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ABSTRACT 

It is well known [1] that the characteristic polynomials 

of graphs of interest in Chemistry which are of any size is 

usually extremely tedious. This is primarily because of 

numerous combinations of contributions whether they were arrived 

at by non-imaginative expansion of the secular determinant or 

by the use of some of the available graph theoretical schemes 

based on the enumeration of partial coverings of a graph, etc. 

An efficient and quite general technique is outlined here for 

compounds that have pending bonds (i.e., bonds which have a 

terminal vertex). We have extended here the step-wise pruning 

of pending bonds developed for acyclic structures by one of 

the authors [2] for elegant evaluation of the characteristic 

polynomials of trees by accelerating this process, treating 

pending group as a unit. Further, it is demonstrated that this 

generalized pruning technique can be applied not only to trees 

but to cyclic and polycyclic graphs of any size. This technique 

factors the secular determinant to a considerable extent. The 

present technique cannot handle only polycyclic structures that 

have no pending bonds. However, it is known [3] that such 

structures can be reduced to a combination of polycyclic graphs 

with pending bonds so that the present scheme is applicable to 

these structures too, after such a reduction. Thus we have ar-

rived at an efficient and quite a simple technique for the con- 
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struction of the characteristic polynomials of graphs of any size. 



10 Introduction 

The characteristic polynomial of a graph (which may repre-

sent a molecule, molecular transformation or some other alge-

braic relation ofinterest.in chemistry) has been a subject of 

considerable attention in mathematical and chemical literature. 

It is an important structural invariant, even though it is not 

unique [4]. In view of theearly significance of the character-

istic polynomial as secular determinant in the simple HMO method, 

this particular rather significant finding was in fact recognized 

relatively late [5]. Hence today's interes,t in characteristic 

polynomial is because graphs play an important role in chemistry, 

in general, and structural chemistry in particular. Character-

istic polynomials, the graph spectrum, the spectral moments, 

and random walks are intimately related and study of one may 

answer important questions in the study of the other. In the 

past, both in mathematics and chemistry most of the attention 

was directed towards the spectral properties of graphs. In a 

way they are not quite the convenient quantities, which are, 

in general, irrational numbers whereas the coefficients of the 

characteristic polynomial, the spectral moments, and the count 

of random walks of different length [6] are all integers. 

However, their evaluation is not as simple as it may appear to 

uninitiated, whose past experience is with relatively small 

and highly symmetrical structures. Evaluation of the character-

istic polynomials received due attention as early as 1940 by 

Coulson [7] who indicated that the coefficients of the polynomial 

are related to a. count of pertinent subgraphs of the molecular 
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skeleton (in the case of p1-electron calculations of conjugated 

hydrocarbons, the relevant part of the skeleton is the structure 

formed by carbon atoms alone. Reviews on computing the character-

istic polynomials are available [8] and useful references can 

also be found in reviews on the eigenvalue of graphs [9-11]. 

Several alternative graph theoretical procedures [12-23] for 

the construction of the characteristic polynomial are available. 

The situation can be inferred by a quote from a paper by Harary, 

King, Mowshowitz and Read[l ]: "The calculation of character-

istic polynomials of graphs of any size is usually extremely 

tedious, but there is a short cut which can be applied to any 

graphs having a node of degree 1, and in particular to trees." 

These authors [1 ] also derive a recursive relation (1.1)[24] 

for the characteristic polynomials of graphs 

Ch(G) = Ch(G-E) - Ch(G-EE)  

where G is a graph, G-E is the graph 	 obtained from 
andG-EEIs 

G after deleting the edge E/the graph with edge £ and all its 

adjacent edges deleted. This formula, which was elevated to a 

status of a theorem [1] , is known for long time and was used 

in chemistry to a considerable extent. This is the basis of 

the composition principle of Heilbronner [25] and takes partic-

ularly a simple form for special cases, like chains and rings. 

Several papers have recently appeared in this area such as 

alternative forms of the composition principles [26], contraction 

of graphs [27,28], and extending the above recursion formula to 
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include cycles [29] and even more general subgraphs [30]. In 

addition characteristic polynomials for special cases have been 

reported, which include linear polyenes with side groups [31] 

and certain long chain cata-condensed hydrocarbon series [32]. 

