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1. INTRODUCTION

There has been recently a revival of interest in super symmetric gauge theories,

stimulated by the hope that supersymmetry might help in clarifying some of the ques

tions which remain unanswered in the so called Grand Unified Theories and in parti

cular the gauge hierarchy problem. In a Grand Unified Theoryl one has two widely

different mass scales: the unification mass M ~ 1015GeV at which the unification

group (e.g. SU(5) breaks down to SU(3) x SU(2) x U(l) and the mass ~ ~ 100 GeV at

which SU(2) x U(l) is broken down to the U(l) of electromagnetism. There is at pre

sent no theoretical understanding of the "extreme smallness of the ratio ~/M of these

two numbers. This is the gauge hierarchy problem.
2

There is a more technical aspect to the hieracrchy problem. In a Grand Unified

Theory the two mass scales come from the vacuum expectation values of two Higgs fields,

which in turn are related to the parameters entering the Higgs potential. For the

gauge hierarchy to emerg~ some Higgs fields must have a small mass close to ~ while

others must have a large mass close to M. This requires a "fine tuning" of the para

meters of the Higgs potential which, however, is in general unstable under radiative

corrections. As recently emphasized by Witten,3 there are special properties of

super symmetric theories which could help in this connection, namely the absence of

renormalization of some of the parameters entering the Lagrangian, for instance masses
4-7and scalar couplings. More simply, one could hope that, in a supersymmetric theory,

the smallness of a scalar mass is guaranteed by the smallness of the mass of its spinor

superpartne~which in turn is guaranteed by an approximate chiral invariance. Of

course, a solution of the numerical hierarchy puzzle itself will require more than

these special naturalness "properties of supersymmetric theories (called sometimes in

jest "supernaturalness") and can be found perhaps in non-perturbative breaking of
3

supersymmetry.

I shall not review here the numerous recent papers attempting to construct re

alistic models of supersymmetric gauge theories. As in previous work mostly by Fayet,

these papers use N = 1 super symmetry and do not attempt unification with gravitv.

Super symmetry must of course be broken, the scale of super symmetry breaking being at

least 15 to 20 GeV for consistency with experiment. In this lecture I shall attempt

to review the various mechanisms for spontaneous supersymmetry breaking
9

in gauge

theories. Most of the discussion will be concerned with the tree approximation but

what is presently known about radiative correction will also be reviewed.

-
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2. SCALAR-SPINOR SUPERMULTIPLETS

The supersymmetric Lagrangian
lO

for n interacting chiral (spin 0 - sPin~) super

multiplets<l>i (i=1,2, .•• ~istheS1.mloftrekinetictermplusan interaction which can be

derived from a single function of the <l>i' which we shall call the superpotential.

For a renormalizable theory the superpotential is a cubic polynoffiial

f (<I» (2.1)

(sum over repeated indices). The chiral superfields ¢i are complex and so are their

scalar components Ai and the corresponding auxiliary fields F
i

. The part of the

Lagrangian which describes the scalar interactions is

£
S.1.

(2.2)

The equations of motion obtained by varying (2.2) with respect to Fi and Fi are

F.
1

af
aA.

1

(2.3)

and their complex conjugates. Substituting (2.3) into (2.2) and changing the sign,

one obtains the tree approximation scalar potential

v (2.4)

The scalar potential is non-negative. If it is equal to zero at its minimum, super

symmetry is exact, if it is positive at its min'imum supersymmetry is spontaneously

broken. If supersymmetry is exact, the equations

° (2.5)

o
must have a common solution Ai A

f
Since (2.5) are n quadratic equations in n com-

plex unknowns, in general they will have 2n solutions but in special cases they may

have no solutionslO,ll or they may have a continuous infinity of solutions, in which

case there are massless scalars in the theory. It is not difficult to construct

examples for all three situations. When there are more than one solution, any of them

is equally acceptable as a vacuum. It can be sho\o.'I14 ,5 that, in pe,rturbation theor\',

higher order corrections do not renormalize the second and third term in the right

hand side of (2.2): the superpotential is unmodified by higher order corrections.

Furthermore12- 18 higher order corrections cannot induce spontaneous breaking of super

symmetry nor can they remove the degeneracy when there are several acceptable zero

energy vacua at the tree approximation. If there are massless scalars they remain
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massless.

The reason for all this is that, for x-independent fields, all higher order cor

rections to the scalar interaction (2.2) have the form12 , 7

£'
S .1.

