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Universality and Strange Attractors 
in Internal Wave Dynamics* 

Henry D. I. Abarbanel 

Lawrence Berke 1 ey Lab ora tory 
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Abstract 

LBL-13654 

We argue that the universality and statistical nature of the deep 

ocean internal gravity wave spectrum results from a strange attractor in 

the driven, dissipative internal wave field. To explore this we 

construct a model which injects energy into the oceanic surface at a 

constant rate. A two dimensional version of the model is explored 

analytically and numerically. For the numerical work we restrict our 

considerations to a few of the longest wavelength modes. This few mode 

system exhibits bifurcation into 1 imit cycles, period doubling of the 

limit cycles, and chaotic, nonperiodic behavior associated with a 

strange attractor. In an appendix we present some discussion of the 

three dimensional version of the model. 

*This work was supported by the Director, Office of Energy Research, 
Office of Basic Energy Sciences, Engineering, Mathematics, and 
Geosciences Division, U. S. Department of Energy under Contract DE­
AC03-76SF00098,and DARPA Contract No. 4805-02. 



I. Introduction 

The universality of the empirical oceanic internal wave spectrum 

(Garrett and Munk, 1979; Garrett and Munk, 1975) is a striking feature 

of internal wave dynamics. Since the sources for energy influx into the 

internal wave field (Thorpe, 1975) are numerous and irregularly placed 

in time as well as space, it appears unlikely that a study of sources, 

however much they may reveal about ocean. dynamics (Wunsch, 1975), wi 11 

illuminate the universality question. 

Various mechanisms of energy dissipation and energy redistribution 

have been reviewed critically by Holloway (1980). He concludes that 

wave-wave interactions are not weak and that no firm clues to the origin 

of the universal spectrum have been uncovered. 

In this article we begin the exploration of another path which leads 

to universal behavior in dynamical systems like oceanic internal waves. 

We begin with the observation that the response of the internal wave 

system (in the deep ocean) to changes in energy sources is at most a 

transient which is lost as the system settles back to its universal 

state. Secondly, we note that although much of the internal wave field 

dissipates negligible energy, the energy input by sources must, of 

course, be dissipated by fluid motions on scales < 5 m. 

Viewing a change in energy sources as equivalent to a change in 

11 initial 11 conditions, we see that the asymptotic state to which the 

internal wave field goes is rather independent of initial conditions. 

Dissipative systems which approach the same state for a large set of 

initial conditions are said to have an asymptotic attractor or invariant 

distribution (Eckmann, 1981). The motion of a given phase space point 
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(internal wave field fourier mode in the present context) will be quite 

complicated on the attractor. Indeed the details of the orbit will be 
·--~~ ~ ·- ·---

very sensitive to initial conditions. The distribution of points on the 

attractor, however, is the same for all initial points in its basin of 

attract i on . 

The path we wish to begin pursuing here rests on the notion that in-

ternal wave dynamics has an asymptotic attractor with a wide basin of 

attraction, so. that a large variety of initial or perturbed states of 

the ocean relaxes rather rapidly to this universal asymptotic state. If 

we haveN modes of the internal wave field of dynamic importance, the 

state of the system is labeled at any time by an N-vector ~ = 

If we know DA(.~J- the asymptotic distribution 

then the distribution of any phase function F(~), such as the energy, is 

F(~J DA(,d when the asymptotic state is reached. 

Until now we have been addressing properties of the deterministic 

evolution equations which govern the internal 1tfave field. Yet it is an 

aspect of the empirical data that is appropriate to treat internal wave 

motion as statistical. These two views are joined when we inquire into 

the structures available for DA(~). Since the system is dissipative, 

any volume of phase space shrinks to zero in going from the initial 

state to the asymptotic state. We can state this differently by saying 

that the attractor has dimension < N, so has phase space volume zero. 

The simplest possible attractor is a fixed point, which has 

dimension zero. As the parameters of the system (magnitude of surface 

wind stress, strength of mean currents, etc.) change, so may the 
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topology of the attractor. The next rrost complicated attractor is a 

limit cycle in which orbits settle down to a closed curve in x space. 

These have dimension one. Motion on a torus in M < N dimensions is the 

natural generalization of the limit cycle; such flows have dimension M 

and are quasi-periodic. About a decade ago it was pointed out (Ruelle 

and Takens, 1971) that there is another possibility for the topology of 

the attractor. It is possible that after several (3 or 4) bifurcations 

from limit cycles, the attractor will become non-periodic. The 

asymptotic orbit will not be a closed curve in x space, but will fi 11 -
some number of integer dimensions plus a Cantor set of points with 

fractional dimension. This is aptly called a strange attractor. (Good 

introductory expositions of this idea are in Lanford (1980) and Ott 

(1981)). Such behavior had been observed in earlier work by Lorenz 

(1963) in the context of Benard convecton. Also there is rather clean 

experimental evidence that this route to non-periodic motion does occur 

(Fenstermacher, Swinney,. and Gollub, 1979; Libchaber and Maurer, 1981). 

