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ABSTRACT 

* PROBLEM 

A simple but rigorous solution of the infrared problem 

is obtained. The basis of this solution is a factorization 

of the Feynmanx-space operator into a product of two operators. 

The first is a unitary operator that represents precisely the 

contribution corresponding to classical electromagnetic theory. 

The second is a residual operator that is free of infrared 

problems. This factorization is exact: No soft-photon 

approximation, or any other approximation, is.used. Both 

the unitary operator and the residual operator are expressed 

in simple forms amenable to rigorous mathematical analysis. 

The central technical result of this work, namely the exact 

yet simple organization of all contributions corresponding 

to classical physics into unitary factors, may have other 

important uses. 

* This work was supported by the Director, Office of 

Energy Research, Office of High Energy and Nuclear 

Physics, Division of High Energy Physics of the U.S. 

Department of Energy under Contract OE-AC03-76SF00098. 
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INTRODUCTION 

The well-known "infrared catastrophe" in quantum field theory 

consists of.the following fact: the electromagnetic corrections 

to the S-matrix are represented by integrals whose contributions 

from very soft photons often diverge. A way around this diffi-

1 
culty was indicated by Block and Nordsieck , who showed, in some 

simple cases, that these infrared-divergent contributions cancel 

out of the expressions for the observable probabilities, provi~ed 

the nonobservability of very soft photons is taken into account. 

The Block-Nordsieck observation has been generalized in a series of 

works that have culminated in the central work in this field, the 

paper.of Yennie, Frautschi, and Suura2·: These authors gave 

lengthy arguments to support their contention that all of the 

infrared-divergent contributions to the S-matrix can be collected 

into exponential factors that cancel out of the expressions for ob-

servable probabilities. However, at the end of a technical ap-

pendix to their paper YFS listed some of the difficulties with. 

.their arguments, and concluded that a rigorous proof of their con-

jecture would probably be prohibitively complicated. The dif-

ficulties with the YFS arguments are particularly serious when 

the S-matrix is evaluated at a singularity. 

The YFS infrared separation was used by Chung
3 

to define an 

infrared-finite S matrix: infrared finiteness was (presumably) 

achieved by incorporating the YFS infrared factor into coherent 

initial or final states. This infrared-finite S-matrix was 

examined by Storrow4 , Kibble 5 and Zwanziger
6

, who found that the 

pole singularity normally associated with a chareed stable particle was 

converted by the effects of soft photons to a nonpole form. 
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Such a change in the character of S-matrix singularities could be 

as catastrophic as the infrared divergence itself. For the character 

of singularities in momentum space determines asymptotic behavior in 

coordinate space. 7 •8 In particular, the pole singularity normally 

associated with stable particles is the unique momentum-space singu-

larity that gives the inverse-cube-law fall-off in spacetime that 

physically characterizes stable particles. Consequently, any modi

fication of the pole character of singularities associated with 

charged particles would jeopardize the ability of the theory to 

accomodate stable charged particles. This problem is the electro-

dynamic analog of the chromodynamic problem of confinement. 

This apparent disruption of the stability of charged particels 

has serious consequences. 5 6 It causes the apparent breakdown ' of 

the usual reduction formulas, which arise directly from the factori-

zation property of the pole singularities normally associated with 

stable particles. Morever, it upsets the connection between relati-

vistic quantum theory and the experimentally measured quantities. For 

the basis of this connection is, again, the factorization property 

of the pole singularities normally associated with stable particles. 

The difficulties arise from a breakdown of the YFS arguments at 

singularities. One important YFS assumption is that 

. .. "\ 
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(eikx_l) is of order k. For finite x this is true. But singularities 

are controlled by asymptotic limits in which x has passed to infinity. 

Thus the assumption is not valid at singularities. 

The purpose of this paper is to show how the infrared problem can 

be solved exactly, with all terms retained and compactly represented, 

by making essential use of coordinate space. That coordinate space 

should be needed is not surprizing. It was,recognized from the outset1 

that the infrared problem is essentially that of separating out the 

contributions corresponding to an appropriate classical electromagnetic 

radiation field. But classical fields are described in coordinate 

space, and so are their sources. Moreover, by staying in coordinate 

space one avoids integrations over the asymptotic spacetime regions 

that are, from the coordina~e space point of view, the source of the 

infrared problem. 

Examination of Storrow's calculation reveals clearly the specific 

difficulty with the momentum-space approach. To represent an appropriate 

classical contribution Storrow, following Chung, introduces a coherent 

state that corresponds (for small k) to the classical electromagnetic 

field radiated by a classical charged particle whose initial arid final 

velocities correspond to the momenta of the initial and final charge-

particle states of the scattering matrix. In momentum space no 

particular coordinate point is favored. Thus 'the point of intersection 

of the initial and final classical trajectories is placed arbitrarily 

at the origin: certain factors eikx are replaced by unity. This 

replacement is perhaps justifiable in certain situations, but 

certainly not on the singularity surface p
2 

m
2 

if the nature of the 

•• 1, t 
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singularity on this surface is the point at issue. For this momentum-

space singularity arises, via Fourier transformation, from those 

asymptotic coordinate-space regions that correspond to the physical 

possibility of a one-charged-particle-exchange-process in spacetime. 

It is the asymptotic rate of fall off of this spacetime process, that 

determines the nature of the singularity. 7•8 The electromagnetic 

field radiated by this classical one-charge-particle-exchange process 

has two parts: it consists of the (bremsstrahlung) radiation associated 

with the two separate deflections of the charged particle. ·These two 

deflections occur in two different spacetime regd.ons. The overlap between 

this physically relevant radiation field and the one used by· Storrow, in 

which both source regions are placed together at the. origin, vanishes in 

the asymptotic lin·it that determines the nature of the singularity. 

To deal adequately with this situation it is necessary to 

represent the sources of the electromagnetic field in coordinate 

space. Then one can introduce those classical fields, and the 

corresponding coherent states, whose spacetime source regions, are 

at--or at least near--the spacetime points where the charged-particle 

deflections occur. The radiation field must be tied in this way to 

the locations of the particle deflections if one wishes to calculate 

the physical rate of fall off. 

These considerations physically motivate the use of coordinate 

space. But what allows the problem to be neatly solved is the 

exceedingly simple way in which the classical and nonclassical 

contributions separate in coordinate space. 

Consider first a process involving no external charged particles. 

Let D be a Feynman diagram involving n neutral external particles, no 

> l 
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initial or final charged particles, no photons, and at least one 

external particle incident on every vertex. Let FD(x) = ~(x1 , ••. ,xn) 

be the Feynman coordinate-snace function corresponding to D. Let 

L(x) be the spacetime polygon(s) formed from the charged lines of D. 

The vertices of L(x) are placed at the points specified by x. ·D Let F (x) op 

be the (x-dependent) operator in photon space that represents the sum 

of FD(x) plus all corrections to it represented by diagrams D' con-

sisting of D plus any number of photon lines, each connected at one 

or both ends somewhere into the set of charged lines of D. Then one 

•D principal result is that F (x) can be expressed as follows: op 

tD (x) 
op 

- D U(L(x))F (x). opr (1.1) 

Here U(L(x)) is a simple well defined unitary operator in the space of 

photons. Acting on the photon vacuum it creates the coherent state 

that corresponds to the classical electromagnetic field radiated by 

the charged particles moving ( a la Feynman) around the spacetime 

polygon(s) L(x). 

-D The operator F (x) is a residual operator that is free of infraopr 

red problems. It is a sum of terms corresponding to D and the various 

diagrams D'. Each term can be transformed into momentum space with no 

infrared divergence. 

The basic formula (1.1) is obtained by separating each photon 

interaction (-iey) into its 'classical'' and "quantum" parts by means 
J1 

of formula (2.3) of Section 2. The unitary operator U(L(x)) 

represents the contribution of all "classical" photons. These are the 

photons that couple into the lines of D only via classical couplings. 
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The remaining photons are called quantum photons. They have a quantum 

coupling into a charged line of D on at least one end. Their contri

butions, together with the original function FD(x), give FD (x). 
opr 

Taking the photon momentum-space matrix elements and performing 

the Fourier transform x ~ q one obtains the momentum-space function 

<k' 1rD (q) lk">. In momentum space the quantum coupling takes a opr 

very simple form. To exhibit this form let 

G>'(p, k) 
p + m 

( - · Y ) P + ll + m (1 2) 
J.e >' 2 2 • • 2 2 

p - m + io (p + k) - m + io 

This function represents part of the original Feynman momentum-space 

function. Replacement of the original coupling (-iey) by the quantum 

" coupling replaces this function G.,(p, k) by 

1 
G (p, k) - J G (p + ak, o)da 

" " 0 

(1.3) 

This has one more power of k than G.,(p; k). This extra power of k 

eliminates the infrared divergences. 9 

The plan of the paper is as follows. The basic formula (1.1) is 

derived in Section 2. It is a simple consequence oj the Ward identity. 

Some general features of this formula are described in Section 3. The 

main point is that the connection to physics involves transition 

amplitudes, and these are expressed by folding the coordinate-space 

function F (x) directly into the coordinate-space wave functions 
opr 

of the external particles of D. Thus one never introduces the Fourier 

transform of the function F (x). The operator U(L(x)) is given a op 

simple, closed form in coordinate space, and is not transformed to 

t-!:_1,. ~'-
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-D 
The function F , on the other hand, can be computed opr 

momentum space. 

in momentum space, and then transformed into coordinate space. 

The contribution to FD that arise from diagrams D' # D are disopr 

cussed in Ref. 9. The present paper deals mainly with U(L(x))~(x). 

It is concerned with the contributions_ of the classical photons, which 

are the ones associated with the infrared divergences. 

In Section 4 the simple closed loop triangle diagram D of Fig. 1 

is considered. It is shown that when the function U(L(x))FD(x) is 

folded into the external particle wave functions, in order to obtain 

physical scattering amplitudes, the charged-particle loops are 

effectively confined to finite spacetime regions, and that, consequently, 

there are no infra-red divergences in these closed loop amplitudes. 

This provides a rigorous starting point: these closed-loop amplitudes 

are finite and well defined without infra red cut-off or fictitious 

photon mass. 

In Section 5 the coordinate-space procedure for obtaining ampli-

tudes with charged initial and final lines is discussed in general 

terms. The procedure starts with processes in which all charged parti-

cles are confined to closed loops. Then the wave packets of the exter-

nal particles are shifted to infinity in a way such'that certain partial 

processes are shifted to infinity. If the photons were not massless 

then the dominant asmptotic form in this limit would factorize into a 

product of separate factors. These factors can be identified as the 

scattering amplitudes for the separate subprocesses, once appropriate 

geometric fall-off factors are extracted. The program here is to show, 

with the aid of the basic formula, that this factorization result 

continues to hold also in the presence of interactions to all orders 

... ~ 
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with massless photons, and that the geometric fall off factors are 

exactly the same as for the case with no massless particles. This 

type of fall off corresponds to pole singularities, and to the fact 

that the charged particles propagate over macroscopic distances like 

stable particles. What must be shown, then, is that the dominant 

asymptotic term has exactly this factorized form, with the precise 

rate of fall off that corresponds to stable charged particles, and 

that the residual factors are finite. These residual factors define 

the scattering amplitudes for processes with charged-particle external 

lines. 

Section 6 describes the mathematical details of the canonical 

connection between the notion of a stable physical particle, as charac-

terized by macroscopic ·spacetime behavior·, and the pole singularity 

( 2 2 -1 
· p - m + io) • This connection has been mentioned repeatedly in 

this introduction, and is basic to the present work. 

The main results are in Section 7. The aim is to show that the 

spacetime behavior that is normally associated with the pole singu

larity, and that characterizes stable physical particles, is not 

disrupted by the classical photons and that, consequently, the 

amplitudes associated with processes involving charged initial and 

final particles can be extracted from the asymptotic limits of 

amplitudes for processes in which all charged particles are confined 

to closed loops. Specifically,one begins with a transition amplitude 

A(X) = A(X
1

, x
2

, x
3

) associated the diagram D of Fig. 1, in which 

the charged particle is confined to a closed loop. The coordinate

space wave functions of the external particles effectively confine 

the three vertices at x
1

, x
2

, and x
3 

to finite neighborhoods of 

't ( 
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the external-x1 , X2 and x3 • A scaling Xi~ AXi is then introduced: 

particle wave functions are shifted to infinity as A ~ oo, The two 

external-particle wave functions associated with each individual 

vertex i are translated together by the amount (A - l)Xi. 

In the absence of photons the limit 

lim(A9 / 2)A(AX) 
A ~ oo 

cA1A2A3 , (1.4) 

with an appropriate constant c, defines the amplitudes A1 , A2 , and A3 

associated with the three vertices of D. 

To show that this limit exists and factorizes also in the 

presence of the classical photons one may separate U(L(x)) into 
. Q 

factors Un(L(x)) and U (L(x)) that act nontrivially on the photons 

states constructed from photons whose momentum-energy vector k lies 

either insideoroutside a small neighborhood n of the point k = 0, 

respectively. Then 

n U(L(x)) = UQ(L(x))U (L(x)) 

u n(L( (J{)Un(L(x)) 

+ U n(L( AX)) [U~l (L( AX)) U Q(L(x)) -l]Un(L(x)) 

(1.5) 

Very soft photons are not detected. Hence for sufficiently small 

Q the contribution to the probability from the leading factor Un(L{AX)), 

in (1.5) occurs in the expression for the probability in the com

bination U~(L{AX))UQ(L{)J{)) = 1. This means that for sufficiently 

small Q the contributions to the probability arising from the first 

term in (1.5) alone has no contribution at all from the classical 



11 

photons with k in n. On the other hand, the effect of the coordinate-

space wave functions of the initial and final particles effectively 

confines x (x1 , x2 , x3) to a neighborhood of AX. This has the 

consequence, proved in Appendix B, that the contributions to the 

probability involving the second term in (1.5) can be made an 

arbitrarily small fraction of the contribution from the first term 

of (1.5), by making n sufficiently small. For the norm of 

[u;\L(AX))Un(L(x))-1] 

effectively approaches zero. Thus the contributions to the transition 

probability from the classical photons with k in n can be made 

arbitrarily small by making n sufficiently small. 

Because the contributions of quantum photons with k in n becomes 

vanishing small with n almost the entire contribution to the probability 

from photons with k in a sufficiently small n comes from the single 

final state Un(L(AX)) lvac>. This is physically reasonable: this is 

the coherent state that corresponds to the classical electro-magnetic 

field radiated by a charged particle traveling (.1 la Feynman) around 

L(AX). If one wishes to deal with coherent-sta:te amplitudes that give 

the bulk of the contribution to the probability then one should use this 

state as the basic coherent state from which the other states are 

constructed. The infrared finiteness of these amplitudes is assured 

by essentially the same argument that ensures the infrared finiteness 

of the probabilities. 

The question of factorization must be examined. The factorization 

of the contributions arising from the factor F alone is assured by opr 

'· \ t.: 
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its infrared finiteness. The factorization of the part of 

lim~ 12A(AX) arising from the classical-photon factor U(L(x)) must 

be proved. 

The factor U(L(x)) has the form 

* . * U(L(x)) exp <a •J(L(x))> exp <-J (L(x))•a> 

1 * . 4 . -4 2 
exp[- 2 f<= J (L(x)) • J(L(x))>d k(2rr) (k 

-1 + io) ] , 

where 
(1.6) 

J (L(x)) = - ie J dx'eikx 
1 

~ L(x) ~ 

3 z . ikxi ikxi-l 
~ ....!!:!. ( - e z. •k e - e- ) 

i=l 1 

3 ikxi zi zi+l,l! - e ~ e (~ - ·k ) • (1.7) 
i=l zi•k zi+l,~ 

In the third line of (1.7) the current operator is expressed as a 

sum of contributions associated with the three vertices. Thus 

U(L(x)) can be expressed as ·a product of three factors, one associated 

with each onhe three vertices, times a factor containing the cross 

terms. To prove factorization it is necessary to show that contri

butions arising from the cross terms fall of faster than A-912 • 

Since the factor F already gives a factor A-912 it is necessary 
opr 

only to exhibit some additional fall off of the cross terms. 

Fall off of the cross terms is exhibited first in a context in 

which one ignores the contribution from photons with k in some 

region n chosen small enough so that the ignored contributions give 

negligible relative contribution to the transition probabilities. 

But the more important factorization result deals the amplitude Ac(AX) 

t 
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obtained by introducing the appropriate coherent state, so that the 

amplitude itself is well defined even when Q is contracted to the 

point k = 0. These amplitudes are also shown to factorize: 

9/2 c c c c 
lim). AOX) = A

1
A

2
A

3
• The separate factors are independent of 

the closed loop process from which they are extracted. They can 

be identified as the scattering functions for processes with charged 

external particles. In this asymptot lc expression there are no contri-

butions from classical photons that are emitted at one of the three 

vertices and absorbed at another: all such cross terms drop out of 

the asymptotic limit. 

. Explicit closed expressions are derived for the full classical 

- c . 
photon contributions to each function Ai' both in the special case 

corresponding to diagram D of Fig. 1, and in the general case. These 

contributions arise from the fact that the coordinate-space variables 

corresponding to the vertices of the Feynman diagram representing 

subprocess i will, in general, not all lie exactly at the point ).Xi 

used in the definition of the coherent state associated with this sub-

process. These expressions, together with the expressions for the 

quantum-photon contributions derived in paper II, give compact 

infrared-finite expressions for the scattering amplitudes of process 

with initial and final charged particles evaluated away from singu

larities. Thus the method described here, though developed to deal 

with the delicate situations that arise at singularities, provides 

a simple resolution of the infrared problem also away from singu-

larities. 

' I 
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2. THE BASIC FORMULA 

Consider first the coordinate-space Feynman amplitude 

corresponding to a strong-interaction diagram D. Suppose the 

1 
internal lines correspond to a charged, spin- 2 particle closed 

loop. The Feynman amplitude then has the form 

where x0 

D 
F (xl, ... , xn) 

n 

- FD(x) = Tr n Vi(iSF(xi, xi-1)), 
i=l 

xn' the Vi are strong-interaction vertex parts, and 

iSF(xi' xi-1) if 
4 

d pi 
-----zl 
(21T) 

-ipi (xi-xi-1) 
e 

1\_-m+iO 

(2.1) 

(2.2) 

Associated with this function there is a spacetime closed loop L(x) = 

L-(xi, ••• , xn), which is the n-sided spacetime polygon with cyclically 

ordered vertices located at the cyclically ordered· set of points x = 

(xi, ••• ' xn). 
D 

The electro-magnetic corrections to the function F (x) are now 

considered. A typical correction will be represented by a Feynman 

diagram having many photon lines incident on each of the n internal 

line segments of D. The photon coupling at any vertex that lies on 

the portion of the charged line of D that runs between xi-l and xi 

is now separated into its "classical" and "quantum" parts by the 

equation 

-ieyll 
i i 

C (k., zi) + Q (k., z.), 
ll J ll J ~ 

(2.3) 
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where e is the e.m. coupling constant and 

i 
CJ.l (kj, zi) ie z. l(. (z. •k.)-1 . 

~J.l J ~ J 
(2.4) 

Here 

zi = xi - xi-1' (2.5) 

and·k. is the momentum-energy of the associated photon. 
J 

Consider now the part of the Feynman diagram D corresponding to 

the original line segment i, which runs from xi-l to xi. Suppose 

mi external photons with quantum couplings Qi (k., z.)(j =a, b, ••• ), 
J.lj J ~ 

are connected in the order (a, b, ••• ) into this line segment i. 

There is a new coordinate variable x., jE(a, b, ••• ), for each 
J 

inserted photon. Integration over these new coordinate variables x. 
J 

yields a function of xi and xi-l' and of the momenta kj and spin 

indices v. of them. photons. For example, if m. = 2 then this 
. J ~ ~ 

function is 

G(xi, xi-1; ka' va' 

4 

fd pi 

~· 'b) = (211) 4 

-ipixi+i(pi+ka+~)xi-1 
e 

(2 .6) 

i i i i i 
x -<.-m Q (ka' zi) p.+~ -m Qv. (~, zi) p.+~ +If. -m • 

P~ va ~ a o ~ a ·o 

This function with the variables ka' ~· va' and ~ associated with 

the two photons a and b suppressed will be represented by the symbol 

G(2) (xi, xi-1). 
~J 

For arbitrary mi the function G (xi, xi-l) is the natural 

generalization of the expression in (2.6) to the case where the 

ordered set (a, b, .•• ) has mi elements. 

