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The well-known "infrared catastrophe" in quantum field theory

*
EXACT SOLUTION OF THE INFRARED PROBLEM L R .
. consists of the following fact: the electromagnetic corrections

Henry P. Sta
y PP to the S-matrix are represented by integrals whose contributions
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University of California rom very soft photons often diverge. A way around this diffi-
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culty was indicated by Block and Nordsieck , who showed, in some

ABSTRACT simple cases, that these infrared-divergent contributions cancel

A simple but rigorous solution of the infrsred problem out of the expressions for the observable probabilities, provided

i{s obtained. The basis of this solution is a factorization the nonobservability of very soft photons is taken into account.

of the FeynmanX-space operator into a product of two operators. The Block-Nordsieck observation has been generalized in a series of

The first is a unitary operator that represents precisely the works that have culminated in the central work in this field, the

. ) 2.
contribution corresponding to classical electromagnetic theory. paper.of Yennie, Frautschi, and Suura™ These authors gave

The second is a residual operator that is free of infrared lengthy argquments to support their contention that all of the

problems This factorization is exact: No soft-photon infrared-divergent contributions to the S-matrix can be collected

approiimation of any other approximation is used Both into exponential factors that cancel out of the expressions for ob-
H 4 . M .

the unitary operator and the residual operator are expressed servable probabilities. However, at the end of a technical ap-

in simple forms amenable to rigofous mathematical analysis. pendix to their paper YFS listed some of the difficulties with’

The central technical result of this work, namely the exact .their arguments, and concluded that a rigorous proof of their con-

yet simple organization of all contributions corresponding jecture would probably be prohibitively complicated. The dif-

'to classical physics'into unitary factors, may have other ficulties with the YFS arguments are particularly serious when

the S-matrix is evaluated at a singularity.
important uses. . gu y

3 .
The YFS infrared separation was used by Chung to define an

This work was supported by the Director, Office of . infrared-finite S matrix: infrared finiteness was (presumably)
Energy Research, Office of High Energy and Nuclear achieved by incorporating the YFS infrared factor into coherent
Physics, Division of High Energy Physics of the U.S. initial or final states. This infrared-finite S-matrix was

Department of Energy under Contract DE-AC03-76SF00098. examined by Stgrrow4, Kibble5 and Zwanzigere, who found that the

pole singularity normally associated with a charged stable particle was

converted by the effects of soft photons to a nonpole form.



Such a change in the character of S-matrix singularities could be
as catastrophic as the infrared divergence itself. For the character
of singularities in momentum space determines asymptotic behavior in

coordinate space. ’

In particular, the pole singularity normally
associated with stable particles is the unique momentum-space singu-
larity that gives the inverse-cube-law fall-off in spacetime that
physically characterizes stable particles. Coﬁsequently, any modi-
fication of the pole character of singularities associated with
charged paréicles would jeopardize the ability of the theory to
accomodate stable charged particles. This:problem is the electro-
dynamic analog of the chromodynamic problem of confinement.

This apparent disruption of the stability of charged particels
has serious consequences. It causes the apparent breakdowns’évof
the usual reduction formulaé, which arise directly from the factori-
zation property of the pole singularities normally associated with
stable particles. Morever, it upsets the connection between relati-
vistic quantum theory andthe experimentally measured quantities,‘ For
the basis of this connection is, again, the factorizatién property
of the pole singularities normally assoéiated with stable particles.

The difficulties arise from a breakdown of the YFS arguments at

singularities. One important YFS assumption is that

(eikx

-1) is of order k. For finite x this_is true. But singularities
are controlled by asymptotic limits in which x has passed to infinity.
Thus the assumption is not valid at.singularities.

The purpose of this paper is to show how the infrared problem can
be solved exactly, with all terms retained and compactly represented,
by making essential use of coordinate space. That coordinate space
should be needed is not surprizing. It was,recognized from the outset1
that the infrared problem is essentially that of separating out the
contributions corresponding to an appropriate classical electromagnetic
radiation field. But classical fields are described in coordinate
space, and so are their sources. Moreover, by staying in coordinate
space one avoids integrations over the asymptotig spac‘etime regions
that are, from the coordinate space point of view, the source of the
infrared problem.

Examination of Storrow's calculation reveals clearly the specific

difficulty with the momentum-space approach. To represent an appropriate

classical contribution Storrow, following Chung, introduces a coherent
state that corresponds (for small k) to the classical electromagnetic
field radiatéd by a classical charged particle whose initial and final
velocities correspond to the momenta of the initial and final charge-
particle states of the scattering matrix. . In momentum space mno
particular coordinate point is favored. Thus the point of intersection
of the initial and final classical trajectories is placed arbitrarily
at the origin: certain factors eikx are replaced by unity. This
replacement is perhaps justifiable in certain situations, but

2 2,
certainly not on the singularity surface p° = m if the nature of the
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singularity on this surface is the point at issue. For this momentum-
space singularity arises, via Fourier transformation, from those
asymptotic coordinate-space regions that correspond to the physical
possibility of a one-charged-particle-exchange-process in spacetime.

It is the asymptotic rate of fall off of this spacetime process, that
determines the nature of the singularity.7’8 The electromagnetic

field radiated by ;his classical one-charge-particle~exchange process
has two parts: it consists of the (bremsstrahlung) radiation associated
with the two separate deflections of the charged particle, 'These two
deflections occur in two different spacetime regions. The overlap between
this physically relevant radiation field and the one used by Storrow, in
which both source regions are placed éogether at the origin, vanishes in
the asymptotic limit that détermines the nature of the singularity.

To dealladequately with this situation it is necessary to
represent the soufcés‘of the electromagnetic field in coordinate
space. Then one can introduce those classical fields, and the
corresponding coherent states, whose spacetime source regions, are
at--or at least near--the spacetime points where the charged-particle
deflections occur. The radiation field must be tied in this way to
the locations of the particle deflections if one wishes to calculate
the physical rate of fall off.

These considerations physically motivate the use of coordinate
space. But what allows the problem to be neatly solved is the
exceedingly simple wayr in which the classical and nonclassical
contributions separate in coordinate space.

Consider first a process involving no external chargéd particles.

Let D be a Feynman diagram involving n neutral external particles, no

initial or final charged particles, no photons, and at least one
external particle incident on every vertex. Let FD(X) = FD(xl,...,xn)
be the Feynman coordinate-space function corresponding to D. Let

L(x) be the spacetime polygon(s) formed from the charged lines of D.

D
op

The vertices of L(x) are placed at the points specified by x. Let F (x)
be the (x-dependeﬂt) operator in photon space that represents the sum

of FD(x) plus all corrections to it represented by diagrams D' con-
sisting of D plus any number of photon lines, each connected at one

or both ends somewhere into the set of charged lines of D. Then one

principal result is that ﬁgp(x) can be expressed as follows:
2 (x) = TLENFLP . (1.1)
op opr . o

nge U(L(x)) is a simple well defined unitary operator in the space of
photons. Acting on the photon vaéuuuxit creates the coherent state
that corresponds to the classical electromagnetic field radiated by
the charged particles moving ( 4 la Feynman) around the spacetime
polygon(s) L(x).

The operator fgpr(x) is a residual operator that is free of infra-
red problems. It is a‘sum of terms corresponding to D and the various
diagrams D'. Each term can be transformed into momentum space with no
infrared divergence.

The basic formula (1.1) is obtained by separating each photon
interaction (-ieyp) into its 'tlassical”and "quantum" parts by means
of formula (2.3) of Section 2, The unitary operator U(L(x))
represents the contribution of all "classical" photons. These are. the

photons that couple into the lines of D only via classical couplings.



The remaining photons are called quantum photons. They have a quantum

coupling into a charged line df D on at least one end. Their contri-

butions, together with the original function FD(x), give fgpr(x).
Taking the photon momentum-space matrix elements and performing

the Fourier transform x - q one obtains thé momentum-space function

<k'|?2pr(q)|k">. In momentum space the quantum coupling takes.a

very simple form. To exhibit this‘form let

6 (p 1) = BB (geyy —E2EAD oy

pP-m + io H (p + k)z— m- + io

This function represents part of the original Feynman momentum-space
function. Replacement of the original coupling (—ieyu) by the quantum

coupling replaces this function Gu(p, k) by
1
6, 1 - [ (p + ak, 0)do . (1.3)
o . .

This has one more power of k than Gu(p; k). This extra power of k
eliminates the infrared divergences.

The plan of the paper is as follows. The basic formula (1.1) is
défived in Section 2. It is a simple consequence of the Ward identity.
Some géﬁeral features of this formula are described in Section 3. The
main point ié that the connection to physics involves transition
émplitudes, and these are expressed by folding the coordinate-space
function fopr(x) direct}y into the coordinate-space wave functions
of the external partiﬁles of D. Thus one never introduces the Fourier
transform of the function ﬁop(x). The operator U(L(x)) is given a

simple, closed form in coordinate space, and is not transformed to

momentum space. The function ﬁgpr’ on the other hand, can be computed
in momentum sﬁace, and then transformed into coordinate space.

The contribution to fgpr that arise from diagrams D' # D are dis-
cussed in Ref. 9. The present paper deals mainly with U(L(x))FD(x).

It is concerned with the contributions of the classical photons, which
are thé ohes associated with the infrared divergences.

' In Section 4 the simple closed loop triangle diagram D of Fig. 1
is considered. It is shown that when the function U(L(x))FD(x) is-
folded into the external particle wave functions, in order to obtain
physical scattering amplitudes, the charged-particle loops are
effectively confined to finite spacetime regions, and that, consequently,
there are no infra-red divergences in these closed 106p amplitudes.
This provides a rigorous starting'point: these closed-loop amplitudes
are finite and well defined without infra red cut-off or fictitious
photon mass.

In Section 5 the coordinate-space  procedure for obtaiﬂing ampli-
tudes with charged initial and final lines is discussed in general
terms. Theé procedure starts with processes in which all charged parti-
cles are confined to closed loops. Then the wave packets of the exter-
nal particles are shifted to infinity in a way such' that certain partial
processes are shifted to infinity. If the photons were not massless
then the dominant asmptotic form in this limit would factorize into a
product of separate factors. These factors can be identified as the
scattering amplitudes for the separate subprocesses, once appropriate
geometric fall-off factors are extracted. The program here is to show,
with the aid of the bésic formula, that this factorization result

continues to hold also in the presence of interactions to all orders
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with massless photons, and that the geometric fall off factors are
exactly the same as for the c;se with no massless particles. This
type of fall off corresponds to pole singularities, and to the fact
that the charged particles propagate over macroscopic distances like
stable particles. What must be shown, theﬁ, is that the dominant
asymptotic term has exactly this factorized form, with the precise
rate of fall off that corresponds to stable charged particles, and
that the residual factors are finite. These residual factors define
the scattering amplitudes for processes with charged-particle external
lines.

Section 6 descfibes the mathematical details of the canonical

connection between the notion of a stable physical particle, as charac-

terized_by macroscopic -spacetime behavior, and the pole singularity
(pz— m2 + io)-l. This connection has been mentioned repeatedly in
this introduction, and is basic to the present work.

The main results are in Section 7. The aim is to show that the
spacetime behavior that is normally associated with the pole singu-
larity, and that characterizes stable physical particles, is not
disrupted by the classical photons and that, consequently, the
amplitudes associated with processes involving charged initial and
final particles can be extracted from the asymptotic limits of
amplitudes for processes in which all charged particles are confined
to clo;ed loops. Specifically,one begins with a transition amplitude
AX) = A(Xl, XZ’ Xa) associated the diagram ﬁ of Fig. 1, in which
the charged particle is confined to a closed loop; The coordinate-

space wave functions of the external particles effectively confine

the three vertices at Xys Xy and Xy to finite neighborhoods of

‘ot ¢
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Xl’ X2 and X3. A scaling Xi > Axi is then introduced: the external-
particle wave functions are shifted to infinity as A + «. The two
external-particle wave functions associated with each individual
vertex i are translated together by the amount (XA - 1)Xi'

In the absence of photons the limit

1im(A9/2

A > =

JAGX) = cA1A2A3, (1.4)
with an appropriate cbnstant c, defines the gmplitudes Al’ A2, and A3
associated with the three vertices of D.

To show that this limit exists and factorizes also in the
presence of the classical photons one may separate U(L(x)) into
factors ﬁQ(L(x)) and UQ(L(X)) that act nontrivially on the photons
states constructed from photons whose momentum-energy vector k lies
either inside or outside a small neighborhood @ of the point k = O,

respectively. Then

U(L(x))

U L) UL )

U, LODTALE)
+ U LOR) (U (LOD) T (L6))-110% L)
(1.5)

Very soft photons are not detected. Hence for sufficiently small

Q the contribution to the probability from the leading factor UQ(L(AX)),

in (1.5) occurs in the expression for the probability_in the com-

bination U;(L(Ax))UQ(L(AX)) =1, This means that for sufficiently

small Q the contributions to the probability arising from the first

term in (1.5) alone has no contribution at all from the classical
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photons with k in 2. On the other hand, the effect of the coordinate-
space wave functions of the initial and final particles effectiQely
confines x = (gl, Xy x3) to a neighborhood of AX. This has the
consequence, proved in Appendix B, that the contributions to the
probability involving the second term in (1.5) can be made an
arbitrarily small fraction of the contribution from the first term

of (1.5), by making Q sufficiently small. For the norm of
-1 '
(051 (LOX)) U (L)) -1]

effectively approaches zero. Thus the contributions to the transition
probability from the classical photons with k in  can be made
arbitrarily small by making Q sufficiently small.

Because the contributions of quantum photons with k in Q becomes

vanishing small with € almost the entire contribution to the probability

from photons with k in a sufficiently small 2 comes from the single

final state UQ(L(AX))|Vac>. This is physically reasonable: this is
the coherent state that corresponds to the classical electro-magnetic
field radiated by a charged particle traveiing_’(a la Feynman) around

L(XX). 1If one wishes to deal with coherent-state amplitudes that give

the bulk of the contribution to the probability then one should use this

state as the basic coherent state from which the other states are
constructed. The infrared finiteness of these amplitudes is assured
by essentially the same argument that ensures the infrared finiteness
of the probabilities.

The question of factorization must be examined. The factorization

of the contributions arising from the factor ?opr alone is assured by

12

its infrared finiteness. The factorization of the part of

linlf/

2A(>\X) arising from the classical-photon factor U(L(x)) must
be proved.

The factor U(L(x)) has the form

U(L(x)) = exp <a*-J(L(x))$ exp <—J*(L(x))-a>

expl- 1 f< 3w - s@@)sdken el + 107,

1.6
where ( )
. 1]
J (L(x)) = - ie f dx'e1kx
K L(x)
3 z, ikx ikx.
=-e T 2L (e T _e 1_l)
=1 %7k
3 ikx z z,
+ k]
=-e X e P o Aha, gy
i=1 i i+l,u

In the third line of (1.7) the current operator is expressed as a

sum of contributions associated with the three vertices. Thus

U(L(x)) can be expressed as a product of three factors, one associated
with each of 'the three vertices, times a factor containing the cross
terms. To prove factorization it is necessary to show that contri-

-9/2
butions arising from the cross terms fall of faster than A 9/ .

Since the factor ?opr already gives a factor 1912 it is necessary
only to exhibit some additional fall off of the cross terms.

Fail off of the cross terms is exhibited first in a context in
which one ignores the contribution from photons with k in some
region § chosen small enough so that the ignored contributions give

negligible relative contribution to the tramsition probabilities.

c
But the more important factorization result deals the amplitude A™(AX)
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obtained by introducing the appropriate coherent state, so that the
amplitude itself is well defined even when @ is contracted to the

point k = 0. These amplitudes are also shown to factorize:

9/

c

c
limx Zéixx) = A ACA The separate factors are independent of

17273°

the closed loop process from which they are extracted. They can

be identified as the scattering functions for processes with charged
external particles. In this asymptotic expression there are no contri-
butions from classical photons that are emitted at one of the three
vertices and absorbed at another: all such cross terms drop out of
the asymptotic limit.

. Explicit closed expressions are derived for the full classical
photon contributions to eachlfunction Ai, both in the special case
corresponding to diagram D of Fig. 1, and in the general case. These
contributions arise from the fact that the coordinate-space variables
corresponding to the vertices of the Feynman diagram representing
subprocess 1 will, in general, not all lie exactly at the point Axi
used in the definition of the coherent state assogiated with this sub-
process. These expressions, together with the expressions for the
quantum-photon contributions derived in paper II, give compact
infrared-finite expressions for the scattéring amplitudes of process
with initial and final charged particles evaluated away from singu-
larities. Thus the method described here, though developed to déél
with the delicate situations that arise at singularities, provides

a simple resolution of the infrared problem also away from singu-

larities.

. ‘
14
2. THE BASIC FORMﬁLA
Consider first the coordinate-space Feynman amplitude
corresponding to a strong-interaction diagram D. Supbose the

i
internal lines correspond to a charged, spin- 3 particle closed

loop. The Feymman amplitude then has the form

n
Fo(x), «or %) = FOO= ™1 v (s Gy, %, ), (2D

where xq =.kn, the Vi are strong-interaction vertex parts, and
rod% . e'ipi(xi"‘ i-1)
1S (x,, x, ;) =1 A — . (2.2)
v F i i-1 (2m) §;m+10

Associated with this function there is a spacetime closed loop L(x) =
L(xi, cen s xn), which is the n-sided spacétime polygon with cyclically
ordered vertices located at the cyclically ordered set of points x =
(xi, vee s xn). .