When non-periodic motion on a strange attractor does set in, a 

spectral analysis of the orbit wi 11 reveal only broad band structure and 

no sharp lines from periodic or quasi-periodic motion. Since the motion 

is non-periodic it may properly be termed chaotic or turbulent, though 

it is clear it cannot correctly be called stochastic, statistical, or 

random in the strictest sense of those terms. If one subjects orbits on 

a strange attractor to tests for a random function of time, it will pass 

them to high numerical resolution. One may then call the motion 

pseudo-random, and an operational sense treat it as statistical. 
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In this paper we study a rrodel of forced internal wave dynamics in 

which the energy sources are taken to be at the oceanic surface and are 
+ 

represented by a phenomenological scalar field, E(x,t), which we term 

the energy transfer field. It is taken to satisfy an advection 

diffusion equation 

(
a + + 
- + u . v ) E(x,t) 
at x 

= K 

where ~(;,t) is the fluid velocity field and K is a phenomenological 

energy diffusivity. The energy transfer field also will couple into the 

+ Navier-Stokes equation for u. Energy input will be represented by a· 

fixed value of E, call it E
0

, at the ocean surface and a zero value at 

the ocean bottom. As E is varied the internal wave field is more or 
0 

less strongly driven from one asymptotic state to another. We wish to 

examine the variety of asymptotic states available to the stratified 

fluid. 

In a loose way one can think of our model as an inverse sort of 

convection problem; namely, we have a stratified fluid 11heated 11 from 

above. Such a situation is not subject to convective instability as 

occurs in ordinary Benard convection, but instead is prone to the 

Kelvin-Helmholtz instability (Chandrasekhar, l961; Bretherton, 1969) 

which occurs as the fluid is driven. to strong vertical shears which 

overcome the stability of bouyancy effects due to the stratification. 

when the quantity 

~ = In 
az 
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where n is the bouyancy frequency, u is the x component of ~' and the . . X 

stratification is in the z direction, becomes greater than 2, one 

expects instability. The conventional Richardson number is j..l-
2, and 

there is quite striking evidence that internal wave modes with j..l > 2 

(Ri<l/4) are absent in the oceanic internal wave field (Eriksen, 1978). 

In our scaling of the dynamical equations ]..1 will become a measure of the 

strength with which the energy transfer field couples to the velocity 

and density fields and the nonlinear coupling strength of modes of the 

linear system. It is the instabilities of dynamical systems which allow 

the topology of strange attractors to emerge, so our study here will 

focus on the qualitative features of the internal wave field as j..l varies. 

Our eventual model is, of course, an abstraction even o.f the 

simplified situation of "heating" which we have described above. The 

three most bold approximations we make are (1) the bouyancy frequency 

is taken constant; (2) the ocean is taken to be two-dimensional - one 

horizontal direction is suppressed; ( 3) we make a mode expansion of the 

full partial differential equations to reduce them to a few ordinary 

differential equations. Our physical idea here is that for small, but 

non-trivial, forcing the longest wavelength modes will both be more 

dominant and more prone to instability. Small wavelength modes are also 

damped more strongly by viscosity. All of our approximations are prone 

to examination by removing them. Variable n(z) complicates the algebra 

and changes the details of mode couplings. Three space dimensions 

instead of two can be handled, but we do not examine this difference in 

our initial exploration here. Finally one can always augment the number 

of modes retained. 
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In the next section we discuss our model in more detail. We exhibit 

the scalings used and derive the modal equations. In Section II we 

study the simplest mode truncation of our system. It involves 5 modes. 

The five rrode system shows all the features of bifurcation to limit 

cycles and strange attractors indicated before. Although some of our 

work is analytic, most is numerical. We present orbits and power 

spectra for an interesting range of ll· The final section contains 

discussion and indications of future routes to investigate. 
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II. Model of a Forced Stratified Fluid 

Our starting point is the usual Boussinesq approximation (Chandra­

sekhar, 1961; Phillips, 1977) for coupled velocity, u(>t",t), and density 
-+ 

fields p(x,t) 

and 

~iT+ (iT. 'V) lt= _L'Vp -~ z +u X f + \) v2lt, (1) 
at 

div -+ 0 u = . ( 2) 

a + (u .. 'V) - Po 2 - p p1 (x 3) 1 - n u3 0, 
at g 

(3) 

where p = + is the usual bouyancy fre-

quency, p is the pressure, g, the gravitational constant, z a unit vee-
-+ -+ 

tor in the 3 direction (taken upward), f the Coriolus parameter (f =· 

f=2 w. ·t· 1 sin (latitude)), and vis the kinematic viscosity. 
1 ner 1 a 

A 

f z' 

To these familiar equations we wish to add an energy source which 

will drive the motion of internal waves. We accomplish this by intro­

ducing a scalar energy transfer field, E(k,t), which is taken to provide 

a force in the 3 direction in the momentum equation (1) and satisfy its 

own advection diffusion equation 

(
a -+ ) · 2 rt + u ·'V E(x,t) = K 'V E(x,t), (4) 
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where K is the phenomenological rate at which the energy transfer ampli­

tude is dissipated. 

