I1BL-13694
Preprint

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

RECEIVED

NG . L NENILE,

1 e Materials & Molecular e ammmosy
4 . . . (] [ i VR ":4:‘
% Research Division a0

LISRARY AnD
COCUMENTS SECTION
Submitted to Theoretica Chimica Acta

THE CHARACTERISTIC POLYNOMIALS OF STRUCTURES
WITH PENDING BONDS

K. Balasubramanian and M. Randic

December 1981

TWO-WEEK LOAN COPY

irculating Copy
ed for two weeks.

' Ccall
ion copy K

This is a Library C
| which may be borrow
7=\ For a personal retent

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

bpro<|— 147

{'?



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.




THE CHARACTERISTIC POLYNOMIALS - OF STRUCTURES WITH PENDING BONDS

’ !
K. Balasubramanian® and M. Randic

aDepartment of Chemistry
_ and
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720 U.S.A.

bDepartme'nt of Mathematics
Drake University
Des Moines, Iowa 50311
and
Ames Laboratory-DOE
Iowa State University
Ames, Iowa 50011 U.S.A.

This work was supported by the Director, Office of Energy Reséarch,
Office of Basic Energy Sciences, Chemical Sciences Division of the
‘U. S. Department of Energy under Contract Number W-7405-ENG-48.

This manuscript was printed from originals provided by the authors.



ABSTRACT

It is well known [1] that the characteristic polynomials
of graphs}of interest ih Chemistry which are of ény size is
usﬁally extremely tediouﬁ.‘ This is primarily because of
nume rous combinations of contrlbutlons'whethex'they were arrlved
at by non-imaginative expan51on of the secular determinant or
by the use of some of the available graph theoretical schemes
based on the enumeration of partial coverings of a graph, etc.
An efficient and quite generai technique is outlined here for
compounds that have pending bonds (i.e., bonds which have a
term@nal vertex). We have extended here the step-wise prunh%
of pending bonds developed for_acyclié structures by one of
the authors [2] for elegant evaluation of the-characteristic
polynomials of trees by accelerating this process, treating
‘pending_group as a unit. Further,vit is demonstrated that this
generalized pruning = technique can be applied not only to trees
" but to cyclic and polycyclic graphs of any size. This technique
factors the secular determinant to a considerable extent. The.
present technique cannot handle only polycyclic structures that
have no pending bonds. However, it is known [3] that such
structures can be reduced to a combinatién of polycyclic.graphé
with pending bonds so that the present schemekis applicable to
£hese structures too, after such a reduction. Thus we have ar-
rived at an efficient and quite a simple technique for the con-

struction of the characteristic polynomials of graphs of any size.



1. Introduction

The characteristic polynomial of a graph (which may repre-
sent a molecule, molecular transformation or some other alge-
.braic relation of interest.in chemistry) has been a subject of
considerable attention in mathematical and chemical literature.
It is an importanf structufdifinvariant, even though it is not
unique [4]. 1In view of the early significance of the character-
istic polynomial as secular determinant in the simple HMO method,
this particular rather significant finding was in fact recognized
relatively late [5]. Hence today's interest in characteristic
polynomial is because graphs play an important role in chemistry,
in gcneral, and structural chemistry in particular. Character-
istic polynomials, the graph spectrum, the spectral moments,
and random’walks are intimately related and study of one may
anéwer important questions in the study of the othér. In the
past, both in mathematics and chemiétry most of the attention
was directed towards the spectral properties of graphs. 1In a
way they are not quite the convenient quantities, which are,
in general, irrational numbers‘whereas the coefficients of the
characteristic polynomial, the spectral moments, and the count
of random walks of different length [6] are all integers.
However, their evaluation is not as simple as it may appear to
uninitiated, whose past experience is with relatively small
and highly symmetrical structures. Evaluation oflthe character-
istic polynomials received due attention as early as 1940 by
Coulson [7] who indicated that the coefficients of the polynomial

