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* EXACT SOLUTION OF THE INFRA-RED PROBLEM 

Henry P. Stapp 

LaWrence Berkeley Laboratory 
University of California 

Berkeley, California ,94720 

ABSTRACT 

LBL-13651 

A simple but rigorous solution of the infra-red problem 

is obtained. The basis of this solution is a factorization 

of the Feyrunanx-spac:e operator into a product of two operators. 

The first is a unitary operator that represents precisely the 

contribution corresponding to classical electromagnetic theory. 

The second is a residual operator that is free of infrared 

problems. This factorization is exact: No soft-photon 

approximation, or any other approximation, is used. Both 

the unitary operator and the .residual operator are expre~sed 

in simple forms amenable to rigorous mathematical analysis. 

The central technical result of this work, namely the exact 

yet simple orgardzation of all contributions corresponding 

to classical physic's into unitary factors, may have other 

important uses. 

* This work was supported by the Director, Office of 

Energy Research, Office of High Energy and Nuclear 

Physics, Division of High Energy Physics of the U.S. 

·Department of Energy under Contract OE-AC03-76SF00098. 
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1. INTRODUCTION 

The infrared "catastrophe" has been analyzed by many workers, and 

1 2 various solutions have been proposed. ' The essential idea of the more 

2 
recent ones is to reorganize the perturbation series in a way that 

collects various infra-red-divergent terms into exponential factors 

that drop out when either probabilities or matrix elements between 

certain coherent photon states are calculated. To achieve this reorgani-

zation an "infra-red" part of the scattering amplitude is extracted, 

by a sequence of steps, and is shown to have the required exponential 

factors. The residual parts are analyzed, and arg.led to contain no 

·infra-red divergences, but the arguments are nonrigorous, incomplete, 

and very cumbersome. 

The usual arguments are particularly unreliable if the scattering 

function is being evaluated at a singular point. For in order to 

achieve the desired factorization it is usually argued, first, that 

the infra-red divergences arise exclusively from the couplings of soft 

photons to external lines, and, second, that the small changes in the 

·momenta of the particles entering the central scattering region can be 

neglected, since this neglect induces.errors that are infra-red finit~ 

But if the scattering function is being evaluated at, .f~r example, 

the one-particle- exchange pole singularity then the second part of the 

argument breaks down, due to the failure of the momentum-space power 

series to converge, and the first part breaks down because the couplings 

of the soft photons to the mass-shell internal line associated with the 

pole singularity are important. Similarly, if the scattering function 
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is evaluated at, for example, a triangle-diagram singularity associated 

with a charged-particle closed loop then the couplings of soft photons 

to the internal on-mass-shell lines that form the triangle diagram con-

tribute to the infra-red part of the problem. In these delicate 

situations infinitesimal changes in denominator functions produce 

infinite changes in critical factors. 

i~ 
Another defect of the usual arguments is the assumption that (e -1) 

is of order k. For finite x this is true. But singularities are con-

trolled by asymptotic limits in which x has passed to infinity. Thus 

the assumption is notvalid at singularities. 

In spite of these obvious difficulties several attempts have been 

made to apply the usual methods at singular points. Unphysical results 

have been-obtained. 
3 For example, Storrow has claimed that the pole 

singularity of the S-matrix associated with a charged particle is 

2 2 -1 
converted by infra-red photons from the usual pole form (p - m ) 

2 2 -1-S to (p - m ) , where B is of order of the fine-structure constant. 

The effects of this supposed failure of the pole form on the important 

4 
reduction formulas of field theory have been examined by Kibble and 

5 -Zwanziger, who have, understandably, encountered grave difficulties. 

The purpose of the present work is to give a solution of the 

infrared problem that is exact in the sense that the reorganization 

that exhibits the required exponential factors is achieved in a 

direct and simple way that keeps the whole expression together in a 

~ :~ 
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closed compact form that is amenable to rigorous mathematical analysis: 

No neglect of higher-order terms in the photon momenta k are required 

to transform the x-space operator into a form that exhibits the 

required exponential factors. And the formula, being exact, is appli-

cable also at singular points of the S matrix. It is found that when 

the coherent photon states are chosen in the physically correct way the 

2 2 dominant singularity at p = m is the usual pole with factorized 

residues. This form is, in fact, vital to the interpretation of 

quantum theory, as will be discussed. 

The in_fra-red problem is posed here as the problem of calculating 

the electromagnetic corrections to a strong-intraction amplitude 

represented by a Feynman diagram D. The problem of the divergence of 

the strong-interaction perturbation series is thereby avoided. 

The work is divided into two parts. The general formalism is 

described-here, together with the analysis of the effects on-probabilities 

of the unitary factor that corresponds to classical electrodynamics. 

6 The infra-red analysis of the residual part is presented in paper II. · 

The problem under consideration here is the infra-red problem, not 

the ultraviolet one. Thus the ultraviolet divergences are avoided by 

simply introducing an ultraviolet cut off. 

It is worth noting that the essential problem under consideration 

here, namely the exact effect of the infinite numbers of very soft 

massless photons on the singularities of the S-matrix, is the precise 

analog in quantum electrodynamics of the confinement problem in 

quantum chromodynamics. 

-~ ·.~ 
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The organization of the paper is as follows. The basic formula 

is derived in Section 2. This formula expresses the Feynman 

AD 
coordinate-space operator F (x) corresponding to any original photon-. op 

free Feynman diagram D in which all charged particles are confined to 

closed loops in the form U(L(x))F
0 

(x). Here L(x) represents a space-. · _opr . · 

time polygon corresponding to a classical charged-particle trajectory 

with vertices specified by x = (x
1

, . • . , xn), and U(L(x)) is a unitary 

operator in photon space. Acting on the vacuum U(L(x)) generates the 

coherent state corresponding to the classical electromagnetic field 

radiated by a charged particle moving around the polygonal spacetime 

~D 
closed loop L(x). The residual operator F {x) is expressed as a 

op~ 

sum over Feynman diagram contributions corresp_onding to the various 

possible photon-line insertions. But in ~·0 {x) the photon interactions 
~ opr. . 

are via a modified coupling that vanishes linearly in k when the coupling 

is into a mass-shell line. Consequently this residual function 

generates no infra-red problems. 

Certain key features of the basic formula are pointed out in 

Section 3. In Section 4 it is shown that when the basic formula is 

folded into the external particle wave functions, in order to obtain 

physical scattering amplitudes, the charged-particle loops are 

effectively confined to finite spacetime regions, and that, consequently, 

there are no infra-red divergences in these closed loop amplitudes. 

This provides a rigorous starting point: these closed-loop amplitudes 

are finite and well defined without infra-red cut-off or fictitious 

photon mass. 

.... 'i 
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In Section 5 the pole-factorization procedure for obtaining ampli­

tudes with charg.ed initial and final lines is discussed in general 

terms. The procedure starts with processes in which all charged particles 

are confined to closed loops. Then the wave ·packets of the external 

particles are shifted to infinity in a way such that certain partial 

processes are shifted to infinity. If the photons were not massless 

then the dominant asymptotic form in this limit would factorize 

into a product of separate factors. These factors can be identified as the 

scattering amplitudes for the separate subprocesses, once appropriate 

geometric fall-off factors are extracted. The program here is to show, 

with the aid of the basic formula, that this factorization result 

continues to hold alsq in the presence of interactions to all orders 

with massless photons, and that the geometric fall off facfors are 

exactly the same as for the case with no massless particles. This 
.:·: 

type of fall off corresponds to pole singularities, and to the fact 

that the charged· particles propagate over macroscopic distances like 

stable particle~. What must be shown, then, is that the dominant 

asymptotic term has exactly this factorized form, with the precise 

rate of fall off that corresponds to stable charged particles, and that 

the residual factors are finite. These residual factors define the 

scattering amplitudes for processes with charged-particle external lines. 

Precise formulas relating pole singularities to fall-off properties 

are presented in Section 6, and the required factorization and fall-off 

properties of the amplitudes are proved in Section 7. Probabilities 

are considered first. Final infra-red photons are not observed. 

Therefore the observable probability is formed as a sum over all final 

infra-red photons. Consequently a unitary factor acting on the final 
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infra-red states can be introduced, without altering probabilities. By 

-1 
introducing in the infra-red subspace the unitary operator U (L(~X)), 

where X is an appropriate basis point, and ~ is a parameter that tends 

to infinity, one can cancel the dominant infra-red contribution from 

U(L(x)). In particular, the bounds established in appendix B show that 

for any e > 0, however small, one can find a sufficiently small. 

neighborhood 0 of k = 0 such that the contribution of the photons 

with k E 0 are less than the fraction E of the asymptotically 

dominant term, to the extent that the residual operator F (x) opr 

introduc-es no infra-red divergences. This latter fact is proved in 

paper II. This neglible character of the contribution of very soft 

photons to-probabilities entails that the parts of the amplitudes that 

give the dominant contribution to probabilities have factorization 

and fall-off properties analogous to those occurring with massive 

particles. Indeed, if one now introduces the operator u-1{L(~X)) 

for the entire space of final photons then one obtains amplitudes that 

factorize in the same way as do amplitudes with only massive particles. 

The introduction of this unitary operator is physically reasOnable: 

it introduces into the final photon states·the quantum mechanical 

equivalent of the c~assical electromagnetic field radiated by the 

motion of a classical charged particle around the polygonal spacetime 

closed loop L(~X). 

AD ( ) -D The decomposition F (x) z U L(x) F (x) arises from a separation op opr 

of the photon coupling into two parts, called the classical and quantum 

couplings. The net effect of all contributions involving only 

classical couplings is the operator U(L(x)). These classical-photon 

,\) :f 
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contributions are reduced by the Ward indentities to interactions 

that act only at the fixed vertices x of the original diagram D, 

rather·than on the internal lines. In fact, the effect of all 

classical photons (i.e., photons with only classical coupling to 

the loop L(x))is expressible as simply a product of scalar factors 

corresponding to pairs of vertices of D, or to a pair consisting of 

a vertex of D and the initial and final photon state. Compact 

formulas for these factors are given. That is, the analysis yields 

not only general results concerning factorization and fall-of~ but als6 

compact explicit formulas for the quantities of interest. It is,in 

fact,the availability of these simple explicit forms that allow 

the"estimates to be carried out. 

-~ ·' 
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2. THE BASIC FO!UfULA 

Consider first the coordinate-space Feynman amplitude 

corresponding to a strong-interaction d~agram D. Suppose the 

L internal lines correspond to a charged, spin- 2 particle closed 

loop. The Feynman-ampiitude then has the form 

FD(xl' ••• ' xn) 
n 

- FD(x)= Tr II Vi(iSF(x.i' xi-1)), 
i=l 

where x0 = xn' the Vi are strong-interaction vertex parts, and 

iSF(x~, ~i-1) = if 

4 . 
d pi 
-:----z;­
(211) 

-ipi (xi-xi-1) 
e 

l\_-m+iO 

(2.1) 

(2.2) 

Associated with this function there is;a spacetime closed loop L(x) = 

L(xi'. ·~· , xn)' which is then-sided spacetime polygon with cyclically 

ordered vertices located at the cyclically ordered set of points x = 

(xi, ... 'xn). 

D 
The electro-magnetic corrections to the function F (x) are now 

.consider-ed. A typical correction will be represented by a Feynman 

diagram having many photon lines incident on each of the n internal 

line segments of D. The photon coupling at any vertex that lies on 

the portion of the charged line of D that runs between xi-l and xi 

is now separated into its "classical" and "quantum" parts by the 

equation· 

-iey
11 

i i 
C/kj, zi) + Q11 (kj, zi), (2.3) 

, ,,. 
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where e is the e.m. coupling constant and 

i ~ -1 
C11 (kj, zi) =- ie zi/'j(zi•kj) • (2.4) 

Here 

zi = xi - xi-1' (2 .5) 

·and kj is the momentum-energy of the as.sociated photon. 

Consider now the part of the Feynman diagram D corresponding-to 

the original line segment i, which runs from xi-l to xi. Suppose 

: i 
mi external photons with quantum couplings Q

11
j (kj, zi}(j = a, b, •· •• ) , 

are connected in the order (a, b, ••• ) into this line segment i. 

There is a new coordinate variable xj, j£{a, b, ••• ), for each 

inserted photon. Integration over these new coordinate variables xj 

yields a function of xi and xi-l, and of the momenta kj and spin 

indices vj of the mi photons. For example, if mi = 2 then this 

function is 

( . k ' G xi, xi-1' a v ' a 

4 

f d pi 

~· 'b) = (21T)4 

-ipixi+i(pi+ka+~)xi-1 
e 

(2.6) 

i i i i i 
x J. -m Q (ka' zi) p +ll-ill Qv. (~, zi) p +Jl +If .:.:111 • 

Pi va i a D i a 'l> 

This function with the variables k , k , v , and ~ associated with · a -, a D 

the two photons a and b suppressed will be represented by the symbol 

G{2)(xi, xi-1). 
(mi) 

For arbitrary mi the function G (xi, xi-l) is the natural· 

generalization of the expression in (2.6) to the case where the 

ordered set (a, b, ••• ) has mi elements. 
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~J 
Consider next the function G (xi' xi-l) and the corrections D' can be expressed as 

to it associated with the classical coupling into the line segment i 

of D of a photon with momentum-energy k and spin index ~· This line 

contains already mi couplings of Q type. The classical coupling can 

be inserted into any one of the mi + 1 segments into which line 

segment i is separated by these mi couplings of Q type. The sum 

of the Feynman functions corresponding these·mi + 1 different possible 

insertions of this classical coupling C~(kj, zi) into line segment i 

is 
mi+l 

I:. (mi) 
s=l G~s (xi' xi-1' k) -

(mi) 
G~ (xi, xi-l, k) 

(mi) 
= G (xi' [

-e zi ikxi ikx ] 
xi-1) k·zi~(e -e i-1) ' (2.7) 

where k•z = k~z = kz, etc., and the variables associated with the 
~ 

photon quantum interactions are still suppressed. This result (2.7) 

is a simple consequence of the Ward identity 

i i i i 
~-m ( ilt) ~lt-m = ~+lt-m - ~-m (2.8) 

Equation (2.7) can also be expressed in the more compact form 

(mi) (mi) 
G~ (xi' xi-l' k) = G (xi' f

xi 

xi-1)(-ie dx~eikx 
X • 
-i-1 

(2. 9) 

Consider next any Feynman diagram D' obtained by attaching into 

each line segment i of D a set of mi photon lines. Each 

photon line of D' is required to begin or end on a Q-type vertex lying 

on one of the n segments of D. The Feynman function corresponding to 

\_,· .! 

D' n (mi) 
F (x) = Tr IT ViG (xi, xi-l)' 

i=l 
(2 .10) 

where the momentum-energy variables (kj, vj) associated with the photons 

of D' are suppressed. 

A photon line with classical coupling may now be inserted 

into any one of the mi+ 1 segments of any one of the n original 

line segments of D. The sum of the Feynman functions corresponding 

to all of these ways of inserting the classical coupling is, by 

virtue of (2.9), simply 

D' D' D' f i~x l:r ,s(x,k
1
)-=F·(x,k

1
)=F (x)(-ie) dx e 

s ~1 _ ~1 L(x) ~1 

D' _ F (x)J (L(x), k
1
). 

~1 
(2.11) 

That is, the sum of the Feynman functions corresponding to all ways 

of classically coupling a photon of momentum-energy k
1 

and vector 

component ~l inllt!J the clo'sed loop L(x) of D' is simply the product of 
D' i~x 

the original function F (x)with ~ ie) times the line integral of e dx 
~1 

around then-sided spacetime polygon L(x). 

Let th~ total number of photon -couplings in D' in the above 

calculation be m = I:mi. Then the sum over s on the left-hand side of 

. (2.11) is a sum over m + n terms, each of which is represented by a 

diagram with m + n + 1 intervals. A second photon, of momentum k2 

and spin component ~2 can be classically coupled into this collection 

in (m + n) (m + n + 1) different ways. The sum of the Feynman 

~-. -~· 
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functions corresponding to all of these (m + n) (m + n + 1) ways of 

classically coupling the second photon is 

' ' ~ FD ,s (x, ki, k
2

) = FD (x, k
1

, k
2

) 
s ~1~2 ~1~2 

. . - . 

D~ 2 ( ' . i~xij ' ik2x2 
= F (x)~ie) JL(x)dx 1 e dx2~ e • 

~1 L(x) 2 · 
(2.12) 

More generally, the sm.;. of the Feymnan functions corresponding 

to all possible ways of classically coupling a set of N photons into 

any fixed diagram D' that is constructed from D by the addition of photon 
rcJ 

lines that couple into the loop L(x) of D is 

D' 
F· 
~1 

~N (x, kl' ••• ' ~) 

D' N N 1 
= F (x)He) n 

i=l L(x) 

N 

ik ' 
dx' e ixi 

i~ 
i 

_ r 0 (x) n J (L(x), ki). 
i=l ~i 

This result follow~ directly from the Ward identity (2.6). 

(2.13) 

Suppose now a photon is emitted with classical coupling from 

some point on the Fermion closed loop in n: and is absorbed with 

classical coupling on some other point on this loop. Summing over 

all possible line segments of D' upon which the two ends of the 

photon line can begin and end, ,and dividing by two to compensate for 

a double counting, one obtains the contribution to the Feynman 

I ,, 
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function 

t.FD' (x) 21 • e dx' 
e FD (x) (- ;r> L(x) ~ f dx" 

L(x) v ~ 
-ik(x' -x") 4 . 

_k_ i _e__ L.~v) 
4 2 q; 

' (211) k +iE 

D' 2£ 1 F (x) (~) dx'•dx" iD (x'-x''), 
2 L(x) L(x) F 

(2.14) 

where DF is the scalar part of the Feynman photon propagator. Its real 

2 ~ 
part, which' comes from the principal-value part of .DF(k) = -· (k + i£) , 

is 

. 1 ( 2) Re DF(x'- x") = 41T o (x'- x") • (2.15) 

D' · D' D' 
This gives a "eou·lomb" contribut;iort t.GF to !IF that is F (x) times 

it(L(x))= ~t~ 21 f dx' •dx"o((x'-x")
2

). 
S1r L(x) L(x) 

(2.16) 

The factor t(L(x)) is the classical action corresponding to the 

motion of the charged particles along the spacetime paths defined 

by the polygon L(x).' 

The contribution from the effect of m such photons, is just 

D' · ·( · )m -1 F (x) it (L(x)) /m.!, where the factor (ml) compensates for 

D' multiple overcounting. Thus the sum of F and all these Coulomb 

corrections to it is just 

D' 
F (x) 
c 

D' 
F (x) exp i t(L(x)). (2.17) 

Thusif a classical photon is defined to be a photon that couples into 

L only via the classical interaction then the net effect of all of 
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all of the virtual classical photons is.simply to multiply the 
D' . . 

original function F (x) by the Coulomb phase factor exp H{L(x)) 

associated with the polygon L(x}. 