In the momentum equation we add to the right hand side a forcing term 

-+ A 

E(x,t) ( 5) - sz 

where s is another phenomenological parameter but of no real sign ifi-

cance as it can be sealed away since ( 4) is homo gen eo us in E(X\t). This 

term is supposed to represent the result of a more detailed calculation 

of the way energy is transferred into the oceanic depths by surface 

mechanisms. A model calculation of this sort is the work of Watson, 

West, .and Cohen (1976), and such a calculation would yield a value for s. 

We require the field E(t",t) to be a fixed constant value, E
0

, at 

the surface, x3 = 0, and zero at the bottom x3 = -D. This repre­

sents energy forcing at the surface. Just as we may split p(1,t) into 

the background stratification "P(x3) and the density variations 

P 1 ( t, t ) , so we rna y s p l it E ( x , t ) as 

(6) 

where the first term satisfies the surface and bottom boundary condi-, 

tions, as well as the linearized version of our equations, while 
-+ 

E1(x,t) is the energy transfer variation about the energy conduction 

E
0 

(1 + x3to). 
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A discussion of the three dimensional version of our model will be 

found in the Appendix. Here we restrice ourselves to two dimensions 

(x1,x3). 

fashion 

Introduce a stream function 1J!(x 1 ,x3,t) in the usual 

(7) 

+ to guarantee div u = 0. (8) 

The equations of motion for the three independent fields 'ilJ!, 

E1, and p
1 

are derived from (1), (3), and (4) 

.. . : ~ 

(10) 

and ( 11) 

where 

J(f,g) af ag af ag =--·--- (12) 

We now turn our attention to a constant n ocean, so the nautral time 

scale is n-1. The natural length scale is D; so we are ignoring 

length scales for the var.iation of n. With these dimensional quantities 

we scale our equations by the rules 
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t ~ t/ n, ( 13) 

1jJ ~ 
2 11nD 1jJ , (14) 

E1 ~ Eo E1' (15) 

Po n2 Dll (16) p1 P1, 
g 

and (x1 ,x3) ~ D(x,z). (17) 

The momentum equation suggests that the choice 

(18) 

is consistent with the interpretation of ll as the ratio of horizontal 

velocity shear to bouyancy frequency. These scalings yield 

!__ P 1 + a 1)! + ll J (1J! , P 1 ) = 0 , 
at ax 

a1)J 
\.1-

ax 

(19) 

(20) 

(21) 

where r1 = v/nD2 and r 2 = K/nD2. The role of ll as the strength 

of the nonlinearities is made explicit by these rescali~gs. 

The trivial solution to (19) - (21), 1jJ=o1=E1=o, represents the 

background state where the density is ""i), energy is conducted from the 

surface into the ocean, and there is no fluid motion. To study the 

stability of this state we take the fields to be in a particular 

Fourier mode 
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ljl{x,z,t) = l/J sin 1TQZ sin nmx e 
At 

(22) 
-L-

pl (X , Z., t) = pl sin 1TqZ cos nmx eAt 
-L-

(23) 

and E
1 
(x,z,t) = El sin 1TQZ cos nmx eAt 

L 
(24) 

The particular choice of sines and cosines comes from the boundary 

conditions u3=P1=E 1=o at Z=0,-1 and u1=o at the sides of the 

ocean, taken to be at X=*L. 

The linear terms of (19) - (21) lead to 

-k2. (A + r
1 

k2 ) kx kx qm qm 

k A 0 pl = 0, (25) 
X 

-llk 0 A + 2 
El r2kqm X 

where 

k2 2 
2 

k 
1Tm ( 2 + !!!..._) (26) =-and = 1T q 2 • X 
L 

qm 
L 

To have non-zero amplitudes we require 
to;, 

2 A3 + 2 k4 k6 + k2 r k
2 

k
2 

= *' (r
1 

+ r
2

) +A ( rl r2 {1-ll)) + 0, kqm A qm qm X 2 qm x 

( 27) 

and the variations about l/1= pl = El = 0 are stab 1 e when ( 27) has no 

roots with positive real part. 
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This equation for A has one real negative solution as long as 

Assuming that to be true, we seek a solution 

with Re Ao = 0. This occurs when 

k2 6 '2 
( 1-ll) 

( Im A
0

)
2 r2 kqm r1 r2 +, kx X (28) 2 2 ( r1 + r2) kqm kqm 

The other solution of (27) is -k~m (r 1 + r2) \at this point; 

namely, that ei genrroti on is stab 1 e. By writing A = i Im Ao + 0 we 

find that a<O, that is the 1/J= P1=E1=0 solution is stable, when 

( 2 9) 

and unstable for 11 > 11 (q m ) .. ..c ' • In other words, if we set \.1, r1 , and 

r2, then all rrodes with horizontal wave number 'ITm/L and vertical wave 

number 'ITq such that llc(q,m) < ll are unstable. 