are related to a count of pertinent subgraphs of the molecular



skeleton (in the case of pi-electron célculations of conjugated
hydrocarbons, the relevant part of the skeieton is the structure
formed by carbon atoms alone. Reviews on computing the character-
istic polynomials are available [8] and useful references can
also be found in reviews on the eigenvalue of graphs [9-11].
Several alternative_graph_fhéé}etical procedures [12-23] for

the construction of the éhafacteristic polynomial are available.
The situation can be inferred by a quote from a paper by Harary,
King, Mowshowitz and Read[l ]i ""The calculation of character-
istic polynomials of graphs of any size is usually extremely
tedi?us, but there is a short cut which can be applied to any
graphs having a node of degree 1, and in parficular to trees."
ThéSe authors [1 ] also derive a recursive relation (1.1)[24]

for the characteristic polynomials of graphs

Ch(G) = Ch(G-E) - Ch(G-EE) | o (1.1)
where G is a graph, G-E is the graph - - obtained from
' : and G-EE 1is S

G after deleting the edge E/the graph with edge E and all its

‘adjacent edges deleted. This formula, which was elevated to a

status of a theorem [1], is known for long time and was used

in chemistry to a considerable extent. This is the basis of

the composition principle of Heilbronner [25] and takes partic-

ularly a simple form for special caseé, like‘chains and rings.
Several papers have recently appeared in this area such as

alternative forms of the composition principles [26], contraction

of graphs [27,28], and extending the above recursion formula to



include cycles [29] and even more genefal.subgraphs [30]. 1In
addition characteristic polynomials for special cases have been
réported, which include linear polyenes with side groups [31]
and certain long chain cata-condensedihydrocarbpn series [32].
While these approaches, when properly used, will result in sig-
nificant simplification invfhé7eva1uation_of the coefficients
of the characteristic polynomials, they do not appear to be
quite general. The approach based on deletion of a bond and
all the cycles which contain this bond is suitable, for instance,
for catacondensed polycyclic structures when finding all such
cycles is not difficult. Contractions of graphs based either
on symmetry properties of special cases [27] cr-otherwise [28]
appears to be promising. Such steps can probably be incor-
porated in other schemes, including the one outlined in the
present paper. -

The present situation is practically solved only for the
acyclic graphs (trees) in that the proposed construction of the
characteristic polynomial is quite efficient [2]. - Recently a
scheme was suggested [3] wherein the characteristic polfnomial
of a grabh is obtained from the characteristic polynomials of
qualified subgraphs. The derived subgraphscin_general have
pending bonds and méy also represent smaller polycyclic struc-
tufes. Such an approach also appears to Be very efficient fcr
large graphs. The contributions of pending bonds were reduced
by repeated use of récursion.' We will show here the use of
repeatcd recursion to accelerate the previously proposed scheme

for finding the characteristic pelynomials of trees. Further



we extend this technique to polycyclic graphs with pending bonds.
The cases of polycyclic graphs without pending bonds leads to
graphs with pending bonds or polycyclic_graphs with fewer rings.
We conclude that combining these two approaches for the first
 time have lead.to an efficient practical general 'scheme for the
construction of the characteristic polynomials for'graph of any

~ size which is not "extremely tedious" or even tedious.

2. Characteristic Polynomials of Trees
A. Definitions and Preliminaries

The adjacency matrix of a graph is defined as follows:

{1 if the vertices i and j are connected.
A. .
i

0 otherwise. | - ' (2.1)

The secular determinant of the adjacency matrix of a graph is
known as the characteristic polynomial of the graph. The eigen-
valués of the adjacency matrix constitute the~spe¢trum éf a