(2.6)

where h .. is a hermitean matrix, function of the indicated variables, which can be
~J

calculated in perturbation theory. One sees immediately that only the first term in

the right hand side of (2.2) is renormalized and the wave function renormalization

matrix is

If we add (2.6) to (2.2), the equations of motion for F
i

and F
i

become

-F + If- + - 3h~
i 3A

i
Fj hij + F/k aFi = 0,

plus the complex conjugates. On the other hand, the equations for Ai become

a2 f _ ahjk _
F. 3A.3A. + F.Fk 'A - 0.

J ~ J J 0 i

(2.7)

(2.8)

(2.9)

o
Clearly, a solution Ai = Ai of (2.5), together with Fi = 0, satisfies both (2.8) and

(2.9). The sum of (2.2) and (2.6) vanishes for those values of A. and F .. Therefore,
~ ~ 18 19

a possible vacuum at the tree approximation is a possible vacuum to all orders. '

Ohserve that, since the energy cannot become negative (this is a consequence of the

super symmetry algebra) all the solutions of (2.5) give true mln~a to all orders.

Let us now consider spontaneous breaking of supersymmetry.20 At the tree approxi

mation this means that (2.5) have no solutions. and the F. cannot all vanish. In this
1

case one can show that the potential (2.4) cannot be "field-confining". We define a

potential to be field-confining when it tends to infinity if Ai tends to infinity so

that the fields Ai cannot become arbitrarily large. More precisely

if

v -+ 00

A A -,
i i

(2.10)

(2.11)

For a non confining potential, let us assume that there exists a positive number p

such that

v;;;. p > 0. (2.12)

This excludes unphysical potentials which tends to zero when one of the scalar fields
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tends to infinity. Then one can show that the determinant of the second derivatives
21

of the superpotential vanishes indentically in Ai

If
det aA.aA. -0, (2.13)

1 J

and the matrix has therefore at least one vanishing eigenvalue. Calculated at the

minimum of the potential (2.4), this matrix is the spinor mass matrix, which must

have a zero eigenvalue corresponding to the Goldstone spinor of spontaneously broken

super symmetry (see (2.17) below). The fact that it has a zero eigenvalue for all

values of the scalar fields Ai implies special properties of the Yukawa couplings.

It can be shown that the components of the eigenvector corresponding to zero

eigenvalue

o (2.14)

are polynomials in A. (independent of A.). The corresponding differential operator
1 1

applied to the potential (2.4) gives zero identically

v. (A) d V
J aAj

o (2.15)

and the same is true of the complex conjugate differential operator. Along the complex

curves defined by the differential equations

v i (A) (2.16)

the potential is constant. Assume that the potential reaches its minimum for a finite

value of the scalar fields. Given any minumum of the potential, there is one of these

curves (2.14) passing through it, which implies the presence of a complex massless

scalar (actually these valleys of minima extend to infinity). Observe that, from (2.4),

(2.17)

At a minimum this must vanish (together with its complex conjugate). Therefore, if

there is only one vanishing eigenvalue, one must have there the proportionality

v. (A) <X df
1 aA.

1

(2.18)

between a polynomial vector whose components are functions of Ai only and one whose

components are functions of Ai only. All these general results can be easily checked

in the special examples of spontaneous breaking of super symmetry discussed in Refs.

10, 11.



6

The necessity of massless scalars in addition to the Goldstone spinor may seem

strange, but it is a property of the tree approximation only. When super symmetry is

spontaneously broken, the radiative corrections, which still have the form (2.6),

change the situation in an essential way, because. the F
i

do not vanish. Already at
. 22 23

the one-loop level the degeneracy of the valley of mlnima is lifted ' and in gen-

eral one has only one absolute minimum and no massless scalars. The potential in

creases with the scalar fields so that the minimum is for relatively small values of

the fields. The value of the potential at the minimum also changes in the one loop

approximation. All this has been verified in several special examples. 22

3. SUPERSYMMETRIC GAUGE THEORIES

We consider now the case when there are gauge fields present. If the gauge group

is simpl~ the tree approximation scalar Lagrangian (2.2) must be complemented by

(3.1)

where the scalar fields A now belong to some representations of the guage group, Ta

are the matrices which represent the generators of the group and g is the gauge coup

ling constant. If the gauge group is semi-simple, one has the sum of a number of

terms like (3.1). If the gauge group contains U(l) factors, each U(l) factor con

tributes to the sum a term of the form

where gl is the U(l) gauge coupling

The ~D term is the Fayet-Iliopoulos

breaking. Eliminating the field Da

term of the form

while (3.2) gives rise to

(3.2)

constant and Y the U(l) charge of the scalar fields.
24

term, which can induce spontaneous supers)~etrv

through its equations of motion, (3.1) gives a

(3.3)

(3.4 )

In the scalar potential the negatives of (3.3) and (3.4) enter.

