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A COMPARATIVE STUDY OF HC1 AND HBr COMBUSTION INHIBITION'

Robert W. Schefer and Nancy J. Brown
Energy and Environment Division

Lawrence Berkeley Laboratory
Berkeley, California 94720

ABSTRACT

A modelling study of combustion inhibition in an idealized well
stirred reactor utilizing H2/02/Ar mixtures as ;he reéctants is presented
and discussed. The effect of two chemical inhibitors, HC1l and HBr, on the

combustion process has been investigated at pressures of 0.01 ‘and 1.0

- atmosphere over a range of equivalence ratios of 0.5 to 1.5 and inhibitor

‘concentrations of O to 10 percent. Inhibitor effectiveness was determined

by the competitién between the radical scavenging ability of an inhibitor
and the exothermicity of the scavenging reactions. For all cases considered
HBr was more effective in scavenging active radicals than HCl. At CLOI
atmospheres, HCl was a more effective inhibitor in lean and stochiometric
mixtures while HBr was more effeﬁtive.for rich mixtures at 0.01 atmosphere

and for all atmospheric pressure mixtures.
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- of Basic Energy Sciences, Chemical Division of the U.S. Department of Energy

under Contract No. DE-AC03-76SF00098; and by the National Bureau of Standards,
Center for Fire Research under Grant No. NBS-G7-9006.



1. INTRODUCTION

The present study was undertaken to acquire an improved understanding
of the mechanisms involve& in flame inhibition. 1In a previous paper by
Brown and Schefer (1981) modelling calculations were presented describing
the effects of inhibitor addition on the combustion characteristics of
H2/02/Ar mixtures in an idealized perfectly stirred reaction. Two physical
inhibitors, N, and Ar, and one chemical inhibitor, HBr, were considered in
an:attempt to differentiate betweeen physical and chemical influences.
Molecular nitrogen and argon were relatively ineffective as flame.
inhibitors, since they acted primarily as thermal diluents, thus effecting
the chemistry minimally and indirectly. Molecular nitrogen was somewhat
more effective than argon due to its higher heat capacity. Hydrogen
bromide was the most effective inhibitor, primarily due to its direct
participation in the combustion reaction mechanism with a resultant

reduction in hydrogen/oxygen radical pool concentrations. The reactions

HBr-+ H -+ Br + H2 (18r)
ahd

H+Br+M-+>HBr+ M (2lr)

were the primary reactions responsible for radical removal, and HBr
effectiveness was noted to result from a tradeoff between reaction
exothermicity and radical scavenging ability.

An inhibition parameter, 8,, was proposed in our earler study to
provide a measure of inhibitor effectiveness. The parameter, 6,, was found
to be a reasonabie choice for characterizing Ar and NZ inhibition; however,

largeivatiations of et with pressure, equivalence ratio and HBr



concentration were noted for HBr inhibition.

In the présent paper these calculations were.extended to include a
second chemical inhibitor, HCl. The résults presented emphasizg the
difference between HC1l and HBr a§ flame inhibitors énd discussioﬁ is
provided on the importance of reaction exothermicity and radical scavenging
ability in determining inhibitor effeétivenesé. In Section 2 of this paper
the computational modelvis described and the chemical mechanism and kinetic
data are presented.. The results of the caléulations for HC1 inhibition and
the effect of HCl addition on reactor performance are presented in Section
3. Comparisons are made with the results for HBr obtained in our pfevious
study. In Section 4 these_results are discussed in terﬁs of the
mechanistié details of the inhibition process.

2. THE MODEL

The idealited well sti:red reactor is a constant volume stéady flow
reactor in which mixing is assumed to occur instantaneously between the
inéoming reactants and the reacting mixture in the reactor. This is an
attractive feature for chemical kinetic studies since.the composition
within the reactor is homogeneéus and tﬁe combustion process is kinetically
controlled. Through variation of the mass flow rate :hrough the reactor
(or its in§erse, residence time) it is possible to study inhibition
characteristics over a range of combustion conditions from total
equilibrium, at which péint the reactor residence time ié sufficiently‘long
for thersygtem to approach a state of total equilibrium, to shorter
residence times at which, in the limit, the teéidence time is insufficient
to maintain stable combustion in the reactor and blowout occurs. Reaétor
behavior under conditidns approaching thé blowout time are particularly

sensitive to the combustion chemistry and the effect of inhibitor addition.