- graph. Tree is a connected gfaph with no cycles. The vertices
of a tree with degree (valence) more than 1 can be defined as
the roots of the tree. Any tree can be expressed as a‘product
of a quotient tree Q formed by a sele;ted set of roots and the
branches resﬁlting'from pruning the tree at these selected
roots. For example, let usvconsider the tree in Fig. 1. When
a tree is pruned at a set of roots branéhes of certain kind
recur. A collection of such fragments is shown in Fig. 2 with
the black dots identifying the roots. Let such a branch
containing k vertices (including the root) be denoted by T, and

let the characteristic pelynomial of the branch Ti be hi’ It
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can be seen.thathi = x* -(ifl)_x; Let the fragments obtained

by deleting the root in Ti'be denoted by t.. The. characteristic
i-1

polynomial of tss hi = X . The tree in Fig. 1 can be pruned

at the roots a, c and d, resulting in the tree Q shown in Fig. 2

and the fragments T T and T,,. Let us group all the

gments Tp1, Ty T3 41 |
vertices of/same degree in the unpruned tree in Fig. 1 into the
same sets. Then, the set thus obtained would be

Y, = {a}, v, - {b}, Yy = {c} and Y, = {d}.

The treein Fig. 1 can be obtained by attaching each root in the
the root of . ' '
set Yi to/a copy of the type Til' Such a product was formulated
by one of the authors [36] which was called root-to-root product

and can be denoted as Q. (T T

11° Tpp2e--)

B. Elegant Evaluation of Characteristic Polynomials of

Trees by Tree Pruning Techniques

It was shown in Ref. 2 that the tree.prUning'fechniQue
paves an elegant way for the evaluation of characteristic poly-
nomials.of trees by contracting the secular determinant of the
ﬁnpruned tree in terms of the secular determinant of the pruned
tree and the branches. Let Q be the quotient tree obtained in
one?fold pruning and let TIU TZF"' be the types. The vertices
1° YZ"‘ so that all the vertices
in Yi are attached to the root of a copy of the same type T

in Q are divided into sets Y

if
Let Hi be the characteristic polynomial of Til(which is equal

to hk if Tﬂ_contains k vertices) and H; be the characteristic

polynomial of the type T; with the root removed. Let qij be

the adjacency matrix of the pruned tree {quctient tree). Define
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" a new contracted adjacency matrix of order mxm if m is the

number of vertices in Q by the following recipe.

o - -Hk(x) if i = j and ieY '(2._2)
lJ. +qinl'((x) if i # j and ieY.
Then using a lemma'ofqéeﬂﬁenk [38] and a theorem of Godsil
and McKay [39] the follbwiné result was established in Ref. 2.
Theorem 1: The characferistic pélyhoﬁial of the root-to-
root product Q. (Tll’TZI"") is just the determinant of the
matrix A defined above.

Consider now the tree in Fig. 1 and the pruned tree Q in

Fig. 3. The adjacency matrix of the tree in Fig. 3 is shown
below. |
a b c d
alo 1 0 o
bj1l1 0 1 0
0 1 0 1
LO 0 1 Q_ (2.3)

in Fig.

is

-H

1

0

t

-H

+Hi

Recall that hi is the characteristic polynomial of a branch

'
containing i vertices (including the root) and hi is the

- By the above theorem 1 the characteristic polynomial of the tree

(2.4)



characteristic polynomial'obtained by deleting the root.

There are two aspects of the above scheme, even for trees, which
have not been considered before. They are partial pruning and
extensive pruning. Thé former is the procedure where only
some of the terminal vertices are removed while in the latter
procedure larger fragments iﬁvalving terminal Vertices are -
removed in one step. Theilatter procedure seems to be mofe
efficient than the former. However,'partial pruning will be
of interest when comparisons of_différent trees are made (for
example, td see if they are isospectral) because, this process
can reduce a larger graph to a graph of desired form. The
partial pruning is illustrated here only to emphasize that the
procedure of contraction of secular determinants of graphs is
quite general. Considér the same tree in Fig. 1 which will now
be pruhed seleétively at thebveitices a and d. This results in
the tree shown in Fig. 4. 'The characteristic polynomiai of the

tree in Fig. 1 is shown below in terms of the tree in Fig. 4.

a b c d e
t .
a —h4 h4 0 0 0
b 1 -X 1 0 0
Ch(x) = (2.5)
' c 0 1 -X 1 1
t
d 0 0 -h3 h3 0
e 0 0 1 0 -X

'The above determinant can be related to the determinant (2.4)
as shown in the Appendix. This demonstrates the use of partial

pruning..