This instability is that of the standard Hopf bifurcation (Iooss and 

Joseph, 1981) where a complex conjugate pair of eigenvalues of a linear 

stability matrix cross the imaginary axis. Whether a. limit cycle emerges 

as these eigenvalues acquire a positive real part depends. in detail on 

the structure of the nonlinearities. The numerical work presented below 

indicates that a normal Hopf bifurcation occurs at ll and that a limit 
c 

cycle of amplitude /ll...:llc grows out of the fixed point. At llc the 

frequency of the 1 imit cycle oscillations is 

- 13 -
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;-r:;- Q(q,m) 

/~r2 
( 30) 

where 

(31) 

(32) 

which is the frequency of the familiar linear internal wave eigenmode 

measured in time units scaled by n. 

The form of llc (q ,m) in Eq. (29) shows that as lJ increases beyond 

llc modes become unstable one at a time and that it is the low q, low m 

modes which are most prone to instability. So we observe that it is the 

longest wave length modes which first contribute to interesting 

structure as the internal wave field is driven more and more strongly. 

This suggests that for rroderate values of lJ, a few rrode approximation to 

the full partial differential equations will provide a good qualitative 

understanding of the behavior of the full system. As lJ becomes larger, 

more and more modes become important. 

We turn now to a few rrode approximation to the two dimensional 

internal wave equations. Expand¢, pl' and E1 in eigenrrodes as 

+co 

¢(x,z,t) L ilqm(t) 
i q1T z + i m1rX 

p
1
(x,z,t) e -L- i Pqm ( t) 

q,m=-oo 
(33) 

E
1 

(x,z,t) i Eqm ( t) 
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The boundary conditions at Z=O, -1 and x = ±L along with the reality of 

~' P1, and E1 result in the conditions 

* ~q,m = ¢-q,-m' ¢q,m = - ¢ q m = -¢q -m - ' ' 
( 34) 

From the partial differential equations for ~' p 1, and E1 we derive 

the coupled ordinary differential equations for the modal amplitudes 

2 [d¢qm 
+ rl k~m ~qm] + 'lrm (Pqm + e:qm) -kqm dt = 

L 

2 L ~ k ¢ ¢ (m1q-q1m), 
L q1m1 q1m1 q1m1 q-q 1 ,m-ml (36) 

2L £.._ P + mn ¢ = ..!!!.._ 
dt qm L qm L 

q1 ,m1 
( 37) 

This infinite set of coupled equations is equivalent to the original 

- equations for ~,P 1 , and E1. We proceed by retaining only a few 

modes with small wave numbers. In addition to the linear stability 

argument given above we have two arguments for this: (1) For some 

range of driving strength ~ only the lowest wave number modes will be 

substantially excited; higher wave numbers require larger kinetic 

- 15 -
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energy. ( 2) Since dissipation is proportional 2 
kq ,m' modes 

with larger wave numbers will be more rapidly destroyed. So the energy 

in larger kqm will not have had time to circulate before it disappears 

into a dissipative sink. As lJ increases, more modes will become 

required for an accurate description of the system. 

In the remainder of this paper we deal with the most bald truncation 

of our coupled equations. The smallest wave number modes which give 

rise to non 1 in ear coupling are five: t>u, pll, e:u and p20 and 

e:20" ¢>10 and t>o 1 are i den ti ca 11 y zero by (32) as are Pol and 

e:o 1 · The modes e:lO and P1o are constants to this order. Our five 

mode system satisfies 

+ 1T (39) 
L 

2 
~ p + ..!!. r/J 2]J 1T t> 
dt 11 L 11 = -L- P20 11 ' (40) 

d 
- p 
dt 20 

(41) 

(42) 

and (43) 

- 16 -
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III. Analysis of the Five Mode System 

We begin with the equations for p20 and pll 

.• 
2 

d + .! ¢J 2ll1T (J 
dt oll L 11 = -L- o20 11' 

and 
2 

d 4ll1T 
- 0 20 = - -- 0 11 (J 11. 
dt L 

By making the change of variables 

(44) 

we find 

d ff2 ll1T
2 

- 020 = - ---=---- Pn tln 
dt L 

( 45) 

and 

(46) 

which means 

·~ 

2 2 -2 
o11 + o20 = R = constant. ( 47) 

so we write 

o 11 = - R sin 9 and p 20 - -R cos 9, (48) 
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which 1 eads to 

E_ ¢ + ¢ 
dt 11 a 11 

1T --- (e:
11 

- R sin g.), 

d 
- € + 

11 
dt 

2 
d 1 4\J7T 
- € 20 + y € 20 = - --. € 11 t> 11 ' 
dt L 

and 

where a = r1 ky 1 , y = r2 ky 1, and r 1 = r2 k~o· By 

making the following rescalings 

¢11 
L a 

<I>, = 2 2ff 1T JJ 

k2 L2 2 
11 a 

Ell ' €11 = 3 212' 1T \l 

2 L 2 a2 
kil 

€20 = 3 E20, 
2 1T JJ 

k2 L2 2 

R = 
11 a 

R, 
. 3 

212' 1T JJ 

- 18 -
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" 

(51) 

(52) 

(53) 

(54) 

(55) 
'1. 