The electro-magnetic corrections to the function FD(X) are now
considered. A éypical correction will be represented by a Feynman
diagram having many photon lines incident on each of the n internal
line segments of D. The photon couﬁling at any vertex that lies on
the portion of the charged line of D that runs between x5 and Xy
is now separated into its "classical” and "quantum" parts by the

equation

~tey = Ci(kj, z) + Qz(kj, 2,0 (2.3)
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(m.)

where e is the e.m. coupling constant and : Consider next the function ¢ = (xi, X, l) and the corrections
to it associated with the classical coupling into the line segment i

i, . -1
Cp(kj’ zi) = - 1e ziukj(zi-kj) . (z.4) of D of a photon with momentum-energy k and spin index u. This line

Here ’ . contains already m, couplings of Q type. The classical coupling can

i

be inserted into any one of the m, + 1 segments into which line

235X T X (2.5 segment i is separated by these my couplings of Q type. The sum
and'kj is the momentum-energy of the associated photon. of the Feynman functions corresponding these m, + 1 different possible
Consider now the part of the Feynman diagram D corresponding to insertions of this classical coupling C:(kj, zi) into line segment 1
the original line segﬁent i,.which runs from x, . to x_.,. Suppose is ‘
et LA (@)
i i m m,
m, external photons with quantum couplings (k,, 2.)(3 = a, b, ...) > i = i
i ’ p q pling Qu' 50 210 s s 2 Gus &0 X5 p» k) = Gu (xi, Xy 1 k)
are connected in the order (a, b, ...) into this line segment i.
: : (m,) e z; R 1kxi 1
There is a new coordinate variable x,, je(a, b, ...), for each =G¢ Y (x., x..) He 1oe —4y 2.7
J : 1 M1 ez g
inserted photon. Integration over these new coordinate variables xj
yields a function of X and x5 10 and of the momenta kj and spin where kez = kuzu = kz, etc., and the variables associated with the
indices Y4 of the m, ‘photons. For example, if m = 2 th?“ this photon quantum interactions are still suppressed. This result (2.7)
function is is a simple consequence of theWard identity
a -ip x +i(p.+k_+k )Ix | i
Glx,, x ;k,v,kb,vb)=f R i - - (2.8)
i* Ti-17 "a’ a (2")4 _ P-m ptk-m  ptk-m p-n ° o
(2.6)
A i i i S E i (2.7) 1 be e ed in the re compact form
X Q (k, z,) ——Q (k,, z.) —r—— quation . can also be express mo p
oy, a8’ i ﬁi+Kéﬂm VW, kb i ﬁi+Ka+Kb m
X
: (m,) (m,) i il
; ' i * K=c ' ) Cde) dxpe”
This function with the variables ka’ kb’ v, and Yy associated with ql (xi’ X510 ) X0 X531 ‘ Xy .
x
A A i-1
the two photons a and b suppressed will be represented by the symbol 2.9
(2)
G (xi, xi—l)' ‘ '(m ) Consider next any Feymman diagram D' obtained by attaching into
For arbitrary m, the function G (Xi’ xi—l) is the natural each line segment i of D a set of m, photon lines. Each
generalization of the expression in (2.6) to the case where the photon line of D' is required to begin or end on a Q-type vertex lying
ordered set (a, b, ...) has m, elements. on one of the n segments of D. The Feynman function corresponding to
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D' can be expressed as
D! n (mi)
F®=Trl V.G (x,, X, 1), (2.10) .
4=1 1 i i-1

wherg the momentum-energy variables (kj’ vj
of D' are suppressed.

A photon line with classical coupling may now be inserted
into any one of the mi+ 1 segments.of-any one of the n original
line segments of D. The sum of the Feymman functiéns corresponding
to all of these ways of inserting the classical coupliné is, by
virtue of (2.9), simply -

ik.x

z FD"’S(X, k) = FD'(x,' ) = FD'(x)(-ie)-[ dx e 1
A ORe!

1] .
= ¥ (x)J @, K). (2.11)
Ul )
That is, the sum of the Feymman functions corresponding to all ways
of claséically coupling a photon of momentum-energy k1 and vector

component inta the closed loop L(x) of D' is simply the product of
ik.x

A}
the original function FD(x)with €tie) times the line integral of e dxu

around the n-sided spacetime polygon L(x).
Let the total number of photon couplings in D' in the above
calculation be m = zmi. Then the sum over s on the left-hand side of
(2.11) ié a sum over m + n terms, eachof which is represented by a
diagram withm + n + 1 intervals. A second photon, of momentum k2

and spin component ¥, can be classically coupled into this collection

in (m + n) (m + n + 1) different ways. The sum of the Feynmman

) associated with the photons

1

18

functions corresponding to all of these (m'+ n) (m + n + 1) ways of

classically coupling the second photon is

D

D ,s
z L4 = .
z Fu1u2 (x, kl’ kz) Fuluz(x,_kl, k2)
1 ik, x! ik x!
D
=F (x)(—,—ie)zj;(x)dx'l e 11 axy e 22 (2.12)
1] L(x) 2

More generally, the sum of the Feymman functions corresponding

to all possible ways of classically coupling a set of N photons into

any fixed diagram D' that is constructed from D by the addition of photon

~lines that couple into the loop L(x) of D is

D' (
F o x, kiy ool k“)
ul cesuy :

' N : ik, x!
=P eae¥ 1 f ax; e 1
: 1=1 “L(x) Y4

D! N
= P (x) LS Jui(L(x), k). (2.13)

This result follows directly from the Ward identity .(2.6).

Suppose now a photon is emitted with classical coupling from
some point on the Fermion closed loop in D' and is absorbeﬁ with
classical coupling on some other point on this loop. Sumﬁing over
all possible line segments of D' upon which the two ends of the
photon line can begin and end, and dividing by two to compensate for

a double counting, one obtains the contribution to the Feynman
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function

Dl

L) L 7 T ot T e
o . ‘
= F (x) (:g—) dx"dx"iDF(x'-x'D, (2.14)
o L{x)L(x)

where DF is the scalar part of the Feynman photon propagator. Its real

: 2. . \-1
part, which comes from the principal-value part of~DF(k) = - (k™+ i) 7,
is
Re D_(x'- x™) = ;L-S((x'— x")z) (2.15)
F T 4T * v .
LT X D! Dl Dl .
This gives & "Coulomb" contribution AF to AF that is F (x) times
iCiey? ' 2y
i(L&x)= =g . dx'-dx"§((x'-x")°). (2.16)

L(x)"L(x)

The factor ?(L(x)) is the classical action corresponding to the
motion of the charged particies along the spacetime paths defined
by.the polygon L(x). ' ‘ ‘ ‘

The contribution from the effect of m such photbns, is just
FD'(x)(i¢(L(x)))m/m!, where the factor (m!)_1 compensates fof
multiple overcounting. Thus the sum of FD' and all these Coulomb

corrections to it is just

Fg(x) = FD'(x) exp i Q(L(x)). (2.17)

Thus if a classical photon is defined to be a photon that couples into

L only via the classical interaction then the net effect of all of

D' 2 . 4 -ik(x'-x")
8P = F 05 dx! ! Jae e &™)

200

all of the virtual classical photons is simply to multiply the
original function FD'(x) by the Coulomb phase factor exp i®(L(x))
associated with the polygon L(x).

The reai (as opposed to virtual) classical photons correspond to

2 -
the termq8(k™) in iAF(k) = i(k2+ ieg) l. The real classical photons that

are both emitted and absorbed on the closed loop L(x) give a contribution

to (2.14) of the form

%FD' (x)

g A
= P (exp - %f 4k onstaPuT (e, 1) )I (LeK)
(em™ . v
= 2w e - (L)L) >, (2.18)
where

stady = 8() s(k?) (2.19)

and

I LG, k) =~1ef ax' I o C ), - )
u L(x) M : B .

E)J(L(x), - k). (2.20)

In the final line of (2.18) a bracket notations similar to Kibble's is
introduced.

Reai photons with classical couplings can also be emitted and
absorbed fromthe charged—-fermion loop. It is convenient to consider
the S-matrix to be an operator in the space of the external photons.
The photon emitted by the classical photon coupling to the closed

loop L(x) is created by the operator
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* dak +, 2, % v
a (L(x)) = J——F 276 (kD)a (1) (-g"")J (L(x), k)
(2m) H v
= <a™ a(L) >. (2.21)

If M such photons are created then the operator that creates the
final state is<:a*'J(L):>M(M!)_1, where the factor (M!)—1 compensates
for an overcounting of Feynman diagrams. Thus the operator that
creates the full set of final photon states generated by the classical

coupling to the fermion closed loop L is
* .
C(L) = exp <a -J(L) > . : (2.22)

‘Sﬁnilarly, the operator that annihilates the set of initial photons

that are absorbed by the classical coupling to the closed loop L is

AL) = exp - <J " (1)-a > (2.23)

The full Feynman operator function corresponding to FD(x) plus
all electromagnetic corrections associated with Feymman diagrams

that have no charged lines other than the loop L(x) is, therefore,

e—<a-J*.(L(x)) >

< a*- J(L(x)) >FD (x)
op

Fo, (0 = e |
*
19(L(0) - 3 <(LE)-I(LE) > . (2.24a)
x e
Here ?D (x) = z:FD'(x) is the sum of photon-space operators FD'(x)
op op op
that corresponds to the set of all Feynman diagrams D' that can be

constructed by connecting onto the n internal line segments of D
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some combination of photon lines, with, however, the condition that
each photon line must be coupled at one end or the other into some
internal line segment i of D with a quantum coupling Qz(kj*xi). The
operator Fg;(x) corresﬁonding to D' is constructed from the corres-

L
ponding Feynman function FD (%, Kyy evey km) by the formula

D'
Fop(X) =

4

m dk;
f:n — amysadHace):
3=1 (2m) 3703

. 1]
X FP (%, Koy vee, k) (2.24b)

1’

where ;(kj) = a(-k,) = a+(k ) creates a photon of momentum-energy

3 3 :
k, if k; >0, and the two colons imply aWick normal-ordering of the

b

product of operator ;(kj) that they enclose.
As our interest is in infrared rather than ultraviolet problems

we shall multiply Ju(L(x) ,» k) by e(éK - ikol)G(K - If[), where

K is some very large number. This cut-off factor will, ‘for example,

replace the factor 6((x1 - x2)2) that arises from (2.14), and that

occurs in (2.15), by its non-ultraviolet part, and will

render all quantities occurring in the above formula (2.24) well

def ined.
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Let ﬁgg(L(x)) be thée part of the operator ﬁgp(L(x)) of (2.24)
that comes from the original part FD(x) of the operator ng(x).
Introducing, for any function f(k), the notation f(k) = f(-k) one

obtains from formila (2.24)

) = PG -
x exp<a+J(L(x))>x exp < J(L(x)) -a >
x exp 7 <T(LGN) +I(LG) >

x exp i¢(L(x))

D
F(x) U(L(x)), (2.25)

" Consider mnext  the part ﬁnl[w .y U] of > v ,..., .1

) op 177" TN op 1’7" "N
in (2.24) that comes from the part of fzp(x) that corresponds to
diagrams D' having exactly one quantum coupling. The sum of the
[ ’ .

terms ng(x) of (2.24b) over all diagrams D' having a single quantum

coupling to an external photon line(and no other photon coupling) is

v 4 '
= (x) = zvf% 218(%) 2O (x, k)
°p (2m)

<3.Qq> + <{-a>, (2.26)

where the first and second terms on the right-hand side of (4.5)

correspond to the first and second terms in

2m8(K%) = 276 (k) + 2167 (k) , (2.27)
respectively.

1]
" The operator Fﬁ;(x) arising from the sum of ng(x) over all D!

having exactly one quantum coupling is then
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f‘g;(x) -<G-q>+<Qra>+i <FeQ>+3 <Q-I>+ 1< >

(2.28)

where the last three terms come the diagrams D' that have a photon
line with one quantum coupling to L(x) and one classical coupling

to L(x), and

_ 4, 3 (="M (k)
<Jo> . = p.v.fd k 7 0, (2.29)
(2w) k

where PV. stands for principal value.
The basic formula (2.24) can be written in the slightly more

convenient form

w0 = <z-3>F° <Fea > exp(E<F-3> + 10
Fop(x) exp <a°J Fop(x)exp Jea exp(2 J-J . + 19 ),

(2.30)
where J = J(L(x)) and ¢ = @(L(x)). The term <.Q-a>>in (2.28) commutes

through exp<J-a >, but < z-Q>does not:

lexp<F, a>,<3, @>1= <37, Q> exp<3, a >
(2.31)

- -p1
Thus the part of FBP(X) coming from ng(x) is

f‘gi(x) = exp <a+J>exp < J-a>

xexp (G<3-3>+ i@)(i‘gi(x) - <3-q >)

((2.32) continued on next page)
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‘ 26
= L) X<a-Qq >+ <Q-a > —% <3J-Qq> +% <Q-J>

+ 1<3-q> ). (2.32)
34
This result can be extended immediately to the contributions
Note that the sign of the contribution associated with the to ng(x) with arbitrary numbers of quantum couplings. One obtains

emission of a real (as opposed to virtual) photon from a quantum

. ' : +D = =D
coupling to L(x), and its subsequent absorption by the classicﬁl Fop(x) = U(L(x))popr(x) (2.36)
coupling to L(x), has been reversed. This reversal of sign is
represented by the following change of the Feynman denominator where igpr(x) is the same as the ﬁgp(x) in (2.24b) except that each
. " ' D' ' '
associated with the propagation of the Q-C photon: F (xl,kl,...,km) is replaced by Ff(x, k ,...,km), which is calculated

from the Feynménrules modified by the éhange in denominator shown in
k2 + ie > (k0 + ie)2 - Iﬁ!z . (2.33) ' (5.13) and (5.14) for each photon line that links a quantum coupling

to L(x) to é classical coupling to L(x). This is our b#sic formula.
Here k is the momentum-energy of the photon emitted by the quantum o

coupling and absorbed by the classical coupling. Thus (5.11) can be

written in the form
D1 - oy YD1 ' (2.34)
Bop(0) = VELeDF . (0,

where thé subscript r stands for the retarded character of the

propagator in

i*g;(x) = <a-Q(Lx)) >+ <GLE&))-a >

4 = uv
i fdk (L), k) (~g")Qu(L(x) k) | (235

en®  @lie)?-1%)2
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3. FEATURES OF THE BASIC FORMULA

In this section some general features of the basic formula

(2.36) are discussed.

3.1, 1Isolation of Infrared Problems.

A principal result of this work, and the paper that follows,
is that the infrared problems are confined to the operator
U(L(x)) that appears in (2.36): the residual effects involving
quantum couplings produce no infrared divergences.

3.2. Connection to Physics.

For clarity of presentation the strong-interaction diagram D will

often be taken to be the simple one illustrated in Fig. 1.

Figure 1 A simple strong-interaction

diagram D. The dotted external lines
represent neutral particles. The solid

triangle corresponds to L(x) = L(xl,xz,x3).
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The quantity ?gp(x) given in (2.36) is an operator in the
photon space. It is connected to physics via the transition operator
Tgp[wl, cees wN], which is obtained by folding into ?Bp(x) the wave
functions wj(xj) of the initial and final particles of the strong-
interaction process represented by diagram D. If j specifies a
ﬁiﬂgl}particle then dﬁ(xj) is the complex conjugate of the usual

wave function of this particle. Thus

0 . ] = ; d4x % (x )?D (x) | (3.1
op”1’ " by i=1 ij=1 l’)j i(j) “op > :

wherei(j) is the label of the vertex i upon which external line j of
D is incident.

3.3.. Connection to Classical Physics.

The opefator U(i(x)) in (2.36) is closely connected to
claésical physics. The phase ¢(L(x)) is the contribution to the
classical action from tge motion, ¥ la Feynmaﬁ, of a classical charged
particle around the closed spacetime L(x). The other three
exponential factors combine to give a unitary operator which, when

acting on the photon vacuum, creates a coherent photon state. This

coherent state is the one associated with the classical electromagnetic

field radiated by a charged particle moving around the closed

" spacetime loop L(x). These results follow from Kibble's

formula (15), in the first Ref. 5.

3.4 Exactness of Basic Formula.

Formula (2.36) is exact. No soft-photon approximation--or any
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other approximation--has been used to reorganize the photon
contributions into the form (2.36), in which the infrared problems

are confined to exponentials related to classical physics.
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4. SMALLNESS OF THE SOFT-PHOTON CONTRIBUTIONS

IN CERTAIN SIMPLE SITUATIONS

The transition operator Tgp[wl"f”wN] is calculated by folding
the initial and final wave functions ij§£intotheoperator ﬁgp(x) of
(2.36). The detailed properties of the contributions to ﬁgp(x) that
come from the diagrams D'# D will be examined later, in paper II.

Thus we shall concentrate here on the part nglwl,...,wN] of
Tgp[wl,...,wN] that arises from the part FD(x) of ?gp(x). Because
all the contributions to ng[wl,;..,wN] have very simple forms it
is easy to obtain rigorous bounds on the magnitudes of various
specified contributions to it.

