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Abstract 

For a chaotic, area preserving map on the torus, we study the decay 

of correlations in detail. Taking as observables the square-integrable 

functions, we find examples of decay rates which are algebraic, exponen-

tial, and faster than exponential. For correlations that decay exponen-

tially the rate is sensitive to the choice of function. The implica-

tions for numerical experiments of this nonuniformity in the decay are 

discussed. 
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I. Introduction 

In the theory of dynamical systems, the properties of correlation 

functions have been studied with a variety of motivations: to detect a 

transition from ordered to chaotic motion, to test whether a system 

relaxes to equilibrium, and to determine the transport coefficients for 

dynamical variables. In the absence of rigorous results, it is widely 

assumed that for systems which are "sufficiently" chaotic, the decay of 

an autocorrelation function, Eq. (3), denoted CF(t),  will be exponen-

ti al 

CF(t) - A(F) e_1t 	t > 0 	 (1) 

and the decay rate, y, should be determined by the underlying dynamics 

in a way that is insensitive to the particular observable, F, e.g., y 

would be given by the metric entropy or perhaps an average of the 

Lyapunov exponent. 

There are rigorous results for certain classes of chaotic maps which 

reinforce this belief. For diffeomorphisms satisfying Smale's Axiom A, 

Ruelle proved the bound, 

CF(t) < A(F) e_ft 

for functions which are continuously differentiable.' 	For Anosov 

diffecmorphisms, or C—systems, Sinai has established exponential decay 

for correlation functions of C' functions. 2  

— 2 — 



On the other hand, there are growing indications that an uncritical 

acceptance of (1) is naive. We briefly mention a few contributions that 

encourage a skeptical attitude toward results which depend on 

simplifying, non—rigorous assumptions about correlation functions. 

Casati, Valz—Gris, and Guarneri have criticized the theoretical basis 

of efforts to predict chaotic transitions from the behavior of 

correlation functions. 3  Niwa found algebraic decay of correlations in 

a highly idealized, one dimensional, hard point gas. 4  Recent 

numerical work on the standard map has revised the conclusion that it 

exhibits a simple exponential decay of correlations. 5  There are new 

results by Bunimovich and Sinai on the periodic Lorentz gas which 

establish that the velocity autocorrelation function decays as 

exp(—n1 ) where 0 < y < 1 and n plays the role of time; however Casati, 

et. al., report that Sinai has found this conclusion depends on the 

periodicity of the gas. 6 ' 3  When the periodicity is broken the decay 

becomes algebraic. 

In this paper we study a measure preserving transformation chosen 

from the class of dynamical systems studied by Ruelle and Sinai. The 

decay of the autocorrelation function for any square—integrable function 

is analyzed in detail, and we find a range of behaviors. The decay rate 

can be faster than exponential, exponential, or algebraic depending on 

the function selected. Moreover, even within the class of functions 

which decay exponentially,,the rate is not uniform; it depends in an 

essential way on the characteristics of the function. These results 

serve to refine the expectations created by the work of Ruelle and Sinai. 
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Finally, we discuss when one expects to find the behavior 

illustrated by our example and what the implications are for numerical 

studies of correlation functions. 

2. The Autocorrelation Function 

We consider an area preserving map which, though lacking a clear 

physical interpretation, has the virtue of allowing a complete 

analysis. Our example is an automorphism of the torus, denoted by 1, 

(I', o') = 1(1, o) 	where 

I' = I + 0 
mod 2n 	 (2) 

= I + 2oJ 

whose ergodic properties have been studied in detail. 7  Equation (2) 

is known to be mixing with positive entropy, and exhibits a uniform 

sensitive dependence on initial conditions. In the terminology of 

dynamical systems, it is a C-system and satisfies Axiom A. 8  

For a function on the torus, F = F(I,o), the autocorrelation 

function of F, CF(t),  is defined by 

N-1 

CF(t) = u 
rn 	1 	F(Tj+t  (I,G))* F(T3(I,G)) 

j=O 	
(3) 

N-1 

urn 	1 N-°  

j =0 

IKIM 



where in(I,o)  is the nth iteration of (2) from an initial condition 

of (1,0). Since our system is ergodic relative to the Lebesgue measure, 

du = dl do/(211) 2 , the autocorrelation function may be exDressed in 

terms of phase space averages. We Will restrict ourselves to choices 

for F(I,o) which are square integrable and have zero mean, then (3) 

becomes, 

CF(t) =fdu 
F(Tt(I,G))*  F(I,o) 

where 	 (4) 

	

fd u  IF 1 2  < 	and 	fdU F = 0. 