(56) 



and t = S/a. 

we may cast our equations into the more manageable form 

and 

where 

d 4> 

ds 
=- 1> + E11 - R sin g 

~E 
ds 11 

d 
- E20 = 
ds 

1 
--L E E 20 - 11 4> ' 

a. 

dg. 
4> ' ds · 

(57) 

(58) 

(59) 

( 60) 

(61) 

( 62) 

is the eigenfrequency of the q=m=l linear internal wave eigenmode. 

The rate of contraction of phase space volumes is given by (Arnol •d, 

1978) 

aE 20 a~ [ 1 J +-+-=- 1+: +: 
aE

20 
ag ... ... 

( 63) 

Since this is constant over state space, a volume V(o) becomes V(s)- = 

V(o) exp -s (1 + y/a. + yl/a.) as 11time 11 goes by. 
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These equations have one fixed point at q, = E11 = E20 ::G-=0. 

This corresponds to no motion of the velocity or energy transfer fields 

and a constant value for the q=2, m=D piece of ·the density. The 

stability of this fixed point is governed by the eigenvalues of the 

linear stability matrix. If variations about the fixed point behave as 

esA, then stability is determined by the values of A satisfying 

( A + y 
1 I a) [A 3 

+ A 2 
(1 + y I a) + A ( ~ - M +R ) + :Y J = 0 , ( 64 ) 

where 

The root at A= -y11a is always stable. If R yla > 0, there is always 

another negative real root. The other roots are complex conjugates and 

·have zero real part when A = i a. This requires 

02 = ~ ( 66) 
Y + a 

and occurs when 

M = M0 = ~ + aRiy+a • ( 67) 

When M · > M
0

, the roots acquire a positive real part and the fixed 

point is unstable. See Fig. 1. 

The instability is of the classical Hopf bifurcation variety (Ioos 

and Joseph, 1981). It is possible to determine analytically whether the 

bifurcation is 11normal 11 so a limit cycle grows srroothly out of the fixed 

- 20 -
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point or 11 inverted 11 so an unstable limit cycle absorbs the newborn limit 

cycle and the whole set up moves on to another behavior. The numerical 

work soon to be discussed shows that at least in the region of the 

parameter space we have explored, a normal Hopf bifurcation occurs . 

Now we turn to the numerical calculations we have carried out on the 

system (49)-(52). In all the work we present here we choose y = 

1 
y = CL and R = 1. o. For other values of these parameters the 

qualitative features of the motion is the same. With these values the 

fixed point becomes uns tab 1 e at Mo = 3/2. In Fig. 2 we present the 

result of our calculations at M 1.41. We show q,(t), E11 (t), 
. 

E20 (t) and 4>( t ) versus 4>(t). In the time series for the amplitudes 

we exhibit 9000 points genera ted by a fourth order Runge-Kutta scheme 

with fixed time steps. In the picture of q, vs 4>, only the last 7000 

points are displayed. Figure 3 contains the same information at 

M=l. 53. In these and subsequent figures the initial values of our 

amplitudes were chosen to be 4>{0) = E11 (o) = E20 (o) = 1.0 and G(O) = 

0.5. For a range of other values for these initial conditions we have 

verfied that the same asymptotic state is achieved after an initial 

transient. 

For 1.5 ~ M < 2.5605 the limit cycle is the stable attractor. In 

Fig. 4 we have the amplitudes cp, E11 , E20 and ct> versus ct> for 

•t M=2.5581. The transients show the near stability of a new stable 

,., 
--a-tt~aG-ter, but in each case the orbit settles down to the limit cycle as 

before._ Choosing different initial conditions changes the details of 

the transient behavior; the attractor is the same. By M = 2.5615, as 
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displayed in Fig. 5, we see that the new attractor has become stable. 

The transition occurs at M ~ 2.56051 as we will discuss below. 

We rrove on now, and in Fig. 6 we display our data at M = 3.0306 

where we see an initial transient from yet another attractor setting 

in. This turns out to be the precursor to further transitions in the 

structure of the attractor which occur very near M 3.034063. 

In Fig. 7 we exhibit <I>, and <I> versus <I> for M = 

3.03535. The nonperiodic nature of the orbit is clear to the eye. We 

have examined this orbit in rrore detail by computing 104 and then 

1.5 x 104 points on the orbit. We show in Fig. 8 the. last 8500 points 

of <l? versus <I> for 104 iterations, and in Fig. 9, the last 13,500 

points of <I> versus <I> for 1.5 x 104 iterations. Special attention 

should be given to the structure which is clearly growing up at this M. 