While these approaches, when properly used, will result in sig-

nificant simplification in the: evaluation of the coefficients 

of the characteristic polynomials, they do not appear to be 

quite.general. The approach based on deletion of a bond and 

all the cycles which contain this bond is suitable, for instance, 

for catacondensed polycyclic structures when finding all such 

cycles is not difficult; Contractions of graphs based either 

on symmetry properties of special cases [27] or otherwise [28] 

appears to be promising. Such steps can probably be incor-

porated in other schemes, including the one outlined in the 

present paper. 

The present situation is practically solved only for the 

acyclic graphs (trees) in that the proposed construction of the 

characteristic polynomial is quite efficient [2]. - Recently a 

scheme was suggested [3] wherein the characteristic polynomial 

of a graph is obtained from the characteristic polynomials of 

qualified subgraphs. The derived subgraphs in general have 

pending bonds and may also represent smaller polycyclic struc-

tures. Such an approach also appears to be very efficient for 

large graphs. The contributions of pending bonds were reduced 

by repeated use of recursion. 
I 
We will show here the use of 

repeated recursion to accelerate the previously proposed scheme 

for finding the characteristic polynomials of trees. Further 



we extend this technique to polycyclic 'graphs with pending bonds. 

The cases of polycyclic graphs without pending bonds leads to 

graphs with pending bonds or polycyclic graphs with fewer rings. 

We conclude that combining these two approaches for the first 

time have lead to an efficient practical general 'scheme for the 

construction of the charact'eristic polynomials for graph of any 

size which is not "extremely tedious" or even tedious. 

2. Characteristic Polynomials of Trees 

A. Definitions and Preliminaries 

The adjacency matrix of a graph is defined as follows: 

(1 if the vertices i and j are connected. 
A..=< 

(0 otherwise. 	 (2.1) 

The secular determinant of the' adjacency matrix of a graph is 

known as the characteristic polynomial of the graph. The eigen-

values of the adjacency matrix constitute the spectrum of a 

graph. Tree isa connected graph with no cycles. The vertices 

of a tree with degree (valence) more than 1 can be defined as 

the roots of the tree. Any tree can be expressed as a product 

of a quotient tree Q formed by a selected set of roots and the 

branches resulting from pruning the tree at these selected 

roots. For example, let us consider the tree in Fig. 1. When 

a tree is pruned at a set of roots branches of certain kind 

recur. A collection of such fragments is shown in Fig. 2 with 

the black dots identifying the roots. Let such a branch 

containing k vertices (including the root) be denoted by Tk  and 

l.e.t the characteristic polynomial of the branch T. be h 1 . It 
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can be seen that h = x 1  -(i-i) x 2 , Let the fragments obtained 

by deleting the root in T be denoted by t. The characteristic 

polynomial of t, h i = x' 1 . The tree in Fig. 1 can be pruned 

at the roots a, c and d, resulting in the tree Q shown in Fig. 2 

and the fragments T11 , T21 ,T 	and T41 . Let us group all the 
the 

vertices of/same degree in the unpruned tree in Fig. 1 into the 

same sets. Then, the set thus obtained would be 

= {a}, Y 2  = {b}, Y 3  = {c} and Y.4  = {d}. 

The tree in Fig. 1 can be obtained by attaching each root in the 
the root of 

set Y to/a copy of the type Ti.  Such a product was formulated 

by one of the authors [36] which was called root-to-root product 

and can be denoted as Q. (T11 , T21 ,...) 

B. Elegant Evaluation of Characteristic Polynomials of 
Trees by Tree Pruning Techniques 

It was shown in Ref. 2 that the tree pruning technique 

paves an elegant way for the evaluation of characteristic poly-

nomials of trees by contracting the secular determinant of the 

unpruned tree in terms of the secular determinant of the pruned 

tree and the branches. Let Q be the quotient'tree obtained in 

one-fold pruning and let T, Ta,... be the types. The vertices 

in Q are divided into sets Y 1 , Y 2 ... so that all the vertices 

in Y. are attached to the root of a copy of the same type T 1f  

Let H 1  be the characteristic polynomial of T 1 (which is equal 

to h if T contains k vertices) and H'. be the characteristic 
i k. 	i 	 1 

polynomial of the type .T 1  with the root removed. Let q 11  be 

the adjacency matrix of the pruned tree (quotient tree) . Define 



a new contracted adjacency matrix of order mxm if m is the 

number of vertices in Q by the following recipe. 