The real (as opposed to virtual) classical photons correspond to 

2 2 -1 the term 11 o(k ) in i 'F(k) = i(k + i e:) • The real classical photons that 

are both emitted and absorbed on the closed loop L(x) give a contribution 

to (2.14) of the form 

'\_FD' (x) 

D' lfd
4

k + 2. * JJV = F (x)exp - 2 --4 2110 (k U {L(x), k)(-g )J (LCx\k) 
. (211) \l . v 

D' 1 * - F (x) exp -2 <I (L(x))·J{L(x)) > , (2.18) 

where 

o +<k2
) = e<~t0> o<k2

) (2 .19) 

and 

J (L(x), k>) = -J.e f dx' 
\l L(x) \l 

eikx' * J {L(x), - k) \l 

= iJL(x), - k) • (2.20) 

In the final line of (2.18) a bracket notations similar to Kibble's is 

introduced. 

Real photons with classical couplings can also be emitted and 

absorbed from the charg~d-fermion loop. It is convenient to consider 

the S-matrix to be an operator in the space of the external photons. 

The photon emitted by the classical photon coupling to t)le closed 

loop L(x) is created.by the operator 

.~, J 

16 

* f d
4

k + 2 * a {L(x)) = --4 2116 (k )a (k) (-g\lV)J (L(x), k) 
(211) \l v 

* =<a • J(L(x)) >. (2.21) 

If M such photons are created then the operator that creates the 

< * >M -1 -1 final state is a •J(L) (MI) , where the factor (MI) compensates 

for an overcounting of Feynman diagrams. Thus the operator that 

creates the full set of final photon. states generated by the classical 

coupling to the fermion closed loop L is 

* C(L) = exp <a •J(L) > • . (2.22) 

Similarly, the operator that annihilates the set of initial photons 

that are absorbed by the classical coupling to the closed loop L is 

* A(L) =' exp - < J (L)• a >. (2.23) 

D The full Feymnan operator function corresponding to F. (x) plus 

all electromagnetic. corrections associated with Feynman diagrams 

that have no charged lines other than the loop L(x) is, therefore, 

pD (x) = 
op 

* * <a •J(L(x))>FD (x)e-<a•J {L(x)) > 
e op 

1 * it{L(x)) - 2<J (L(x))•J(L(x)) > • (2 •. 24a) 
x e 

-D D' D' Here F (xl = :l:F (x) is the sum of .photon-space operators F (x) op op op 

that corresponds to the set of all Feynman diagrams D'. that can be 

constructed by connecting onto the n internal line segments of D 

"' 
,,. 



I ., 

17 

some combination of photon lines, with, however, the condition that 

each photon line must be coupled at one end or the other into some 

i internal line segment i of D with a quantum coupling Q~(kj•xi). The 

D' operator F (x) corresponding to . D' .is constructed from the corres-op . 
D' 

pending Feynman function F (x, ~, ••• , km) by the formula 

D' 
F . (x) 
op 

4 

f m d k 2 -
. n ~ (21T)6(kj)a(kj): 
jal (21T) 

X rD' (x, kl, •.• , km)• (2 .24b) 

where a(kj) c a(-kj) =a t(kj) creates a photon of momentum-energy 

kj if k; > 0, and the two colons imply a Wic'k normal-ordering of the 

product·of operator a(kj) that they enclose. 

As our interest is in. infra-red rather than ultra-violet problems 

we shall multiply J~(L(x) ; k) by 8(2K- jk
0

1)9(K- lkl), where 

K is some very large number. This cut-off factor will, £or example, 

replace the factor .S((x
1

- x2) 2) that_arises from (2.14), and that 

occurs in (2.15), by its non-ultra-violet part, and will 

render all quantities occurring in the above formula (2.24) well 

defined. 

t ... 

"' 18 
·DO ·D ( ) Let F (L(x)) be the part of the operator F L(x) of (2.24) op op 

that comes from the original part ~(x) of the operator FD (x). 
op 

Introducing, for any .function f(k), ~the .notation f(k) = f(-k)_ one 

obtains from formula (2.24) 

FDO(x) = ~(x) 
op 

... x exp<a·J(L(x))>x exp.<J(L(x)) ·a> 

1 
x exp 2 <l(L(x)) • J(L(x)) > 

x exp io!>(~(x)) , 

D = F (x) U(L(x)), (2.25) 

Consider , · ·Dl next the part F [tP1 , •• ·, op lPN] of 
~D 
F

0
p[tlll' .•• , lPN] 

in (2.24) that 
~D 

comes from the part of F (x) op that corresponds to-

diagrams D' having exactly one quantum coupling. The sum of the 

D' 
terms F (x) of (2.24b) over all diagrams D' having a single quantum op 

coupling to an external photon line(and no other photon coupling) is 

!:'FD' (x) = I:•fd4
k 

4 
21Tt5(k2) a(k)FD' (x, k) 

op (21T) 

= < a . Q > + < Q • a >, (2.26) 

where the first and second terms on the right-hand side of (4.5) 

correspond to the first and second terms in 

21Tt5(k2) = 21Tt5+(k) + 21Tt5-(k), (2.27) 

respectively. 

~m n• 
The operator F (x) arising from the sum of F (x) over all D' op op 

having exactly one quantum coupling is then 
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FDl(x) 
op 

- - 1 - 1 -
= <S·Q > +<Q•a >+- <J·Q>+-2 <Q•J>+ i<J•Q> , 2 pv 

(2.28) 

where the last three terms come the diagrams D' that have a photon 

line with one quantum coupling to L(x) and one classical coupling 

to L(x), and 

<J·Q > . pv f d
4

k 
= P.V. --~4 

(211) 

J (k}(-g\lV)Q (k) 
u v 

k2 

where ~~ stands for principal.value. 

(2. 29) 

The basic formula (2.24) can be written in the slightly more 

convenient form 

AD <- >-D <- > 1 <- > F (x) = exp a•J F (x)exp J•a exp(- J•J + i~ ) op · op · 2 . • 

(2 .30) 

where J = J(L(x)) and·~= ~(L(x)). The term <Q•a>in (2.28) commutes 

through exp<J•a >, but < ii·Q>does not: 

[exp<:i, a>,<~, Q >] = < J, Q > exp<J, a:>. 

AD -Dl 
Thus the part of F (x) coming from F (x) is op op 

ADl - -F (x) = exp < a •J > exp < J •a > 
op 

1 -- (-Dl - ) xexp (-
2

<.J•J >+ i~) F {x)- <J•Q > . op 

(.,.31) 

{ ( 2. 32) continued on next page) 

:( 
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u(L(x) ){<a·Q >: + <Q·a > - t < J·Q > + t < Q•J > 

+ i<J·Q> ). pv 
(2.32) 

Note that the sign of the contribution as~ociated with the 

emission of a real (as opposed to virtual) photon from a quantum 

coupling to L(x), and its subsequent absorption by the classical 

coupling to L(x), has been reversed. This reversal of sign is · 

represented by. the following change of the Feynman denominator 

associated with the propagation of the Q-C photon: 

k2 + i£ + (ko + i£)2 - 1~12 • (2.33) 

Here k is the momentum-energy of the photon emitted by the quantum 

coupling and absorbed by the classical.coupling. Thus (5.11) can be 

written in the form 

... Dl ( )-Dl r (x) = U L(xJ F (x), op opr 
(2.34) 

where the subscript r stands for the retarded character of the 

propagator'in 

-Dl - ( ) ~-( ) F (x) = < a•Q L(x) > + <::.Q L(x) •a > 
opr 

+ ifdk4 J,(L(x), k) (-guv)Qv(L(x) ,k). 
(211)4 (ko+i£)2-lkl2 

(2 ;35) 

t. '~ 
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This result can be extended immediately to the contributions 
D . . . . . 

to F (x) with arbitrary numbers of quantum couplings. One obtains op 

~D · )-ti F (x) = U(L(x) F (x) op , opr 

. -D . 
where F (x) is the opr 

D' . . 
F (x

1
,k

1
, ••. ,'~) is 

same as the 

replaced by 

-D . 
F (x) in (2.24b) op 
n•· . 

F (x, k
1

, ••• ,k ) , 
r m 

(2 .36) 

except.that each 

which is calculated 

from the Feynmanrules modified by the change in denominator shown in 

(~.13) ~nd (5.14) for ~ch photon line that links a quantum coupling 

to L(x) to a classical coupling to L(x). This is our basic formula. 

~ 't 
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3. FEATURES OF THE BASIC FORMULA 

In this section some general features of the basic formula 

(2.36) are discussed. 

3.1. Isolation of Infra-red Problems. 

A principal resul.t: of this work, and the paper that follows, 6 

is that the infra-red problems are confined to the operator 

U(L(x)) that appears in(2.36): the residual effects involving 

quantum couplings produce no infra-red divergences. 

3.2. Connection to Physics. 

For clarity of presentation the strong-interaction diagram D will 

often be taken to be the simple one illustrated in Fig. 1. 

~ 3 1 

4, ' "- 1 
- ~' ' ---

......... 
·-'..,, '2 ''X. .... ~ 3- ,.. 2 1 "'2 

Figure 1 A simple strong-interaction 

diagram D. The dotted external lines 

represent neutral particles. The solid 

triangle corresponds to L(x) = L(x1 ,x2 ,x3). 
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ftD 
The quantity F (x) given in (2 .36) is an operator in the op 

photon space. It is connected to physics via the transition operator 

D ftD 
T [w 1, ••• , wN]' which is obtained by.folding into F (x) the wave op . op 

functions wj (xj). of the initial and final particles of the strong-

interaction process represented by diagram D. If j specifies a 

final particle then wj (xj) is the complex conjugate of the usual 

wave function of this particle. Thus 

D J:n 4 N D 
T fip1' ... , liN]= n d xi n wj(xi(j)H (x), 
· op i=l j=l op 

(3.1) 

where i(j) is the label of the vertex i upon which' external line j of 

D is incident. 

3.3. Connection to Classical Physics •. 

The operator U(L(x)) .in (2.36) is. close)..y connected to 

classical physics. The phase ~(L(x)) is the contribution to the-

classical action from the motion,~la Feynman, of a classical charged 

particle around the closed spacetime L(x). The other three 

exponential factors combine to .give a unitary operator which, when 

acting on the photon vacuum;, creates a coherent photon state. This 

coherent state is the one associated with the classical electromagnetic 

field radiated by a charged particle moving around the closed 

spacetime loop L(x). These results follow from Kibble's 

formula (15) •4 

3.4 Exactness of Basic Formula. 

Formula (2 ;"36) is exact. No soft-photon approximation--or any 

1; 
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other approximation--has been used to reorganize the photon 

contributions into the form (2.36), in which the infrared problems 

are confined to exponentials related to classical physics~ 

,., • 
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4. SMALLNESS OF THE SOFT-PHOTON CONTRIBUTIONS 

IN CERTAIN SIMPLE SITUATIONS 

The transition operator T~P[w1 , ...• wN1 is calculated by folding 

·D the initial and final wave functions wj(x .)into the operator F (x) of 
.f op 

· (2. 36). The detailed properties 'of the contributions to FD (x) that 
op 

come from the diagrams D'l D·will be examined later, in paper II. 

Thus we shall concentrate here on the part T~~[w1 , ... ,wN] of 

D D( -D ( T [w1 , •.. ,wN] that arises from the part F x) ofF x). Because 
~ . ~ 

DO 
all the contributions to. T

0
p[w1 , ... ,wN] have very simple forms it 

is easy to obtain rigorous bounds on the magnitudes of various 

specified contributions to it. 

We shall suppose that the wj (p) are infinitely differentiable 

functions of.compact support. Then for each external particle j there 

will be a "dominant region", in which I~ (x)l can be appreciable, and 

a "tail region", in which jtpj (x) I is very small and falling off faster 

than any inverse power of the spatial distance from the dominant region. 

(See reference 7 for discussions of these properties) 

In calculating the transition amplitude the coordinate-space 

wave function wj(xj) is evaluated at the point xj = xi(j)' where 

i(j) is the vertex of D upon which external line j of D is incident. 

Consider, for definiteness, the diagram D of Fig. 1, and the 

'DO 
corresponding transition amplitude T

0
p[w

1
, ... , w

6
l. 

• 

26 

~ 0 
Suppose the supports of the six wave functions in pi/pi space 

are disjoint. Then the dominant regions associated with the six 

wave functions will be asymptotically disjoint. In particular, the 

maximum of the absolute value of the product of any two wave functions 

in the region lying outside a ball of Euclidean radius R centered 

-1 at the origin will fall off faster than any power of R Consequently 

DO the contribution to T
0

p[w1 , ... , w6) from·very soft photons is 

negligible. 

To see this let n(b) be the k-space region 

o(b) = {k; lk
0 1 <; 2b, 11t1 <;b }. (4 .1) 

And let U 
0

(L(x)) b~ the operator U {L(x)) with all k integrations 

restricted to the region o(b). The difference between U (L(x)) and 
11 

the value it would have if there were no contributions at all from 

k£11 photons is u
11

{L(x)) - 1. 

from the k£0 photons is 

DO Hence the contribution to T
0

P[w1 , ... ,w61 

T
00

lw1 , • • • ,1j16]11 op 

= I dx1 dx2dx3 .,.1 (x1) w2 (x1 ) 

w3(x2) w4(x2) ws<x3) w6(x3) 

(u(L(x
1

,x
2

,x3)) -1) FD(x1 ,~,x3). 11 
(4 .2) 
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Let R(R) represent the x-space region 

R(R): {x;lxil~ucl ..:R, i£{1,2,3}}. (4 .3) 

And' define T~~[IP1 , ••• 1j16]0 ,Rand T~~["'!•····IP6 1~ to be the pa~ts of 
no· 

T [ ~P1 , ••. ,1j16] arising from the integration regions x£R and x/R, 
op n 

respectively. · 

The unitary operator Un(L(x)) has unit nonn. Hence for every b 

the norm of Ufl(b) {L(x)) - 1 satisfies 

lun(b) (L<x>) - 11..:2. (4.4) 

The ultraviolet cut-off ensures that the functions lsF(xi - xi-l) I 

are bounded. Hence I FD (x) I is bounded i 

D . 
IF (x) 1..:c. (4.5) 

-1 These two bounds, and the faster than any power of R fall off of 

the maximum of the absolute value of the product of any two wave 

functions ensures that the norm of 

DO R(R) 
ToP[ljll, ••• ,ljl6]n(b) 

-1 falls off faster than any power_of R • Hence for any£> e,however 

small, there is an R = R(£) such that for all b 

I 
DO R(R(£)) 

Top[ljll, ••• ,ljl6] n(b) I< ~' 2 · (4 .6) 

1 
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Consider next the remaining part 

-1 

DO 
T 9P [ IP1, ••• 'ljl6] Sl(b)oR(R(E)). 

Take b. << R(d • Then the exponential factor exp i kx' in (2.20) 

is close to unity, and its integral_ around the closed loop L(x) 

enjoys a bound of the form 

!Jli(L(x), k)l < ckR
2

• (4. 7) 

0 Insertion of this bound into (2.14), with the k- contour distorted 

into a semi-cirle of radius 2b, gives for the absolute value of 

2 e /2 times the integral (2 .14) a bound 

c' (bR)
4 << 1~ (4 .8) 

where c' is some constant. Exponentiation preserves essentially this 

bound: for sufficiently small b . 

I< olun(b){L(x))- llo) I (2c"(bR)
4

• (4. 9) 

Here I 0 > is the photon vacuum. D The boundedness ofF (x1 ,x2 ,x
3

) 

then ensures that for some sufficiently small 

b = b(£, R(£)) = b(£) > 0 

the following bound holds: 

. DO . 

I< o IToP[IPl, •.• ,ljl6]n(b(£)), R(R(£))10 >I< £/2. (4.10) 

., 
~ 
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This result, combined with (4.6), shows that forE >O,however small, 

there is a b(E) such that 

I< oiT~~lwl'~ ... w61n(b(£))1°>1<t. 

In other wor.ds, the contribution to the transition amplitude 

DO 
T

0
p[,1, ... ,1fl61 from the very soft photons kEO(b) can be made 

arbitrarily small by choosing b sufficiently small. 

'. 

(4.11) 

. .. 
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5. DISCUSSION OF INFRA-RED DIVERGENCES 

True infra-red divergences do not arise.if all charged 

particles are confined to finite spacetime closed loops. This 

fact is exploited in the procedure adopted above: the expressions 

are made free of infr&-red divergences, and hence amenable to 

rigorou~mathematical analysis, by considering transition 

amplitudes ~orresponding to processes in which the charged-

particles are confined to closed loops, which.are kept effectively 

finite by the damping provided by the:wave functions wj{x) of the 

initial and final particles. 

Infra-red divergences traditionally arise'in processes in 
• < 

which some of the initial or final particles ~recharged: the 

momenta of initial and final particles are then restricted by mass-

shell constraints, which cause the singularities of certain Feynman 

denominators at k ~ 0 to produc~ divergences. 

One may, of course, consider all charged particles in the 

universe to be confined to closed loops. In a certain narrow 

technical sense this would solve the infra-red divergence problem: 
. D 

there would be no strict divergences of T [ ,
1

, ••• ,111 J for the entire 
op n 

universe. But this is not a physically adequate solution of the 

problem, for the following reason: the closed loops, though finite, 

. * 
will be huge, and the factors ~(L(x)) and < J (L(x)) • J(L{x) )>both 

diverge logrithmically under dilation of the closed loop. Thus for 

loops the size of the universe these quantities are, for all 

prac·tical purposes, infinite. No predictions about laboratory 

phemomena should depend on such numbers. The theory, to be useful, 
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must allow the predictions about local phenomena to depend only on 

local specifications, not on the detailed ancient history of the 

particular electrons that are being used in some expertment. Some 

factorization is required to extract the local aspects. 

Usually this factorization is achieved by means of the pole­

factorization property. In the absenee of massless particles one 

can show that if the sources of various particles are far away from 

a certain reaction among these particles then the only significant 

part of the larger process that includes also the sources comes 

from the residues of the pole-singularities associated with the 

exchanged particles. The net residue is a product of separate factors, 

one for each source and one for the interaction. In this way the 

descriptions of the sources of the particles of the reaction can be 

effectively separated from the description of the reaction among them. 

Were it not for this pole-factorization property, or some similar 

property, the whole universe would have to be considered. as a unit. 

The residue of the pole is evaluated by restricting the exchanged 

particles to the mass-shell. But a restriction of a charged particle 

to its mass-shell brings us back to the traditional infra-red 

divergences. Thus the procedure of starting from a universe in which 

all particle's are confined to closed loops does not. without further 

analysis, solve the problem. One must establish the requisite factori-

zation properties, which are in any case needed for a satisfactory theory 

of particles, and must confirm that the residues are finite. These 

residues will represent the amplitudes for processes with charged 

external particles. We now proceed to· those tasks. 
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. 6. SPACETIME POLE-FACTORIZATION PROPERTY 

Suppose the initial and final momentum-energies of a many­

particle reaction are related in a manner that permits a classical 

one-particle-exchange process of the kind shown in Fig. 2. 

1 

2 
6 

5 

Figure 2. A one-particle exchange process. 

Momentum energy is conserved in each of the 

two subprocess, and the intermediate particl~ 

momentum is denoted by p. 

The Feynman rules ensure that the 

scattering function ·of the overall process will have a pole-type 

. 2 2 -1 
singularity i2m(p - m + iO) , and that the residue of this pole 

is simply the product of the scattering amplitudes associated with 

the two subprocess. The "discontinuity''associated with the pole is 

the difference of the boundary values from the upper and lower 

2 2 2 
half-planes in p , and is therefore 2no(p - m )2m times the product 

of the scattering functions of the two subprocesses. 

