '(Ji(xi - AX)) 31(0))>r
(7.26) show that the contributions to (',7.26') from terms‘ha\.ting a ' + Q ) :
] . (Ji(O))U (Ji(xi - xxi)) . (7.42)

* . ) ) .
product of partial currents Ji and Jj with 1 # j fall off faster

than A—9/2’ and do not contribute to the limit. What remains in the The operator in (7.42) acting in the space of photons with

limit are three factors, momentum k£t is unity. Thus the difference between the operator

in (7.42) and the analogous operator with g = Q(b) = § (i.e., b= 0)

is the unitary operator (7.42) times
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Un(b)(Ji«D)Un(b)(Ji(xi xi)) I. (7.43)
But the results of AbpendiﬁbB entail that for any finite R and all

- Ax, |

<
i Eucl\'k} (7.44)

xisRi(R,AX) é{xi: |xi

the operator in.(7.43), restricted to allowed initial states, is an

operator whose norm tends to zero as b tends to zero. But then
n(b) . . .
lig A (wj(;),Pi' P’ Kacy,1))

Ay (wj(i)’ Pys Pygy ka(Y,i)) (7.45)

exists, since the contributions from xiéRi(R,AX)canbemade arbitrarily
small by taking R sufficiently large. (See the end of Appendix
E.) ’

The amplitude Aiy(?j(i)’ Pys Pyyy’ ku(y,i)) is the amplifgde
.for the process with two'charged external lines. It is independent
of the original process from which it came, and hence can be called
A(w"pi, Pis1’ k) where ¢ represents the set Y (1) and k represents

R
the set k

T oaly, D _
As a simple example consider the case in which there are two
neutral initial particles with wave functions wl and wz, and two
charged final particles with physical momenta - Py and Pis1® Suppose

there are no external bhotons (i.e., no ka) and no quantum photons

(1.e. fgpr(x) can be replaced by FD(x)). Then the amplitude is
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A% )
1V10 Vg0 Pyo Pyyy
= {a%%,y (x, - XX V. (x, - AX)V
Xy %y 12 Vo lxy - ARV

e--ipi(xi - XXi)eip:H_l(xi - AXi)

W
1 dk uv
&P - z.I 2m I1u (=87 Iy

x 2187 (12)
4
e - 4 [-2k 50 @ &3, ©
: (2m) s v

( ~ix, - )\Xi)-k;’l)( 1(x; - X
(.~ 1 .

0

% 1)

a® + 102 - |&|?
- [d%, v x, - %) 0, (x, - XXV
d'xg by lxy = AXp) by Gy - AXPYy

.—ipi(xi - XXi) ipi+1(xi - AXi)
e

(e-i(xi - AX)) *k_ 1)(e1(xi - AXi)-k; 1)

e
x exp _gf{ d4k 'piu _ P:l+1,u )( uv ( _ pi+1,v )
2] () \pytk gtk Pytk itk
-i(x, - AX,)°k +(x, - AK,)k
x 2567 (k%) ( i i —1)(e i v 1)
. .
x exp _i_gj d k pi pi+lzl )( lj\)) (pi\, _ pi+1!\l:)
2} (am? Pi'k Piyye Pyck Py
g ( -1, - Ax )k )( 1(x, - AX)-k )
X e -1
a% 107 - |2
(7.46)
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The factor exp - ipiii comes from the propagator of particle i in
FD(x), and the associated factor éxp i piXiA comes from the factor
exp 1 miin = exp 1 pi(X1 - Xi_l)X in (7.26')(See 7.17). The factor
exp ; pi+1(xi - Axi) has a similar origin. .

The first integrand in an exponential in the last_line of
(7.46) behaves like (k%) as |k| » 0.
infra-red copvergent.for any.finite xi—'xxi.

‘vahe second integrand in an exponential has poles at pi-k =0
and pi+1-k = 0. In the oriéinal éxbressidn, fo? the full trianglgv~
diagram process before factorizatioﬂ, these poles were cancelled by
compensat ing zefo'srin the numerator. In the proofs of Appendix B
a particular ie resolution of the pole was introduced. One could
equally well have chosen the other ie resolution. But a more natural
and éonvenient choice is the principél—vaiue resolution. For ghis
resolution never introduces spurious imaginary contributions.

If the principal-value resolution of these two poles is used

then one may exploit the symmetry under k » - k to replace the last

three factors of the final integrand in (7.46) by

(_' L _

o+ 102 - 2 ol - 107 - |k

N

x 24 sin(x, - A%y -k
<1 oamstady + 21157 (k%))

x 21 sin(x, - AX,) *k (7.47)
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In this form the spurious poles drop out, and the integrand goes
+
like 6'(k2)/k. Consequently the integral is infra-red finite.

In fact, insertion of (7.47) into the final integral in (7.46) allows

this integral to be expressed as

K 27 1 P 14 \
?;'-)3 J_x( e Jo @ J_l 4 cos? (pi%;’o) ) pﬁig:;))(-g“")
( ohv_  PHIG0 L 00 00y - ax,(6,8))
ps(6,®  p, (6,8 1 A
C ’ (7.48)
where, for any four-vector x,
x(0,0) = xo - x3c039 - xzsinesin ]
"~ xlstnbeos 9. (7.49)

In this form the contour in kofCaﬁ be distbrted away from the point

0

k™ =0, which eliminates any.possiﬁiliiy of infra-red divefgenée.

The simple case treated aﬁove is very séeciai. For one thing,
the part of diagram D that corresponds to>the subprocess in quesgion
consists of onl& one single vertex. A slightly more complicated
examﬁle is obtained by taking the part of some original diagram D

that corresponds to the subbrocess in question to be the diagram D1
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Figure 4 Subprocess diagram D,

Consider again the case with no external photons (i.e., no ky), and.

the contribution with no quantum interactiomns. Then ngr(x) is
reduced to F (xl, Xys Xy x1+1). We shall d;op the subscript 1

on X, and Ai’ and fold in the mass-shell supﬁorted wave functions

i
Ax

X . ‘ .
¥ i(?i) éné ¢t+2$pi+2) of the charged particles, and thus obtain

0

ATV, ¥

17 Y2r Vi Yiuo)

PR
- J a¥e d%% a%x a%x P TPy
: 17720 T T oy h (o

4)1(3(1 -2X) !ll.z(x2 - X) Wi '(pi) ‘3’1+2 (.pi_,_z)‘

e-ipi(xi—AX)eipi+2(xi+1—AX)

Dy
F (%, X, X,, X,,.) X :
1 2 i 1+ (7.50 cont.)
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x exp{I(pi, Piyrr Xg - AX) + I(pi+1, Piy2r ¥y —VAX)

. S e
Tgs Pryye Xy = M Pypgs Pryps xgyy - A} (7.50)

wheré
I(p, P’y %) -
2 4 - _
- %_ I d ka ( —p2 + 2D 4+ —2p°p' )
et e it e k)
f[Z"G(k )(17— cos x+k)
+120(s70P) - 57(D)) sin x-k] L (7.51)
and . v

I(p, p', x; p", ™, x')

2 l‘ " t
= - P.V. I d 'k -p*p + -p ,pm
2 en® (e REeE"K (K™K

p.p"' ’ pl. " .
MECIICRE R Xy (p"‘k)]

x [2n6(k2)(1 + cos(x - x")k - cos xk - cos x'k)
- _
+12F(5 (kz) -6 (kz)) (sin x-k + sin x'<k)

+1k‘2(-2 + 2 cos(x - x‘)-k)] ' (7.52)
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The four-vector Py is ﬁ'i+l(xi+1 - xi)/:lxi+1 -x but

ilmink’
"%y ;vlill do just as well.

For all x and x' in the ball of Euclidean radius R the terms in

any vector parallel to x

(7.52) that contain factors 6+(_k2) and G(kz) are infra-red finite, for
reasons already given. The terms with k-z are also infra-red

finite. 1In fact, the methods of Appendix B show.that all contribut;ions

from keQ(b) have bounds of the form bB(R) where B(R) is linear in R

Figure 5 The diagram D

1 with added

wiggly lines repfesenting the three classical

for large R.