(' () .. ~. 
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(m .) 
Consider next the function G ~ (x., x. 

1
) and the corrections 

~ ~-

to it associated with the classical coupling into the line segment i 

of D of a photon with momentum-energy k and spin index J.l· This line 

contains already mi couplings of Q type. The classical coupling can 

be inserted into any one of the mi + 1 segments into which line 

segment i is separated by these mi couplings of Q type. The sum 

of the Feynman functions corresponding these mi + 1 different possible 

insertions of this classical coupling Ci(k., z.) into line segment i 
J.l J ~ 

is 
mi+l (mi) 

~ G (xi' 
s=l J.lS . xi-1' 

(m .) 
k) = G ~ (xi, x. 1 , k) . J.l ~-

(m.) 
G ~ (xi, 

[

-e z ill ikxi ikxi-l ] 
xi-1) k•zi (e -e ) ' (2. 7) 

where k•z = kllz = kz, etc., and the variables associated with the 
J.l 

photon quantum interactions are still suppressed. This result (2.7) 

is a simple consequence of the Ward identity 

i . i i i 
p-m ( ~l() p+l(-m = p+l(-m - p-m (2.8) 

Equation (2.7) can also be expressed in the more compact form 

(mi) 
GJ.l (xi, xi-l' k) f

xi 

xi-l)~ie dx eikx 
X \l • 
i-1 

(m.) 
G ~ (xi' 

(2. 9) 

Consider next any Feynman diagram D' obtained by attaching into 

each line segment i of D a set of mi photon lines. Each 

photon line of D' is required to begin or end on a Q-type vertex lying 

on one of the n segments of D. The Feynman function corresponding to 

'! ~ 
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D' can be expressed as 

D' n (mi) 
F (x) = Tr II V .G (xi, xi-l) • 

i=l ]. 
(2.10) 

where the momentum-energy variables (kj, vj) associated with the photons 

of D' are suppressed. 

A photon line with classical coupling may now be inserted 

into any one of the mi+ 1 segments of any one of the n original 

line segments of D. The sum of the Feynman functions corresponding 

to all of these ways of inserting the classical coupling is, by 

virtue of (2.9), simply 

1.: FD' ,s(x, kl) 
s Ill . 

D' D' £ ik x F (x, ~) = F (x) €-ie) . dx e 1 
Ill (x) Ill 

_ FD' (x)J (~(x), ~). 
Ill 

(2.11) 

'f_hat is, the sum of the Feynman functions corresponding to all ways 

of classically coupling a photon of momentum-energy k1 and vector 

component Ill inbO the closed loop L(x) of D' is simply the produc~ of 

the original function FD
1

(x)with ~i~ times the line integral of e
1

~~x 
around then-sided spacetime polygon L(x). 

Let the total number of photon -couplings in D' in the above 

calculation be m = ~m .• Then the sum overs on the left-hand side of 
]. 

(2.11) is a sum over m + n terms, each of which is represented by a 

diagram with m + n + 1 intervals. A second photon, of momentum k2 

and spin component \l
2 

can be classically coupled into this collection 

in (m + n) (m + n + 1) different ways. The sum of the Feynman 

Ill 

, .. -, .. 
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functions corresponding to all of these (m·+ n) (m + n + 1) ways of 

classically coupling the second photon is 

I I 

~ FD ,s (x, k
1

, k
2

) = FD (x, k
1

, k
2

) 
s \ll\)2 \ll\l2 

D' 2 ( ikl xij ik2xZ 
= F (x)He) ) 1L( )dx' 1 e dx2' e . (2.12) 

x Ill L(x) \l2 

More generally, the sum of the Feynman functions corresponding 

to all possible ways of classically coupling a set of N photons into 

any fixed diagram D' that is constructed from D by the addition of photon 

lines that couple into the loop L(x) of. D is 

D' 
·F (x, k1 , ••• , ~) 

Ill ••. liN 

D' N N J( 
F (x) He) II dxj_ e 

i=l · L(x) 11 i 

_ FD(x) 
N 

II J (L(x), ki). 
i=l \li 

ikixj_ 

(2.13) 

This result follows directly from the Ward identity (2.6). 

Suppose now a photon is emitted with classical coupling from 

some point on the Fermion closed loop in D' and is absol7bed with 

classical coupling on some other point on this loop. Summing over 

all possible line segments of D' upon which the two ends of the 

photon line can begin and end, and dividing by two to compensate for 

a double counting, one obtains the contribution to the Feynman 
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function 

liFD
1 

(x) 2! . I e d I ~ FD (x) (- 2) L(x) xll f dx~~ ~4k 4 
L(x) , (2n) 

-ik(x 1 -x") 
i _e__ ~\lV) 

k2+i£ 

01 2! 1 · F (x) (~) dx 1 •dx" iD (x 1 -x 1
'), 

2 L(x) L(x) F 
(2.14) 

where DF is the scalar part of the Feynman photon propagator. Its real 
2 -1 

part, which comes from the principal-value part of .DF(k) = - (k + i£) , 

is 
. 1 2 

Re DF(x'- x") = 4n o((x 1
- x") ). (2 .15) 

. ·D 1 D1 D1 

This gives a "Cou:lomb" con:tribut;ion: liC,F to liF that is F (x) times 

fci>{L(x))= iHe) 
2! f dx 1 •dx" a ( (x 1 -x") 

2
). 

Sn L(x) L(x) 
(2 .16) 

The factor ~(L(x)) is the classical action corresponding to the 

motion of the charged particles along the spacetime paths defined 

by the polygon L(x). 

The contribution from the effect of m such photons, is just 

D' ( )m -1 F (x) i~{L(x)) /m!, where the factor (m!) compensates for 

multiple overcounting. 
Dl 

Thus the sum of F and all these Coulomb 

corrections to it is just 

F0 (x) 
c 

Dl 
F (x) exp i ~{L(x)). (2.17) 

Tills if a classical photon is defined to be a photon that couples into 

L only via the classical interaction then the net effect of all of 

•' 1~-

2o· 

all of the virtual classical photons is s.imply to multiply the 

D' 
original function F (x) by the Coulomb phase factor exp H(L(x)) 

associated with the polygon L(x). 

The real (as opposed to virtual) classical photons correspond to 

the term no(k
2

) in i ~(k) = i(k
2 + i £) -l. The real classical photons that 

are both emitted and absorbed on the clos.ed loop L(x) give a contribution 

to (2.14) of the form 

'\_Fo
1 

(x) 

D' lfd
4

k + 2. * JlV F (x)exp - 2 --4 2no (k )J {L(x), k)(-g )J (LCx~k) 
(2n) · ll v 

where 

and 

D' 1 * - F (x) exp - 2 <J (L(x)) • J(L(x)) > , 

.s+ck2) e<~<0> aCk
2

) 

Jll(L(x), k)) =-ief dx' eikx' 
L(x) J.l 

* - J (L(x), - k) 
\l 

J(L(x), - k) . 
)J 

(2.18) 

(2 .19) 

(2.20) 
In the final line of (2.18) a bracket notations similar to Kibble's is 

introduced. 

Real photons with classical couplings can also be emitted and 

absorbed from the charged-fermion loop. It is convenient to consider 

the S-matrix to be an operator in the space of the external photons. 

The photon emitted by the classical photon coupling to the closed 

loop L(x) is created by the operator 

.... 
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* fd
4

k + 2 * a (L(x)) = ------4 2no (k )a (k)(-g~v)J (L(x), k) 
(2n) ~ v 

* =:<a • J(L(x)) >. (2.21) 

If M such photons are created then the operator that creates the 

< * >M -1 -1 final state is a •J(L) (M!) , where the factor (M!) compensates 

forcan overcounting of Feynman diagrams. Thus the operator that 

creates the full set of final photon states ogenerated by the classical 

coupling to the fermion closed loop L is 

C(L) * exp <a ·J(L) > . (2.22) 

Similarly, the operator that annihilates the set of initial photons 

that are absorbed by the classical coupling to the closed loop L is 

* c 

A(L) = exp - < J (L)• a >. (2 .23) 

D The full Feynman operator function corresponding to F (x) plus 

all electromagnetic corrections associated with Feynman diagrams 

that have no charged lines other than the loop L(x) is, therefore, 

pD (x) 
op 

* * <a •J(L(x)) >FD (x)e -<a•J (L(x)) > 
e op 

1 * i~(L(x)) - 2 <J (L(x))•J(L(x)) > . 
x e 

(2.24a) 

-D D' D' 
Here F (x) = ~F (x) is the sum of photon-space operators F (x) op op op 

that corresponds to the set of all Feynman diagrams D' that can be 

constructed by connecting onto the n internal line segments of D 

.c' It 
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some combination of photon lines, with, however, the condition that 

each photon line must be coupled at one end or the other into some 

internal line segment i of D with a quantum coupling Qt(kj•xi). The 

D' 
operator F (x) corresponding to D' is constructed from the corres

op 
D' 

pending Feynman function F (x, k
1

, ... , km) by the formula 

FD' (x) 
op 

4 c 

f m d k 2 -
IT ~ (2n)O(k.)a(kj): 4 J j=l (2n) 

c D' 
x F (x, k1 , ••• , km), (2 .24b) 

where a(k.) 
J 

t a(-kj) = a (kj) creates a photon of momentum-energy 

kj if k; > o, and the two colons imply a WiC.k normal-ordering of the 

product of operator a(kj) that they enclose. 

As our interest is in infrared crather than ultraviolet problems 

we shall multiply J~ (L(x) , k) by e(2K - ik
0

j)e(K - lkl), where 

K is some very large number. This cut-off factor will, £or example, 

2 replace the factor o((x
1

- x
2
)) that arises from (2.14), and that 

occurs in (2 .15), by its non-ultraviolet part, and will 

render all quantities occurring in the above formula (2 .24) well 

defined. 



23 

-DO -D ( ) Let F (L(x)) be the part of the operator F L(x) of (2.24) op · op 

that comes from the original part FDcx) of the operator FD (x). 
op 

Introducing, for any function f(k), the notation f(k) = f(-k) one 

obtains from formula (2. 24) 

:FD0(x) = ~(x) 
op 

x. exp<a·J(L(x))>x. exp < J(L(x)) ·a> 

x. exp t <J(L(x)) • J(L(x)) > 

Consider 

x. exp i4> (L(x)) 

next 

D F (x) U(L(x)), 

-Dl the part F [w
1

, ... , op 

(2.25) 

WN] of 
-D 
Fop[wl, .•• , wNJ 

in (2.24) that comes -D from the part of F (x) 
op 

that corresponds to 

diagrams D' having exactly one quantum coupling. The sum of the 

terms FD' (x) of (2.24b) over all diagrams D' having a single quantum 
op 

coupling to an external photon line(and no other photon coupling) is 

~'FD' (x) 
op 

~·J d4
k 4 2no(k2) a(k)FD' (x, k) 

(2n) 

= < a . Q > + < Q • a >, (2 .26) 

where the first and second terms on the right-hand side of ( 4.5) 

correspond to the first and second terms in 

2no(k2) 2no+(k) + 2no-(k), (2.27) 

respectively. 

The operator Fm (x) arising from the. sum of FD' (x) over all D~ 
op op 

having exactly one quantum coupling is then 

; ' -~ 
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-Dl <- > <- > 1 - . > 1 - -F (x) = a•Q + Q·a +-<J·Q +-2 <Q·J>+ i<J·Q> , op 2 pv 

(2.28) 

where the last three terms come the diagrams D' that have a photon 

line with one quantum coupling to L(x) and one classical coupling 

to L(x), and 

< J.q > . pv Jd
4

k 
P.V. -)4 

(2n 

J (k)(-gll\I)Q (k) 
JJ \) 

k2 

where E~ stands for principal value. 

(2. 29) 

The basic formula (2.24) can be written in the slightly more 

convenient form 

FD (x) 
op 

exp<a•J>F,D (x)exp<}•a > exp(l<}·J> + i4>) 
~ 2 ' 

where J = J(L(x)) and 4> = 4>(L(x)). 

(2 .30) 

The term <.Q•a>in (2.28) connnutes 

through exp<}·a >, but< a·Q>does not: 

[exp<J, a>,<~, Q >) < J, Q > exp <j, a >. 

-D -Dl 
Thus the part of F (x) coming from F (x) is op op 

-nl - -F (x) = exp <a•J >exp <J·a > 
op 

x.exp cl
2

<:J·J >+ i4>)(·Fn1 cx) _ <:J·q >) 
- op 

(?.31) 

( ( 2· 32) continued on next page) 

K. 
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u(L(x) )(<a·Q > + <Q·a > -.!. < J·Q > +.!. < Q·J > 2 2 

+ i<J·Q> ). pv 
(2.32) 

Note that the sign of the contribution associated with the 

emission of a real (as opposed to virtual) photon from a quantum 

coupling to L(x), and its subsequent absorption by the classical 

coupling to L(x), has been reversed. This reversal of sign is 

represented by the following change of the feynman denominator 

associated with the propagation of the Q-C photon: 

k
2 + ie + (k

0 + ie)
2 

- 1~1 2 
. (2.33) 

Here k is the momentum-energy of the photon emitted by the quantum 

coupling and absorbed by the classical coupling. Thus (5.11) can be 

written in the form 

r>l(x) 
op 

( ) -Dl U L(xl F (x), opr 
(2.34) 

where the subscript r stands for the retarded character of the 

propagator _'_in 

FDl(x) 
opr 

< a•Q(L(x)) > + <Q(L(x)) •a > 

+ ifdk4 1i{L(x) ,k)(-gll")Qv(L(x) ,k). 

(2n) 4 (k0+iE) 2-Ik[2 (2 :35) 

"'-
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This result can be extended immediately to the contributions 

-D ( to F x) with arbitrary numbers of quantum couplings. op One obtains. 

:F0 (x) 
op U(L(x))F0 (x) 

opr 

-D where F (x) is the same as the opr 
D' 

F (x1 ,k
1

, .•• ,~) is replaced by 

-D . 
F (x) in (2.24b) 

op 
D' 

F (x, k
1

, ••• ,k ), 
r m 

(2 .36) 

except that each 

which is calculated 

from the Feynman rules modified by the change in denominator shown in 

(5.13) and (5.14) for each photon line that links a quantum coupling 

to L(x) to a classical coupling to L(x). This is our basic formula. 
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3. FEATURES OF THE BASIC FORMULA 

In this section some general features of the basic formula 

(2.36) are discussed. 

3.1. Isolation of Infrared Problems. 

A principal result of this work, and the paper that follows,
9 

is that the infrared problems are confined to the operator 

U(L(x)) that appears in(2.36): the residual effects involving 

quantum couplings produce no infrared divergences. 

3.2. Connection to Physics. 

For clarity of presentation the strong-interaction diagram D will 

often be taken to be the simple one illustrated in Fig. 1. 

5- "f= - ::t3 _ .. -6 

~ ~ _1 ., . --· ' -- ......... 
-- " 2 ')C. .... ~ 3- 2 .1 '2 

Figure 1 A simple strong-interaction 

diagram D. The dotted external lines 

represent neutral particles. The solid 

triangle corresponds to L(x) = L(x1 ,x2 ,x3). 

. ' f: 
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The quantity FD {x) given in 
op (2.36) is an operator in the 

photon space. It is connected to physics via the transition operator 

TD [w , ••• , wN], which is obtained by.folding into FD (x) the wave 
op 1 op 

functions w. (x.) of the initial and final particles of the strong
J J 

interaction process represented by diagram D. If j specifies a 

final particle then w.(x.) is the complex conjugate of the usual 
---- J J 

wave function of this particle. Thus 

D ~n 4 N D 
T tiPr···· ~J = n d x. n w.Cx.(.))F (x), 

op i=l 1 j=l J 1 J op 
(3 .1) 

wherei(j) is the label of the vertex i upon which external line j of 

D is incident. 

3.3. Connection to Classical Physics. 

The operator U(L(x)) .in (2.36) is closely connected to 

classical physics. The phase $(L(x)) is the contribution to the 

classical action from the motion,~ la Feyrunan, of a classical charged 

particle around the closed spacetime L(x). The other three 

exponential factors combine to give a unitary operator which, when 

acting on the photon vacuum, creates a coherent photon state. This 

coherent state is the one associated with the classical electromagnetic 

field radiated by a charged particle moving around the closed 

spacetime loop L(x). These results follow from Kibble's 

formula (15), in the first Ref. 5. 

3.4 Exactness of Basic Formula. 

Formula (2.36) is exact. No soft-photon approximation--or any 

... 
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other approximation--has been used to reorganize the photon 

contributions. into the form (2. 36), in which the infrared problems 

are confined to exponentials related to classical physics. 

•• .. 
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4. SMALLNESS OF THE SOFT-PHOTON CONTRIBUTIONS 

IN CERTAIN SIMPLE SITUATIONS 

D The transition operator T [w1 , .••• wNl is calculated by folding op . 
·D the initial and final wave functions w.(x.)intotheoperator F (x) of 

J r op 

(2.36). The detailed properties of the contributions to FD (x) that 
op 

come from the diagrams D'~ D will be examined later, in paper II. 

DO 
Thus we shall concentrate here on the part T

0
p[w1 , •.. ,wN] of 

D D -D 
T [w1 , .•. ,wNl that arises from the part F (x) ofF (x). Because op op 

all the contributions to T~~[w1 , ••• ,wN] have very simple forms it 

is easy to obtain rigorous bounds on the magnitudes of various 

specified contributions to it. 

We shall suppose that the w.(p) are infinitely differentiable 
J 

functions of compact support. Then for each external particle j there 

will be a "dominant region", in which llf!j (x)l can be appreciable, and 

a "tail region", in which jwj (x) I is very small and falling off faster 

than any inverse power of the spatial distance from the dominant region. 

(See reference 7 for discussions of these properties) 

In calculating the transition amplitude the coordinate-space 

wave function wj(xj) is evaluated at the point ~j = xi(j)' where 

i(j) is the vertex of D upon which external line j of D is incident. 

Consider, for definiteness, the diagram D of Fig. 1, and the 

DO 
corresponding transition amplitude T

0
p[w1 , • • ·, w6J • 
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Suppose the supports of the six wave functions in p./p? space 
1 1 

are disjoint. Then the dominant regions associated with the six 

wave functions will be asymptotically disjoint. In particular, the 

maximum of the absolute value of the product of any two wave functions 

in the region lying outside a ball of Euclidean radius R centered 

at the origin will fall off faster than any power of R-l Consequently 

the contribution to T~~[1)1 1 , •.• , 1)1 6] from very soft photons is 

negligible. 

To see this let Q(b) be the k-space region 

n(b) = {k; lk
0 

1 .;;; 2b, 11tl.;;;b }. (4 .1) 

And let Un(L(x)) be the operator U(L(x)) with all k integrations 

restricted to the region Q(b). The difference between U (L(x)) and n 
the value it would have if there were no contributions at all from 

kEn photons is Un(L(x))- 1. Hence the contribution to T~~[1)1 1 , ••• ,1j1 6J 

from the k£Q photons is 

TD0[1j11, .•• ,1j16]Q op 

=I dxldx2dx31jll (xl)1j12(xl) 

1j13(x2) 1j14(x2) 1jJS(x3) 1j16(x3) 

(un(L(x1 ,x2 ,x3)) - 1) FD(xl'~'x3 ). 

'' i 

(4 .2) 
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Let R(R) represent the x-space region 

R(R) = {x;lxiiEucl .;;;R, i£{1,2,3}}. (4.3) 

. DO . DO R 
And def10e T

0
p[1)11 , ••• 1j1 6]n,Rand T

0
p[1j11 , ••• ,1j16]n to be the parts of 

TDO[ 1)11 , .•• ,1)16] arising from the integration regions x£R and xiR, 
op n 

respectively. 