-Hk(x) if i = j and  icYk 

	

A.. = 	 (2.2) 13 	+q..H(x) if I 	j and 

Then using a lemma of Schwenk [38] and a theorem of Godsil 

and McKay [39] the following result was established in Ref. 2. 

Theorem 1: The characteristic polynomial of the root-to-

root product Q. (T11 ,T21 ,...) is just the determinant of the 

matrix A defined above. 

Consider now the tree in Fig. 1 and the pruned tree Q in 

Fig. 3. The adjacency matrix of the tree in Fig. 3 is shown 

below. 

a b c d 

aO 100 

b 1010 

c 0 1 0 1 

	

d 0 0 1 0 	 (2.3) 

By the above theorem 1 the characteristic polynomial of the tree 

in Fig. 2 is 

	

-H1  +H 	0 	0 	-h4  +h4 	0 	0 

	

+H 	-H2  +H 	0 	= +1 	X 	+1 	0 

	

0 	+H 	-H3  +H 	0 	h 	-h2 	h 

	

0 	0 	+H 	_Hj 	0 	0 	h 	-h3 	(2.4) 

Recall that h. is the characteristic polynorni1 of a branch 

containing i vertices (including the root) and h is the 
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characteristic polynomial obtained by deleting the root. 

There are two aspects of the above scheme, even for trees, which 

have not been considered before. They are partial pruning and 

extensive pruning. The fomer is the procedure where only 

some of the terminal vertices are removed while in the latter 

procedure larger fragments involving terminal vertices are 

removed in one step. The latter procedure seems to be more 

efficient than the former. However, partial pruning will be 

of interest when comparisons of different trees are made (for 

example, to see if they are isospectral) because, this process 

can reduce a larger graph to a graph of desired form. The 

partial pruning is illustrated here only to emphasize that the 

procedure of contraction of secular determinants of graphs is 

quite general. Consider the same tree in Fig. 1 which will now 

be pruned selectively at the vertices a and d. This results in 

the tree shown in Fig. 4. The characteristic polynomial of the 

tree in Fig. 1 is shown below in terms of the tree in Fig. 4, 

a 	b 	c 	d 	e 

a -h4  h 	0 	0 

b 	1 	-x 	1 	0 	0 
Ch(x) = 

c 	0 	1 	-x 	1 	1 

d 	0 	0 	-h 	h3 	0 

e 	0 	0 	1 	0 	-x 

(2.5) 

The above determinant can be related to the determinant (2.4) 

as shown in the Appendix. This demonstrates the use of partial 

pruning . 



C. The Use of Repeated Pruning 

Consider the graph (2 methyl hexane) shown in Fig. 6. If 

one prunes the tree at the joints in either ends one obtains 

the contracted determinant of order 4 shown belbw. 

	

-x(x2 -2) x 2 	o 	o 

1 	-x • 1 	0 	
(2.6) 

	

1 -x 	1 

o 	0 	x -(x2 -l) 

Expanding (2.6) with the elements of last row, one obtains 

(2.7) 

2 	2 	 22 

	

-x(x -2) x 	0 	-x(x -2) x 	0 

-(x2 -1) 	1 	-x 	1 	-x 	1 	-x 0 

	

1 -x 	 0 	1 	1 

(2.7) 

The determinants of similar molecules such as 2 methyl hptane, 

2 methyl octane, etc. will look similar but for the presence of 

additional non-critical rows and columns. The determinants in 

(2.7) can be rearranged into a single determinant (2.8) shown 

	

below by using addition 	cheorem for determinants and an inter- 

change of the last column with the last row. 