C. The Use of Repeated Pruning |
Consider the graph (2 methyl hexane) shown in Fig. 6. 1f
one prunes the tree at the joints in either ends one obtains

the contracted determinant of order 4 shown below.

x(x¥-2) X0 0
1 x 1 0
‘ (2.6)
0 1l -x
2
0 0 x -(x"-1)

Expénding (2.6) with the elements of last row, one obtains

(2.7)

-x(xz-Z) xz 0 | ~x(x2e2) xz 0
-(x%-1) 1 x 1| -x 1 -x 0 2.7)
0 1 o-x| 0 11

The determinants of similar molecules such as 2 methyl heptane,
2 methyl octane, etc. will look similar but for the presence ofb
additional non-critical rows and columns. The determinants in
(2.7) can be rearranged into a single determinant (2.8) shown
below by using addition cheorem for determinants and an inter-

change of the last column with the last row.

-x(x2-2) xz _ 0
1 -x 1 _ (2.8)
0 xz*l -x(xZ—Z) ‘

vThe deferminant (2.8) 1is jﬁst'the contracted determinant obtained
if one prunes the tree~on either side so as to create C-C-C
branches with a terminal root in one case and a centered root in
the other case. This process of selective pruning leads to a

‘theoremn.
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Theorem 2: Let L be a chain of iength n and let L;-l be
the graph obtained after deleting the root in Ln' Let the
characteristic polynomials of L, and L;_l be 2n and 2;_1,
respectively. Then the characteristic polynomial of a graph
which contains Ln is the determinant of the contracted matrix
in which the rows correspohﬁiﬁé to the roots of attachment are
replaced by -zn (diagonai eiement) and +2£_1 (off diagonal
elements), respectively. | f

The proof of theorem 2 (with Ly = -x, &, = 1) follows from
theorem 1 if one identifies the point of attachment of the chain
L in the unpruned graph as the root and considers the ﬁnpruned
graph G as the root-to-root product of the pruned quotient graph
with the rooted chain L - Note that theorem 2 holds independent
of the nature of the quotient graph (acyclic or cyclic) as long
as it gives the unpruned graph if the chainbLn is attached at
the chosen root. This gives rise to an important corollary,

stated below as corollary 1.

Corollary 1: The characteristic polynomial of a cyclic or

a polycyclic structure with pending chain of length n can be

constructed from the contracted determinant in which the row

corresponding to the root is replaced by 2 and 2;_1, respectively.
Structures with several pending chains require combined

use of the simple pruning scheme dutlined in Ref. 2 and the use

of chains of varied length instead of '"branches" Tij's which

contain a single. root.
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3. Characteristic Polynomials of more General Pending Fragments
We consider here pending fragments which are acyciic.
Conséquently they necessarily.involve terminal vertices. The
process of pruning can now be applied by disconnecting a whole
fragment, which may have several branches. We have already
seen that the proﬁess of pruning is "additive'. This additivity
extends also fo the presence of several fragments F s if one
views each such branch separately. For example, in a graph of
3-methy1a1kaneé (shown in Fig. 7) we may consider Fn as methyl
and ethyl groups with characteristic polynomials: x,(xz—l),
one at a time and contract the graph to shorter chain. However,
if.we view both of them as parts of a single fragment of four

vertices_the contracted determinant will be of the form:

(0—0——o—0),

—(x4—3x2+1) x(xz-l) 0 0 O e

Expanding the above determinant we obtain (3.2).

ch(6) = -(x*-3xP+1) R - x(x®-1) R,

where R, and R _; are'the}residuals (tﬁe parts of thé secular
determinant involving the reméining rows and columns after the
first (for R)) and first two (forARn_l) have been deleted.
Here it is assumed that the atom next to the root has no
neighbars except for linear chain (but thié is not a severe:

restriction), since the expansicn only recgquires

1 -x 1 00 ... (3.1)

(3.2)

11

‘



12

have a single neighbor.  (However, additional neighbors can

always be pruned). Now we can once again apply the recursion

on R giving:

Ch(G) = -(x4-3x2+1)(—an_lfRﬁ_2) - x(x?-1) R__, (3.3)
ion _ _
Express/(3.3) on simplification yields (3.4)
R'n-l

Ch(x) = -x(x4-3x2+1)/- x(xz-l) Rn_‘1 *(x4~3x2+1) Rn*2 (3.4)

The combination of the first two terms in Rn=1 in (3.4) gives

(3.5)

Ch(x) = -(x"-4x>+2x) R__; - (x*-3x%+1) R__,

(3.5)

This is equivalent to attaching at the root of the quotient tree

shown below to the next atom in the chain.