The unitary operator Un(L(x)) has unit nonn. Hence for every b 

the norm of UQ(b) (L(x))- 1 satisfies 

lun(b) (L{x)) - 11.;;;2. (4.4) 

The ultraviolet cut-off ensures that the functions lsF(xi - xi-l) I 

are bounded, Hence IFD(x) I is bounded: 

IFD(x) l.;;;c. (4 .5) 

-1 These two bounds, and the faster than any power of R fall off of 

the maximum of the absolute value of the product of any two wave 

functions ensures that the norm of 

DO R(R) 
ToP[ljll' • • • ,1j16]Q(b) 

-1 falls off faster than any power of R • Hence for any£> O,however 

small, there is an R = R(£) such that for all b 

I 
DO R(R(£)) 

Top[ljll' • .. ,1)16] Q{b) I < s./ 2 • (4. 6) 

.. "' 
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Consider next the remaining part T~~ [ 1/!l, • · • •1/161 Q(b)oR(R(E)). 
-1 

Take b.<< R(E) • Then the exponential factor exp i kx' in (.2 .20) 

is close to unity, and its integral around the closed loop L(x) 

enj~ys a bound of the form 

. !J 
11

(L(x), k) I < ckR
2

• (4. 7) 

0 . 
Insertion of this bound into (2 .14}, with the k - contour· distorted 

into a semi-cirle of radius 2b, gives for the absolute value of 

2 
e /2 times the integral (2.14) .a bound 

c'(bR)
4 

<< 1, (4.8) 

where c' is some constant. Exponentiation preserves essentially this 

bound: for sufficiently sm~ll b 

I< olun(b)(L(x))- llo >I (2c"(bR)
4

• (4 .9) 

Here I 0 > is the photon vacuum. 
. . D . 
The boundedness ofF (x

1
,x

2
,x

3
) 

then ensures that for some sufficiently small 

b = b(E, R(E)) = b(E) > 0 

the following bound holds: 

I < 0 IT:[l/11, • •• ,1/!6ln(b(E)), R(R{E)) Ia >I< E:/2. <4 ·10> 

'' "' 
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This result, combined with (4.6), shows that forE> O,however small, 

there is a b(E) such that 

I DO 
I< 0 Top[1/!1, ... ,1/J6ln(b(E))I 0 >I<E:. (4.11) 

In other words, the contribution to the transition amplitude 

DO 
T

0
p[1/!1 , ..• ,1/J61 from the very soft photons kEfl(b) can be made 

arbitrarily small by choosing b sufficiently small. 
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5. DISCUSSION OF INFRARED DIVERGENCES 

True infrared divergences do not arise if all charged 

particles are confined to finite spacetime closed loops. This 

fact is exploited in the procedure adopted above: the expressions 

are made free of infr&red divergences, and hence amenable to 

rigorous mathematical analysis, by considering transition 

amplitudes corresponding to processes in which the charged-

particles are confined to closed loops, which are kept effectively 

finite by the damping provided by the wave functions W.(x) of the 
J 

initial and final particles. 

Infrared divergences traditionally arise in processes in 

which some of the initial or final particles are charged: the 

momenta of initial and final particles are then restricted by mass-

shell constraints, which cause the singularities of certain Feynman 

denominators at k = 0 to produce divergences. 

One may, of course, consider all charged particles in the 

universe to be confined to closed loops. In a certain narrow 

technical sense this would solve the infrared divergence problem: 

there would be no strict divergences of TD [ w
1

, ... , $ l· for the entire op n 

universe. But this is not a physically adequate solution of the 

problem, for the following reason: the closed loops, though finite, 

* will be huge, and the factors ~(L(x)) and< J (L(x)) • J(L(x))> both 

diverge logarithmically under dilation of the closed loop. Thus for 

loops the size· of the universe these quantities are, for all 

practical purposes, infinite. No predictions about laboratory 

phemomena should depend on such numbers. The theory, to be useful, 

( 
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must allow the predictions about local phenomena to depend only on 

local specifications, not on the detailed ancient history of the 

particular electrons that are being used in some experiment. Some 

factorization is required to extract the local aspects. 

Usually this factorization is achieved by means of the pole-

factorization property. In the absence of massless particles one 

can show that if the sources of various particles are far away from 

a certain reaction among these particles then the only significant 

part of the larger process that includes also the sources comes 

from the residues of the pole-singularities associated with the 

exchanged particles. The net residue is a product of separate factors, 

one for each source and one for the interaction. In this way the 

descriptions of the sources of the particles of the reaction can be 

effectively separated from the description of the reaction among them. 

Were it not for this pole-factorization property, or some similar 

property, the whole universe would have to be considered as a unit. 

The residue of the pole is evaluated by restricting the exchanged 

particles to the mass-shell. But a restriction of a charged particle 

to its mass-she~l brings us back to the traditional infrared 

d.ivergences. Thus the procedure of starting from a universe in which 

all particles are confined to closed loops does not, without further 

analysis, solve the problem. One must establish the requisite factori-

zation properties, which are in any case needed for a satisfactory theory 

of particles, and must confirm that the residues are finite. These 

residues will represent the amplitudes for processes with charged 

external particles. We now proceed to those tasks. 

'. ,,. 
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6. SPACETIME POLE-FACTORIZATION PROPERTY 

Suppose the initial and final momentum-energies of a many-

particle reaction are related in a manner that permits a classical 

one-particle-exchange process of the kind shown in Fig. 2. 

1 8 

2 
6 

5 

4 

Figure 2. A one-particle exchange process. 

Momentum energy is conserved in each of the 

two subprocess, and the intermediate particle 

momentum is denoted by p. 

The Feynman rules ensure that the 

scattering function of .the overall process will have a pole-type 

2 2 -1 singularity i2m(p - m + iO) , and that the residue of this pole 

is simply the product of the scattering amplitudes associated with 

the two subprocess. The "discontinuity'' associated with the p"ole is 

the difference of the boundary values from the upper and lower 

half-planes in p2 , and is therefore 2no(p
2

- m
2

)2m times the product 

of the scattering functions of the two subprocesses. 

The pole character of this singularity and the fact that the 

,, ' • 
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residue factorizes in this way is crucial to the interpretation of 

quantum theo~y. It insures that stable partic~es behave as stable 

particles should. Suppose, for example, that we fold-in the wave 

functions of the initial and· final particles of the overall reaction. 

Then the first (lower) interaction can be regarded as a subreaction 

in which a particle of mass m is produced, and the second interaction 

can be regarded as a subreaction in which this particle is detected. 

If these two subreactions are far apart then the rate at which the 

transition probability decreases as the two subreactions are moved 

further apart must be in accord with classical ideas about the flux 

of stable particles emerging from a source that is small in comparison 

to the large distance between the source and the detector. 

If we take the momentum-space wave functions of the initial and 

final particles of the overall process to be infinitely differentiable 

functions of small compact support, and if the scattering functions 

for the two subprocesses are non-singular in the regions defined by 

these small compact supports,then the scattering function 

f 1 (p, p3 , p4 ,- p5,- p 6) of the first subprocess folded into .the 

wave functions ~3 (p3) ~4 (p4) <P_5 (p5) cp6 (p6) of this subprocess will 

give an infinitely differentiable and compactly supported wave function 

w
1

(p) of the parti~le produced in this first subreaction. Similarly, 

the scattering function f 2 (p1 , p2 , - p, - P7• - p8) of the second 

process folded into the wave functions $1 (p1)~2 (p2 )cp 7 (p7 )cp(p8 ) of 

this subprocess will give an infinitely differentiable and compactly 

supported wave. function w2 (- p) = $2 (p) of the particle detected at 

the second reaction. Thus the transition amplitude associated with 

the preparation of a particle represented by wave function w1 (p), and 
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the subsequent detection of a particle represented by (complex con-

jugated) wave function ~2(p), namely 

- f d
4 

- + 2 2 . < w2 ·w1 >= ~ w2 Cp)2rro (p - m )2m '11 (p), (6.1) 
(2rr) 

is equal to the result of folding the wave functions cj>j (j = 1' •.• 6) 

of the external particles of the overall reaction into the discontinuity 

2rro(p2 - m
2

)2m of the overall scattering function •. 

We are interested in the dependence of this amplitude on the 

location of the detector. Thus we translate the wave functions 

cpj(xj) of the external particles of the second (detection) subprocess 

by a vector fix = Tv, where v 2 = 1 and v 0 > 0. This is achieved 

by the change 

fiX 
cpj (xj) + cpj (xj) if>. (x. - fix). 

J J 

This change induces the change 

cj>j(pj) + cj>fiX(pj) 
ip .-t.x 

cj>(p ) J 
j 

in the momentum-space functions. Then momentum-energy conservation 

in the second process yields the resulting change in ~2 (p): 

- - fiX 
wzCP) .... Wz (p) ~2 (p)e-ip•fix (6.2) 

Actually, we are interested in the rate of fall-off of the transition 

amplitude of the overall process itself as the magnitude T of the 

,~ 
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shift fix tends to infinity. However, if we had used in place of 

(p 2- m2 + i0)~1 the boundary value (p 2- m
2

- iO)-l then this modified 

transition amplitude would fall off faster than any power of T. 7 

Thus, modulo these terms that fall-off faster than any power of T 

we may use, in place of the actual pole form i(p2- m2 + i0)-1 , rather 

the difference (or discontinuity) 

. ( 2 2 . ) -1 . ( 2 2 . 0) -1 
1 p - m + 10 - 1 p - m - 1 

2 2 2TIO (p - m ) • 

Then, in the notation of (6.1) and (6.2), the question becomes: 

TV 
what is the rate of fall off of< f 2 • W{>as T + oo? 

This question is answered by the following corollary to a theorem 

proved in appendix A. Corollary A: Suppose $2 Cp)ljl 1 (p), considered 

as a function of the three-vector p, is continuous together with its 

first and second derivatives, and vanishes for !PI > R < oo, Then 

for any real v satisfying v 2 
= 1 and v 0 > 0 the following limit holds: 

lim (2rriT)
312

eimT 
T-+ 00 m 

<~TV.ljl >= 
2 1 

f 2 (mv) w1 (mv) • 

In terms of probabilities this relationship becomes 

3 _Tv 
lim (2ITT) I < ljl2 •ljl2 

T +oo m 

2 

>I 

- 2 2 
= lw 2 Cmv) I iw 1 (mv) I . 

'. .. 

(6.3) 

(6.4) 
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This result allows the squares of the magnitudes of the momentum 

space wave functions wl(mv) and ~2(mv) to be identified as flux 

densities for emission and absorbtion of particles moving in the 

direction v. -3 The factor T corresponds to the fact that stable 

particles do not disappear or materialize while moving from the source 

to the detector: the probabilities in the macroscopic domains 

have the same geometric fall off as the probabilities for classical 

stable particles. 

If one were to increase the degree of the singularity then 

the fall off would become too slow. And if one were to decrease the 

degree of singularity then the fall off would become too fast. 

The connections described above show that one cannot expect to 

extract reliable information about the singularity structure of 

a function from an approximation to it that disrupts 

its asymptotic behavior in coordinate space. For the asymptotic 

structure of transition amplitudes in coordinate space determines 

7 8 
the analytic structure in momentum space. ' 

4 Storrow examined the question of the effect of infrared photons 

on this pole singularity and concluded that the usual pole form 

2 2 -1 2 2 -l-~ 
(p - m + iO) was changed to (p - m + iO) , where ~ was of ord~r 

of the fine structure constant. Such a form would entail large 

deviations in the macroscopic regime from the classically expected 

behavior of stable particles. 

I' • 
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7. TRIANGLE-DIAGRAM FACTORIZATION AND AMPLITUDES FOR PROCESSES 

WITH CHARGED INITIAL AND FINAL PARTICLES 

These pole-singularity considerations can be carried over to 

reactions such as the one illustrated in Fig. 1, in which a 

charged particle runs around a closed loop. 

Let x
1

, x
2

, and x
3 

be the vertices of a large spacetime closed 

loop L(X). Let p1 , p2 , and p3 be the momentum-energies of the three 

intermediate lines, as determined by the masses mi of the three 

charged lines and the differences 6X of the X .• Suppose the wave 
X. ~ 
~ 

functions~ (x)of the two exte~l particles incident upon vertex i 

are 

off 

large in a neighborhood of Xi, but have a product that falls 

1 
faster than any power of I x - xJ as x moves away from Xi. And 

suppo'se that the scattering function for each of the three subreactions, 
X. 

folded into the wave functions~~ of the two associated external 
J 

particles, but evaluated at the momenta pj associated with the two 

appropriate intermediate particles, is non zero. Thisconfiguration 

d·efines a transition. operator 

A (AX) 
D AX 

T [$ i(l) op 1 • ••• • 
AXi(6)] 

tp6 (7.1) 

that would be expected to have contributions corresponding to the 

reaction represented in Fig. 1. Indeed, if there were no infra-red 

problem then A(AX) would be dominated at large A by a term that falls 

off as A- 912 , and that arises from the pole singularities 

(p~- m~ + iO)-l corresponding to the three charged lines in Fig. 1. 
J J 

The diagrams D' contributing to this dominant term would be 7 •8 

those in the class CD consisting at those D' that are separated into 
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three disjoint diagrams by cutting three charged lines, one corres-

pending to each line of D. Modulo self-energy-diagram considerations 

the dominant A-912 contribution to A(AX) would be obtained by replacing 

2 each of the three poles i(p~ 
J 

2 -1 - mo + iO) by the corresponding mass
J 

shell delta-functions 2rro(p~ 2 

J 

2 0 -9/2 - m 0). Indeed, by factonong off (cA) , 
J 

and an appropriate unitary factor that does not affect probabilities, 

one would obtain a limiting value that is just the product of the 

scattering functions for the three processes, with the ~0 's folded in, 
J 

evaluated of the points p~ 
J 

generalization of (6.3). 

Po• This is the triangle-Oiagram 
J 

These pole-factorization results are hot disrupted by the infra-

red photons. Equations (7.1), (3.1), and .C2.36) give 

! 3 4 6 AXi(j) 
A( AX.) = IT d xi 

0 

IT 1jJ (xi(j)) 
i=l J=l 

)
-D 

x U(L(x) F (x) • 
opr 

(7 .2) 

Let n be some small neighborhood of the point k ~ 0. Then U(L(x)) can 

be written in the form 

U(L(x)) = u11 (L(x)) ~ (L(x)) 

u11 (L(AX) u11
(L(x)) 

+ u11 (L(AX))(p-;(LQ.x)) u11 (L(x))- 1) u11
(L(x)), 

(7.3) 

~ ' < 

44 

n 
where the operators u11 (L(x}) and U (L(x) ) are the operators obtained 

by restricting the k integrations that occur in the definition t2.25) 

of U(L(x)) to ke:rl and k{rl, respectively. Then one may write 

A(AX) Adom (AX) + Arem(AX) ' (7.4) 

where A (AX) and A (AX) arise from the first and second terms in -aom rem 

the final line of (7.3), respectively. In particular, one has 

Adom (AX) u11 (L(AX)) A
11

(AX), (7 .5) 

where 

A11
(AX) 

._ J 3 
4 

6 
Ax.l(j) n -n - IT d x 0 IT 1jJ (xi( 0 ,) U (L(x))F (x). _ 

i=l ~ j=l JJ opr (7 .6) 

The probability corresponding to the transition operator A(AX) 

is 

P(AX) t 
Tr A(AX)pinA (AX)pfin' (7 .7) 

where pin and pfin are the density operators for the initial and 

final photons. Final infrared photons are not detected. Thus 

pfo acts as a unit operator on the infrared (i.e., k~Q) parts of 
~n . 

the photon states. The non-infrared (i.e., kiQ) photons play no 

essential role in the discussion, and can be assumed to be absent from 

both the initial and final states. Thus if 

a A A 

Po= jon>< onl (7 .8) 

\. .. 
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is the operator that projects all non-infrared (kin) photon 

oscillator state vectors onto their ground or vacuum states, but 

leaves unchanged all photon ·oscillator states corresponding to 

photons with momenta kEa then one may write 

n 
Pfin = Po 

and 

n 
Pin = Po Pin,fi• 

where 'in,fi specifies the initial condition of the infrared 

photons, but leaves unchanged all non-infra·red .. parts. 

(7 .9) 

(7 .10) 

Suppose n is contained in fi. Then the contribution of Ad (AX) om 

to the probability P(AX) is 

pdom(AX) 

Tr[< on!Adom(AX) loa> 

X pi A<o
0

1 Adt (AX) I on>) n,.u om 

Tr[ < o
11

1un(L(AX))An(Ax) I l 1 
> 1 

Pin,a<o
11

!AntCAx)u6 (L(AX)) 1 o
11 >1 

Ti"[ <o0 I An(AX) I o0 > 

Pin,n <ofiiAn (AX) 1o
0>1, (7 .ll) 

... 
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where the traces are in the space associated with the infra-red 

photons, and the unitarity of Un(L(AX)) has been used to obtain the 

last line. 

Let n = rl(b) be a set of the form 

n(b)= {k: lk0 1 <;;;zb, lk"l .;;;b}. (7.12) 

And suppose, as in Section 2, that the wave functions ljJj(p.) are 
. J 

infinitely differentiable with disjoint compact supports in 

p./p. space. Then it is shown in Appendix B that for some fixed A 
J J 

and for any e: > 0, however small,· there is a b(e:) such that for any 

b <bCe:) .and all A> A the contributions to P(AX) that involve 

Arem(AX) are less than e:-times P(\X): 

P(AX) - P dom (AX) < e: P(AX). (7 .13) 

This smallness of the contributions from Arem(AX) arises from the 

fact that the faster-than-any-power fall-offs of the wave functions 

Ax 
tjl j i(x) effectively confine :x; to a finite neighborhood of AX. Yet 

1 . 
for all I kj << lx - AX!- the currents J(L(x) ,k) and J(L( AX) ,0 are 

nearly equal. Consequently, the operators U(L(x)) and U(L(AX))are 

nearly equal, and hence the factor {u;\L(AX))Un(L(x))- I) 

appearing in Arem()X} tends effectively to zero with the size of 

n = n(b). 

The value of b is now taken small enough so that, to some high 

preordained level of accuracy, the probability P(AX) is adequately 

represented by Pdom(AX). Then the remainder can be ignored: it is a 

negligible fraction of the whole. 
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Equations (7.11) and (7.6) show that the operator Un(AX) drops 

completely out of the· calculation of P dom (:>-X). Thus no error at 

all is induced in the calculation of P dom (.:>-X) if one replaces the 

-n 
in the basiC formula (2 .36) by operator F (x) opr 

FDQ (x) 
opr 

n ) -n - U (L(x) F (x) • opr 
(7.14) 

This substitution eliminates all contributions to U(L(x)) that arise 

from the photons with k£Q. This elimination of k£Q contributions 

ensures the infra-red finiteness of Pdom( :>-X), and hence of P(:>-X) 

itself, provided the operator FD (x) introduces no infra-red divergences. opr 

The infra-red properties of FD (x) are studied in paper II. An 
opr 

ultraviolet cut-off is imposed, and the possibility of a divergence 

of the sum over the infinite number of different diagram D' with 

quantum coupling Q is not examined. Subject to these limitations it 

is shown that the photon momentum-space eigenstates of the Fourier 

transform FD (q) of FD (x) are well defined and have the usual 
opr . opr 

triangle-diagram singularity: the dominant contribution to the 

discontinuity around the triangle-diagram singularity surface is 

evaluated as a sum over contributions corresponding to all ways in 

which the diagrams D' can be cut into three disjoint parts by cutting 

three line segments, one corresponding to each of the three internal 

lines of D, and replacing the corresponding propagator i(p+m)/p
2

-m+i£ 

by 2no(p2-m2
) (p+m). This restriction of charged-lines to their mass-

shells produces no infrared divergence. 

Since the quantum photons give no infrared problems and the classi-

cal photons with r~n do not enter we expect to obtain the normal factori-

zation properties. To verify this consider first the vacuum-to-vacuum 

matrix element 

,r 
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< 0 I FD (q) I 0 >. Since the singularity at the triangle-diagram opr 

singularity surface is normal the corresponding asymptotic behavior 

in coordinate space is also normal. Indeed, the three-particle 

generalization· of the theorem of Appendix A ensures that if one defines 

then 

where 

of D. 