-x(x2 -2) 	x2 	0 

• 	1 	-x 	1 
	

(2.8) 

	

0 	x 2  -1 -x(x 
2 -2) 

The determinant (2.8) is just the contracted determinant obtained 

if one prunes the tree on either side so as to create C-C-C 

branches with a terminal root in one case and a c-entered root in 

the other case. This pro-ce:s;s of se Lective -pruning •1.eads to ia 

-theorem.. 
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Theorem 2: Let L be a chain of length n and let L 	be n 	 n-i 
the graph obtained after deleting the root in L. Let the 

characteristic polynomials of Ln  and L_ 1 be 	and 

respectively. Then the characteristic polynomial of a graph 

which contains Ln  is the determinant of the contracted matrix 

in which the rows corresponding to the roots of attachment are 

replaced by - 	(diagonal element) and+kn-i (off diagonal 

elements), respectively. 

The proof of theorem 2 (with L 0  = -x, z = 1) follows from 

theorem 1 if one identifies the point of attachment of the chain 

L in the unpruned graph as the root and considers the unpruned 

graph G as the root-to-root product of the pruned quotient graph 

with the rooted chain L. Note that theorem 2 holds independent 

of the nature of the quotient •graph (acyclic or cyclic) as long 

as it gives the unpruned graph if the chain L is attached at 

the chosen root. This gives rise to an important corollary, 

stated below as corollary 1. 

Corollary 1: The characteristic polynomial of a cyclic or 

a polycyclic structure with pending chain of length n can be 

constructed from the contracted determinant in which the row 

corresponding to the root is replaced by'n  and 	respectively. 

Structures with several pending chains require combined 

use of the simple pruning scheme outlined in Ref. 2 and the use 

of chains of varied length instead of "branches" T J 'S which 

contain a single. root. 



3. Characteristic Polynomials of more General Pending Fragments 

We consider here pending fragments which are acyclic. 

Consequently they necessarily involve terminal vertices. The 

process of pruning can now be applied by disconnecting a whole 

fragment, which may have several branches. 	We have already 

seen that the process of pruning is "additive". This additivity 

extends also to the presence of several fragments 	if one 

views each such branch separately. For example, in a graph of 

3-inethylalkanes (shown in Fig. 7) we may consider F as methyl 

and ethyl groups with characteristic polynomials: x,(x 2 -l), 

one at a time and contract the graph to shorter chain. However, 

if we view both of them as parts of a single fragment of four 

vertices the contracted determinant will be of the form: 

(O—O 9 0), 

-(x4 --3x2 +l) x(x2 -l) 0 0 0 

1 	-x 	1 0 0 
	

(3.1) 

Expanding the above determinant we obtain (3.2). 

Ch(G) = -(x4-3x2+l) Rn - x(x 2 -l) R 1 	 (3.2) 

where R and R 1  are the residuals (the parts of the secular 

determinant involving the remaining rows and columns after the 

first (for R) and first two (for R 1 ) have been deleted. 

Here it is assumed 	that the atom next to the root has no 

neighbors except for linear chain (but this is not a severe 

restriction), since the cpansion only requires first atom to. 
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have a single neighbor. (However, additional neighbors can 

always be pruned) . Now we can once again apply the recursion 

on R giving: 

Ch(G) = -(x4 -3x2 +1)(_xR_ 1 +R 2 ) - x(x2 -l) •R 1 	(3.3) 

ion 
Express/(33) on simplification yields (3,4) 

4 	2 Rn-i 	2 	 4 	2 Ch() = -x(x -3x +1)!- x(x -1) R 1  -(x -3x +1) Rn 2 	(3.4) 

The combination of the first two terms in R ..1  in (3.4) gives 

(3.5) 

Ch(x) = -(x5 -4x 3+2x) R 1  - (x4-3x2+l) Rn 2 	(3,5) 

This is equivalent to attaching at the root of the quotient tree 

shown below to the next atom in the chain. 