\
/

Observe that the nature of R _qor Rn_évdoes not enter the
consideration, so that the conclusions are valid for more general
graphs with pending bonds on any cyclic or polycyclic frame, as
long as we are confined to pending section of the skeleton. The
illustration given motivates the statement of quite a general

case of a graph with Fl and FZ being some fragments and R being

residual, which can be cyclic, polycyclic, acyclic or even simple
) .

chain of length 1,

We then have a general theorem:



Theorem 3: The characteristic polynomial of a graph shown

in Fig. 8, with F, and F being acyclic fragments and R, being

1 2 1
residual (having at least one bond length attachment to RO’ and

‘arbitrary residual) is given by contracted determinant with (fl
+ fz) as the diagonal element and fl-fz as off diagonal element

if fl and f2
- respectively. The proof can be simply derived when Ry is a

' : : : - ‘the
single bond (Ro being a single vertex) in which case/graph is

are the characteristic polynomials of‘F1 and FZ’

reduced to cases already considered, but the validity of proof
does not depend on choice of R1 which involves fixed part of

the determinant not used in expansion.

B. Illustrations with Cyclic Structures
Consider the simple graph of Fig. 9a. The cyclic part is '
considered as RO and the ethyl substitutent as F. One obtains

the following contracted determinant.

x(xF-2) (xF-1) (xP-1)
1 Cx 1 - (3.6)
1 1 -X

Expanding (3.6) one obtains (3.7)

Ch = x° + 5x° + 2x* - 4x - 2. | (3.7)

Expression (3.7) can be compared with available tables [33]
(one should replace x by -x for the'comparison due to an alter-
native definition of the characteristic}polyngmial) [34].

As another‘illustratioh consider graph b in Fig; 9. We have
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here several but all pending fragments‘as’single exocyclic bonds.

The contracted determinant is given by (3.8)

-(xz-l) x 0 X
xz ;x(xz-Z) xz' 0
A (3.8)
0 1 -X 1
1 0 1 -X
Expanding (3.8) we obtain 3.9 which agrees with results that
can be obtained by other methods |
Ch = x/ - 7x° + 8x° - 2. | (3.9)

4, Applications

Characteristic polynomials are given in a closed form for
only few special class of_graphs.[9]: the complete graphvan,
thé n—cycie (or the ring Cn), the n-cube Qn’ the complete o
t-partite graph (which includes as special case the complete.
bipartite graph; Km’n and stars Kl,n)’ the wheels (i.e., K1 +
Cn_l),‘path (or linear chains) graphs Pn’ and n-dimensional
octaherda. We will now show that all the above mentioned
classes can now be extended to include graphs in which all
vertices have the same pending fragment. The simplest case is
the class of radialeneé [28] shown in Fig. 10. These are de-
rived by attaching a singlé exocyclic bond to n-cycle. Consider
for illustration the graph in Fig. 11.. If one considers the 4
vertices of the 4-cycle invFig. 11 as roots then one obtains
the contracted determinant (4.1) for the characteristic polynomial

of the graph in Fig. 11.



