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The Coulomb effects on slow pions formed in heavy ion collisions are investigated here by 
Monte Carlo methods. The trajectory calculations differ fromsome earlier theoreticalwork 
in that pions are considered to be absorbed if they pass within 0.8 radius of a spectator nu-
clear center. Absorption in the fireball is implicit in the treatment. The source function 
(i.e., ii °  cross section without shadowing) is also more detailed in that we use a linear com-
bination of thermalized and unthermalized terms based on two-fireball and row-on-row 
models. The numerical calculations are mainly applied to the system 20Ne+ 20Ne at 
E IA = 655 MeV and resulting IT - hr + ratios and spectra are in satisfactory agreement with 
experimental results for 20Ne+NaF at this energy. 

NUCLEAR REACTIONS Theory of Coulomb distortion of pion spec- 
tra by heavy-ion reactions. 2ONe(NaF,IT±)X,  E/A =655 MeV, 
40Ar(40Ca,ir ± )X, E IA =1.05 GeV, Monte Carlo trajectories, row-on-row 
model, 	thermalized 	and 	nonthermalized 	(nascent) 	pions, 

irIir ratio. 

I. INTRODUCTION 

Now after several studies on pion production in 
heavy ion collisions the general features have been 
established and qualitatively understood. For exam-
ple, the measurements of the Coulomb effects on the 
ir/ir ratio demonstrated by Benenson et au 
have been investigated by Libbrecht and Koonin, 2  
Cugnon and Koonin, 3  and Gyulassy and Kauff-
mann.4  In these theoretical studies the pion trajec-
tories were allowed, explicitly or implicitly, to pro-
pagate through nuclear matter. Further study of the 
Coulomb effects was made by Bertsch 5  in explaining 
the dependence of the I7 - In- + ratio on the incident 
bombarding energy. Radi et al. 6  formulated the 
Coulomb effects of spectator fragments on the pion 
production cross sections near beam velocity in 
terms of weighted average over various projectile 
fragments. 

In the work of Cugnon and Koonin, 3  the ability 
of low-energy charged pion spectra to probe the 
space-time ev'olution of high-energy nucleus-nucleus 
collisions is investigated in a classical picture. For 
pions emitted in both a thermal and direct process  

they calculate the electromagnetic, distortion due to 
the time-dependent nuclear charge distribution by 
solving classical equations of motion. In Ref. 4 
various approximate analytical expressions were de-
rived for thermally expanding charge distributions. 
These theoretical expressions are based on unbound, 
free-gas expansion of the spectator and fireball 
charge distributions with their characteristic tem-
peratures. 

Here we shall be mainly concerned with the 
Coulomb effects on pions that are slower than beam 
and projectile in the center-of-mass (c.m.) frame. 
Frankel et al. 7  in reporting experimental results for 
40Ar on calcium at E IA of 1.05 0eV showed signifi-
cantly lower IT - lIT + ratios around zero velocity 
(c.m.) than were predicted in earlier theoretical stud-
ies. The Monte Carlo trajectory calculation of Koo-
nin and Cugnon3  gave a central ratio of 5.5, whereas 
experiment gave 1.5. More recently, new measure-
ments 8  of the doubly differential cross section for 
the production of IT - and IT + from c.m. to beam 
velocity for Ne on NaF at E/A of 655 MeV became 
available. In the present paper we mostly carry out 
theoretical calculations for the latter system. 
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In view of disagreements on ir - /ir + ratios near 
rest in the center of mass, we decided to carry out 
new Monte Carlo pion trajectory calculations. We 
wished especially to test the effects of not allowing 
pions to propagate through nuclear matter. It is 
clear that results will be affected by the dependence 
of pion production on the impact parameter. Thus, 
we carry out the final weighting over impact param-
eter using a row-on-row, two-fireball model with 
thermal but not chemical equilibrium between pions 
and nucleons. A nonthermalized (nascent) pion 
source term is also included. For our Monte Carlo 
calculations the very complex situation had to be re-
duced to a practical model. Principal differences we 
wished to test relative to the Cugnon and Koonin 
work3  were the following: (1) The pions should ori-
ginate from the surface, not throughout the collision 
volume; (2) those trajectories that passed through 
nuclear matter should be rejected due to pion reab-
sorption; (3) the pions should be emitted at the time 
of closest approach, not the late stage of the col-
lision; and (4) a two-fireball thermal plus first-
collision source for initial pion momentum distribu-
tion was taken, rather than a single thermal source. 