Observe that the nature of Rn_i  or R 	does not enter the 

consideration, so that the conclusions are valid for more general 

graphs with pending bonds on any cyclic or polycyclic frame, as 

long as we are confined to pending section of the skeleton. The 

illustration given motivates the statement of quite a general 

case of a graph with F1  and F2  being some fragments and Rn  being 

residual, which can be cyclic, polycyclic, acyclic or even simple 

chain of length 1 	- 

We then have a general theorem: 
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Theorem 3: The characteristic polynomial of a graph shown 

in Fig. 8, with F1  and F 2  being acyclic fragments and R 1  being 

residual (having at least one bond length attachment to R 0 , and 

arbitrary residual.) is given by contracted determinant with (f1  

+ f 2 ) as the diagonal element and f 1 °f2  as off diagonal element 

if f1  and f2  are the characteristic polynomials of F 1  and F 2 , 

respectively. The proof can be simply derived when R 1  is a 
the 

single bond (R0  being a single vertex) in which case/graph is 

reduced to cases already considered, but the validity of proof 

does not depend on choice of R which involves fixed part of 

the determinant not used in expansion. 

B. Illustrations with Cyclic Structures 

Consider the simple graph of Fig. 9a. The cyclic part is 

considered as R0  and the ethyl substitutent as F. One obtains 

the following contracted determinant. 

-x(x2 -2) 	(x2 -l) 	(x2 -l) 

1 	-x 	1 
	

(3.6) 

1 	1 

Expanding (3.6) one obtains (3.7) 

Ch = x5  + 5x3  + 2x2 	4x - 2. 	 (3.7) 

Expression (3.7) can be compared with available tables [33] 

(one should replace x by -x for the comparison due to an alter-

native definition of the characteristic polynomial) [34] 

As another illustration consider graph b in Fig. 9. We have 
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here several but all pending fragments as single exocyclic bonds. 

The contracted determinant is given by (3.8) 

-(x2 -1) 	x 	0 	x 

	

2 	2 	2 

	

x 	-x(x-2) x 	0 
(3.8) 

	

0 	1 	-x 	1 

	

1 	0 	1 	-x 

Expanding (3.8) we obtain 3.9 which agrees with results that 

can be obtained by other methods 

Ch = x - 7x5  + 8x3  - 2, 	 (3.9) 

4, Applications 

Characteristic polynomials are given in a closed form for 

only few special class of, graphs [9]: the complete graphs 

the n-cycle (or the ring Ca). the n-cube 	the complete 

t-partite graph (which includes as special case the complete 

bipartite graphs Kmn  and stars K 1 ), the wheels (i.e., K 1  + 

C_ 1 ), path (or linear chains) graphs P n'  and n-dimensional 

octaherda. We will now show that all the above mentioned 

classes can now be extended to include graphs in which all 

vertices have the same pending fragment. The simplest case is 

the class of radialenes [28] shown in Fig. 10. These are de-

rived by attaching a single exocyclic bond to n-cycle. Consider 

for illustration the graph in Fig. 11. If one considers the 4 

vertices of the 4-cycle in Fig. 11 as roots then one obtains 

the contracted determinant (4.1) for the characteristic polynomial 

of the graph in Fig. 11. 
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-(x2 -l) 	x 	x 	x 

2 x 	-(x -1) 	x 	0 	
(4.1) 

x 	x 	-(x 2 -1) 	x 

x 	0 	x 	-.(x2 -1) 

Because of equal substitutions we can now factor out x 4  and 

introduce a substitution (x2-l)/x = y, which transformsthe 

determinant back into the form representing the characteristic 

polynomial of the quotient graph obtained after deleting the 

pending bonds. The characteristic polynomial of this quotient 

graph is shown in the expression (4.1) 

Ch(Q;x) = x4  - 5x2  + 4x 	 (4.2) 

The characteristic polynomial of the original graph is thus 

given by (4.3) 

Ch(x) = x4  (y4  - 5y2 + 4y) 

= (x2 -l) 4  - 5x2 (x2 -1) 2  + 4x3 (x2 -1) - 	(4.3) 

= (x6  - 8x4  + 4x3  + 8x2  - 1) (x2 -l) 

The result can be checked with available tabulation [21]. The 

presence of a factor in the characteristic determinant of the 

core will result in the factor for the exocyclic structure. 

Using the above regularity,one can use available tables 

of characteristic polynomials to derive the characteristic 

polynomials of homogeneously substituted structures. In Table 1 

we show the results for radialness and higher homologues. 