With the Fourier expansion of F, 

	

F(I,o) 	
'mn mn (1,o) 

m=—oo 	fl—co 

where 0 	 (I,o) = exp i(mI+no), the autocorrelation function (4) is 

written, 

00 

CF(t)= 	

) 	

f fijfd 	n (Tt (TO 	(ro) 	(5) 

i,j,m,n=_co 

	

The t-dependence of 0 	(1t(110)) in (5) is simple since we have 

the relation, 

0(T(I,4)) = 0m'n' (I,o) 

where 
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(m(i 1(rn 

\nJ \1  2)\n 

Hence if M denotes the above matrix that acts on the Fourier indices, 

and r = (m,n) then 

Or  (T(1,0)) = øMt,c(IG) 	 (7) 

The eigenvalues of M, x = 3 	define expanding and contracting 

directions in the rn—n plane and lnx corresponds to the (positive) 

Lyapunov exponent7  for (2). From the definition (6) we find, 

(8) 

(52t_1 	S2t 

S2t 	S2t+1 
) 	

for t > 1 

Mt 

=  

(—S-2t

S2t+1 	—S_2t 

	

for t < —1 
 S_2t_1 

where S1  = 1, S2  =1, and Si = S_ 1  + S 2  for i > 3 are the 

Fibonacci numbers. The elements of this sequence grow geometrically; 

more precisely there exist numbers N 2  > N 1  > 0 such that 

N1  x 	S21, S2, S2 ~ 1 	N2  x 	 (9) 

for t > 1. 	(This property is easily established by diagonalizing Mt 

and relating S21S2,S21 to xi.) 

(6) 

S 



Equations (7) and (8) show that under the action of M, the Fourier 

basis, Ø , breaks up into a countable number of distinct orbits. 

For (m,n)=(0,0) the orbit consists of a single element, but all other 

orbits contain an infinite number of elements which lie on hyperbolas 

defined by m2+mn_n2=a where a is an integer. This orbit structure 

is partially shown in Fig, 1. 

The analysis of (5) is greatly simplified if we re-express F(I,o.) in 

terms of a basis which respects this orbit structure. To this end we 

define the orbit basis, 

*t,r (I,o) 	Mr (I,.) 
	

(10) 

where - ,< t <00and r is assumed to run over a subset of the Fourier 

basis which includes a single element of each orbit. Let this subset be 

denoted by This reorganization of the Fourier basis has the property 

t,r (T(I,Ø)) = t+n,r(1 	 (11) 

We now determine a specific choice for 	to be used in our 

calculation 	of CF(t). 	Consider 	first the 	Fourier basis 	elements 	in 

the right hand quadrant of 	Fig. 1 which contains 	the rn-axis. 	lh,der 	one 

iteration of 	(6) a 	point on 	the rn-axis is mapped to a point on 	the 450 

line 	e.g., (m,0) (m,rn). 	If 	a point lies between the rn-axis 	and 	the 

450 	
line ((m,n) such 	that m > 0, n 	> 0, and n/rn < 1) then on one forward 

iteration of 	(6) it 	crosses 	the 
450 	

line and on 	one backward 	iteration 
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of (6) it is mapped below the rn—axis. These observations imply that 

each orbit in this quadrant has one and only one point lying in the 

wedge described by m > 1 and n = 0,1,2..., rn—i. For this quadrant if 

these wedge points are included in " then each orbit is counted and 

counted only once. Similar considerations apply to the other three 

quadrants, and provide us with a convenient choice for'j 

= 	U 	where 

i =1 

	

