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Abstract 

The NMR signals of both rigid and 

non-rigid molecules are enumerated using 

computer-assisted combinatorial techniques. 

These techniques essentially require the 

knowledge of the symmetry group of the 

molecule (cycle indices) from which NMR 
13 • 	signals (such as 	C NMR, proton NMR, etc.) 

are enumerated. The program can be used 

not only for structure elucidation but 

also for studying dynamic NMR processes 

• 	and phenomena. 

1 

This work was supported by the Director, Office of Energy Research, 
Office of Basic Energy Sciences, Chemical Sciences Divisionof the 
U.S. Department of Energy under Contract Number W-7405-ENG-48. 

This manuscript was printed from originals provided by the àuthor. 



1. Introduction 

An important problem in magnetic resonance is the pre- 

- diction of the number of NMR signals of a compound theoretically. 

It is not surprising that the number of NMR signals of a 

compound is intimately related to the topology of molecules 

and the associated symmetry. Randi and co-workers [1,2] have 

recently shown that the chemical shift of nuclei is related to 

their topology. Consequently, these authors have demonstrated 

that the chemical shifts can be predicted by a topological cor-

relation of atomic environments. In this paper we consider 

another important topological aspect, namely, the prediction 

of the number of NMR signals of a compound using its symmetry. 

Chemical applications of non-numerical computational tech-

niques is on the increase in recent years [3,8]. ApplicatIons 

of group theory and graph theory are becoming quite important 

in several areas [9-21]. In this paper we shall use a theorem 

of P6lya [22] forenuinerating the NMR signals and subsequently 

computerizing the procedure to have an automated algorithm which 

enumerates the NMR signals of any molecule. The theory behind 

the algorithm was developed by the present author [11]. For 

the enumeration of the NMR signals of non-rigid molecules we 

shall use the generalized wreath product groups discussed in 

detail elsewhere [11,13]. The computer-assisted procedures 

developed here should be of immense use in organic structure 

elucidation, understanding dynamic.NMR processes and phenomena. 

This could become a part of artificial intelligence packages of 

interest to several workers [23,24]. 



2. Theoretical Formulation 

Let D be the set of the nuclei of the same kind (such as 

H, 13C etc.) in the molecule. For example, if 13C NMR of 
11 

naphthalene is under consideration, then D would be the set of 

10 Carbon nuclei present in the molecule. Let R be a set con- 

taining just 2 elements. Let G be the point group or the permu-

'tation-inversion group of the molecule. Since G is the set of 

all permutational and composite permutation-inversion operations 

any geG induces permutations on elements in D since D is just 

the set of nuclei of the same kind in the molecule. Consider 

the set F of all maps from D to R. The action of G on D can in 

turn be transferred to F by the following recipe. Every geG 

acts on F as defined by the following formulae. 

gf(d) = f(gd) for every dcl). 

Two maps f and f c F are equivalent if 

f(d) = f(gd) for every dcl). 

Maps in F that are equivalent can be grouped into the same 

equivalence class. Thus the group G partitions F into equivalence 

classes. Let us restrict ourselves to the maps in F which have 

the following structure. Let the elements of R be denoted by 

gal  and 	Label the elements of D as d 1 , d2  ......d with 

n = JDj. Then consider a subset Fw  of F with every f1c F 

defined as follows. 

if i. 	j, d.cD 

1 	 a2ifi=j 

3 
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It can be seen that two nuclei d 1  and d are magnetically 

equivalent if f is equivalent to f 	Thus the equivalence 

classes of F w are t ie magnetic equivalence classes of nuclei in the 

Set D. 	Hence the number of equivalence classes gives the 

number of NMR signals of the molecule. 

If one introduces the concept of weight of an element nfl 

R as a formal symbol w(r) used to book-keep the number of times 

any rR occurs in a.function, then the weight of any function 

fcF can be defined as the product of the weight of its images. 

Symbolically, the weight of f, ,W(f), is 

W(f) = Ii w(f(d)). 
dc D 

Since any f c F  takes all dcD to a1  except when i = j, the 

weight of any f j  in F,  w ct if.a1  is the weight asso-

ciated with a 1  and a2  is the wei, ht assigned to ctv  

P61ya [22] proved a theorem which generates the equivalence 

classes of F from a group structure known as cycle index which 

we shall now define. Suppose any geG when it acts on 0 generates 

b1  cycles of length 1, b 2  cycles of length 2 etc. 	Equivalently 

the cycle type of g acting on D is (b 1 ,b 2 ,....). Then we can 
bb 

associate with g a cycle representation x 1  x2  .... . The cycle 

index of G, P G'  is defined as 

bb 

C X] 2'"" - IGI cC 	2 

Plya showed thatin generating function (G..F.) for the equi-

valence classes of F is given by the following substitution in 

the cycle index. 