Thé supports of the infinitely differentiable wave functions of ~

: . to (7. .

the initial and final particles in ;[po space are again taken to be photon contributj:ons ° (7.50)
disjoint. Then the contributions to the integral (7.50) from points -

‘ _ t 4 s f 7.50) to th
x¢ R (R, AX) fall off faster than any power of R 1. This is shown I 8 easy to pass from ( 0) to e case in which a ggqeral

: L d 1 - ' D, -
in Appendix E. - ~ Thus the finiteness of (7.50) is assured. iagram replaces Dl One first writes the Feynman formula fo_r Dl

: t 1 to (7.50 ith the final t.
The final factor in (7.50) gives the effectsof the hat 1s analogous to (7.50), but with zero as the final exponen

: : ’ Th dds to this final t the t that re ts th
classical-photons. It can be regarded as an operator that produces en one acds to 8 rina exponenr‘_’ > temms represents the

‘ ' he classical photons. If the di that replaces D
the modifications induced by classical photons in the wave functions effects of the c as._s cal photons ¢ ¢lagram that replaces By

- ha ha d;iin .er.tices then the three terms in the final
of the external charged particles. Of course, the major effects of 8 0 charge ev en sum over s na

' .50) 'L laced by a G+ 1)/2¢t
the classical photons come from the operator U.r(L(AX)) that-has been exponent.;al 1“ (_7 ) 'is replac y & sum over .1.1(n )/2 terms, one

£ h of th 1f-interaction wiggly lines and one f h of th
incorporated into the state vectors of the final photons. or each o e n se nteraction wiggly lines and ome for eac e

The first two terms in the final exponential in (7.50) are the n(n - 1)/2 wiggly lines that connects different vertices. If there are

classical-photon self-interaction terms for the two charged-line external photons then one must also include the two operator exponentials
s - elf-int -

of (7.42) with Ji(xi - Axi) - Ji(O) replaced now by a sum of the partial

vertices of Dl. They ére represented by the two wiggly lines of

Fig. 5 that begin and end on the same vertex. The final term in currents for all n charged-particle vertices. These operators can be
g- | . ) : - =L
this exponéntial is represented by the wiggly line that runs between represented by wiggly lines coming into and going out of each of the

d-1 .
the two charged-line vertices of Fig. 5. charged-line vertices

The effects of adding the quantum photon contributions will be

discussed in paper II.
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.

8. CONCLUDING REMARKS

Yennie, Frautchi,vana Suura, at the end of a technical appendix
to their paper, list a number of difficulties glossed over in their
arguments, together with reasons why their approximations seem to
them intuitively plausible. But they concluded that a rigorous
proof of their result might by prohibitively complicated.

The difficulties in the YFS arguments cause no serious problem
insofar as delicate issues can be avoided. But the aﬁpiicability of
quantum and spinor electrodynamics to physics requires that charged
particles can continueAto beﬁave like stable particles in the presence
of interactions with_soft_pﬂotoné.' Effdrts to establish this property,
and to de:ive tﬁe ciésely rélated;reduc;iqn foémulas, f;oundered,
however, precisely on the-delieagg points hot adequ#tely treated by YFS.

The present work provides a.ﬁew and fundamehtally different
approach to‘the infra-red problem. It works basically with.the
coordinate-space representation of tﬁe sourcesvof.the electiomagnetic
field,ana with an operator representation of the photons. Within
this framework it establishes an exact result analogous to the
momentum-space factorization property soqght SnyFS. The exactness
of the result allows it to be applied in the delicate situagions where
one sitting right on a singularity, or needs to know the precise
form of the asymptotic behavior, in order to establish stability and
factorization propeftigs. Moreover, it allows gauge invariance to
be fully exploited.i.Once approximations are introduced, in the sense

that certain terms are pushed into a generalized remainder term that
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is not exhibited in explicit form, the full consequences of gauge
invariance are no longer manifest.

bThe problems of completing the proof of the infra-red-finiteness
of quantum and épinor electrodynamics, and eétablishing the stability
and factorization properties of charged particles, though important
in principle, has seemed unimportant in practice. For infra-red
problems seem under control in practical calculations. And physicists
are generally confident that the physical effects of ;ery soft photohs

are negligible, in spite of the numerous calculations that had seemed -

‘to indicate a break-down of the stability and factorization properties.

But science is a hard task-master: difficulties glossed over at one

stage invariably crop-up later. Thus the infra-red probléms largely

ignored in quantum electrodynamics have eﬁerged as the central
problems in quaﬁtum chromodynaﬁics. In particular,'the problem of
whether the stability of charged particles is upset by interactioris
with soft photons is the exact analog of the broblem of confinement:
Is the stability of colored particles upset by interactions with
soft gluons? Thus the problem dealt with in detail in Section 7,
about the coordinate-space asymptotic behavior of an amplitude with
a clbsed éhafged—patticle loop becomes; in QCD, piecisely the question
of whether colored ﬁarticles become asymptotically free in coordinate
spaée. |

The QCD problem of confinement is mofe delicate and complex
tﬁan its QED counterpart. Hence the methods needed to résolve it will
probably have to be at least as good as those that work in QED. And

they might be expected to be a generalization of the latter.
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Beyond the p?oblems_of 1nfra-fed divergence and confinement
there lie other related questions to which the methods of this
paper may apply. These potential applications arise from the fact
that the basic formula obtained here organizes the infinte series
solution in a way that isolates a unitary factor that represengs
the classical-physics background. This type of éepafation may

‘provide thé‘teéhnical basis needed for the full dévelopment of the
idea that quantum theory must, for both physical and mathematical
reasons, be arranged to be the calculation of quantum fluctuations
about a clasgical solution. Moreover, the gathering together of
infinite numbers of terms into unitary factors has the potential
power of better controlling divergences,‘since the norm of any
sum of terms that form a unitary operator is unity, in spite of

any superficial indication of diverge.
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APPENDIX A

Theorem Suppose g(p’)‘ is continuous, together with its first and
second derivatives, and vanishes for Ii)')l > R for some R. Let

p = mv be any fixed mass-shell four-vector. Then

3/2 : ip'- +02 20 h b
1im (2,::.9 eiMT jE(P') e-ip' VT 2m218 (p - m“)d p'(2m)
T— © . . - . .
’ = g(p). : ( A1)
Proof Transform to the variables corresponding to a frame in which

v = (1,0,0,0). 1In terms of these variables one has

_ . _'o- 2 2.1/2 -2
vep'! = p = [m +(53]/ = m+ £f{(p)’] (A.2)
where
2. _ (@° ' B
£I(E)7] = B+ .- > 0. ‘ ( A.3)
'i‘he introduction of the variable f in place of (1_9’)2,' followed by

an integration over angles , converts ( A.1) to

2 (1+)>/2 2) VT i ar - 5(0) ( A.Y)
\ ‘ o
where g(0) = g(0), and@ g(f) and its first and second derivatives

are continuous a.tv f > 0. Since

' n 1 .
e-if(‘r-ie)..\/?df -\/7‘ m ( A.5)
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and g(f) is continuous with compact support, the required result

- ( A.b4) equivalent to

[e(£) - g(0)] If(1€) \Far - 0.
0 : ( A.6)

1n /2 1in
T 0 € 0+

Bounds on Cé(f) - E(O)) and its first two derivatives can be

obtained by writing

r r' >
e(p) = &(r,9) = g0) +%(0)F+ | ar | a"E(r,0)
: 0 0 or
_ (A7)
where T =D, and r = |pl. The integration over angles eliminates

the linear term and gives

e(

£) _ . r(f) P A 82
ﬁf - g(0) = iy j; dl"j; ar" a_r% (r",0) . ( A.8)
2m d ’ /

Since the second derivative of g(p) is bounded,

2 . ) . .
el . ., , ( A.9)

x| ~

one has ) ‘
&(f) ‘

e - 2(0)| < % er? . _ ( A.20)

Vi.L -2

2m
Letting F Dbe ‘such that

() = 0 for £>F,

and defining m = F + m, 5o that Jr-/df = 2f + 2m <2m for f <F,

one obtains, for f >0,

&
-~
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|2(£) - 8(0)| < £ em®/m | ( A.11)

Equation ( A.8) also yields, for f > 0,

.|§'(f)| = I{:—f E(f)l < amdm ( A.12)
and, for f >0, _ |
le"(0)] =< G.- +§) (m%/m) C (aa3)

An integration by parts on the integral in ( A.6) gives

.

00

[2(£) - &(0)] VE e 1E(T-1€) 4¢
0 . ’ Lo

- o] MU & G - @01V ar

0 

T j e ng(o) ar o (Aaw)
Jo ) . . i .
ﬁhere
() = & SEe) -goVE . ( A.15)
However,

© - . - i
e (£).ar e

- ﬂ/T ©
= LeMTn (1) ar -/ e M h (£ 4 fr)ar
0 0

[Equation ( A.16) continued]

fad' 4
-

7e

[Equation ( A.16) continued] b

00

-ifr 1 1 ifr -
= e §[h€(f) - he(f + nft)ldf + 5 e 'he(f) ar .

0 _ 0
( A.16)
The last termin ( A.16) has, by virtue of ( A.11l) and ( A.12),
the bound % CE(H/T)B/z. Thus this contribution, inserted into’
( A.1b), satisfies ( A.6).
The first term in ( A.16) can be written as a sum of two

terms. The first is

F

1 -ifr bl
L] M () - n (e« Dlar
[0}
. F .
, e . : . .
- < 5(;) |max hé(f)ldf (A.17)
o . S .

‘vhere _lmax hé(f)l is the meximum of the absolute value of

dn (£ }/@f' ‘for f£' >f. The bounds ( A.11),.( A.12), é}id:( A.13)
ensure.that the intégral on éhe.fight-hand side of ( A.17) gas a finite
bound that is independent of €. Thus this contribution, insérted
‘into ( A.1lk), also satisfies ( A.6).

