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Homogeneous Catalytic Hydrogenations, 1. 

Reductions of Polynuclear Aromatic and Polynuclear 

Reteroaromatic Nitrogen Compounds Utilizing Carbon 

Monoxide with Water or Hydrogen 

Richard H. Fish*  and Gregg A. Cremer 
Energy and Environment Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

Pettit and his co-workers recently demonstrated, in an elegant manner, 

the use of carbon monoxide and water as a reducing agent for the hydro-

formylation of olef ins and of carbon monoxide, water and hydrogen in 

the reduction of nitroarenes13 . The compounds responsible for these 

catalytic reactions, in Pettit's studies, were transition metal carbonyl 

hydrides that had been generated catalytically under the reaction condi-

tions (eq. 1). 

N(C0) + 0H 	M(C0)_iC00H -0O2) H2N(CO)i 	(1) 
+1120 

These results prompted us to study the utilization of these reagents 

for the reduction of polynuclear aromatic and polynuclear heteroaromatic 

nitrogen compounds. The importance of studying these types of polynuclear 

compounds and reducing agents stems from the need to learn more about the 

basic aspects of coal liquefaction and the hydroprocessing of coal liquids 

and shale oils4 . Additionally, it is well known that homogeneous catalytic 

reductions proceed at lower temperatures and pressures and give higher regio-

selectivities when compared to their heterogeneous counterpartsSa,b. 
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We wish to demonstrate, in this communication, the potential of carbon 

monoxide and water or carbon monoxide and hydrogen as reducing agents for 

polynuclear aromatic and polynuclear heteroaromatic nitrogen compounds, 1-8, 
19-10 

(Chart 1) using transition metal carbonyl compounds as homogeneous catalysts. 

We reacted a wide variety of transition metal carbonyl compounds with 

anthracene, 1, under water gas shift (wgs) conditions (CO,H20, base) 6 , and 

found that only Mn2(CO)8(Bu3p)2, Fe(CO)4Bu3P and CO2(CO)6(43p)2 produced 

the reduction product, 9,10-dihydroanthracene,9, in yields of 13%, 8% 

and 3% respectively. The carbonyls of Ru, Rh, W, Os, Re and Mo all 

produced hydrogen and carbon dioxide (wgs reaction), but no compound 9. 

These results can partially be rationalized by the fact that the latter 

transition metal carbonyl hydrides are unstable under the reactions conditions 

and undergo reductive elimination of hydrogen rather than hydrogen transfer 

to the polynuclear aromatic substrate,l, i.e., k2 > k1 (eq. 2). 

+Ar 	 -H2 
Mx(CO) y_i + ArH2 ': 	H2Mx(C0) y_l 	) M(CO)_j 	(2) 

In view of these discoveries, we decided to learn more about the para-

meters of this reaction using Mn2(CO)8(Bu3p)2 as the catalyst. The reaction 

of carbon monoxide and deuterium oxide (D20) with 1 provided only 9,10-dideu-

tetroanthracene,10 7 , and this result strongly indicates that the hydrogen comes 

exclusively from water. In addition, the presence of added deuterium gas (D2) 

provided no deuterium incorporation; thereby eliminating a mechanism which 

includes oxidative addition of H2 to any coordinatively unsaturated manganese 

species that might be formed3 , and supports the facile reaction (eq. 1) of 

hydroxide ion on coordinated CO as the major reaction pathway to the 

carbonyl hydrides'. Several control experiments verified that the reduction 



product, 9, did not undergo exchange of hydrogen for deuterium under the 

reaction conditions. 

In an experiment to elucidate the stereochemistry of the anthracene 

reaction, we reacted an analog of 1, 9,10-dimethylanthracene,ll, with 

Mn2 (C0) 8 (Bu3P) 2  under water gas shift conditions (1800 , 5 hrs, 350 psi CO, 

0.2M KOH in THF, sub/cat = 20), to provide a 30% yield of cis and trans-

9,10-dihydro-9,10-dimethylanthracene, 12 and 13, in a ratio of 53%:47% 8 

The mechanistic implication of this result strongly suggests a free radical 

process for this reaction. A similar result was recently reported by Halpern 

et al.9a  for the reaction of 10 and Mn 2 (CO) 12  and Taylor and 0rchin9 ' with 

CO2 (C0) 8  under syn gas conditions (CO2 , H2  1:1,2000). 

We also found that in the absence of aqueous base and in the presence 

of hydrogen, i.e., synthesis gas (sg) conditions (CO/H2 = 1), that better 

yields of reduced polynuclear aromatic products could be obtained using 

2(C0)8(Bu3P)2 as the catalyst and compounds 1 - 3 as substrates. Thus, 

under sg conditions'0  reaction of 1 with Mn.,(C0) 8(Bu,P) 2  provided 9 - 	 • 

in 30% yield, while reaction with 2 gave no product and 3 produced 
1- 

4,5-dihydropyrene, 14, in 32 yield. 