.01 
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G.F. = PG(Xk - 	(w(r))k). 
rcR 

n-i 
The coefficient of w =1 	a2  in G.F. gives the number of 

magnetic equivalence classes of nuclei in D or the NMR signals 

of nuclei in D. Thus in order to enumerate the NMR signals we 

need to evaluate the generating function. 

3. Computer Enumeration 

In this section we outline computational techniques which 

essentially generate the generating function from the cycle 

indices and consequently enumerate the NMR signals of any compound. 

A. Algorithms 

Any NMR generating function is of the form 

G.F. = 	C(g) 
geG 

where 

C(g) = (ct1 +a2 ) 

if the cycle type of g is 	lg' n2g....njg). Thus we need 

procedures to generate each term (c4+a) ig  in the above product, 

to multiply each such term to form C(g) and sum over all g to 

evaluate the total generating functions. 

In order to generate the terms in the binomial expansion 

iinig  
we use the procedure of generating the compositions of 

an integer into 2 parts. The composition (n 1 , n2 ) of an integer 

n into 2 parts is defined by 

..ni  + '2 	 :> 0, T12 	0 



For example, all the compositions of 4 into 2 parts are shown 

be low 

4 + 0 

0 + 4. 

3 + 1 

1 + 3 

2 + 2 

Each composition corresponds to a terni in the generating function. 

For example, the composition 3 + 1 corresponds to the term a 3  jct2  

in the expansion ( 1+c 2 ) 4  ct 	. Similarly, the composition 2 + 2 

would correspond to 	in the binomial expansion. We use 

the procedure given in Nijenhuis and Wilf (25) to generate the 

compositions of an integer into 2 parts. The procedure which 

generates 	compositions of an integer into a, given number of 

parts in a lexicographic order is called NEXCOM. NEXCOM gener-

ates each composition n1  + n2  (or the term in the binomial 

expansion) as a vector (n 1 , n2 ). An algorithm called VBC 

"multiplies" each vector generated by NEXCOM with other vectors 

in the product C(g). It also finds the appropriate combinatorial 

coefficient for each such term in the product C(g). The main 

program assembles all the vectors and sums over all g in the 

group G. 

B. Computer Programs, Input and Output Description. 

The algorithms outlined in Section 3A were programmed into 

a computer. These set of subroutines and main program require 

the minimal input concerning the cycle indices. The program is 

moregeneral in that it can handle the other' irreducible repre-

sentations of the point group of the molecule even though, for 

I- 



the present purpose we need to give only the cycle index of 

the totally synunetric Al representation'. The input description 

- for the program NMR which generates the NMR signals is shown 

in Table 1. Let us expound further here on the variables 

listed in Table 1 especially cards succeeding the card 3. 

Consider 19p  NMR of the rigid PF 5  molecule. The point group 

of this molecule is D3h  and its cycle index is shown below.. 

D3h = 	
[x+2xx3  + 3x1x +4xx2  + 2x2 x31 

NCI would be 5 and the array ICOCI(I) = 1, 2, 3, 4, 2. The 

five terms should be given in the same order in which the co-

efficients were fed. For example, the term x 1  x will have the 

following card. 

2 1 2 
1 
1 2 [NPRO = 2, NCI(J) = 1, 2,Iexp(I,J) = 1,2]. 

The input for all the five terms are shown below. 

1 5 1 	(x) 

2 31 1.3 (xx3) 

2 1 2 1 2(x1x) 

2 3 1 1 2 (xjx2 ) 

21123 (x2x3) 

The program first reads the input and checks for internal con- 

	

bb 	b 
sistency in the input. For example, any term x 1  x2  ..x' in 

the cycle index should satisfy the following condition: 

Ibi = NNIJCLI 
1 

7 



If not, the program prints out an error message. The term just 

printed out by the program contains this error. The other error 

detected by the program is using the condition that 

IGI PG(Xk ~  I (w(r))k) 
rsR 

Should be divisible by IGI.  If it is not divisible by IGI,then 
it prints out an error ,  message. The error is either in the set 

of coefficients or in the terms in the cycle index that js 

oIhèrwise not detectible by the earlier.  criterion. The program 

also prints out the final result, namely, the number of NMR 

signals of the compound under consideration.'. 

4. Examples 

In this section we consider two examples of molecules whose 
13  

C and proton NMR signals will be enumerated. First, consider 

the polycyclic pericondensed benzenoid hydrocarbon shown in 

13 Fig. 1. Using our program NMR we will enumerate both the 

and proton NMR signals of this molecule. This molecule has 96 

carbon nuclei. The p:int group can be seen to be D6h.  The 

cycle index for these carbon nuclei are shown below. 