The remaining part of ( A.16) is

+
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cHT J£) = b (£ + Dlar -

-g(0 ” -ifT e_Ef e_e(f+"/T) ar
gé ) e e
F '\j? , Vf +. qufT

-é&o) ) oif(r-ie) | 1 1
' . Ve e+

(gé 0)) j’ o-iE(T-16) [y -€n/T] . (A.18)

f+n/T

NI

]

The first term on the right-hand side of ( A.18) is bounded in

magnitude by

gHON (g)]m G +) o - g @y /2 (i)

Thus this contribution, inserted into ( A.1%) also satisfies ( A.6).

The second term on the right-hand side of ( A.18) can be written

-g!O[ [ - e-€ﬂ/T] e+i(n/T)(T-

ggog [eGK/T -1

o

o-if(7-1€)

0
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ie)

F+n/T

o

e-if('r-ie)

F+n/7T

oif(r-ie) df
£

(0) N I BT t(mte) a
g(o0 enfT - 7 . =if(7-i¢) 4f
= [ - 1] .F;- , ) af_
. ° ‘ -i(r - ie j; . € '1(—':[‘

This term vanishes when we take the 1limit

the contributions satisfy ( A.6).

&,

€ -0 in (_A.é).

Thus all
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APPENDIX B
The unitary ope.r};a\;or' U(L(x.)) has the form
U(L(x)) = exp<ak-J>exp -_‘<J_*b'a >

X exp - 12'-<J*'J> exp - -21<J~*.J>pv -

(B.1la)
= exp<; cJ> éxp<3‘a>
1= i_= .

X exp i<J J>exp -2—<J J>pv. s (B.1b)

where J = J(L(x)), and the blfacket products are defined in (2.18),
(2.20), (2.21), and (5.8). o

‘Let J(L(AX)) be abbreviated by J;- Then
- +
v LX) = vLe)u @Lox))
= exp<a*.J> exp _<J*.a>
x exp - -1‘<J*'J>ex - i<J*-J>
P -3 LA pv
x exp -<a*-J1> exp<J;°a>

- N i, .
x exp = 3 <J1 Jl>exp 3% J1> pv

(B.2)
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The commutation relation
[<I*ea>, <ated >] =<I*.3 >
gives ’ S
lexp -<J*:a>; -<a*:3,>] =
.=<J*'J1> exp - <Jk-a>,
vhich g.ives' :
exp -<J*-a>exp _-<a*-31>

= exp —<a*.*-J1>vexp -<Jk.a >

x exp< J*-Ji> .

which givés
u(Le) vi(Lan) -
= exp<a*- (J - J1)> exp < (J - Jl)*.a>

xexp ~2<W - ID* (-3 >

_.!‘.<J*-J> +}_<J
2 pv 2

= u'(L(x) - L(X)) exi) i ¢(J, Jl),

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)
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where U'(L) is the function defined in (B.1) without the final where the subscript r indicates the retarded propagator. Thus

(i.e. Coulomb) exponential factor, and @(J,Jl) is -1 times the
. -1
argument of the final exponential in (B.6). The phase ¢(J, Jl) v(L(x))U"" L(AX) =

can be expressed in the form

= exp<a-(J - J))> exp <(J - 31)-5 >
eI, Jy) =

exp [ %<(3 -3 - 1) >+ 3<G + T 0-> ]

1 * O B B >

_E-<(J _Jl)--(J+J1)/2 >pv 2<(J 3 -+ 32 (8.9)
where J = J {L(x))and 3 = 3 ).

_1lc 1o > 4+ ic ¥ Ll.-1> -
-2 I+ Jl) 2 o - Jl) pv+ 2 3+ Jl) 2 G Jl) Our interest here is in the restriction UQ(L(x) )Unl(L(AX)) of

U(L(x) )U-:l (I;(A}O,) to thé soft photon region Q. This r_estriction is

4 :
1] d'k * pv
== EJ (2")4(Ju(k) - Jlu(k)) (-8 )(Jv(k) + le(k)) 12 made by restricting the domain of integration to points k in 2. The
integrals occurring in (B.9) when restricted to any bounded region
1 +. . 2
x(e.v. ? +1m2 §7(K)) ’ are all well defined.
' : The variable x will initially be confined to the region
1 dak 3 *1 v ‘ k
-3 P G0+ 3, (0) 5 (7)) - 3y, (K) :
aen - ' RR, M%) = GeeR'™; fx - Ay, | < R} (8.10)
' : ucl. -
1 +o0 20y -
x(e.v. k2 - 12287 GD) where R > 0 is fixed. The time components of the timelike differences
4 : X, - xi—l are all taken to be greater than unity. Then for some A.>1
d'k (= < ' Hv ; ’
=l (2ﬂ)l' (Ju(k) - Jlu(k))(-g, )(J,v(k) + le(k) )/2 one has, for all x in R(R,AX)and all A =A -1,

x (2.v. L+ 11060 - 0(x%)s0D)

2 2 . .
3 , : (x, - x; )" >1 _ (B.11a)
- = Hv i

=J ate G0 - Jlu(k))(-g‘ Y@, 00 + 3; (0)/2 and |

an® o - 10? - [&) Stgn(xy - x3_)) = Sign(x] - X3 ). (8.11b)
1 /= - pv _ ‘

a7 G4, () (g7 (k) 3,,(0)
J(zn)" T T
sl ==
= <3 F+ID@-3P>, (8.8)
« s
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The function Jv(k) appearing in the integrand of (B.8) is

I, = 3 (Lx), k)
n 1kx 1kx (x, - x, ,)
= (e) Z (e 1 e . i_1) ?—i-:—ﬁi:£7¥z—
_ =1 ' G B |
on ikx ikix, . =x,/) (x, - x, .)
=(e) I e 1(1 -e -1 71 ) ?;1—:f;1:l7¥§- (8.12)
=1 ) i i-1

The superficial pole at (xi - X *k = 0 is cancelled by the like

i—l)
factor in the numerator. Thus one can shift the contour infinitesimally
away from the zero of (xi - xi—l) * k in any convenient manner. Here

the contour is fixed by replacing (xi - xi_l)-k by

0 .
i-l)'

(xy - x,_))"k+10 Sign ) - x (8.13)
Thus the ko contour is shifteq 1nt§ thevﬁpper—half plane. The
denominator-zero of Jlu(k) is treated in the same way, as are
the zerosroé 3u(k) + 31u(k). Thus the kO contour ié distorted
always into the upper-half plane. '

. The domain @ will be taken to be of the form [k°| <2b |k| <b,

and the notation

by Txg = Ky » (B.14)
is introduced.
Consider first the contribution to ¢(J, Jl) coming from the ﬁart
of jlu(k) corresponding to the line from 1 to 2 in Fig. 1; and from
the part of Jlu(k) corresponding to the line from 2 to 3. This

contribution is minus one times

s
-

% 2,106,000 -

7 (e -e 1)(e e 2)

ez] 4 -1kAX,  -1kAX 1kAX, 1kAX
=7

Q

x (X, - X)) (- g" (X; - X)),

((x2 - X))k + 10)((k° +‘10)2— |ﬁ|2)((x3-x2)-k+1o).

(B.15)
0 0 0 :

By virtue of the time ordering X5 >'X2 >-X1 in Fig. 1 one may
push the k0 contour a finite distance into the upper half plane without
encountering any exponentials that increase as A *= One may take it to
be a semi circle of radius 2b. The integrand and integral are then
uniformly bounded over the domain X = 0. .

Consider next the coﬁfzibution that arises from replacing Jlu(k)

in the above expression by Ju(k):

-~ 2,6, P

2 -1I0X, - -1kAX)
=7 7 (e .T® )
1kAx3 + ikA3 1k7\x2- + ikAZ
(e -e )
v ‘ ~1 -1

- - - - A

X X, )Xy - Xy + 450 2t )y )
((xz-xl)-k+10)((k°+10)2 - |'1€|2)((x3—x2_+A3x‘l-A2x'1)-k+1o)

(B.16)
For A 2 A one may again distort the ko contour into a semi-circle in
the upper-half plane and obtain an integrand and integral that are

uniformly bounded over A = A.
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Consider now the contribution to the integral in (B.16) that arises
from the terms (A3)‘_1)v and (AZ)‘-I) v Each of these contributions has,
by virtue of the bound..

oy, “LR, -l
|(>‘(x2 - Xf-k) (e -e <1,

(B.17)

a bound of the form bB, where B is a number that independent of b and A,
but can depend on R. For A 2 A one may, for points on the semi circle
Ikl = 2b, write

-1

1 -1 '
- 8,27) + k)

((x3 X, + 852

= ((x3 - X)) -k)'1 +—i— £(k,2)

with bounded f(k,\). For the second term one may again use (B.17) to

~ obtain a bound on the contribution to (B.16) of the form bB. Thus one has

*2,16,2% P "2 16,00

=,=> 0(.b) +

2 4 -1kMX ~-1kAX
+eTJdk[.(e 2 _ 7,
Q(2m

ikAX,- ika
: 3
7 x (e (e

(1kaX 1ka

3y -e %2 1)

uv
x (&, - X)) - g™y - X))

(%, - %) -k + 10 (@ + 1007 - [&] %) (@) - %)k + 10),

v

(B.18)
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where the magnitude of the term 0(b) is bounded for all b >0 and all

A 2 A by an expression of the form bB. But then

le*® 21| < [k
gives

le* - ¢] < B

for all b >0 and all A 2> A,

the bound
(B.19)

(B.20)

Here B is some finite number that is

:lndependént of b and A, but can depend on R. In what follows B will

be a generic number with these properties:

same number.

it need not always be the

Consider next the contribution to &J, Jl) in which the roles of

the lines from 1 to 2 and 2 to 3 are interchanged:

(6

%3,2)(2,1) P

2 [ 4%

a (2m*

-1I0X
(e 3. e Y

- £
© 2

u
(x5 - X)) (-8 M (x, - x,) .