We shall suppose that the wj(p) are infinitely differentiable
functions of compact support. Then for each external particle j there
will be a "dominant region", in which‘qﬁ(x)lcan bé appreciable, and
a "tail region", in which Mj(x)[ is very small and falling off faster
than any inverse power of the spatial distance from the dominant region.
(See refefence 7 for discussions of these properties)

In éalculafing the transition amplitude the coordinate-space
) is evaluated at the point x

wave function ¢j(x = xi(j)’ where

k| 3
i(j) is the vertex of D upon which external line j of D is incident.
Consider, for definiteness, the diagram D of Fig.bl, and the

corresponding transition amplitude ng[wl,..., wG].
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Suppose the supports of the six wave functions in Bglpg space Let R(R) represent the x-space region
are disjoint. Then the.dominant regions associated with the six
wave functions will be asymptotically disjoint. In particular, the ‘ R(R) = {X;linEucl <R, ié{1,2,3}}_ . 4.3)
maximum of the absolute value of the praduct of any two wave functions A
in the region lying outside a ball of Euclidean radius R centered And define ng[wl""wslg’naﬁd ng[wl’..-,¢6]g.to.be the parts of
at the origin will fall off faster than any power of R—l. Consequently ng[wl,...;w6ﬂ2 arising from the integration regions xeR and x¢R,
the coqtribution to qu[wl,..., w6] from very soft photons is ' respectively.
negligible. ) The unitary operator UQ(L(x)) has unit nom. Hence for every b
To see this let §(b) be the k—spacé region » the norm of UQ(b)(L(x)) - 1 satisfies
ob) = {k; ‘k°| <2b, |R|<b}. (4.1) _ lUQ(b) L)) - 1{<2. - (4.4)

. The ultraviolet cut-off ensures that the functions |SF(xi - xi-l)l

And let UQ(L(x)) be the operator U(L(x)) with all k integrations are bounded. Hence IFD(X)l is bounded:
restricted to the region a(b). The difference between UQ(L(x)) and ’
the value it would have if there were no contributions at all from |FD(x)|<§C. %.5)

. DO )
keQ photons is UQ(L(X)) - 1. Hence the contribution to Top[¢1,...,w6] L

These two bounds, and the faster than any power of Rf fall off of

from the kef photons is
the maximum of the absolute value of the product of any two wave

functions ensures that the norm of
TDO[ vl . ’
op lbl""’ 6°Q

. DO R
) Top[wl,---,wslﬂéb)
= deldxzdx3¢1(x1)¢2(x1) 1
falls off faster than any power of R ~. Hence for any ¢ -~ 0, however

. small, there is an R = R(e) such that for all b
¢3(x2) ¢4(x2) ws(xs) ¢6(x3)

|T£g[¢1,...,w6]R(R(-E)){ <ef2. (4.6)

D \
(I_JQ(L(xl,xz,x3)) - 1) Folrp,my%,) - %.2) 3(b)
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1d b ini 00 [' ] This result, combined with (4.6), shows that for e > 0, however small,
Consider next the remaining part op. ¢1,...,w6 A(bYR(R(e)) .

-1 . : there is a b(e) such that
Take b. << R(g) *~ Then the exponential factor exp 1 kx' in (2.20)

is close to unity, and its integral around the closed loop L(x)

Do, :
: < OlT 1Y, seanyb,] . 0>]<e. (4.11)
enjoys a bound of the form | | op 1 6 Q(b(a))I' I<e

In other words, the contribution to the transition amplitude

. 2 .
.lJu(L(x), k)| < ckr”. (4.7} ng[wl,...,¢6] from. the very soft photons keQ(b) can be made

. arbitrarily small by choosing b sufficiently small.
Insertion of this bound into (2.14), with the ko— contour' distorted

into a semi-cirle of radius 2b, gives for the absolute value of

e2/2 times the integral (2.14) .a bound
) 4 v
c¢'(bR) K 1, (4.8)

where c' is some constant. Exponentiation preserves essentially this
bound: for sufficiently small b
| <olu

achy EG) = 1o ¥| ¢ 2¢" (bR) . (4.9)

Here | 0 > is the photon vacuum. The boundedness of FD(xl,xz,x3)

then ensures that for some sufficiently small

b = ble, R(e)) = b(e) >0

theAfollowing bound holds:

DO
I'< 0 |Top[¢l,""w6lﬂ(b(€)), R(R(a))lo >'y< 8/2. (4'10)
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5. DISCUSSION OF INFRARED DIVERGENCES

True infrared divergences do not arise if all charged
particles are confined to finite spacetime closed loops. This
fact is exploited in the procedure adopted above: the expressions
are made free of infrared divergences, and hence amenable to
rigorous mathematical analysis, by considering transition
amplitudes corresponding to processes in which the charged-
particles are confined to closed loops, which are kept effectively
finite by the damping provided by the wave functions ¢j(x) of the
initial and final particles. » ‘

Infrared divergences traditiopally arise in processes in
which some of the iqitial or final particles are charged: the
momenta of initial and final particles.are then restricted by mass-
shell constraints, which cause the singularities of certain Feynman
denominators at k = 0 to produce divergences.

One may, of course, consider all chafge& particles in.the
universe to be confined to closed loops. In a certain narrow
technical sense this would solve the infrared divérgence problem:
there would beno strict divergences of TBP[wl,...,wn}“for the entire
universe. But this is not a physically adequate solution of the
problem, for the following reason: the closed loops, though finite,
will be huge, and the factors o(L(x)) and <.J*(L(x)) « J(L(x) )> both
diverge logarithmically under dilation of the closed loop. Thus for
loops the size of the universe.these quantities are, for all
practical purposes, infinite. No predictions about laboratory

phemomena should depend on such numbers. The theory, to be useful,
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must allow the predictions about local phenomena to depend only on
local specifications, not on the detailed ancient history of the
particular electrons that are being used in some experiment. Some
factorization is required to extract the local aspects.

Usually this factorization is achieved by means of the pole-
factorization prope;ty. In the absence of massless particles one
can show that if the sources of various particles are far away from
a certain reaction among these particles then the only significant
part of the larger process that includes also the sources comes
from the residues of the'pole-singularities associated with the
exchahged particles, The net residue is a product of separate factors,
one for each source and one for the interaction. In this way the
descriptions of the sources of the particles of the reaction can be
effectively separated from the description of the reaction among them.
Were it not for this pole-factorization property, or somé similar
property, the whole universe would have to be considered as a unit.

The residue of the pole is evéluated by restricting the exchanged

particles to the mass-shell. But a restriction of a charged particle

to its mass-shell briﬁgs us back to the traditional infrared
divergeﬁces. Thus the procedure of starting f;om a universe in which
all particles are confined to closed loops does not, without further
analysis, solve the problem. One must establish the requisite factori-
zation properties, which are in any case needed for a satisfactory theory
of particles, and must confirm that thé residues are finite. These
residues will represent the amplitudes for processes with charged

external particles. We now proceed to those tasks.
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6. SPACETIME POLE-FACTORIZATION PROPERTY

Suppose the initial and final momentum-energies of a many-
particle reaction are related in a manner that permits a classical

one-particle-exchange process of the kind shown in Fig. 2.

1 8

4

Figure 2. A one-particle exchange process.
Momentum energy is conserved in each of the
two subprocess, and the intermediate particle

momentum is denoted by p.

The Feynman rules ensure that the
scattering function of the overall process will have a pole-type
singularity 12m(p2- m2 + iO)-l, and that the residue of this pole
is simply the product of the scattering amplitudes associated with
the two subprocess. The "discontinuity’associated with the pole is
the difference of the boundary values from the upper and lower
half-planes in p2, and is therefore 2n6(p2- m2)2m times the product
of ﬁhe scattering functions of the two subprocesses.

The pole character of this singularity and the fact that the
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residue factorizes in this way is crucial to the interpretation of
quantum theoty. It insures that stable particles behave as stable
particles should. Suppose, for example, that we fold-in the wave
functions of the initial and final particles of-the overall reaction.
Then the first (lower) interaction can be regarded as a subreaction
in which a particle of mass m is produced, and the second interaction
can be regarded as a subreaction in which this pérticle is detected.
If these two subreactions are far apart then the rate at which the
transition probability decreases as the two subreactions are moved
further apart must be in accord with classical ideas about the flux
of stable pértiéles emerging from a source that is small in comparison
to the large disfance between the source and the detector.

If we takevghe(momentum—space wave functions of the initial and
final particles of the overall process to be infinitely differentiable
functions of small compact support, and if the scattering functions
for the two subprocesses ;re non-singular in the regions defined by
these small compact supports,then the scattering function
fl(p, P3> Pys ~ ps, - p6) of the first subprocess folded into the
wave functions 33(p3)$4(p4)¢5(p5)¢6(p6) of this subprocess will
give an infinitely differentiable and compactly supported wave function
wl(p5 of the particle preduced in Fhis first subreaction. Similarly,
the scattering function f2(p1, Pys = Ps = Pys ~ ps) of the second
process folded into the wave fﬁnctions $l(p1)$2(p2)¢7(p7)¢(p8) of
this subprocess will give an infinitely differentiable and compactly
supported wave. function ¢2 -p) = $2(p) of the particle detected at
the seéond reaction. Thus the transition amplitude associated with

the preparation of a particle represented by wave function wl(p), and
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the subsequent detection of a particle represented by (complex con-

jugated) wave function y,(p), namely
2

“ .
<3, -w1>=fi2; B, 216" (7 - HH2m 4 (), (6.1)
(2m)
is equal to the result of folding the wave functions ¢j(j =1,...6)
of the external particles of the overall reaction into the discoﬁtinuity
Zﬂd(pz - m2)2m of the overall scattering function..
We are interested in the dependence of this amplitude on the
location of the detector. Thus we translate the_waQe functions
¢j(xj) of the external particles of the second (detection) subprocess

by a vector bx = Tv,. where v2 =1 and v0 > 0. This is achieved

by the change
' - g 0% = -
¢j (xj) ¢j (xj) ¢j (xj AX) .

This change induces the change

ip.Ax
g Ax - J
%(pj) > ¢ (pj) ij)

in the momentum-space functions. Then momentum-energy conservation

in the second process yields the resulting change in Ez(p):

B, » 5, ) = §, (e PAx, ©(6.2)

Actually, we are interested in the rate of fall-off of the transition

amplitude of the overall process itself as the magnitude 1 of the
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shift Ax tends to infinity. However, if we had used in place of

(pz— m2 + iO)‘—1 the boundary value (pz— m2- iO)-1 then this modified

transition amplitude would fall off faster than any power of 1.7
Thus, modulo these terms that fall-off faster than any power of T

2

we may use, in place of the actual pole form i(pz— m” + 10)—1, rather

the difference (or discontinuity)
2 - -
i(pz— m + iQ) 1 i(pz— mz- i0) 1. 2“5(p2- mz).

Then, in the notation of (6.1) and (6.2), the question becomes:

T
what is the rate of fall off of < ﬁzv "?E>as T - ®?

This question is answered by the following corollary to a theorem
proved in appendix A. Corollary A: Suppose Jz(p)wl(p), considered
as a function of the three-vector 3, is continuous together with its
first and second derivatives, and vanishes for |3| > R < ». Then

for any real v satisfying v2 =1 and vo > 0 the following limit holds:

3/2

lim (Znit) imt
T > m €
v
< wz . ¢l > =
= Jz(mv) ¥ (@) | (6.3)

In terms of probabilities this relationship becomes

3 o2
lim (27T -Tv
T+°°(m) l <¢2 ¢2 >l
_ - 2 2
= oy (mv) | Ty mv)| . (6.4)
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This result allows the squares of the magnitudes of the momentum
space wave functions wl(mv) and ﬁz(mv) to be identified as flux
densities for emission and absorbtion of particles moving in the
direction v. The factor Td3 corresponds to the fact that stable
particles do not disappear or materialize while moving from the source
to the detector: the probabilities in the macroscopic domains
have the same geometric fall off as the probabilities for classical
stable particles.
. If one were to increase the degree of the singularity then
the fall off would become too slow. And if one were to decrease the
degree of singularity then the fall off would become too fast.

The connections described above show that one cannot expect to
extract reliable information about the singularity structure of
a function from an approximation to it that disrupts
its asymptotic behavior in coordinate space. For the asyﬁptotic
structure of transition amplitudes in coordinate space determines
the analytic structure in momentum space. 8

Storrow4 examined the question of the effect of infrared photons
on this pole singularity and concluded that the usual pole form

2 2 =) 2 2 C1°F

(p - m” + i0) was changed to (p - m" + i0) , where B was of order
of the fine structure constant. Such a form would entail large

deviations in the macroscopic regime from the classically expected

behavior of stable particles.
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7. TRIANGLE-DIAGRAM FACTORIZATION AND AMPLITUDES FOR PROCESSES

WITH CHARGED INITIAL AND FINAL PARTICLES

These pole-singularity considerations can be carried over to
reactions such as the one jillustrated in Fig. 1, in which a
charged particle runs around a closed loop.

Let X XZ’ and X3.be the vertices of a large spacetime closed

l’
loop L(X). Let Py> Pys and ) be the momentum-energies of the three

intermediate lines, as determined by the masses m, of the three

charged lines and the differences AX of the Xi.
X.
functionsl% l(x)of the two extermal particles incident upon vertex i

Suppose the wave

are large in a neighborhood of Xi’ but have a product that falls
off faster than any power of |x -Xjrlas X moves away from Xi. And
suppose that the scattering function for each of the three subreactions,
folded into the wave functionsigi of the two associated eiternal
particles, but evaluéted at éhe momenta pj associated with the two
appropriate intermediate particles, is non zero. This configuration
defines a transition.operatof

p . i Mo,

A = T Ty seees Y (7.1)

that would be expected to have contributions corresponding to the

reaction represented in Fig. 1. Indeed, if there were no infra-red

problem then A(AX) would be dominated at large A by a term that falls
9/2

off as_A- , and that arises from the pole singularities

(p§— m§ + iO)—1 corresponding to the three chérged lines in Fig. 1.

The diagrams D° contributing to this dominant term would be7’8

those in the class CD consisting at those D' that are separated into
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three disjoint diagrams by cutting three charged lines, one corres-

ponding to each line of D. Modulo self-energy-diagram considerations

9/2

contribution to A(3X) would be obtained by replacing

each of the three poles i(pJ!2 ~ m§ + iO)-1 by the corresponding mass-

-9/2

the dominant A~

shell delta;functions Zné(pjz - m?). Indeed, by factoring off (ci)
and an appropriate unitary factor that does not affect probabilities,
one would obtain a limiting value that is just the product of the
scattefing functionsbfor the three processes, with the ¢j's folded in,
evaluated of the points pg = pj. This is the trianglé-diagram
generalization of (6.3).

These pole-factorization results are not disrupted by the infra-

red photons. Equations (7.1), (3.1), and (2.36) give

=1 1j=1

3 6 Ax,,.
200 = 1 1w Mg
x U(L(x))f‘gpr(x) . (7.2)

Let © be some small neighborhood of the point k = 0. Then U(L(x)) can

be written in the form

v, (L) (L))

(L&)

iJQ @ox) 1 L))

+ U, (LOX)) (U'é(LO.x)) v, (L&) - 1) L),
: ' (7.3)
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where the operators UQ(L(x» and U (L(x)) are the operators obtained
by resﬁricting the k integrations that occur in the definition (2.25)
of U(L(x)) to ke® and k£Q, respectively. Then one may write

A(XX) = Aaom(AX) + Arem(AX), (7.4)

where %om(xx) and Arem()\x) arise from the first and second terms in

the final line of (7.3), respectively. In particular, one has

: o »
Ay OX) = UQ(L(AX)> A (X)), | (7.5)
where ‘
Aox) =
3 6 - AX_ .
=|n a*, nv i(J)(xi(.\)UQ(L(x))f‘D (x). .
i=1 =1 37 épr (7.6)

The probability corresponding to the transition operator A(AX)
is

POX) = Tr AOKp; A O0pgy s 7.7

where Pin and Pein are the density operatoré for the initial and
final photons. Final infrared photons are not detected. Thus
Pein acfs as‘§ unit operator on the infrared (i.e., keﬁ.) parts of
the photon states. The non-infrared (i.é., kéf)) photons play no
essential role in the discussion, and caﬁ be assumed to be absent from
both the initiai an& final statés. Thus if

pg = 10" >< 0¥ (7.8)



45

is the operator that projects all non-infrared (ké{}) photon
oscillator state vectors onto their ground or vacuum states, but
leaves unchanged all photon -oscillator states corresponding to

photons with momenta ke{l then one may write

oD

Pein = (7.9)

and

a

Q
Pin Py pin,ﬁ’ (7.10)

where %n.8 specifies the initial condition of the infrared
»
photons, but leaves unchanged all non-infrared: parts.
Suppose 2 is contained in{. Then the contribution of Adom()\x)

to the probability P(AX) is
P dom(AX)

= Tri< OQIAdom(Ax) lo® >

&) ,t a
* pin,ﬁ<0 l Adom()‘x)I 0" >

= el < 0°[u, @OX)A"Om | o >

°1n,§<°Q|Amv()‘x)U; wow) | o>

= e[ <0? | 4% 0¥ >

<oft| a0 &
Pin,g <0 187 GX) |07>1, (7.11)
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where the traces are in the space associated with the infra-red
photons, and the unitarity of UQ(L(AX) ) has been used to obtain the
last line.

Let Q= (b) be a set of the form

->

amy=z ke k0] <2b, |K] <bl (7.12)

And suppose, gs in Section 2, that the wave functions \Dj(pj) are
infinit:ely differentiable with disjoint compact supports in

f;j/pj space. Then it is shown in Appendix B that for some fixed A
and for any ¢ > 0, hov}ever small,- there .is a b(e) such that for any
b <b(e) -and all A > AI- the coﬁtributions to P(AX) that involve

Arem(AX) are less than ¢ times P(')\X);
POX) - By () < e POX). (7.13)

This smallness of the contributions from Ar(AX) arises from the

fact that the faster-than-any-power fall-offs of the wave functions

X
wj i.(x) effectively confine x to a finite neighborhood of AX. Yet

for all lk] < lx - )\X|_1 thé currents J(t(x),k) and J(L( AX),k) are
nearly equal. Consequently, the operators U(L(x)) and U(L()\X))are
nearly equal, and hence the factor ‘(UQI(L(}\X))UQ(L(X)) - 1)
appearing in Arem()‘x) tends effectively to zero with the size of
2 = a). '

The value of b is now taken small enough so thét, to some high
preordained level of accuracy, the probability P(XX) is adequately

represented by Pdom(AX). Then the remainder can be ignored: it is a
negligible fraction of the whole.