1 	96 	16 	32 	48 	8 44 = 	[2x1  + 4x6  + 4x3  + 8x2  + 6x1x2  I 

1 	96 	16 	32 	48 8 44 =  
12 [x1  + 2x6  + 2x3  + 4x2  + 3x1x2 

 ]. 

The input for this molecule is shown in Table 2. The program 

prints out the terms in the cycle index and the number of NMR 

sign.1s of the compound. 	The output for this input i.s shown in 

Table 3. Now we shall consider the proton NMRof the same 



molecule. The cycle index for the transformation of protons 

is shown below. 

- 	 = 	[x 	
+ 742  + 2x + 2x1 

The input for the proton NMR of this molecule is shown in Table 

4 and the output is in Table S. One can. immediately infer that 
13 this molecule gives rise to 10 	C resonances and 2 proton 

•resonances. As anothernon-trivial example we consider the 

chiral macrocycle containing enforced cavities reported by 

Helgenson, Mazaleyrat and Cram (26) recently. It is shown in 

Fig. 2. This chiral molecule possesses only a four-fold axis 

of rotation and its point group can be seen to be C 4 . The cycle 

index for the 13C NMR is shown below. 

	

1 	88 	22.44 
= 	[x1  + 2x4  + x2  J 

The input and output are shown in Table 6 and 7, respectively. 

From Table 7 we infer the low resolution 13C NMR of this molecule 

would contain 22 signals. This molecule has 8 methyl rotors 

exhibiting torsion at room temperature and is thus an example 

of a non-rigid molecule. The symmetry of such a system can in 

general be described by generalized wreath product groups. The 

symmetry group of this non-rigid molecule is C 4 [C 3 ], where C3  

is the torsional group for each methyl protons. The cycle index 

of generalized wreath products can be obtained using the method 

described elsewhere. The cycle index for protons is shown below. 

= -. [x ° Z + 2x0Z + X20 Z; 
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1 	3 where Z 	(x + 2x 3 ), the subscripts on the x variables 

are the products. The input for the proton NMR of this molecule 

can be constructed in the usual manner. The output is shown 

in Table 8. When the torsional permutations can be differentiated 

by a dynamic NMR at feasible experimental conditions, the group 

becomes C4  and the cycle index is shown below 

= - [x 	+ 2x 6  + 3x 2 ]. 

The output for this case is in Table 9. Thus as one can infer 

from Tables 8 and 9, the molecule exhibits 16 proton resonances 

with a dynamic NMR which coalesce to 12 signals at high temper-

ature because of torsional tunneling. Such dynamic effects can 

be efficiently studied with ourpresent computer program. 
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Table 1. 	The Input Description for the Program NMR 

Card Variable Format Description of the Variable 

1 Title Alpha numeriè title 

2 NGCI 1615 Number of cycle indices (always 1) 

NSUB Number of substituents (always 2) 

NNUCLI Number of nuclei whose NMR is 
being enumerated. 

MOD G Order of the point group of the 
molecule. 

3 Syn Label of the irreducible repre- 
sentation (always Al) 

4 NCI 1615 Number of terms in the cycle index 

5 ICOCI(I), Coefficients of each cycle type 
1=1, NCI 1615 in the cycle index 

For each cycle type (term) in the cycle index give a 
card described as Card 6. 

For 1=1, NC1 

6 NPRO,N(I,J), NPRO = numbe 	of terms in the 
J=1, NPRO, 1615 cycle type x1  x2 	.... 
IExp(I,J), N(I,J): 	the superfixes of each 

• 

• J=1,NPRO term in the cycle type. 

IExp(I,J): 	the suffixes of 

each term in the cycle type. 



Table 2. The Input for 13C NMR of the Molecule in Figure 1 

Card 

i 	13 C NMR signals of the pericondensed benzenoid compound 
in Figure 1 

2 	1 	2 	96 	12 

3.A1 

4 	5 

5 	1. 2 	2 	4 	3 

.6 	196 	1 

7 	116 	6 

8. 	132 	3 

9 	148 	2 

10 	2 	8 	44 	1 	2 

14 

4 



Table 3 

C13 NMR SGtlALS £JF Ti-fE PERICONDENCED BENZENOID COMPOUND IN FIG.1 
2 

41 
NPRO,N(I),I=1,NPRO 1 96 

IEXPS 	1 
NPRO,N(I) 9 I=1 9 NPFO 1 16 

IEXPS 	6 
NPRO,N(I) ,I=1,NPRO 1 32 

IEXPS 	3 
NPRO,N(I)9L=1,NPRO 1 48 

1EXPS 	2 
NPRO,N(I),I=1,NPRO 2 8 	44 

IEXPS 	1 	2 
ENUMERATICN CF NMR SIGNALS USING THE GENERATING FUNCTION TECHNiQUES 

NUMBER OF NMR SiGNALS 10 

15 



Table 4. The Input for Proton NMR of the Molecule in Figure 1 

Card 

	