The pole character of this singularity and the fact that the 

~ ~ 
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residue factorizes in this way is crucial to the interpretation of 

quantum theor.y. It insures that stable part'icl~s behave as stable 

particles should. Suppose, for example, that we fold-in the wave 

functions of the initial and final particles of the overall reaction. 

Then the first (lower) interaction can be regarded as a subreaction 

in which a particle of mass m is produced, and the second interaction 

can be regarded as a subreaction in which this particle is detected. 

If these two subreactions are far apart then the rate at which the 

transition prob~bility decreases as the. two subreactions are moved 

further apart must be in accord with classical ideas about the flux 

of stable particles emerging from a source that is small in comparison 

to the large distance between the source and the detector. 

· If we take the momentum-space wave functions of the initial and 

final particles of the overall process to be infinitely differentiable 

functions of small compact support, and if the scattering functions 

for the two subprocesses are non-singular in. the regions defined by 

'these small compact supports, then the scattering function 

f
1

(p, p
3

, p
4

, - p
5

, - p
6

) of the first subprocess folded into the 

wave functions ~3 (p3 )~4 (p4)~5 (p5)~6(p 6) of this subprocess will 

give an infinitely differentiable and compactly supported wave function 

1/1
1

(p) of thP. particle prnduced in this first subreaction. Similarly, 

the scattering function f
2

(p1 , p2 , - p, - p7 , - p8 ) of the second 

process folded into the wave functions ~1 (p1 )~2 (p2 )~7 (p7 )~(p8 ) of 

this subprocess will giv~ an infinitely differentiable and compactly 

supported wave function 1/1 2 ~ p) = ~2 (p) of the particle detected at 

the second reaction. Thus the transition amplitude associated with 

the preparation of a particle represented by wave function 1/11 (p), and 

(l... 

• 
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the subsequent detection of a particle represented by (complex con-

jugated) wave function ~2 (p), namely 

- . f 4 < 1jJ ~1/1 >= _!_p_ 2 . 1 4 
· (2rr) 

- + 2 2 . w2(p)2rrc5 (p . - m )2m 1/i (p), (6.1) 

is equal to the result of folding the wave functions ~j(j 1' ..• 6) 

of the external particles of th~. ~v'erall reaction into· the discontinuity 
. 2 .. · ·. .. 

2nc5(k )2m of the overall scattering function. 

We are interested in the dependence of this amplitude .on the 

location of the detector. Thus we translate the wave functions 

~j(xj) of the externai particles of the second (detection) subprocess 

. 2 0 > . by a vector 6x • tv, where v = 1 and v 0. This is achieved 

by the change 

IJ.x 
~/xj) + ~j (xj) = ~/xj - /J,x). 

This change induces the change 

( 
· ) .f.X ip 'l'\X ~j pj + <I> (p ) = «P ) j j j 

in the momentum-space functions. Then momentum-energy conservation 

in the second process yields the resulting change in ~2 (p): 

~2(p) -+ ~2/j,X(p) ~2 (p)e-ip•6x. (6.2) 

Actually, are interested in the rate of fall-off of the transition 

amplitude of the overall process itself as the magnitude t of the 
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shift 6x tends to infinity. However, if we had used in place of 

2 2 -1 - 2 2 -1 (p - m + iO) the boundary value (p - m - iO) then this modified 

7 
transition amplitude would fall off faster than any power o( :r. 

Thus, modulo these terms that fall-off faster than any power ofT 

2 2 -1 we may use, in place of the actual pole form i(p - m + iO) , rather 

the difference (or discontinuity) 

2 2 -1 2 2 -1 2 2 i(p - m + io) - i(p - m - iO) = :z,r6 (p - m ) • 

Then, in the notation of (6.1) and (6.2), the question becomes: 

:rv 
what is the rate of fall off of < f 2 _ • ~?as :r + ..,? 

This-question is answered by-the following corollary to a theorem 

proved in app.endix A. Corollary A: Suppose ~2 (p)~1 (p), considered 

- + as a function of the three-vector p, is continuous together with its 

f,irst and second derivatives, and vanishes for IPI > R < "'• Then 
2 0 -

for any real v satisfying v = 1 and v > 0 the following limit holds: 

3/2 
lim (211i:r) eimT 

T -+oo m . 

<~TV.~>= 
2 1 

f;(mv) ~l (mv). 

In terms of probabilities this relationship becomes 

3 2 
lim {:z,r:r) I < tP Tv·~ >I 

:r +.., m 2 2 

- 2 2' 
= ~~2(mv) I ~~1 (mv)l • 

1; f· 

(6.3) 

(6.4) 
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This result allows the squares of the magnitudes of the momentum 

space wave functions ~1 (mv) and ~2 (mv) to be identified as flux 

densities for emissionandabsorbtion of particles moving in the 

direction v. -3 The factor :r corresponds to the fact that stable 

particles do not disappear or materialize while moving from the source 

to the detector: the probabilities in the macroscopic domains 

have the same geometric fall off as the probabilities for classical 

stable particles. 

If one were to increase the degree of the singularity then 

the fall off would become too slow.· And if one were to decrease the 

degree of singularity then the fall off would become too fast. 

The connections described above show that one cannot expect to 

extract reliable information about the singularity structure of 

a function from an approximation to it that disrupts 

its asymptotic behaviqr in coordinate space. For the asymptotic 

structure of transition amplitudes in coordinate space determines 

7 8 the analytic structure in momentum space. ' 

3 . 
Storrow examined the question of the effect of infrared photons 

on this pole singularity and concluded that the usual pole form 

2 2 -1 2 '' 2 -l-8 
(p - m + iO) was changed to (p_- m + iO) , where B was of order 

of the fine structure constant. Such a form would entail large 

deviations in the macroscopic regime from the classically expected 

behavior of stable particles. 

f- .. --;-"'" 
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7, TRIANGLE-DIAGRAM FACTORIZATION AND AMPLITUDES FOR PROCESSES 

WITH CHARGED INITIAL AND FINAL 'PARTICLES 

These pole-singularity considerations can be carried over to 

reactions such as the one illustrated in Fig. 1, in which a 

charged particle iuns around a closed loop. 

Let x
1

, x
2

, and x
3 

be the vertices of a large spacetime closed 

loop L(X). Let p
1

, p2 , and p3 be the momentum-energies of die three 

intermediate lines, as determined by the masses mi of the three 

charged lines and the differences /IX of the Xi. Suppose the wave 
xi 

functions~ (x)of the two external particles incident upon vertex i 

are large in· a' neighborhood of Xi, but luive a: product that falls 

1 
off faster than any power of .l.x - x{ as .x moves away from Xi. And 

suppose that the scatterfug function for each of th~ three subreactions, 
xi 

folded into the wave functionsljlj of the two associated external 

particles, but evaluated at the momenta pj associated with the two 

appropriate intermediate particles, is non zero. Thisconfiguration 

d·efines a transition operator 

D AX 
A(AX) = T [Jjl i(l) op 1 • •.. • 

AXi(6) 
·.; 1 6 

(7 .1) 

that would be expected to have contributions corresponding to the 

reaction represented in Fig. 1. Indeed, if there were no infra-red 

problem then A(AX) would be dominated at large A by a term that falls 

-9/2 off as A , and that arises from the pole-singularities 

2 2 -1 (pj- mj + iO) corresponding to the three charged lines in Fig. 1. 

. . 7 8 
The diagrams D' contributing to this dominant term would be ' 

those in the class CD consisting at those D' that are separated into 

(' 
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three disjoint diagrams by cutting three charged lines, one corres-

pending to each line of D. Modulo self-energy-diagram considerations 

-9/2 the dominant A contribution to A(}.X) would be obtained by replacing 

2 each of the three poles i(pj 2 -1 - mj + iO) by the corresponding mass-

'2 
shell delta-functions 2n6(pj 

2. -9/2 - mj). Indeed, by factoring off (c).) , 

and an appropriate unitary factor that does not affect probabilities, 

one would obtain a limiting value that is just the product of the 

scattering functions for the thr'ee processes, with the ~j 's folded in, 

evaluated of the points ~j = pj. This is the triangle-diagram 

generalization of (6.3). 

These pol~-factorization results are not disrupted by the infra-

red photons. Equations (7.1), (3.1), and .12.36) give 

. . f 3 4 6 . AXi(j) 
A(AX) = n d xi n w (xi(j)) 

i=l . j=l 

. D 
x U(L(x) )F (x) • opr 

Let U(L(x)) be written in the form 

U(L(!c))_ = u11 (L(x)) tf(L(x)) 

u
11

(L(AX) u11
(L(x)) 

(7.2) 

+ U11'(L(AX)) (tf~(LQ.x)) Ufl (L(x)) - 1) tf (L(x)) , 

(7.3) 
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where the operators· Un (L(x~ and Un (L(x) ) are the operators obtained 

by restricting the k integrations that occur in the definition t2.25) 

of U(L(x)) to k£rl and ktn, respectively. Then one may wr~te 

A(~X) = Adom(~X) + Arem(~X), (7 .4) 

whereK (~X) and A (~X) arise from the first and second terms~in 
~m rem 

the final line of (7.3), respectively. In particular, one has 

Adom(AX) = Un(L(~X)) An(~X), (7.5) 

where 

.An(~X) 

J 
3 4 ... · 6 },Xl(j). D 

= n d x~ . n tP (xi(j))Un(L(x))F_ (x). 
i•l .j=l . (lpr (7 .6) 

The probability corresponding to the transition operator A(~X) 

is 

t 
P(>.X) = Tr A(~X)pinA (~X)pfin• (7.7) 

where pin and pfin are the density operators for the initial and 

final photons. Final infra-red photons are not detected. Thus·· 

pfin acts as a unit operator on the infra-red (i.e., k~O ) parts of 

the photon states. The non-infra-red (i.e., k/0) photons play no 

essential role in the discussion, and can be assumed to be absent from 

both the initial and final states. Thus if 

fi A A 

Po= jon><onl (7.8) 

. ~ 

40 

is the operator that projects all non-infra-red (kto) photon 

oscillator state vectors onto their ground or vacuum states, but 

leaves unchanged all photon oscillator states corresponding to 

photons with momenta k£a then one may write 

0 
Pun = Po 

and 

fi 
Pin .. Po Pin,O' 

where pin.fi specifies the initial condition of the infra-red 

photons, but leaves unchanged all non-infra-red parts. 

(7. 9) 

(7 .10) 

Suppose n is contained in fi. Then the contribution of Ad (~X) om 

to the pro~bility P(~X) is 

pdom(AX) 

- Tr[< oniAdom(>.x) lo
0 

> 

x. Pin,0<o
0

l A!om<~x>l o
0 

>1 

Tr[ < o
0

lun (L(~X))An(~X) I i 1 
> 1 

Pin,a<o0 1Ant(~x)u~ (L(~x>) 1oft>] 

Tr[ <o0 I An(~x> jo0 > 

fi n A 

Pin,n <o lA <>.x> jon>l. 

.. " 

(7 .11) 
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where the traces are in the space associated with the infra-red 

photons, and the unitarity of U 11(L(;\X)) has been used to obtain the 

last line. 

Let 11 c Q(b) be a set of the form , 

11(b) = {k: lk0 I .;;;; 2b, lkl .;;;; bl. (7.12) 

And suppose, as in ·section 2, that the wave functions ljJ j (pj) are 

infinitely' differentiable with disjoint compact supports in 

Pjlpj space. Then it is shown in Appendix B that for some fixed A 

and for any £ > 0, however sinal!,· there is a b (£) such that for any 

b < b( £) and all ;\ > A the contributions to P(;\X) that involve 

Arem(;\X) are less than £times P(;\X): 

P(;\X) - Pd {;\X) < £ P(AX). om 
(7 .13) 

This smallness of the contributions from Arem(;\X) arises from the 

fact that the faster-than-any-power fall-offs of the wave functions 

~i 
~j (x) effectively confine~ to a finite neighborhood of AX. Yet 

for all I~ << lx- ;\XI-l the currents J(L(x),k) and J(L(;\X),k) are 

nearly equal. Consequently, the operators'u(L(x)) and u(L(AX))are 

nearly equal, and hence the factor (U-
1

(L(AX))U (L(x)) - I) n 11 

appearing in Arem(;\X) tends effectively to zero with the size of 

11 = 11(b). 
·' 

The value of b is now taken small enough so that, to some high 

preordained level of accuracy, the probability P(U) is adequately 

represented by Pdom(AX). Then the remainder can be ignored: it is a 

negligible fraction of the whole. 

,, 
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Equations (7 .11) and (7 .6) show that the operator U
1
/;\X) drops 

completely out of the calculation of·pdom(;\X). Thus no error at 

all is induced in the calculation of P dom (;\X) if one replaces the 

-D . 
in the basic formula (.2.36) by operator F (x) 

o~r 

rD11 (x) = ~(L(x)) FD (x). opr opr 
(7 .14) 

This·substitution eliminates all contributions to U(L(x)) that arise 

from the photons with k£11. This elimination of k£11 contributions 

ensures the infra-red finiteness of Pdom( ;\X), and hence of P(;\X) 

. -D 
itself, provided the operator F (x) introduces no infra-red divergences. opr 

-D The infra-red properties of F (x) are studied in paper Il. An opr 

ultra-violet cut-off is imposed, and the possibility of a divergence 

of the sum over the infinite number of different diagram D' with 

quantum ~oupling Q is not examined. Subject to these ~imitations it 

is shoWn that the' photon momentum-space eigenstates of the Fourier 

~D -D transform F (q) of F (x) are well defined and have the usual 
opr opr 

triangle-diagram singularity: the dominant contribution to the 

discontinuity around the triangle-diagram singularity surface is 

evaluated as a sum over contributions corresponding to all ways in 

which the diagrams D' can be cut into three disjoint parts by cutting 

three line segments, one corresponding to each of the three internal 
. . 2 

lines of D, and replacing the corresponding propagator i(~+m)/p ~+k 

2 2 by 2no(p -m) (~+m). This restriction of charged-lines to their mass-

shells produces no infra-red divergence. 

To establish the important coordinate-space factorization 

property consider first the vacuum-to-vacuum matrix element 
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< 0 I F
0 

(q) I 0 >. Since the singularity at the triangle-diagram opr · · 

singularity surface is normal the corresponding-asymptotic behavior 

in coordinate space is also normal. Indeed, the three-particle 

generalization of the theorem of Appendix A ensures that if one defines 

then 

F().X) - I 
3 4 6 ).Xi(j) 
n d x n .P (xi(j)) 

i=l i j=l 

lim 
).--

< o I f1 <x> I o >, opr 

~ 
3/2 

~ (211icj ).) 

j=l . mj 

., 

.'"hj 
3 

x FOX) = n Fi(~(i)'Pi' Pi+l > • 
i=l 

(7 .15) 

(7 .16) 

where Fi(.pj(i)'Pi' pi+l) is the amplitude associated with vertex i 

of D. Specifically, Fi(.pj(i)' pi' pi+l) is the scattering·function 

for the subprocess associated with vertex i, folded into the wave 

functions .pj of the particles corresponding to the two external 

libnes of D incident upon the vertex i, and evaluated at the momenta 

pi and pi+l of the charged particles associated with the two internal 

lines of D incident upon i. The quantities pi and c are specified 

by 

Pi= mi(Xi- xi-1)/lxi- xi-11Mink. (7 .11a) 

and 

. X I . 
c = lxi - i-1 Mink i 
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(7 .17b) 

The property of t (x) just described refers to its vacuum 
opr . 

to-vacuum matrix element. If the initial state represented by pin,fi 

is the vacuum state then the operator F0 (x).in (7.6) that occurs opr 

in the formula (7.11) for Pdom().X) acts on the vacuum state. Then 

the vacuum-to-vacuum matrix element of r0 {x) will contribute to opr 

the probability Pdom().X) a term 

Pdo ().X) = om 

J 3 4 4 6 ~ ).Xi(j} ui<J>* 
n (d xid yi) n .pj (xi(j}).pj (yi(j)>) 

ial j=l . 

t 
x<OIF

0 
(x)IO><OIFD .(y)IO> opr opr 

x < o01u0(L<x>)lf><0°1u0t(L{y)) lo0 > 

l:' <n'n-olufi_.,O:.<x>) I ofi_o> <oa-olu~-o(L(y)) ln'n-o > 
n A 0- 0 (7.18) 

X 

The superscript fi on ;(L{x)) means restriction of the integrals 

occurring in U(L(x)) to contributions from the photons with ktfi 

(i.e., to non-infra-red, photons) and the subscript fi-o means 

restriction to photons with kE (O-fl) (i.e., to infra-red photons that 

are not very soft). The sum over states In' Q-{'1 >is a sum over all 

states of the oscillators corresponding to photons with kE(0-0). 

Expression (7 .18) for PdO ().X) combines the 'infra-red finite 
om t 

D D · 
quantities< OIF (x) lo >and < olr {y) lo >with the unitary opr opr 

factors corresponding to.classical photons with kin. 

_,_ '"' 
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To establish an asymptotic factorization property for Pd
0 

(>.X) om 

recall first that 

< o0
1 u0 

(:L(x)) I o0 > 

= exp u 0(L(x)) 

1 * A xexp '- 2 <J (L(x)). J(L(x))>n, (7.19) 

where 
A 4 * 

. 4>f! (L(x)) : .P. V. J~4 Jll (L(x~k){ -gll")J)L(x), k) 

2(2n) k2 
xn(k) 

(7 .20a) 

and 

* . . fl 
<J (L(x)) •J(L(.x))> - J 

4· 
d \ /(L(x),k)(-gll")J {L(x),k) 

(2n) Jl v 

x 2no+ (k2) x0 (k). (7 .20b) 

a 
Here X (k) is a factor that cuts out the contributions from both 

infra-red and ultra-violet photons. 

The current appearing in (7.20) is 
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J (L(x), k) =-ie, I 
~· L(x) 

dx' eikx' 
)J 

3 ;I;. ikx ikx 
=-e 2: _.!:!!.... (e i - e i-1) 

i•l Zi•k 

=-e 2: e i _!!!___- 1+1,~ 3 ikx c z ) 
i=l zi ·k zi+l •k 
3 

- 2: Ji (xi, zi' _zi+l' k) i=l )J 
(7.21) 

where Ji~(xi, zi' zi+l' k) is the partial current associated with 

vertex i of D. 

If each of the twci·currents in (7.20b) is decomposed into its 

three partial currents one obtains nine terms in all. Each of these 

nine terms is associated with one wiggly line in the diagram of Fig. 3. 

, 

Figure 3. A triangle diagram with wiggly 

lines representing the classical-photon 

contributions. 

Two of the nine terms are associated with each of the three 

wiggly lines that run between two different vertices, and one of the 

nine terms is associated with each wiggly line that begins and ends 

on the same vertex. 
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The contributions to (7.18) from the six terms in (7.20b) that 

correspond to interactions between different vertices fall-off. 

-9 faster than ~ • To see this, consider first a typical 

contribution of this kirid to (7 .20b): 

* Q < Ji-1 (xi-"!) • Ji (xi)> = 

= e2 J d4\ e ik(xi-xi-1) (2'11)1l+(k2) xn(k) 

(2'11) 

" (z i-lu _ ~) (-g\!V) (z 1v _ z i+lv ) • 
Zi-lk Zi•k Z,i•k \+1•\t 

And consider first the values of (7.22) at points x in 

(7.22) 

R~~n,1X) ~ { x: lx- 1XIEucl. oE;;-1 11
}, where 0 <n <<~<< 1. 