-(xz-l) x X X
X ' —(xz-l) | X 0 (4.1)
% x  -(xF1) 0 x
x 0 x  -(x%-1

Becauﬁe of equal substitutions we can now factor out,x4 and
introduce a substitution‘(xz-l)/x =y, which transfofnsthe
determinant back into the form representing the charaCtefistic‘
polynomial of the quotient.graph obtained after deleting the.
pending bonds. The characteristic polynomial of this quotient
~graph is shown in the expression (4.1)

Ch(Q;x) = x4 - sz + 4x -(4.2j
The characteristic polynomial of the original graph is thus
given by (4;3) ' |

4

ch(x) = xt (y* - sy? + 4y)

(x>-1)4 - 5x2(x2-1)2'+ 1x3(x?-1) (4.3)

x® - axt v 4xd 4 8x? - 1) (x%-1)

The result can be checked with available tabulation [21]. The
presence of a factor in the characteristic determinant of the

core will result in the factor for the exocyclic structure.

Using the above regularity,one can use available tables
of characteristic polynomials to derive the characteristic
polynomials of homogeneously substituted structures. In Table 1

we show the results for radialness and higher homologues.
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As another applicétion consider graphs in Figglz. The
contracted determinant for this graph with roots chosen as in

Fig. 12a is shown in 4.4

-x(xz-Z) _x241 x-1 0 o0
1 -X 1 0 0
1 1 -X 1 1 (4.4)
0 0 1 -x .1
0 0 1 1 -x

The contracted determinant of the graph in Fig. 12b differs

only in the first row which is shown below.

—x(x2-2) xz x2 0 0

The graphs represent a case of a single exocyclic group. In

both cases we can factor out f (which is xz-l and x2 respectivelyb
restoring the first rdw of the determinant to represent adjacency
‘conditions for the substituted vertex. The only difference is

in the-firét diagonal element and the factor. Such-a form allows
easy comparison of the characteristic polynomials. In fact by
expanding the secular determinants by elements of the first row

one obtains: (for the a and the b graph, respectively):

AT -

-
o




Here we use notational device of Zykov [35], in which a graph
also represents the polynomial [i.e., the characteristic poly-

nomial in our discussions]. Substituting,

A } ‘ _—

0

I
~

]
&%
+
N

x(xz—l)
o——0

in (4.4) and (4.5) one obtains the difference betweeﬁ (4.4)

. and (4.5) to be 4.7.

2

2x° - 2x° - 4x + 4 (s,

This can be compared'with available characteristic polynomials

for the two graphs [33]:

x! - 8x® +axt e 15x® - 10xf - ex v 4 0 (4

7 S 4 3 v 2

x - 8x" + 4x + 13x7 - 8x" - 2x (4.

When molecules possess a number of common structural features

many terms in the difference will cancel. This is therefore of

interest when considering structurally related species. Then

it may suffice only to obtain the characteristic polynomial for

a single case, all others being derived from examination of the

pértinent differences. It seems‘that in this way considerable

7)

.8)

9)

17

simplification can result when studying or tabulating characteristic

polynomials of a collection of stiuctures -- an approach that

deserves additional attention.

\



18

5. Concluding Remarks
We have shown in this paper that the construction of the

characteristic polynomial for a large class of compounds in

. which a core (which may be acyclic, cyclic or polycyclic) is

substituted by a‘number of pending fragments can be derived in

an efficient way by the construction of a contracted secular
determinant analogous to the approach previously described for
trees and their pruned subgraphs [2]. Neither the core to

which pending branches are attached ought to be tree, nor the
pruning has to be made in single steps. This permits wider
applications and accelerates the constructioné of the character-
istic polynomials. When this approach is combined with the scheme
using Ulam subgraphs as a source for derivation of the character;
istic polynomials [3j we arrive at quite general procedures
=suitable for any large structure. It seems that for the first .
time we have a tool for obtaining the characteristic polynomials
of complex structures in a relatively simple and pragmatic way.