1 	Proton NMR of the pericondense.d benzenoid compound 
in Figure 1 

	

2 	1 	2 	24 	12 

	

3 	Al 

	

4 	4 

5 

	

6 	1 	7 	2 	2 

	

7 	1 	24 	1 

	

8 	1.12 	2 

	

9 	1 	4 	6 

	

10 	1 	8 	3 



PROTON NMR-OF THE MOLECULE IN FIG.l 	Table 5 	 17 
2 

Ai - 
4PRO,NtI),1=l,NPRO 	1 	24 

IEXPS 	1 
NPRO 9 N(I),1=1 9 NPRO 	1 	12 

IEXF'S 	2 
NPRO.PUI),11,NPPC 	1 	6 

IEXS 	4 
NPRO,N(I),I=1,4PRO 	1 	8 

IEXPS 	3 
ENJMERATION OF NMR SIGNALS USING THE GENERATING FUNCTION TECHNIQUES 

WMBER OF NMR SIGNALS 	 2 



-F 

18 

Table 6. The Input for the 13C NMR of the Chiral Macrocycle 
in Figure 2 

Card 

i 	13 C NMR signals of the chiral niacrocycle in Figure 2 

2 	1 	2 	88 	4 

3 	Al 

4 	3 

• 	5 	1 	2 	1 

6 	1 	88 	1 

• 	7 	1 	22 	4 

8 	1 	44 	2 



• 	 Table 7 
19 

C13 NMR SIGNALS OF IHE CHIRAL M4CRCCYCLE IN FIG.2 

Al 
NPRO9N(II,1=1,NPRQ 	1 	88 

IEXPS 	1 
NPRO,N(I) ,11,NPRO 	1 	22 

IEXPS 	4 
1 	44 

IEXPS 	2 
ENUMEATIUN CF NMR SIGNALS USING THE GENERATING FUNCTION TECHNIQUES 

MJMEER CF NMR SIGNALS 	 22 



Table 8 

PROTON tMR. CF TIE NC—PIGID CHIRAL MACROCYCLE IN FIG.2 	 20 
2 

I1 

4PR0,N(IJ,I=1,NP5G 1 64 
IEXPS 	1 

4PRO0(I),I=1 9 NPRO 2 61 1 
IEXPS 	1 	3 
PRO,N(I1,I=1,tPRC 2 58 2 
IEXPS 	1 	3 

1PRO9N(I),1=1,ttPRC 2 55 3 
IEXPS 	1 	3 

4PRO,N(1),I=1,NPRI3 2 52 4 
IEXPS 	1 	3 
PR09N(I)91=1,IP1G 2 49 5 
IEXPS 	1 	3 
PRO,N(13,I=1,tFC 2 46 6 
IEXPS 	1 	3 
PR0,N(I),I=1,NPQ 2 43 7 
IEXPS 	1 	3 : 

PRO,N(I)91=1,NPRQ 2 40 8 
lXPS 	1 	3 

ENUMERATICN CF tt4R SIGNALS USING THE GENERATING FUNCTION TECHNIQUES 
NUMBER OF NMR SIGNALS 	 12 



Table 9 

21 PROTON NMR CF TI-E RIGLC MOLECULE I4 FIG.2 
2. 

Al 	 . 

1. 	64 
IEXPS 	I. 

NPRG,N(I),I=j,NpRo 	1 	16 
IEXPS 	4 	 . 	 . 

NPRO,N(j),j=j,fpgG 	1 	32 
IEXPS 	2 

ENUMER4TLCN CF (I'.R SIGNALS USING THE GENERATING FUNCTION TECHNIQUES 
tUMBER OF NMR SIGNALS 	 16.. 
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Figure Captions 	 - 

Figure 1. A pericondensed benzenoid hydrocarbon. 

For the computer-assisted enumeration 

of 13C NMR of this molecule, see 

Tables 2 and 3. For proton NMR, see 

Tables 4 and S. 

Figure 2. 4hial inacrocycle. For the computer-

assisted enumeration of NMR signals 

and proton) of this molecule 

see Tables 6 to 9. 
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Fig. 1 

I, 
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Fig. 2 
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