F(:>-X) 

lim 
:>--><x> 

- J 
3 6 :>-Xi(j) 
II d

4
x. II 1jJ (xi(j)) 

i=l 1 j=l 

< 0 I FD (x) I 0 >, opr 

~ 
3/2 

.~ (2nic. :>-) 
J=l . mj 

im.c. AJ.., 
e J J 

3 
X FOX) i~l Fi(~(i),pi' pi+l) • 

( 7 .15) 

(7 .16) 

F. (lj!. ( ) ,p .. ,. p "+l) is the amplitude assciciated with vertex i 
1 J i 1 1 

Specifically, Fi(ljJ.(i}' p., pi+l) is the scattering function 
J 1 . 

for the subprocess associated with vertex i, folded into the wave 

functions ljJ. of the particles corresponding to the two external 
J 

lmnes ofDincident upon the vertex i, and evaluated at the momenta 

pi and pi+l of the charged particles associated with the two internal 

lines of D incident upon i. The quantitjes pi and c are specified 

by 

pi m.(X.- X. 1)/ IX.- X. 11M· k 
1 1 1- 1 1- 1n • 

(7.17a) 

and 

I'' 



c = 
i 

~ 

IX - X. 11 k • i 1.- Min 
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(7.17b) 

The property of F (x) just described refers to its vacuum 
opr 

to-vacuum matrix element. If the initial state represented by P. ~ 
~n~~£ 

is the vacuum state then the operator FD (x) in (7.6) that occurs opr 

in the formula (7.11) for Pdom(AX) acts on the vacuum state. Then 

the vacuum-to~vacuum matrix element of rD (x) will contribute to opr 

the probability Pdom(AX) a term 

pdO (AX) = 
om 

J 
3 4 4 6 I AXi(j) . AXi(jt 
rr (d x.d yi) rr ~- (xi(J•))¢_ (y.(')~ 

i=l l. j=l J . J l. J 

t 
x < OIFD (x) IO> <OIFD r(y) 10 > opr . op 

x < o01u6(L(x)) 1Jl><o61u6t(L(y)) lo11 > 

~. <n'l'l-nlufl...(iO:,(x)) I oa-n> <oa-niU~-n(L(y)) ln'n-n >. 
n ~ 

!1-Q (7.18) 

X 

~ .{2 
The superscript Q on U (L(x)) means restriction of the integrals 

occurring in U(L(x)) to contributions from the photons with kin 
(i.e., to non-infrared photons) and the subscript n-n means 

restriction to photons with k£ (Q-il) (i.e., to infrared photons that 

are not very soft). The sum over states In' Q-<1 >is a sum over all 

states of the oscillators corresponding to photons with k£(Q-Q). 

Expression (7 .18) for pd0 (AX) combines the ·infrared finite 
om t , 

quantities< OIFD (x)IO >and< OIFD (y) lo >with the unitary 
opr opr 

factors corresponding to classical photons with kin. 

.. 
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To establish an asymptotic factorization property for Pd
0 

(AX) om 

recall first that 

< onlun (L(x)) I o
6 

> 

exp i~Q(L(x)) 

1. * ~ 
x exp- 2 <J (L(x)). J(L(x))>n, (7 .19) 

where a 4 * . v ~ (L(x)) : P.V. J___c!__!_ J/L(x~k){-gJJ )Jv(L(x),k) Q 

2(211) 4 . k2 X (k) 

(7.20a) 

and 

* Q <J (L(x)) •J(L(x))> - J 
d

4
k * )JV · --4 J (L(x),k)(-g )J (L(x),k) 

(211) jJ v 

+ 2 n 
X 2110 (k ) X (k) • (7 .20b) 

Q 
Here x (k) is a factor that cuts out the contributions from both 

infra-red and ultra-violet photons. 

The current appearing in (7.20) is 



where 

Jv(L(x), k) =-ie J 
L(:x) 

3 z. 
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dx' eikx' 
jJ 

ikx. ikx .. 1 
=-e ~ __!!:___ (e l. - e l.- ) 

i=l zi •k . 

=-e ~ e 1 _!!!___-~ 
3 · ikx.(z. z .. +l ) 

i=l zi ·k zi+l •k 
3 

- ~ J. (xi' zi, zi+l, k) i=l l.)J 
(7.21) 

J. (x.' 
l.)J l. zi' zi+l' k) is the partial current associated with 

vertex i of D. 

If each of the two currents in (7.20b) is decomposed into its 

three partial currents one obtains nine terms in all. Each of these 

nine terms is associated with one wiggly line in the diagram of Fig.·3. 

"' 

Figure 3. A triangle diagram with wiggly 

lines representing the classical-photon 

contributions. 

Two of the nine terms are associated with each of the three 

w.iggly lines that run between two different vertices, and one of the 

nine terms is associated with each wiggly line that begins and ends 

on the same vertex. 
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The contributions to (7 .18) from the six terms in (7..20b) that 

correspond to interactions between different vertices fall-off. 

faster than >.-9 . To see this, consider first a typical 

contribution of this kind to (7 .20b): 

< * > n J. lex. 1) •Ji(x.) 
. l.- l.- l. 

4 ik(x -x ) . . 2 n 
2 J~ i i-l (2w)6+(k ) X (k) = e 4 e 

(2w) 

x (z i-lJ.l _ z ill ) ( -gllV) (z iv _ z i+lv ) • 
zi-ik z i·k z,i•k \+1•\< 

(7.22) 

And consider first the values of (7.22) at points x in 

R(>.n,>.X) = { x: lx- >-XIEucl.,;;;; >.n}, where 0 < n <<].<< A. 

Since the Xi are chosen so that the differences Xi - Xi-l are all 

timelike, and satisfy lx?- x? 1 1 > 1, the vectors zi =xi - x. 1 l. l.- l.-

for points x in 

R(>.n,>.x) 

must also be timelike. On the other hand, k is light-like in the 

support of o2 (k). Hence the only singularities of the integrand in 

(7.22) apart from those of the cut off function 

xi) (k), are those of 6 (k2). But then the prope:Eties of Fourier 

1 s· 
transforms ' ensure that 

* .f) 
<J. 1 (x. 1) • J (xi)> falls off 

l.- l.-

at least as fast as I 1
-1 

xj - xj-l Eucl. in all directions except 

those on the light cone. And in these latter directions it is 

bounded. 

. ... 
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Due to the timelike character of the differences z. = 
. 1 zi - xi-1 

n I 1-1 for x in R(A ,AX) this xi- xi-l Eucl. fall off of (7.22) in timelike 

directions, together the bound CA-9+8n on the remaining factors, entails 

-9 n a faster than A fall off of the xe:R(A ,AX) contributions 

* Sl 0 . ) of<J (x. )•J (x.)>' to the Pd (AX) defined m (7.18. i-1 1-l i · 1 om On the 

either hand, the faster than any power of lx ·-1 
AX!Eucl. fall off of 

the product of the wave functions in (7.18) ens~res the faster than 

any power of A-l fall off of the contributions to the integral over 

x in (7 .18) from· points x not in R(A n ,J.X), since the remaining factors 

in the integrand are bounded. Thus the full contribution to the 

probability Pd
0 

(AX) defined in (7 .• 18) from the parts of (7 .20b) that om 

correspond to interactions between different vertices xi falls off 

-9 faster than A . 

The three surviving terms in (7.20b) arise from the self-interaction 

counterparts of the integral in (7.22). These self-interaction 

terms, which correspond to the wiggly lines of Fig. 3 that begin and 

end on the same point, have xi in place of xi-lin (7.22). Hence 

they have no x dependence. 

Consider next the integral in (7.20a). Arguments similar to 

those just given, and described in detail in. Appendix D, 

show that the contributions of (7.20a) to (7.18) arising from the sum of 

products of factors J: and Jj over i I j fall off faster than A-9 , 

provided the effect of the self-energy counter term is included. 

The sole surviving term in the limit A ->- "' comes, therefore, only 

* from the self-interaction terms involving the product of Ji with 

Ji. These terms have no x dependence. Thus the full contribution 

from the factor < ott I un(L(x)) I on > to the dominant large- A 

•• 
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behavior of Pd
0 

(AX) defined by (7 .18) is simply a product of three om 

independent constants, one from each vertex of D. 

The final factor in the expression (7.18) for Pd0 (AX) is a sum 
om 

over the states In, >. 
n-n 

These states can be taken to be the photon 

momentum eigen states I (k_, •• ;k ) , ....n>· 
. -~ n Q-,, Since the photons that 

contribute to un-~(x)) have k restricted .to a region fi-n that 

is bounded both from above and from below these cases can be 

treated by methods essentially the same as those just given: one 

simply treats the classical photons coupled into the three vertices 

of D like extra external particles. One may, for convenience, 

recombine the parts ktfi and ke:n-n andconsider the matrix element 

<IJ., ••• ,knlifl(L(x)) IO>= ~(kx). (7.23) 

This function decomposes into a sum of terms, one for each way of 

coupling the set of photons (~, ••• , ko) into the three vertices. 

Let y be an index that runs over the various possibilities. Let a 

be an index that runs over the n photons; and let i(y, a) label the 

vertex into which photo.n a co.uples fo.r po.ssibility y. Then 

< ~····• knlun(L(x)) lo > 

:E <kr- •• ,k lun(L(x)) I o> 
Y n Y 

:E 
y 

Mn(k, x). 
y 

(7 .24) 
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The x dependence of M'l(k,x) is, exp i(x·k) , where 
y y 

(x·k) 
y 

n 

1: k c/i(y ,ex)· 
ex=l 

-iA(X·k) 

(7 .25) 

Thus the function MP(k, x) e Y depends only on the differences 
AX.(") 

y 

xi - >.Xi (i = 1, 2, 3). The wave functions w. ~ J also depend only 

on these differences. 
J Q -i>-(kX)y 

Thus the three factors from My(k, x)e 

simply modify the product of wave functions appearing in (7.16). Hence 

that earlier result yields immediately also 

where 

lim 
>---

3 ~21Tic.~)3 / 2 im .. c.j -i>-(X•k) II --·~ e ~ ~ e . Y 

j=l mi 

3 

x J II i=l 

6 >.xi(") 
d

4
x. II lJij J (xi(j))' 
~ j=l 

x < k1 , ... ,k lun(L(x)) lo > 
n Y 

x < 0 I FD (x) I 0 > 
opr 

3 
II 

i=l 

Q 
Aiy(lJij(i)' Pi' Pi+!; kex(y, i))' 

ex(y, i) = {ex; i(y, ex) = i}, 

and the argument j in the last line runs over the set 

J(i) = {j; i(j) i}. 

,t 

(7 .26) 

(7.27a) 

(2. 27b) 
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The right-hand-side of equation (J .26) is a sum of contributions, one 

for each way in which any diagram D' contributing to the left-hand y . 

side can be cut into thr.ee disjoint parts by cutting three charged-

line segments, one corresponding to each internal line of D. The 

contribution on the right-hand side is obtained from the corresponding 

one on the left-hand side by setting A = 0 and replacing the Feynman 

propagator i(pi + mi)/(p~ - m~ + i£) associated with the cut segment 

by (~ + m./2m.), where 
1 ~ ~ 

pi m.(x.- x. 1)/lx.- xi riM. k' 
~ ~ ~- ~ - ~ 

(7.28) 

However, the Feynman diagrams on the left-hand side that contain self-

energy corrections to the cut charged-line segment should be ignored, 

because the renormalizat.ion counter terms exactly eliminate their 

effects on this mass-shell line. 

In constructing 

Q 
Ai/lJij(i), Pi' Pi+l; kex(y,i)) 

the quantities viv/vi·k~ and vi+lv/vi+l·k that arise from the classical 

coupling have been replaced first by (X. -X. 1) /(X. -X. 
1

) •k and 
~ ~- v ~ ~-

(Xi+l- Xi)/(Xi+l- Xi)·k, by omitting terms tend to zero in the limit 

A+ oo, and then, with the aid of (7.28), by piv/pi·k and pi+lv/pi+l•k. 

Due to the exclusion from UQ(~(x)) of contributions from photons 

w.ith k£Q the value of the energy k0 of each final photon in Ani 
ex Y 

is. greater than s.ome fixed minimum value. Since the energy carried 

... 
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into and out of the subreaction i by the particles represented by the 

lines of D are constrained by the compact support of the wave functions 

~j(i)(pj), and by the fixed values of the momenta pi and pi+l' the 

amplitudes 

S'l 
Aiy<~j(i)' pi, pi+l; ka(y,i)) 

must vanish if the set n(y,i) has more than some finite number of 

elements. Thus the sum over final photon states needed in the calcu-

lation of 

lim >. - 9Pd (>.X) 
om 

is limited to states e_an~ain.ing some finite number of photons. 

Equation (7.26) exhibits an asymptotic factorization property 

of the amplitudes from which the probability Pd
0 

(>.X) is constructed. om 

This quantity Pda (>.X) is the contribution to Pd (>.X) from the infra-om om 

red-finite matrix element<ai:FD (x) Ia >. Consider next the. contriopr 

bution from the matrix element< kiFD (x)la >. The analysis of opr · 

paper II shows that.the dominant singularity on the triangle-diagram 

surface of the Fourier transform of this function is normal. Thus 

the three-particle generalization of the theorem of Appendix A 

gives 

3 
Um rr 
).->«> i=l 

[C:~ci>-) 3/2 

1 

eimici>.] 

J i~l d4xi /Xi(j) (xi(j)) (7.29 cont. on p. 53) 

where 

X 
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< k IF'D (x) Ia > opr 

Fl (k)F2F3 

+ F1F2 (k)F3 

+ F
1

F
2

F
3

(k), 

F i '= F i (~ j (i)' pi, pi+l) 

i • 

is the function occurring in (7.16), and 

F i (k) '= F i (~ j ( i) ' p j ( i) ' k) 

,, 

(7 .29) 

(7 .3a) 

(7.31) 

is the amplitude for the process in which a photon of momentum-

energy k is emitted by the part of the reaction at vertex i that 

-D is represented by F • opr 

The traditional infrared analysis suggests that an infra-red 

divergence might arise from the coupling of the soft-photon of 

momentum k onto the external on-mass-shell charged line of the 

reaction at vertex i. However, the coupling of an external photon 

of momentum k into FD must be via a quantum-coupling Q
11

(k, z), 
opr 

which, for a coupling into the mass-shell charged line, occurs in the 

context 
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(p + m)Q (k, z) P + t + m 
~ ~ + k)2- m2 

z t 
( -ie) (p + m) (y _ _!!._) P + t + m 

~ Z• k .. 

~ 
z 1l 

( -ie) (p + m) (y - _!!._) 
~ z.k 
~ 
2p •. k 

z lt ] + (p + m) (y - _!!._ ) _}:__ 
~ Z•k 2p·k 

(-ie)~ (p + m)(- p l' 2p·k 

z lt 
+ m)) (y -~) 

~ z. 

z (2p•k) 1 
~ ) --+ (p + m)(2p~ - z·k 2p•k 

zlt lt J 
+ (p + m)(y~ - z\ ) 2p•k 

(-i~) [<P + m)y~ 2!•k] (7 .32) 

. 2 
The last line follows from the facts that k vanishes, and that 

Pv = mvv is parallel to v~ = z~/lzl, as prescribed by (7.28). 

This result shows that the quantum coupling into the mass-

shell line has one extra power of k in the numerator, relative to 

the usual y~ coupling. This extra power of k eliminates the usual 

infrared divergence. In fact, it is precisely this extra power 

of k in the quantum coupling that is the basis of the proof given 

•I 

~' 
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-D 
in paper II that the momentum-space matrix elements of F (p) and opr 

their discontinuities are infrared finite. 

By virtue of the infrared finiteness of FD (p) the photons 
opr 

represented by. it will not lead to any infrared problems. The Pin is 

assumed, for simplicity, to be the vacuum projector. 
element 

Thus the matrix 

~O(AX) = < Oi An (AX)pinAnt(AX) 10 > (7 .33) 

will be infrared-finite ... 

Equations (7,4) through (7.11) show that ~0(AX) is a contribution 

PdOO (AX) to pd (AX). It has no infrared anomolies, and hence falls · 
om om 

-9 off at the normal A rate. On the other harid, the equatj.ons. 

pdom(AX) 

t 
TrAdom (AX) P inAdom O.X)p fin' 

Adom(AX) Un(AX)An(AX), 

and (7.33) show that the full contribution to Pd
00 

(AX) om 
n 

M
00 

from 

(7 .35) 

final photons with k~n arises exclusively from the single final coherent 

state un (AX) I on > . Similarly. the full contribution p~~m (AX) to 

Pdom(AX) arising from the infrared-finite matrix element 

< kniAn (AX)pinAnt(.AX) lkn >, 

wherelkn > is ik1 , ••• , kV > with all ki~n, is carried exclusively by 

the single final coherent s.tate Un(.AX) lkn > . Thus if one wants to use 

final photon s.tates that give dominant contributions to the asymptotic 

.,1. 
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large->. behavior of the probability then one cannot choose as the 

basis of the final kdl photon space the usual momentum' s.tates 

I kn>= I (k1 , ••• , kn)Q >. For the use of these final states would 

introduce factors <k'nlun(L(I.X)) lkn> that all approach zero as 

I. -> "' The more appropriate· basis for the final ke:n photon states is 

the set of coherent states Ug(L(f.X))Ikg >: each of these carries the 

full contribution to Pdom(f.X) associated with the corresponding infra

red-finite matrix element < kg IAQ (I.X)p in Ant (I. X) I kn > • By using 

these coherent states one obtains for the individual final-state 

-9/2 -9 matrix elements the I. fall-off property that corresponds to the I. 

fall~off property of the probabilities. 

Use of these coherent ·states un(L(I.X))Ik0 > is dictated also by 

physical considerations. For the unitary operator Ug(L(I.X)) incorporates 

into the final photon states the quantum mechanical counterpart of 

the k£Q part of the classical electromagnetic field radiated by the 

closed loop L(I.X). These classical contributions physically dominate 

the small k, large-!. behavior, and hence they must be incorporated into 

the final states if the resulting matrix elements are to have any 

physical significance in the limit I. -> "'· 

These coherent states UQ(L(I.X))Ikg > may be compared to those 

used by Storrow, Kibble, Zwanziger, and by Kulish and Faddeev. In the 

closed-loop case, where no charged particles occur initially or 

finally, these authors use the normal states I k > But the use of 

these states would, as. just mentioned, give the individual matrix 

elements spurious damping factors that suppress the dominant. large- I. 

4,'" ,, 
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behavior in coordinate space and consequently disrupt the analytic 

structure in momentum space. 

Similarly, in the analysis of the pole-diagram singularity Storrow 

used coherent states that correspond to placing both scattering 

centers of the pole-diagram process at a common point, namely the origin 

of spacetime. This choice effectively neglects effects of the factors 
ihi 

e in the expression (7.21) for the current. These exponential 

factors shift the parts of the current that correspond to separate 

scattering processes to the points xi where these separate processes 

occur. Placing these separate contributions the origin is mathemati-

cally and physically inappropriate when the critical question is the 

form of a limit in which the separate subprocesses are shifted in 

different directions to infinity. 
ihi 

Storrow's neglect of the factors e stems from an analogous 

step made by Yennie, Frautschi and Suur.a, who argue that terms 

containing the difference factors (1 - eih), acquire a convergence 

factor k in the infrared regime, and hence can be placed with the 

infral'ed convergent terms. This is an awkward step, since it 

disrupts momentum-energy conservation, and hence is more than just 

a shift of small terms into the residual collection. For it makes 

the infrared function large where it formerly vanished. 

In any case this step is certainly not permissible when one 

is interested in the singularity structure. For in this case one 

must deal simultaneously with the regime 

x fixed, k-> 0 

hence h-> 0, (7. 36) 
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as well as the regime 

k small, x -+ "' 

hence kx -+ "'· (7 • 37) 

One cannot keep making k smaller and smaller as x becomes larger and 

larger, because then the conclusions would hold only at the point 

k = 0, where the Feynman functions are ill-defined. The methods 

developed in the present paper cover the simultaneously both of these 

two regimes. 