It is the projection of the non-periodic structure evolving in the four 

dimensional phase space. We are going to refer to this as a strange 

attractor, though we have not verified that the curve occupies a 

non-integral volume. It is sufficient for our purposes that the 

behavior is non-periodic. 

The final time series we display is forM= 3.0377 in Fig. 10. The 

orbit has returned to a limit cycle. Indeed, for all M > 3.037 that we 

h ave e xami ned , only a 1 imit cycle was observed. We have 

non-€xhaustively searched up toM~ 45. It is interesting to note that 

the Lorenz equations (Lorenz, 1963) derived from the Benard convection 

problem also show a limit cycle for large Rayleigh nurrber (Robbins, 

1979)- the analogue of our M. 
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Next we turn to the power spectra of the time series we have 

studied. Three issues are important here: (1) the frequency of the 

limit cycle behavior just as the fixed point has become unstable; (2) 

the appearance of new frequencies after bifurcation; and (3) the onset 

of broadband 11 noise 11 when strange attractors are present. 

We calculated our power spectra by solving the differential 

equations for N = 18192 = 10 4 + 213 equal time steps, t~t = 0.04. 

Then the last 213 points were fourier transformed and a subset of the 

fourier coefficients are displayed. 

At the onset of the limit cycle the frequency should be 

(yR/a+y) 112 = 1/12' with our parameter choice. This should appear as a 

peak in the fourier coefficient J = Nt~t/27T/2 = 37. In Fig. 11 where M = 

1.5103 we show the time series ~(t) for N steps and the power spectrum 

log l~(w) I· Indeed the spectrum consists of the frequency we expect, 

plus harmonics. 

Now when the limit cycle becomes unstable two 11generic" routes that 

can be taken are (1) a second Hopf bifurcation leading to a second 

independent frequency or (2) a period doubling bifurcation leading to a 

fundamental at half the frequency. In Fig. 12 we show ~(t) and log 

l~(w) I at M=2.56039 which, as the orbit reveals, is very close to the 

bifurcation. The power spectrum consists of mode number J=27 and its 

. .- harmonics. Figure 13 contains the same data at M=2.56051, where the 

fundamental 1 ies at J=12. A careful survey of the power speclra-E this 

interval reveals the period doubling to occur around M=2.56044. From 

here to M=3.034 we see in the power spectra only the new fundamental, 

which is a function of M, and its harmonics. Figure 14 at M=3.0172 is 

typical. 
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The next interesting occurrences are at M=3.034. In Figure 15 we 

have log i<I>(w) I for M=3. 034060 and Fig. 16 displays the same quantity for 

M=3.034061. A second period doubling is now emerging, By M=3.034064, 

shown in Fig. 17, yet another period doubling has occurred. Furthermore 

we see at this point that the power spectrum has become 11 broad 11 in the 

sense that there is power in a very 1 arge number of 1 ines. At this 

stage we are also pushing the resolution of our numerical calculations 

of <I>(w) • 

Our last 11data 11 is at M=3.03535 and M=3.067. At the first value the 

plot in Fig. 18 of log i1l(w)l is the expected broad band .. noise .. 

characteristic of nonperiodic motion on a strange attractor. AT M=3.067 

we have once again the clean spectrum consistent with a simple limit 

cycle. 
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IV. Summary and Outlook 

In this paper we have analyzed an oceanic internal gravity wave 

field driven by energy sources at the surface. Our motivation in this 

work is the physical idea that the universal spectrum of Garrett and 

Munk is a steady state of the system with energy injection at long 

wavelengths and viscous dissipation at short scales. Further we argued 

that the statistical appearance of internal wave measurements arises 

because the asymptotic attractor of the system is nonperiodic or a 

strange attractor. 

Our work in this note has concentrated on a specific model of driven 

internal wave dynamics, and even then we have studied a truncated two 

dimensional version of the model. for an ocean with constant bouyancy 

frequency. The truncation we used kept only .the longest wave length 

modes and studied the nonlinear interaction arrong them. The numerical 

results reported in the previous section show that as a parameter which 

is proportional to the strength of forcing by the energy input mechanism 

is increased, the truncated system becomes unstable, develops a limit 

cycle via a normal Hopf bifurcation and then undergoes a sequence of 

period doubling bifurcations to a strange attractor. 

In the particular truncated model we analyzed we found chaotic 

behavior for a small parameter range, and when the forcing became 

stronger yet, a regular limit cycle set in. The implication of this for 

oceanic internal waves is not that nonperiodic behavior results from 

only a small range of forcing strengths above which regular motion will 

be observed. Rather one should view our numerical work as an indication 
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of what will be the fate of the larger number of modes which come into 

play when the forcing is increased. So we expect that as soon as the 

forcing is raised above a (small) critical value, many modes will 

undergo the route to turbulent behavior we have seen for a few modes. 