Since the Xi are chosen so that the differences Xi - Xi~l are all 

I o o I _ timelike, and satisfy Xi - Xi-l > 1, the vectors zi .= xi - xi-l 

for points x in 

RV 11 ,lX) 

must also be timelike. On the other hand, k is light-like in the 

support of .s 2{k). Hence the only singularities of the integrand in 

(7.22) apart from those of the cut off function 

a 2 X (k), are those of ll(k ). But then the properties of Fourier 

transforms7 •8 ensure that 
*· fi 

<Ji_1 (xi_1) •J (xi)> falls off 

at least as fast as I . 1-1 xj - x
1

_1 Eucl. in all directions except 

those on the light cone. And in these latter directions it is 

bounded. 
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Due to the timelike character of the differences z = z - x 
i i i-1 

for x in R(~n.~X) this lxi -·xi_1 1;~cl. fall off of (7.22) in timelike 

d -9+8n irections, together the bound C~ on the remaining factors, entails 
. . 9 

a faster than~- fall off of the x£R(~n.~X) contributions 

* fi , 0 
of<Ji_1 (xi_1)•Ji(xi)>' to the Pdom(~X) defined in (7.18). On the 

other hand, the faster than any power of lx ~ ~x1;~cl. fall off of 

the product of the wave functions in (7.18) ensures the faster than 

-1 any power of ~ fall off of the contributions to the integral over 

x in (7 .18) from points x not in RU. 11 .~X), since the remaining factors 

in the integrand· are bounded. Thus the full contribution to the 

probability Pd0 (~X) defined in (7 .• 18) from -che parts of (7 .20b) that 
om 

correspond to interactions between different vertices xi falls off 

-9 faster than 1 . 

The three surviving terms in (7.20b) arise from the self-interaction 

counterparts of the integral in (7.22). These self-interaction 

terms, which correspond to the wiggly lines of Fig. 3 that begin and 

end on the same point, have xi in place of xi-lin (7.22). Hence 

they have no x dependence. 

Consider next the integral in (7.20a). Arguments similar to 

those just given, anddescribed in detail in Appendix D, 

show that the contributions of (7.20a) 'to (7.18) arising from the sum of 

* ' products of factors Ji and J j over i I J fall off faster than 1-9 , 

provided the effect of the self-energy counter term is included .. 

The sole surviving term in the limit 1 +~comes, therefore, only 

* from the self-interaction terms involving the product of Ji with 

Ji. These terms have no x dependence. Thus the full contribution 
ft • • 

from the factor < 0 I u0 (L(x)) I o0 >·to the dominant large->. 

.-
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0 behavior of Pdom().X) defined by (7.18) is simply a product of three 

independent constants, one from each vertex of D. 

0 The final factor in the expression (7 .18) for P dom (;~,X) is a sum 

over the states In~ >. These states can be taken to be the photon n-n 
momentum eigen states I (k~, ••• k ) ~ >. Since the photons that 

-~ .n Q-{1 

contribute to U~ lt.(x)) have k restricted to a region ·o-n that n-rF 
is bounded both from above and from below these cases can be 

treated by methods essentially the same as those just given: one 

simply treats the classical photons coupled into the three vertices 

of D like extra external particles. One may, for convenience, 

recombine the parts ktil and ke:fi-fl and consider the matrix element 

< \•···•kn!url(L(x)) 10 > =· .f(lcx). (7.23) 

This function decomposes into a sum of term~one for each way of 

coupling the set of photons (~, ••• , ~) into the three vertices. 

Let y be an index that runs over the various possibilities. Let a 

be an index that runs over then photons, and let i(y,a) label the' 

vertex into which photon a couples for possibility y. 

< k1 , ••• , knlu0
(L(x)) lo > 

= l: <k., ••. ,k lu0
(L(x)) I o> 

y L n Y 

l: 
y 

M0 (k, x). 
y . 

Then 

(7 .24) 
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The x dependence of .f(k,x) is exp i(x•k) , where 
y y 

(x·k) 
y 

n 
l:; k X 

a=l a i(y ,a). 
(7 .25) 

-H(X·k) 
Thus the function MP(k, x) e Y depends-only on the differences 

y ).Xi(j) ' 
xi- ).Xi (i = 1, 2, 3). The wave functions Wj also depend only 

n -i;l.{kX)Y 
on these differences. Thus the three factors from My (k, x)e 

simp"ty modify the product of- wave functions appearing in (7 .16). Hence 

that earlier r~sult yields immediately also 

where 

lim n __ i imici;l, -i;I.(X•k) 3 ~(211ic )3/2 ] . 
A~ j=l mi e e y 

3 

x J n i=l 

4 6 ).Xi(j) 
d xi n wj (xi(j))' 

j=l 

x < ~, ... , kn I u0 
(L(x)) I o >Y 

x < 0 I f-0 
(x) I 0 > opr 

3 
= .n 

i=l 

n 
Aiy(wj(i)' Pi' Pi+l; ka(y, i))' 

a(y, i) = {a; i(y, a) = i}, 

and the argument j in the last line runs over the set 

J(i) = {j; i(j) = i}. 

(7 .26) 

(7 .27a) 

(2 .27b) 
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The right-hand-side of equation 0 .26) is a sum of contributions, :one 

for each way in which any diagram D' contributing to the left-hand y . 

side can be cut into three disjoint parts by cutting three charged-

line segments, one corresponding to each internal line of D. The 

contribution on the right-hand side is obtained from the corresponding 

one on the left-hand side by setting >. = 0 and replacing the Feynman 

2 2 
propagator i(.S1 + mi)/(pi - mi + ie:) associated with the cut segment 

by <t + mi/2mi)' where 

pi= mi(Xi ~ Xi-1)/!Xi- Xi-l,Hink' (7 .28) 

However,. the Feynman cliagrams on the left-hand side. that contain self-

energy corrections to the cut charged-line segment should be ignored, 

because the renormalization counter terms exactly eliminate their 

effects on this mass-shell line. 

In constructing 

0 
Aiy<wj(i), Pi' Pi+l; ka(y,i)) 

the quantities vi~/vi·k~ and vi+l~/vi+l•k that arise from the classical· 

coupling have been replaced first by (Xi - Xi-l) /(Xi - Xi-l) •k and 

(Xi+l - Xi)~/(Xi+l - Xi)•k, by omitting terms tend to zero in the limit 

>. + co, and then, with the aid of (7 .28), by Pj_/Pi •k and pi+l/Pi+l•k. 

Due to the exclusion from Jl(~(.x)) of contributions from photons 

w.ith ke:O 
0 0 

the value of the energy k of each final photon in Ai 
a Y 

is greater than some fixed minimum value •. Since the energy carried 

,, 
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into and out of the subreaction i by the particles represented by the 

lines of D are constrained by the compact support of the wave functions 

wj(i)(pj), and by the fixed values of the momenta pi and pi+l' the 

amplitudes 

0 
Aiy<wj(i)' Pi' Pi+l; ka(y,i)) 

must vanish if the set a(y,i) has more than some finite number of 

elements. Thus the sum over final photon states needed in the calcu-

lation of 

lim A - 9Pd (AX) om 

is limited to states c.antaining some finite number of photons. 

Equation (7.26) exhibits an asymptotic factorization property 

of the ampl.:l.tud.es !~:om which the probability Pd
0 

(AX) is' constructed. · · · om 
0 

Thisquantity Pdom(AX) is the contribution to Pdom(AX) from the infra-

red-finite matrix element<Oir0 
(x) !o >. Consider next the contri­opr 

bution from the matrix element< k!F
0 

(x)IO >. The analysis of opr 

paper II shows that.the dominant singularity on the triangle-diagram 

surface of the Fourier transform of this function is normal. Thus 

the three-particle generalization of the theorem of Appendix A 

gives 

3 
lim II 
>.-- i=l 

r(2ll'iC A 3/2 

~~) 
i 

eimiciA] 

I 3 4 >.xi(j) > 
II d xi W (xi(j) 

i=l 

'" 

(7.29 cont. on p. 53) 

., 



where 

53 

x < k !f0 
(x) 10 > opr 

= Fl (k)F2F3 

+ F1F
2

(k)F
3 

+F1F2F3(k), 

Fi:: Fi(ljlj(i)' pi, pi+l) 

is the function occurring in (7.16), and 

F i ( k) :: F i (ljl j ( i) • p j ( i) • k) 

(7 .29) 

(7 .30) 

(7.31) 

is the amplitude for the process in which a photon of momentum-

energy k is emitted by the part of the reactiop at vertex i that 

~o 
is represented by F. 

opr 

The traditional infra-red analysis suggests that an infra-red 

divergence might arise from the coupling of the soft-photon of 

momentum k onto the external on-mass-shell charged line of the 

reaction at vertex i. However, the coupling of an external photon 

~D ( of momentum k into F must be via a quantum-coupling Q)J k, z), opr 

which, for a coupling into the mass-shell charged line, occurs in the 

context 
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(p + m)Q (k, z) P + l + m 
)J ~ + k)2- m2 

z It . 
(-ie)(p + m)(y _ _IL) P + l + m 

)J Z•k ,_ "' 

~ 
z ~ 

= (-ie) (p + m)(y - _IL) 
)J Z• k 

.i...±...!l! 
2p·k 

z l ] + (p + m) (y - _y_ ) ..J:.... 
)J Z•k 2p•k 

= (-ie)~ <rl + m)(- I + m) z l l' 2p•k )( y __ )J_) ll z.•k 

z (2p•k) 1 
)J ) + (p + m)(2p)J - z•k 2p•k 

z It Jt ] 
+ (p + m)(y)J - z~k ) 2p•k 

.. (-ie) [<rl + m)y)J 2!•k] (7.32) 

2 The last line follows from the facts that k vanishes, and that 

p = mv is parallel to v = z /lzl, as prescribed by (7.28). )J )J p )J . 

This result shows that the quantum coupling into the mass-

shell line has one extra power of k in the numerator, relative to 

the usual yll coupling. This extra power of k eliminates the usual 

infra-red divergence. In fact, it is precisely this extra power 

of k in the quantum coupling of photons into mass-shell lines, 

together with the occurrence of the retarded (rather than Feynman) 

propagator for Q-C photons, that is the basis of the proof given 
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~D 
in paper II that the momentum-space matrix elements of F (p) and 

0~ 

their discontinuities are infra-red finite. 
. '~D _. 

By virtue of the infra-red finiteness of F (p) the photons · opr 

represented by it will not lead to any infra-red problems. The Pin is 

assumed, for simplicity, to be the vacuum projector .. Thus the matrix 
element 

~0(AX) = < ol A0 (AX)pinAOt(AX) IO > (7 .33) 

will be infra-red-finite. 

Equations (7 ,4) through (7.ll) show that ~0(AX) is a contribution 

PdOO (AX) to Pd (AX). It has no infra-red anomalies, and hence falls 
om om 

-9 off at the normal A rate. On the other hand, the equat~ons. 

pdom(AX) = 
t 

= TrAdom(AX) PinAdom<;~)pfin' 

Adom(AX) =· u0(AX)A
0 (AX), (7 .35) 

00 0 
and (7.33) show that the full contribution to Pdom(AX) = M00 from 

final photons with k£0 arises exclusively from the single final coherent 

. kk 
state u0 (AX) lo0 > . Similarly, the -full contribuUon Pdom(AX) to. 

pdom(AX) arising from the infra-red-finite matrix element 

< k0 IA
0 (AX)pinAOt(ftX) lk0 >, 

where I k0 > is I k1 , ..• , kJl > with all ki£0, is carried exclusively by 

the single final coherent s.tate u11 (AX) I k0 > . Thus if one wants to use 

final photon states that give dominant contributions to the asymptotic 

,, 
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large-A behavior of the probability then one cannot choose as the 

basis of the final k£0 photon space, the usual momentum· s.tates 

I k0 >= I (~, ••• , kn)O >. For the use of these final states would 

introduce fact'ors <k' 0 1u
0 (L(AX)) lk

0
> that all approach zero as 

A~~. The more appropriate basis for the final k£0 photon states is 

the set of coherent states u0(L(AX))I~ >: each of these carries the 

full contribution to Pdom(AX) associated with the corresponding infra-

red-finite matrix 
·. 0 Ot . 

element < ~ lA (AX)p inA (AX) I k0 > . By using 

these coherent states one obtains for the individual final-state 

-9/2 -9 matrix elements the A fall-off property that corresponds to the A 

fall-off property of the probabilities. 

Use of these coherent states u0 (L(AX))Ik
0 

> is dictated also by 

physical considerations. For the unitary operator u0 (L(AX)) incorporates 

into the final photon states the quantum mechanical counterpart of 

the k£0 part of the classical electromagnetic field radiated by the 

closed loop L(AX). These classical contributions physically dominate 

the small k, large-A behavior, and hence they must be .incorporated into 

the final states if the resulting matrix elements are to have any 

physical significance in the limit A + ~. 

These coherent states u0(L(AX))I~ > may be compared to those 

used· by Storrow, Kibble, Zwanziger, and by Kulish and Faddeev. In the 

closed-loop case, where no charged particles occur initially or 

finally, these authors use the normal states lk > But the use of 

these states would, as just mentioned, give the individual matrix 

elements spurious damping factors that suppress the dominant large-A 

( 
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behavior in coordinate space and consequently disrupt the analytic 

structure in momentum space. 

Similarly, in the analysis of the pole--diagram singularity Storrow 

used coherent states that correspond to placing both scattering 

centers of the pole-diagram process at a common point, namely the origin 

of spacetime. This choice effectively neglects effects of the factors 
ikxi 

e in the expression (7.21) for the current. These exponential 

factors shift the parts of the current that correspond to separate 

scattering processes to the points xi where these separate processes 

occur. . Placing these separate contributions the origin is mathemati-

cally and physically inappropriate when the critical question is the 

form of a limit in which the separate subprocesses are shifted in 

different directions to infinitv. 
ikxi 

Storrow's neglect of the factors e stems from an analogous 

step made by Yennie, Frautschi and Suur.a, 9 who argue that terms 

ikx . containing the difference factors (1 - e ) , acquire a convergence 

factor k in the infra-red regime, and hence can be placed with the 

infra-red convergent terms. This is an awkward step, since it 

disrupts momentum-energy conservation, and hence is more than just 

a shift of small terms into the residual collection. For it makes 

the infra~red function large where it formerly vanished. 

In any case this step is certainly not permissible when one 

is interested in the singularity structure. For in this case one 

must deal simultaneously with the regime 

x fixed, k->- 0 

hence kx .... 0, (7. 36) 
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as w~ll as the regime 

k small, x ->- ~ 

hence kx .... "'· (7 • 37) 

One cannot keep making k smaller and smaller as x becomes larger and 

larger, because then the conclusions would hold only at·the point 

k = 0, where the Feynman functions are ill--defined. The methods 

developed in the present paper cover the simultaneously both of these 

two regimes. 

To obtain nice factorization results for amplitudes analogous 

to the factorization results f'or probabilit:i_es established above 

let us consider the physically appropriate matrix elements. It is 

only in the very soft domain k£0 that the choice of final states 

u0(L(AX)) In> is essential, but any abrupt change of representation 

at some arbitrary point would introduce ·spurious complications. Hence 

· we use the basis U(L(AX)) I (k1 , •.• , k
11 

) > • 

The effect of this new choice of basis states is to replace the 

unitary operator u0(L(x)) in (7.26) by 

Ut(L(AX)) u0(L(AX))u0(L(x)) 

= u0+(L(AX))U0(L(x)), (7.38) 
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where the operator Ug(L(~X)) from (7 .5) and (7 .11), which drops out 

of probabilities but contributes to matrix elements, has. been 

reinstated. 

Equation (B.37) of Appendix B gives 

u0t(L(~X))U0(L(x)) 

* ( Q = exp<a • J(L(x)) - J(L(~X)))>= 

' ( ) * Q x exp - < J(L(x)) - J(L(~X)) • &:> 

x ·exp - t<(J.¢.(x)) - J(L(~x>)) * • (J(L(x)) - J(L(~x>»>0 

x exp -i ~(J(L(x)), J(L(~X>))0 , (7 .39) 

where 

0 1 - ' * 0 
~(J, Jl) = 2<(J + Jl) ' (J - Jl)>r' (7 .40) 

and 

<A·B~ =I d4k All(k)(-giJV)B (k) r , 
4 

v n 
(21f) (ko+ i0)2- lk:l2 x (k). 

(7 .41) 

·. - 0( ) Ot 0 
Equation (7 .26)~with U L(x) replaced by U (L(>.X) )U (L(x)) is 

called (7 .26'). Arguments essentially the same as those. leading to 

(7 .26) show that the contri,butions to (7 .26') from terms having a 

* product of partial currents J i and J j with i '{< j fall off faster 

' -9/2 than ~ ·, and do not contribute to the limit. What remains in the 

limit are three factors, 

'I 
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one arising from each partial current Ji' iE{l,2,3} • The asymptotic 

. factor associated in (.7 .26') .with vertex i is denoted by 

O' 
Aiy (tjlj(i)' Pi' pi+l; ka(y, i)). 

The effect of the factor exp- iT(X•k) in (7.26') is to replace 
y 

the arguments xi in the operators that contribute to 

O' 
Aiy(tjlj(i)' Pi' pi+l' ka(y,i)) by xi- ~Xi. Thus if subscript i 

means restriction to contributions from the partial current Ji then 

o• . 
the classical-photon contribution to Aiy arises from the operator 

(ufl+ (L(AXi-Ui)) u
0 

(L(xi - ~Xi))) i 

* ( . ) 0 = exp<a • Ji(xi- ~Xi) - Ji(O) > 

' * exp- <(Ji(xi- AXi) - Ji(O)) • a >0 

exp - t<(Ji(xi- ~Xi) ..,. Ji(O)).*. 

• (J i (xi - >.xi) - Ji (O)):;:Jl 

i .a. * exp -2 -vi(xi- >.xi) + Ji(p)) · 

•(Ji(xi- >.Xi) - Ji(O))>~ 

= ufl+(Ji(O))un(Ji(xi- >.Xi)) <!.42) 

The operator in (7.42) acting ·in the space of photons with 

momentum k£0 is unity. Thus the difference betw.een the operator 

in (7.42) and the analogous operator with 0 = Q(b) = ~(i.e., b = 0) 
J 

is the unitary operator (7.42) times 

~-
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t . 
ul1(b)(J i (O))ul1(b) (J i (xi - x.xi)) - r. (7 .43) 

But the results of Appendix B entail that for any finite R and all 

xiERi (R, X.X) ={xi: [xi - X.Xi I Eucl..;; R.} (7.44) 

the operator in (7.43), restricted to allowed initial states, is an 

operator whose norm tends to zero as b tends to zero. But then 

11(b)
4 

-. k ) 
lim Aiy (tPj(i),Pi' Pi+l' a(y,i) 
b-+Q 

= Aiy (tPj(i)' Pi' Pi+l: ka(y,i)) (7 .45) 

exists, since_ the contributions from x1iRi(R,X.X) canbemade arbitrarily 

small by taking R sufficiently large. (See the end of Appendix 

E.) 

