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Abstract 

We present the Hamiltonjan structure of two—fluid electrodynamics, 

with the Hamiltonian functional equaling the energy. The Poisson 

bracket on functionals of the fluid variables and the electric and 

magnetic fields is bilinear, arttisyrnrnetric, and satisfies the Jacobi 

identity. 
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Of the three standard non-dissipative models for plasma dynamics, 

the Hamiltonian structure has previously been presented for two. Morrison and 

Greene1  have treated ideal MHD, while Marsden and Weinstein 2  have 

derived the Poisson bracket appropriate for the Maxwell-Vlasov system. 

For the third model, two-fluid dynamics, we have followed the approach 

of Marsden and Weinstein to determine the Poisson structure for 

functionals on the phase space consisting of the fluid variables and the 

Maxwell field variables. The bracket { ,.} 	so constructed 

automatically satisfies the requisite properties of a Poisson structure; 

letting E, F, and G be functionals on phase space and letting cz be a 

scalar, these, properties are 

i) 	antisymmetry: { E, F} = - {F, E} 

i i ) 	bilinearity: 	{ctE + F, G} = c{ E,G} + {F, G} 

iii) 	the Jacobi identity: 

{{E, F}, G}+ {{F, G}, E} + {{G, E}, F} = 0 

We now define the physical system of charged fluids under 

consideration. ' Label fluid species with the subscript s; each is 

composed of structureless particles of mass m 5  and charge q 	 Let 

= q 5 1m 5 ; q5  = 0 is allowed. Our treatment holds for an 

arbitrary number of species, but two (oppositely charged) species is the 

situation most commonly discussed. Then, in terms or the fluid 

velocities 	mass densities p s , specific entropies c, electric 

field E, and magnetic field B, the equations of ideal multi-fluid 

dynamics, in rationalized units, are 

vE= 	Eap 
- - . 

S S,S 

v x B = aP5 	+ E 

vxE= 

 - 

 B 

V• B=O 

(la) 

(ib) 

(1 c) 

(id) 
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+ 	
s Us) = 0 	 (2a) 

a + ! 	= 0 	 (2b) 

- 	+ 	( 	 = a 5 p 5  (E + ii X B)— VP5 	 (20 

where the specific.internal energy U5 (p 59  a s 	
expressed as an 

equation of state, yields the (partial) pressure P according to 

P 5  = P 9 U h 's 	 (3) 

Eqs. (1) are the Maxwell equations, and eqs. (2) and (3) are the laws of 

compressible ideal fluid dynamics. We neglect heatflow, and therefore 

express entropy convection by the adIabatic equation (2b). 

It is natural in our construction to replace the velocity field 

variable u with •the momentum density M .E 	 Then phase 

space consists of the set of quintuples of dynamical variables (M 5 , 

p 5 , a 5 , E, 8), while the energy of the system is 

H (N 5 , p5, 	.., !) = 	1' (½ ;' 	2 + p U 5 	o))d 3x 	(4) 

+ f ( ½ El 2  + ½ I!1 2 ) d 3 x, 

where the integrals are over the region in space occupied by the 

fluids. (We will sometimes use the notation of writing, e.g., 

(M i ,...., j) for k species. Whether this is the case or 

whether M refers to the single species s will always be clear from 

the context.) 

The purpose of this paper is to express eqs. (lb), (lc), and (2) in 

the form of Harniltonian evolution equations 

Z ={Z,H} 
	

(5) 

whereZ represents one of the dynamical variables, and the Hamiltonian H 

is given by the energy (4). Because we are abandoning canonical 

coordinates in favor of these physically appealing variables, the 
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bracket in (5) is not expected to have the form of a standard Poisson 

bracket. We do require, however, that it satisfies the essential 

properties of the usual Poisson bracket mentioned above. 

We regard the system defined by (1), (2), (3), and (4) as the 

coupling of the vacuum Maxwell. equations to ordinary fluid dynamics. 

Therefore, we will briefly review the Hamiltonian structures of these 

theories. 

The equations of motion for a single fluid species composed of 

uncharged particles are eqs. (2) and (3), with s=l and a 5=O. The 

Hamiltonian is the first integral in (4). The Poisson bracket for this 

has been given by Morrison and Greene', and rederived by Marsden and 

Weinstein (private communication) in such a way that the Jacobi identity 

is automatically satisfied. Suppressing the species label and using a 

dynamical variable as a subscript to denote the functional derivative 

with respect to that dynamical variable. Morrison and Greene's result is 

{F,G} (M, p, )= _fM j(FM. V)  GM - (GM. V) 	d3 x 	 (6) 

_f I  F M  VG - 	VF]d3 x O  

_f 
[F 
M •VG a GI 	V FId3 x 

U 

The equations of motion now follow from (5). 
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The structure of the vacuum Maxwell equations as a Hamiltonian 

system is also known 2 . The Hamiltonian is the second integral in (4), 

and the Poisson bracket, for functionals of the electric and magnetic 

fields, is 

PI 
{F, G} (E, B)=f[FE.  (v x GB) 	GE• (v x F 8 )]d 3 x 

One then obtains the vacuum Maxwell equations for E and B in the form of 

(5). 

We now state our results for the Hamiltonian structure of the 

combined system of charged fluids plus the Maxwell equations. With the 

Hamiltonian given by (4), we require eqs. (ib), (ic), and (2) to be of 

the form (5). This is accomplished with the Poisson bracket 

{ F,G } 	
P S' 	L 	) = 	{ F,G}(M, 

p,  a) 	F,G } (, !) 	(8) 

+ E fa s p (FM G - GM FE) d 3  x 

+EJa p B . (FM x  GM) d3x 
S 	SS 

where the first and second terms are defined in (6) and (7), and species 

subscripts have been suppressed in the functional derivatives. 
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We observe that the first term of (8) involves only the fluid 

variables and that the second is purely electromagnetic, while the third 

and fourth provide the coupling of the fluids to the electric and 

magnetic fields, respectively. Bilinearity, skew symmetry, and the 

Jacobi identity all follow for (8) by the methods used in its 

derivation. In addition it is readily verified that the correct 

evolution equations for the phase space variables, in the form (5), 

follow from (8) and (4). Additional body forces, such as gravity, can 

easily be incorporated into eq. (2c) by the inclusion of an appropriate 

term in the Hamiltonian. Finally, eqs. (la)and (id), rather than being 

postulated separately as initial conditions, follow from the gauge 

invariance of electromagnetism. 

The restriction of multi—species electrodynamics to the Coulomb 

case, in which B = 0, can also be treated. The scalar potential 	is 

expressed in terms of the mass densities p by 

a p (x) 
1 	S S 

-7r 	

S- 
- 	- 	 dx ,-  

and E = - V q. Eqs. (1) are then replaced by the Poisson equation 

V 2 0 = - 	and the Lorentz force term in (2c) is replaced by 

E. The Hamiltonian structure is obtained by taking the 

Hamiltonian on the phase space of sets of triples (N 5 , p, 	) to 

be the total energy 

	

f
I

(½p 	1M12 + 's U 5 (p 5 , c)) d 3x 

+ J( 	a p(x))(ap(x)) d 
3 
 x d 3x 

and letting the Poisson bracket on phase functionals be given by the 

first term of (8). The correct equations of motion for the dynamical 
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variables 	p5, 	) now follow in the form (5). 

The mathematical details of the derivation of (8) will appear 

elsewhere . 
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