-1iAX, - 4K

X
2 ik) o1

-e )

(3 - %) -k + _10)((k° + 10)2 -

|k’|2)((x2 - X)) .k + 10)

(B.21la)
and
M R =
*3,2 2,0 D
- X 4
e2 dl‘k :I.I;/\)(3 :lk).Xz ik 2+ikA2 1kAX1+ikA1
=5 7 (e - e )(e - e )
(2w

!
-

(B.21b) cont. on next page
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i ~ v _hv e -1 -1
(x4 xz)u(g Y, =Xy + 8,07 - AT

((x3 - X,) <k + 10)((k°+ 10)?- 1 )

(B.21b)
Consider the difference ®' - ¢ of the integrals defined in (B.21b) and

(B.21a). For A = A  one may complete the ko contour by adding in the

lower-half plane a semi circle at |k| = 2b. The arguments that led to-

(BLZO) sh6w that the contribution from thié semi-circle also has a bouﬁd
ofvthe:form (3.20).

The completed contour can now be collapsed onto the poles, which

are located at k0 = i'|f| . This leaves a d3k integration in which

the three remaining denominators all contain factors of |k|. With the

factor |K|3 separated out the denominator is left in a form that

remains‘finite in the angular-integration, due to the timelike character

g o L -1 -1
of the vgctors (X1 and ()(:l - + AiA - Ai—l* ). Thus
-1 in (B.12b) again give corrections of

- X0 Xy

the quantities Azl_l and LPY)

order A-l, for A =4, ahd'by virtue of (B.17), give a contribution to

the integral that enjoys a bound bB. The difference of the remaining
integral in (B.ZlB) w;th the function ¢ defined in (B.21a) again
enjoys a bound bB, due to (B.19). Thus the difference ' - ¢ of the
functions defined in (B.21) enjoys a bound of the form (B.20).

Consider next the contribution

l'ﬁlz)(xz -x, + a7t Alx‘]) “k+10).

. 90

°3,2)(3,1) U1
I B S I 1SS S 153 3
= —2— — (e A -] )(e - e )
(2m) : :

uv
(x3— xz)u(—g_ )(x3 - xl)v

X .
((Xy- X)) - & + 10) (&% + 10)2 - lilz)((x3- X,) * k + 10)
(B.22a)
It will be taken together with
' =
*6.06,00
.eZ . dak -ikAX ik43 —ikAX ikA ikXX3+ikA3 ikAX1+ikA1
= T 7 (e )(e o - e
‘ A -

-1 -1
(x3 X2+AA —A)\ )(—g )(x-x1+AA -Ax )

b3

(R X+ 807 —A A 1)k + 10)(k% 10) —|k|2)((X - X 44 1\_}\ =TTy
- ) (B.22b)
Consider now tﬁé difference ®' - ¢ of these two functions. Due to the

inequalities Xg > Xg > Xg one may, for A= Aand for the terms containing
factors exp :lk)\x3 or exp(ikAX3 + ikA3), distoit the k° contour into _
the upper-half .plane and obtain, as before, for these contributions to
¢' - ¢ a bound bB.

For the femainiﬁé terms, which contain the factor

exp 1kAX, or exp 1ikiX, + 1kﬁl, one can complete the ko contour by a

1 1

semi-circle in the lower-half plane: the added contribution to ' - 9

has, as before, a bound bB. The completed contour can now be contracted
to the poles. The poles at K0 = t'[ﬁ agdin give terms with a bound bB.
The confribution to the integral in (B.22a) from the pole at

(% - X))

«k=01s

)
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pole expressed as its value at A = » plus a correction term of the form
¢(§,2) (3,1) (Jl)' = : ) f(k,A)/A, where f is bounded in the domain of integration for all
e2 d3k ik)\(XB—XZ) ' A 2 A. This term £f/2 gives a contribution to the integral in (B.23)
7 (-1 i (2,,)3 (e - that has a bound bB, by virtue of (B.1l7) with X, replaced by _)(3.

: ’ Insertion of the value of ko gpecified in (B.23b') gives
Y . .
(&3- X8 D&y~ %),

x (B.232a)
0,2 (72 0 0 .
(G- x)-k)  ((x)°- [¥])&x, -x))
3 2 3 1 . _ -1 -1, _ ¢, -1, _ .o > x -1
v k(x3 x2+A3A -A2A) k+V(A ") =k vofk WA,
where ] _ (B.24a)
&, -% )k vwhere
0 3 1 : '
kK = —, (B.23a") > >
X0 x0 . Bedy = ey - %)
- Ry -x) =0
The companion pole contribution is ) }3 _;(2 3’(3 'ﬁl )
i : ’ _21. - = 0 - 0
»'pole . v - k [-- xg 3 xg + xg " x(1,]()13 - %) (B.24b)
3,206,049 ‘ '
nd .
2 3 KA (X, -X, ) +1k(A,-A,) a _ o ©0,,0 -1 _,0-1
S AR e TP %%, 720, | . N A E AL Ry
2 3 W=- (4, -4) +(4, - A) p
(2m) . ‘ 3" %2 37 % x;)_oJonA-l _ 20T
2 @ - Hth 1
-1 -1 ) -1 -1 -
(Ry- Xy + 80 7= 82 ) (27 ym Xy + 80 o ) , b (A - 80 ad - a) X3 - X3
x * + (X, - X,) - .
-1 -1 0,2 2 o _0 0. -1 0.-1 3 1 0 0 0 0 0 0 0 .-1 0o . -1
®y- X, + 807282 >k (D= 1K ) (X3~ Xy +85 A 8,37 X3 - X, Xy X/ Ry -X) 48507 -8 A7)
(B.23b) . (B.24c)
h Thus the difference of the pole terms shown in (B.23a) and (B.23b) can
where
(;3- ;1 + K3A-»1 - Kl A-l) -k ’ be expressed as
k0= (8.23b") : _
0 — 0+ a0 AL _ 0L : . _
x3 % 3 1 - . ] °'pole_ opole = 0(b)
-1 -1 -1 -1 0 -1 0 -1 -
¢ - - - ive : uv,
The terms (@277 842 )5 (832 82 ), aftd (a3 A AgA ‘)7 giv £ 0y - ) e eg- %)) (xg _ Xg)
contributions to (B.23b) having a bouri_d bB, by virtue of (B.17) with %, ) B ; v
. |4 2‘,(k0)2) |3 2) -1 evaluated a; specified - x %— (-1) [ ké 02 1 >3 l :
replaced by X;. The factor [k|((kD7) - |K] P : Ko 2m? B2 - [kl? ee(xp- %) = 0
in (B. 23b') is non zero in the domain of integration and can be DRV nf{.Vo
| x (-1) [e* L o_e b ). | (3.25)
ke k'vo
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. Let v = l;(l-l)l =ﬂv(Af1) and v, = |Vb|= v(0). Let cos6.4dnd cos 8,
be defined by»ﬁ .V = kv cos ¢ and K-Vo_= kvo cos 6, respectively.

Then one may define

: ' 20 32
f(v cos e,.x'l) =yt d¢ ——algl—‘f:—f
0 & - |kl
k.-(xa-Xl) = 0
cos 6 fixed * (B.26a)
and
: 2n >12
. -1 - 1k
f. (v, cos B,) = v _J. d¢ ' 5
00 0 0 5 0 (ko)z_ |'l:|

ke(Xy- X)) = 0

cos 90 fixed
"(B.26b)

where (9,¢) and (90, ¢0) are two sets'of)angular gdotdinates. The.

function fo(vb cos 6) is the limit of f(Q(x—l) cos 0, A_l) as AL o o,
and
PR | -1y _
Cf(v(A™Y) cos B, A ) = fo(v0 cos 8)
-1 6, 27}y : 26
+ A fl(v0 cos 8, A ), _ (B.26c)

where fl(cos 9, ):1) is bounded for A A and 1 Zcos 8 2 - 1.