As another application consider graphs in Fig.12. The 

contracted determinant for this graph with roots chosen as in 

Fig. 12a is shown in 4.4 

-x(x2 -2) x2 -1 x2 l 	0 	0 

1 	-x 	1 	0 	0 

1 	1 	-x 	1 	1 

	

.0 	1 	-x 	1 

0 	0 	1 	1 -x 

(4.4) 

The contracted determinant of the graph in Fig. 12b differs 

only in the first row which is shown below. 

-x(x2 -2) 	x2 	x2 	0 	0 

The graphs represent a case of a single exocyclic group. In 

both cases we can factor out f (which is x 2  - 1 and x 2  respectively) 

restoring the first row of the determinant to representadjacency 

conditions for the substituted vertex. The only difference is 

in the first diagonal element and the factor. Such a form allows 

easy comparison of the characteristic polynomials. In fact by 

expanding the secular determinants by elements of the first row 

one obtains: (for the a and the b graph, respectively): 

x(x22) 

( 	
V(x 2-  1) [ 
	 - ( 	)J 	(4.5) 

( 	
(4.6) 
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Here we use notational device of Zykov [35],in which a graph 

also represen1 the polynomial [i.e., the characteristic poly-

nomial in our discussions]. Substituting, 

( /c\ 

= 2 ; 

= x(x -jl) 

in (4.4) and (4.5) one obtains the difference between (4.4) 

and (4.5) to be 4.7. 

3 2x -2x 2 -4x+4 (4.7) 

This can be compared with available characteristic polynomials 

for the two graphs [33] 

x 7  - 8x5  + 4x4  + l5x3  - lOx2  - 6x + 4 	 (4.8) 

x 7  - 8x5  + 4x4  + 13x 3  - 8x2  - 2x 	 (4.9) 

When molecules possess a number of common structural features 

many terms in the difference will cancel. This is therefore of 

interest when considering structurally related species. Then 

it may suffice only to obtain the characteristic polynomial for 

a single case, all others being derived from examination of the 

pertinent differences. It seems that in this way considerable 

simplification can result when studying or tabulating characteristic 

polynomials of a collection of structures -- an approach that 

deserves additional attention. 



S. Concluding Remarks 

We have shown in this paper that the construction of the 

characteristic polynomial for a large class of compounds in 

which a core (which may be acyclic, cyclic or polycyclic) is 

substituted by a number of pending fragments can be derived in 

an efficient way by the construction of a contracted secular 

determinant analogous to the approach previously described for 

trees.and their pruned subgraphs [2]. Neither the core to 

which pending branches are attached oi.ight to be tree, nor the 

pruning has to be made in single steps. This permits wider 

applications and accelerates the constructions of the character- 

istic polynomials. When this approach is combined with the scheme 

using Ulam subgraphs as a source for derivation of the character -

istic polynomials [3] we arrive at quite general procedures 

suitable for any large structure. It seems that for the first 

time we have a tool for obtaining the characteristic polynomials 

of complex structures in a relatively simple and pragmatic way. 

We therefore feel that the "problem of the characteristic 

polynomials" -- which has plagued theoretical chemistry and 

mathematical graph theory for quite awhile -- has been finally 

successfully resolved in practical terms (and we do not wish to 

belittle the important theoretical developments that preceded 

and provided important insights, even if found "extremely tedious" 

due to their inherent n! character in proliferating combinatorial 

possibilities accompanying applications to large structures). 

Despite the present success we can anticipate some further develop-

ments, such as (1) the. further study of related structure.s 
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(exploiting numerous coincidences in the coefficients that such 

structures may have; (2) possible incorporation of contraction 

of graphs of polycyclic structures (developed recently by the 

Chinese school of chemical graph theory) ; and (3) extending the 

present approach to more general pending fragments. In Table 2 

we illustrate our method with the graph in Fig. 13 which has no 

pending bonds. When C4  ring is considered as the core and ethyl-

cyclopropane as fragment expansion of the contracted secular 

determinant gives correct answer for the characteristic polynomial 

even though the system has no acyclic pending fragments. This 

suggests a wider applicability of the approach now limited to 

acyclic fragments. However, if we view the same molecule as a. 