<



47

Equations (7.11) and (7.6) show that the operator UQ(AX) drops
completely out of the calculation of Pdom(AX). Thus no error at
all is induced in the calculation of Pdom(AX) if one replaces the

operator ﬁzpr(x) in the basic formula (2.36) by

e
~~
»
N’
n

= vHL)) ?Bpr(x) . (7.14)

This substitution eliminates all contributions to U(L(x)) that arise
froﬁ the photons with ke. This elimination of ke contributions
ensures the infra-red finiteﬁess of Pdom( AX), and hence of P()AX)
itself, provided the operator ?Zpr(x) introduces no infra-red divergences.
The infra-red properties of ?gpr(x) are studied in paper II. An
ultraviolet cut-off is imposed, and the possibility of a divergence
of the sum over the infinite number of different diagram D' with
quantum coupling Q is not examined. Subject to these limitations it
is shown that the photon momentum-space eigenstates of the Fourier
transform ?gpr(q)-qf ngr(x) are we}l defined and have the usual
triangle-diagram singularity: the dominant coﬂtriﬁution to the
discontinuity around the triangle-diagram éingularity surface is
evaluated as a sum over contributions corresponding to all ways in
which the diagrams D' can be cut into three disjoint parts by cutting
three line segments, one corresponding to each of the three internal
lines of D, and replacing the corresponding propagator i(§+m)/p2—m+i£
by 2u5(p2-n3) (p+m). This restriction of charged-lines to their mass-
shells pro&uces no iﬁfrared divergence. |
Since the quantum photons give no infrared problems and the classi-
cal photons with KkeQ do not enter we expect to obtain the normal factori-

zation properties. To verify this consider first the vacuum-to-vacuum

matrix element

48

~D
<90 [Fopr(q) ] 0 >. since the singularity at the triangle-diagram
singularity surface is normal the corresponding asymptotic behavior
in coordinate space‘is also normal. Indeed, the three-particle

generalization of the theorem of Appendix A ensures that if one defines

3 6 X,
J md, 1 oy

F(AX) = . s
' ' i=1 * j=1 1(3))
<o| # ) |0 > : (7.15)
opr ’ ) .
then
'3/2 =
3 |/2wic, A im,c A
1im it o e 44
R B B A
3
¥ FOX) = T FihyPas Pia ) s (7.16)

where Fi(wj(i)’pi"pi+l) is thg amplitude associated with vertex i
of D. Specifically, Fi(wj(i)’ Pys pi+1? is the scattering function
for the subprocess associated with vertex i, folded into the wave
functions wj ofvthe particles corresponding to the two external
lines of D incident upon the vertex i, and evaluated at the momenta

of the charged particles associated with the two internal

Py and pyyy

lines of D incident upon i. The quantities P and ¢ are specified
by
(7.17a)

Py = my Xy — Xy /1%y = Xy gl mink.

and
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e, = |x, -x | . (7.17b)
* Y17 Mink
; o
To establish an asymptotic factorization property for Pdom(AX)
The property of F (x) just described refers to its vacuum
opr recall first that

to-vacuum matrix element. If the initial state represented by Pin. B
k4

D . .
is the vacuum state then the operator F (x) in (7.6) that occurs g, & Q

opr <o'|v" (L) | o” >
in the formula (7.11) for_Pdom(AX) acts on the vacuum state. Then

the vacuum-to-vacuum matrix element of'FD (x) will contribute to 8
‘ opr = exp 19" (L(x))
the probability Pdom(kx) a term

Paom (0 = | xexp - 1 <5 @) - 3@w@)>P, 7.19)
| 1 @ty 1 (b, Dy e, G ) mere by @I, 0@ 4
i=1 j=1 73 i) F ) = 2.v. J a’k b 5 v y
+ 2(2m) k
x <O|fy Gyjo><ojfy (njo> : (7.202)
. . R and
« < 080t (L0 ) [ P> <o (Lp)) [0t >
<J* (L)) .J(L(x))>Q = J 241‘4 J:(L(x),k)(—guv)Jv(L(x),k)
) f‘ﬁ_zmﬁ_ﬂlluﬁ-aq‘(x)) 195> <°§—91U2‘;—9(L(y)) In"ag > - . - :
(7.18) < amstady ¥ (. ‘ (7.20b)
The superscript £ on ﬂQ(L(x)) means restriction of the integrals
occurring in U(L(x)) to contributions from the photons with kéf - . Here xﬁ(k) is a factor that cuts out the contributions from both
(i.e., to non-infrared photons) and the subscript -0 means infra-red and ultra-violet photons. .
restriction to photons with ke (Q—0) (i.e., to infrared photonsthat The current appearing in (7.20) is

are not very soft). The sum over states ln'é_03>is a sum over all

states of the oscillators corresponding to photons with ke(Q-Q).

0
dom

~D ~D '
i < < QOlF -
quantities OlFopr(x)lO > and olropr(y)lo > with the unitary

Expression (7.18) for P (AX)combines.the infrared finite

factors corresponding to classical photons with kéQ.



3,160, k) =-te J dx' IR

L(x) *
3 =z ikx, ikx 1
——e I zlu (e 1. I
i=1 %37k
—e % elkxl(ziu z‘i+1,u>
i=1 gk gtk
3
= z z k) (7.21)

BRI TR

where Jg (xi, Z., k) is the partial current associated with
M

i’ E41e
vertex i of D.
If each of the two currents in (7.20b) is decomposed into its

three partial currents one obtains nine terms in all. Each of these

nine terms is associated with one wiggly line in the diagram of Fig. 3.

Figure 3. A triangle diagram with wiggly
lines representing the classical-photon

contributions.

Two of the nine terms are associated with each of the three
wiggly lines that run between two different vertices, and one of the
nine terms is associated with each wiggly line that begins and ends

on the same vertex.
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The contributions to (7.18) from the six terms in (7.20b) that

correspond to interactions between different vertices fall-off.

faster than A—g. To see this, consider first a typical

contribution of this kind to (7.20b):

* Q
ST Ggg) I D> T =

2 J e
= e e

;
- T enstad) o
(2x) .

z z, z, z,
< ( i-ly iy ) (_gpv) ( iv _ _itly ) . (7.22)
zyak 257K/ Byt Fnk

And consider first the values of (7.22) at points x in

ROMAR) = {xr [x - aX|g, , <A}, where 0 <n K1 .

Since the Xi are chosen so that the differences Xi -~ Xi—l are all

. 0 0 -
timelike, and satisfy ]Xi - Xi—ll > 1, the vectors zg 2 X - Xy g

for points x in

ROT,AX)

must also be timelike. On the other hand, k is light-like in the

support of 52(k). Hence thevonly singularities of the integrand in

(7.22) apart from those of the cut off function

XQ(k), are those of d(kz). But then the properties of Fourier

>

transforms7 & ensure that <Ji—l(xiv1) «J (xi)>' falls off

-1

ucl. in all directions except

X, - X,
at least as fast as l § 3-11
those on the light cone. And in these latter directions it is

bounded.
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Due to the timelike character of the differences z, = z, - x, 1
i i i-

for x in R(",AX) this Ix; - fall off of (7.22) in timelike

x, .|}
i-1'Eue1.
-94+8n

directions, together the bound CX on the remaining factors, entails

a faster than A-g fall off of the st(Aﬁ,kX) contributions
*
11

other hand, the faster than ahy power of |x - Axigicl fall off of

of <J i_l)-Ji(xi)>§ to the Pgom(kx) defined in (7.18). On the
the product of the wave functions in (7.18) ensures thé faster than
any power of A_l fall off of the contributions to the integral over
x in (7.18) from points x not in RG",AX), since thé remaining factors
in the integrand are bounded. Thus the full contribution to the
probabili;y Pgom(lx) defined in (7.18) from the parts of (7.20b) that
correspond to interactions between different vertices X, falls off
faster than A °.

The three surviving terms in (7.20b) arise from the self-interaction
couhterparts of the integral in (7.22). These self-interaction
terms, which correspond to the wiggly lines of Fig. 3 that begin and

end on the same point, have x, in place of Xy 4 in (7.22). Hence

i

they have no x dependence.
Consider next the integral in (7.20a). Arguments similar to
those just given, and described in detail in. Appendix D,

show that the contributioﬁs of (7.20a) to (7.18) arising from the sum of

i *
products of factors Iy and Jj over i # j fall off faster than A—g

>

provided the effect of the self-energy counter term is included.
The sole surviving term in the limit A > « comes, therefore, only

: . *
from the self-interaction terms involving the product of J; with

J These terms have no x dependence. Thus the full contribution

e
from the factor < Oﬁ IUQ(L(x))I 0% > to the dominant large-2
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0

behavior of P
; dom

(AX) defined by (7.18) is simply a product of three
independent constants, one from eaéh vertex of D.

The fiﬁgl faétor in the expression (7.18) for Pgom(xx) is a sum
over the states lnﬁ_d>. These states can be taken to be the photon
momentum eigen states I(kl,..;kn)ﬁ_ﬂl>. Since the photons that
contribute to Uﬁ-&L(X)) have k restricted to a region (-0 that
is bounded both from aone and from below these cases can be
treated by methods essentially the same és those just éiven: one
simply treats the classical photons coupled into the three vertices

of D like extra external particles. One may, for convenience,

recombine the parts k¢Q and kei-R and consider the matrix element
<k,.k [THLGO) (0> = M. (7.23)

This function decomposes into a sum of terms, one for each way of
coupling the set of photons (kl""’ k,) into the three vertices.
Let Y be an index that runs over the variéus possibilities. Let a
be an index that runs over the n photons, and let i{y,a) label the

vertex into which photon ¢ couples for possibility y. Then

< kl,;..,knluu(L(x)) lo >

z iepeenoi 0700 | 0>

Z Mk, ®). _ (7.26)
L. Y
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The x dependence of M?(k,x) is.exp i(x-k) , where
. Y

n

(x-k)Y = El ka i) (7.25)

~ix(X.k)

Thus the function Mg(k,'x) e depends only on the differences
Y

AX, .

1 "My (i=1, 2, 3). The wave functions ¢, 1w also depend only
) 9 ~iA (kK)_

on these differences. Thus the three factors from MY(k’ X)e

simply modify the ﬁroduct of wave functions appearing in (7.16). Hence

that earlier result yields jmmediately also

) Zﬂlc 3 1m c, l -iA (X-k)
lim n ( e Y
Ao j=1 et

3 6 AX,,,
Lo e 1oy, jL(3)(x.(.)),
-1 Egep 3 i3
x <k k IUQ(L(X)) o>
1ree sk g

~D
X <0lFopr(x)IO>_

3
Q
—121 AiY(wj (i)’ Pi* Pi41’ ka(y’ )’ (7.26)
where
aly, 1) = {a3 i(y, o) = 1}, (7.272)
and the argument j in the last 1ine runs over the set
IW = 45 1@ = 1 (2.27b)

A »~ =, and then, with the aid of (7.28), by piu/pi°k and p
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The right-hand-side of equation (7.26) is a sum of contributions, one
for each way in which any diagram D; contributing to the left-hand
side can be cut into three disjoint parts by cutting three charged-
line segments, one corresponding to each internal line of D. The
contribution on the right-hand side is obtained from the corresponding -
one on the left-hand side by settihg_A = 0 and replacing the Feynman
propagator i(ﬁi‘+ mi)/(pi - mi + ie) associated with the cut segment
by (é + mi/Zmi), where

py = m (X, - xi_l)/lxi - X (7.28)

i—lIMink’
However, the Feynman diagrams on the left-hand side that contain self-
energy’corrections to the cut charged-line segment should be ignored,
because the renormalization counter terms exactly eliminate their
effects on this mass-shell line.

In constructing

A (wJ(i) Pi» Pyyp’ u(y,l))

the quantities vy /v 'k and v /vi+l-k that arise from the classical -

coupling have been replaced first by (Xi - Xi—l)u/(xi - Xi_l)-k and

(Xi+1 - Xi)u/(xi+1 - Xi)'k, by omitting terms tend to zero in the limit

141,/ Pian K

Due to the exclusion from UQ(L(x)) of contributions from photons

with keQ the value of the energy kg of each final photon in AZY

is greater than some fixed minimum value. Since the energy carried



57

into and out of the subreaction i by the particles represented by the

lines of D are constrained by the compact support of the wave functions

)(pj), and by the fixed values of the momenta pi and Py the

wj(i +1°

amplitudes

(wJ(i). P> Pygps ka(Y’i))

must vanish if the set a(y,i) has more than some finite number of

elements. Thus the sum over final photon states needed in the calcu- :

lation of

lim A 9P _0X)

is limited to states containing some finite number of photons.

Equation (7.26) exhibits an asymptotic factorization property
of the amplitudes from whicﬁ the probability P0 (XX) is constructed.
This quantity P (AX) is the contribution to P4 (AX) from the infra-
red-finite matrix element<:0|F°pr(x)I0 >. Consider next thé& contri-
bution from the matrix element < k|?£pr(x)!0 >. The analysis of
paper II shows that the dominant singularity on the triangle-diagram
surface of the Fourier transform of this function is normal. Thus
the three-particle generalization of the theorem of Appendix A

gives

3 [emie 2 me
lim 1 ( ) e *
1

Ao i= m

i
3 AX, .
J 1 oatx w TPy
i=1 i

i(j)) (7.29 cont. on p. 53)

58
% <k|f£pr(x) o >
= Fl(k)F2F3
+F F, (K)F,

+F FF,(K), (7.29)

where

Fi = Fi(le(i), Pil Pi+1) (7.30)
is the function occurring in (7.16), and
Fi(k) = Fi(w k) (7.31)

(1)’ Py

is the amplitude for the process in which a photon of momentum-
energy k is emitted by the part of the reaction at vertex i that
is represented by %gpr'

The traditional infrared analysis suggests that an infra-red
divergence might arise from the coupling of the soft-photon of
momentum k onto the external on-mass-shell charged line of the
reaction at vertex i. However, the coupling of an external photon
of momentum k into F?pr must be via a quantum-coupling Qu(k, z),

which, for a coupling into the mass-shell charged line, occurs in the

context
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o+ m)Qu(k’ z) p+Hk+m

o + K2- m’
z ¥
i . +k+m
= GG+ DG, - 2D i(—zp—k)—
z ¥ p+m
= (-ie) [(15 + m) (Yu P 2p-k

z Kk
_k
s rm, -2 k]

| Ly
(—ie)[( EroCf tm)y, -

2, (2p'0) 4
TGy - )

z k
+Gem oy -2 B ]
= (-ie) [(,s +m)y, %] . (7.32)

The last line follows from the facts that k2 vanishes, and that
P, =, is parallel to v, = zu/|z|; as prescribed by (7.28).

This result shows that the quantum coupling into the mass-
shell line has one extra power,of‘k in the numerator, relative to
the usual Yy coupling. This extra power of k eliminates the usual

infrared divergence. In fact, it is precisely this extra power

of k in the quantum coupling that is the basis of the proof given
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in paper II that the momentum-space matrix elements of ?gpr(p) and
their discontinuities are infrared finite.

By virtue of the infrared finiteness of ?gpr(p) the photons
represented by it will not iead to any infrared problems. The Pin is

assumed, for simplicity, to be the vacuum projector. Thus the matrix
element

w00 = <o| A% xe, AT0x) o > (7.33)

will be infrared-finite..
Equations (7.4) through (7.11) show that M%O(AX) is a contribution
POO (AX) to P (AX). It has no infrared anomolies, and hence falls
dom dom

off at the normal A-g rate. On the other hand, the equations.

Pdom(xx)

.r.
TrAdom(Ax) DinA'dom()‘x)pfin’

Q . .
Bgon PO = T8 ), (7.35)

and (7.33) show that the full contribution to ngm(kx) = Mgo from

final photons with ke arises exclusively from the single final coherent
state UQ()\X)|0Q > . S8imilarly, the full contribution ngﬁ(xx) to
Pdom(lx) arising from - the infrared-finite ‘matrix element
' Q Qt
< >
kA" Ox)p, A7 QX [ky >,

where[kQ > islk kp > with all ke, is carried exclusively by

12

the single final coherent state UQ(}\X)!kQ > . Thus if one wants to use

final photon states that give dominant contributions to the asymptotic -
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large-A behavior of the probabiiity then one cannot choose as the
" basis of the final ke photon space the usual momentum: states

|kn:>= |(k kn)ﬂ >. TFor the use of these final states would

12
introduce factors <:k'QIUQ(L(AX)) Ikn:>'that all approach zero as

A > ©_, The more appropriate basis for the final keQ photon states is
the set of coberent states UQ(L()\X))|kn > : each of these carries the
full contribution to Pdom(lx) associated with the corresponding infra-

red-finite matrix element < knlAQ_(AX)pinAQT(AX) |%2> . By using

these cohérent states one obtains for the individual final-state

-9/2 9

matrix elements the A fall—off property that corresponds to the A~
fali~off property of the probabilities.