To obtain nice factorization results for amplitudes analogous 

to the factorization results for probabilities established above 

let us consider the physically appropriate matrix elements. It is 

only in the very soft domain k£Q that the choice of final states 

UQ(L(>-X)) In> is essential, but any abrupt change of representation 

at some arbitrary point would introduce ·spurious complications. Hence 

we use the basis U(L(AX)) I (k1 , • •. , kn ) > • 

The effect of this new choice of basis states is to replace the 

unitary operator UQ{L(x)) in (7 .26) by 

Ut(L(;\X)) UQ(L(),X})UQ(L(x)) 

UQt (L(;\X) )UQ(L(;x:}); (7 .38) 

.r 
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where the operator Un{L(.i~X)) from (7 .5) and (7 .11), which drops out 

of probabilities but contributes to matrix elements, has. been 

reinstated. 

Equation (B.37) of Appendix B gives 

unt{L(>-X))Un{L(x)) 

* ( Q exp <a • J(L(x)) - J(L(.i~X) )) > 

x exp - <(J.(L(x)) - J{L(liX))) * • &>Q 

x exp - t<(J¢,(x)) - J(L(>-x>)) * · (J(L(x)) - J(L(>-x)))>Q 

where 

and 

x exp -i <t>(J(L(x)), J(L(AX)))n, 

n -l< * <I>(J, Jl) - 2 (J + Jl) 
Q 

(J - Jl)>r' 

<A·B~ =Jd4k All(k)(-gllV)B,_,(k) 
r 4 0 (2rr) (k + i0)2- lkl2 

Q 
X (k). 

(7 .39) 

(7 .40) 

(7.41) 

Equation (7. 26) with UQ{L(;x:)) replaced by UQt (L(;\X) )UQ{L(x)) is 

called (7.26'). Arguments essentially the same as those leading to 

(7 .26) show that the contributions to (7 .26') from terms having a 

* product of partial currents J. and J. with i 1 j fall off faster 
1 J 

than II -
912

, and do not contribute to the limit. What remains in the 

limit are three factors, 

·•. 
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one arising from each partial current Ji, idl,2,.3} • The asymptotic 

factor associated in (7 .26') with vertex i is denoted by 

n• 
Aiy (1/lj(i)' pi, Pi+l; k~(y, i)). 

The effect of the factor exp- iT(X•k) in (7.26') is to replace 
y 

the arguments xi in the operators that contribute to 

Q' . 
Aiy(1/Jj(i)' Pi' Pi+l' ka(y,i)) by xi- AXi. Thus if subscript 1 

means restriction to contributions from the partial current Ji then 

the classical-photon contribution n' 
to Aiy arises from the operator 

(tflt (L().Xi-AXi)) u
0

(L(xi- AXi))) i 

* exp <a • (Ji (xi - AXi) Ji (0)) >Q 

exp- <(J.(xi- AX.) - J.(O))* • a~ 
1 1 1 

exp - i<(Ji (xi - Hi) Ji (0)) *. 

•(Ji(xi- AXi) - Ji(O))~ 

i * exp - 2<(ri(xi- AXi) + Ji(O)) . 

• (Ji (xi - AXi) - Ji (0))>~ 

unt(Ji(O))un(Ji(xi- AXi)) (7 .42) 

The operator in (.7 .42) acting in the space of photons with 

momentum ktn is unity. Thus the difference b.etw.een the operator 

in (7 .42) and the analogous operator with n = Q(b) = fJ (i.e., b = 0) 

is the unitary operator (7.42) times 

; # I' 
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U~(b)(Ji(O))UQ(b)(Ji(xi- AX:())- I. (7 .43) 

But the results of Appendix B entail that for any finite R and all 

xi£R.(R,A}() :={xi: lx.- AX.IE 1..;;R} 
1 1 1 uc (7 .44) 

the operator in (7.43), restricted to allowed initial states, is an 

operator whose norm tends to zero as b tends to zero. But then 

O{b) ' ( · k ) 
lim Ai 1/lj(i),Pi' Pi+l' a(y,i) b-+0 y 

Aiy (1/lj(i)' Pi' Pi+l: ka(y,i)) (7 .45) 

exists, since. the contributions from x1itRi (R,AX) can be made arbitrarily 

small by taking R sufficiently large. (See the end of Appendix 

E.) 

The amplitude Aiy(l/lj(i)' pi, pi+l; ka(y,i)) is the amplitude 

for the process with two charged extern:al lines. It is independent 

of the original process from which it came, and hence can be called 

A(l/1 pi, pi+l; k) where 1/1 represents the set 1/J.(i) and k represents 
' J . 

the set ka(y, i)" 

As a simple example consider the case in which there are two 

neutral initial particles with wave functions w1 and 1/12 , and two 

charged final particles with physical momenta - pi and pi+l" Suppose 

there are no external photons (i.e., no ka) and no quantum photons 

(i.e. F~pr (x) can be replaced by F
0 

(x)). Then the amplitude is 
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0 ) Ai(~l' ~2' pi, pi+l 

Jd4xi~l (xi- AXi) ~2(xi- >..Xi)Vi 

X 

-ipi (xi - AXi) ipi+l (xi - >..Xi) 
e e 

1 I d
4

k \) x exp- -
2 
--

4 
J. (0)(- g).l) J. (0) 

(2rr) 1).1 1\J 

t 2 ( -i(xi - >..X.) •k 1)( i(x - >..X.) •k ) 
x 2rro (k ) e 1 

. - e i 1 - 1 

. I d4k exp - t --4 J. (0)(- g).IV)J. (0) 
(2rr) 1).1 1\J 

( -i(x. - A.X.)•k ) ( i(x.- >..X )•k ) 
e 1 1 ~ 1 e 1 i - 1 

(k
0 + i0)

2 
- ikl 2 

Id4xi ~1 (xi - A.Xi) ~2(xi - >..Xi)Vi 

-ip.(x. -AX.) ip.+l(x. -AX.) 
X 11 111 1 e e 

x exp _ e
2J d4

k (pi).l _ pi+l,).l )<- g).IV)(piv _ pi+l,v ) 
2 (2TT)4 \pi•k pi+l•k pi•k pi+l•k 

t 2 ( -i(xi - >..Xi) •k )( +i(xi - >..xi) •k ·) 
x 2rro (k ) e -1 e - 1 

x exp _i_gj~ (~ _ Pi+l,u )<- g).lv) ( Piv _ Pi+l,v) 
2 (2rr) 4 pi•k pi+l'k Pi·k pi+l'k 

X 

(k
0+ i0)

2 
- J'kJ

2 
1 ( 

-i(xi - >..Xi)· k )( i(xi - >..Xi)· k ) 
e +1 e - 1 

(7 .46) 
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The factor exp - ipixi comes from the propagator of particle i in 

FD(x), and the associated factor exp i p.X.>.. comes from the factor 
1 ~ 

exp i mici>.. = exp i pi(Xi- Xi_1)>.. in (7.26')(See 7.17). The factor 

exp i pi+l(xi- >..Xi) has a similar origin. 

The first integrand in an exponential in the last line of 

(7:46) behaves like o(k2) as JkJ -+ 0, and the integral is 

infrared convergent for any finite x.- >..X .• 
1· 1 

The second integrand in an exponential has poles at pi•k = 0 

and pi+l•k = 0. In the original expression, for the full triangle 

diagram process before factorization, these poles were cancelled by 

compensating zero's in the numerator. In the proofs of Appendix B 

a particular i£ resolution of the pole was introduced. One could 

equally well hive chosen the other i£ resolution. But a more natural 

and convenient choice is the principal-value resolution. For this 

resolution never introduces spurious imaginary contributions. 

If the principal-value resolution of these two poles is used 

then one may exploit the symmetry under k -+ - k to replace the last 

three factors of the final integrand in (7.46) by 

t ( - 1_ - - 1_ -) 

x 2i sin(xi- .>..X1)·k 

1( +2 -2) - j ~ 2rri5 (k ) + 2rrio (k ) . 

x 2i sin(:x:i- >..Xi) •k • (7 .47) 

'•. 
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In this form the spurious poles drop out, and the integrand goes 

like o±(k2)/k. Consequently the integral is infra-red finite. 

In fact, insertion of (.7 .47) into the final integral in (.7 .46) allows 

this integral to be expressed as 

--- dk di) d cose ____!1!__ _ i+l,ll llV l JK O J2rr 11 ( P. p 
2(2rr) 3 -K o -1 Pi (e/J) Pi+l <e.~)<-g ) 

1V i~ · 0 -1 0 
( 

p. p W) 
pi(e,~) - ·Pi+f9, (k) sin k (xi(e,i!) _ 

where, for any four~vector x, 

x(9,~) x 0 - x
3 
cos e - x

2
sin9sin 0 

- x
1

sin9cos ~. 

>.Xi(e,0)), 

(7.48) 

(7 .49) 

In this form the contour in k0 can be distorted away from the point 

k0 
= 0, which eliminates any possibility of infra-red divergence. 

The simple case treated above is very special. For one thing, 

the part of diagram D that corresponds to the subprocess in question 

consists of only one single vertex. A slightly more complicated 

example is obtained by taking the part of some original diagram D 

that corresponds to the subprocess in question to be the diagram n1 

of Fig. 4 

f:> ....... 

I '1 f) 
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l:.._,' 
-·-- .41' \ 

' \ 
\ 
\ 

\ 
\ - -- ....... - - - - - - - - "~- .... 

Figure 4 Subprocess diagram n1 

* 

... Yi 

Con•sider again the case with no external photons (i.e., no ka), and 

the contribu.tion with no quantum interactions. Then FD (x) is S opr 

reduced to F Cx1 , x 2 , xi, xi+l). We shall drop the subscript i 

on Xi and Ai, and fold in the mass-shell supported wave functions 

~fi~pi) and ~~!2 Cpi+2 ) of the charged particles, and thus obtain 

AoC~l' ~2' ~i' ~i+2) 

I 4 4 4 4 
d x1d x 2d xid xi+l 

4 
d pi 
--4-

(2rr) 

4 
d pi+2 

---4 
(27T) 

ljJl (xl ->.X) ~2(x2 ->.X) ~i (pi) ~i+2 (pi+2) 

-ipi(xi->.X) ipi+2Cxi+l-AX) 
e e · 

Dl 
F (xl, x2, xi, xi+l) x 

(7. 50 cont.) 
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x exp{I(pi' pi+l' xi - AX) + I(pi+l' pi+2 ' xi+l - AX) 

where 

and 

+!(pi, pi+l' xi- AX; Pi+l' Pi+2' xi+l- >.X)} 

I(p, p', x) 

2 
-e 

= -2-
4 2 2 

I d k (__::E._ ~ 
--4 2+ 2 
(21T) (p·k) (p' ·k) 

2 
X [21To(k ) (1 - COS X•k) 

+ 2p·p' ) 

(p•k)(p' •k) 

+ i21T(o+(k2) - o-(k2)) sin x•k] 

I(p, p', x; p", p'", x•) 

2 
- -e - --2- P.V. ~ -p·p" -p'·p"' 4 [ I (21T)4 (p·k)(p"·k) + (p' ·k)(p"'·k) 

p·p'" p' •p" J 
+ (p·k) (p"' ·k) + (p' ·k) (p"•k) 

x [21T0Ck
2

){1 + cos(x- x')k- cos xk- cos x'k) 

+i21T(o+(k2) - o-(k
2
)) (sin x•k +sin x'·k) 

+ik-2(-2 + 2 cos(x- x')·k)] · 

(7. 50) 

(7.51) 

(7.52) 
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The four-vector pi+l is mi+l (xi+l - xi)/Jxi+l - xilmink' but 

any vector parallel to xi+l - xi will do just as w.ell. 

For all x and x' in the ball of Euclidean radius R the terms in 

(7 .52) that contain factors o+(k
2

) and o(k2) are infra-red finite, for 

reasons already given. The terms with k -Z are also infra-red 

finite. In fact, the methods of Appendix B show that all contributions 

from kdl(b) have bounds of the form bB(R) where B(R). is linear in R 

for large R. 

The supports of the infinitely differentiable wave functions of 

the initial and final particles in ;;p0 space are again taken to be 

disjoint. Then the contributions to the integral (7.50) from points 

xi R (R, >.X) fall off faster than any power of R-1 • This is shown 

in Appendix E. Thus the finiteness of (7.50) is assured. 

The final factor in (7.50) gives the effectsof the 

classical-photons. It can be regarded as an operator that produces 

the modifications induced by classical photons in the wave functions 

of the external charged particles. Of course, the major effects of 

the classical photons come from the operator Ut(L(>.X)) that has been 

incorporated into the state vectors of the final photons. 

The first two terms in the final exponential in (7.50) are the 

classical-photon self-interaction terms for the two charged-line 

vertices of n
1

• They are represented by the two wiggly lines of 

Fig. 5 that begin and end on the same vertex. The final term in 

this exponential is represented by the w.iggly line that runs between 

the two charged-line vertices of Fig. 5. 

I • 
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,' 
," 

-------#' 
11,\ 

' ' ' ' "--' ....... 

<11 

.. .. If''&-

Figure 5 The diagram D1 with added 

wiggly lines representing the three classical 

photon contributions to. (7.50). 

It is easy to pass from (7.50) to the case in which a general 

diagram replaces D1 • One first writes the Feynman formula for o1 

that is analogous to (7 .50), but with zero as the final exponent. 

Then one adds to this final· exponent the terms that represents the 

effects of the classical photons. If the diagram that replaces D1 

has n charged-line vertices then the sum over three terms in the final 

exponential in (7.50) ·is replaced by a sum over n(ri + 1)/2 terms, one 

for each of the n self-interaction wiggly lines and one. for each of the 

n(n - 1)/2 wiggly lines that connects different vertices. If there are 

external photons then one must also include the two operator exponentials 

of (7 .42) with Ji (xi - /.Xi) - Ji (0) replaced now by a sum of the partial 

current~ for all n charged·-particle vertices. These operators can be 

represented by wiggly lines coming into and going out of each of the 

charged-line vertices. 

f·. I' 
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8. CONCLUDING REMARKS 

Yennie, Frautchi, and Suura, at the end of a technical appendix 

to their paper, list a number of difficulties glossed over in their 

arguments, together with reasons why their approximations seem to 

them intuitively plausible. But they concluded that a rigorous 

proof of their result might by prohibitively complicated. 

The difficulties in the YFS argume~ts cause no serious problem 

insofar as delicate issues can be avoided; But the applicability of 

quantum and spinor electrodynamics to physics requires that charged 

particles can continue to behave like stable particles in the presence 

of interactions with soft photons. Efforts to establish this property, 

and to derive the closely related r.eduction formulas, floundered, 

however, precisely on the delicate points not adequately treated ·by YFS. 

The present work provides a new and fundamentally different 

approach to the infrared problem. It works basically with the 

coordinate-space representation of the sources of the electromagnetic 

fiel~and with an operator representation of the photons. Within 

this framework it establishes an exact result analogous to the 

momentum-space factorization property sought by YFS. The exactness 

of the result allows it to be applied in the delicate situations where 

one sitting right on a singularity, or needs to know the precise 

form of the asymptotic behavior, in order to establish stability and 

factorization properties. Moreover, it allows gauge invariance to 

be fully eXploited. Once approximations are introduced, in the sense 

that certain terms are pushed into a generalized remainder term that 
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is not exhibited in explicit form, the full consequences of gauge 

invariance are no longer manifest. 

The problems of completing the proof of the infrared finiteness 

of quantum and spinor electrodynamics, and establishing the stability 

and factorization properties of charged particles, though important 

in principle, has seemed.unimportant in practice. For infrared 

problems seem under control in practical calculations. And physicists 

are generally confident that the physical effects of very soft photons 

are negligible, in spite of the numerous calculations that had seemed 

to indicate a break-down of the stability and factorization properties. 

But science is a hard task-master: difficulties glossed over at one 

stage invariably crop-up later. Thus the infrared problems largely 

ignored in quantum electrodynamics have emerged as the central 

problems in quantum chromodynamics. In particular, the problem of 

whether the stability of charged particles is upset by interactions 

with soft photons is the exact analog of "the problem of confinement: 

Is the stability of colored particles upset by interactions with 

soft gluons? Thus the problem dealt with in detail in Section 7, 

about the coordinate-space asymptotic behavior of an amplitude with 

a closed charged-particle loop becomes, in QCD, precisely the question 

of whether colored particles become asymptotically free in coordinate 

space. 

The ~CD problem of confinement is more delicate and complex 

than its QED counterpart. Hence the methods needed to resolve it will 

probably have to be at leas.t as good as those that work in QED. And 

they might be expected to be a generalization of the latter. 

l, 
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Beyond the problems of infrared divergence and confinement 

there lie other related questions to which the methods of this 

paper may apply. These potential applications arise from the fact 

that the basic formula obtained here organizes the infinte series 

solution in a way that isolates a unitary factor that- represents 

the classical-physics background. This type of separation may 

provide the technical basis needed for the full development of the 

idea that quantum theory must, for both physical and mathematical 

reasons, be arranged to be the calculation of quantum fluctuations 

about a classical solution. Moreover, the gathering together of 

infinite numbers of terms into unitary factors has the potential 

power of better controlling divergences, since the norm of any 

sum of terms that form a unitary operator is unity, in spite of 

any superficial indication of diverge. 

,, . 
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APPENDIX A 

Theorem Suppose g(p') is continuous, together with its first and 

second derivatives, and vanishes for Jp/ > R for some R. Let 

p e mv be any fixed mass-shell four-vector. Then 

1 . f2ni~3/2 imT J ( ') -ip'•VT 2m2no+(p
2

- m2)d4p'(2n)-4 
~m \.-rn-) e g p e 

T_.ex> 

g(p). ( A.l) 

Proof Transform to the variables corresponding to a frame in which 

v = (l,O,o,o). In terms of these variables one has 

v•p' 

where 

f[(P)2] 

'0 
p [m2 + (p')2]1/2 

2 
(p') + ••• 
2iil > 0 • 

. .....2 
m + f[ (p) ] ( A.2) 

( A.3) 

The introduction of the variable f in place of (P)2
, followed by 

an integration over angles, converts ( A.l) to 

2 ::p (h)3/2 fo• S(r) -.[< ,-ifT df ~ g(o) ( A.4) 

where g(O) = g(O), and g(f) and its first and second derivatives 

are continuous at f > 0. Since 

1
0

" ,-if(T-ic) -{for -v: 
2 

1 ( A.5) 
(i(T - i€))3/2 
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and g(f) is continuous with compact support, the required result 

( A.4) equivalent to 

lim 
T-> 0 

T3/ 2 lim 
E__; 0+ f [g(f) - g(O)} e-if(T-iE) Vf df 0 

( A.6) 

Bounds on ~(f) - g(o)) and its first two derivatives can be 

obtained by writing 

g(p) = g(r,n) 

rr r' 

g(O) + Vg(O) ·1 + J 0 dr' i 2 
dr" £..iL (r", n) 

6r2 

( J\..7) 

where 1 = p, and r = I:PI. 'I'he integration over angles eliminates 

the linear term and gives 

g(f) 

Y1+ro 
- g(O) J J:

r(f) J:r' 
dn dr' = 4n 

0 . 0 

2 
dr" ~ (r",n) • 

or2 

Since the second derivative of g(p) is bounded, 

I::~ I < c , 

one has 

g(f) - I! 1 2 

!{;:= - g(O). < - cr 
f - 2 

1 +-2m 

Letting F be such that 

g(f) 0 for f > F 

( A.8) 

( J\..9) 

( J\..10) 

and defining iii= F + m, so that or
2
jof = 2f +2m2 2m for f 2 F, 

one obtains, for f 2: 0, 

,, 
.' 
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lg(f) -g(o)l.::: fciii 2jm ( A.ll) 

Equation ( J\..8) also yields, for f 2: o, 

lg' (f) I ~~f g(f) I <. -2; - - em m ( J\..12) 

and, for f > o, 

lg"(f) , . .::: (¥ +~) (ciii 2jm) ( J\..13) 

An integration by parts on the integral in ( A.6) gives 

L"" [g(f) _ g(O)] -{f e-if(T-iE) df 

where 

~-l~ ("" 
-i(T- iE) Jo -if(T-iE) ~ {g(f) _ g(O)}\(f} df e df 

l -ifT 

J:

oo 

i(T - iE) O e hE(f) df 

h (f) 
E 

e-Ef ~f([g(f) - g(O)]VfJ • 

However, 

roo -ifT h (f) df 
e E 

0 

r e-ifT h (f) df - e-ifT h (f + rr/T)df 
rt/T J: oo 

I E E 
)o · o 

( J\..14) 

( A.l5) 

[Equation ( A.l6) continued] 

, .. 
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[Equation ( A.l6) continued] 

. L-. -if, l
n/T 

1 1 
2(h E (f) - hE ( f + rr/ T) ] df + 2 O . -ifT h (f) df • e E 

( A.l6) 

The last term in ( A.l6) has, by virtue of ( .A.ll) and ( A.l2), 

the bound ~ cm(rr/T)3/2 . Thus this contribution, inserted into 

( A.l4), satisfies ( A.6). 