C3  core (cyclopropane ring) and take ethylcyclobutane part as 

the fragment one obtains correct answer by the development of 

the secular (contracted) determinant only if contributions 

arising from fragments without roots (f) are taken with opposite 

sign (but not those products involving x and f). This is sug-

gesting that signs of the contributions may be governed by 

some rules depending on the number of components involved (as 

in Sachst  theorem for instance)-. Preliminary work suggests 

that indeed one may be in a position to extend the present 

scheme to cases having more general pending fragments. This is 

further strengthened by the fact that the graph shown in Fig. 

13 can also be viewed as a derivative of C 3  chain with the three 

and four membered rings at the ends as substituted fragments. 

Again the expansion of the determinant gives the correct answer. 

This indicates such extensions need proper attention and adequate 

proofs. This is beyond the scope of the present work. 
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Appendix 

The relationtween the characteristic polynomials of 

graphs in Figs 14.,j1Jsing the elements of the fifth row for the 

expansion of the determinant one obtains 

	

22 	3 

	

-x (x -3) x 	0 	0 

	

1 	-x 	1 	0 
Ch(x) = (-x) 	 + 

	

o 	i 	- x 	1 

	

o 	o 	x2 	-x(x2 -2) 

	

-x2 (x2 -3) x3 	0 	0 

	

1 	-x 	0 	0 

	

o 	1 	1 

	

o 	0 -x(x2 -2) 
	

(A.l) 

The second determinant (corresponding rows being a, b, c, d 

and columns a, b, d, e) is now expanded using the Cost Column. 

The renet can be expressed as follows: 

b 	d 

	

a -x2 (x2 -3) x 3 	0 	0 

b 	1 	-x 	0 	0. 

d 	0 	0 	x(x2 -2) 0 
 

a 	b 	d 	1 

In (A.2) a row and column in the third position was added without 

affecting the value of the determinant, with a, b, d yet to be 

determined. By rearrangement of rows and columns one then 

obtains for the form of this determinant: 
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22 	3 
-x (x -3) x 

	

1 	-x 

	

a 	b 

	

0 	0 

	

o 	o 

	

o 	o 

	

-1 	d 

o -x(x2 -2) 

(A,3) 

(The minus signwas absorbed in the diagonal element). The 

parameters a, b, d are now chosen so that the columns of the 

first determinant in the expansion of Ch(x) and the last deter-

minant agree, i.e., a = 0, b = -x, d = -x. The two determinants 

now differ only in single coluiin and can therefore be added to 

give(A.4) (when factor -x is associated with the third row) 

	

22 	3 
-x(x-3) x 	0 	0 

-x 	1 	0 

	

o 	-x x 2 -1 	-x 

	

o 	o 	x 2 	-x(x 2 --2) 

(A.4) 

This differs trivially from the contracted determinant based 

on vertices a, b, c, d (the minus sign can be factored out) 

Hence the procedure of partial prunning yields the same result 

as that of complete pruning. 



Table 1. 

.

Radial e4  

The Characteristic Polynomials for Radialenes with R 

being o—e, o—o—o, 	etc. 	The coefficients of the 

polynomial expressions are those of cyclic graphs 

C(n3,4,5,6,7..) 	which are 	available 	(e.g., 	Ref. 	25) 

R ; 	i.e., 	(x2 -l) 

n = 3 (x -1) 	- 3x (x -1) 	+ 2x 

n = 4 (x 2  - -1) 
 4 2 	2 

4x (x -1) 2  

n = 5 2 (x 5 -1) 	- 22 	3 5x (x -1) 	+ 42 	5 5x (x -1) 	+ 2x 

n = 6 2 (x 6 -1) 	- 2 	2. 	4 6x (x -1) 	+ 
4 	2 	2 	6 

	

9x (x -1) 	- 4x 

n = 7 (x2 -l) 7  - 7x2 (x2 -1) 	+ 14x4 (x2 -1) 3  - 	7x6 (x2 -.1) 	+ 2x 

R = —o---o i.e., 	(x3 -2x) 

n = 3 (x 3 -2x) 3  - 3x2 (x 3 -2x) + 2x3  

n=4 3 (x-2x) 4 23 	2 -4x(x-2x) 

n = 5 (x 3 -2x) 4  - 5x2 (x 3 -2x) + 5x4 (x 3 -2x) 	+ 2x5  

n = 6 3 (x 6 -2x) 

	

2 	3 	4 
- 	6x 	(x -2x) 4 	3 	2 	6 

	

+ 9x (x -2x) 	- 4x 

n = 7 3 (x 7 -2x) 23 	5 
- 	7x 	(x -2x) 43 	2 	63 	7 

	

+ 14x (x -2x) 	- 	7x (x -2x) 	+ 2x 

i.e:, R = (x4 -3x2 ) 

4 	23 	24 	2 n = 3 	(x -3x ) - 3x (x -3x ) + 2x 

.... 	etc. 