We theréfore feel that the '"problem of the characteristit
polynomials" -- which.has plagued theoretical chemistry and
mathématical graph theory for quite a while -- has been finally
successfully resolved in practical terms (énd we do not wish to
belittle the important theoretical developments that preceded
and provided important insights, even if.found "extremely tedious"
due to their inherent n! character in prolifefating combinatorial
possibilities accompanying applications to large strﬁctures).
Despite the present success we can anticipate some further develop-

ments, such as (1) the. further study of related structures
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(exploiting numerous coincidences in the coefficients that such
structures may have; (2) possible incérporation of contraction

of graphs of polycyclic structures (developed recently by the
Chinese school of chemical graph theory); and (3) extending the
présent épproach to more general pending fragments. In Table 2
we illustrate our method with the graph in Fig. 13 which has no-
pending Bonds. When_C4 ring 1is considéred'as the core and ethyl-
cyclopropane as fragment'eXpansion of the éontracted secular |

v déterminant gives correct answer for the chafacteristic polynomial
even though the system has no acyclic pending fragments. This
suggests a wider applicability of the approach now limited to
acyclic fragments. However, if we view the same molecule as a.;
Cq corev(cyclopropane,ring) and take ethylcyclobutane part as
vthe fragment one 6btains correct answer by the development of

the sécular (éontfacted).determinant only if contributions
arising from fragmentstwithout roots (f) are takén with opposite
sign (but not those products involving x and f).» This is sug-
gestiﬁg that signs of the contributions may be_goverhed by

some rules depending on the number of components_in&olvea (és

in Sachs' theorem for instance). Preliminary.work suggeéts

that iﬁdeed one may be in a position to extend the present

scheme to cases having more general pending fragments. Thisvis
further strengthened by the fact that the graph shown in Fig.

13 can also be viewed as a derivative of C3 chain with the three
and four membered rings at'the_ends as substituted fragments.
Again the expansion of the determinant gives fhe cofrect answer.
This indicates such extensions need proper attention and adequate

proofs. This is beyond the scope of the present work.
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Appendix

The relation between the characteristic polynomials of
graphs in Figs 14APsing the elements of the-fifth_row for the

expansion of the déterminant one obtains

—xz(xz-S) x3 0 0
| ; 1 -x 1 0
Ch(x) = (-x) : +
0 1 -X 1
0o 0 xX  -x(x%-2)
3
-x"(x"-3) x 0 0
1 -X 0 0
0 : 1 1 1
0 0 -x(x%-2) 0 (A.1)

The second determinant (corresponding rows being a, b, c, d
and columns a, b, d, e) is now expanded using the Cost Column.

The renet can be expressed as follows:

a b d
a -xz(xz-S) xs 0 0
b 1 -X 0 0
2 (A.2)
d 0 0 -x(x"-2) 0
a b 4 1

In (A.2) a row and column in the third position was added without
affecting the value of the determinant, with a, b, d yet to be
determined. By rearrangement of rows and columns one then

obtains for the form of this determinant:
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-xz(xz—S) X 0 0

1 -X 0 0
(A.3)

a b -1 d

2

0 0 0 -x(x°-2)

(The minus sign‘was absorbed in the diagdnal element). The
parameters a, b, d are now chosen so that the columns of the
first determinant in the expansion of Ch(x) and the last deter-
minant agree, i.e.,.a =0, b=-x,d=-x. The two determinants
now differ only in single column and can therefore be added to

~give(A.4) (when factor -x is associated with the third row)

—xz(xz-S) x3 0 -0
1 -X - 1 0
2 (A.4)
0 -x x -1 -X :
0 0 x%  -x(x?-2)

This differs trivially from the contracted determinant based
on vertices a, b, ¢, d (the minus sign can be factored out).
Hence the procedufe of partial prunhing Yields the same result

as that of complete pruning.

o
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Table 1. The Characteristic Polynomials for Radialenes with R
being o—e, o—o—o, ::>v—o etc. The coefficients of the
polynomial expressions are those of cyclic graphs

C,(n=3,4,5,6,7..) which are available (e.g., Ref. 25)