The first term in ( A.l6) can be written as a sum of two 

terms. The first is 

.!_ J:F e -ifT (h (f) _ h (f + 2!.)]df 
2 E E T 

0 

< ~(~) fo' I~ h;(r)l« (A .17) 

Where !max h~(f)l is the maximum of the absolute value of 

dhE(f' )/df' for f' ~f. The bounds ( A.ll), ( A.l2), and ( A.l3) 

ensure that the integral on the right-hand side of ( A.l7) has a finite 

bound that is independent of E. Thus this contribution, inserted 

into ( A.l4), also satisfies ( A.6). 

The remaining part of ( A.l6) is 

It 
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.!. f."" -ifT [h (f) - h (f + 2!.)]df 2 e E E T 

F 

-g(O)[,"" -ifT(e-Ef e-E(f+rr/T)l -z;:--- e - - df 
F V Vf + rr/T j 

¥f -if(T-iE) [ 1 1 ] 
e Vr - 1/f + rr/T 

+ (..gf 0 )) r 00 

e -if( T-iE) (l _ 

JF 
1 -Err/T) ~-~ 

e yr-;. rr/T 

The first term on the right~hand side of ( A.l8) is bounded in 

magnitude by 

J¥-1- (~) f Gr ..Jr) df ~ (~) F-1/2 . 

( A.l8) 

(.A.l9) 

Thus this contribution, inserted into ( A.l4) also satisfies ( A.6). 

The second term on the right-hand side of ( A.l8) can be written 
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~ (l _ e-€rt/T] e+i(rt/T)(T-i€) ~ 
00 

e-if(T-i€) llr df 

F+rt/T 

= ~ [eErt/T - l] 

X [f e-if(T-i€) J:
F+rt/T ] 

l df _ e-if(T-iE) ~ ::rr . -{f 
0 

g(O) (e€rt/T _ l] - r::;. rt . _ e-if(T-i€) ~ [ J:
F+rt/T l 

~ v-ieT - 1€) ~ 
0 

This term vanishes when we take the limit € ~o in ( A.6). Thus all 

the contributions satisfy ( A.6). 

' • 
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APPENDIX B 

The unitary operator U(L(x)) has the form 

U(L(x)) exp <a*•J >exp - <J*•a > 

1 . 
x exp - -<J*·J> exp - ~<J*•J> 

2 2 pv 

(B.1a) 

exp<a • J> exp<J ·a> 

l<- > i -x exp- J • J exp -<J • J> 
2 2 pv 

(B.1b) 

where J = J{L(x)), and the bracket products are defined in (2.18), 

(2.20), (2.21), and (5.8). 

Let J(L(AX)) be abbreviated by J
1

. Then 

U(L(x))u-1 (L(AX)) = U(L(x))Ut(L(AX)) 

exp<a*·J> exp -<J*·a> 

1 i 
x exp - -<J*•J>exp - -<J*•J> 2 2 pv 

xexp -<a*·J > exp<J*·a> 
1 1 

l < * > i,- * > xexp --z J1•Jl exp2-...J1•J1 pv 

(B.2) 

• • 



gives 

The commutation relation 

. 
' 
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[ <J* •a >'<a* •Jl >] = <J* •Jl > 

[exp _:<J*•a>, -<a*·J
1

>] 

=<J*"J > exp -<J*•a>, 
1 

which gives 

exp -<J*•a>exp -<a*•J > 
1 

which gives 

exp -<a*·J
1

>exp -<J*•a > 

x exp<J*•J > 
1 ' 

u(L(x)) u-1(L(>..X)) 

exp<a*•(J- J )>exp -<(J- J )*·a> 
1 1 

1 ~ 
·xexp --

2
'(J- J )* ·(J _ J) > 1 . 1 

1 <" 1 * . x exp [ - J* •J > - - <J ·J > 
2 1 2 1 

- .!<J*·J> + .!<J*. J > ] 
2 pv. 2 1 1 pv 

= U'(L(x) - L(:\X)) exp i <I> (J, Jl)' _ 

(B.3) 

(B.4) 

(B.S) 

(B.6) 

(B.7) 

, .... ~-
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where U' (L) is the function defined in (B.l) without the final 

(i.e. Coulomb) exponentia~ facto4 and <I>(J,J1 ) is -i times the 

argument of the final exponential in (B.6). The phase <i>(J, J 1 ) 

can be expressed 'in the form 

<I>(J' Jl) 

1 * i * --<(J-J) ·(J+J)/2> --<(J-J) .(J+.I)/2> 
2 1 1 pv 2 1 ~ 

1 *1 i * 1 - -<(J + J ) - •(J - J ) > + -<(J + J ) -·(J-J )> 
2 12 lpv2 12 1 

1 I d4
k. * IJV =- 2 --4(J/k)- Jl/k)) (-g )(J (k) + Jlv(k)) /2 

(21T). v 

x(P.V. 1
2 

+ i1T2 o+(k2)) 
k 

1 I d4
k * 1 IJV -2 --4 {J/k) + Jl/k)) 2 (-g )(Jv(k) - Jlv(k)) 

(21T) 

x(P.V. +- i 21fo+(k
2
)) 

k 

=I d4k4<:J (k)- Jl (k))<-gllV)(J (k) + Jl (k))/.z 
( 21T) ll ll .V V 

x (P.v. ~ + i1f(a(k
0

) - a(-k
0
))o(k

2
)) 

k 

=J~ (Jil(k) - Jlll(k))(-gllv)(J)k) + Jlv(k))/2 

(21f)
4 

(k
0 

- io)
2 

- ikl 2 

_ d4k t <Jp<)+Jl/k)) (-gllV) (J)k) - Jlv(k)) 

- J (2n) 4 (k0 + i0)
2 

- iki 2 

= <! (J + J )•(J- J )> 
2 1 1 r ' 

(B .8) 
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where the subscript r indicates the retarded propagator. Thus 

U(L(x))U-l L(AX) 

exp<a·(J- J 1)> exp<(J Jl)•a > 

exp [ ~<<J - Jl) ·(J - Jl) > + i<<J + Ji•O-Jf>r] 

(B. 9) 

where J = J (L(x)) and J
1 

= J(L(AX)). 

Our interest here is in the restriction Un(L(x) )u~1 (L(A X)) of 

U (L(x) )u-1 (L(AlO) to the soft photon region fl. This restriction is 

made by restricting the domain of integration to points k in n. The 

integrals occurring in (B.9) when restricted to any bounded region Q 

are all well defined. 

The variable x will initially be confined to the region 

R(R, AX) = {x£R
4
n; \xi - AX

1 
\ < R} 

Eucl. 
(B .10) 

where R > 0 is fixed. The time components of the timelike differences 

Xi - Xi-l are all taken to be greater than unity. Then for some A.> 1 

one has, for all x in R(R,AX) and all A ;;;. II - 1, 

2 
(xi - xi-1) > 1 

and 

,. ( 0 0 ) 
S1gn xi - xi-l 

'\ 

Sign(X? - x? 1). 
1 1-

' ' 

(B.lla) 

(B .llb) 
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The function Jv(k) appearing in the integrand of (B.8) is 

J (k) = J (L(x), k} v v 

n ikx. 
(e) ,E (e 1 

i=l 

ikxi-1 (xi - xi-l)v 
e ) -,--=---=--=-:---=-

(xi - xi-1) •k 

(e) 
n ikx. ( ik(x. 1-xi)) (x. - x. 1) 
.E e 1 1 _ e 1- 1 1- ·v • 

i=l (xi - xi-1) ·k 
(B .12) 

The superficial pole at (xi- xi-l)•k = 0 is cancelled by the like 

factor in the numerator. Thus one can shift the contour infinitesimally 

away from the zero of (xi- xi-l) • kin any convenient manner. Here 

the contour is fixed by replacing (xi- xi_1)·k by 

(xi- xi_1)•k+i0 Sign (X~- x~_1). (B.13) 

Thus the k0 contour is shifted into the upper-half plane. The 

denominator-zero of J1 ~(k) is treated in the same way, as are 

- - 0 the zeros of J~(k) + J1~(k). Thus the k contour is distorted 

always into the upper-half plane. 

The domain Q will be taken to be of the form \k0 \ ~2b \k\ ~b, 
and the notat·ion 

t.i =xi "" Axi (B.l4) 

is introduced. 

Consider first the contribution to ~(J, J 1) coming from the part 

of :J1~(k) corresponding to the line from 1 to 2 in Fig. 1, and from 

the part of J1~(k) corresponding to the line from 2 to 3. This 

contribution is minus one times 

'. 
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"'<2, 1) (3, 2) (Jl) 

= e2 J d4k (e -ikAX2 -ikAXl ikAX3 ikAX2 -e )(e -e ) 
2 Q (271)4 

x (x2- xl)v (- gV~(X3- x2)v 

((X2 - X1)•k + iO)((k
0 

+ i0)
2

- lki
2

)((X3-x2)·k+i0). 

(B .15) 

0 0 0 
By virtue of the time ordering x

3 
> x2 > x1 in Fig. 1 one may 

push the k0 contour a finite distance into the upper half plane without 

encountering any exponentials that increase as A->"". One may take it to 

be a semi circle of radius 2b. The integrand and integral are then 

uniformly bounded over the domain A ~ 0. 

Consider next the contribution that arises from replacing J1V(k) 

in the above expression by Jv(k): 

~ (2,1)(3,2)(Jl, J) 

2 J 4 = ~ d k -ikAX 
2 -( 4 (e 2 

n 271) 

-ikAXl 
-e ) 

ikAX
3 

+ ikA
3 

ikAX
2 

+ ik62 
(e - e ) 

V\1 -1 -1 
(X2- Xl)V(-g )(X3 - X2 + 63A - 62A )v 

x ( <x2-x
1

) ·k+iO) ( (k0+io) 
2 .:. lit1 2)( <x

3
-x

2
H

3 
A -l'-6

2
A -l) ·k+iO) 

(B.l6) 

For 1\ ~ A one may again distort the k0 .contour into a semi-circle in 

the upper-half plane and obtain an integrand and integral that are 

uniformly bounded over A ~ A. 

j,lt 4' 
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Consider now the contribution to the integral in (B.l6) that arises 

-1 -1 
from the terms (113 A ) " and (62 A ) v. Each of these contributions has, 

by virtue of the bound 

l -ikAX 2 -ikAX1 I {A(X
2 

- X~·k)- (e -e . ) I .;;; 1, (B .17) 

a bound of the form bB, where B is a number that independent of b and A, 

but can depend on R. For A~ A one may, for points on the semi circle 

lkl = 2b, write 

-1 
( -1 -1 ) (X

3 
- x

2 
+ 6

3 
A - 6

2
>t ) • k 

{(X
3 

- x
2

) • k)-1 + t f(k,>t) 

with bounded f(k,>t). For the second term one may again use (B.17) to 

obtain a bound on the contribution to (B.16) of the form bB. Thus one has 

"'(2,1)(3,2)<31' J) - "'c2,1)(3,2)(J1) 

= O(b) + 

e2. J d4k -ik)X2 -ikAX1 +- -- (e - e ) 
2 Q (271) 4 

ikAX
3 

ikll
3 

ikAX
2 

ikA
2 

x {e (e -1) - e (e -1)) 

x (X -X) (- gvv)(X _X) 
2 1v 3 2v 

((X
2

- X1) • k + iO)((k0 + i0)
2 

- lkl 
2

) ((X3 - X2) •k + iO), 

(B.18) 
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where the magnitude of the term O(b) is bounded for all b >o and all 

A ;;. A by an expression of the form bB. But then the bound 

Jeikli_1 J ~ JkliJ (B .19) 

gives 

1~· - ~1 ~ bB (B .20) 

for all b > 0 and all A ;;. A. Here B is some finite number that is 

independent of b and A, but can depend on R. In what follows B will 

be a generic number with these properties: it need not always be the 

same number. 

Consider next the contribution to «J, J 1) in which the roles of 

the lines from 1 to 2 and 2 to 3 are interchanged: 

~(3 ,2) (2 ,1) (Jl) 

e2 I d4k -ikAX3 -ikAX2 ikAX 2 ik;~.X 1 
= - -- (e - e ) (e - e ) 

2 n (2n)
4 

(X3 - X2) ( -g \.I") (X2 - Xl) v 
X 0 2 2 

(Cx
3 

- x2) • k + iO)((k + iO) - J1tJ )((x2 - x 1).k + iO) 

(B.2la) 

and 

~· (3 ,2) (2 ,1) (Jl' J) 

e2 I d4k ikAX3 -ikA.X2 ikAX2+ik[l2 
= - -- (e - e )(e 

2 (2 . 4 n nJ 

ikA\+iklll 
e ) 

(B.2lb) cont. on next page 
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j.l\1 -1 -1 
(x3 - x 2)\.l(-g )(X2 - x 1 + li2A -lilA )v 

X ----~-~~~-~~~~~~-~~~-~~---

(cx3 - x 2) • k + iO)((k0+ i0)
2

- Jk:J
2)cx2 - x 1 + t~2 A-l t~1A-1·k+iO). 

(B.2lb) 

Consider the difference ~· - ~of the integrals defined in (B.2lb) and 

(B.2la). For A;, A one may complete the k0 contour by adding in the 

lower-half plane a semi circle at JkJ = 2b. The arguments that led to 

(B.20) show that the contribution from this semi-circle also has a bound 

of the form (B.20). 

The completed contour can now be collapsed onto the poles, which 

0 !"" are located at k = ± kJ This leaves a d3k integration in which 

the three remaining denominators all contain factors of J~J. With the 

.factor J~J 3 separated out the denominator is left in a form that 

remains finite in the angular integration, due to the timelike character 

of the vectors (Xi - Xi-l) 
-1 -1 

and (Xi- Xi-l +iliA - lli-lA ). Thus 

the quantities li
2

A -l and t~3 A -l in (B.l2b) again give corrections of 

order.A-1 , for A;;. A, and by virtue of (B.l7), give a contribution to 

the integral that enjoys a bound bB. The difference of the remaining 

integral in (B.2lb) with the function ~ defined in (B.2la) again 

enjoys a bound bB, due to (B.l9). Thus the difference~·-~ of the 

functions defined in (B.21) enjoys a bound of the form (B.20). 

Consider next the contribution 

',, 
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~(3,2)(3,l)(Jl) = 

/ r d4k -ikAX3 -ikAX2 ikAX3 ikAXl 
= - --- (e - e ) (e - e ) 

2 n (211) 4 

jJV 
x (X3- X2)JJ(-g )(X3 - Xl)v 

((x3- x2) • k + iO) ((k
0 

+ i0)
2 

- ik:i
2
)((x3- x1) • k + iO) 

(B .22a) 

It will be taken together with 

~· (3,2)(3,1) (J) = 

e2 r d4k -ikAX3-ikil:3 -ikAX2-ik~2 ikA~+ik63 ikA~+ik6l 
= - -- (e -e ) (e - e ) 

2 Q (211) 4 . 

(~- ~+ ~3A-l- ~2A-l) (-gJJV)(~- ~+ ~3A-l- ~lA-l)v 

x (<~- x
2
+ ~3 A-1-:~2A-1·k + iO)(<k0+ i0) 2-I"kl~(<x3 - x1+~3 A-1..:.'\A-1· k+iO). 

(B.22b) 

Consider now the difference ~· - ~ of these two functions. Due to the 

inequalities X~ >X~ >X~ one may, for A;;;. A and for the terms containing 

factors exp ikAX3 or exp(ikAX
3 

+ ik~3 ), distort the k0 contour into 

the upper-half plane and obtain, as before, for these contributions to 

~· - ~ a bound bB. For the remaining terms, which contain the factor 

exp ikA~ or exp ikAX
1 

+ ik11 , one can complete the k
0 

contour by a 

semi-circle ~n the lower-half plane: the added contribution to ~· - ~ 

has, as before, a bound bB. The completed contour can now be contracted 

to the poles. The poles at k0 = ± I~ again give terms with a bound bB. 

The contribution to the integral in (B.22a) from the pole at 

( ~ - x1) • k = o is 

~::;-'J 

where 

pole 

~(3,2)(3,l)(Jl) = 

.I. f· 
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e2 . J d3k ikA(X3-x2) 
- (-1.) -- (e -1) 
2 ill (21T)3 

jJV 
(X3- x2v-g )(x3- Xl\ 

X ( ( 0 2 ,_.. 2 0 0 <x3- x 2).k) (k) - ki )(X 3 - x 1) 

0 ot3-it)·k 
k = 1 

0 0 
x3 - x 1 

The companion pole contribution is 

~'pole 

(3,2) (3,1) (J) 

= - (-i) -- (e -1) 
e2 f J d3k ikA(:X3-X2)+ik(~3-~2) 
2 (21T)3 

n n 
-1 -1 jJV -1 -1 

(X3- X2 + b.3A - ~2A )JJ (-g ) (X3- Xl + b.3A -1\A ) 

(B.23a) 

(B.23a') 

X---------~l~----~l--(--~0~2~,-t--1~2--~0~~0--~0---~l---0~-~l 
(X3-X2+b.3A -b.2A )•k (k)- I<J )(X3-Xl+b.3A -b.lA) 

(B.23b) 

where 

ko= 
~ ~ 7 -1 ... -1 ~ <x3- x1 + 113 A - ~::,1 A ) • k 

(XO _ XO + AO A-1 _ OA-1) 
3 1 3 Al 

(B.23b') 

-1 -1 -1 -1 0 -1 0 -1 
The terms (b.3A - b.1A )v, (b.3A - ~::, 2 A )JJ and (~::, 3 A - ~::, 1 A ) give 

contributions to (B.23b) having a bound bB, by virtue of (B.17) with x1 

replaced by x3 . The factor lki 2((k0) l- iki 2) -l evaluated as specified 

in (B. 23b') is non zero in the domain of integration and can be 
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expressed as its value at A = ~ plus a correction term of the form 

f(k,A)/A, where f is bounded in the domain of integration for all 

A ~A. This term f/A gives a contribution to the integral in (B.23) 

that has a bound bB, by virtue of (B .17) with x
1 

replaced by x
3

. 

Insertion of the value of k0 specified in (B.23b') gives 

-1 
k • c x

3
- x2 + fl

3 
A fl A-1 

2 ) k • V(A -l) 
.... .... ........ -1 
k·V0 + k•WA , 

(B .24a) 

where 

and 

_,_ .... I 
k·v0 = k·(~- ~) 

k•(l3 - Xr) = 0 

-+ -+ -+ + 

k . [- ~ - ~ + ~ - ~ J ( i; - ~) 
X:3-~ Xj-XJ_ 

.... -r ( .;: 0 0 -1 0 1 
w = - (ll3 - !2) + c! - ! ) _-3o-----1X;2~+_fi73;-A--,------fi~2A_-~) 

3 1 _D 0 0 Xj - X]_+ fl3 A-1 - fi~A-1 

.... .... 3 2 3 1 3 2 

(B.24b) 

+ <x3 (

flo - flo 

- Xl) 0 0 
x3 - x2 

fl 0 - fl 0) X 0 - X 0 

o -xo (xo -xo +flo A-1 -flo A-1)· 
3 1 3 1 3 1 

(B.24c) 

Thus the difference of the pole terms shown in (B.23a) and (B.23b) can 

be expressed as 

$'pole_ $pole= O(b) 

~v 0 
+ (~ - X2) (-g ) (X3- Xl) (X3 

2 
X ~ (-i) 

2 

~ v 

I _A 1 

Jkl<b (21T) 3 (ko) 2 

[ 

. -+ .... 
l.Ak•V 

x (-l)e-- -1 

uit.v 
e - 0 -1 

it-v k:.v 
0 

- Xo) 
1 

l'kl 2 

] 
I k•(X3- \) 0 

(B.25) 
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Let v 1
_,_ -1 I -1 1_,_ I = V(A ) = v(A ) and v

0 
= v0 = v(O). Let cos a and cos a0 

be defined 
7-+ --+-+ 

by k-·V = kv cos a and k·Vo = kv0 cos a
0

, respectively. 