= 	{(rn,n) I m>1, 	n = 0,1,2,..,,m-1 } 

	

= 	(m,n) J m<-1, n = 0,-1,-2,...,1-Irn I } 

	

OJ3= 
	(m,n) 	n>1, 	m=0,-i,-2,...,-n+1} 

	

= 	(m,n) I n<—i, m=0,1,2,...,InI—i } 

Knowingal1ows us to expand F(I,o) in the new basis, 

rn-i 

F(I,o) =  

c- CO 	rn=i 	n=0 

+f 
a,(—n,m) u,(—n,m) + cz,(n,—m) a,(n,—m)} 

and CF(t) becomes 

rn-i 

* 
CF(t) = 	 c 	f ,(m,n) 	+t,(m,n) + u,(—m,—n) a+t,(_m,_n) 

c=_co m=i n=0 

** 
cz,(—n,m) 'cz+t,(_n,m) +f  cz,(n,—m) a+t,(n,_m)} 	(12) 

: 



The 	decay. of CF(t) is 	controlled 	by 	the dependence 	of the 

on the a index. Since these coefficients are only required to satisfy 

Y--
,

a,(m,n) 	+ 	 a,(—n,m)
rn=l n=U 

from 	(4), 	the decay of CF(t)  can 	vary widely. 	We will 	discuss 	some of 

the possibilities 	in the next section. 

3. Decay of the Autocorrelation Function 

Because (2) is a mixing transformation one knows without detailed 

calculation that for any square integrable function, the autocorrelation 

function must decay to zero in the limit t * . The "mechanism" of this 

decay is the hyperbolic orbit structure of Fig. 1. With our 

representation for CF(t)  in (12), it is possible to compute the rate 

of decay for any such function once its expansion coefficients in the 

orbit basis are known. We now examine some specific classes of 

functions. 

(A) Let F(I,) be independent of o, then f , 	= 0 if aO or n 3LO. 
, 	 , 

Thus, correlations vanish at the first time step, 

CF(t) = 0 for t > 0 

The same behavior is found if F is independent of I; this is the 

result of Cary and Meiss for the sawtooth map. 9  It implies that 

one may rigorously compute a finite diffusion coefficient. 



(B) Let F(I,o) be sufficiently smooth such that all partial derivatives 

up to and including rth  order are square integrable, e.g., for all 

non-negative integers a,b such that a + b < r, 

2 

f I _a+b F(I,9) ) I d1j I 	 < 
 a ia a0b 

To understand what this implies for f a(mn) we note from (8) and (10), 

a ab 
(I a,(m,n) 	,o) 

= (1)a+b 	
(A  

a 
)a  

(B 	
)b 	

a,(m,n)' a a la aeb 

where 

A(m,n) = 	m + S 2a n a > 1 
- 

m a=O 

S-21m-S-2a n a< -1 - 

n 

B(m,n) = 	(S 2a  m + S2 .1  n a > 1 

j m+S 
-a -2a1 n 

a< -1 
- 

In terms of Aa  and  Ba,  (13) becomes 

)7  )71 A(m,n) 2a  

ct _co m=l n=0 

2 
f a,(m,n)  I ->+ (n-rn, n.-n) 

+ (m*-n, n*m) + (mn, n*-m)} < 
	

(15) 

(14) 
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The behavior of A and 8 is easily estimated from (9) and (14), 

a > 1, N1  , (m+n) 	 N2  x (m+n), 	a > 1 

1 	< 

a < —1, N1x, 	(mR2n)) 	 N2 	(m—R2n), a c -i 

( < 	B (m,n) 
a > 1, N1  , (m+n) 	I 	 N x .  (m+n), 	a > 1 

a < —1, N1  A 	(m—R 1n) 	 N2 xjI (m—R 1n), a < -i 

where 	R1s2111Is 2 11 	and 	R2S2Ia 1/S211+i 	are 	positive 

numbers less than or equal to unity. Aa (m,n), B(m,n) grow exponen-
tially in a, and linearly in m and n. Knowing this essentially fixes 

the behavior of the expansion coefficients f 	. 	Consider the 

	

a, 	,fl 1  

first set of terms in (15), let 

CO 	rn-i 
2a 	 2b 	 2 

C1 (a,b) = 	 T (A, (m,n)) 	(Ba (m,n)) 