Support for ths view comes from the linear stability analysis of 

Section II. Equation (29) gives the boundary of stability for our two 

dimensional model. The critical forcing strength is proportional to 

viscosity (r1 is dimensionless viscosity) as is the curvature of the 

critical llc(q,m) curve as a function of horizontal wave number (nm/L) 

near the minimum of the curve. This means that for small viscosity, 

which is the actual case, the llc curve will have a broad minimum near 

ll:::::: small. For small forcing, then, a broad land of modes will suffer 

the instabilities and undergo the sequence of bifurcations we have 

found. By our eventual choice of parameters in the numerical work 

reported we have, in effect, set r1 ::: 1 by working on a viscous time 

scale. Our work shows the way in which the strange attractor "unfolds." 

Our rrodel for the driven internal wave system introduced an energy 

transfer field, E(~,t), which was held fixed on the oceanic surface and 

was carried through the medium by advection as well as being dissipated 

in the medium. An equally attractive model would add to the 

Nav ier-Stok es equation a body force 
-+ A 

F ( x , t ) z wh i ch contains a few 

frequencies reflecting the. time scale of energy input through the 

surface into the internal wave rrotion and a few wave numbers reflecting 

the spatial dis tr ibu t ion of the energy in put. Each model tries to 

represent the surface driving of the oceanic internal gravity wave 
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field. Other sources of energy input (Thorpe, 1975) can of course, be 

modeled by additional distributed or localized forces. 

It is a premise of the argument in this paper that the qualitative 

features of the chaotic or turbulent motion in the internal wave system 

result from the presence of a strange attractor and are rather 

independent of the detailed nature of the energy sources. This premise 

is the underpinning of the specific model we analyzed here: a few mode 

truncation of a two dimensional ocean with a uniform bouyancy frequency. 

Our few mode approximation keeps only the longest wave length 

degrees of freedom in the velocity, density and energy transfer fields. 

It is perhaps surprising as well as gratifying that even in this severly 

truncated model we find stable limit cycles as well as chaotic, 

nonperiodic attractors which act as if statistical. Details of the' 

model aside-since .clearly improvements of detail are called for - it 

does support our basic premise and invite extensive further 

i nv es ti gat ion. 
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Appendix 

In this appendix we set up the three dimensional version of our 

driven internal wave field model. Here we carry out and investigate 

certain features of the linear stability analysis. 

Begin with the fundamental equations (1)-(4) from Section II. In 

three dimensions there are four independent fields. We choose them to 

be the vertical velocity u3(t,t), the vertical vorticity w
3
(x,t), 

the variation of density P1(x,t) about the mean stratification 

transfer E1(l,t) about energy 

conduction. An equation for w3 comes from taking the curl of the 

momentum equation (1); our equation for u3 comes from curling again. 

Then we have 

p(X3), and the variation of energy 

a 2 + f 
aw 3 + v2 

(:: 
1 

+a E1) - v u3 . 1 = 
at ax3 

4 - curl (curl (lix ~) ) 3 , vV u3 

aw3 a u3 2 + curl (u\~3 , --f = vV w3 at ax3 

2 
apl -+ Po n 
- + u • IJp 1 = u3 ' 
at g 

and 

aE 1 -+ • vE1 
Eo 2 -+ u +-· u3 KV El 

at D 

where v
1 

= (a1,a2) is the horizontal gradient. 
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We perform scalings on these equations which are appropriate to the 

constant n ocean. These seal ings are the same as in Section II with the 

addition 

(A. 5) 

(A. 6) 

which replace the rescaling of the stream function. 

After these reseal ings we have 

2 f aw3 2 4 
~ 17 u + - - + 171 ( p 

1 
+ E 

1 
) = r 

1
17 u 3 - J.l cur 1 cur 1 (IT xt) , ( A . 7) 

at 3 n az z · 

--- = (A. 8) 
n az 

(: t + ].Jtt • 17) p 1 = u 3 ' (A. 9) 

and 
(A. 10) 

The 1 in ear stability of the trivia 1 solution u3 = w3 = p1 = 

E1 = o. is investigated by setting these fie 1 ds equal to a single 

ei genrrode of the 1 in ear sys tern. With the boundary conditions u3 = 0 

at z = 0, -1, aw3taz =0 at z = 0, 1, ul = 0 at X = ± L, and u2 = 0 

at y = ± L we can express the eigenmodes in terms of sines and cosines. 

Write 
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. ,. ~L (mlx+m2y) eAt ·w 1q1rz u3 = 1 e e (A.ll) 

(A.l2) 
,. 

(A.l3) 

and (A.l4) 

This leads to a 4x4 matrix equation for the amplitudes W, Q, p, and E. 

A nontrivial solution requires the vanishing of 

k2 >. 4 
qm 

4 3 
+ kqm A ( 2 r1 + r2) 

+ A2 [ 2 2 4 k3 !__ + ki (1-lJ) + kqm rl(rl + 2 r 2) (A.l5) 
n2 

where 

.. 