’ > > >
Because of symmetry only the real parts of exp 1A k+V and exp i} k -36
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contribute to the integral in (B.25). Thus,using (B.26), one may

write (~i) times this integral as

N7 ‘b 1 - - : _iAkv cos o

(-1) (-~ ) . -1. - )

: <31) I dk[ d cos e[vf(v.cos 0,2 1) . -b
2m~ 0o -1 , . kv cos 8

iikv cos 6
. e 0 -1
~Vofo(vg €05 ©) (Ts_e—')]

b vk
) I,_dk J d -1, sin x
em” Jg® Lk * /XA ). x

: b Yo ' v
o) J dk [ dx £ (x/ak) 22X
v \

"
(2“)3 0 0
b Vork , .
- (-1;! d—kk_i_J ax £ (epi ] Slox
(2m)770 voxk x
v Ak :
b vik Vo )
1 . e
-— I dk I dx '+ dxfEGe/ak, A7) Bl X (g y7y
3 k x
2t 0 vork vk

By virtue of the boundedness of f(x/Ak, A—l) and f, (x/)k, A—l) both

integrals in the last line of (B.27) enjoy bounds of the form bB.

_ onle

Hence the difference’¢'p°1e of the pole contributions defined

-in (B.23) enjoy a bound of this form.
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terms with exp -.1Akx3 - ikA3. The importance of this grouping 4" - ¢

is that the contributions from the poles at (X3—X1 + Asl—l— All_l)-k =0

cancel exactly, by virtue of the anti-symmetry of this pole contribution

Consider next the CQntributions t°.¢u - 0.

For the remaining partial cancellations that give the bounds of the

o(3.2)(3.1)(J1’ N = form bB one groups ¢ of (B.28a) with
X -
e2 dbk 4kA 3 ikAXZ +ikAX3+ikA3 ikAX1+ikA1
& 7 (e -e ) (e -e ) 'y I, 1) =
(27) - (3,2)(3,1)"7* "1

1

. ] v . o a1 . ) ) ) -
§ (X3 xl)u( g )(X3 1 + A3X Al A )v » v Ei dak ’ ikAX3 ikA3 _ ikXXZ ikAZj( ikXX3 1kAx1)
0 2 F12; : a xl -1, v 7 — 4 \© e e - e
((%3-X)) +k + 10)((k” + 10)° - JE|“)((Xy-X; + 8,877 - 8,27) ok + 10)  (27)
(B.28a)
and . )
. ) v . ¢ ) -1_ -1 _ hv _
" v _ - 0{3 %, + 631 4, )u( g )(X3 xl)v
= . . - -1 . .
*3.1)3.2) Y I (%%, + By Lap ™k + 10) (% 107~ [€]%) ((x;-x)) k + 10)
2 4 -1kAX, -1k4 -1kAX_ +1kA 1kAX 1kAX . ' : ‘ . (B.28¢)
e’ [a'x 371k 1+, 3 2 L v ,
35 7 (e -e ) (e -e ) ‘
(2m) The proof of the bound |¢' - $|<bB goes as before, except that one
need not consider contributions from the poles at (X,—X; + Aax-l-AIA_l)-k=0
-1 -1 v : :
) (x3—x1 + ABA T- Alk )u(-g )(X3 Xz)v _ and (x3— xl) k = 0, due to the cancellationlnenuionedabove, and the
S I 0 2 _ 22 . : .
((xj-x1 + A0 A Yok + 10)((k~ + 10) 1| )((X3‘X2)7k + 10) analogous cancellation between the poles of ¢ (3,2)(3’1)(J, Jl) and
’ ree - - ok @
(5.28b) : ¢ (3,1)(3’2)(J1, J) at Cx3 X;)*k = 0.

Consider next the contributions to 9(J, J,) coming from the (3,1)
In ¢ one pushes the K contour’ into the

: contribution to'jlv(k) and the (3,1) contribution to Jlﬁ(k):
upper-half plane for the terms with exp ﬂkx3 +1 kA3’ and‘completes_the
contour ‘in the lower-half plane for terms with exp 1A kxl + ikAl. In ¢"
one pushes the ko contour into the upper-half plane for the terﬁs with ' . . : . ’

exp -iAkxl-ikAl and completes the contour in the lower-half plane for
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3,13, Y0

. e_2 I d k :l.kA)(3 —ikAXl ikAX ﬂd}(l
2

a ) (e 3 - e )
(2ﬂ) e . .

(x3 xl) ( — )(x3 xl)

x

&2

((xa-xl)-k + 10)? ((k_‘ + 19) - )

(B.29)
In the contributions with a‘factor exp‘ikXX3 one can move the ko
contour into the upper-half plané without encountering any exponentials
that become lgrge as_l »+ ®, Thus one finds a uniform bound és A.+ o,
‘The remaiﬂing terms are
a*k ~HARG ),

- & J 4
(J 5] 1 -e
(3 13, 1) 2 : n’

.u\) . .
("3—5(1)“(-3 )(X3.)_(l)v

x

~ (B.30)
(X, %))k + 10)2 (k% + 10)2- %1%

The(X3-X1)-k contour in (B.30) can be completed by a path in thelowefhalﬁ

plang,and then»contracted to the poles. Thé poles a% k0 = ilil give
contributions that enjoy a bound of the form C + D iog(bl)e(bk—l).
The contribution from the double pole arises from the derivative' of
the reméining factors, evaluated at the éole. This derivative acting
on the factor k2 X -

Q(k) gives no contribution, due to the zero

in the numerator, but acting on the exponential it gives the contribution
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2 Ay-xp) (") (1%

pole e 3 u 3 "1V .

Y —_—
(3,103,107 72 RS

d"k 1 : .

x . (B.31)

k-(x3->f1) =0

© . This éonﬁributioﬁ to ¢ increases linearly with the distance.
(AX3— Axf). It gives a contribution to exp i ¢ that ié the 'same as
;hgt of a mass term. The magnitude of the effective mass shift
induced by this term equals the classical-photon contribution to the
usual lowesf—order‘Dirac—pérticle self—énergy diagram, apart from the
factor of-1/2 stemming from-the occurrence of this factor inf% Jlu'

The Dirac-particle self-energy counter term has not yet been taken
into account. It cancels preciseiy the above self-energy contribution
to ¢: > one may omit:the self-energy contribution to the operators
U(L(x)), and consider the mass m to be the phrsical mass of the particle.

Conside; next the contribution to 0(3,1)<3’1) coming from the (3.1)

part of 31u(k) and the (3,1) part of Ju(k):

"‘ -
R ER YR T
EE dakr ( -ikAX3 . —ikAX1;
3 . )4 e - e )
Q n
1kXX3+ikA3 ikkxl-f-ikAl'
x (e -e . )
A A
-3 1
®y= X)) (0GR + 2 -

((%y-%)) K + 10)(('+ m)2 - 7|

1
x 3 X : (B.32)
_ 3 _ 0.
(X3X1+)‘ )‘)k+10
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In the two terms containing exp ikAX3 + ik% one may distort the kocontour
into the upper-half plane. They combine with the 1like contributioms to
(B.29) to give a diffeténce ¢' - ¢ whose magnitude enjoys a bound bB.
In‘the remaining two terms one»completes the ko contour in lower-half
plane. This contributes to!¢'-¢.a term with bound bB. Then conﬁracting‘
the completed contour to the poleé one obtains from the poles at

9 =-*lfl contributions to &' that combine with those of ¢ to give

contributions to ¢' - ¢ with a bound bB. The other pole gives a

 contribution to ¢ of the form

) 2 : 3 ika 1kA
o'B31e (J,J)=—<-1)J Tk e 3-e h
G,nG,n% 2 ) 2m3
-1 -1
. (x3-x1) (-g" )(x X AT -4 AT
@y - xh? - k1%
x— i , (B.33)
3
2 - 5Dk
ika ‘ 1kA
- 53 (_i)J d3k e 3. e 1
2 : (2")3 (A3 - Al)'k
. ‘
*3-%), (") (g% + 8y - A1)v, | (5.34)

-Oad? - 1kH

where ko is evaluated by using

A A )
3 1 :
K k= - - ke : (8.35)
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This contribution comes from jlu(k) (_g”V)Jv(k). The similar
contribution from jﬁ(k)(—guv)le(k) is obtained by replacing k. by -k.
These two integrals are equal, due to the symmetry_of the integral
under the replacement of'Fhe variable k by -k. Thus their difference
vanishes. Hence the bnly contribﬁtions linear in A come from the terms
31u(k)(-guv) le(k) and ;L(k)(-guv)Jv(k). The contributions from these
two forms that increase with A cancel, even without considering the
self-mass counter terms. And the remaining terms have a bound of the
form bB. Thus the sum of the (3,1)(3,1) contributions enjoys a bound
of the fqrm bB.

All remaining contributions succumb to the methods shown above,

and one obtains the bound _
|4£3,3,)| < B, (B.36)
where B is some number that is -independent of b and A.

According to (B.7) one has U(L(x))U ](L(A X)=u' (L(x)—L()\X)) exp i ¢.