The governing equations for an idealized well stirred reactor and the
solution procedure have been described in detail elsewhere in our earlier
study. Briéfly, the governing equations which must be solved are the
energy and the speéies conservation equations. These were solved using a
modification of a program developed by Pratt and Bowman (1972) based upon a
Newton Raphson technique. With a series §f residence times corresponding
to stable-combustion in the reactor as independent variables, the
corresponding temperatures aﬁdvéompositions between the blowout condition
and thermodynamic equilibrium-were determined from sblutions of the

conservation equations. In the present investigation the hydrogen/oxygen

‘combustion system was considered and the kinetic mechanism used is shown in
Table I as reactioms 1 through.13.» The HC1 and HBr kinetic mechanisms are
also shown in Table I and consist of,reactioﬂs 14 tﬁrough 17 for HC1 and
reactions 18 through 21 for HBr. All forward and reverse reactions were
considered'ih the calculations. Symbols (f) and (r) désignate forward and
reverse, respectively. The rate coefficieqt for reaction (i7f): H+ Cl +
M » HCl + M was assumed to be 1.5 x 1018 177, Our rate coefficient is 1.5
times greater than the value repbrted by Dixon-~Lewis and Simpson (1977) and
was 8o adjusted to give better agreement‘with the data of Seery and Bowman

(1968). All third body efficiencies were taken as values measured for

argon.

A standard mixture of 50 percent'cqmbustibles and 50 percent argon was

‘considered in the calculations with the inhibitor added to the mixture to | - ;
give mole fractions of inhibitor ranging from 0.02 to 0.10. Equivalence :
ratios of 0.5, 1.0 and‘1.5 éére examined to determine the effect of

stoichiométry, and mixtures reacting at pressures of Oin.atmoéphere and

1.0 atmosphere were compared to ascertain the effect of pressure.




3. RESULTS

3.1 HC1 Inhibition

Blowout characteristics for HCl are summarized in Tables II-IV for

the range of conditions considered. Results are tabulated in terms of

residence time, t, temperature, T, and oxygen consumption at the blowout

vcondition, 0, and an inhibition parameter, 8, which is given as

o = (t - t°)[05]
t t 11}

where t and t° are respectively, the blowout residence time of the
inhibited and uﬁinhibited mixtures and [I] 1is the conceﬁtration of
inhibitor added. The quantity 6, was proposed as a parameter to charac-
terize inhibitor effectiveness and is somewhat analogous to the parameter
¢, suggested by Fristrom and Sawyer (1971). Implicit in using théiet
parameter to characterize inhibition is the assumption that molecular
oxygen consumption is directly related to the brancﬁing process and is
therefore related to combustion stability. The ratio [02]/[11 does remove
some of the composition dependence of the’inhibition parameter. The
analogy between this parameter and the 8, of Fristrom and Sawyér is,
howevef, imperfect sincé tﬁe relationship between blowout residence time
and flame speeds‘is complex. Also shown for comparison are our previously
determined results for HBr addition. 7

It is of interest to examine ﬁhe effect of inhibitor concentration on
the blowout characteristics'of thé reactor. The residence time at~biowout
incréases with HC1 concentrafion in agreement with results found for HBr.

The temperature at blowout and the oxygen consumption also increase with

HCl concentration due to the higher temperatures and longer residence times



necessary to sustain combustion. The inhibition parameter 6, for HC1
exhibits little variation over the range of conditions investigated, and .
assumes an average value of 0.26. This behavior is in contrast to the 6,
values associated with HBr which increased with HBr concentration,
equivalence ratio and pressure. The values of 6, for HCl were greater than
those for’HBr for low pressure lean andvstoichiometric mixtures, and the
converse was true for rich mixtures and for mixtures at atmospheric
pressure.