25 



26 

Table 2. Alternative Ways of Prunning the Molecule in Fig. 	13 

A. 	Roots chosen 	as in Fig. 13a, 

5 	3 	
2 4x-2) - t:x -5x +2x + 

1 

0 

1 

(x4 -4x2 +2x+l) 	0 	(x4 -4x 2 +2x+l) 

-x 	 1 	 0 

	

1 	 -x 	 1 

	

o 	 1 	 -x 

ira 

-(x 3 -5x 3+2x2 +4x-2) (-x 3+2x) -2(x4 -4x2 +2x+1) (x) 

= x8 	9x6  + 2x5  + 22x4  - lOx3  - lOx2  + 4x 

Roots chosen as in Fig, 13b. 

6 	4 	2 	5 	3 	 5 	3 
-(x -ôx +6x ) 	Cx -5x +2x) 	(x -5x +2x) 

1 	 •-x 	 1 

1 	 1• 	 x 

-x 2 (x 6 -6x4 +6x 2 ) +2(-1) (x5 -5x 3+2x) =  

+ (x6 -6x4 +6x 2 ) -2x(x5 -5x 3+2x) 

Roots chosen as in Fig. 13c. 

4 	2 	3 
-(x -4x ) x-2x 	0 

1 	-x 	1 

0 	x2 -1 -(x 3 -3x+2) 

= '-(x4 -4x2 ) (x3 -3x 2 +2) (x) + (x4-4x2) (21) + (x 3 -2x) (x 3 -3x+2) 

= -[x 8 -9x6 +2x5 +22x4 -lOx3 -10x2 +4] 

* In normal expansion this term iou1d have positive, not negative 
contribution. 
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Figure Captions 

A tree on lo vertices with 6 pending bonds (i.e., bonds 

connected to a terminal vortex) which can be pruned to a 

quotient tree and branches. The characteristic polynomial 

of this tree can be obtained in terms of its quotient tree. 

Several types of branches that result in prunning any tree. 

T1  stands for the branch containing i vertices including 

the root, which is denoted by a closed circle. h stands 

for the characteristic polynomial of the branch T. 

The types of fragments resulting from deleting the root of 

the branches in Fig. 2. T'is the fragment obtained after 

deleting the root of T.  The characteristic polynomial 

ofTish. 

rhe quotient tree and the branches obtained when the tree 

in Fig. 1 is pruned at all the roots. Roots are differen-

tiated by various symbols. To obtain the tree in Fig. 1 

attach the root of a symbol with the root of the branch 

carrying that symbol. 

S. An illustration of partial selective pruning. The same tree 

in Fig. 1 is selectively pruned. 

The chemical graph of 2-methyl hexane: the use of 

repeated pruning. 

A class of 3-methyl alkanes. For their characteristic 

polynomials see Sec 3. 

A graph which has acyclic fragments F1  and F 2  and R is a 

resithial graph which may be 	cyclic. 

9.. Two graphs which coitaii cycics. For their characteristic 

polynomials see Sec. 3B. 
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A class of. radialenes. Their characteristic polynomials 

can be obtained by an elegant technique outlined in Sec 4. 

A graph which contains a 4-cycle. Its characteristic 

polynomial can be obtained by a substitution in the 

characteristic polynomial of the 4-cycle. 

Two graphs which illustrate the concept of "difference. 

For a discussion of "difference" of characteristic poly-

nomials see Sec 4, 

A graph which has no pending bond. However, the technique 

developed here can be applied in 3 ways by "pruning" the 

grapri in 3 ways. Table 2 discusses the characteristic 

polynomials for these 3 ways. 
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