The amplitude A1y(tjlj(i)' pi, pi+l; ka(y,i)) is the amplitude 

for the process with two charged external lines. It is independent 

of the original process from which it came, and hence can be called 

A(tP.,p1 , pi+l; k) where tjJ represents the set tjlj(i) and k represents 

the set ka(y, f)' 

As a simple example consider the case in which there are two 

neutral initial particles with wave functions w1 and ~2 , and two 

charged final particles with physical momenta- pi and pi+l' Suppose 

there are no external photons (i.e., no ka) and no quantum photons 

-D D ) (i.e. F (x) can be replaced by F (x) • Then the amplitude is 
opr 

.. 
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A~(~l' ~2' pi, Pi+l) 

Jd4xi~l(xi- .).Xi) ~2(xi- .).Xi)Vi 

-ipi (xi - .).Xi) ipi+l (xi - X.Xi) 
e e 

1 J d
4

k exp - 2 --4 Ji (0)(- gll") Ji (0) 
- (21T) ll " 

t. 2 ( -i(xi- X.Xi)•k_ 1)( i(x - X.X )•k ) 
x 21r6 (k ) e e i i - 1 

i J d
4

k exp - 2 --4 J (0) (- gll")J (0) 
(21r) ill iv 

{e-i(xi- x.xi) •k _ ) ( i(xi -
. -+ 1 e -

Hi) • k 1) 
(k

0 + iO)~ - l"kl 2 

Jd
4
xi tjll (xi - .).~i) ~2(xi - X.Xi)Vi 

- -ipi (xi - .).Xi) ipi+l (xi - AXi) 
e e 

X e
2f d

4
k ('pill pi+l,!J )< ll">(piv _ pi+l,v )' exp -- -- -- - - g --

2 (21T)4 Pr·k Pi+l·k Pr·k Pi+l·k 

t 2 ( -i(x1 - AX1) •k )( +i(x1 ..: H 1) •k ·) 
x 21ro (k ) e -1 e - 1 

x exp _i_gj~ (~ _ pi+l,u )<- g'J") ( piv _ pi+l,v) 
2 (21T)4 pi•k pi+l·k Pi·k pi+l.k 

X i 
(ko+ i0)2 - l'klz 

( 
-i(x 1 - x.x1) • k )( i(x1 - X. Xi)· k ) 

e -He -1 

(7 .46) 
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The factor exp - ipixi comes from the propagator of particle i in 

D . . . 
F (x), and the associated factor exp i piXi~ comes from the factor 

exp i mici~ = exp i pi(Xi- Xi_1)A. in (7.26')(See 7.17). 

exp i pi+l(xi- ~Xi) has a similar origin. 

The factor 

The first integrand in an exponential in the last line of 

2 (7.46) behaves like o(k) as lkl_+ 0. 

infra-red convergent for any. finite xi- ~X . . . i 

. The second integrand in an exponential has poles at p •k = 0 
. i 

and pi+l•k = 0. In the original expression, for the full triangle 

diagram process before factorization, these poles were cancelled by 

compensating zero's in the numerator. In the proofs of Appendix B 

a particular i£ resolution of the pole was introduced. One could 

equally well have chosen the other i£ resolution. But a more natural 

and convenient choice is the principal-value resolution. For this 

resolution never introduces spurious imaginary contributions. 

If the principal-value resolution of these two poles is used 

then one may exploit the symmetry under k + - k to replace the last 

three factors of the final integrand in ( 7.46) by 

i ( n 

1~ 
l"kl

2 - 1 ~ .. ) 

x 2i sin(xi- ~Xi)·k 

1( +2 -2 = i ~ 2nio (k ) + 2nio (k >) 

x 2i sin(xi- >.Xi) •k (7.47) 

~ 
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In this form the spurious poles drop out, and the integrand goes 

+ 2 
like o-(k )/k. Consequently the integral is infra-red finite. 

In fact, insertion of (7.47) into the final integral in (.1.46) allows 

this integral to be expressed as 

--- dk dt) d cos6 --..!~!___ i+l,IJ . IJV 1 iK 0 I2 lT 11 ( p p 
2(21!) 3 -K 0 -1 pi(6,0) - Pi+l (6,0))(-g ) 

( Piv _· .. Pi+l~(k0)-1sin k0 (xi(e,t)) -
pi(e,t'> Pi+l:e, . ~xi(e,t))), 

(7.48) 

where, for any four-vector x, 

x(6,t)) = x0 x3cos6- x2sin6sin t) 
1 . . 

·-·x sin6cos t). {1.49) 

0 .. 
In this form the contour in k .c·an be distorted away from t.he point 

0 k = 0, ~hich eliminates any. possibility of infra-red divergence. 

The simple case treated above is very special. For one thing, 

the part of diagram D that corresponds to the subprocess in question 

consists of only one single vertex. A slightly more complicated 

example is obtained by taking the part of some original diagram .D 

that corresponds to the subprocess in question to be the diagram n
1 
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""Pc.+'L 

65 

~. •' ':"' ~~ - - - - - - - -1' 
\. 

' ' ' ' ' -- --~ .......... - -- --- - Xz 

Figure 4 Subprocess diagram n
1 

V: 

..... '~',_ 

Con·sider again the .case with no external photons (i.e., no ka), and 

D 
the contribution with no quantum interactions. Then t (x) is · opr 

~ 
reduced to F (x1 , x 2 ,·xi' xi+l). We shall drop the subscript i 

on Xi and Ai, and fold in the mass-shell supported wave functions 

}« AX 
111 i (p

1
) and 111 i+2 (pi+2) of the charged particles, and thus obtain 

Ao(llll' .,2' .Pi' .,1+2> 

J 
4 4 4 4 

= d x1d x 2d xid xi+l 

4 4 
d pi d pi+2 

(2'11)4 (2'11)4 

ljll(xl- AX) 1112(x2- >.X) ljli (pi) lj/1+2 (pi+2)' 

-ip i (xi- AX) ipi+2 (xi+l-AX) 
e e 

Dl 
F (xl' x2' xi' xi+l) x 

(7 .50 cont.) 

i• 
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x exp{I(pi' Pi+l' xi - AX) + I(pi+l' pi+2' xi+l - AX) 

where 

and 

+ I(pi, Pi+l' x~"- ri; Pi+l' Pi+2' xi+l - >.X)) 

I(p, p', x) 

'2 
-e = -2-

4 ' 2 2 . 

I~ (---=P._ -(p') . . 2p ·p' . ·). 
4 2 + ·2 + 

(2'11) (p•k) . (p' •k) (p •k) (p' •k) 

. 2 
x [2m5(k )(1 - cos x•k) , .. 

( + 2 <''' - 2 ) 
+i2'11 6 (k) - 6. (k) sin x•k] 

I (p, p' , X; p", p"' , x• ) 

-e2 
=z-P.V. ~ -p·p" + -p'·p"' 4 [ f (2'11)4 (p•k)(p"•k) (p' •k)(p"' ·k) 

+, ....... ,+, •. ,, ... , p•p"' p' ·p" ] 

. 2 
x [2'116(k ) (1 + cos(x - x')k - cos xk - cos x'k) 

. + 2 2 
+12'11(6 (k) - 6-(k )) (sin x•k + sin x'•k) 

2 . . 
+ik- (-2 + 2 cos(x - x')•k)] · 

(7 .50) 

(7. 51) 

(7.52) 



67 

The four-vector pi+l is mi+l (xi+l - xi)/lxi+l - xilmink' but 

any vector parallel to xi+l -xi will do just as well. 

For all x and x' in the ball of Euclidean radius R the terms in 

+ 2 2 (7 .52) that contain factors 6 (k ) and .S(k ) are infra-red finite, for 

reasons already given. 
-2 . 

The terms with k are also infra-red 

finite. In fact, the methods of Appendix B show,.that all contributions 

from kEO(b) have bounds of the form bB(R) where B(R) is linear in R 

for large R. 

The supports of the infinitely differentiable wave functions of 
. . .... 0 

the initial and final particles in p/p space are again taken to be 

disjoint. Then the contributions to the integral (7 .50) from points 

xi R (R, }..X) 
-1 fall off faster than any power of R • This is shown 

in Appendix E. Thus the finiteness of (7.50) is ·assured. 

The final factor in (7. 50) gives the effect:•of the 

classical-photons. It can be regarded as an operator that produces 

the. modifications induced by classical photons in the wave functions 

of the external charged particles. Of course, the major effects of 

the classical photons come from the operator Ut(L(}..X))that·has been 

in,corporated into the state vectors of the final photons. 

The.first two terms in the final exponential in (7.50) are the 

classical-photon self-interaction terms for the two charged-line 

vertices of D1• They are represented by the t~m wiggly lines of 

Fig. 5 that begin and end on the same vertex. The fiqal term in 

this exponential is represented by the wiggly line that runs between 

the two charged-line vertices of Fig. 5. 

Pi. -a; 
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, ... 

----..-
1t,\ 

' ' ' ' ')t~\ -- -' ... 

C/1 

..., Y''L-

Figure 5 The diagram n1 with added 

wiggly lines representing the three classical 

photon contributions to (7.50). 

It is easy to pass from (7'.50) to the case in which a general 

diagram replaces D1 • One first writes the Feynman formula for·D1 

that is analogous to (7.50), but with zero as the final exponent. 

Then one adds to this final exponeqt the terms that represents the 

effects of the classical photons. If the diagram that replaces n1 

has n charged-line vertices then the sum over three terms in the final 

exponential in (7.50) 'is replaced by a sum over n{ri + 1)/2 terms, one 

for each of the n self-interaction wiggly lines and one for each of the 

n(n - 1)/2 wiggly lines that connects different vertices. If there are 

external photons then one must also include the two operator exponentials 

of (7.42) with Ji(xi- }..Xi) - Ji(O) replaced now by a sum of the partial 

current~ for all n charged-particle vertices. These operators can be 

represented by wiggly lines coming into and going out of each of the 

charged-line vertices. 

The effects of adding the quantum photon contributions will be 

discussed in paper II. 
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8. CONCLUDING REMARKS 

Yennie, Frautchi, and Suura, at the end of a technical appendix 

to their paper, list a number of difficulties glossed over in their 

arguments, together with reasons why their approximations seem to 

them intuitively plausible. But they concluded that a rigorous 

proof of their result might by prohibitively complicated. 

The difficulties in the YFS arguments cause no serious problem 

insofar as delicate issues can be avoided. But the applicability of 

quantum and spinor electrodynamics to physics requires that charged 

particles can continue to behave like stable particles in the presence 

of interactions with soft photons. Efforts to establish this property, 

and to derive the closely related reduction formulas, floundered, 

however, precisely on the-delicate points not adequately treated by YFS. 

The present. work provides a new and fundamentally different 

approach to the infra-red problem. It works basically with the 

coordinate-space representation of the sources. of the electromagnetic 

fiel~and with an operator representation of the photons. Within 

this framework it establishes an exact result analogous to the 

momentum-space factorization property sought by YFS. The exactness 

of the result allows it .to be. applied in the delicate situations where 

one sitting right on a singularity, or needs to know the precise 

form of the asymptotic behavior, in order to establish stability and 

factorization properties. Moreover, it allows gauge invariance to 

be fully exploited. Once approximations are introduced, in the sense 

that certain terms are pushed into a generalized remainder term that 

,, 
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is not exhibited in explicit form, the full consequences of gauge 

invariance are no longer manifest. 

The problems of completing the proof of the infra-red-finiteness 

of quantum and spinor electrodynamics, and establishing the stability 

and factorization properties of charged particles, though important 

in principle, has seemed·unimportant in practice. For infra-red 

problemsseemunder control in practical calculations. And physicists 

are generally confident that the physical effects of very soft photons 

are negligible, in spite of the numerous ~alculations that had seemed 

to indicate a break-down of the stability and factorization properties. 

But science is a hard task~aster: difficulties glossed over at one 

stage invariably crop-up later. Thus the infra-red problems largely 

ignored in quantum electrodynamics have emerged as the central 

problems in quantum chromodynamics. In particular, the problem of 

whether the stability of charged particles is upset by interactions 

with soft photons is the exact analog of the problem of confinement: 

Is the stability of colored particles upset by interactions with 

soft gluons? Thus the problem dealt with in detail in Section 7, 

about the coordinate-space asymptoti~ behavior of an amplitude with 

a closed charged-particle loop becomes; in QCD, precisely the question 

of whether colored particles become asymptotically free in coordinate 

space. 

The QCD problem of confinement is more delicate and complex 

than its QED counterpart. Hence the methods needed to resolve it will 

probably have to be at least as good as those that work in QED. And 

they might be expected to be a generalization of the latter. 



71 

Beyond the problems of infra-red divergence and confinement 

there lie other related questions to which the methods of this 

paper may apply. These potential applications arise from the fact 

that the basic formula obtain~d here organizes the infinte series 

solution in a way that isolates a unitary factor that represents 

the classical-physics background. This type of separation may 

provide the\ technical basis needed for the full development of the 

idea that quantum theory must, for both physical and mathematical 

reasons, be arranged to be the calculation of quantum fluctuations 

about a classical solution. Moreover, the gathering together of 

infinite numbers of terms into unitary factors has the potential 

power of better controlling divergences, since the norm of any 

sum of terms that form a unitary operator is unity, in spite of 

any superficial indication of diverge • 

... 

·~ ,. 
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APPENDIX A 

Theorem Suppose. g(p') is continuous, together with its first and 

second derivatives, and vanishes for !PI > R for some R. Let 

p a mv be any fixed mass-shell four-vector. Then 

lim 
T4<X> 

(, ~3/2 ~J . +( 2 2 4 -4 ~1(;J ~imT g(p')e-~p'·VT2m211o P-m)dp'(211) 

= g(p). ( A.l) 

Proof Transform to the variables corresponding to a frame in which 

v = (l,O~o,o). In terms of these variables one has 

where 

·v·p' 
'0. 

p 
2 ~2 1/2 4 2 

[m + (pJ ] = m + f[ (p) ] 

2 t::\2 
f[(~ ] = ~ + ••• > 0 . 

( A.2) 

( A.3) 

The introduction of the variable f in place of (~2 , followed by 

an integration over angles, converts ( A.l) to 

:!}: (iT)}/2 fo" ii(r) -Vr ,-1fT M ~ ii(o) ( A.4) 

where g(O) = g(O), and g(f) and its first and second derivatives 

are continuous at f > 0. Since 

i" ,-lf(T-1<) Vt df v: 1 
3/2 2 [l(T - i€)) 

( A.5) 

-' 
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and g(f) is continuous with compact support, the required result 

( A.4) equivalent to 

lim T 3/ 2 lim 
T4 0 €4 0+ r [g(f) - g(O)) e-if(T-h:) Vf df 0 

( A.6) 

Bounds on ~(f) - g(o)) and its first two derivatives can be 

obtained by writing 

r r' 

g(p) = g(r,n) g(O) + Vg(O~·'t + L dr' i 2 
dr" ~(r",n) 

or2 

(A.?) 

4 4 141 . where r = p, and r = p • The integration over angles eliminates 

the linear term and gives 

g(f) - f dn. ir(f) .ir' -==== - g(O) = q::; dr' v l+m 1! . 0 0 

. 2 
dr" ~ (r",n) • ar2 

Since the second derivative of g(p) is bounded, 

I~ I ~ c • 

one has 

g(f) 
_r-m- g(O) 
Yl+!.... 

2m 

< !. cr2 
2 

Letting F be .such that 

g(f). = 0 for f > F , 

and defining m = F + m, so that 

one obtains, for f ::: o, 

ar2jof = 2f ·+ 2m < 2iii for 

"' 

( A.8) 

( A.9) 

( A.lO) 

f ~ F, 
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li(f') - g(o)l _::: f ciii
2
jm ( A.ll) 

Equation ( A~8) also yields, for f ~ 0, 

li 1 (f) I = l:f' g(f) I S ciii 
2
/m ( A.l2) 

and, for f > 0, 

li"(f) I S (¥ + ~) (ciii
2
/m) ( A.l3) 

An integration by parts on the integral in ( A.6) gives 

L" [ii(r) - g(o) l -{f, -if( T-i•) dr 

-1 -if'(T-i€ d ~ -. 1® 
-i(T - i€) O e . ) d:f (g(f') - g(O)Jl{fJ df 

1 r .-ifT h€(f') df' i{T ~IE) ( A.l4) 

where 

h (f) 
€ 

e-Ef :f([g(f) - ~(o)]frj ( A.15) 

However, 

~-,-itT •,(r).dt 

(11/T (® 
Jo .. e-ifT h€(f) df -)

0

. e-ifT h€(f+ rr/T)df 

[Equation ( A.l6) continued] 

7f! 

[Equation ( A.l6) continued] 

"' ·- (, 

-if'T 1 1 -if'T · . i® . in/T 
= 

0 

e 2[h€(f) - h€(f + n/T)]df + 2 
0 

e h€(f') df' . 

. ( A.l6) 

The last term in ( A.l6) has, by virtue of' ( .A.ll) and ( A.l2), 

the bound ~ ciii(rr/T)3/2 . Thus this contribution, inserted into 

( A.l4), satisfies ( A.6). 

The first term in { .A.l6) can be written as a sum of two 

terms. The f'irst is 

! J:F -if'T [h (f') - h (f' + 1!.))df 
2 e € . € T 

0 

< !.(1!.) f F. I max h 1 (f) ldf' 
2 T € 

0 ·~ 

where I max h 1 {f') I is the maximum of' the absolute value of' 
€ 

. ' -

( A .17) 

'• 

dh€(f' 1 )/df1 for f' 1 ~ f'. The bounds ( A.ll),. ( A.l2), and' ( A.l3) 

ensure that the integral on the right-hand side of { A.l?) has a finite 

boUnd that is independent of' E. Thus this contribution, inserted 

'into ( A.l4), also satisfies ( A.6). 

The remaining part of' ( A.l6) is 
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~ [" ,-ih [h,(r) _ h,(r + ~))df 

-g(O) [,"'· -ifT (e-Ef e-e(f.+n/T)] -r e -- df 
F Vf Vf + njT 

=¥f e-if(T-iE) [_!_ _ 1 ] 

fr Vf + rrjT · 

(_i(O)) J:"' -if( T-iE) (l _ e -Err/T) __ 1 
+ ~ e ~ n/T 

F 

The first ·term on the right-hand side of ( A.l8) is bounded in 

magnitude by 

. li(o) I (1l)[,"' (~ _!_ '\ df = l~~:(o) I (.!!.) F-1/2 • 
~ T ~df 1{1,1 ~ T 

. . F 

( A.l8) 

( A.l9) 

Thus this contribution, inserted into ( A.l4) also satisfies ( A.6). 

The second term on the right-hand side of ( A.l8) can be written 

·~ 
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~ (l _ e-Ert/T) e+i(n/T)(T-iE) [~, -if( T-iE) 
e 1 'lfdf 

= ~ (eErt/T _ l) 

X [f 1 J:F+rrjT v df-
0 

-if( T-iE) e. . -if( T-i€) df ] 
e :;{'; 

~ [eErr/T 
. r· · iF+n/T . .. · ] 

_ 1] V n _ -if(T-i€) df 
-i(T - ie) · e · ,r; 

0 v f 

This term vanishes when we take the limit E --+ 0 in ( .A. 6). Thus all 

the contributions satisfy ( .A.6). 