The-aependence of blowout residence time on HCl concentration is.shoﬁn
in Figures l.and 2 for pressures of 0.01 and 1.0 atmosphere, respectively.
At a éiven HC1 concentration, blowout residence times are greatest at
é = 1.5 and léést for ¢ = 1.0 at both pressufes. Residence times at 0.01
atmosphere are approximately two orders of magnitude greater than compar-
able atmbsphére pressure Qalues. Lower residence times at atmosphetié
pressure reflect the increased relative importance of éxothermic three body
recombination reactions and ﬁhe resulting increased temperature and faste;
chemistry.

In order to ascertain the sensitivity of HC1l inhibition to the H + Cl +
M-+ HCl + M reactioﬁ, the rate of this reaction was vafied by 1/10 and 10
(over two orders of magnitude). Results of this variation for 0.0l
atmosphere pressure stoichiometric mixtures are indicated in Figure 1. A
reduction in the rate coefficient increases the residénce time at blowout.
Increasing‘the-rate'coefficient~changes,the behaviof»of residence time with.
HC1 concentration markedly. The residence time initiélly déclines, passes
through a minimum, and then increases. This behavior is a manifestation bf
the complex tradeoff between reaction exothermicity and rAAical scavenging
ability. We examined the total combusfioﬁ heﬁt release rate under these

‘conditions and found, that an increase in the HCl recombination rate results



in a gubstantial increase in the heat release rate which, in #urn, raises
the mixture temperature. The relatively lérge increase in temperature with
HCl addition aCceierates the chemistry. As further HCl is added, the
fractional increase in heat release rate due to HC1 reactions is relatively
small; however, radical removal due to reactions (17f) and (14f) ﬁecomes
more competitive with radical production via reactions (1) through (ié%
The net result is that at higher concentrations; HC1l behaves more like an
inhibitor with residence time at blo&out 1ncreasing with inhibitor
concentration. Similér behavior was note& for HBr addition under
conditions of accelerating the H + Br + M > HBr + M rate.

3.2 Radical Concentrations

Our previous study revealed that_inhibitor effectiveness 1s dependent
on the fadical scavenging ability of the inhibitor. The total puﬁbér of
active radicals in a mixture is reduced by varioﬁé inhibitor3reaétions.
Thé totai‘hydrogen/oxygen radical pool concentration, normalized by the
maxiﬁum.possibie pool concentration of the mixture, Z where

N N N N | |

H+ 0+ OH + HC

i i i
2NH + 2N+ NHBr

) 0,

2

was.cdmpufed for each residence time. The symﬁol Nj designétes the
concentration (moles j/grams mixture) of species j in the m;xture, and the
sgpérscfiptfi designates initial reactant conééntrations. The
normalization factor paftially accounts for dilution by the‘inhibitor.
-Figﬁres,B and 4 are ﬁlots of Z as a function of residence time for
Stoichiometrié mixtures of 2 and 10 percent HCl at 0.01 and 1.0 atmosphere,
-respectively. As.regidenCe time increases, 2 incfeases"to‘a maximﬁﬁ‘valuev

and then decreases to the equilibrium value. Increasing the HCl



concentration from 2 to 10 percent reduces the radical pool function for
all residence times. The effect of increasing the reactor pressure is to
reduce the maximum radical pool functiqn since three body recombination
reactions become important at higher pressure. Similar behavior in Z was
noted for HBr addition. The effect of equivalence ratio is illustrated in
Figures 4-6 where Z profiles are presented for ¢ = 1.0, 0.5 and 1.5,
respectively for mixtures at atmosphere pressure. The radical pool
function achieves its maximum values under stoichiometric conditions. The -
decrease ip‘Z with inhibitor: concentration increases with equivalence

ratio.

4. DISCUSSION

The inhibifors HC1l and HBr show similar trends under the conditions
considered in this study. They differ, from one another, in degree which
reflects the subtleties of the complex tradeoffs between promotional
effects of reaction exothermicity and the inhibitor effects of radical
scavengingf' Residence time at blowout provides a measure of inhibitor
effectiveness, and is plotted as a function of inhibitor concentration for
HCl and HBr at 0.01 and 1.0 atmosphere in Figures 7 and 8, respectively.
Usingvincreased residence time as a criterion for inhibitor effectiveness,
HBr is-more effective than HCl at atmospheric pressure and for rich
mixtures at-lower pressures. The same conclusion is reached when one
considers 6, as a measure of effectiveness. Rich mixtures are inhibited
more - than leah and stoichiometric mixtures for both inhibitors.