Cx=-OD 	ml n=O 

then (16) implies 

A(a,b,N1 ) <. C1 (a,b) • 	A(a,b,N2 ) 

with 

(16) 

- 11 - 



rn-i 

A(a,b, N) = 	E z (N x+a(m+n))2 a+b)f (mn) 2 

	

ct=1 	m=l 	n=O 

	

-1 	rn-i 

i 57 (N  Z 	x) 2(a+b)(mRfl)2a (m_R1n)21Ifa,(m,n)2 

	

 
c=_co m=1 	n=O 

00 	rn-i 
( m ) 2

a (fl)2b VO,(m,n) 

	

rn=1 	n=O 

For C 1 (a,b) to be finite, A must be finite and this imposes the 

strongest conditions on f 	when a+b=r. 	Assume for f a,(m,n) 	 a,(m,n) 

the bound, 

	

a,(m,n) 1 2  < 
	iS 

J r+cl(m+n ) 2r+ 2 
	 (17) 

with 6 > 0. Then (for a+b=r) the first set of terms in A, 

rn-i 	 2r 	
2 E T.  z + (Nx (m+n)) 

c=1 	rn=l 	n=0 

will converge for e l  > 1 and E2 > 2 and diverge if 	< 1 or 

2 	For e l  > 11 2 > 2 the other two groups of terms in A will also 

converge. The crucial point of the estimate in (17) is that for A to be 
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finite 
Ic,(m,n)I 	

ITlist decay in u faster than 	2 1aI r; it is the decay 

in a which governs the decay of CF(t) with t. 

An analysis of the remaining three sets of terms in (15) leads to the 

same conclusion regarding the decay of I,(m,n)2 in a, thus we simply 

adopt the bound in (17) as a typical behavior and compute the decay of 

CF(t) which results. With (12) and (17) it is straightforward to derive 

the bound, 

CF(t)< M(F)e_('+)t 	t >- 0 
	

(18) 

where M(F) > 0 is a constant which depends on the specific function. 

The decay of CF(t) 	is 	determined by the Lyapunov exponent of (2) 	and 

the degree of smoothness 	assumed 	for F; a 	generalization 	of 	our argument 

shows that if F is infinitely differentiable (r*co) the decay is faster than 

exponential. 

(C) Let F(I,o) be a characteristic function for a rectangular subset of the 

phase space. 

F(I,G) = 	1 if 0 < 	I < 12 < 2r 

	

0 < 
	- 	- 2 < 27r 

0 otherwise 

Although F(I,@) is not differentiable, in the sense that its partial 

derivatives are not square—integrable, CF(t) decays exponentially. This 

calculation is sketched in the Appendix; the result is 
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CF(t) I <. M(F)e_t(21fl, M(F) > 0 	 (19) 

(D) Finally, there are functions such as 

CO 

,(m,n) 

c0 

which decay algebraically; for this example we have, 

CF(t) = 2/t 2  

This latter class of functions (and certainly, this particular 

example) are peculiar in that they are everywhere continuous and 

nowhere differentiable. 

4. Discussion 

It is clear that a conjecture such as (1) overs.implifies the actual 

situation for our example. It ignores the existance of a wide range of 

decay behaviors, and it assumes the decay rate is insensitive to the 

choice for F(I,G). In our example, even for those correlations which 

decay exponentially, we do not find for CF(t) a natural factorization 

into a decaying exponential which depends only on the map and an 

amplitude which depends only on the function. Instead, for the function 

in class B of the previous section, the rate of decay is fixed by the 

smoothness of the function and the Lyapunov exponent of the map. 
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In retrospect it is also clear that the property of the orbit basis 

expressed in (11) was crucial to our analysis. The existence of the 

orbit basis in this problem is not an accident; it reflects the fact 

that a C—system has countable Lebesgue spectrum. 7  Any dynamical 

system with Lebesgue spectrum will admit an orthonormal basis for the 

square—integrable functions such that the action of the dynamics on that 

basis is simply a shift on one index. For our problem (11) is the 

concrete realization of this. 