Then one may define 

and 

-1 
f (v cos a, A ) 

f 0 Cv0 cos a0) 

-1 
v 

21T 

r1Td<j> lkl2 
0 (k

0
)

2 
- lkl 2 

-1 
vo J d<Po 

0 

jkj2 

(k0)2- Jkl 2 

k.(x
3
-x1) = o 

cos a fixed 

k•(X
3

- x
1

) = 0 

cos a
0 

fixed 

(B.26a) 

(B.26b) 

where (a,.p) and (a
0

, .p
0

) are two sets of angular coordinates. The 

( -1 -1) -1 function f 0 (v0 cos a) is the limit of f v(A ) cos a, A- as A -+ 0, 

and 

( -1 -1) f v(A ) cos a, A f
0

(v 
0 

cos a) 

-1 -1 +A f 1 Cv
0 

cos a, A ), (B.26c) 

-1 
where f 1 (cos a, A ) is bounded for A~ A and 1 ~ cos a ~ - 1. 

-+ -+ -+ -+ 
Because of symmetry only the real parts of exp iA k • V and exp iA k • V 0 

.. 
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contribute to the integral in (B.25). Thus,using (B.26), one may 

write (-i) times this integral as 

b 1 -1 (eiAkV cos e-1) 
(-i)(-1) J dkJ d cos e(vf(v cos B,A ) kv cos e 

(211) 3 0 -1 

(
. Hkv 0cos e 1 )] 

-vofo<vo cos e) e kvocos e-

_.(-1) Jb dk IVAk ~ (
211

)3 . k dx f(x/Ak,A-1) sin x 
0 -~k X 

'b vo 
1±!2._ J dkk l dx fo(x/Ak) 
(211)3 0 ' vo 

sin x 
X 

= (-l~Jb dk.! lvoAk 
(211) 0 k ). dx 

v0;~.k 

f
1 

(x/A k, A-1) sin x 
X 

1 Jb [IvAk -voAk 
-

211
3 d: dx +J dx]f(x/).k, ).-1) sin x 

0 · v
0

Ak -v).k X 

(B.27) 

By virtue of the boundedness -1 . -1 of f (x/Ak, A ) and f 1 (x/ >ik, A ) bpth 

integrals in the last line of (B.27) enjoy bounds of the form bB. 

· · . pole pole 
Hence the difference ~· - ~ of the pole contributions defined 

in (B.23) enjoy a bound of this form. 
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.Consider next the contributions 

~(~.2)(3.l)(Jl, J) = 

e2 J d4k -ii.kAX3 -ikAX2 +ikAX3+ikll3 ikAX1+iklll 
- -- (e - e ) (e - e ) 
2 (211) 4 

IJ\1 -1 -1 
X (X3-Xl)ll(-g )(X3-Xl + li3A -lll A )\1 

((X
3
-X

2
) ·k + iO){(k0 + i0) 2 - iki 2){(X

3
-X1 + t~3 A-l_ lllA-l) •k + iO) 

(B.28a) 

and 

" ~(3.1)(3.2)(J, Jl) = 

e2 J d4k -ikAX3-ikll3 -ikAX1+ikll1 ik;l.X3 ik;l.X2 - -- (e - e ) (e - e ) 
2 (211) 4 

-1 -1 IJ\1 
x (x3-xl + li3A.- LilA \(-g )(x3-x2)v 

(<x3-x1 + t~3 A-1- t~1 ;~.-1)·k + iO){(k0 + i0) 2 - iki 2H<x3 ~x2)·k + iO). 

(B.28b) 

0 In ~ one pushes the k contour into the 

upper-half plane for the terms with exp iAkx
3 

+ i k£.3 , and completes the 

contour in the lower-half plane for terms with exp iA kX1 + ikll1 • In~" 

0 one pushes the k contour into the upper-half plane for the terms with 

exp -1AkX1-ikll1 and completes the contour in the lower-half plane for 
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terms with exp - iAkX
3 

- ikll3 . The importance of this grouping <!>" - <1> 

. . . -· -1_ --· -1 - J.s that--the contrJ.butJ.Ons from the poles at (X 3-x1 + ll3 A - l:l1 A )· k = 0 

cancel exactly, by virtue of the anti-symmetry of this pole contribution 

to <!>" - <!>. 

For the remaining partial cancellations that give the bounds of the 

form bB one groups <I> of (B.28a) with 

<I>' (3,2)(3,l)(J, Jl) 

e2 J d4k -ikAX 3-ikll3 -ikAX2 -ikll2 ikAX 3 ikAX 1 - -- (e - e ) (e - e ) 
2 (271)4 

ty · -1 -1· jJ\1 
, •• 3-XZ + A3A -ll2 ) 11 (-g )(x3-xl)v 

x (<x
3
-x

2 
+ l!

3
A-1-ll[1)·k + iO)(<k0~~-o)2-- !lf! 2)(<x

3
-x

1
)· k + iO). 

(B.28c) 

Th(l proof of the bound I <I>' - <l>j..:bB goes as before, except that one 

-1 -1 
need not consider contributions from the poles at (X3-x1 + ll3A -ll1 A )·k=O 

and <x 3- x 1) •k = 0, due to the cancellation mentioned above, and the 

analogous cancellation between the poles of<!>' (3 , 2)(3 ,l)(J, J 1) and 

<1>'''<3,1)(3,2)(Jl, J) at (X3-xl)·k= 0. 

Consider next the contributions to <I>(J, J 1) coming from the (3,1) 

contribution to J1v(k) and the (3,1) contribution to J
111

(k): 

' 

<1>(3,1)(3,l)(Jl) 

2 J d
4

k 
= -T (271) 4 

n 
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-ikA~ -ikAX1 ikAX ikAX 
(e - e )(e 3 - e 1) 

<x
3
-x

1
) (-g 11v) <x

3
--x.) 

X J1 -~ \1 

(<x3-X:I_)·k + i0) 2
(<k0 + i0)

2
- jitj

2
) 

(B.29) 

In the contributions with a factor exp ikAX 3 one can move the k0 

contour into the upper-half plane without encountering any exponentials 

that become large as A + ~ Thus one finds a uniform bound as A+~. 

The remaining terms are 

<!>rem 
(3,1) (3,1) (Jl) 

- e2 J d4\ (1 
- 2 (211) 

X 

n 

jJ\1 
{X3-Xl)Jl(-g )(X3-Xl)v 

-ikA (X 
3 

-X 
1

) 
- e ) 

((X
3

-x
1
)·k + i0) 2 ((kO + i0) 2- jkj 2) 

(B .30) 

The (X
3 

- x1) • k contour in (B. 3 0) can be completed by a path in the lower half, 

0 + 
plane, and then contracted to the poles. The poles at k = ±jkj give 

contributions that enjoy a bound of the form C + D log(bA)S(bA-1). 

The contribution from the double pole arises from the derivative of 

the remaining factors, evaluated at the pole. This derivative acting 

on the factor k - 2 xn(k) gives no contribution; due to the zero 

in the numerator, but acting on the exponential it gives the contribution 

,, 
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2 pole _ ~ 
<1>(3.1)(3.1)- 2 

).l\) 
A(X3-Xl) 11 ( -g )(X3 -Xl) v 

0 0 
Cx3-xl) 

X 3 1 I ~-- 2 +2 j ('•>' (k
0

) -lkl k·(X -X.> n 3 0 

(B .31) 

This contribution to <I> increases linearly with the distance 

(A~- A~). It gives a contribution to exp i <I> that is the same as 

that of a mass term. The magnitude qf the effective mass shift 

induced by this term equals the classical-photon contribution to the 

usual lowest-order Dirac-particle self-energy diagram. apart f.rom the 

factor of-1/2 stemming from the occurrence of ~his factor in-t J
111

• 

The Dirac-particle self-energy counter term has not yet been taken 

into account. It cancels precisely the above self-energy contribution 

to <I>: one may omit the self-energy contribution to the operators 

U(L(x)). and consider the mass m to be the physical mass of the particle. 

Consider next the contribution to ct>( 3.l)(3 .l) coming from the (3.1) 

part of J
1 

(k) and the (3.1) part of J (k): 
).l ).l 

'<I>' (3.1)(3.1) (Jl' J) 

/ J d
4

k 
2 n (27!)4 

-ikAX3 -ikAXl 
(e - e ) 

. ikA~+ikll3 ikAX1+ikll1 
x (e - e ) 

t.3 t.l 
(X -X ) (-g 11v) (X -X +- - -) 

X 3 l).l 3 1 A A\) 

((x3-x1) ·k + iO)((k
0 

+ i0)
2 

- iltj 2
) 

1 
X ----,:-------,;:.. 

(X -X + .:3..- .:l.)•k + iO 
3 _1 . A A 

(B.32) 
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In the two terms containing exp ikAX3 + ikt:3 one may distort the k0 contour 

into the upper-half plane. They combine with the like contributions to 

(B.29) to give a difference <1> 1 
- <1> whose magnitude enjoys a bound bB. 

In the remaining two terms one completes the k
0 

contour in lower-half 

plane. This contributes to'·ll>'.- <I>. a term with bound bB. Then contracting 

the completed contour to the poles one obtains from the poles at 

0 1+12 k = ± k contributions to <I>' that combine with those of <I> to give 

contributions to <!>' - <I> with a bound bB. The other pole gives a 

contribution to ct>' of the form 

<!>,pole 2 · 3 
(3.1)(3.l)(Jl. J) = ~ (-i) J ~ n (27!)3 

ikll3 ikt.l 
(e - e ) 

).l\1 . -1 -1 
x (x3-x1)/-g )(x3-x1 + t.3A - t.1 A )v 

(X~ - X~)({k0)2 - lkl2) 

1 
X :{1, 

:{1,3 _],) •k (T- A 

2 3 ( ikt.3 ikll ) 
= ~ (-i) ~ e - e 

1 

~ (271)3 . (1'.3 - t.l) •k 

).l\1 ( 
(X3-~)ll(-g ) A(X3-Xl) + :t.3 

(~-~)( (k
0

)
2 

- l"kll 

where k0 is evaluated by using 

t.3 :t.l 
(X3-Xl) •k = - (T - T) ·k. 

- t.l )v 

(B .33) 

(B.34) 

(B .35) 
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This contribution comes from J1 (k) (-g~v)J (k). The similar 
~ v 

contribution from J~ (k) ( -g~v).J1 v (k) is obtained by replacing 1< by -k. 

These two integrals are equal, due to the symmetry of the integral 

under the replacement of the variable k by -k. Thus their difference 

vanishes. Hence the only contributions linear in A come from the terms 

- ~v - ~v 
J1~(k)(-g ) Jlv(k) and J~(k)(-g )Jv(k). The contributions from these 

two forms that increase with A cancel, even without considering the 

self-mass counter terms. And the remaining terms have a bound of the 

form bB. Thus the sum of the (3 ,1) (3 ,1) contributions enjoys a bound 

of the form bB. 

All remaining contributions succumb to the methods shown above, 

and one obtains the bound 

j"{J,J
1
)j .;;bB, (B .36) 

where B is some number that is independent of band A. 

According to (B.7) one has U(L(x))u-1LO..X))=U'{L(x)-L(t-X)) exp i <1>. 

Transposing the two operators on the left-hand side gives 

u;1(L(AX))u(~(x)) U'(L(x) - L(AX)) exp- i<l>. (B. 37) 

Thus 

u;
1

(L(AX))lf,(L(x)) U exp- i<I>Q(J,J1) (B.38) 

.. 

where 

u 
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. * * 1 * exp ' a •J > exp - < J •a > exp - - < J •J > 
2 

and J represents the vector function with components 

J (L(x) - L(I-X), k) = 
~ 

(B.39) 

(e) 
3 
~ 

i=l 
[ 

ikAXi+iktli ikAXi-l+ikLI:L-)( - A.A-1-L'. A-~ 
(e - e <xi ll-1+1 i-1 J1 

-1 1) (X -X + f.. A - L'.i lA •k i i-1 1 -

ik\Xi ikAXi-1) (Xi-Xi-1) ~ J (e - e 

(xi-xi'-l)·k (B.40) 

In calculating U this function J is evaluated at k2 =0. Due to the 

-1 -1 
space-like character of (Xi-Xi-l) and (Xi-Xi_1+t.it- -t.i_1 >- ) each of 

the denominators iri (B.38), evaluated at k2 = 0, is ikl times a func·tion 

of angles that is nonvanishing over the physical domain of integration. 

Thus for A ~ A and physical k satisfying k
2 

0 one may write 

-1 -1 
(X. - X. l + f.. A - f.. l A ) 

1 1- 1 1- ~ = 
-1 -1 

(Xi - Xi-1+ L'.i A - L'.i-1 A )• k 

+ 1 
-1 -1 

(Xi - Xi-1 + L'.i A - L'.i-1 A ) • k 

(Xi - xi-1) J1 

(xi - xi-1)· k 

f~(A,8,1/J) 

A (B.41) 

where f (A,8,cj>) is bounded for A~A and (8,cj>) in the physical range. 
~ 

This expression (B,41) may be inserted into (B.40). The second term of 

(B.41) then gives a contribution to 3/k) that is bounded for A~A and 

(8,cj>) in the physical range. Thefirst term in (B.41) gives a contribution 

to (B.40) that combines with the second term of (B.40) to give a 

'., 
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contribution to J (k) that also is bounded for ).';;>A and 8,1/1 
1.1 

in the physical region. 

Because J(k) is bounded 

N : ( < J*•J>)l/2 

is of order b 

(B.42) 

One may introduce a set of orthonormal basis functions fi(k) over 

the portion n of k space such that the first of these functions is 

f 1 (k) = J(k)/N. Then the operator U of (B.39) has the form 

U(N) = e:Xp <a* ·f1 >N exp - <f~ ·a >N x exp - t N
2

, (B.43) 

where N is order b • 

In the formula for transition probabilities the contribution 

from Arem ('Ax) has, according to (7 .2), (7 .3), and .(7 .4), a factor 

F(N) 
-i<I>(J, Jl) . .. -D' • 

{U(N)e -IQ)FoprQ Pin Q 
(B.44) 

To calculate the dependence of F upon b one may introduce the coherent 

states5 •10 

<a*•f >z -<f* • a>z* _!. zz* 
lz > = (e 

1 
e 

1 
e 

2 
) I o>. (B .45) 

Then 
1 - 2 N(z-z*) 

U(N) lz > = lz + N >e (B.46) 

Thus for small N and <I> one has 

,,, 
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-H 
(U(N)e -1) lz > 

"I z + N > -lz > - i <I> I z > 

1 -2 N(z- z*)lz >. (B.47) 

The vector lz + N >- lz >is small for small Nand Nlzl:
11 

I (z + N > -I z > I .;;; 

/:2(1zl + lz + Nl )l/2Nl/2, (B.48) 

The normalization factor N is of order b • But what is z? 

Consider first the contribution to (B.44) coming from the part 

-DO -D F n of F n that corresponds to the original diagram D. This opr.. opr .. 
-DO · factor F ngives no contribution to the photon space operator. Thus opr .. 

the amplitude of state lz >is given by the decomposition12 

= Jd
2
z lz >< z I PinQ" PinQ- rr 

(B .49) 

Now the expectation-value of- the number of photons in the state 

lz >is jzl
2

•
13 

And the expectation-value of the energy in this 

state is 

E = 
2 

z El' (B.SO) 

where E1 is the expectation value of the energy in the state 

<a*·f1> lo >. Since the wave function f 1 (k) in this state is 



- B(b-k)/b the energy E
1 

is 

b 3 
E - f ~ k ·Cl/b-)

2 

l 0 k 

b. 
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By the principle of equipartition of energy the energy 

residing in each low-energy mode of the 

(B. 51) 

photon field should be approximately the same. Thus one should expect 

theE in (B.4a) to be roughly independent of the mode. But then the 

expected dependence of z on b is given by 

lz I - b- l/2 (B.52) 

But if <z I:F
00 

"p. "is concentrated near values of z satisfying (B.52) opr .. ·J.n>< 

then (B.47), (B.48), and (B.36) show that 

IF(N) I -+ 0 

as b -+ 0. In fact, one could tolerate a growth as large as 

lzl- b-l+£(£ > 0) and still obtain the result (B.S3). 

(B.53) 

The results in paper II will show that the very soft photons emitted 

and absorbed by the operator part of FD (x) produce only very mild opr 

effects that do not upset this result (B.S3~. 

The bounds obtained above refer to the contributions from the 

points x in 

R(R,:.I.X) = {x; lx. - :.\.X. IE 
1 
~ R}. 

l. l. nc • (B. 54) 

To obt.ain a bound on the contributions to A {:.I.X) from points outside rem 

R(R,:>..x)consider first the points x outside the set R(:.l.n,AX) wheren= .01. 
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And consider initially the part A0 (:.\.X) of A (:>..X) that comes from 
rem rem 

the F0 (x) part of F0 (x). opr 

Equation (7.3) shows that the operator part of the integrand in 

A (:.\.X) has norm ~ 2. And the function F0
(x) is bounded. (Ultraviolet rem 

cut offs are assumed) The product of the wave functions falls off 

faster than any power of Jx- :>..XJ. Thus for any£> 0, however small, 

and any C > 0, however small, one can find a A(£, C)= A1 such that· for 

all :.1. > 1\
1 

R (:.l.n, IX) is 

the sum of contributions to AO (:.I.X) from points x outside rem 
-9/2 an operator with norm less than (£/4)C:.I. : 

JAO (:.I.X)R(:.I.n,:.I.)J < ~ C:.l.-9/2 
rem 4 (:.1. > Al). 

(B.SS) 

Consider next the contributions to A0 (:.\.X) from points x inside 
rem 

R(:.l.n,t.X)and outside R(R,AX) The operator part of the integrand still 

has norm ~ 2. The function I F0 (.x) j has, for all points X£R(:.I. n, ;>,X) for 

:.1. > A2 >> 1, a bound of the form 

JF0 (x)I~C':>..-912 (x£R(:.I.n,AX) :.1. >A2 )~ (B.56) 

-9/2 Inserting the bound 2C':.I. on the norm of the parts of the 

integrand other than the wave functions one may obtain a weaker bound 

by extending the region of integration of the magnitude of the product 

of the wave functions to all points x outside R(R,:.I.X). The faster than 

any power fall off of the absolute value of the products of the wave 

functions ensures the convergence of this new bounding integral. This 

procedure gives a bound that depends on :.1. only via the factor :.1.-
912 , 

and that falls off faster than any power of R, due to the fall off.of 

'" 
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the absolute value of the products of the wave functions. Thus for 

some sufficiently large R the contribution to A
0 

(AX) from points rem 

x inside R(J...n,A~and outside R(R,AX)h&s a bound of the form (£/4)CA-
912

: 

I 
0 R(R, AX) 

Arem(AX)R(J...n,AX)I < f CA-9/2. (B.57) 

For the remaining points x in R(R,AX)one uses the main result of 

this appendix: for some fixed A and for any R, however large, the 

norm 

I 
-1 

UQ(b)(L(AX)) UQ(b)(L(x)) - lj (B.58) 

tends to zero with b uniformly over the set 

{(A,x); J...>A, XER(R,AX}. 

This constant A can be made larger than A1 and A2• Then combining 

this bound on (B.58) with (B,56) one concludes that for some sufficiently 

small b = b(E,c,R) > 0 the contribution to A
0 

(AX) for points rem 

XER(R,J...X) (A > A) satisfies 

jA~em(AX)R(R,~I < I CA-9/2 (J... > A). (B.59) 

Then the sum of (B.59), (B.57), and (B. 55) gives 

jA0 (AX)j < ECJ...-912 (A >A). 
rem 

(B.60) 

f ~ • 
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The constant £ > 0 is taken to be the number occurring in (7.13), 

and the constant C is constructed from the F0 (x) parts of the three 

functioosdefined in (7.45). [See also (7.26)] 

0 .. 
The above discussion dealt with the part Arem(AX) of Arem(AX). 