( A.l6) 
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The detailed discussion of (A.l5) would lead us far astray. We choose 

instead to consider an instructive special case: r1 = o. 

If r1 = 0, that means we are dealing with the inviscid limit of 

the internal wave theory. One solution to (A.l5) is A= 0, the other 

v a 1 ues of A satisfy 

2 A3 + r k4 A2 + A2 ~ 2 t 2 
+ k 2 (h)] kqm 2 qm k3 2 1 n 

[ k2 f2 
+ kf] . 0 + r k2 3 ( A.l 7) 2 qm 2 n 

If the last term is non-zero, then there is always one negative real 

root of (A.17). The other roots have negative real parts until l-f=O. 

For J..l<O, the asymptotic motion of the internal wave field is u3=w3 = 

E1=P
1

=0, that is the background state with no fluid motion. When 

J.l=O, the system undergoes a Hopf bifurcation with frequency 

1 
2' n 

(A.l8) 

that is, the usual linear internal wave frequency. The amplitude of the 

motion is proportional to /i?. 

In this inviscid limit even the smallest forcing sets all modes q, m 

into motion. So a finite mode approximation won't do. The excitation 

of modes is then solely governed by the total energy available and is 

essentially independent of the nonlinear dynamics. The motion would be 
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q u as i -Per i o d i c • 

permitted by 

The dpectrum would show peaks at all modal values 

energy conservation rather than a broad background 

characteristic of 11statistical 11 behavior . 
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Figure Captions 

Figure 1. Region of stability of the fixed point~ =E 11 = E
20 

= ~=0. 

For M < M
0 

= y/a. + a.R/y+a., the fixed point is stable. For 

M < M
0

, the fixed point bifurcates into a limit cycle. 

With our choice of parameters y=a. and R='l.O, so M
0 

= 1.5. 

Figure 2. The evolution of the mode amplitudes ~(2a), E11 (2b), and 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

E20 (2c) for 9000 iterations of the differential equations 

(59)-(62). In 2d is shown ~ versus ~ for the· last 7000 

steps. M=1.41 here, and the amplitudes, which began at ~(0)= 

E11 (O) = E20 (0) = 1. 0, ~(0) = 0. 5' and R = 1. 0, settle 

into their fixed point v a 1 u es . 

Same as Fig. 2 with M::l. 53. The fixed. point has bifurcated 

in to a limit eye le. 

Same as Fig. 2 with M=2. 5581. 

Same as Fig. 2 with M=2.5615. 

Same as Fig. 2 with M=3.0306. 

Same data as Figure 2 with M=3. 03535 which has brought us to 

the regime of chaotic or nonperiodic motion. 

Figure 8. (a) ~(t) for 10,000 iterations of the equations (59)-(62) at 

M=3.03535. 

(b)¢ versus~ for the last 8500 points in the orbit. 

Compare (b) to Fig. 7d and Fig. 9b to see the· development 

of the strange attractor as it appears projected onto the . 
4 , ~ plane. 

Figure 9. Same as Fig. 8 with 15,000 points of ~(t) in (a) and 13,500 

points of~ versus~ in (b). 
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Figure 10. Same as Fig. 2 with M=3.0377. 

Figure 11. For M=1.5103 we display in (a) 4>(t) for 18192 steps along the 

orbit. In (b) we plot log l4>(w) I; the fourier transform of 

the last 213=8192 steps along the orbit. Only the first 

500 bins in frequency are shown; this takes us in w up to 

w=9. Beyond bin 500 is smooth noise. The bifurcation to a 

limit cycle occurs at a frequency of 1/l'i which corresponds 

to bin 37 on this plot. That frequency and one harmonic are 

vis i b 1 e here. 

Figure 12. Same as Fig. 11 for M=2.56039. This is just below the value 

of M where the limit cycle becomes 'unstable. 

Figure 13. Same as Fig. 11 for M=2.56051 which is just beyond the period 

doubling at M=2.56044. Note that the fundamental here is 

half of the fundamental in Fig. 12. 

Figure 14. Same as Fig. 11 for M=3.0172. 

Figure 15. The power spectrum log l4>(w)l for M=3.03406 which i.s just 

before a second period doubling occurs. ·Only the first 100 

bins out of 8192 are shown. 

Figure 16. The power spectrum log l4>(w) I for M=3.03461 which is just 

beyond the second period doubling. Only the first 100 bins 

out of 8192 are shown. 

Figure 17. Same as Fig. 16 for M=3.034064. Another period doubling is 

visible. 

Figure 18. The power spectrum log l4>(w) I for M=3.03535 which is in the 

chaotic regime. The broad band 11noise 11 is expected for the 

nonperiodic behavior on a strange attractor. 
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Figure 19. The power spectrum log j<P(w)l for M=3.067 which is in the 

region M > 3.037 beyond which only a stable limit cycle is 

seen. 
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