Use of these coherent states UQ(L(XX))|kn->' is dictated also by

physical considerations. For the unitary operator UQ(L(XX)) incorporates

into the final photon states the quantum mechanical counterpart of

the ke part of the classical electromagnetic field radiated by the
closed loop L(AX). These classical contributions physically dominate
the small k, large-A behavior, and hence they must be incorporated into-
the final states if the resulting matrix elements are to have any
physical significance in the limit A - @,

These coherent states UQ(L()\X))]kQ >’_may be compa?ed to those
used by Storrow, Kibble, Zwanziger, and by Kulish and Faddeev. 1In the
closed~loop case, where no charged particles occur initially or
finally, these authors use the normal states vlk >. But the use of
these states would, as just mentioned, give the individualbmatrix

elements spurious damping factors that suppress the dominant large-~?
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behavior in coofdinate space and consequently disrupt the analytic
structure in momentum space.
Similarly, in the énalysis of the.pole-diagram singularity Storrow
used coherent states that correspond to placing both scattering
centers of the pole-diagram process at a common point, namely the origin
of spacetime. This choice effectively neglects effects of the factors
ikx :

e 1 in the expression (7.21) for the current. . These exponential

factors shift the parts of the current that correspond to separate

scattering processes to the points x, where these separate processes

i
occur, Placing these separate contributions the origin is mathemati-
cally and physically inappropriate when the critical question is the

form of a limit in which the separate subprocesses are shifted in

different directions to infinitv. 1l

Storrow's neglect of the factors e 1 stems from an analogous
step made by Yennie, Frautschi and Suura, who argue that terms
containing the difference factors (1 - eikx),acquirea convergence
factor k in the infrared regime, and hence can be placed with the
infrared converéent'terms. This is an awkward step, since it
disrupts momentum-energy conservation, and hence is more than just
a shift of small terms into the residual colléction. For it makes
the infrared function large where it formerly vanished.
In any case this step is certainly not permissible when one

is interested in the singularity structure. For in this case one

must deal simultaneously with the regime

x fixed, k > O

_ hence kx > 0, (7.36)
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as well as the regime

k small, x » =

hence " kx > o, 7.3D

One cannot keep making k smaller and smaller as x becomes larger and
larger, because then the concluéions would hold only at the point
k = 0, where the Feynman functions are ill-defined.. The methods
developed in the present paper cover the simultaneoudly both of these
two regimes.

To obtain nice factorization results for amélitudes analogous
to the factorization results for probabilities established above
let us consider the physically appropriate mafrix elements. It is
only in the very soft doﬁain keQ tﬁat the choice of final states
UQ(L(AX)) | n > is essential, but any abrupt change of represéntation
at some arbitrary point would introduce spurious complications. Hence
we use the basis U(L(AX))l (kl,..., kn )y > .

The effect of this new‘choicé of basis states is to replace the

unitary operator UQ(L(x)) in (7.26) by
T en) v o))

- 1 @on)’ee), (7.38)

“than A—g

64

where the operatof‘UQ(L(Ax» from (7.5) and (7.11), which drops out
of probabilities but contributes to matrix élements, has been
reinstated.
Equation (B.37) of Appendix B gives
T (LG (L (x))
. . 0
= exp<a - (JEE) - I(LOD))>

x exp - <L) - ILOw)) * -7

xexp - 7<0EE@) - 3(0OD) * (L) - 3@ODPT

x exp -1 #(J(L(0)), I(LOX))T, (7.39)
where .
Q 1 *
0g, 3pt - F<@ T G-l .40y
and , -
4 A () (-g" B (k)
<a-3¥ =»Jd A v P w. (7.41)
(2m) (k+ i0)°- |k|

Equation (7.26) with U®(L(x)) replaced by U*(L(x%))U%(L(x)) is
called (7.26"). Argumeﬁts essentially the same as those leading to
(7.26) show that the cont:ibutions to (7.26') from terms haying a
product of partial currents q: and Jj with i # j fall off faster
/2

, and do not contribute to the limit. What remains in the

limit are three factors,
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one arising from each partial current J_, ie{1,2,3} . The asymptotic

i’
factor associated in (7.26") with vertex i is denoted by
Q'
Ay B30 Prr Putd Kagy, )

The effect of the factor exp - i‘r(X-k)Y in (7.26') is to replace

the arguments X in the operators that contribute to

Q T . N .
AiY(wj(i)’ Pjs Pyipe ku(y,i)) by x; - AXi. Thus if subsecript i

means restriction to contributions from the partial current Ji then

the classical-photon contribution to A9

'
iy arises from the operator

(™ LOX%) v Qx, - AX)))

= exp _<a*-(Ji(x1 - X)) - Ji(o)) >

. .
exp - <(Ji(xi - XXi) Ji(O)) -a >

exp - %<(Ji(xi X)) Ji(O))*.

JCHCHERS W Ji(O))>Q

exp - %<(Ji(xi - AXi) + Ji(O)) ¥,

(I (xy - X

Q
i) Ji(o))>}

= v (g @ (a, &, - Ax)) (7.42)

The operator in (7.42) acting in the space of photons with
momentum keQ is unity, Thus the difference between the operator

in (7.42) and the analogous operator with @' = Q(b) = @ (i.e., b= 10)

is the unitary operator (7.42) times
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+ . :
- AX. - .
U (by (T3 g gy (35 (x5 = 2X) - T (7.43)
But the results of Appendix B entail that for any finite R and all

xisRi(R;Ax) é{xi: [x, - Ax

<
i i‘Eucl\"R} (7.44)

the operator in (7.43), restricted to allowed initial states, is an
operator whose norm tends to zero as b tends to zero. But then

(b) "

Lim AiY (‘wj(i),pi’ Piy1s km(\r,i))

b0

= AiY (wj(i)s pi’ pi+l: k(!(Y,i)) (7.45)

exists, sincé,the contributions from xiERi(R,AX)canbeﬁade arbitrarily
small by taking R sufficiently large. (See the end of Appendix
E.)
The amplitude Aiy(wj(i)’ Pi’.pi+1; Fa(Y’i)) is the amplitﬁde
for the process with two charged external lines. It is independent
of the original process from which it came, and hence can be called
A(y ’pi, P4’ k) where ¢ repregents the set wj(i) and_k represents
the set ka(y’ 1)°
As a simple example consider the case in which there are two
neutral initial particles with wave functions ¢1 and wz, and two
charged final pa:ticlés with physical momenta - Py and P41 Suppdse

there are no external photons (i.e., no ka) and no quantum photons

(i.e. ﬁgpr(x) can be replaced by FD(x)). Then the amplitude is



0
Ai(wl, Yys Pys pi+l) . : The factor exp - ipixi comes from the propagator of particle i in

4 FD(x), and the associated factor exp i p,X_.) comes from the factor
= la"x y, (x, - X)) ¥, (x, - AX.)V, s
i¥l1ti i 2771 it'i :

exp i micik = exp i pi(Xi - Xi_l)A in (7.26")(See 7.17). The factor

. e—ipi(xi - Xxi)eipi+1(xi - Axi) exp i pi+1(xi - XXi) has a similar origin.
. ) The first integrand in an exponential in the last line of
1 d k V. N .
x exp - 3 J % Jiu(o)(- g ) Jiv(o) (7.46) behaves like 6(k2) as |k| > 0, and the integral is
(2m)

. : infrared convergent for any finite x_ - AX,.
g ( ik - XXk _ 1)( 10xy = AX,) vk 1) ' oot
x 278 (k™) \e e The second integrand in an exponential has poles at pi-k =0

and pi+l.k = 0. In the original ékpression, for the full triangle

4
i d 'k A\
exp - 5 J(2n)4 Jiu(O)( g )Jiv(O)

diagram process before factorization, these poles were cancelled by

( —i(xi - XXi)-k 1) ( i(Xi - AXi)-k 1) compensating zero's in the numerator. In the proofs of Appendix B
e + e -

(kO + 10)2 - |§|2 a particular ie resolution of the pole was introduced. One could

equally well have chosen the other ie resolution. But a more natural

= JdAx. vz, = AX) Y, (x, - AX)V : .
i1 i’ 72 iti and convenient choice is the principal-value resolution. For this

-ip.(x, - AX,) ip, .(x. - AX)) resolution never introduces spurious imaginary contributions.
ii i’y i+l i i

Xe
: If the principal-value resolution of these two poles is used

2 4 , . . . .
e J d'k Piu _ Pitl,u )(~ uv)(plv _ Pin,y . then one may exploit the symmetry under k > - k to replace the last

x exp - : 2 =% :
2] (amy® \Pik Py K Pytk Pyyyck

three factors of the final integrand in (7.46) by
~i(xi - AXi)-k )( +i(xi - Axi)-k )
=1/\e 1

X

2m8 T (k%) (e

1 1 _ 1 )
2 Va4 102 - %2 & - 10)% - k|2

. ie a’x (P1E, _ Pi+1,u)(_ uv) (Piv _ Pi+1,v)
&P =7 4\p.k p,,.-k & p.+k p.,,-k
(2zm* “Pi 141 i i+l
1 -1k, - XDk )( 10 - AX) -k )
3 5 3 e +1/\e - L
(k+ 10)° - |¥|

X

2i sin(x, - AX,) -k
i i

% (- 2nist ) + 2wia‘(k2))
(7.46)

x 21 sin(x, -AX )k . (7.47)
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In this form the spurious poles drop out, and the integrand goes
like Gt(kz)/k. - Consequently the integral is infra-red finite.
In fact, insertion of (7.47) into the final integral in (7.46) allows

this integral to be expressed as

K 2w 1 p. P
——l——g J dko J dg J d cos® ( tgﬁ) - ité’;))(-guv)
2(21)° & 0 -1 Py Pi1tY
( Piv _ pi+lg (ko)_lsin ko(x (o ﬂ).— A%, (8 0))
pi(e,ﬂ) Py4f0> 5 119 A% 6.8),
(7.48)
where, for any four-vector x,

x(6,0) = xo - x3cos6 - xzsinesin /]

- xlsinecos f. (7.49)

In this form the contour in ko can be distorted away from the point
k0 = 0, which eliminates any possibility of infra-red divergence.
The s&mple case treated above is very special. For one thing,
the part of diagram.D that corresponds to the subprocess in question
consists of only one single vertex. A slightly more complicated

example is obtained by taking the part of some original diagram D

that corresponds to the subprocess in question to be the diagram D1
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of Fig. 4

be | ' ¢

xe X _--
e I
4 -\
\
; \
Piw .
\
\
\
x -——-_‘-"‘---"\\
. Ria x -~
7b ‘ 2 ~ 4&
L+t

Figure 4 Subprocess diagram D1

' Consider again the case with no external photons (i.e., no ko, and

the contribution with no quantum interactions. Then ?gpr(x) is

reduced to F '(kl, Xy, X ). We shall drop the subscript i

17 Fi41
on Xi and A,, and fold in the mass-shell supported wave functions

AX (
#2 ' Pi+2

i

wﬁﬁpi) and V¥ ) of the charged particles, and thus obtain

0
A (¢1, WZ, wi, Wi+2)

Pi+2

(21!)4 (2“)4

4 4
b dby by g d'py d
= ¥ X% X% ¥

By Gy = A B0 - A0 ¥y () ¥ )

142 Pigp

e_ipi(xi_ AX) eipi+2 (#447=M0

D

1 )
Fllxy, Xp, Xys Xy X

(7.50 cont.)
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x exp{I(pi, Pis1r ¥y - X)) + I(pyyg» Piios X5 — M)

FIPys Pyygs ¥y = M Py Pyygs Xy - AR (7.50
where
I(p, p', %)
2 4 2 2
. = dk ( -p~ _ =(p") 2p-p!
> | 7t 2t
(2m) " Mpek)  (p'-k) (p+k) (p' *k)
x [216(k?) (1 - cos x+K)
+120(6T(kH) - 57(P) sin x-k] (7.51)
and

I(p, p', x; P", P, x")

- '.

= e P.V d4k —P'P" + "
2 0T J (2n)4 (pk)(p"k) ~ (p'-k)(p'"-k)

P'E'" p'ep"
TeweTe (p"k)(P"'k)]

x [ZnG(kz)(l + cos(x - x")k - cos xk - cos x'k)
+i2n(st (%) - 674P)) (sin x-k + sin x'+k)

+ik_2(r2 + 2 cos(x - x')+k)] - (7.52)
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—xQ[B. -xﬂ

i+l but

The four—vector‘pi+1 is mi+1(xi+1 mink®

any vector parallel to x_. - X will do just as well.

i+l
For all x and x' in the ball of Euclidean radius R the terms in
(7.52) that contain factorsﬁ+(k2) and S(kz) are infra-red finite, for

reasons alfeady given. The terms with k—2 are also infra-red

finite. 1In fact, the methods of Appendix B show that all contributions

from keﬁ(b) have bounds of the form bB(R) where B(R). is linear in R
for large k.

The supports of the infinitely differentiable wave functions of
the initial and final particles in ;/p0 space are again taken to be
disjoint. Then the contributions to thé integral (7.50) from points

x¢ R (R, AX)  fall off faster than any power of K1, This is shown

in Appendix E. ’ Thus the finifeness of (7.50) is assu;ed.‘

The final factor in (7.50) gives the effectsof the
classical-photons. It can be regarded as an operator that produces

the modifications induced by classical photons in the wave functions

of the external charged particles. of course, the major effects of

the classical photons come from the opefator UT(L(AX))that has been
incorporated iﬁto the state vectors of the final photons.

The first two terms in the final exponential in (7.50) are the
classical-photon self-interaction terms for the two charged-line
vertices of Dl' They are represented by the two wiggly lines of
Fig. 5 that begin and end on the same vertex. The final term in

this exponential is represented by the wiggly line that runs between

the two charged-line vertices of Fig. 5.
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Lest

- W - e W e w— e e

Figure 5 The diagram D1 with added

wiggly lines representing the three classical

. photon contributions to. (7.50).

It is easy to pass from (7.50) to the case in which a general

diagram replaces D One first writes the Feynman formula for D1

1*
that is analogous to (7.50), but with zero as the final exponent.

Then one adds to this final- exponent the terms that represents the
éffects of the classical photons. If the diagram that replaces Di

has n charged-line vertices then the sum over three tefms in the final
exponential in (7.50) "is repiéced by a sum.over n(n + 1)/2 terms, one

for each of the n self-interaction wiggly lines and one for each of the
n(n - 1)/2 wigély lines that connects different vertices. If there are
external photons.thep one must also include the_two operator éxponentials

of (7.42) with Ji(xi - AX,) - Ji(O) replaced now by a sum of the partial

i
currents for all n qhgrgeduparticle vertices. These operators can be
represented by wiggly lines coming into and gding out of each of the

charged-line vertices.

T4

8. CONCLUDING REMARKS

Yennie, Frautchi, and Suura, at the end of a technical appendix

to their paper, list a number of difficulties glossed over in their

" arguments, together with reasons why their approximations seem to

them intuitively plausible. But they concluded that a rigorous
proof of their result might by prohibitively complicated.

The difficulties in the YFS arguments cause no serious problem
insofar as delicate issues can be avoided. But the applicability of
quantum and spinor electrodynamics to physics requires that charged
particles can continue.to behave like stable particles in the presence
of interactions wifhvédft photons. Efforts to establish this property,
and to defive the closely related reduction formulas, floundered,
however, precisely on the delicate points not adequately treated by YFS.

The present work provides a new and fundamentally different
approach to the infrared problem. It works basically with the
coordinate-space representat;on of the sources of the electromagnetic
field, and with an operator representation of the photons. Within
this framework it establishes an exact result analogous to the
momentum-space factorization property sought by YFS. The exactness
of the result allows it to be applied in the delicate situations where
one sitting right on a singularity, or needs to know the precise
form of the asymptotic behavior, in order to establish stabiiity and
factorization properties. Moreover, it allows gauge invariance to
be fully exploited. Once approximations are introducgd, in the sense

that certain terms are pushed into a generalized remainder term that
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is not exhibited in explicit form, the full consequences of gauge
invariance are no longer manifest.

The problems of completing the proof of the infrared finiteness
of quantum and spinor electrodynamics, and establishing the stability
and factorization properties of charged particles, though important
in principle, has seemed .unimportant in practice. For infrared
problems seem under control in practical calculations. And physicists
are generally confident that the physical effects of very soft photons

are negligible, in spite of the numerous calculations that had seemed

‘to indicate a break-down of the stability and factorization properties.

But science is a hard task-master: difficulties giossed over at one
stage invariably crop-up later. Thus the infrared problems largely -
ignored in quantum electrodynamics have emerged as the central
problems in quantum chromodynamics. In particular, the problem of
whether the stability of charged particles is upset by interactions
with soft photons is the exact analog of the problem of confinement:
Is the stability of colored particles upset by interactions with
soft gluons? Thus the problem dealt with in detail in Section 7,
about the coordinate-space asymptotic behavior of an amplitude wigh
a closed charged-particle loop becomes, in QCD, precisely the Question
of whether colored particles become asymptotically free in coordinate
space.

The QCD problem of confinement is more delicate and complex
than its QED counterpart. Hence the methods needed to resolve it will
probably haveAto be at least as good as those that work in QED. And

they might be expected to be a generalization of the latter.
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Beyond the problems of infrared divergence and confinement
there lie 6ther ;elated questions to which the methods of this
paper may apply. These potential applications arise from the fact
that the basic formula obtained here oréanizes the infinte‘series
solution in a way that isolates a unitary fac;Qr that represents
the classical-physics background. This type of separation may
provide the Feéhnical basis needed for the full development of the
idea that quantum theory must, for both physical and mathematical
reasons, be arranged to Be the calculation of quantum fluctuations
about a classical solution. ’Moreover; the gathering together of
infinite numbers of terms into unitary factors has the potential
power of better controlling divergénces, since the norm of any
sum of terms that form a unitary operator is unity, in spite of

any superficial indication of diverge.
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APPENDIX A

Theorem Suppose g(p') is continuous, together with its first and

second derivatives, and vanishes for [ﬁﬂ > R for some R. Let

p = mv be any fixed mass-shell four-vector. Then

‘N\3/2 . it +,2 2 4 -4
1lim (?ﬁ;f) 0T [ g(pr) e 1P" VT 2m218 (p7- m%)d p'(2m)
T— ® ’ ’

= g(p). CA.D

Proof Transform to the variables corresponding to a frame in which

v = (1,0,0,0). In terms of these variables one has

vep' = p'o - [m® + (53211/2 = m+ f[(p)2] ( 4.2)
where

2 v
f[(ﬂ2] = (g))m + oeee > 0. - - ( A.3)

The introduction of the variable f in place of (532, followed by

an integration over angles, converts ( A.l) to
o«
—72? (17)3/? &) VT T ar o 50) ( A.b)
% ) O
where g(0) = g(0), and g(f) and its first and second derivatives

are continuous at f > 0. Since

® vz 1

e-if(T-ie) \/;rdf 5 E;z;—:—;;;337§ ( A.5)
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and é(f) is continuous with compact support, the required result

( A.4) equivalent to

lin /2 lim [8(£) - 5(0)] e (1) T ae - 0.