However, the good infra-red.properties of F0 (x) ensure that the opr 

arguments carry over to the full operator A rem (J...X). In particular, 

the crucial property (B.56) holds also for F
0 

(x), and the soft . opr 
D photons emitted and absorbed by F do not upset the required opr 

operator properties. A detaiied justification of the extension to 

F0 (x) depends on the detailed results to be described in paper II. opr . 
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APPENDIX C 

The self-energy and wave function renormalization effects of 

classical photons on charged particle propagators are calculated in 

this appendix. 

The starting point is the one-particle propagator with a 

single classical-photon correction: 

2 J 4 s;(z) = f _.!...E._ e -ipz 
(21T)4 

J d
4

k 
n (2rr)

4 

[
_1_ Jt 1 Jt _1_ 
p-m p+lt-m p-m 

1 1 
-2- -.--2 
k +iO (z•k) 

+-1- 1 p -mIt-.-.. - - m Jtp:J. (C.l) 

The two terms arise from the cases in which the photon enters the 

charged line before or after the point at which it leaves this 

line, respectively. The two terms are equal if the integration 

region Q and the factor (z•k) 2 are invariant under the trans-

formation k ~ - k. 

A double application of the Ward identity (2 .8) gives 

Sl(z) = ~2J ~ e-ipz J ~ 1 1 

F 2 ( 21T)4 Q ( 21T)4 k2+ iO 
-,--2 
(z·k) 

x[(-1- Jt _1 ___ 1_ 
p-m p-m p-m 

+ 1 
p+lt-m 

+ _1_ 
( -Jt) 

1 1 + 1 )] 
p - m p-m-p-m p-}t-m 

(C.2) 
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If (~·k)-2 = z 2(z•k)-2 is res;olved by the principal-value rule, 

or has the form (z·k + iO)(z•k- iO), and is therefore symmetric under 

k ~- k, and if the region Q is symmetric, then the two terms with 

double pole (p - m)-2 are individually zero by symmetry. In any case 

they cancel and leave 

where 

s;(z) 
J ~ ie-ipz 

(21T)4 ~ 

[
e

2 J d
4

k i 
X -2- Q (21T)4 k2+ iO 

z (-g 11v)z 
).! \} 

(z •k) (z ·k) 

x (- 2 + e-ikz + e+ikz)J 

SF(z) ill(z), 

-/ J· d
4

k ____2,_ 
ill(z) = -2-Q (

2
1T)4 k2+ iO 

z (-g11\}) z 
ll \} 

(z • k) 
2 

ikx2 ikxl -ikx2 -ikxl 
(e - e ) (e - e ) 

x2 

-e2 J~ i(-gll\1) f 
2 (21T)4 k2+ iO xl 

Q 

x2 

dxlleikxJ 
xl 

dx' -ikx' 
ve 

Inclusion of the contributions from all classical photons gives 

s;(z) SF (z)e ill(z) 
' 

which is closely connected to (2.14) and (2.17) . 

• • i ~ 

(C.3) 

(C.4) 

(C.5) 
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The function 6(z) is 

ll(z) .2 I d4k ~ --4. 
= .2 (21T) 

Q 

1 

k
2+ iO 

x (e-ikz + e+ikz _2) 

1 2 
z •k) 

- z6m +a+ ib + r(z) + is(z), 

A2 Ao .,. .,. 1/2 
where, for z > 0 and z > 0, and with w = + (k•k) 

and 

s(z) 

2 I d4k 
6m = -; (21T)4 

Q . 

~1- 21To(~·k), 
k2 

a 

b 

e
2 I d4

k [ 1 
= 2 n (2~)4 (ko+ i0)2 A .2 

(z·k+iO) 

1 
2 

- w 

1 
+ 0 2 2 

(k - iO) - or 
1 J · A 2 

(z •k - iO) 

2 
e +-2 

I d4k 
Q (21T)4 

[ 

. 0 . 0 ~ 
21To(w+kA) -

2 
21ro(w-k )J 

· 2w (z•k) 

ikz 
-e2 I d4k 

Lk0+ i0~2 - w2 
1 r(z) =- -- -A- 2 

2 Q(21T)4 (z•k + iO) 

-ikz 
1 J e 

+ 
(k0- io)

2
- 2 A 2 

w (z•k- iO) 

2 I 4 [ 0 ikz 0 -ikz J ~ ~ 21To(w+k )e -21To(w-k )e 
2 4 A 2 

Q (21T) 2w(z•k) 

(C.6) 

(C.7) 

(C.8) 

(C.9) 

(C.lO) 

(C.ll) 

) . 
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The quantity 6m is a mass. shift, and a is a wave-function renormali-

zation • 
A 2 

The quantities band s are zero if Q and (z•k) are symmetric 

under k + - k. The function r(z) tends to zero as z tends to infinity, 

The self-energy contribution (C.7) is the classical-photon part 

of the full self-energy. As such it is cancelled by the classical-

photon part of the self-energy counter term. 

In the context of the calculation of (7.20) the above calculations 

take into account all contributions in which there is a double pole 

(~ •k) - 2 • Taking togethet all four contributions of this kind yields 

the ikz -ikz numerator factor (- 2 + e + e ), which vanishes for z•k = 0. 

The vanishing of the numerator at ~·k = 0 is important: it means that 

A -2 the derivative associated with the double pole (z•k) acts only on 

ik•z -"ik•z the exponentials in the factor (- 2 + e ·· + e ) . 

To take advantage of this numerator zero one should, in the 

calculation of (7.20), initially combine all double-pole contributions 

in the way done here, and then afterwards associate the z-independent 

contribution a/2 with the vertex on each end of the line under 

consideration. 

At a later stage of the calculations [Cf. (7.38)] the coherent 

states generated by U(L(AX)) are introduced, and the operator U{L(x)) 

is replaced by u-1 (L(AX))U(~(x)). The various contributions to U{L(x)) 

* from the terms J. J. with if j are either mass renormalization terms, 
1 J . 

which are cancelled by counter terms, or do not contribute in the 

large (x. - x.) limit, or have the form ea, with a independent of x. 
1 J 

These latter terms drop out of u-1 (L(AX))U(L(x)). * Thus only the JiJi 

* terms survive. For each of these individual terms JiJi one can perform 

the transformation shown in (7.42), in order to obtain the results given 

by (7.47) (7.52). Note that no double poles appear in these final formulas. 
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APPENDIX D 

The purpose of this appendix is to show that the contributions 

* to the probability Pd (AX) from the J.J. (i j j) contributions to 
om 1 J 

Q 
the phase <P (L(x)) 

. -9 
defined in (7.20a) fall off faster than A. . 

The full current J (L(x), k) defined in (7 .21) is a sum of three 
)J 

* terms, one for each line of L(x). Thus J J decomposes into nine 

terms. The diagonal terms, which correspond to the contribution from 

* the same line in both J and J , were dealt with in Appendix c. 

Let J .. be the contribution to J corresponding to the line 
lJ 

segment of L(x) that runs between vertex i and j: 

(xi - xj) . 

J .. (L(x),k)= -ie (x.- x.)·k 
lJ]J l J 

ikx. ikx. 
(e 1 

- e J) (D.l) 

Consider first the points x in R(A.n, A.X), for A.> A>> 1, and 

o < n << 1. 
0 0 0 . 0 

Then x
3 

> x2 > x
1

, and the k contour may therefore be 

* distorted into the lower-half plane for the term J
32

J 21 and into 

* the upper-half plane for the terms J 21J
32

. Since there are no actual 

poles at the points (x. - x.)•k = 0 this distortion is allowed, 
l J 

provided one adds appropriate contributions oik
2

) corresponding to 

the poles of k2 that have to be crossed. These o±(k2) contributions 

are similar to the ones already discussed in connection with (7.20b), 

-9 and give faster than A. fall off. 

With the contours distorted in this way there is expoential fall 

* off as A.+ oo for the J.J. (i I j) parts, except for the contributions 
l J 

from the ends of the k
0 

contours. But the endpoint contributions 

fall off linearly with A.-1 , as one sees from the fact that 

., 

i£ "k 
(-H) j e1 A.dk 

0 
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(1-e:...EA) 

tends to unity as A. tends to infinity with £ fixed. 

(D.2) 

Having established the linear fall off of this integral the 

. -9+8n rest of the argu.ment proceeds as ln the text: The bound CA. 

on the remaining factors in Pdom(A.X) of (7.18) arises from the 

-9/2 I D , I . n C'A. bound on F (x) for x 1n R(A. ,A.X), and from the bound opr 
4n · n -1 C"A. on the volume of R(A. ,A.X). Thus for n < 1/8 the A. fall 

off overcomes the A. 8n increase, and one is left with a better than 

-9 A. fall off. 

* For the term J 32J 31 one may distort the k contour into the 

region 

{k; Im k•(x3-x1 ) < 0, Im k•(x2:...x1) < 0, Im k·(x
3
-x2) > 0}. 

(D.3) 

This distortion into the imaginary k space has a spacelike direction, 

but yields the same A.-l fall off that was obtained above for the pure 

timelike distortion. The rest of the argument then follows as before. 

* For the term J 31J 32 one distorts into the image of (D.3) 

under inversion k + - k. The other terms are dealt with similarly. 

* * In this way every J.J. (i j j) part of J J·gives a contribution to 
. l J 

(7.20a) that falls off at least linearly in A.-1 , arid hence a contri

-9 bution to Pdom(A.X) that falls off faster than A. • 

(\ ~! : .. ' 
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APPENDIX E 

Consider first the Feynman coordinate-space function F(x) 

corresponding to the diagram n1 of Fig. 4. Introduce the following 

relabeling: let i = (1,2,3,4) label cyclically the internal lines 

of n1 , and also the vertices of n1 • The function F(x) is then 

essentially a product of the four Feynman propagators Di(xi- xi_
1
), 

one for each of the four i-nternal lines of n
1

• 

Each propagator Di(zi) is expressed as in integral over a 

momentum-energy four-vector pi. A partition of unity is introduced 

into each pi space. For each pair (i,j) the corresponding partition 

function xij(pi) is an infinity differentiable function of tiny compact 

support centered at pi P ..• Consequently, each partial propagator 
~ 

-ipizi 

Dij (zi) 
4 e 

fd pi 2 2+i0 
pi-mi 

xij (pi) (E.l) 

will, by virtue of the result proved in Section (IV.3a) of the 

first Ref. 8, fall off faster than any inverse power of the 

Euclidean norm of the four-vector z. all directions 
J_ 

outside the set of "causal" direc-tions· C... This causal set C .. is 
l.J l.J 

the set of (signed) directions of the set of covariant four-vectors 

pi that lie in the intersection of the mass-shell surface p~ 2 
mi 

with the support of X· .(p.). All directions in the causal set C .. 
l.J J_ l.J 

will lie close to ·the direction of P. . • The rate of fall-off of 
l.J 

D .. (z.) is uniform over any closed set of directions of the fourl.J J_ 

vector z. that does not intersect C ..• 
J_ ~ 

Each causal set C .. can 
l.J 

also be considered to be a closed spacetime cone minus its apex at 

) . 
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the origin. 

The function F(w] is obtained by folding F(x) into the four 

coordinate-space wave functions wi(xi) corresponding to the four 

external lines of n1 • Each wi(xi) is the Fourier transform of a 

function wi(pi) = 
- + 2 2 
wi_ (pi)Ci (pi- mi) 

- - 2 2 
or wi_ (pi)Ci (pi -mi)' where 

wi_(pi) is an infinitely differentiable function of (say tiny) 

2 2 . 
compact support around pi= Pi·~i = mi). These four _supports define 

four four-dimensional closed causal bi-cones Ci (i = 1,2,3,4), which 

are taken-to be disjoint, except at the origin. (The supports of 

the wi_(pi) can be made tiny by other partitions of unity). 

The separation of each propagator Di into its parts Dij induces 

a separation of F(x) into a finite sum of terms Fa(x). Let 

'{i,j(a,i); iE(l,2,3,4)} specify the four functions Dij(a,i) 

corresponding to a. Then a transformation to momentum-space shows 

that the function F [w] vanishes unless there is, for that a, a set a -

{p. , p .. ( .); i = 1,2,3,4} such that, for all idl,2,3,4), 
J.a l.,J a,J. 

Pia E supp Wi' 

Pi,j(a,i) E supp Xij(a,i)' 

and· 

Pia Pi,j(a,i)- pi+l,j(a~i+l)" 

(E.2a) 

(E.2b) 

(E. 2c) 

Equation (E.2c) expresses momentum-energy conservation at vertex i. 

The conditions (E.2) entail that Fa(w] vanishes if momentum-energy 

conservation P. = P. "( ") - P.+l "( "+l) fails by more than the 
1 l..J a,1 1 ,J a;1 
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tiny amounts corresponding to the tiny supports of the functions X·. 
LJ 

and ~i" 

Let the non vanishing functions F [$] be those with a in the 
a. 

set A. The integrals Fa[$], ae:A, can be reconverted back into 

coordinate space, and one can then examine the contributions to the 

xi-space integrals from regions in which one or more of the four 

points xi tends to infinity. 

For any Fa[$], ae:A, one has approximate energy-momentum 

conservation at each vertex. This approximate energy-momentum 

conservation together with the stability conditions on the masses 

of the stable particles, and the three-particle character of the 

vertices of D1 , entail that for any atA and any ie:(l,2,3,4) either 

2 2 
supp xi "( ")II {p.; p. = m.} = 0 (E.3a) ,J a,L L L L 

or 

2 2 
supp l<:i+l,j (a,i+l) II {pi+l; pi+l = mi+l} = 0 (E.3b) 

provided the supports of the functions xij(pi) and $i(pi), i£(1,2,3,4), 

have been taken sufficient small. Consequently, for each i£(1,2,3,4) 

and any ae:A, at least one of the two partial propagators D. "( .)(z) L,J a,L 

or Di+l,j(a,i+l)(z) will fall off faster than any power of JzJ;~cl. 
uniformly over.all .directions. 

This uniform fast fall off of at least one.of any two neighboring 

pair of partial propagators, Di,j(a,i)(zi) or Di+l,j(a,i+l)(zi+l)' ae:A, 

coupled with the uniform faster than any power of Jx. J-l fall off of 
L 

each coordinate space function $i(xi) on compact sets lying outside 

any closed hi-cone C~ centered at the origin that contains in its 

interior the set of causal directions C. (cf. Ref. 7, Eq.(2.17)) 
L 

•' 
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entails the rapid (i.e., faster than any power of R-1) fall off of 

the contribution to the x-spin integral for Fa[$) from points 

x = (x
1

,x2 ,x3 ,x4) lying outside the set 

R'(R,>.X) =: {x;Jxi- >.XJ.;;;;; R, all i£(1,2,3,4) }. (E .4) 

To prove ~his asserted fall off property one may separate the 

x = (x1 ,x2 ,x3 ,x4)-space integration region into four parts Pi' where 

the condition JX.JE 1 .;;;;; Jx.JE 1 (all j) holds for all x in P .• 
L UC • J UC • L 

Then the sixteen variables (x~, ••• , x~) of x can be transformed 

to one radial variable R, which is JxiJEucl in Pi, and fifteen 

"angle" variables u. The variable R ranges from zero to infinity, 

whereas for any fixed R the range of u is bounded. 

The variables u can be specified by a set of four four-vectors 

ui, ie:(l,2,3,4). One of these four fourvectors ui lies on the unit sphere, 

and the other three lie on or inside this sphere. 

This unit sphere is centered at the origin. Four hi-cones C~ 
L 

centered at the origin can then be drawn. There is one hi-cone C~ 
L 

for each external particle i. These hi-cones are taken to be 

disjoint, except at the origi~ and the vectors pi in the support of 

$i(pi) are contained in the interior of C~. 

Let the set C~ consist of C~ and the ball of radius 10-2 centered 
L L 

at the origin. If the point ui corresponding to external particle i 

does not lie in Ci then the integral will have a factor that falls 

-1 
off faster than any power of R due to the fast fall off of the 

wave functions $i(Rui) (cf. Ref. 7). But if each point ui lies in 

.,. ... .. 
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the corresponding set Ci, and one of these points ui lies on the 

unit sphere, then both xi - xi-l = R(ui-ui~l) and xi+l - xi = R(ui+l- ui) 

must increase linearly with R. Thus either S .. (x.-x. 
1

) or 
~ 1 ~ 

-1 
S.+l .(x.+1-x.) will fall off faster than any power of R • The 

1 ,J 1 1 

remaining factors in the integrand are bounded. Hence the total 

contribution to F[lji] from the coordinate-space region lying outside 

a sphere of radius R must also fall off faster than any power of R. 

The integral of actual interest is given in (7.50). The 
D 

integrand has .in addition to the Feynman .function F 
1 (x) and the 

four external-particle wave functions ljii(xi), also several exponential 

factors. Someofthese exponentials appear with imaginary exponents. 

These factors are bounded and do not affect the result. However, 

there is also an exponential with a real exponent. This real exponent 

consist of a sum of terms of the form 

K 4 2 

J ~ 2no(k ) 
( 2n) 

1 1 
p·k p'·k (1- cos y•k), 

where y can be xi - AX or xi-xi, and can become large. 

(E.5) 

It"is sufficient to show that this integral (E.5) can increase 

no faster than c log IYI as IYI ~ oo. For in this case the exponential 

itself increases at most linearly in IYI . But any such linear increase 

is damped out by the just established faster than any power of IYI-l 

decrease of the remaining factors (note that lx! - x. I ~a implies 
1 1 

lxi -AXI ~ a/2 or lxi - AXI ~ a/2. Hence the faster than any inverse 

power of R fall off of the contributions for x or x' outside R'(R, AX) 

entails a faster than any inverse power fall off also in lx! - x.l). 
1 . 1 

) .. " 
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To obtain this logrithmic bound write 

y = AY 

where y has Euclidean norm unity. 

y·k := AjkiB· 

. 2 
And write, for k 

(E.6) 

0, 

(E.7) 

~ where 8 is a function of the angle a between the three vectors y 

and k. Then the integral (E.5) can be written (-with know lkl) as 

K 

J 
k2dk 

2k3 
0 

1 

2n J d(cos9)f(cos9)(1- cos Ak8), 

-1 

where lf(cosa)l is bounded. 

(E.S) 

To prove an asymptotic logrithmic hound c log A on the magnitude 

of (E.S) for large A it is sufficient to exhibit a bound c'/A (c' .<c) 

on the magnitude of the A-derivative 

K 

I 
0 

1 
k2dk 

2n J d cosa f(cose)k8 x sin Ak8 
2k3 

-1 

1 K 

= n J d cosa f(cos9)8 I dk sin Ak8 

-1 0 

1 

= f J d cose f(cos9)(1- cos AK8) 

-1 

(E.9) 

The magnitude of (E.9) has the bound 4nlflmax/A, and hence the 

convergence of (7.50) is assured. 

/~ 
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The convergence of the x integration in (7.46) is assured by 

essentially the same argument. 

The fact that the partial propagators D .. (z.) enjoy rapid fall 
1J 1 

off in lz. IE 1 for directions of z. lying outside the causal set 
1 uc 1 

C .. was not used in the above discussion. However, this fall-off 
1J 

property is needed to cover the general case in which D1 is replaced 

by some other diagram Di· These rapid fall-off conditions, together 

with the approximate momentum-energy conservation equations mentioned 

below (E.2), ensure a rapid fall-off in R of the contributions to 

the analogs of (7.50) from points x outside R(R, AX) unless the 

momentum-energies of the external lines of Di lie close to a 

singularity surface of Di· And even in this case there is a rapid 
~ _., 

fall off of the c·ontributions not lying near the regions in x space 

such that the spacetime diagram Di(x) cor:responds to a classically 

allowed physical process with the specified external momentum-energies. 

This property is needed in the extension of the arguments given 

in this paper to the general case. It entails, generally, that the 

contributions to the transition amplitudes from regions of x space 

that are far away from the regions that correspond to the classically 

allowed processes fall off rapidly as the distances from the 

classically allowed configurations increase. 

. , . .. 
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