Transposing the two operators on»the left-hand side gives

UBI(L(AX)Y)U(,L(X)) = U'(L(x) - LX) exp - 18.  (B.37)

Thus

U;l(L.(AX))lb(L(x)) ='U exp - 10,(3,3)) (8.38)
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where

.k : * *
U=exp<a *J>exp -<J *a>exp —%<J J > (8.39)

and'g represernits the vector function.with components

‘ 3,(LE) - LW, k) =

" LOX HkA, AIOK,_HIY
-1 i i-1 - -1 Ty -
3 e - _ -
- I [ ¢ e T T 2,
= -1 -1
i=1 - - .
(Xi xi—l + Ai A Ai—lx )k
ik XX 1kAX,"
(e- 1. Iy ), ]
X ). . (B.40)
(Xi xi—l) k. 1|2
In calculating U this function J is evaluated at kz =0. Due to the
. ; I . T -1 -1
space~like character of (Xi_xi—l) and (Xi-xi_I+AiA —Ai_lk ) each of

. >
the denominators in (B.38), evaluated at k2 = 0, is |k| times a function
of angles that is nonvanishing over the physical domain of integration.

Thus for A 2 A and physical k satisfying kz = 0 one may write

-1 ) -1
Ry =Xt {2 - K 0, Ky - X))y

1 1 .
T T e R

£.0,0,0)
1 w5
* X, - %, .+ a3t s L A (-4
TR B i-1

where fu(A,e, ¢ is bounded for A=A and (8, ¢) in the physical range.
This expression (B.41) may be inserted into (B.40). The second term of
(B.41) thgn.gives a contribution to Ju(k) that is bounded for A=A and
(0,4) in the physical range. Thefirst term in (B.41) gives‘a contribution

to (B.48) that combines with the second term of (B.40) to give a
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contribution to Ju(k) that also-is bounded for A=A and 6,y
in the physical region.

Because J(k) is bounded

. . .

(<greg>y2 (B.42)

is of order b .

S

One may introduce a set of orthonormal basis functions fi(k) over

- the portion 9 of k space such that the first of these functions is

fl(k) = J(k)/N.. Then the operator U of (B.37) has the form

U = exp<a*-f, >N exp -<fi-a>N x exp - 3 N, (B.43)

&

where N is order b .
In the formula for transition probabilities the contribution

from Arem(xx) has, according to. (7.2), (7.3), and (7.4), a factor

e e 4805, 3)) .
M 3 LS | ! D' - : (B.44)
‘ P A‘(U(N)e —In)ioprﬂvoin‘n'\

To calculate the_dependehcé of F upon b one may introduce the coherent

.statésb’lo
<a*'f1>z -<fi= ca>zk —-;—' zz* .
lz>= (e e e ) | o>. (B.45)
Then v
_ 1 . _
-3 N(z-z*)
UN) [z >= |z + NDe . (B.46)

Thus for small N and ¢ one has



103

(wwet®a)|z >
sz +N>-le>-10] 2>

- Nz - )|z > . (B.47)

The vector |z + N> - |z > is small for small N and N|z|:11

| z+N8>-[z>]| <

1/2 1/2

/2(|2 I + |= + N )™ (B.48)

The normalization factor N is of order b . But what is 2z?

Consider first the contribution to (B. 44) coming from the part

§D0 of ?D that cotresponds to the original diagram D. This
oprQ opr{} . [

" factor iggingives-no contribution to the photon space operator.  Thus

the amplitude of state |z > is given by the decompositionl2

pinﬂ

Id—;lzDNizl inQ

Now the expectation-value of the number of photons in the state

-2 13
2]

|z_>'1s . And the exbectation-value.ﬁf the energy in this

state is‘
E= 2 El’ ‘ . (B.50)

where El is the expectation value of the energy in the state

<:a*'f1>t|0 > . since the wave function f,(k) in this state is

X o (B.49) .
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~ 8(b-k)/b the energy E1 is
b 3 -
VS 2
B, T[S k-@/b)
0
. b. 3 (B.51)

By the principle of equipartition of energy the energy
residing in each low—ene?gy mode of the
photon field should be approximately thé same. Thus one sﬁould_ expect
the £ in (B.4a) to be roughly 1ndependen; of the mode. ' But then the
expected depengénce of z on b is given by
- 1/'2‘:

lz] - b (B.52)

<
But if leoprﬂ ® ing

then (B.47), (B.48), and (B.36) show that

is concentrated near values of 2z satisfying (B 52)

lFy| =+ o - " ' (B.53)

as b > 0, In fgct, one could tolefatg a growth as large as.
|z| - B-L+e(e >0) and still ;bfain the result (B.53)E

The rgsults in paper II vill show that the vér& soft photons emitted
and absorbed by the operator part of F (x) produce only very mild
effects that do not upset this ?esult (B.53).

The bounds obtaihed abdve refer to the contributions from the

~ points x in

R(RA®) = {x; |x <R}. : V (B.54)

- Axi!Encl.

To obtain a bound on the contributions to Arem(xx) from points outside

R(R;AX)consider first the points x outside the set R(An,lx) wherev{= .01.
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And consider initially the part Agem(xx) of Arem(xx) that comes from
the FD(x) part of ngr(x).

Equation (7.3) shows that the operator part of the integrand in
Aéem(xx) has norm < 2. And the function'FD(x) is bounded. (Ultraviolet
cut offs are assumed) The product of the wave functions falls off
faéter than any power of |x —IAXI. Thus for any ¢ > 0, however small,
and any C > 0, however small, one can find a A(e, C) = A1 such that for
all » > ﬁl the sum of contributions to Agem(kx) from points x outside

R(\",3) 1s an operator with norm less than (e/4)CA—9/2:

(B.55)

0 ROAMN) | o € o-9/2 .
|Atem(xx) | < 7 CA (> .-

Consider next the contributio;s_to Agem(xx) from points x inside

R(An,AX)and outside R(R,)X) The operator part of the integrand still

has néznlfg 2. The function |FD(x)| has, for all points xeR(A",)) for
A>1,>> 1, a bound of the form '

=9/2

[P () | <e'a (xeRA", A% 2 > A,). - (B.56)

-9/2 on the norm of the parts of the

Inserting the baund 2C*')
integrand other than the wave functions one may obtain a weaker bound
by extending the region of integration of tﬁe magnitude of the ‘product
of the wave functions to all points x outside R(R,Xx), The faster than
any power fall off of the absolute value of the products of the wave
functions ensures the convergenée of this new bounding integral. This

9/2

procedure gives a bound that depends on A only via the factor A °'°,

and that falls off faster than any power of R, due to the fall off of

&
.
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the absélute value of the products of the wavé‘functions. Thus for
some sufficiently large R the contribution to Agem(xx) from points

x inside R(An,AX)and.outsideJR(R,Ax)has a bound of the form (e/&)CAfg/Z:

’ ‘ R(R; 2X) ' '
0 ’ e ..=9/2 - .
Arem(xx)R(An,NO < Z Cx T (B.57)

For the reméining points x iﬁ R(R,X) one usesAthe méin result of
this appendix: for some fixed A and for any R, however large, the
norm

%',,)(L(Ax)’) Un(b)(L(x)) -1 ' '7 (B.58)

vy

tends to zero with b uniformly over the set
{(A ’x); X>I\1 XER(R,XX} .

This constant A can be made larger than Ay and A,. Then combining
this bound on (B.58) with (B.56) one concludgs that for some sufficiently
small b = B(C,C,R) > 0 the contribution to Agem(xx) for points

xeR(R,AX) (A > A) satisfies

€ -9/

l“gem“")k(a,ml <ta?a> . (8.59)

Then the sum of (B.59), (B.57), and (B.55) gives

9/

12| < ea™?a >, © (B.60)
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" The cdnstant € > 0 is taken to be the number occurring in (7.13),
and the constant C is constructed ffom the FD(x) parts of the three
functions defined in (7.45). [See also (7.26)]

fhe above discussion dealt with the part Agem(kx) of Arem(kx).’A
However, thé good inffa—red'properties of ngr(x) ensure that the
argumehts‘carryover to the full operator Arem(XX).' In particular,
the crucial propert& (B.56)‘holds also for ngr(x), and the soft
photons emitted and absorbed by ngr do not upset the required
6petator properties. A detailed justificatioﬂ of fhe extension to

ngr(x) depends on the detailed results to be described in paper II.
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APPENDIX C

The self-energy and wave function renormalization effects of

classical photons'on charged particle propagators are calculated in

this appendix.

The starting point is the one-particle propagator with a

single 61assica1—photon correction:

1

1

2.4 ' 4
slz) - Jd P -ipz J a’k

F (21r)4 a (211)4

-1 1 1
F=tisr—=tv—s

1 1

1
A ET R ST R

2

]-

K2+ 10 (3-K)2

(c.1)

The two terms arise from the cases in which the photon enters the

charged line before or after the point at which it leaves this
line, respectively. The two terms are equal if the integration

region  and the factor (E'k)2 are invariant under the trans-

formation k > - k.