'( 
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APPENDIX B 

The unitary operator U(L(x)) has· the form 

u(L(x)) = exp <a*•J >exp -<J*•a > 

1 i 
" exp - -<J*•J> exp - -«J*•J> 2 2 . pv 

(B.la) 

= exp<a • J> exp<J • a> 

" exp !<J • J>exp .!<j • J> 2 2 pv 
(B.lb) 

where J = J(L(x)), and the bracket products are deffned in (2.18), 

(2.20), (2.21,), and (5.8). 

Let J{L(AX)) be abbr.eviated by J
1

. Then 

u(L(x))u-1 (L(~X)) = u(L(x))ut(L(~)) 

.. exp<a*•J> exp -<J*•a> 

1 i 
x exp - -<J*•J>exp - -<J*•J> 2 2 pv 

* xexp -<a*•J > exp<J •a> 1 1 

1 ,-.* > i,- * > x exp - 2 ....._,l.Jl exp 2 -..J1•J1 pv 

(B.2) 

·- " 
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The commutation relation 

[ <J* •a>' <a* •Jl>] '= <J* •Jl > 

gives 

[exp -<J*•a>; -<a*•J
1

>J = 

. =<J*•J(> exp - <J*•a>, 

which gives · 

exp -<J*•a>exp .-<a*·J
1

> 

which gives 

.. eltp -<a*•J >exp -<J*•a > 
1 

"exp<J*·J > 1 J 

U(L(x)) u-1(t0.X)) = 

= exp<a*•(J- J
1
)>exp -<(J- J

1
)*•a> 

1 ~ 
·xexp --'-(J- J )* •(J- J) > 2 . 1 1 . 

1 1 * · x exp [ -<J* •J > - - <J · •J > 2 1 2 1 

- .!<J*•J> + .!<J*. J > ] 
2 pv 2 1 1 pv 

= U'( L(x) - L(~)) exp i 4> (J, J 1), 

(B.3) 

(B.4) 

(B.S) 

(B .6) 

(B. 7) 
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where U' (L) is the function defined in (B.l) without the final 

(i.e. Coulomb) exponential f~cto~ and ~(J,J1) is -i times the 

argument of the final exponential in (B.6). The phase ~(J, J 1) 

can be expressed in the form 

~(J, Jl} = 

1 * i * - -<(J- J) • (J + J )/2 > - -<(J-J) .(J+.tV2> 
2 1 1 pv 2 1 1r' 

. 1 *1 i * 1 
- 2<(J + Jl) 2 •(J - Jl) > pv+ 2<(J + Jl) r<J-Jl}> 

1 I d4
k * II" =- 2 --4 (J)J(k} - Jlll(k)) (-g ) (J}k) + Jl (k)) /2 

(211) " 

x(P.V. ; + i112 .S+(k
2
)) 

k 

-t I-i\ (J)J(k) + Jl/k>)* t (-gll")(J"(k) - Jl"(k)} 
(211) . 

x(P.V. -!-- 1 211.S+(k
2
)) 

k 

=I d4k4 (J (k) - Jl (k) ><-sll", (J (k) + Jl (k) )/2 
(211) )J u -" " 

x (P.v. ~ + i11(6(k
0

) - e(-k
0

)).S(k
2
)) 

k 

=J d4k (J)J(k) - Jlp(k)}(-g
11
")(J}k) + Jl}k))/2 

· (211) 4 (k0 -_io>
2 

- lkl
2 

= ~ t (J)J(k)+Jlll(k)) (-gll")(J}k) - Jl}k)) 

J (211) 4 · (k0 + i0)
2 

- lkl
2 

= <! (J + J )•(J- J )> 2 1 1 r ' 
(B.8) 

-~ 
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where the subscript r indicates the retarded propagator. Thus 

U(L(x) )U-l L(:>.X) 

= exp<a•(J- J
1
)> exp<(J- J

1
)·a > 

1 - - i - -
exp [ 2<(J - Jl) ·(J - Jl) > + 2<(J + JJ?•O-JJ?>r] 

(B. 9) 

where J = J (L(x)} and J
1 

= J(LOX)) • 

Our interest here is in the ·restriction u0(L(x) )u~1 (L(:>. X)) of 

-1 . 
U(L(x) )u (L(:>.JO.) to the soft photon region n. This restriction is 

made by restricting the domain of integration to points. k in fl. The 

inte,rals occurring in (B.9) when restricted to any bounded region fl 

are all well defined. 

The variable x will initially be confined to the region 

R(R, :>.X} = {xER
4
n; lxi - A.X.i I . < R} 

Eucl. 
(B.lO) 

where R > 0 is fixed. The time components of the tfmelike differences 

Xi -· Xi-l ar.e all taken to be greater thsn unity·. Then for some 1\. > 1 

one hss, for all x in R(R,:>.X)and all :>. ~ 1\ - 1, 

(xi - xi-1)2 > 1 (B.lla) 

and· 

0 0 0 0 
Sign(xi - xi-l) = Sign(Xi - Xi-l). (B.llb) 

11' 
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The function J (k) appearing in the integrand of (B .8) is 
" . 

J"(k) = J"(L(x), k) 

= (e) 
n ikxi ikxi-1 (xi - xi-l)v 
1: (e - e . ) ( . , · 

i=l xi - xi-1 

n ikxi ik(xi-1-xi)) (xi- xi-l)v . (B.l2) 
(e) 1: e (1- e (xi- xi-l)•k 

i=l 

The superficial pole at (xi- xi-l)·k = 0 is cancelled by the like 

factor in the numerator. Thus one can shift the contour infinitesimally 

away from the zero of (xi - xi_1) • k in any convenient manner. Here 

the contour is fixed by replacing (xi- xi_1)·k by 

0 0 
. (xi - xi-l) •k+ i 0 Sign (Xi - Xi-l). (B.13) 

Thus the kO contour is shifted into the upper-half plane. The 

denominator-zero of J1 ~(k) is treated in the same way, as are 

. - - 0 
the zeros of J~(k) + J1~(k). Thus the k contour is distorted 

always into the upper-half plane. 

The domain n will be taken to be of the form lk0 I .;;; 2b lkl .;;; b, 

and the notation 

lli :xi .;.. AXi (B.l4) 

is introduced. 

Consider first the contribution to ~(J, J 1) coming from the part 

of J1~(k) corresponding to the line from 1 to 2 in Fig. 1, and from 

the part of J1~(k) corresponding to the line from 2 to 3. This 

contribution is m.inus one times 

I 

{_ 
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~(2, 1) (3, 2) (Jl) = 

e2 J d4k -ikAX2 
=- -- (e 

2 n (211)4 

-ikAX1 ikAX
3 

ikAX
2 -e )(e -e ) 

X (X2 - Xl) ~ (- g ~"> (X3 - X2)" 

(<x2 - x1)·k + iO)(<k0 + i0)
2

- jkj 2
)(<x3-x2)·k+iO). 

(B .15) 

0 0 0 By virtue of the time ordering x3 > x2 > x1 in Fig. 1 one may 

0 push the k contour a finite distance into the upper half plane without 

encountering any exponentials that increase as A + ~ One may take it to 

be a semi circle of radius 2b. The integrand and integral are then 

uniformly bounded over the domain A ~ 0. 

/ Consider next the cont~ibution that arises from replacing J1~(k) 

in the above expression by J~(k): 

~ (2,1)(3,2)(Jl' J) 

. e2 f ~4k -ikAX2 · -ikAX1 
=- -- (e -e ) 

2 {J (211)4 

ikAx3 + ikll3 ikAXi + ikll2 (e - e ) 

~" -1 -1 . (x2 - x1)~(-g )(X3 - x2 + ll3A - ll2A )" 
X----~~--~~~--~--~~~----~~~~--~-

((X2-Xl)•k+i0)((k0+i0)2- jkj 2)((x3-X2+ll
3

A-l-ll
2
A-l)•k+i0) 

(B.l6) 
0 .. 

For A ;;;. A one may again distort the k contour into a semi-circle in 

the upper-half plane and obtain an integrand and integral that are 

uniformly bounded over >. ~ A. 
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Consider now the contribution to the integral in (B.l6) that arises 

-1 -1 from the terms (6
3

A )~and (62 A )v. Each of these contributions has, 

by virtue of the bound· 0 

-ikAX. -ikAX 
I(A(X2 - Xi•k)-1(e 2-e 1

) I <; 1, (B.l7) 

a bound of the form bB, where B is a number that independent of b and A, 

but can depend on R. For A ~ A one may, for points on the semi circle 

lkl = 2b, write 

-1 
( 

-1 -1 ). 
(X

3 
- x

2 
+ 6

3 
A - 6

2
A ) • k . 

( )
-1 1 = (X3 - X2) • k +I f(k,A) 

with bounded f(k,A). For the second term one may again use (B.l7) to 

obtain a bound on the contribution to (B.l6) of the form bB. Thus one has 

t(2,1)(3,2)(Jl, J) - t(2,1)(3,2)(Jl) 

"' O(b) + 

e2 I d4k -ik)X2 -ikAXl 
+- -- (e - e ) 

2 n (21T)4 

cl 

ikAX) ik63 ikAX 2 iM2 
x (e (e -1) - e (e -1))_ 

X (X -X) (-gjJV)(X -X) 
2 lll 3 2v 

((X
2 

-X
1

) •k+ iO)((~O+ i0) 2 - lkl 
2
)(CX3 -X 2)•k+ iO), 

(B.l8) 

-~- ) 
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where the magnitude of the term O(b) is bounded for all b >o and all 

A ~ A by an expression of the form bB. But then the bound 

leikA -11 .,.;; IHI (B.l9) 

gives 

It' - tl .,.;; bB (B.20) 

for all b > 0 and all A ~ A. Here B is some finite number that is 

independent of b and A, but can depend on R. In what follows B will 

be a generic number with these properties: it need not always be the 

same number. 

Consider next the contribution to «J, J 1) in which the roles of 

the lines from 1 to 2 and 2 to 3 are interchanged: 

t(3, 2)(2, 1) (Jl) 

e2 J d4k -ikAX3 -ikAX2 . ikAX2 ik)Xl 
• - --4 (e - e ) (e - e ) 2 n (21T) 

. <x3 - x2> ll(-g ll~ <x2 - x1> v 
X 0 2 2 

(<x3 - x2> • k + iO)((k + iO) - 11t1 >(<x2 - x1).k + iO) 

(B.2la) 

and 

t' (3,2)(2,l)(Jl' J)? 

e2 I d4k ikAX3 -ikAX2 ikAX2+ik6z ikA~+ik61 
= - -- (e - e )(e - e ) 

2 (2 0 4 n !TJ 

(Bo2lb) cont. on next page 

f' 
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)JV _;1 -1 
(x3 - x2)1l(-g Hx2 - xl + A2~ - Al~ >v 

x (<x3 - x2> • k + iO)((k0+ i0) 2- lk1 2)<x2 - x1 + A2 ~-l A1~-~ ·k+iO). 

(B.2lb) 

Consider the difference ~· - ~ of the integrals defined in (B.2lb) and 

(B.2la). For~~ A 0 one may complete the k contour by adding in the 

lower-half plane a semi circle at lkl = 2b. The arguments that led to 
. . . . . I 

(B.20) show that the contribution from this semi-circle also has a bound 

of the form (B.20). 

The completed contour can now be collapsed onto the poles, which 

are located at k0 
c ± lkl 3 This leaves a d k integration in which 

the three remaining denominators all contain factors of lkl. With the 

factor lkl 3 separated out the denominator is left in a form that 

remains finite in the angular integration, due to the timelike character 

of thevectors (Xi - Xi-l) 

-1 the quantities A2 ~ and A3 ~ 

-1 -1 
and (Xi- Xi-l + Ai~ -Ai-l~ ). Thus 

-1 in (B.l2b) again give corrections of 

-1 . ' 
order~ , for~~ A, and by virtue of (B.l7), give a contribution to 

the integral that enjoys a bound bB. The diff~·rence of the remaining 

integral in (B.2lb) with the function ~ defined in (B.2la) again 

enjoys a bound bB, due to (B.l9). Thus the difference ~· - ~ of the 

functions defined in (B.21) enjoys a bound of the form (B.20). 

Consider next the contribution 

(. ·• 
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~(3,2)(3,l)(Jl) = 

e2 J d4k -ik~Xl -ik~X2 ik~3 ik~l 
= T --4- (e . - e ) (e - e ) 

n (21f) 

)JV 
(X3- X2)\l(-g )(X3- Xl)v 

x----~~~~----~~~~--~~--------------

((X3- x2) • k + iO) ((k0 + i0) 2 - lkl
2
)((x3- x1) • k + iO) 

(B.22a) 

It will be taken together with 

~· (3' 2)(3 ,1) (J) c 

e2 J· d4k .-ik~X3-ikA:J -ik~Jt2-ikll2 ik~X3+ikll3 ik~X1+iklll 
=·- --.-(e -e )(e · -e ) 

2 n (21f) 4 . • 

(~- ~+ ll3~-l- ~~2~-l)u(-g\lv)(X3- ~+ 113~-1- lll~-l)v 

x ((~- x
2
+ A3 ~-l-t.2~-)·k+ i0)((k0+ib) 2-lki1((X

3
- X1+t.3 ~-l_:\~-1·k+i0)• 

(B.22b) 

Consider now the difference ~· - ~ of these two functions. Due to the 

0 0 0 inequalities x
3 

> x
2 

> x
1 

one may, for ~ ~ A and for the terms containing 

0 factors exp ik~X3 or exp(ik~X3 + ikA3), distort the k contour into 

the upper-half.plane and obtain, as before, for these contributions to 

~· - ~ a bound bB. For the remaining terms, which contain the factor 

0 exp ik~X1 or .exp ik,>.X
1 

+ ikJI.1 , one can complete the k contour by a 

semi-circle in the lower-half plane: the added contribution to ~· - ~ 

has, as before, a bound bB. The completed contour can now be contracted 

to the poles: The poles at k0 = ± ~~ aga~n give terms with a bound bB. 

The contribution to the integral in (B.22a) from the pole at 

(~ - x1) • k c 0 is 
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pole 
<I> ' 
(3,2)(3,1) (Jl) = 

e2 I d3k ikA(X3-X2) 
- (-i) -- (e -1) 
2 0 (211)3 

<x3- x2)JJ(-gll"><x3- xl)\1 
X ( ( 0 2 -+ 2 0 0 

<x
3

- x 2).k) (k > - lkl )<x 3 - x 1) 
(B.23a) 

where 

ko = -'---· (B.23a') 

The companion pole contribution is 

<!>'pole 

(3' 2)(3 '1) (J) 

=- (-i) -- (e -1) 
e2 f J d3k ikA(~-x2)+ik(ll3-ll2) 
2 (211)3 

0 0 

( -1 -1 ].1\1 -1 -1 
x3- x2 + l! 3A ·..., ll 2A )JJ (-g ) (x3- x1 + ll 3A -ll:J.A ) 

X -

(X
3

- X
2 

+ ll
3

A-1-ll
2

A-l)• k ( (k0
)

2- 111 2 )(x~- X~+ ll~ A -l - ll~X-l) 

(B .23b) 

where 
-+ -+ ! -1 ! -1 -+ <x

3
- x1 + 3A · - 1 A ) • k 

<xo _ o + 6o A-1 _ lloA-1) 
3 xl 3 1 

ko= (B.23b') 

-1 -1 -1 -1 0 -1 0 -1 
The terms (63A ~ ll1A )", (63A - 62A )JJ and (63 A - 61A ) give 

contributions to (B.23b) having a bound bB, by virtue of (B.l7) with x1 

~ 2 0 2,. ~ 2) -1 replaced by x3• The factor IKI ((k)}- IKI evaluated as specified 

in (B·. 23b') is non zero in the domain of integration and can be 

~e· 
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expressed as its value at A = ® plus a correction term of the form 

f(k,A)/A, where f is bounded in the domain of integration for all 

A ;:;;. A. This term f/A gives a contribution to the integral in (B.23) 

that has a bound bB, by virtue of (B.l7) with x1 replaced by x3 • 

0 Insertion of the value of k specified in (B.23b') gives 

-1 -1 -+ -1 -+ -+ -+ -+ -1 k•(lL- X + 6 A - ll A ) = k • V(A ) = k • V + k • WA 
3 2 3 2 o. ' 

(B.24a) 

where 

and 

-+ -+ I k. vo = k·(~ - ~) 

k•(X:J - X:t> = 0 

~ + + + 

= k ~ ['"" ~ - ~ + ~ - X:! ] ( .J! - ~) 
~- ~ ~- ~ -3 

(B.24b) 

(A3 - !2) + (A3 - !1) ( ~ - ~ + ll~ A -1 - ll~A -1 ) 
. ~ - ~ + ll~ A -l _ ll~A -1 

-+ w =-

(

llo- llo 6o- 6o) xo - xo 
-+-+ 3 2 31 3 2 

+ <x3 - x1> o o - o o o o o 
x3 - x2 x3 - xl (x3 - xl + ll3 

A-1 _ 60 A-1). 
1 

(B.24c) 

Thus the difference of the pole terms shown in (B.23a) and (B.23b) can 

be expressed as 

<~>'pole_ <!>pole= O(b) 

' ].1\1 0 0 
+ (~ - Xl) (-g ) (X3- Xl) (X3 - Xl) 

].1 \1 

2 f 3 
X ~ ( -i) ___!!___L 1 I 

2 lkl<b (211) 3 
(k

0
)

2 - lkl 2 
k•(X3- X ) = 0 

. 1 

[ 
Hk·V . Hk·Vo ] 

x (-l) e -1 _ e -1 

k·V k·Vo 
(B.25) 

c 
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I+ -l I -l I+ I Let v = V(;l.. ) = v(;l.. ) and v
0 

= v
0 

= v(O). 
~ + + ± 

be defined by k • V = kv cos 6 and k•VO = kvO cos e0 , 

Then one may defin~ 

~·.· 

( ~ ~ 
f v cos e, ;~.. ) = v (rdcf! lkl2 

0 (k
0)

2 
- lkl

2 

and 

-1 
f

0
(v

0 
cos e

0
) = v

0 

211 

J dcf!o 
0 

lkl 2 

(k0)2- lkl 2 

Let cos 6: 11-nd cos eO 

respectively. 

k·(X
3
-x

1
) ·= 0 

cos e fixed (B.26a) 

:·<x3- x1> = o 
cos e

0 
fixed 

(B.26b) 

where '<e,cj!) and (a
0

, cf!o) are two sets of angular coordinates. The. 

' ( -1 -1) -1 function f
0

(v
0 

cos e) is the limit of f v(;l.. ) cos e, ;~.. as ;~.. + 0, 

and 

' ( -1 -1) f v(;l.. ) cos e •. ;~.. = f
0

(v
0 

cos a) 

-1 -1 ' 
+ ;~.. f

1
(v

0 
cos e, ;~.. ), (B.26c) 

-1 where f
1

(cos a, ~. ) is bounded for;~..~ A and 1 ~ cos e ~ - 1. 