T 0 €— O+ 0 ( 4.6)

Bounds on @(f) - §(O)) and its first two derivatives can be

obtained by writing

T r 5
e(e) - elr,0) - g(0) +%(0)F+| a' | @ LE@,0)
0 0 or .
(A.7)
where T = f’, “and T = "ﬂ The integration over angles eliminates

the linear term and gives

ge) r(f) ! 2
V_l—f - g(0) = j‘g—g J'O dr’ dar" %—% (r7,0) . ( A.8)
2m : - ’

Since the second derivative of g(p) is bounded,

ng '
-5 < ¢, ( Ao9)
or : )

one has

g(£)
LA g0)| < a®. ( A.10)

Vii L

em
Letting F be such that

H

]
(@]

g(r) for £>F,

and defining m = F + m, so that Bre/af =2f +2m <2m for f <F,

one obtains, for f >0,
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|28(£) - 8(0)] < fecm’/m ( A.11)

Equation (- A.8) also yields, for ¢ >0,

lg"(£)] = g—fE(f)l < cn/m ( A.12)
and, for f > 0,
le"(e)] < C% + g) (cn®/m)  (4aa3)

An integration by parts on the integral in ( A.6) gives

oo

[2(£) - g(0)] Vr e if(r-i€) 4

0
Ty | T & E@ - B0V«
0
- RT_%?F]' e T n () af ~ ( A.Lb)
o .
where
n () = T L(E(e) - B(0)IVE) . ( A.15)
However,
T it n (£) ar
0
f"/T . =
- e n (£) ar - e h (£ + o/r)ar
Jo ‘ 0

[Equation ( A.16) continued]
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[Equation ( A.16) continued]
® n/T
~ift 1 1
= e §[h€(f) - he(f + g/7)]ar + N

e ifT n (f) af .
0 _ 0

( A.16)

The last termin ( A.16) has, by virtue of (A.11) and ( A.12),
the bound % cE(.n/T)B/ 2. Thus this contribution, inserted into
( A.14), satisfies ( A.6).

The first term in ( A.16) can be written as a sum of two

terms. The first is

F
3| T (e) - n(r+ Das
0 .
F
1 ' :
< E(g) |max hé(f)]df } , (a.17)
0

" vhere lmax hé(f)l is the maximum of the gbsolute &alue of
dhe(f')/df' for f' >.f. The bounds (. A.11), ( A.12), and ( A.13) 1
ensure that the integral on the right-hénd side of ( A.17) has a finite
bound that is independent of €, Thus this contribution, inserted
into ( A.14), also satisfies ( A.6). .

The remaining part of ( A.1l6) is

82

¢ 1E7 [b (£) - n (£ + I)lar

=

-_géo) - LT e < ) e‘e(f‘fﬂ/T)] ae
¥ V—E Vf + ﬂ/T _j
-ééOE B e-if(T-ie) 1 1
F V} VE + n/T

-, (_EEOD [ eif(r-ie) [y -en/T _f_%_/_ . ( A.18)

1

‘The first.term on the right-hand side of ( A.18) is bounded in

- magnitude by

‘ Eéme)f G e - Hloa”
. F ]

Thus this contribution, inserted into ( A.1k) also satisfies (" A.6).

The second term on the right-hand side of ( A.18) can be written
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-géog [ - e-en/'r] e+i(n/T)(T-i€) e-if(-r-ie) vl_ ar
F+;(/T f
= g_&(_)l [ee;r/-r - 1]
i ) T se(omie)
-if{r-ie 1 ~if(T~ie af
e af - e —_—
X1, YER .

- T et
o] — -if{T-i¢) 4af

This term vanishes when we take the limit € —» O in ( A.6). Thus all

the contributions satisfy ( A.6).

APPENDIX B
The unitary operator U(L(x)) has the form
U(L(x)) = exp<a**J>exp - <J**a>

X exp - 2<IJRTD> exp - E<J*I>
P 2 P 2 pv

(B.1a)
= exp<a-J> exp<J-a>
1l _-= i_-=
=<3 - Y * [ .
X exp 2 J - J>exp 2<J J>pv (B.1b)
‘ where J = J(L(x)), and the bracket products are defined in (2.18),

(2.20), (2.21), and (5.8).

Let J(LOX)) be ébbreviated by Jl. Then

3L U HLOX) = UL (Lox))

= exp<a*-J> exp -<J*.a>

x exp - —;—<J*-J>exp - %<J*°J>pv

x exp -<a*-J1> exp <J*1-a>

i

1 *
- = <J*. <J. -
xexp - 5 <J7 J1>exp 759 3>

PV'

(B.2)
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The commutation relation

[<J*m>,<a*dl>]=<J*Jl>
gives

lexp -<y*ta>, -<a*:3 >] =
=<J*'J1> exp - <J*:a>,
which gives
exp - <J%:a>exp —<a*-J1>

= exp -<a*-Jl>exp <L Jkea >

X exp< J*.J1> R

which gives

w(L) v Lex)) =

= exp<a* (J - J1)> exp -<(J - Jl)*-a>

- x exp -—;—<(J -I)Fe@ -3 >

: *
x exp [ -]2:<J* .J1>_ %<Jl.5>

i
2 pv.

= U'(L(x) = L(X)) exp i ® @I, I,

(8.3)

(B.4)

(B.5)

(B.6)

(B.7)
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where U'(L) is the function defined in (B.1) without the final
(i.e. Coulomb) expomential factor, and @(J,Jl) is -i times the
argument of the final exponential in (B.6). The phase ¢(J, Jl)

can be expressed in the form

o(J, Jl) =
- %<(J - Jl)*- -3+ 302 >pv- %<(J-J1)* .(J+ql)/2>
AR IR A ESE AN C R DN A
1 d k. * uv )
=- 5J (zﬂ)é(Ju(k) -3, @) (g @) + 3, (k) /2
x{p.v. Lz + 1m2 stady)
k
7 J’dﬁs‘ 0+ 3 (0) % (2" - 5,0
-2 (2“)4 (Ju( ) 1n ) 7 '8 , - Jp,(K)
*x(P.V. —;— ~ 1 2187 3))
k
4
d 'k /= \ - uv -
=J (2“)4(Ju(k> = 3,0) (") (@, + 3y ())/2

x @V, L+ (e - 0(-k%))s(k%))
K o

- - Cw
=J ae G0 =T ) O, + 3y (0)/2

2’ «® - 1002 - |%)2
1l /= - [I\Y]
a7 G4, 00) GO - gy (0)
J(Zn)4 «® + 1002 - |72
o1 = '
z <5 (3 + Jl)o(q - Jl)>r . (8.8)
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where the subscript r indicates the retarded propagator. Thus

L)) LOn

exp<a-(J - J1)> exp <(J - 31)'é >

exp [ %<<3 S35 - 3) >+ E<@ + T 0-p> ]

. (B.9)
where J £ J (L(x))and 3 = I3(E0OD).

Our interest here is in the restriction UQ(L(x))U;}(L(AXD) of
U(L(x))U-l(L(AXS) to the soft photon region . This restriction is
made by restricting the domain of integration to points k in £, The
integrals occurring in (B.9) when restricted to any bounded region &
are all well defined.

The variable x will initially be confined to the region

R(R, AX) = {xER{'n; e, - xx,| <R} (B.10)

i Eucl.

where R > 0 is fixed. The time components of the timelike differences

X are all taken to be greater than unity. Then for some A.> 1

17 %5
one has, for all x in R(R,AX)and all A = A - 1,

(x, - 32 >1 (B.11a)

i~ *ia
and

i 00 00
blgn(xi - xi—l) = Slgn(xi _Xi-l)' _(B.llb)
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The function Jv(k) appearing in the integrand of (B.8) is

I, =3 (Lx), k)

n ikx, ikx, (x, - x. )
= () T (e i_ e 1—1) i i-1"v
4=1 (x; - x4 1)k
n  ikx, ik(x, ,-x.) (x, - x, )
- (&) T e 1(1 e i-1 i ) . i _ l-l)YE, (B.12)
i=1 *3 T %

The superficial pole at (xi - )+k = 0 is cancelled by the like

X,
i-1

factor in the numerator. Thus one can shift the contour infinitesimally

away from the zero of (xi - X, 1) «k in any convenient manner. Here

the contour is fixed by replacing (xi - xi_l)'k by

0

i1)° (8.13)

. . 0
(xi - xi—l) k+ 10 Sign (Xi - X
Thus the ko contour is shifted into the upper-half plane. The
denominator-zero of Jlu(k) is treated in the same way, as are

the zeros of ju(k) + J. (k). Thus the ko contour is distorted

1u
always into the upper-~-half plane.
- >
The domain 2 will be taken to be of the form |k°| < 2b k| <b,

and the notation

By Exi = Axg (B.14)
is introduced. ’

Consider first the contribution to 9(J, Jl) coming from the part
of jlu(k)‘corresponding to the line from 1 to 2 in Fig. 1, and from

the paft of Jlu(k) corresponding to the line from 2 to 3.  This

contribution is minus one times
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<l>(2’1) (3,2) (J]_) = : Consider now the contribution to the integral in (B.16) that arises
. -1 -1
. £ .

) A 0w 0% HOX. KX , rom the terms (A3)\ )v and (Az)\ )v Each of these contributions has,
_e | d% 2 e 3 2,
=3 7 (e . -e e -e by virtue of the bound

(2m
2
- - g¥ - -ikXX -ikAX
x (x2 xl)u (- g ")(x3 xz)v kX, kXX

[, - 330 Ye - | < 1, (8.17)
((x2 - XDk + iO)((kO + 10)2- |§|2)((X3—x2).k+10).‘ 2 2 o : .

(8.15) a bound of the form bB, where B is a number that independent of b and 2,

0.0 0 ' but can depend on R. For A = A one may, for points on the semi circle
By virtue of the time ordering X3 > X, > %y in Fig. 1 one may

0 : L k] = 2b,write
push the k= contour a finite distance into the upper half plane without
encountering any exponentials that increase ‘as A > One may take it to . g -1
(g - %X, + 4, P Az)\-l) . k)

be a semi circle of radius 2b. - The integrand and integral are then

uniformly bounded over the domain X = 0. _—
= (X, ~X.)) -K) " + 5 £(k,2)

Consider next the contribution that arises from replacing Jlu (k) ( 3 2 ) ‘ A ’
in the above expression by Ju(k): .
with bounded f(k,\). For the second term one may again use (B.17) to

' obtain a bound on the contribution to (B.16) of the form bB. Thus one has
@ g, 7 . .
(2,1)@3,2) ™1

2 4 - ~ikAX -ikAX . &' _
- %[ dk (¢ 2. Y : | 2n6,0% P " a6,
g (2m ,
o AkARy + AKA, HKAX, + dkA, _ T o= ob) +
(e -e )
v -1 -1 ' : 2 J 4 ~1KX —ikAX
- - - A - e d k 2 1
(X2 Xl)u( g )(X3 X, + 3)‘ AZA )v . . +5 7 (e - e )
X 0.2 22 I N Q (2m)
((%y=Rp) kt10) ((k+10) 7 = [K[7) (X=X #8277 =8)07) +ket0)
. ' 1K, ika, iloX,  ika,
(B.16) x (e (e °-1) - e (e “-D)
For A 2 A one may again distort the ko_éontour into a semi-circle in
. v
the upper-half plane and obtain an integrand and integral that are X (Xz - X]_)u(' gu )(X3 - Xz) )
0 2 > 2
uniformly bounded over A 2 A. ((Xz - Xl) sk +10) (k7 + 107 - [k| ) ((X3 - XZ) "k + 10),

(B.18)
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where the magnitude of the term 0(b) is bounded for all b >0 and all

A 2 A by an expression of the form bB. But then the bound

le*® 1 < [ka) (8.19)
gives

o' - | < bB (8.20)

for all b >0 and ali A= A Here B is some finite number that is
independent of b and A, but can depend on R. In what follows B will
be a generic number with these properties: it need not always be the
same number.

Consider next the contribution to &J, Jl) in which the roles of

the lines from 1 to 2 and 2 to 3 are interchanged:

%3,2) (2,1) U1

eZ 4 —ikAX3 -ik)\X2 ikkxz ik)Xl
=5 7 (e -e ) (e - e )

Q (27)

(X3 - X)) (8", - X))

((x - %) -k + 100 (G0 + 107 = R, - %)k + 10)

(B.2la)
and

®E3,2)(2’1)(J1, In =

= & 2

2

d 'k 3 2

A (e -e ) (e

2 J 4 ikAX -1kAX,
)

ikAX +1kA2— eikAX1+ikAl

@ (2m)

(B.21b) cont. on next page
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_ _ MY _ -1 -1
Gy ~ X, 8 D&, — Xy ¥ 80 7 - /A,

X

. 0 2 320 B R
(g - x) -k + 100+ 10~ [E1%)x, -~ x; + ap7F apn Y kti0).

(B.21b)

Consider the difference ' - ¢ of the integrals defined in (B.21b) and
(B.2la). For A & A one may complete the k0 contour by adding in the
lower-half plane a semi circle at ]kl = 2b. The arguments that led to
(B.20) show that the contribution from this semi-circle also has a bound
of the form (B.20).

The completed contour can now be collapsed onto the poles, which
are located at ko = & |§| . This leaves a d3k integration in which

the three remaining denominators all contain factors of |ﬁ|. With the

factor |ﬁ|3 separated out the denominator is left in a form that

remains finite in the angular integration, due to the timelike character

) -1 -1
of the vectors X, - X and (Xi - Xi—l + Aix - Ai—IA ). Thus

17 %)
the quantities Azx-l and Az) _l.in (B.12b) again give corrections of
order.A—l, for A 2 A, and by virtue of (B.17), give a contribution to
the integral that enjoys a bound bB. The difference of the remaining
integral in (B.21b) with the function ¢ defined in (B.2la) again
enjoys a bound bB, due to (B.19). Thus the difference &' -~ ¢ of the
functions defined in (B.21) enjoys a bound of the form (B.20).

Consider next the contribution
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3,2 3,000 =

dlz(e 3_, 2 3 _ L
27)

ez[ 4 -ikAX -ikAX ikaX, ikAx
=77

5 ¢
Hv.
(4= %) (8" - X))

0 2 2 :
((%3- )« k + 10) ((k” + 10)° - [x] M(®y- %)+ k + 10)

(B.22a)

It will be taken together with

A ] -
*G,e,n "
-ikAX, -i - - 3
- e2 ko ik X3 1kA.3 iklxz ikAz ikXX3+ikA3 ile1+ikA1
=5\l (e -e ) (e - e
q@@m

N

('x3- £ 0070 8 A () (- Xt by A'l- aph

X

(B.22b)

Consider now the difference ¢' - & of these two functions. Due to the
inequalities Xg >Xg >Xg one may, for A= Aand for the terms containing
+ ikA3), distort the.ko contour into

factors exp ikiX, or exp(ikiX

3 3
the upper-half plane and obtain, as before, for these contributions to
¢' - & a bound bB. For the remaining terms, which contain the factor

exp ikxx1 or exp ikiX, + ikAl, one can complete the ko contour by a

1
semi-circle in the lower-half plane: the added contribution to ¢' - ¢
has, as before, a bound bB. The completed contour can now be contracted
to the poles. The poles at ko = % [ﬂ again give terms with a bound bB.
The contribution to the integral in (B.22a) from the pole at

(x3 - Xl) «k = 0 is

((Ry- Xy* 807 —A Y l)k + 10)(x% 10) -|k|2)((X - X +hy a7t -4 -5 k+10)‘
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onle
G,26,00%0 ©

2 3 ikA(X,-%.)
£ o J d k- (e 372
g (2m

X5~ X 08") (&3- x4),,
X 02 o3 0 (B.23a)
(G- x-k) (@D [X]) &y

where

1
o0 o - (B.23a")
1 .

The companion pole contribution is

® 'pole
G,06,00

2 3 1kA(X,-X,)+ik(A ~A,)
=92_J(_1)J ko 3772 372,

en’
Q
: -1 -1 -1 -1
X, - - ¥V - -
( 3= X5 ¥ A2 A )u( YRy~ %y + Aqh M2 )
x : ’
e -1 -1, 0.2 2.0 _0 0. -1 0_-1
®y= Xy + 8,07 2,07 k (D)= W Hg-x) +8,27 —a2™)
(B.23b)
where
Ro- 2, + 2271 -2 07hH %
o_ 3~ % 3 1 '
k= —5 0 0 ,-1 0. -1 * (8.23b")
‘(x3 o ST R P )
. -1 -1 -1 -1 0 -1
h - - -
The terms (A, "= 4,07 , (852 807 and (a3 x Alx 1) give

contributions to (B.23b) having a bound bB, by virtue of (B.17) with Xy

replaced by X "1 evaluated as specified

5+ The factor |¥|2((xD3 - (%)

in (B. 23b') is non zero in the domain of integration and can be
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expressed as its value at A = « plus a correction term of the form
f(k,A\)/A, where f is bounded in the domain of integration for all
A= \. This term £/A gives a contribution to the integral in (B.23)

that has a bound bB, by virtue of (B.17) with Xl replaced by XB.