A double application of the Ward identity (2.8) gives

1

1

2 & : 4
S;(z) =2 I dp_lpz J d k

2] (am? o (am*

1

k2+ io

1

(el

-0 1

[

s -7 v

1

* P

m P-m p-m

+1S-

e

kK -m

)

(c.2)
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If (E-k)fz =»22(z-k)_2 1s resolved by the principal-value rule;

or has the form (2-k + 10)(Z+k - 10), and 1s therefore symmetric under

k + - k, and if 'the region Q is symmetric, then the two terms with

double pole (§ - m)-2 are individually zero by.symmetry.' In any tase

they cancel and leave

4 -ipz |
1 d ie
s(z),_.J.._B____
F (2")4 P -m

zu(_guv)zv
(z+°k) (z-k)

4
% [e d k - 4
2 2 en® 0

x (-2 + e 1k2 e+1k?)]

= SF(z) ian(z),

where"

. wy

—e2 dak ) i zu(—g ) 2y

(2 = - 7 3 ; 7

: Q (27) k“+ 10 (zek)“ -

ikx ikx " -ikx -1kx

(e 2_ e 1) (e 2 _ e 1)
xz X

2 2 . u

B -eZJ k1™
2m® 1+ 10 x

Q

Inclusion of the contributions from all classical photons gives

s1(2) = Sp()e™),

which is closely connected to (2.14) and (2.17).

2
dx eikxl dx've

-ikx’

(c.3)

(c.4)

(c.5)
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The function A(z) is

~

a1 1 2
M) == % o ()
(27) k™+ 10

2
-

~1ikz +1ikz
e».

x (e + =2)

= - zAm + a + ib 4 r(z) + is(é),

where, for 22 >0 and 20 > 0, and with ¢ = + &0

2 8
_ Am =%——Jd k. 3 215G,
2 (2n) " k° ) -
a =gijd4k [ 1 1
2 en® Lo+ 1002 -’ Gk 10)?
*+*5 21 3 — z]
(k- 10)° - w (z*k - 10)
b e s I a*x [ZnG(uﬁ-ko) - 2n6(w-—k0)]
+2 s (2ﬂ)4 2w (£~k)2 s
2, 4 1kz
r(z) = :g_J dk [ e — b
dan® Lo 10342 Gk+ 10)
+ e—ikz 1 ]
«® 2 (k- 10)2

- 10)2— w

and

s(z) = —
2 h(zn)l‘ 2wz k)2~

-e2 I dak [2n6(m+k0)eikz—Zwé(w—ko)e-ikz ]

(C.6)

(c.7)

(c.8)

(c.9)

(C.10)

(C.11)
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The quantity Am is a mass shift, and -a is a wave-function renormali-
zation. The quantities b and s are zero if @ and (é;k)2 are symmetric
under k + - k. The fun;tioh r(z) tends to zero as z tends to infinity,
The self-eﬁetgy contribution (C.7) is the classical-photon part
of the full self—energy; As such it is c#gcelied by the clgssical-
photon part of the self—eneggy counter term.
In the context of the calculation of (7.20) the above célculétions
fake into account all contributions in which there is a double pole
(2°k)_2. Taking togethetr all four contribuﬁions of this kind ylelds

ikz+ e_ikz), which vanishes for z°k = 0.

the numerator factor (- 2 + e
The vanishing of the numerator at z*k = 0 is important: it means that
the derivative associated with the double pole (E-k)-2 acts only on

ikfz+ e—ik-z).

the eprnehtialé in the factor (- 2 + e
To take advantage of this numerator zero one should, in the
calculation of (7.20),‘initially combine all double-pole contributions
in the way done here, and then afterwards associate the z-independent

contribution a/2 with the vertex on each end of the line undét
consideration. -
At a later stage of the calculations [Cf. (7.38)] the coherént

states generated by U(L(AX)) are introduced, and the operator U(L(x))

is replaced by.U_l(L(AX))U(L(x)). The various contributions to u(L(x))
* J
i)

whiéh are cancelled by counter terms, or do not contribute in the

from the terms J with 1 # j ‘are either mass renormalization terms,

‘large (xi - xj) limit, or have the fprm'éa, with a independent of x.
- - *
These latter terms drop out of U l(L(XX))U(L(X))-‘ Thus only the J,J,

* N
terms survive. For each of these individual terms J.,J, one can perform

i1

the transformation shown in (7.42), in order to obtain the results given

by (7.47) (7.52). Note that no double poles appear in these final formulas.

£4 .
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APPENDIX D

The purpose of this appendix is to show that the contributions

*
to the probability Pdom(AX) from the JiJ (1 # j) contributions to

3
the phase J%L(x)) defined in (7.20a) fall off faster than A-g.

The full current Ju(L(x), k) defined in (7.21) is a sum of three
terms, one for each line of L(x). Thqs J*J decomposes into nine
terms. The diagonal terms, which correspond to the contriBution from
the same line in both J and J*, were dealt with in Appendix C.

Let Jij be the contribution to J corresponding to the line

segment of L(x) that runs between vertex i and j:

| O mx) ey ey
Jiju(l‘(x)’k)"= - fe (xi — xj)’k (e " -e ) . (D.1)

Consider first the points x in R(An,.lx), for A> A >>1, and

0

0 0
0<pn<<1. Then x3>x2>x1

, and the ko contour may therefore be
L%

distorted ‘into the lower-half plane for the term J32J21 and into

*
the upper-half plane for the terms J21J32. Since there are no actual

poles at the points (xi --xj)-k = 0 this distortion is allowed,
provided one adds appfopriate contfibutions G%kg) corresponding to
the polgs of k2 that have to be crossed. These G%kz) contributions
are similar to the ones already discussed in connection with (7.20b),
and give faster than A—g fall off.

With the cohtours di_stoz;t'_éq in this way there is expoential fall

i3

from the ends of the ko contours. But the endpoint contributions

* . . .
off as A + » for the J,J, (i # j) parts, except for the contributions

fall off linearly with 1-1, as one sees from the fact that

)
o
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ie '
) [ e™ak = ey (D.2)
0

tends to unity as X tends to infinfty with e fixed.

Having established the linear fall off of this integral the

rest of the argument proceeds as in the text: The bound cx”9+8“_

on the remaining factors in Pdom(AX) of (7.18) arises from the

C'A_g/z bound on |F2pr(x)| for x in R(A",XX), and from the bound

4n on the volume of R(A\",2X). Thus for n < 1/8Kthe A-l fall

c"x
off overcomes the ABn 1ncreasé, and one is left with a better than

272 fall off.

%
For the term J32J51 one may distort the k contour into the

region
{k; Im k-(x37xl) <o, Im k-(xz—xl) <0, Im k-(x3—x2) >0}.
(D.3)

This distortion into the imaginary k space has a spacelike direction,
but yields the same X_l fall off that was obtained above for the pure
timelike distortion. The rest of the argument then follows as before.

*
For the term J31J32 one distorts into the image of (D.3)

under inversion k + - k., The other terms are dealt with similarly.

*J
1]
(7.20a) that falls off at least linearly in A—l, and hence a contri-

- *
In-this way every J (1 # j) part of J J gives a contribution to

bution to P, (XX) that falls off faster than 2.
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APPENDIX E

Consider first the Feynman coordinate-space function F(x)

corresponding to the diagram D, of Fig. 4. 1Introduce the following

1
felabelingQ.let i= (1,2,3,4)>1abe1 cyclically the internal_lipes
of Dl’ aqd also thé Yettices of Dl' fhe funétion F(#) is‘thén :
essentiaily a product-of thg four Féynman pfopagators bi(xEl - Xi-l)’
one for each of the fo&? internal lines of Dl.
'Each pfopagator Di(zi) is expressed as in iﬁtegral over a
momentum—energy four-vector Py- A partition of unity is 1ntr6duced
into each p; space. For each pair (1,j) the corresponding partitioﬁ
function Xij(pi) is an infinity differentiable function of tiny compact

support centered at Py = P Consequently, each partial propagator

1"

~1py2y
e

. ,
Dyy(zy) = [d', X33 (Py) (E.1)

pi-mi+10
will, by virtue of the result proved in Section (IV.3a) of the

first Ref. 8, fall off faster than any inverse power of the

Euclidean norm of the four-vector zy all directions

This causal.set .C, . ié

outside the set of "causal" directions Cij' 1j
the set of (signed) directions of the set of covariant four-vectors
' — 2 2

Py that lie in the intersection of the mass-shell surface Py = my
with the support of xij(pi)' All directions in the causal set Cij

will lie close to the direction of Pij' The rate of fall-off of

Dij(zi) is uniform over any closed.set of directions of the four-

vector z, that does not intersect C

Each causal set Cij can

ij°

also be considered to be a closed spacetime cone minus its apex at
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the origin.