So, when gauge fields are present, the scalar potential consists of (2.4) plus

a sum of terms like the negatives of (3.3) and (3.4)

v af
aA.

1

~~. + r %g2(AT
a

A)2 + r %(glAYA + ~)2 ~ O.
1

(3.5)
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o
value Ai Ai of the scalar fields the potential in (3.5) vanishes, super-

13-16 18 .is exact in the tree approximation. Again one can show ' that hlgher

order corrections will not break supersymmetry and will not remove any degeneracy

which may exist in the tree approximation. Since the effective potential, to any

order, is determined by a knowledge of the renormalization group functions
25

this

fact can be related to the special properties of super symmetric gauge theories with

respect to renormalization. The only renormalization constants needed are:
6

a wave

function renormalization for each chiral superfield, a wave function renormalization

for each gauge superfield and a gauge' coupling renormalization for each gauge coupling

constant. No separate mass and scalar coupling renormalizations are necessary, which

gives relations among the renormalization group functions. Of course, those super

fields which belong to the same irreducible representation of the gauge group have

the same wave function renormalization.

If the chiral superpotential gives rise to 'spontaneous breaking of supersymmetry

in the tree approximation, which means that (2.5) have no solution, the presence of

gauge fields does not change the fact that super symmetry is spontaneously broken, since

the additional terms in (3.5) are positive. On the other hand, let us assume that the
o

first term in the right hand side of (3.5) vanishes for some value Ai Ai of the

scalar fields. We distinguish several cases.

Let us first consider the case when ~here are no Vel) factors, so that the last
o

term in the right hand side of (3.5) is missing. If A. = 0, the second term vanishes:
o 1

supersymmetry is exact. If not all the Ai vanish, the second term in (3.5) does not

vanish in general, however this does not necessarily mean that supersymmetry is brok~n.

The superpotential f(A) is invariant under the semi-simple gauge group; as it was first

pointed out by Ovrut and wess,26 this means that f(A) is also invariant under the com

plex extension of the group (same generators, but the parameters are allowed to be

complex instead of being restricted to be real). This complex invariance can be used

to find other values of A. where the first term in (3.5) still vanishes. The second
1

term is not invariant under the complex extension of the group and one can show that

it can be transformed to zero by using a transformation of the complex extension of

the group. In conclusion, for a semisimple gauge group, if the chiral part of the

scarlar potential (the f dependent part) reaches the value zero for some value of

the scalar fields, even if the gauge term does not vanish at that point, one can find

another value of the scalar fields where both terms vanish. This is then a true
27

minimum and supersymmetry is exact.

This result is also valid if there is one Vel) factor even with non vanishing ~,

provided the chiral part of the potential vanishes for non zero scalar field. In thi~

case supersymmetry cannot be spontaneously broken if it is not already broken by the

chiral superpotential. However, if there is more than one Vel) factor, one cannot

prove an analogous result in general, although, if there are enough chiral supermulti-

plets in the theory the statement tends to be correct anyway in concrete examples.
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For gauge theories also (with no Fayet-Iliopoulos term), if super symmetry is

spontaneously broken at the tree level by the chiral superpotential and the potential

has the same minimum value along a valley, higher order corrections will remove the

degeneracy. However now the effective potential does not necessarily increase with

the scalar fields 23 and can in some cases reach its minimum for large values of the

fields. This fact has led Witten to suggest a possible "inverse" solution of the

hierarchy problem, in which the small mass scale ~ is put into the theory at the

start and the large mass scale M is generated by radiative corrections.

In a gauge theory with a U(i) fa~torarv:lnoFayet-Iliopoulosterm,can one be gener

ated in perturbation theory and cause spontaneous breaking of super symmetry? In the

one-loop approximation a D tadpole is quadratically divergent and proportional to the

trace of the U(l) charge Y. It has been shown
28

by the supergraph method that all

higher loop contributions cancel. Therefore, if Tr Y = 0 no Fayet-Iliopoulos term

is generated. It should be possible to understand this non-renormalization result

as a consequence of combined supers)~etry and gauge invariance. 29 In the so called

Wess-Zumino gauge, where only the physical fields and the auxiliary field D of the

vector supermultiplet remain, the D tadpole, including all radiative corrections,

can be related to the D-scalar-scalar vertex, by cutting a line. This vert~x, in

turn, is related by super symmetry to the vector-scalar-scalar vertex for which gauge

invariance provides a non-renormalization statement.
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