Insertion of the value of ko specified in (B.23b') gives

> > > > =1

1

-1 -1 > -1
k'(X3j X2 + A3X - AZX ) =keV(A ) = k .YO +keWx T,
(B.24a)
where
ke Vo= k(X - X))
k-(x3-xl)=0
> -—> T 2
=§.[_xg x(2)+xg x(l):l(xg_x‘z)) (B.24b)
R
and

> X3 -X
0 0 0 .-1 o . -1.°
(X3 - Xl + A3 A - Al A )
(B.24¢c)
Thus the difference of the pole terms shown in (B.23a) and (B.23b) can

be expressed as

1 B
® pole_ onle = o(b)

’ v, 0 0
*(x = %) g7 0ym X (85 - XD
L& | a3k 1 |
2 Blko 2m® D2 - [k D= x) =0
Lo irk.¥
. D [emk v, e 0, ’ .25
A . '
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Let v = |§(A—l)| = v(k—l) and Vg = {66|= v(0). Let cos6and cos 8,
-

" be defined by K.V = kv cos 8 and'K'VO = kvo cos 90; resbectively.

Then one may define

-1 a2 i}
f(vcosb, A )=v d¢ ~52 52
0 k- |kl
k.(X3-X1) =0
cos O fixed (B.26a)
and
f (v, cos B,.) = v_1 ‘}“ d¢ K 2
- ’
oo 0 0 . 0 W02 7| 2

k-(X3— Xl) =0

cos 60 fixed
(B.26Db)

where (0,¢) and (90, ¢0) are two sets of angular coordinates. The

function £,(v, cos 6) is the limit of f(v}()\—l) cos 8, x‘l) as AL > 0,

and
-1 =1y .
f(v(A™7) cos 8, A7) = £,(v, cos ©)
-1 -1
+ A fl(v0 cos B, A ), (B.26c)

where fl(cos 8, A-l) is bounded for A Z A and 1 Zcos 6 = - 1.

> >
Because of symmetry only the real parts of exp iA KV and exp iA k 'VO
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contribute to the integral in (B.25). Thus,using (B.26), one may
write (-i) times this integral as

\

ixkv cos 8
(- i)( 1) I dkj d cos e[vf(v cos 0, -1 S__E;_______:})
. ) . cos ©

i izkv.cos 6
-v fo(v cos 8) (E————g—————:l—)]

kvocos ¢}
b ,. vk
- i:llz.j s J dx £(x/Xk,\ ") SLX
(2m) 0 -~k

(+1) jb dk Yo dx £ (x/2k) sin x
3 k x Lot¥ X

(2m) (o] v0
vk
b Vol
(-1§J -%}-% J dx f (x/Ak 27ly sin x sin x
2n™o © " vk X
-v Ak
b vik Vo
1
- %J dx + d4ﬂﬂm yh siBX (g7

2" 0 . vork —vik _

By virtue of the boundedness of f(x/\k, A-l) and £, (x/Xk, A_l) both

integrals in the last line of (B.27) enjoy bounds of the form bB.

'¢1pole _ épole

Hence the difference of the pole contributions defined

in (B.23) enjoy a bound of this form.
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Consider next the contributions

e5.2y3. )Ty I =
P x - .
o2 [ gby kX IKAX,  +ikAXgHikdy  ikAX,+ika,
5 5 (e -e Y(e -e )
(2m) i
jTaY) -1 -1
. (X5-X)) (=g )(x3_x1 + B80T AT '
((Xy-%)) -k + 10)(&® + 10)2 [k| Y%, + 4, X 1- Alx'l)-k + 10)
(B.28a)
and
"n
°3.1)(3.2) U D <
. - - - X X X
&2 [ ahk 1RAX, -1kA, X +ikA) 1K, 1K,
T % (e - e ) (e - e )
(2m)

-1 -1 uv
(%3-%; + Ag) T A )u(-g )(x3—x2)v

x

((xs-x1 + A3A—l- Alx'l)-k + 10)((k° + 102 - lﬁlz)((x3~x2)-k + 10)'
(B.28b)

In ¢ one pushés the ko contour into the
upper-half plane for the terms with exp iXkX3 + i kA3, and complétes the
contour in the lower—ha;f plane for terms with exp ia kxl + ikAl. In ¢"
one pushes the ko contour into the upper-half plane for the terms with

exp -iAle—ikAl and completes the contour in the lower-half plane for
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terms with exp - i)\kX3 - ikA3. The importance of this grouping ¢" - ¢
-is that--the contributions from the poles at (X3--X1 +”Aék_14 Aix-l)-k = 0

cancel exactly, by virtue of the anti-symmetry of this pole contribution
' to 9" - o,

For the remaining partial cancellations that give the bounds of the

form bB one groups ¢ of (B.28a) with

¢E3,2)(3,1)(J, J) =

e2 dak —ikAX3—ikA3 ) —ikAXZ-ikAZ ikAX3 ikXXl
5 7 (e -e ) (e -e )
(2m)
; U T & uv -
S O N )u(-g ) (%3-%(),

((x3—x2 + A_3A_1—A£—1)-k _+‘io)((k°+ 10)2- lK[z)((x3—x1)-k + io)'
(B.28c)

The proof of the bound |¢' - @FﬁbB goes as before, except that one

need not consider contributions from the poles at (X3—Xl + A3k_;

and (X3— xl)-k = 0, due to the cancellation mentioned above, and the

-1
—Alk ) k=0

analogous cancellation between the poles of Q'(3,2)(3,1)(J’ Ji) and
Tty - . =
® (3’1)(3’2)(.11, J) at K3-X;)-k=0.
Consider next the contributions to ¢(J, Jl) coming from the (3,1)

contribution to jlv(k) and the (3,1) contribution to Jlu(k):

100

3,1 3,1) Y

I S T S S S
=5 — (e -e ) (e - e )
o M

uv
. (3%, (87 (x5-%p) .
(g1 -k + 102 + 1007~ £

(B.29)

one can move the ko

In the contributions with a factor exp ikAX3

contour into the upper-half plane without encountering any exponentials
Thus one finds a uniform bound as A » «. -

that become large as A > <.

The remaining terms are

ZJ a*k

&2 —i_k)\(X3-Xl))
2 4
Q (2m)

rem : -
*G,6,0) = @ -e

: uv
&5%) u(-g Y (X3-x)

X

(%), + 107 (@ + 10%- [£]?) (®:30
The(X3-Xl)-k contour in (B.30) can be compléfed by a path in the lowerhalf,
plane, and then contracted to the poles. The poles at ko = ilﬁl give
contributions that enjoy a bound of the form C + D log(bA)8(bAi-1).
The contribution from the double pole arises from the derivative of
the remaining factors, evaluated at the pole. This derivative acting

on the factor k_2 XQ(k) gives no contribution, due to the zero

in the numerator, but acting on the exponential it gives the contribution
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2 A&ymx) (" x|

szgli) 3 1)= ——‘;—- 00 In the two terms containing exp ikAX3 + ikAj one may distort the ko contour
’ : , (x3-%) ‘
37 into the upper-half plane. They combine with the like contributiors to
" J d3k 1 (8.31) (B.29) to give a difference ¢' - ¢ whose magnitude enjoys a bound bB.
3 0,2 172 ) :
en” &) -k|

0 In the remaining two terms one completes the k0 contour in lower-half

ke (X,-X)) = 0 ,
plane. This contributes toi$' - ¢.a term with bound bB. Then contracting

This contribution to ¢ increases 1inear1yv with the distance the completed contour to the poles one obtains from the poles at

()‘X3_ )‘X1)' It gives a contribution to exp i ¢ that is the same as ko =t lic)lz contributions to ¢' that combine with those of ¢ to give

that of a mass term. The magnitude of the effective mass shift contributions to ¢' - & with a bound bB. The other pole gi.ves a

induced by this term equals the classical-photon contribution to the contribution to ¢ of the form

usual lowest-order .Dirac-particle self-energy diagram, apart from the

. _ 2 3 ik ika, -
factor of-1/2 stemming from the occurrence of this factor in —;— I1u prpole G, D =& (-0 d’k (e A3_ e Al)
, : H _ (3;1)(3,1) *"1° 2 (2m3 :
The Dirac-particlé self-energy counter term has not yet been taken -
into account. It cancels precisely the above self-energy contribution _ _ Hv . -1 -1
Oy 8 @yxy 4 8 8, AT,
to ¢: one may omit the self-energy contribution to the operators (XO _ X.O)((kO)Z _ I-I:lz)
3 i
U(L(x)), and consider the mass m to be the physical mass of the particle.
Consider next the contribution to ¢ coming from the (3.1) x —-—1— , (B.33)
_ (3,1(3,1) _ ) 3 Ay .
part of '-jlu(k) and the (3,1) part of Ju(k): S T).
' : ' ' ika ika
ot - 1
®3,1y(3,1) 91 D . _ e ('1)J a3 e 3_ .
2 Dam?\ (83 =80k
e_2 { dl‘k, (e—lk)\x3_ e—lkxxl) _ :
v,
2 ) on® | ®y-X) (5" (M%) + 8y - ),
& T (B.34)
SkAKgHKS, kAR KA : -y aH? - [&]H
x (e - e )
. A A where ko is evaluated by using
‘ "y x.x +-—= .-t
g (X3 Xl)JA( 2 )(X3 Xl 3 A)v
X 0 2 2 A A
(I‘X3—X1) -k + 10)((k” + 10)° - |Kl ) (Xs.xl).k = . (T3 - _)\1_) k. (B.35)

1
x

A 4
(Xy=%) + 5 - Bk + 40

. (B.32)
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This contribution comes from jlu(k) (—guv)Jv(k). The similar

contribution from 3u(k)(—guv)J1V(k) is obtaingd_by replacing k by -k.

These two integrals are equal, due to the symmetry of the integral
under the replacement of the variable k by -k. Thus their difference
vanishes. Hence the only contributions linear in A come from the terms
jlu(k)(—guv) J1, (k) and j;(k)(—guv)Jv(k). The contributions from these
two forms that increase with )\ cancel, even without considering the
self-mass counter terms; And the remaining terms have a bound of the
form bB. Thus the sum of the (3,1)(3,l) contributions enjoys a bound
of the form bB.

All rémaining contributions succumb to the methods shown above,

and one obtains the bound
|4{3,3,)| <bB, (B.36)
where B is some number that is independent of b and A.

According to.(B.7) one has U(L(x))U_l(LO\ X))=U'(L(x)—L(>\X)) exp i ¢.

Transposing the two operators.on the left-hand side gives

U;l(L()\X))U(L(x)) U'(L(x) - L(AX)) exp - id. (B.37)

Thus

U;l(L(AX))Lb(L(x)) U exp - 10,(3,)) (B.38)
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where

) L% % %
U=exp<a-J>exp—<J-a>exp-%<J~J> (B.39)

and J represents the vector function with components

Ju (L(x) - L()\x‘), k) =

ikAX +ikA 10X, +ika
3 : i i_ e i-1 i-1, _ _]__ -1
o [(e 15((xi>g_11+AiA 5 P 7,
i=1 -X . Ty
(X + A A B 32 )k

i "i-1

1kAX, 1AX,
(e - e _ )(xi.xi_l)u
(X =X ! Q°

1041

)'k (B.&O)

In calculating U this function J is evaluated at k2 =0. Due to the

1

- -1
space-like character of (Xi‘xi—l) and (Xi—Xi_lﬁ-Aik —Ai_lx ) each of

>
the denominators in (B.38), evaluated at k2 = 0, is Ikl times a function

of angles that is nonvanishing over the physical domain of integration.

Thus for A 2 A and physical k satisfying k2 = 0 one may write

-1 -1
S e T e T o L TR o S S D
= =
T N S W e T S ¢ S S 1Y
‘ £ (,0,0)
1 nh*e
* (X, - %, .+ a3t a7 heg * @40
1 "Xty i-1

where fu(A,e, ¢) is bounded for A=A and (9, ¢) in the physical range.

This expression (B:41l) may be inserted into (B.40). The second term of
(B.41) then gives a contribution‘to Ju(k) that is bounded for A=A and
(6,¢) in the physical range. Thefirst term in (B.41) gives a contribution

to (B.40) that combines with the second term of (B.40) to give a
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contribution to Ju(k) that also is bounded for A=*A and 6,y
in the physical region.

Because J(k) is bounded

N = (< gReg>yl/2 (B.42)

is of order b .
One may introduce a set of orthonormal basis functions fi(k) over
- the portion € of k space such that the first of these functions is

fl(k) = J(k)/N. Then the operator U of (B.39) has the form

UN) = exp<a*.f; >N exp ~<ff-a>N xexp - 3 N, (B.43)

where N is order b .
In the formula for transition probabilities the contribution

from Atem(kx) has, according to (7.2), (7.3), and_(7.4), a factor

-1¢(J, Jl) g

F(N) = (U(Me -IQ)an o (B.44)

To calculate the dependence of F upon b one may introduce the coherent

) statess’lo'
<a*-fl>z —<f{ ca>zk —% zz*
1z >= (e e e y|o>. (B.45)
Then
1 . .
: - = N(z-2z%)
UN) [z >= |z + NDe . (B.46)

Thus for small N and ¢ one has
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(vwet®ay|z >
|2z +>N>—|z >-1i0| z>

~INz -2z > . (B.47)

Thg vector Iz + N> - lz > is small for small N and N]zl:ll

| z+N>-]z>| <

1/2N1/2;

/Etlz[ + Iz + N| ) (B.48)

The normaiization factor N is of order b . But what is z?

‘Consider first the contribution to (B.44) coming from the part

=D0

F £ ?D that corresponds to the original diagram D. This

oprg ° oprQ

féctor fggrggives no contribution to the photon'space operator. Thus

the amplitude of state Iz > is given by the decompositidn12

. (B.49)

Ping ~

dzz
S [EEe><el oy

Now the expectation-value of- the number of photons in the state

|z > is ]z[2.13 And the expectation-value of the energy in this
state is

(8.50)

where El is the expectation value of the energy in the state

<:a*-fl>'|0 > . Since the wave function £,(k) in this state is
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~ 6(b-k)/b the energy El is
b ,.3
- dk - -2
E, é o k- @/p)

.~ b. (B.51)

By the principle of equipartition of energy the energy
residing in each low-energy mode of the
photon field should be approximately the same. Thus one should expect
the E in (B.4a) to be roughly independent of the mode. But then the

expected dependence of z on b is given by

lz] - v~ 1z (B.52)
~DO0 .
ce < . - .
But if ZIFoprQ QinQis concentrated near values of z satisfying (B.52)

then (B.47), (B.48), and (B.36) show that

lra)] = o (8.53)

as b >~ 0. 1In fact, one could tolerate a growth as large as
o~ =lte X .
Iz] ~ ® (¢ > 0) and still obtain the result (B.53).
The results in paper II will show that the very soft photons emitted
and absorbed by the operator part of ngr(x) produce only very mild
effects that do not upset this result (B.53).
The bounds obtained above refer to the contributions from the
points x in

R(R,AX) = {x; |xi - Ay | R}. (B.54)

<
Encl.

To obtain a bound on the contributions to Arem(AX) from points outside

R(R,)x)consider first the points x outside the set R(An,AX) where n= .01.
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And consider initially the part Agem(xx) of Arem(AX) that comes from
the FD(x) part of ngr(x).'

Equation (7.3) shows that the operator part of the integrand in
Arem(AX) has norm < 2. And the function FD(x) is bounded. (Ultraviolet
cut offs are assumed) The product of the wave functions falls off

faster than any power of Ix - AX‘. Thus for any ¢ > 0, however small,

and any C > 0, however small, one can find a A(e, C) = A1 such that for

all X >'A1 the sum of contributions to Agem(lx) from points x outside
R(An,kx)is an operator with norm less than (e/&)CX_glzz
0 RGN € ..-9/2 (B.55)
lArem()‘X) | < 7 CA > A -

Consider next the contributions to Agem(lx) from points x inside

R(An,xx)and outside R(R,XX) The operator part of the integrand still
has norm < 2. The function ]FD(x)l has, for all points xeR(A",N) for
A >'A2 >> 1, a bound of the form

9/2

IFD(x)l<C‘A‘ (xeR(AT,A%) A > Ay - (B.56)

9/2 on the norm of the parts of the

Inserting the bound 2C'A~
integrand other than the wave functions one may obtain a weaker bound
by extending the region of integration of the magnitude of the product
of the wave functions to all points x outside R(R,)\X). The faster than
any power fall off of the absolute value of the products of the wave
functions ensures the convergence of this new bounding integral. This

9/2

procedure gives a bound that depends on ) only via the factor A N

and that falls off faster than any power of R, due to the fall off of
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the absolute value of the products of the wave functions. Thus for
0 :
some sufficiently large R the contribution to Arem(AX) from points

x inside R()\n,)\X) and outside R(R,XX)has a bound of the form (5/4)0)“9/2:

R(R, XX) )
< £792, (8.57)

Arem()‘X)R(An,AX) 4
For the remaining points x in R(R,XX) one uses the main result of
this appendix: for some fixed A and for any R, however large, the
norm

LOD) T8 (L)) - 1 " (B.58)

-1
1% ) a(b)

tends to zero with b uniformly over the set
{(Xx,x); A>A, xeR(R,AX}.