From these results, it is evident that bent polynuclear aromatic 

compounds are extremely unreactive under either vga or sg conditions, 

when compared to 1, a linear polynuclear aromatic compound 11 . 

The polynuclear heteroaromatic compounds, specifically with nitrogen 

as the hereroatom, are important to study, since they are highly prevalent 

in all coal and oil shale products 12 . We found a dramatic increase in 

reactivity for the polynuclear heterocyclic nitrogen compounds under either 

wgs or sg conditions compared to their carbon analogs, e.g., acridine more 

I ,  
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reactive than anthracene. Table 1 summarizes our results with polynuclear 

heteroaromatic nitrogen compounds 4-8. 
71 

It is Important to note the high regioselectivity observed in these 

reactions by the ease with which the nitrogen heterocyclic ring gets hydro-

genated in preference to a benzene ring. This result might be explained by 

the lowered aromaticity of the nitrogen heterocyclic ring versus their 

carbon analog, which would provide a lower activation energy for hydrogen-

ation 13 . The order of reactivity for compounds 4-8 either under wgs or sg 

conditions Is: 14  4 >> 6 > 8 > 5 >> 7. 
•g. 

The overall observed relative reactivities of compounds 1-8, either 

under wgs or sg conditions, is as follows: 

4>> 1>>6>8>5 > 7z 3 >>> 2 
r. 	g 	7. 	. 

This order, while qualitative, is still significant, since these polynuclear 

compounds are present in coal, coal liquids and shale oil and represents 

the first logical explanation for compound reactivity under catalytic 

hydrogenation conditions in these complex matrices. 

Finally, the fact that Fe, Mn and Co carbonyls give reduced 

products, while other transition carbonyls were unreactive imply important 

mechanistic differences. Pertinently, we found in these studies, in 

addition to the instability factor for several of the transition carbonyl 

hydrides, a pronounced carbon monoxide inhibition on the catalytic 

hydrogenation reactions especially with the ruthenium carbonyls and report 

these results in the following paper' 5 . 

We are continuing to pursue this important area of fossil energy 

research and will report further details In forthcoming publications16. 
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Chart 1 

Polynuclear Aromatic and Polynuclear Heteroaromatic 

Nitrogen Compounds Reacted under Water Gas Shift or 

Synthesis Gas Conditions 

1 	 2 

(9~9)  
6 

9% 
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Table 1 

Reductions of Polynuclear Heteroaromatic Nit rogen Compounds 
under Water Gas Shift a  (WGS) and Syn Gas (Sc) Conditions b 

with Transition Metal Carbonyls as Catalysts. 
d 

Substrate Catalyst Sub/Cat Temp.(—OC) Tlme(hr) Conditions Products (%) 
C 

4 Fe(C0)5 10 180 2 WGS 9,10-dihydro- 
acridine (100) 

4 Mn2(C0)8(Bu3p)2 10 200 2 WCS (38) 

2(C0)8(3u3P)2 20 200 2 SC (100) 

0. 
CO2(C0)6($3P)2 20 200 2 SC (100) 

5 Mn2(C0)8(Bu3P)2 20 200 2 SC 1,2,3,4, 
tetrahydro- 
5, 6-benzo- 
quinoline (7) 

IN 
2(C0)8(Bu3P)2 20 200 5 WCS a (4) 

5 Fe(C0)4(Bu3P) 10 180 5 WGS a
(1) 

5 
am 

CO2(C0)6(43P)2 20 200 2 SC (8) 

6 Fe(C0)5 10 180 2 WGS 1,2,3,4- 
Tetrahydro- 
quinoline (0) 

001 
20 200 5 WGS 0 (4) 

2(C0)8(3u3P)2 20 200 5 SC a
(33) 

C,02(C0)6($3P)2 .20 200 1 SC a (70) 

2(C0)8(3u3P)2 20 200 2 Sc 1,2,3,4 
tetrahydro- 
7,8-benzo- 
quinoline (2) 

ML 
2(C0)8(Bu3P)2 20 200 2 WGS No product 

8 
ML 

1th2(C0)8(Bu3P)2 20 200 2 WGS 9,10-dihydro- 
phenanthridine (1) 

XL 
2(C0)8(Bu3P)2 26 200 2 Sc (11) 

CO2(CO)6(43p)2 20 200 2 SC (21) 

CO.  Reaction run in THP (12 ml) with 0.2 N KOH (3 ml), 350 psi 
 350 psi H2 and 350 psi CO in THF (15 ml). 
 800 psi CO. 

d • Determined by capillary GC using a digital integrator (HP 5880A). 	Isolated 
by column chromatography (florisil) and identif led by GC-MS and, nmr spec- 
troscopy (250 mHz, 1H) 
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