+ + + ± 
Because of symmetry only the real parts of exp H k • V and exp H k • v0 

.. ,, '-1 
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contribute to the integral in (B.25). Thus,using (B.26), one may 

write (-i) times this integral as 

(-i) (-1) Jb J1 [ · _ .. c·· Hkv cos e 
' 3 dk d cos e vf(v cos e,;~.. 1 , e. -1) 

(211) · o -1 kv cos e 

(ei~kv0cos e_1 )] 
-vofo<vo cos a) kvocos e 

(-1) Jb dk Iv~k 
= ~ T dx f(x/~k.~ -1) sin x 

(211) 0 -v).k X 

1±!L Jb dk lvo 
(211) 3 6 k vo 

dx f0 (x/~k) sin x 
X 

.. (-l~Jb dk.! 1vo~k 
(211) 0 k ~ dx 

vo;~..k 

f 
1 
(x/~ k, ~-1) sin x 

X 

1 Jb [ v~k -vo;l..k 
-

211
3 d: J dx'+J dx·Jf(x/~k, ~-1) sin x 

0 v0~k -v~k X 

(B.27) 

By virtue of the boundedness -1 -1 
of f(x/~k, ~ ) and f 1 (x/~k, ~ ) both 

integrals in the last line of (B.27) enjoy bounds of the form bB. 

pole pole 
Hence the difference 4>' - 4> of the pole contributions defined 

in (B.23) enjoy a bound of this form. 



95 

Consider next the contributions 

t(3.2)(3.1)(J1' J) = 

e2 J d4k 4k>.X3 -ik>.X2 +ik>.X3+ik63 ik>.X1+ik61 
- -- (e - e ) (e - e ) 
2 (211) 4 

llV ~1 -1 
x (X3-X1)~(-g )(X3-X1 + 63>. -61 >. >v 

{(X
3

-X
2
)•k + iO)((k0 + i0) 2 - lki 2}((X3-x1 + 63 >.-1- 61>.-l)•k + iO) 

(B.28a) 

and 
" 

" 
t(3.1)(3.2)(J, J1) = 

e2 J d4k -ik>.X3-ik63 -ik>.X1+ikll1 ik>.X3 ik>.X2 
- -- (e - e ) (e - e ) 
2 (211)4 

-1 -1 ~v 
(X3-Xl + 63>. - 61>. )~(-g )(X3-X2)v 

x (<x
3
-x

1 
+ 6

3
>.-1- 61 >.-1> ·k + iO)((k0 + i0) 2 - lkl 2}(<x3~x2> ·k + io) 

(B.28b) 

In t one pushes the k0 contour into the 

upper-half plane for the terms with exp i>-kx3 + i k63 , and completes the 

contour in the lower-half plane for terms with exp iA kX1 + ikll1 • In t" 

one pushes the k0 contour into the upper-half plane for the terms with 

exp -i>. kX
1

-ikll
1 

and completes the contour in the lower-half plane for 

·:. 
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terms with exp- i>.kX
3 

- ik63 • The importance of this grouping t" - t 

-1 -1 
is that the contributions from the poles at (x3-x1 + 63 >. - 61 >. )• k = 0 

cancel exactly, by virtue of the anti-symmetry of this pole contribution 

to t" - t. 

For the remaining partial cancellations that give the bounds of the 

form bB one groups t of (B.28a) with 

t' (3,2)(3,l)(J, Jl) = 

e2 J d. 4k -ik>.X 3-ik63 -ik>.x 2-ik62 ik>.x 3 ik>.x 1 - -- (e - e ) (e - e ) 
2 (211) 4 

N · -1 -1 ~v)( ) 
~·3-x2 + A3>. - 62 )~(-g x3-xl v 

x (<x
3
-x

2 
+ 63>.-1..,.6{-

1
>·k + iO}{(k0+ io) 2- lki 2H<x3-x1>· k + 10) 

(B.28c) 

The proof of the bound It 1 
- tjEO;;bB goes as before, except that one 

-1 -1 need not consider contributions from the poles at (X3-x1 + 63>. -61>. )•k=O 

and <x
3

- x
1

) •k = 0, 'due to the cancellation mentioned above, and the 

analogous cancellation between the poles of t•(3 , 2)(3 ,l)(J, J 1) and 

t"' (3,1)(3,2)(Jl' J) at (X3- Xl)•k'" 0 • 

Consider next the contributions to t(J, J 1) coming from the (3,1) 

contribution to J1)k) and the (3,1) contribution to J1~(k): 

• ' 
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~(3,1) (3,1) (Jl) 

if d
4

k 
= ~ (21r)4 

n 

-ik~~ -ik~Xl ik~X3 ikAX
1 (e - e - )(e - e ) 

x <x3-xl)ll (-gll"><x3~·~)v 

(<x3 ~JS_)·k + i0) 2 (Ck~ + i0)
2

- lk"l
2
> 

(B .29) 

0 In the contributions with a factor exp' ik~3 one can move the k 

contour into :the upper-half plane without encountering any exponentials 

that become large as ~ + ~. Thus one finds a uniform bound as ~ + ~. 

The remaining terms·- are 

rem 
~(3,l}(~,l)(Jl) 

= e2 J d4k . . -ik~(X 3 -x ) 
2 --4 (1 - e . 1 ) 

n (2w) . 

X 

(X -l{ ) < -g ll")(x -x ) . 
3 1 \l 3 1 \1 (B .30) 

(CX
3
-x

1
)•k + i0)

2 
((k

0 
+ i0)

2
- lki

2
) 

The (X
3

- x
1
)•k contour in (B.30) can be completed by a path in the lowerhalf, 

0 + 
plane, and then contracted to the poles. The poles at k = ±lkl give 

contributions that .. enjoy a bound of the form C + D log(b~)e(b~-1). 

The contribution from the double pole arises from the derivative of 

_the remaining factors, evaluated at the pole. This derivative acting 

-2 . 
on the factor k x

0
(k) gives no contribution, due to the zero 

in the numerator, but acting _on the exponential it gives the contribution 

'1 :~ 
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2 
pole e 
~(3,1)(3,1)= --2--

(X )J\1 
A 3-Xl)\l(-g )(X3-Xl)v 

0 0 
<x3-xl) 

3 1 I - dk __ 2 +2 

x J ----)3· (kO) -lkl (X -X ) = 0 
- (2w k• 3 1 n 

(B.31) 

This contribution to ~ increases linearly with the distance 

(AX3- ~~). It gives a contribution to exp i ~ -that is the ·same as 

that of a mass term. The magnitude of the effective mass shift 

induced by this term equals the classical-photon contribution to the 

usual lowest-order Dirac-particle self-energy diagram,· apart from the 

factor of-1/2 stemming from· the occur·rence of this factor in -t J 1\l. 

The Dirac-particle self-energy counter term has not yet been taken 

into account. It cancels precisely the above self-energy contribution 

to ~: one may omit the self-energy contribution to the operators 

U(L(x)), and consider the mass m to be the ph:•sical mass of the particle. 

Consider next the contribution to ~(3,l)(3 ,1) ·coming from the (3.1) 

part of J1\l(k) and the (3,1) part of J\l(k): 

~~3,1)(3~l)(Jl' J) 

e
2 J d

4
k 

T n (2w)4 

-ikAX
3 

-ikAXl ~ 
(e - e ) 

. ik~~+ik63 ik~X1+ik6l 
x (e - e . ) 

63 61 
(X -X ) (-gll")(X -X +- - -) 

X 3 l)J . 3 1 A A \1 

((X
3
-x

1
) •k + iO){(k0 '+ i0) 2 - ik:i

2
)-

1 
X ----,.- ----,;_ ----

(X -X + -~- -~)·k + iO 
3 1 A A 

(B.32) 
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0 In the two terms containing exp ikAX3 + ik'1 one may distort the k contour 

into the upper-half plane. They combine with the like contributiors to 

(B.29) to give a difference ~· - ~ whose magnitude enjoys a bound bB. 

0 In the remaining two terms one completes the k contour in lower-half 

plane. This contributes to!·~'-~. a term with bound bB. Then contracting 

the completed contour to the poles one obtains from the poles at 

0 1+12 k = ± k contributions to t' that combine with those. of ~ to give 

contributions to ~· - t with a bound bB. The other pole gives a 

contribution to~ of the form 

~,pole .2 3 
(3,1)(3,1) (Jl' J) .. ~ (-i)J ~ ( ikl\3 ikl\1 2 3 e -e ) 

n (2'11) 

~v -1 -1 
X (X3-Xl) ~ (-g )(X3-Xl + A3>. - Al >. ) v 

(X~ - X~)((k0) 2 - lkl 2
) 

.. ; (-i) ~ e - e 
1 2 3 ( ikl\3 ikl\ ) ! (2w) 3 (A3- A1)•k 

~\1,. . 
(X3-l),)~(-g J{>.(X3-Xl) + A3 - Al)V 

(~-~)( (k
0>2 

- lkll 
0 where k is evalu~ted by using 

A3 Al 
(X3-Xl) •k = - (T - T) •k. 

, .. 

(B.33) 

(B.34) 

(B.35) 
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- jJV This contribution comes from J 1 {k) (-g )J (k). The similar 
jJ v 

- IJV contribution from J 11 {k)(-g )J1v{k) is obtained by replacing k by -k. 

These two integrals are equal, due to the symmetry of the integral 

under the replacement of the variable k by -k. Thus their difference 

vanishes. Hence the only contributions line~r in >. come from the terms 

- IJV - ~v J 1 (k)(-g ·) J 1 (k) and J (k)(-g )J (k). The contributions from these 
~ v .ll v 

two forms that increase with>. cancel, even without considering the 

self-mass counter terms. And the remaining terms have a bound of the 

form bB. Thus the sum of the (3,1)(3,1) contributions enjoys a bound 

of the form bB. 

All remaining contributions succumb to the methods shown above, 

and one obtains the bound 

1'\fJ,Jl)l <!O;bB, (B .36) 

where B is some number that is·independent of band >.. 

According to (B.7) o~e has U(L(x))u-1LO.X))=U'{L(x)-L(>.X))exp i ~-
Transposing the two operators on the left-hand side gives 

U~1{L(>.X))U{L(x)) = U' (L(x) - L (>.X>) exp - it. (B.37) 

Thus 

u~1 (L(>.X))lfl{L(x>) .. u exp - itn (J ,J],) (B.38) 

-: 
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where 

u . * * 1 * 
exp <. a •J >~exp - < J •a > exp - 2 < J •J > 

and J represents the vector function., with components 

J (L(x) - L(AX), k) = 
)J 

(B.39) 

ik).X +ikA 1 -1 -~ ,. ik>J!:i+iktli i-1 -L-J((X -x. +A.). -/:;i-l ·'IJ 
3 [ (e - e i ·1 1 1 

1 -1 ., (e) :E . (X-X + /:; ).-- 6i-l). )•k 
i=l i i-1 i 

ik>.:Xi ik).\.-1) (X -X ) ] 
(e ~ - e i i-1 IJ 

n· (X -X )· k v I 
i i-1 

(B.40) 

In calculating U this function J is evaluated ~t-k2 =0. Due to the 

-1 -1 
space-like-character of (Xi-Xi-l) and (Xi-Xi-l+t:;i). -/:;i-l). ) each of 

the denominators in (B.38), evaluated at k
2 = 0, is lkl times a func·tion 

of angles that is nonvanishing over the physical domain of integration. 

2 
Thus for ). ~ A and physical k satisfying k = 0 one may write 

-1 . -1 
<xi - xi-1+ 6i >- - 6i-l >- > ll <xi - xi-1) ll 

-1 -1 = 
<xi - xi-1+ 6i >. ""' 6i-l >. >· k <xi - xi-1)· k 

l fll (A , 6 ,tP) 
+ -1 -1 . ). (B.41) 

<xi- xi-1 + 6i >- - 6i-l >- )•k 

where f (A,6,cf>) is bounded for A~A and (B,cf>) in the physical range. 
)J 

This expression (B.41) may be inserted into (B.40). The second term of 

(B.41) then gives a contribution to JIJ(k) that is bounded for >.~A and 

( e, cf>) in the physical range. The first term in (B'.41) gives a contribution 

to (B.40) that combines with the second term of (B.40) to give a 

·~ '·f 
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contribution to J (k) that also·is bounded for ).~A and 6,tjl 
)J . 

in the physical region. 

Because J(k) is bounded 

N : ( < J*•J>)l/2 (B.42) 

is of order b 

One may introduce a set of orthonormal basis functions fi(k) over 

the portion 0 of k space such that the first of these functions is 

f
1

(k) = J(k)/N. Then the operator U of (B.37) ~as the form 

U(N) .. exp <a* ·f
1 

::>N exp - <f1•a >N >< exp - t N
2

, (B.43) 

where N is order b • 
,· 

In the formula for transition probabilities the contribution 

from Arem(Ax) has, according to. (7 .2), (7 .3), and (7 .4), a factor 

.:'· -it(J,Jl) . D' 
F(N) ., {U(N)e -IO)Foprll Pin, n· 

(B.44) 

To calculate the. dependence ofF upon bone may introduce the coherent 

states
4

•
10 

<a*•f >z -<f* • a>z* _! zz* 
lz>=(e 

1 
e 

1 
e

2 
>lo>. (B .45) 

Then 
1 

- - N(z-z*) 
U(N) lz > = I z + N >e 

2 (B.46) 

Thus for small N and t one has 
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( -u U(N)e -1) lz > 

=lz + N > -lz > ..:_ U I z > 

1 - 2 N(z - z*) I z > • 

11 
The vector lz + N >- lz >is small for small N. and Nlzl: 

I (z + N > -lz > I <; 

/2( lz I + lz + Nl )l/2Nl/2. 

(B.47) 

(B.48) 

The normalization factor N is of order b But what is z? 

Consider first the contribution to '(B.44) coming from the part 

-DO -D F n of F n that corresponds to the original diagram D. This opru opru 
-DO . . b h hu factor F oprngives· no contri ution to t e photon space operator. T s 

the amplitude of state lz > is given by the decomposition 12 

' 2 
= J!L.z lz >< z I Pinn· Pinn 11 

(B.49) 

Now the expectation-value of the number of photons in the state 

lz > is lz 12 •13 And the expectation-value of the energy in this 

state is 

E = 2 
z El' (B.SO) 

where E
1 

is the expectation value of the energy in the state 

< a*·f
1
> lo >. Since the wave function f 1 (k) in this state is 

- a(b-k)/b the energy E1 is 

b 3 
El - r d~ k • (1/b > 2 

0 

b. 
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By the principle of equipartition of energy the energy 

residing in each low-energy mode of the 

(B.Sl) 

photon field should be approximately the same. Thus one should expect 

the E in (B.4a) to be roughly independent of the .mode. But then the 
·' .' .. · 

expected dependence of z on b is ·given by 

lz I - b- 1/2 (B. 52) 

I-DO · But if <z F n. pi nis concentrated near values of z satisfying (B.52) opru nu · 

then (B.47), (B.48), and (B.36) show that 

IF(N)I -+ 0 

as b-+ 0. In fact, one could tolerate a growth as large as. 

lz I - 1)-1+£(£ > 0) and still obtain the result (B.S3). 

(B.SJ) 

The results in paper II will show that the very soft photons emitted 

and absorbed by the operator part of FD (x) produce only very mild opr 

effects that do not upset this result (B.53). 

The bounds obtained above refer to the contributions from the 

points x in 

R(R,>.X) =: {x; I xi - >.Xi I Encl.<; R} • (B.54) 

To obtain .a bound on the contributions to Arem(>.X) from points outside 

R(R,~)consider first the points x outside the set R(>.Tl,~) where n= .01. 

c h; 
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0 
And consider initially the part Arem(~X) of Arem(~) that comes from 

D D the F (x) part ofF (x). apr 

Equation (7.3) shows that the operator part of the integrand in 

, D 
Arem(~X) has norm ~2. And the function F (x) is bounded. (Ultraviolet 

cut offs are assumed)- The product of the wave functions falls off 

faster than any power of lx- ~XI. Thus for any£ >O, however small, 

and any C > 0, however small, one can find a A(£, C) = A1 such that for 
. . 0 

all ~ > A1 tne sum of contributions to A (~X) from points x outside rem 
n · -9/2 R(A ,XK)is an operator with norm less than (£/4)C~ : 

lAO (~X)R(~n.~)~ < £ C~-9/2 
rem 4 (~ > Al) 

(B.SS) 

0 Consider next the contributions to Arem(~X) from points x inside 

R(~n,XK)and outside R(R,XK) The operator part of the integrand still 

has norm~ 2. The function IF0 (.x) I has, for all points X£R(~n.>JO for 

~ ~ A2 >> 1, a bound of the· form 

IFD(x>l~c·~~9/2 (x£R(~n.~x) ~ > A2). (B.56) 

-9/2 . Inserting the bound 2C'~ on the norm of the parts of the 

. integrand other than·the wave functions one may obtain a weaker bound 

by extending the region of integration of the magnitude of the·product 

of the wave functions to all points x outside R(R,~X). The faster than 

any power fall off of the absolute value of the products of the wave 

functions ensures the convergence of this new bounding integral. This 

. -9/2 
procedure gives a bound that depends on~ only-via the factor~ , 

and that falls off faster than any power of R, due to the fall off of 

£ 't 
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the absolute value-of the products of the wave_functions. Thus for 

0 some sufficiently large-R the contribution to Arem(~X) from points 

n · -9/2 x insideR(~ .~~and outside·R(R,AX)h&s a bound of the form (£/4)C~ : 

I 
0 - R(R, ;cr) 

Arem(AX)R(~n,»>I < -f CA-9/2. (B.57) 

For the remaining points x in R(R,XK)one uses the main result of 

this appendix: for some fixed A and for any R, however large, the 

norm 

lu~~b){L(~)) un(b){L(x)) - 11 (B.58) 

tends to zero with b uniformly over the set 

{(~,x); ~>A, X£R(R,AX}. 

This constant A can be made larger than A1 and A2 • Then combining 

this bound on (B.58) with (B.56) one concludes that for some sufficiently 

0 
small b : b(£ ,c,R) > 0 the contribution to Arem (~X) for points 

x£R(R,~X) (~ > A) satisfies 

IA~em(XX)R(R,~I < I C~-912 (A> A) • (B.59) 

Then the sum of (B. 59), (B.57), and (B. 55) gives 

IA0 (AX) I < £C~-912 (~ >A). rem 
(B.60) 
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The constant£> 0 is taken to be the number occurring in (7.13), 

D and the constant C is constructed from the F (x) parts of the three 

functicns defined in (7 .45). [See also (7 .26)] 

0 . . 
The above discussion dealt with the part Arem'(>.X) of Arem (>.X).· 

However, the good infra-red properties of F
0 

(x) ensure that the opr 

arguments carry over to the full operator A rem (>.X). In particular, 

the crucial property (B.56) holds also for F0 
(x), and the soft . opr 

photons emitted and absorbed by yD do not upset the required opr 

operator properties. A detailed justification of the extension to 

D . 
F (x) depends on the detailed results to be described in paper II. opr 

-.._ 

•I· 
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APPENDIX C 

The self-energy and wave function renormalization effects of 

classical photons on charged particle propagators are calculated in 

this appendix. 

The starting point is the one-particle propagator with a 

single c.lassical-photon correction: 

1 
SF(z) =~ ~ e-ipz ~ 2 I 4 I 4 

2 (2w)4 0 (2w)4 

[ 
1 Jl 1 t 1 

1"=-iii .S+Jl-m .S-m 

+ 1 l--1 
~ tS - l - m l p ~ m] 

1 1 

k2
+io <z·k> 2 

(C.l) 

The two terms arise from the cases in which the photon enters the 

charged line before or after· the point at which it leaves this 

line, respectively. The two terms are equal if the integration 

~ 2 
region 0 and the factor (z•k) are invariant under the trans-

formation k + - k. 