This constant A can be made larger than Al and A2. Then combining
this bound on (B.58) with (B.56) one concludes that for some sufficiently
small b = b(e,c,R) > 0 the contribution to Agem()‘x) for points

xeR(R,AX) (A > A) satisfies

|A2em(“X)R(R,»ol‘< %‘01_9/2 a>n. (8.59)

Then the sum of (B.59), (B.57),and (B.55) gives

]Agem(AX)] < a2

(A >A). (B.60)
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The constant € > 0 is taken to be the number occurring in (7.13),
and the constant C is constructed from the FD(x) parts of the three
functions defined in (7.45). [See also (7.26)]

The above discussion dealt with the part Agem()\x) of Arem()\X).
However, the good infra-red:properties of ngr(x) ensure that the
arguments carry over to the full operator Arem()\X). In particular,
tﬁe crucial property (B.56) holds glso for ngr(x), and the soft
photons emitted and absorbed by ngr do not wupset the required

operator properties. A detailed justification of the extension to

ngr(x) depends on the detailed results to be described in paper II.
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APPENDIX C. If (E-k)_z- = 22(2 -k)-2 is resolved by the principal-value rule,
or has the form (z+k + i0)(Z+k - i0), and is ‘therefore symmetric 1;mder
The self-energy and wave function renormalization effects of k » - k, and if the region Q is symmetric, then the two terms with
classical photons on charged particle propagators are calculated in double pole (§ - m)_2 are individually zero by symmetry. In any case
this appendix. they cancel and leave

The starting point is the one-particle propagator with a

d4 1 ipz
single classical-photon correctiomn: S-(z) = —-——P—Z ﬁe— =
(27)
1, . _e*fa%p  -ipz [ a% 1 1
Sp(2) =35 [T e ) 2 ' 4 L
(2m) o (27) " k'+i0 (z-k) : ) [ez . 3 zjg(—g ')zv
2 4 an® e BB D
[ 1y 1 gL
p-m TP+ k- p-m - x(_2+e'ikz+e+1kz)]
1 1 1
p-mn p-k-m p-m -5, 18, .3
. . . . . where
The two terms arise from the cases in which the photon enters the
_ 2t d[‘k .z (—guv) z
charged line before or after the point at which it leaves this ia(z) = % T 3 e u 3 v
Q (27) k“+ 10 (z+k)
line, respectively. The two terms are equal if the integration
L a2 - ike, il -dkx, -k
region 9 and the factor (z°k)™ are invariant under the trans- : (e - e ) (e - e )
formation k > - k. Xo o
: 2 adh 1™ kx| —ikx!
A double application of the Ward identity (2.8) gives ) = 5 J—4 T.g— dx e dx've (C.4)
o @7 K+ 10 Tx; H Xy
2 4 4
-i 1 . .
S;(z) = % J iLA e 'PZ J d k4 5 1 ” 7 Inclusion of the contributions from all classical photons gives
(2m) q @2m7 K+i0 (z°k)
1 1 1 1 ' _ ia(z)
x[(t_mk#_m-ﬁ_m e 55(2) = Sp(2)e , (C.5)
1 B 1 1 .2
AR =i = =l
which is closely connected to (2.14) and (2.17).
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The function A(z) is The quantity Am is a mass shift, and a is a wave-function renormali-

: ~ 2
: zation. The quantities b and s are zero if @ and (z°+k) are symmetric
4 2

2
-e d 'k 1 1 o
A(z) = —E"'J 5 37— ( ppond under k > - k. The function r(z) tends to zero as z tends to infinity,
a (2m) k™+ i0
The self-energy contribution (C.7) is the classical-photon part
-ikz +ikz S ’
x (e + e -2) (c.6) of the full self-energy. As such it is cancelled by the classical-

= - zAm + a + ib + r(z) + is(z), photon part of the self-enefgy counter term,

“2 .0 > > 1/2 In the context of the calculation of (7.20) the above calculations
where, for z° > 0 and z° > 0, and with ¢ = + (k+k) R i o

take into account all contributions in which there is a double pole

(Q'k)_z. Taking together all four contributions of this kind yields

2 4
-e d 'k 1 - -1 : ~
Am = —5__‘J;—__Z ;E— 26 (z-k), . (€.n the numerator factor (- 2 + e ¥+ e 1kz), which vanishes for z+k = 0.
2w) ) :
Q : . -
A The vanishing of the numerator at z+*k = 0 is important: it means that
2 . .
e d'k 1 1 . -
a =35- J 4 [ ) 7 5 - 5 the derivative associated with the double pole (z+k) 2 acts only on
Q (2m) (k'+ i0)" - w (z+k + 10) ik "
the exponentials in the factor (= 2 + e " 2+ & ~° %),
. To take advantage of this numerator zero one should, in the
b L : (c.8) : ‘ _ . o
«’- 10)% - (2+k - 10) calculation of (7.20), initially combine all double-pole contributions
in the way done here, and then afterwards associate the z-independent
2 4 0. - 0 contribution a/2 with the vertex on each end of the line under
b =4 J d’k 208wtk ) - 2n8{w-k )] .9 4 A :
2 (2w)4 2 (E-R)Z consideration.
Q2
’ At a later stage of the calculations [Cf. (7.38)] the coherent
2 4 ikz L states generated by U(L(AX)) are introduced, and the operator U{L(x))
-e d k e
r(z) = —— -
(=) 2 J(Z“)A [(k0+ i0)2— w2 (zk + i0)2 is replaced by U 1(L()\X))U(_L(x)). The various contributions to U{L(x))
2 .
*
from the terms Ji Jj with i # j are either mass renormalization terms,
-ikz
+ e 1 (c.10) : which are cancelled by counter terms, or do not contribute in the
0 2 2 A 2
(k- 10)°~ w (z+k - 10) v a
large (xi - xj) limit, or have the form e, with a independent of x.
‘ - *
and These latter terms drop out of U 1(L(AX))U(L(x)). Thus only the J J,
*
terms survive. For each of these individual terms JiJi one can perform
2 4 .0, ikz 0y ~ikz : '
s(z) = =& J d k4 [2"5(w+k Je "-2n6(w-k)e ] (c.11) the transformation shown in (7.42), in order to obtain the results given
2 A 2
(2m) 2w(z +k)
Y } by (7.47) (7.52). Note that no double poles appear in these final formulas.



APPENDIX D

The purpose of this appendix is to show that the contributions
to the proy?bility Pdom(kx) from the J:Jj (i# j) contributions to
thé phase SQL(X)) defined in (7.20a) fall off faster than A_g.

The full current Ju(L(x)}.k) defined in (7.21) is a sum of three
terms, one for each line of L(x). Thus J*J decomposes into nine ‘
terms. The diagonal terﬁs, which correspond to the contribution from
the same line in both J and J*, were dealt with in Appendix C.

Let Jij be the contribution to J corresponding to the line
segment of L(x) that runs between vertex i and j:

Gey - Xj). ikx, ikx,

. : _ 35
Jiju(L(X)’k)'_ - fe Gog - Xj).‘ (e e ) . (D.1)

Consider first the points x in RGT, AX), for A > A D> 1, and

0<p<<1l. Then xg > xg > xg, and the kO contour may therefore be

. *
distorted into the lower-half plane for the term_J32J21 and into

*
21732°

poles at the points (xi - xj)-k = 0 this distortion is allowed,

the upper-half plane for the terms J Since there are no actual
provided‘one adds appropriate contributions a%kz) corresponding to
the poles of k2 that have to be crossed. These Gakz) contributions
are similar to the ones already discussed in conmnection with (7.20b),
and give faster than A_g fall off.

With the contours distorted in this way there is expoential fall
off as A » « for the J:Jj (i # j) parts, excepF for the contributions
from the ends of the k., contours. But the endpoint contributions

0

fall off linearly with A_l, as one sees from the fact that
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€A

ie | . ' . o
10 [ e®hak = (1-e7 (0.2)
. .

tends to unity as A tends to infinity with ¢ fixed.

Having established the linear fall off of this integral the

rest of the argument proceeds as in the text: The bound CA_9+8n

on the remaining factors in Pdom(AX) of (7.18) arises from the

2?2 Lound on |F2p£(X)| for x in R(A",2X), and from the bound

1

4n on the volume of R(A",AX). Thus for n < 1/8 the A\ ™" fall

c"A

8n . L .
off overcomes the A°" increase, and one is left with a better than

272 f£all off.

. * :
For the term J32J'31 one may distort the k contour into the

‘region

{k; Im k-(Xa—xl) <0, Im k-(x24xl) <0, Im k-(x3-x2) > 0}.
(D.3)

This distortion into the imaginary k space has a spacelike direction,
but.yields the same A_l fall off that was obtained above for the pure
timelike distortion. The rest of thé argument then follows as before.

For the term J;1J32 one distorts into the image of (D.3) |
under inversion k » - k, The other terms are dealt with similarly.
In this way evéry’J:Jj i+ 3 pért of JfJ‘gives a contribution to
(7.20a) that falls off at least linearly in A_l, and hence'a contri-

bution to Pdom(kx) that falls off faster than A—g.

[3 33 *



117

APPENDIX E

Consider first the Feynman coordinate-space function F(x)

corresponding to the diagram D, of Fig. 4. Introduce the following

1
relabeling: let i = (1,2,3,4) label cyclically the internal lines

of Dl’ and also the vertices of D The function F(x) is then

1
essentially a product of the four Feynman propagators Di(xi - xi—l)’

one for each of the four intérﬁal lines of Dl'

Each propagator Di(zi) is expressed as in integral over a
momentum—-energy four-vector Py A partition of unity is introduced
into each P, space. For each pair (i;j) the corresponding partition

function Xij(pi) is an infinity differentiable function of tiny compact

support centered at P; = P... Consequently, each partial propagator

ij
4 e-ipizi V v
Dy5(zg) = Ja'py 75— x45(pyp) (E.1)
pi—mi+10

will, by virtue of the result proyed in Section (IV.3a) of the
first Ref. 8, fall off faster than.any inverse power of the
Euclidean norm of the four-vector z; all directions

outside the.setbof "causal" direcfions‘cij. This causal set Cij %s
.the set of (signed) directions of the set of éovariant four-vectors
Py that lie in the intersection of the mass-shell surface pi = mi
with the support of Xij(pi)' All directions in the causal set Cij
will lie close to the direction of-Eij. The rate of fall-off of
Dij(zi) is uniform over any closed set of directions of the four-

vector 2 that does not intersect Cij' Each causal set Cij can

also be considered to be a closed spacetime cone minus its apex at
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the origin.

The function F{y] is obtained by folding F(x) into the four
coordinate-space wave functiong wi(xi) corresponding to the four
external lines of Dl' Each wi(xi) is the Fourier transform of a
function &i(pi) = @i(pi)6+(pi-mi)_or &i(pi)d—(pi-mi), where
w;(pi) is an'infinitely differentiable function of (say tiny)
compact support'.aroundvpi =’Pi-@§== mi). These four supports define
four four-dimensional closed causal bi-cones Ci (i 5_1,2,3,4), which
are taken-to be disjoint, except at the origin. (The supports of
the @i(pi)'can be made tiny by other partitions of unity). »

The separation of each propagator Di into its parts Dij induces

a separation of F(x) into a finite sum of terms Fa(x). Let

{i,j(a,i); i€(1,2,3,4)} specify the four functions Dij(u,i)

corresponding to a. Then a transformation to momentum-space shows
that the function Fa[w]_§aniéhes unless there is, for that o, a set

{pia, pi’j(a’i); i = 1,2,3,4} such that, for all ie(1,2,3,4),

Piq € SUPP V., o (E.2a)

pi,j(a,i) € supp Xij(a,i)’ (E.2b)

and -
Pia 7 Pi,j(a,1)” Pitl,j(e,i+l)" (E.20)

Equation (E.2c) expresses momentum-energy conservation at vertex i.
The conditions (E.2) entail that Fa[w] vanishes if momentum-energy

conservation Pi = fails by more than the

Pi,iGa,i) ~ Titl,j(a,i+l)
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tiny amounts corresponding to the tiny supports of the functioms Xij
and @i.

Let the non vanishing functions F&[¢] be those with o in the
set A. The integrals Fu[w], acA, can be reconverted back into
coordinate space, and one can then examine ﬁhe contributiéns to the
X, -space integrals from regions in which one or more of the four
points L tends to infinity.

For any Fa[w]}'asA, one has approximate energy-momentum
conservation at each vertex. This approximate energy-momentum
conservation together with the stability conditions on the masses
of the stable particles, and the three-particle character of the

vertices of Dl’ entail that for any a€A and any ie(1,2,3,4) either

"
-

2 2
supp Xi,j(u,i) F\{pi, p; = mi} (E.3a)

or

. ) )
SUPP X 11 j(a,i+1) N (Pis1s Pipg = =0 (E.3b)

provided the supports of the functions Xij(pi) and wi(pi), ie(1,2,3,4),
have been taken sufficient small. Consequently, for each ie(1,2,3,4)

and any aeA, at least one of the two partial propagators Di jla,i
> 2

)(2)

- -1
or Di+1,j(u,i+l)(z) will fall off faster than any power of IzlEucl.

uniformly over .all -directions.
This uniform fast fall off of at least one.of any two neighboring

pair of partial propagators, ), aeA,

D jCa,i) B °F Pit1 g (a,141) Pinl
coupled with the uniform faster than any power of |xi|-1 fall off of
each coordinate space function wi(xi)‘on compact sets lying outside

i centered at the origin that contains in its

any closed bi-~cone C

interior the set of causal directions Ci (cf. Ref. 7, Eq.(2.l7))

L -
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entails the rapid (i.e., faster than any power of R_l) fall off of
the contribution to the x-spin integral for F [p] from points
. : a

X = (xl,xz,x3,x4) lying outside the set
R'(RaX) = {x;]xi - AX| <R, all ie(1,2,3,4) }. (E.4)

To prové this asserted fall off property one may separate the
X = (xl,xz,x3,x4)-space integration region into four parts Pi, where

the condition (all j) holds for all x in Pi'

<
lxilEucl.'\ IXjIEucl.
Then the sixteen variables (xg, vee s xZ) of x can be transformed

to one radial variable R, which is in Pi’ and fifteen

[inEucl
"angle'" variables u. The variable R ranges from zero to infinity,
whereas for any fixed R the range of u is bounded.

The Qariabies u can_be specified by a éet of four four-vectors
uss 1e(1,2,3,4). Oneofthesefourfourveétors uy lies on the unit sphere,
and the other three lie on or inside this sphere..

This unit sphere is centered at the origin. Four bi-cones Ci
centered at the origin can then be‘drawn. There is one bi-cone Ci
for each external particle i. These bi-cones are taken to be
disjoint, except at the origi@ and the vectors Py in the support of
&i(pi) are contained in the interior of Ci.

Let the set C; consist of éi and the ball of radius 10-2 centered
at the origin. If the point ug corresponding to external particle i
does not lie in C; then the integral will have a factor that falls
off faster than any power of R_1 due to the fast fall off of the

wave functions wi(Rui) (cf. Ref. 7). But if each point uy lies in
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the corresponding set C!, and one of these points u, lies on the
P g i’ i

unit sphere, then both LI R(ui—uiél) and-xi+1 -x = R(ui+l- ui)

must increase linearly with R. Thus either Sij(xi-x_ or

1-1)
(

xi+l_xi) will fall off faster than any power of R—l, The

Si41,3 _

remaining factors in the integrand are bounded. Hence the total

contributionfoFTw] from the coordinate-space region lying outside

a sphere of radius R must also fall off faster than any power of R.
ihé integral of actual interest is given in (7.50). The

.integrand has in addition to the Feynman function FDl(x) and the

four external-pafticle wave functions wi(xi), also several exponential

factors. Some of these exponentials appear with imaginary exponents.

These factors are bounded and do not affect the result. However,

there is also an exponential with a real exponent. This real exponent

consist of a sum of terms of the form-

J a’i 7 2160H) S i (1 - cos 30K, (E-5)
(2m) :
where y can be x; = AX or xi-xi, and can become large.

It is sufficient to shoﬁ that this integral (E.5) can increase
no faster than c log |y| as |y| + ». For in this case the expomential
itself increases at most linearly in |y| . But any such linear increase
is damped out by the just established faster than any power .of Iyl-l
decrease of the remaining factors (note that ]xi - Xil 2 a implies
|xi -AX| > a/2 or |xi - XX| 2 -a/2. Hence the faster than any inverse
power of R fall off of the contributions for x or x' outside R'(R, AX)

entails a faster than any inverse power fall off also in |xi - xi|).
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To obtain this logrithmic bound write

Yy =AY v (E.6)
where ¥ has Euclidean norm unity. And write, fot"k2 =0,
R .
y+k = A|k|s. . (E.7)

where 8 is a function of the angle 6 between the three vectors ;

> .
and k. Then the integral (E.5) can be written (with k now ]E]) as

K 1

2
'J E_Qg 27 J d(cos8)f(cosf) (1 - cos AkB), : (E.8)

o 2 -1

where |f(cos8)| is bounded.
To prove an asymptotic logrithmic bound ¢ log A on the magnitude

of (E.8) for large X it is sufficient to exhibit a bound c¢'/A (c' <)

~on the magnitude of the A-derivative

K 1

wldic '

J —3 27 J d cos® f(cosf)kB x sin AkB
o 2k 1 '

1 K
m J d cos® f(cose)S,J dk sin Akp
-1 - 0

1
%—J d cosp £(cos8) (1l - cos AKB) (E.9)
-1

The magnitude of (E.9) has the bound 4n|f‘max/x, and hence the

convergenée of (7.50) is assured.
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The convergence of the x integration in (7.46) is assured by
essentially the same argument.
The fact that the partial propagators Dij(zi) enjoy rapid fall

off in |z, | for directions of z, lying outside the causal set
i'Eucl i

Cij was not used in the above discussion. However, this fall-off

property is needed to cover the generél case in which D. is replaced

1
! .

1 These rapid fall-off conditions, together

by some other diagram D
with the apéroximate moﬁentum-energy conservation equations mentioned
below (E.2), ensure a rapid fall-off in R of the contributions to

the analogs of (7.50) from points x outside R(R, AX) unless the
momentum—energiés of the external lines of D! lie close to a

1

i. And even in this case there is a rapid
~ a3

fall off of the contributions - not lying near the regions in x space

singularity surface -of D

such that the spacetime diagram Di(k) corresponds to a classically
allowed physical process with the specified external momentﬁm—energies.

This property is heeded in the extension of the arguments given
in this paper to the general case. It entails, generally, that the
contributions to the transition amplitudes from regions of x space
that are far away from the regions that correspond to‘the classically
allowed processes fall off rapidly as the distances from the

classically allowed configurations increase.

o .

10.

11.

12.

13.
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