Given a basis which satisfies (11), it is easy to choose expansion 

coefficients in that basis such that the resulting autocorrelation 

function will decay algebraically or exponentially or faster than 

exponentially. Thus we may anticipate a range of behaviors, comparable 

to that found in the previous section, whenever our dynamical system has 

Lebesgue spectrum. Examples of systems which have Lebesgue spectrum 

include Bernoulli shifts, automorphisms of the torus, geodesic flow on 

manifolds with negative curvature, and certain models of the hard sphere 

gas. 7  

A practical consequence of our discussion is the recognition that 

numerical studies, which use correlation functions as a tool to study 

chaotic dynamics, have an inherent and non—trivial element of ambiguity 

unless one can determine how the characteristics of the chosen function 

affect the decay. In our work the orbit basis could be found explicitly 

and the influence of F(I,G) on the decay could be estimated. In general 

we cannot expect to be so fortunate, and it may not be easy to separate 

the features of the decay which reflect the equations of motion from the 

features which reflect the choice of observable. 
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In physical terms, even in systems with highly chaotic dynamics, the 

approach to equilibrium may be nonuniform with correlations in different 

observables decaying on widely disparate time scales. 
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Appendix 

We outline here the derivation of (19). We assume 

o < & I = 12 - 	< 2ir 

0 <AG=9 2 —G1 <2ir 

If either aI or Ao.  is 2, then case A applies. 

The expansion coefficients of F(I,G) are found from 

(m,n) =fdu F(I,G) 

and the following bounds are easily computed, 

if 0, (O,n) • 	2 AI 	 n j 0 

(2 r ) 2  Inj 

if 0, (m, 0) 1 < 2 &a 	 m0 
(2,)2 Imi 

if O,(m,n) I I 	4 . 	.... 	 m,n 	0 

(2)2 Imni 

4 a 0 ifa,(m,n) - (2)
2  fA(m,n) B (m,n)J 

We can get a rather crude estimate of ICF(t)I by replacing (12) 

with 

MrM 



/ 

IC F(t) I 	 a,(m,n) 	+t,(rn,n) + (m,nn) 
ct— 	rn=l 	n= 

+ (mn, n.)m) + (mn, n_m)} 

Plugging in the bounds on the coefficients yields 

AG  
ICF(t 	

+ Al 

(270 
fl < _ 16 

 4 L 
m=1 	

A(m , O) Bt(rn,O) 	At(O,m)B(O,m) 1 

	

00 	 rn-i 

32 	 i1 	1 	 + 	1 

	

m=1 	n=1 	rnn L 	(m,n)  Bt(m,n) 	IAt(_n,m) B(_n,m)I] 

rn-i 

+ 32 	

A(m,n) B(rn,n) A +t(m ,n) B(rn,n)I 

	

=- 	rn=1 	n=O 

cvO 

+ 	1 

Va (_n,m) B  (_n ,rn)A +t(_n,rn)B + (_n,m) I 

Finally by applying the lower bounds on A and B given in (16) it 

is straightforward to show 

ICF(t)I < M(F) e_t(21A+) 



where 

co 

M(F) = 
N, , E 

rn-i 

'I E 4(rn2  + 

rnn(m2_n2 ) 
n=1 

(o+i) 
n,1 	m3 

+2 	 x41a1 	[(m+n)4+(m_n)4] 

(m —n ) 
rn=1 	n=O  

cO 
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Figure 1. Evolution of the basis vectors, Ømfl  under composition with 
the mapping. Except for the constant function, 00 0, at 
the origin, all vectors are mapped along hyperbolas. Shown 
are orbits corresponding to Jal = 81. 
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