The gffect of reactions involving HO, (reactions 8 through 13) was
determingd by performing calculations with and without HO, reactions fqr
the case of HBr inhibition. This is discussed in our earlier paper Brown

and Schefer (1981). Briefly, the effect of HO, reactions.was more dramatic |



at atmospheric pressure. The HO, reactions contribute substantially to the
net heat relégse rates thus accounting for increased temperature and
decreaéed residence times at blowout. At the blowout time, the radical
pool function was slightly increased by the HO, reactions.

An examination of individual reéction ratés shows that inhibition is
due to a competition for hydrogen radicals between the primary chain
branching reaction (3f) (H + 0,5+ OH + 0) and the reactionlﬂx +H~ Hz + X
where X is a halogen atom. At atmospheric.pressure, the reaction: H+ X
+ M > HX + M also contributes to radical scavenging. This is illustrated
in the last columnsvof Tables V and VI where the ratio of radical
production to radical removal is given for stoichiometric mixtures for
varying concentrations of the inhibitors HCl and HBr, respectively. The
ratio declines with increasing inhibitor concentrations and declines more
‘rapidly for mixtures at 1.0 atmosphere tﬁan for those at 0.01 atmospheres.
Radical. scavenging at atmosphéric pressure is augmented by the‘reaction H+
X+ M >H + M. Under identical conditions, the ratio is less for
mixtu:es inhibited by HBr since the reaction H + HBr *> Hp + Br is more
efféctive at écavenging than the analogous HCl reaction.

Reacfibn exothermicity of the important inhibition reaétions H+ HX ~»
Hy+Xand H+ X+ M+ HX + M tends to cancel, in part, their inhibitory
‘effect. The total heat release rate and the fraction of the heat release
rate contributed by the H,/0, reactions are given in Tables V and VI for
low and high pressure stoichiometfic mixtureé inhibited with varying
concentrations of HCl and: HBr, respectifely. The total heat release rate
decreases with increasing inhibitor concentration but this is offset by thé-
increase in résidence time so that the heat release remains nearly constant

for HC1 addition and increases slightly for HBr addition. The fraction of



the total heat release rate contriﬁuted by the 32/02 reactions declines
with inﬁreasgd-inhibitor concentration. This is attributable to two
factors, the heat rélease contributed from reactions (1) through (13)
decreases and that contributed from the halogeﬁ reactions increases. The
decline is greater for HBr addition than for HCl. The decline for HCl is
also greater at atmospheric pressufe than the lower pressure since H + Cl +'
"M +HC1 + M is more important and it is very exothermic. An examination of
the contribuflons of. the. individual reactions to heat release under the
conditions of Tables V-and VI for atmospheric pressure reveals
approximately 80% of the total heat release due to reactions involving HBr
1s contributed by H + HBr + H, + Br while thé'remainder.is contributed by
the recombination reaction. In contrast heat release in the HCl system is
domihated by the HCl recombination reaction (17f) with only 6% contributed
by reaction (14f).

At lower pressﬁres, under fuel lean and stoichiometric  conditionms, HB?
" is a less effective inhibitor than HCl, even though it is more effecive in
removing radicals. The HBr reaction (18r) makes a substantial contribution
to the heat release rate and this promdtes coﬁbustion and tends to cancel
the gffect of radical scavenging. Under fuel rich conditions at low
pressures, HBr is more effective than HCl since the HBr radical scavenging
ability is enhanced and that of HCl is diminished. The HCl reactions (14£)
and (l4r) approach a partial equilibrium condition in the rich mixtures.
At higher preSSufes'BCI>reactions (via HC1l recombination) contributes more-
substantially to heat release fhan~at~lower pressures. In fact the
contribution of HCl to heat release is comparable to that of HBr. The more
efféctive inhibitor at atmospheric_pressure is HBr due to its greater
radical scavenging ability.

