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Abstract 

The standard quasilinear equations of plasma physics, are shown to 

possess an algebraic structure, although the system is dissipative. The 

energy functional yields the evolution equations and the conservation 

laws, in analogy to Hamiltonian systems. 
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Our recent discovery [1] of a Hamiltonian structure for the Vlasov 

equation with Coulomb interaction (discovered independently by 

Gibbons [2]) has led us to search for an algebraic structure for the 

corresponding dissipative system, the quasilinear diffusion equations 

for an unstable plasma. By analogy to the Hamiltonian structure, we 

desire a bracket and an energy functional that yield the evolution equa-

tions and conservation laws. However, this bracket cannot. be a Lie 

algebra, implying a Hamiltonian structure; since the quasilinear system 

possesses a Liapunov functional, the entropy, expressing irreversi-

b il ity. 

In the interests of simplicity and clarity, we deal here with the 

simplest case, a uniform unmagnetized plasma, with one species of 

·resonant particles and one wave branch. The particle distribution in 

momentum space is f(p), and the total particle energy functional is 

( 1 ) 

-+ 
where H(p) is the single-particle energy. The wave action distribution 

-+ 

in wave-vector space is J(k), and the total wave energy functional is 

( 2) 

-+ 
where w(k) is the wave dispersion relation. The total energy, 

H(f,J) = H(f) + H(J) ( 3) 
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contains no interaction term. The resonant wave-particle interaction 

appears in the bracket, Eq. (5). 

Consider .now two observables, A1(f,J)andA
2
(f,J). We search for a 

bracket algebra: {A1,A2} =A3, which is bilinear, antisymmetric, and 

operates on A1 and A2 with first functional derivatives. In 

,~) addition, we demand that observables evolve in time as 

. 
A = { A, H ( f ,J) } ( 4) 

Since the quasilinear evolution equations are known, a short search 

yields the desired result~ 

( 5) 

with 

( 6) 
-+ -+ 
3 = 3/3p ; 

-+ 

and a(k) is a coupling constant. The resonant wave~particl~ interaction 

resides in R. This bracket does not satisfy the Jacobi identity, and 

hence is not a lie algebra. 
-+ 

Applying Eqs. (4) and (3) to f(p), we obtain the diffusirin equation: 

·-+- -+ """* -+-+ 
f(p) = a· Q(p) · af(p) , 

11 
D(p) = fl\ kk a(k) o[w(k) - k·aH(p)] J(k) 

( 7) 

.-+ 

Applying Eq. (4) to J(k), we obtain the linear growth equation: 
• ·-+ ·~ -+ 
J(k) = 2y(k)J(k). 

-+ }3 -+ [ -+ 2y ( k) = d p a ( k) <\ ul ( k) -+ -+ -+]-+ -+ -+ 
k • aH(p) k • Clf(p) 

( 8) 
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These are the standard equations of quasil inear theory, with resonant 

interactions, and no refinements (such as resonance broadening). 

The conservation laws should now follow directly from (4). Energy 

conservation, 

H = {H, H} = 0 , ( 9) 

is a trivial consequence of the antisymmetry of (5). · For conservation 

of momentum 

(10) 

we have 

which v~nishes, upon integration by parts; The Liapunov functional, 

( 11) 

evolves monotonically, as found from Eq. (14): 

S = d p d k awJ f ( k • Cl f) 5 ( w - k • a H ) ~ 0 
. f 3 f3 -1 -7 -7 2 -7 -7 (12) 

These results raise a number of questions for future investigation: 

(1) How is the algebraic structure discussed here related to the under­

lying Lie structure of the Vlasov systern, in particular to the 

fundamental work of Marsden and Weinstein [3]? 
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(2) How can this structure be modified to take into account resonance 

broadening and more recent improvements to quasilinear theory [4]? 

{3) How can this structure be generalized to deal with nonuniform magne-

tized plasma, and with nonlin.earities, such as ·the ponderomotive 

\#-' Hamiltonian [ 5 ]? 

,,) {4) Do similar algebraic structures exist for other dissipative systems, 

such as the Boltzmann equation?· 

) .. 
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