Radiglens R = omo i.e., (x-1)

n =3 (xz-l)3 - sz(xz-l) + Zx3

n =4 '. (x2-1)4v- 4x2(x2-1)2

n=5  (x2-1)° - 5x%(x%-1)° + sx*(x%-1) + 2x°
nes 0210 - ettt ¢ ot 1)? - 4

)

n=7 (x*-1)7 - 1x2x%-1)0 ¢ 1axt(x2-1)3 - 7x®(x3-1) + 2x

R = 0—0—0 i.e., (x3-2x)

n=3  (x°-2x)° - 3xP(x>-2%) + 2x°
n=4  (x0-2x)% - 4x®(x3-2x)2
n==>5 v(x3-2x)4 - sz(xs—Zx)3 + 5X4(X3'2X) + ZXS

n==~o v(x3-2x)6 - 6x2(x3-2x)4 + 9x4(x3-2x)2 - 4x6

n=7 (x-2x) - 7xf(xP2x® ¢ 1axt P20 ? - 8 xBan ¢ 2x]

R = :t>»__4} i.e.,_(x4~3x2)

4
n=3 (x4—3x2)3 - sz(x4-3x2) + 2x7

etc.



26

Table 2. Alternative Ways of Prunning the Molecule in Fig. 13

"A. Roots chosen as in Fig. 13a.

S (x°-5x+2x%+4x-2) (xt-ax®+2x+1) 0 (xt-axtezxel)
- 1 B -X 1 0 |
0 1 S -x _ 1
1 ' 0 | 1 -X

L (x3-5x342xP44x-2) (-x°+2x) -2(xT-4xP+2x+1) (x2)

3 2

8 - 10x~ + 4x

x - 9x6

+ sz + 22x4 - ldx

B. Roots chosen as in Fig. 13b.

-(x6-6x4+6x2) (x5-5x3+2x) (x5—5x3+2x)
1 -X 1
1 ' 1 -X
, .
= x?(x8-6x%+6x%) +2(-1)" (x°-5x°+2x)
+ (x6-6x4+6x2) -2x(x5-5x3+2x)
C. Roots chosen as in Fig. 13c.
-(x4-4x2) x3-2x 0
1 -x 1
0 x%-1 -(x3—3x+2)

Sxteax?) (x3-3x%e2) (x) + (xP-ax?) (xP-1) + (xP-2x) (x3-3x+2)

S1x8-9x0+2x7+22x4-10x3-10x%+4]

* In normal expansion this term would have positive, not negative
contribution.

-
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Figure Captions

1.

A tree on lo vertices with 6 pending bonds (i.e., bonds
connectéd to a terminal vortex) which can be pruned to a
quotient tree and branches. ‘The characteristic polynomial'
of this tree can be obtained in terms 6f its quot}ent tiee.

Several'types of branches that result in prunning any tree.
Ti stands for the branch containing i vertices including
the root, which is denoted by a closed ciréle° hi stands
for the characteristic polynomial of the branch Ti'

The types of fragments resulting from deleting the root of
the branches in Fig. 2. Ti'-is the fragment obtained after
deleting the root of Ti' The characteristic polynomial

1 t
of Ti is hi .

The quotient tree and the branches obtained when the tree

in Fig. 1 is pruned at all the roots. Roots are differen-
tiated by various symbols. To obtain the tree in Fig. 1
“attach the root of a symboi with'the root of the branch

carrying that symbol.

An illustration of partial selective pruning. The same tree

in Fig. 1 is selectively pruned.

The chemical graph of 2-methyl hexane: . the use of
repeated pruning._ | |

A class of 3-methyl alkanes. .For their characteristic
pdlynomials see Sec 3. |

A graph which hés acyclic fragments Fl and F2 and R is a
residuai graph which may be cyclic.

= R T B VU P
cs. ror Wit \,u-ql’aCLLI’lbLlC

-

Two graphs which contain c¢yc

polynomials see Sec. 3B.



10.

11,

12.

13,

28

A class of radialenes. Their characteristic polynomials
can be obtained by an elegant technique outlined in Sec 4.

A graph which contains a 4-cycle. 1Its characteristic

| pblynomial can be obtained by a substitution in the

Characteriétic polynomial of the 4-cycle.

Two graphs which illustrate the concept of "difference'.
For a discussion of "difference" of characteristic poly-
nomials see Sec 4.. |

A graph which has no pending bond. However, the technique
developed here can be applied in 3 ways by "pruning'" the
graph in 3 ways. Table 2 discusses. the characteristic

polynomials for these 3 ways.
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