In related studies of inhibition by HX type compounds, Westbrook

10



(1980), Fristrom and Van Tiggelen (1979), and Dixon-Lewis and Simpson
(1977) found that inhibiiion ig #inetic in nature and linked to the
competition for hydrogen rédicallbetwéen;chain branching reactiohs and:
radical scavenging réactions whereby reactive radicals (e.g. H atom) are
replaced by less active radicals (e.g. Br or Cl atomsj; The results of our
étudy coﬂcur with these findings. We also find that the relative
effectiveness of inhibitors can only be asse;sed by considering botﬁ thé
radical scavenging ability of individual reactions and their contribﬁtions

to overall heat release.

YWestbrook found the effectiveness of HBr as an'inhibitér in premixed
CHA/air flames was due primarily to reactions (18) and.(19) that HBr
recombination played a relatively minor role. Day et al. (1971) and Dixon-
‘Lewis and Simpson found that recombination reactions contribute to
controlling the size of the,Hz/Oz radical pool. Dixon-Lewis and Simpson
found that, at temperatures comparable to the blowout temperatures of our
own study, the reaction H + HBr -+ HZ + Br was an efficient scavenger and
that the analogous HCl reaction was nbt. They also fbund that HBr was a
more effective inhibitor in rich mixtures than in lean,‘in agreement with
our own results. Fristrom and Van Tiggelen found that inhibitor
effectiveness at atmoépheric pres#ure was dominated by the three body
recombination H + X + M HX + M. It is important to note tha; the& wefe
concerned with systems of higher temperaturetthan those of our study, and
at higher temperatures the reacfions H + HX > Hy + X tend to become
partially equilibrated and loses its radical écavenging ability.

The propo#ed inhibition parameter, 8., varies considerably with
pressure and.equivalence ratio for HBr and thus cannot bg considered as a

parameter which fully characterizes inhibitor effectiveness. 'As discussed

11



by Brown and Schefer the variation in 6, is due to the complex trade-off

~ between radical scavenging ability and exothermicity of the important

- inhibitor reactions. Ihe analogous parameter ¢, p?opdsed by Fristrom and
Sawyer to describe inhibition in premixed flames is based én the
competition between a rate limiting branching reaction, H + 0 *OH + O
and a bimolecular inhibition reaction H + HX + Hy, + X (where X deﬁotes #
halogen atom). Sincernpvaccount has .been taken of the dependence of 6, on
exothermicity of .the inhibition reactions it is not surprising.that

' considerablefvariation iniet is :observed.

12
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TABLE V
HEAT RELEASE AND RADICAL PRODUCTION RATES

FOR STOICHIOMETRIC MIXTURE INHIBITED BY HC1

Percent Pressure QroraL _Q1-13/QT0TAL a 'RP/RR ?
HC1 (atm) (cal/cm3 sec)
0 0.01 -5.72 x 1070 1.0 —
2 -5.29 x 107° 0.96 9.26
4 -4.76 x 107° 0.94 4.92
6 ) —4.44 x 107 0.89 3.53
8 , 4,09 x 107 0.85 2.82
10 . 23,72 % 107 0.82 2.39
0 1.0 407 1.0 | -
2 -3.72 0.94 | 5.36
4 -3.42 ©0.86 3.11
6 | -3.24 0.80 . 2.40
8 -3.05 0.71 - 2.03
10 , -2.88 0.64 . 1.80

a) RP/RR is the ratio of the rates of radical production to radical removal
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TABLE VI

HEAT RELEASE AND RADICAL PRODUCTION RATE

FOR STOICHIOMETRIC MIXTURE INHIBITED BY HBr

Percent Pressure QroTaL Q1-13/%01aL RP/RR 2

HBr  f(atm) :(cal/cm3 sec)
o 0.01. 572 x 1070 -- | -
2 ' -5.49 x 107° 0.86 5.94
4 -5.26 x 107> 0.74 3.06
6  -5.13 x 107 0.65 2.44
8 ~4.96 x 107 0.55 o 2.26
10 4,76 x 107 0.46 1.72
0 1.0 -4.07 | 1.0 ' -
2 -3.73  o.8s 4.42
PO | ~3.40  on 2.35
6 -3.06 0.62 -~ 1.70
8 -2.70 0.52 1.40

10 | -2.65 0.45 1.25

a) RP/RR is the.ratio of the rates of radical production to radical removal.
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RESIDENCE TIME X 10° (sec)
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RESIDENCE TIME X 10% (sec)
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