The function F[y] is obtained by folding F(x) into the four
coordinate-spaée wave functions wi(xi) corresponding to the four
external lines of Dl' Each.wi(xi) is the Fourier transform of a
function & (p,) = ;'(p )6+(p2-m2) or ;'(p )8_(p2-m2) where
) F LS 194 i i SRS S | i 17
wi(pi) is an infinitely differentiable function of (say tiny)
compact support. around Py = Pi'@i== mi). These four supports define
four four-dimensional clesed causal bi-cones Ci:(ik= 1,2,3,4), which
are taken to be disjoint, except at the origin. (The supports of

. the @i(pi) can be made tiny by other partitions of unity).

.

The separation of each propagator Di into its parts Dij induces -

a separation of F(x) into a finite sum of terms Fu(x). Lét

{1,j(a,1); 1e(1,2,3,4)} specify the four functions D, (a,1)

i3
corresponding to a. Then a transformation to momentum-space shows
that the function Fu[¢]1Vanishes unless there is, for that a, a set
{pyg Pij(a 1y} 1= 1+2,3:4} such that, for all 1£(1,2,3,4),
B ’

Pyq € SUPP *1’ o (E.2a)

Pi,j(a,1) € SUPP Xy5(a,1)° (E.2b)

and
= - - . .2
Pia = Pi,1(a,1)" Pi+1,3(a,141) (E.2¢)
Equation (E.2c) expreéses momentum-energy conservation at vertex 1.
The conditions (E.2) entail that F“[w! vanishes if momentum-energy

conservation P, = Pi,j(a,i) - ?i+1,j(a,i+1) fails by more than the
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tiny amounts corresponding ta.the tiny supports of the functions Xij
and ﬁi.

© Let thg non vanishing functions FA[¢] be those with a in the
set A{ The integrals Fu[w], agA, can be reconverted back into
coopdinate space, and one can then examine the contributions to the
x;—space integrals from regions in which one or more of the four

tends to infinity.

Points x4y

For any Fu[¢], acA, one has approximate energy-momentum
conservation at each vertex. This approximate energy-momentum
conservation together with the stability conditions on the masses
of the stable particles, and the'three-pafticle character of the

vertices of Dl’ entail that for any acA and any ie(1,2,3,4) either

SUPP Xy 3(a,1) " (P} pf = mi} =0 (E.3a)

or
. 2 _ _
SUPP X414 (a,141) " (Pyars Piyg = Myt =0 (E.3b)

provided the supports of the functions xij(pi) and wi(pi), ie(1,2,3,4),
have been taken sufficient small. Consequently, for each 1¢(1,2,3,4)

and any acA, at least one of the two partial propagators D (z)
. . i,i(a,1)

-1

)(z> wi;l fall off fastgr than any power of IzlEucl.

°f Dyt1,j(a,i+l
uniformly over .all directions.

This uniform fast fall off of at least one of any two neighboring
pair of paftial propagators, Di,j(u,i)(zi) or Di+1,j(a,1+l)(zi+1)’ acA,
coupled with the uniform faster than any power of |xi|-1 fall off of

each coordinate space function

i(xi) on compact sets lying outside

i
interior the set of causal directions C1 (cf. Ref. 7, Eq.(2.17))

any closed bi-cone C! centered at the origin that contains in its
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entails the rapid (i.e., faster than any ﬁgwer of R—l) fall off of
the contribution to the x-spin integral for F;[W] from points

X = (Xl,xz,x3,x4) lying outside the set

R'(RAX) = (x;]x, - AX| <R, all 1e(1,2,3,4) ). (E.4)

To prove this asserted fall off property one may separate the
X = (xl,xz,x3,xa)—space 1ntegration region into four parts Pi’ where

the condition |X (all j) holds for all x in P

ileer. = ¥yl gyen. 1

Then the sixteen variables (xg, cee s xz) of x can be transformed

to one radial variable R,iwhich is ‘x in Pi' and fifteen

1|Eucl
"angle" variables u. The variable R ranges from zero to infinity,
whereas for any fixgd R the range of u is bounded.

 The Qariables u can‘be specified by a set of four four'veptors
'ui, 1e(1,2,3,4). One of these four four vectors ay lies on the unit sphere,
and the other three lie on or inside this sphere.

This unit sphere is centered at the origin. Four bi-cones Ci
centered at the origin can then be drawn. There 1is one bi-cone Ci
for each external particle i. These bi-cones are taken to be
disjoint, except at the origin, and the vectorsvp1 in the support of
"&i(pi) are contained in the interior of Ci{
Let the set C; consist of Ci and the ball of radius 10_2 centered

at the origin. If the point u, corresponding to external particle i

i

does not lie in C; then the integral will have a factor that falls

off faster than any power of R_1 due to. the fast fall off of the

wave functions wi(Rui) (cf. Ref. 7). But if each point uy lies in
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the corresponding set C!, and one of these pointq_gi lies on the

i
unit sphere, then both L M R(u;—ui_l) and X1 "% < R(ui+1- u
must increase linearly with R. Thus either Sij(xi_xi—l) or

8441, 14174

remaining factors in the integrand are bounded. Hence the total

) will fall off faster than any power of R_l, The

contribugion‘tof1¢] from the cobfdinafe;space region lying outside

a sph;re of radiu; R must also fall off fastef than any power of R.
Thé integral of actual inierest is given in (7.50). fThe

in£egfand has in addition to the Feynman'fﬁnction FDl(x) and the

foﬁr exté?nal-particie wave functions wi(xi), also>several exponential

f;ctors. Some of these exponentialé appear with imaginary exponénts.

These factprs are bounded'and do not éffect‘the result, However,

there is also an exponential with a real exponent. This real exponent

consist of a sum of terms of the form

[. :
J dk A 2ﬂ6(k2) ;%E';%TE'(I - cos y-k), (E.5)
(2n) : B
where y can be X - AX 6: xi-xi, and can become large.

It is sufficient to show tﬁaﬁ this integral (E.5) can increase

no faster than c log |y| as’ |y| + ». For in this case the exponential

itself increases at most linearly in |y| . But any such linear increas

is damped out by the just established faster than any power of |y|.1

decrease of the remaining factors (note that |xi - xil > a implies

i
power of R fall off of the contributions for x or x' outside R'(R, AX)

lxi -2X| > a/2 or |x, -~ AX| > ‘a/2. Hence the faster than any inverse

entails a faster than any inverse power fall off also in |xi - xi|).

"

e
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To obtain this logrithmic bound write

~

y =AY ~ (E.6)
N 2
where ¥ has Euclidean norm unity. And write, for kK = 0,
yok = A|K|g. ' (E.7)

where B-is a function of the angle 6 between the three vectors ;

and i. Then the integral (E.5) can be written (with k now |§|) as .

K 2 . 1
I kdk 2n J d(cos0)f(cos8)(1l - cos AkB), : (E.8)

3
o * -1

where'|f(cose)| is bounded.
To prove an asymptotic logtiﬁhmic bound ¢ log A on the magnitude

of (E.8) for large A it is sufficient to exhibit a bound c'/A (c' <e)

on the magnitude of the A-derivative

K 2 -1

J E—%% 2n I d cos® f(cose)kB x sin Ak8
0 % 21
1 -
w J d cosb® f(cosb)B
-1

dk sin Akg

OY—%

1
% J d coso f(cosd) (1l - cos AKB) ‘ ' (E.9)
21 :

The magnitude of (E.9) has the bound 4w|f|mailx, and hence the

convergence of (7.50) is assured.

R4 Y
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The convergence of the x integration in (7.46) is assured by
essentially the same argument.
The fact that the partial propagators Dij(zi) enjoy rapid fall

off 1n‘|zi|Eucl for directions of z, lying outside the causal set

i

C,, was not used in the above discussion. However, this fall-off

1j

property is needed to cover the generai'case in which D, is replaced

1
by some other diagram D!. These rapid fall-off condiﬁioﬁs, together

1

with the approximate ﬁomentum—energy conservafion equations mentioned
beléw (E-2), ensure a fépid-fall—off in R of the.contributions to
the analogs of (7.50) from points x outside R(R, AX) upless the
momentum;eﬁergiés of the external lines of Di lie close to a.
singularity surface of Di. And even,in‘this case there is a rapid
fall off of the contributions not iying near fhe regions in x space
such that the spacetime diagram Di(x) corresponds to a classicélly
allowed ﬁhysical process with the specified external momentum-energies.

This property is needed iﬁ the extension of the arguments givént
in this paper to the general case. .It entails, génetally, that the
contributions to the transition amplitudes from regions of x space .

that are far away from the regions that correspond to the classically

allowed processes fall off frapidly as the distances from the

. classically allowed configurations increase.
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FIGURE CAPTIONS

.

A simple strong—interaction\diagtam D. The dotted external

~ lines represent neutral particles. The solid triangle

- corresponds L(x) = L(xl, Xy x3);

A one-particle exchange process. Momentum energy is conserved
in each of the two subprocess, and.the intermediate particle
momentum is donoted by p.

A triangle diagram with wiggly lines representing. the

" classical-photon contributions.

"Subprocess Diagram Dl'

The Diagram D, with added wiggly lines representing the

1
three classical-photon contributions to (7.50).
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