A double application of the Ward identity (2.8) gives 

2I 4 I 4 1 1 Sl(z) = ~ ~ e-ipz ~ 
F 2 (2w)4 0 (2w)4 k2+ iO 

-~--2 

(z•k) 

X~-1- )l _1_ - _1_ 
.S-m .S-m .S-m 

+--1-
.S+Jt-m 

+ 1 
(-Jl) 

1 1 + 1 )] 
~ .S-m-p-m .S-It-m 

(' \ 

(C.2) 
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A -2 2 -2 ' ' 
If (z•k) . =.z (z•k) is resolved by the principal-value·rule, 

or has the form (z•k + iO)(z•k- iO), and is therefore·symmetric under 

k + - k, and if· the region n is symmetric, theri the two t'erms with 

double pole <; - m)-2 are individually zero by.symmetry •. in any case 

they cancel an'd leave 

1 J 4 SF(z) = ~ ie -ipz, 

(211) 4 T=ID 

2 J 4 ( )JV . e d k .. i z -g )z 
X- --·--·- Jl V [2 4 2 ,.,,., 

n (211) k + iO 

X (- 2 + e -ikz + e+ikz)] 

= SF(z) i6(z), 

where· 

-e2 J d4k __ i 
i~(z) = -2-n (211)4 k2+ iO 

Z (-g)JV) Z 
)J .v 

(z•k)
2 

• 

ikx2 ikxl . -ikx2 -ikxl 
(e - e ) (e - e ) 

2 J 4 . JJV Jx2 '- Jx2 I 
-e d k 1(-o· ) d ikx d 1 -ikx 
=---~ xe xe 

2 n (211)4 k2+ iO xl ll xl v 

Inclusion of the contributions from all classical photons gives 

S~(z) = s (z)ei~(z) 
. F ' 

which is closely connected to (2.14) and (2.17). 

(C.3) 

(C.4) 

(C.S) 

{ .. '!· 
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The funct.ion L'l(z) is 

. 2 4 
=~J dk 1 1 2 2 -, -4 -. -- ( -.--) 

. n (211) k2+ iO z•k 
1\(z) 

x (e-ikz + e+ikz _2) 

=- z~m +a+ 'ib + r(z) + is(z), 

A2 A·o ~ ~ 112 
where, for z > 0 and z > 0, and with w = + (k·k) 

and 

-e d k _ 2116(z•k), 2 J 4 1 A 

~ = -·2- (211)4 k2 
. n 

2 J d4k [ 1 e -- 2 
a = 2 (211)4 (ko+ iO) 

n 
2 

- w 

1 

+ (k0- i0) 2 - w2 

1 
A 2 

(z•k + iO) 

1 A] 

. 2 J d4k e --4. 
b = + 2 (211) 

n 
[ 2116(w+k~) - 2116(w-k

0
)] 

· 2w (z•k) 2 · 

1 -e2 J d4k [ eikz 
r(z) =- -- 2 2 

2 (211) 4 (k0+ iO) - w 
A 2 

(z•k + iO) n 

-ikz 
e 

+ 0 2 2 
(k - iO) - w 

1 ] A --2 
(z•k- iO) 

2 I 4 [ 0 ikz 0 -ikz ] s(z) = ~ . ~ 2nt5(w+k )e -2nt5(w-k )e 
2 4 A 2 

n (2n) 2w(z •k) -

'-· 

(C.6) 

(C.7) 

(C.8) 

(C.9) 

(C.lO) 

(C.ll) 
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The quantity 6m is a mass shift, and a is a wave-function renormali-

zation. 
- . 2 

The quantities band s are zero if Q and (z•k) are symmetric 

under k + - k. The functio~ r(z) tends to zero as z tends to infinity, 

The self-energy contribution (C.7) is the classical-photon part 

of the full self-energy. As such it is cancelled by the classical-

photon part of the self-energy counter term. 

In the context of the calculation of (7.20) the above calculations 

take into account all contributions in which there is a double pole 

- -2 (z•k) • Taking togethet all four contributions of this kind yields 

~ fu -fu -
the numerator factor (- 2 + e + e ) , which vanishes for z •k = 0. 

The vanishing of the numerator at z•k = 0 is important: it means that 

- -2 the derivative associated with the double pole (z•k) acts only on 

ik~z -ik•z 
the exponentials in the factor(- 2 + e + e ). 

To take advantage of this numerator zero one should, in the 

calculation of (7.20), initially combine all double-pole contributions 

in the way done here, and then afterwards associate the z-independent 

contribution a/2 with· the vertex on each end. of the line under 

consideration. 

At a later stage of the calculations [Cf. (7.38)) the coherent 

states generated by U(L(~X)) are introduced, and the operator U(L(x)) 

is replaced by U-l (L(H>)U(L(x)). The various contributions to u(L(x)) 

* from the terms Ji Jj with i I j are either mass renormalization terms, 

which are cancelled by counter terms, or do not contribute in the 

large (xi- xj) limit, or have the form ea, with a independent of x. 

These latter terms drop out of u-1 (L(~X))U(L(x)). * Thus ·only the JiJi 

* terms survive. For each of these individual terms JiJi one can perform 

the transformation shown in (7.42), in order to obtain the results given 

by (7.47) (7.52). Note that no double poles appear in these final formulas. 

;-,.~ .. 
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APPENDIX D 

The purpose of this appendix is to show that the contributions 

* to the probability 

fi 
Pdom(~) from the JiJj (i I j) contributions to 

the phase <1> (L(x)) -9 defined in (7.20a) fall off faster than ~ . 

The full current J (L(x), k) defined in (7.21) is a sum of three 
~ 

* terms, one for each line of L(x). Thus J J decomposes into nine 

terms. The diagonal terms, which correspond to the contribution from 

* the same line in both J and J , were dealt with in Appendix c. 

Let Jij be the contribution to J corresponding to the line 

segment of L(x) that runs between vertex i and j: 

(xi - xj) 

Jij~(L(x),k)= - ie (xi _ xj)•k 
ikxi ikxj 

(e - e ) 

Consider first the points x in R(~n. ~X), for~> A>> 1, and 

(D.l) 

0 0 0 0 -0 < n <<I. Then x3 > x2 > x1 , and the k contour may therefore be 

* distorted'into the lower-half plane for the term J
32

J
21 

and into 

* the upper-half plane for the terms J 21J
32

• Since there are no actual 

poles at the points (xi- xj)•k = 0 this distortion is allowed, 
. + 2 

provided one adds appropriate contributions 6\k ) corresponding to 

2 the poles of k that have to be crossed. 
+ 2 

These 6-(k ) contributions 

are similar to the ones already discussed in connection with (7.20b), 

-9 and give faster than A fall off. 

With· the contours distort'ed in tliis way there is expoential fall 

* off as~+ .. for the JiJj (i /j) parts, except for the contributions 

from the ends of the k0 contours. But the endpoint contributions 

-1 
fall off linearly with A , as one sees from the fact that 

~~- ·'I 
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iE . 
__ (=-iJ.) J_ e ik)._dk_ :=. _{l~e:-EA) __ _ 

0 
(D.2) 

tends to unity as ). tends to infini-ty with E fixed. 

Having established the linear fall off of this integral the 

-9+8n rest of the argument proceeds as in the text: The bound C). 

on the remaining factors in Pdom().X) of (7.18) arises from the 

-9/2 I D I n C'). bound on F {x) for x in R(). ,).X), and from the bound opr 
4n n ' -1 C"). on the volume of R(). ,).X). Thus for n < 1/8 the). fall 

8n -
off overcomes the ). increase, and one is left with a better than 

-9 ). fall off. 

{k; Im k•(x3~x1) < 0, Im k•(x
2
-x

1) < 0, Im k•(x
3
-x

2) > 0}. 

(D.3) 

This distortion into the imaginary k space has a spacelike direction, 

- -1 
but yields the same ). fall off that was obtained above for the pure 

timelike distortion. The rest of the argument then follows as before. 

* For the term J 31J 32 one distorts into the image of (D.3) 

under inversion k ~ - k. The other terms are dealt with similarly. 

* * In this way every JiJj (i ; j) part of J J gives a contribution to 

-1 (7.20a) that falls off at least linearly in A , and hence a contri-

-9 bution to Pdom().X) that falls off faster than). • 

~ Sl 
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APPENDIX E 

Consider first the Feynman coordinate-space function F(x) 

corresponding to the diagram o
1 

of Fig. 4. Introduce the following 

relabeling: let i = (1,2,3,4) label cyclically the internal lines 

of o1 , and also the vertices of 01 . The function F{x) is then 

essentially a product of the four Feynman propagators Di(x~- xi_1), 

one for each of the four internal lines of o
1

• 

Each propagator Di(zi) is expressed as in integral over a 

momentum-energy four-vector pi. A partition of unity .is introduced 

into each pi space. For each pair (i,j) the corresponding partition 

function xij(pi) is an infinity differentiable function of tiny compact 

support centered at pi Pij" Consequently, each partial propagator 

4 
0 ij(zi) = fd pi 

-ipizi 
e 

2 2 
pi-mi+iO 

Xij (pi) (E.l) 

will, by virtue of the result proved in Section (IV.3a) of the 

first Ref. 8, fall off faster than any inverse power of the 

Euclidean norm of the four~vector zi all directions 

outside the set of "causal" directions Cij" This causal.set.Cij is 

the set of (signed) directions of the s·et of covariant four-vectors 
~- 2 

pi that lie in the intersection of the mass-shell surface pi 
2 

mi 

with the support of Xij(pi). All directions in the causal set Cij 

will lie close to the direction of Pij" The rate of fall-off of 

Dij(zi) is uniform over any closed set of directions of the four-

vector zi that does not intersect Cij" Each causal set Cij can 

also be considered to be a closed spacetime cone minus its apex at 



ll5 

the origin. 

The function F[wl is obtained by folding F(x) into the four 

coordinate-space wave functions wi(xi) corresponding to the four 

external lines of D1 . Each wi(xi) is the Fourier transform of a 

- - + 2 2 
function *i (pi) = w:i. (pi)c'i (pi- mi) 

- - 2 2 
or w:i. (pi)li (pi- mi), where 

w:i.(pi) is an infinitely differentiable function of (say tiny) 

2 2 
compact support around pi= Pi·~1 = mi). These four _supports define 

four four-dimensional closed causal bi-cones Ci (i = 1,2,3,4), which 

are taken to be disjoint, except at the origin. (The supports of 

the ~~(pi) can be made tiny by other partitions of unity). 

The separation of each propagator Di into its parts Dij induces 

a separation of F(x) into a finite sum of terms F (x). Let . a 

{i,j(a,i); i£(1,2,3,4)} specify the four_ functions Dij(a,i) 

corresponding to a. Then a transformation to momentum-space shows 

that the function Fa[W]_ vanishes unless there is, for that a, a set 

{pia, Pi ,j(a, i); i = 1,2 ,3 ,4} such that, for all i£(1 ,2 ,3 ,4), 

Pia £ supp Wi, (E.2a) 

Pi,j(a,i) £ supp Xij(a,i)' (E.2b) 

and 

Pia Pi,j(a,i)- Pi+l,j(a;i+l). (E.2c) 

Equation (E.2c) expresses momentum-energy conservation at vertex i. 

The conditions (E.2) entail that Fa[w] vanishes if momentum-energy 

conservation Pi= Pi,j(a,i) - Pi+l,j(a,i+l) fails by more than the 

(p ·.} 

ll6 

tiny amounts corresponding to the tiny supports of the functions xij 

and ~i. 

Let the non vanishing functions F [w] be those with a in the . a . 

set A. The integrals Fa[w], aEA, can be reconverted back into 

coordinate space, and one can then examine the contributions to the 

xi-space integrals from regions in which one or more of the four 

points xi tends to infinity. 

For any F lwl, aEA, one has approximate energy-momentum 
.a 

conservation at each vertex. This approximate energy-momentum 

conservation together with the stability conditions on the masses 

of the stable particles, and the ·three-particle character of the 

vertices of n1 , entail that for any aEA and any i£(1,2,3,4) either 

or 

2 2 
supp xi,j(a,i) n {pi; pi = mi} = 0 

2 
SUPPJC.i.+l,j(a,i+l) n {pi+l; pi+l 

m2 
i+l} 

(E.3a) 

0 (E.3b) 

provided the supports of the functions xij(pi) and wi(pi), i£(1,2,3,4), 

have been taken sufficient small. Consequently, for each ~£(1,2,3,4) 

and any aEA, at least one ~f the two partial propagators Di,j(a,i)(z) 

or Di+l,~(a,i+l)(z) will fall off faster than any power of lzl;!cl. 
. . 

uniformly over.all directions. 

This uniform fast fall off of at least one of any two neighboring 

pair of partial propagators, Di,j(a,i)(zi) or Di+l,j(a,i+l)(zi+l), aEA, 

coupled with the uniform faster than any power of lxil-l fall off of 

each coordinate space function wi(xi) on compact sets lying outside 

any ·closed bi-cone C:i. centered at the origin that contains in its 

interior the set of causal directions Ci {cf. Ref. 7, Eq.(2.17)) 

(C -~ 
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( -1 entails the rapid (i.e., faster than any power of R ) fall off of 

the contribution to the x-spin integral for F [~] from points 
a 

x = (x1 ,x2,x3 ,x4) lying outside the set 

R' (R,A.X) :: {x;l xi -A. XI .;;;; R, all i€:(1,2,3,4) } • (E.4) 

To prove ~his asserted fall off proyerty one may separate the 

x = (x1 ,x2 ,x3 ,x4)-space integration region into four parts Pi' where 

the condition IXiiEucl.,;;;; IXjiEucl. (all j) holds for all x in Pi. 

0 3 Then the sixteen variables (x1 , ••• , x4) of x can be transformed 

to one radial variable R, which is l.xiiEucl in Pi' and fifteen 

"angle" variables u. The variable R ranges from zero to infinity, 

whereas for any fixed R the range of u is bounded. 

The variables u can be specified by a set of four four-vectors 

ui, ie:(l ,2 ,3 ,4). Che of these four four vectors iii lies on the unit sphere, 

and the other three lie on· or inside this sphere. 

This unit sphere is centered at the origin. Four hi-cones c' i 

centered at the ori~in can then be drawn. There is one hi-cone Cf 

for each external particle i. These hi-cones are taken to be 

disjoint, except at the origi~ and the vectors pi in the support of 

~i(pi) are contained in the interior of Ci· 

-2 Let the set C! consist of Ci and the ball of radius 10 centered 

at the origin. If the point ui corresponding to external particle i 

does not lie in Ci then the integral will have a factor that falls 
~· 

off faster than any power of R due to the fast fall off of the 

wave functions ~i(Rui) (cf. Ref. 7). But if each point ui lies in 

~ .f• 
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the corresponding set Ci, and one o{ these points~i !ie~ on the 

unit sphere, then both xi - xi-l = R(ui-ui-l) and xi+l - xi = R(ui+l- ui) 

must increase linearly with R. Thus either Sij(xi-xi-l) or 

-1 
Si+l,j(xi+l-xi) will fall off faster than any power of R • The 

remaining factors in the integrand are bounded. Hence the total 

contribu.t.ion to F[ljl) from the coordinate-space region lying outside 

a sphere of radius R must also fall off faster than any power of R. 

The integral of actual interest is given in (7.50). The 
Dl 

integrand has in addition to the Feynman function F (x) and the 

four external-particle wave functions ljli(xi), also several exponential 

factors. Some of these exponentials appear with imaginary exponents. 

These factors are bounded and do not affect the result. However, 

there is also an exponential with a real exponent. This real exponent 

consist of a sum of terms of the form 

K 4 2 

I ~ 2w6(k ) 
. ( 2w) 

1 1 
p·k p' ·k (1 - cos y•k)' 

where y can be xi~ A.X or xi-xf, and can become large. 

(E.S) 

It' is sufficient to show that this integral (E.S) can increase 

no faster than c log IYI as· IYI + m. For in this case the exponential 

itself increases at most linearly in IYI . But any such linear increase 

I 
-1 

is damped out by the just established faster than any power of Yl 

decrease of the remaining factors (note that lxi - xil ~a implies 

lxi -A.XI ~ a/2 or Ixi - AXI ~ a/2. Hence the faster than any inverse 

power of R fall off of the contributions for x or x' outside R'(R, AX) 

entails a faster than any inverse power fall off also in lxi- xil>· 
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To obtain this logrithmic bound write 

y = AY 

where y has Euclidean norm unity. 

y·k: Aiklfl· 

2 And write, for k 

(E.6) 

0, 

(E. 7) 

where fl'is a function of the angle 9 between the three vectors y 
and k. Then the integral (E.5) can be written (with know lkl) as 

K 

J 
k2dk 

2k3 
0 

1 

2w J d(cos9)f(cos9)(1- cos Akf!), 

-1 

where lf(cose)l is bounded. 

(E.8) 

To prove an asymptotic logrithmic bound c log A ori the magnitude 

of (E.S) for large A it is sufficient to exhibit a bound c'/A (c' <c) 

on the magnitude of the A-derivative 

K 

J 
0 

1 
k2dk 

2w J d cose f(cose)ka x sin Akf! 
2k3 

-1 

1 K 

= w J d cose f(cos9)fl J dk sin Akf! 

-1 0 

1 

=I J d cose f(cos9)(1 - cos AKB) 

-1 

(E.9) 

The magnitude of (E.9) has the bound 4wlflmax/A, and hence the 

convergence of (7.50) is assured. 

/ 
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The convergence of the x integration in (7.46) is assured by 

essentially the same argument. 

The fact that the partial propagators Dij(zi) enjoy rapid fall 

off in lziiEucl for directions of zi lying outside the causal set 

Cij was not used in the above discussion. However, this fall-off 

property is needed to cover the general case in which n
1 

is replaced 

by some other diagram Di· These rapid fall-off conditions, together 

with the approximate momentum-energy conservation equations mentioned 

below (E.2), ensure a rapid fall-off in R of the contributions to 

the analogs of (7.50) from points x outside R(R, AX) unless the 

momentum-energies of the external lines of Di lie close to a 

singularity surface of Di· And even in this case there is a rapid 

fall off.of the contributions not lying near the regions in x space 

such that the spacetime diagram Di(x) co~responds to a classically 

allowed physical process with the specified external momentum-energies. 

This property is needed in the extension of the arguments given 

in this paper to the general case. It entails, generally, that the 

contributions to the transition amplitudes from regions of x space 

that are far away from the regions that correspond to the classically 

allowed processes fall off rapidly as the distances from the 

classically allowed configurations increase. 

.. ~. 
"' 
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FIGURE CAPTIONS 

Figure 1 A simple strong-interaction diagram D. The dotted external 

lines represent neutral particles. The solid triangle 

corresponds L(x) = L(x1 , x2 , x3 )~ 

Figure 2 A one-particle exchange process. Momentum energy is conserved 

in each of the two subprocess, and-the intermediate particle 

momentum is donoted by p. 

Figure 3 A triangle diagram with wiggly lines representing the 

classical-photon contri~tions. 

Figure 4 Subprocess Diagram D1 • 

Figure 5 The Diagram D
1 

with added wiggly lines representing the 

three classical-photon contributions to (7.50). 

"- J' 
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