II. THE HEAVY ION REACTION MODEL 

We develop here a model for investigation of the 
Coulomb effect on pions produced in heavy ion re-
actions. The collision problem is very complex, so 
one must greatly simplify the problem while retain-
ing the essential features. The model presented here 
contains rough approximations, but we believe that 
it describes the main features of slow pion produc-
tion by heavy ion reactions for the delta-production 
threshold region at 0.5 GeV <E IA <1.0 GeV. Fur-
ther refinements to the model can be made without 
altering the qualitative results. Before launching 
into the description of the model, how-
ever, let us take care of some preliminaries. 

A. General description 

To develop a model for initial conditions of tra-
jectories we view the collision of two spherical nu-
clei,- .at a given impact parameter, originally.  . filled 
with cold nucleons as shown in the schematic repre-
sentation of part (a) of Fig. 1. The process is viewed 
in the center of mass coordinate system. In part (a) 

4 and Z are the mass number and atomic number 
of the projectile (likewise A and Z are for the tar-
get). The projectile and target are moving with 
center-of-mass velocities Vand V, respectively, in 
the x direction. One can at this point calculate the 
velocity of the center-of-mass system in the labora-
tory in units of c (the target has zero velocity in the 

V P  

A.,-, Z 1  

	

(o) Before 	 - 	(b) After 

FIG. 1. Schematic diagram of the heavy ion collision 
with designation of parameters (c.m.). 

laboratory) as 

1ab 	[1+2(mNc2/ck)]''2 
/3c.m. = 	= 

Elab l+(4+A)mc2 /(Ape) 

(1) 

where '1ab  is the total momentum of the system in 
the laboratory, EIab - is the total energy (kinetic plus 
mass) of the system, Ek  is the beam kinetic energy 
per nucleon, and mNc 2  is the effective nucleon rest 
mass in nuclei (the mass of a bound nucleon 93 1 
MeV). 

Before the collision takes place the density of cold 
nucleons, P0'  is uniform within the two nuclei. As 
the reaction proceeds, the two nuclei will scrape 
each other, shearing away all nucleons located 
within the geometrical overlap region (participant 
nucleons or the so-called fireball) as shown in part 
(b) of Fig. 1. Since the energy of the collision is very 
high, the projectile fragment (A,Z) will fly off 
after the collision with essentially unchanged veloci-
ty (VpoVin c.m.) (a spectator in this ollision). 
Similarly, the same arguments will apply to the tar-
get nucleus. Experimental confirmation of projec-
tilelike spectators is available in Ref. 9 and spread in 
velocities can be related to the Fermi motion of the 
nucleons.' °  These fragments" (spectators) will usu-
ally evaporate nucleons, but their temperatures are 
too low to produce pions. Constituents of the hot 
hadronic matter are presumed to interact a few 
times before disassembly in heavy ion collision. In 
the early stage of the collision the energy concentra-
tion is enough (compressed nuclear matter) to pro-
duce pions and resonances. At this stage, different 
sorts of hadrons coexist, but the degree of chemical 
equilibrium or thermal equilibrium is an open ques-
tion. As time goes on, this fireball begins to expand, 
and when it has reached some final volume V, it be-
comes a system of noninteracting expanding had- 
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FIG. 2. For 20Ne+ 20Ne collisions in the abrasion abla-
tion model the number of participant nucleons N (solid 
line) and the relative weight function N times impact 
parameter b (dashed-dotted line) are plotted. The abscissa 
is the impact parameter in fm. 

rons) 2  At a given impact parameter b, the numbers 
of projectile, N, and target, NT , participant nu-
cleons can be computed by analytical approximation 
formulas given by Ref. 13. Figure 2 shows the vari-
ation of this number, N =N +NT , as a function of 
the impact parameter b (as well as the product Nb). 
It is a good approximation to assume that this num-
ber does not depend on the bombarding energy. 

B. Space-time history of the pion-emitting region 

In this section we give the general assumptions 
for the starting point of the pion trajectory. First let 
us consider the distribution of matter between the 
projectile and target when the two spheres begin to 
overlap. Figure 3 is a schematic two-dimensional 
representation to illustrate how the nuclear density 
distributions are expected to develop with time. In  

part (a) of the figure the material in the overlap re-
gion starts into the compression regime, while some 
nucleons from the outer surface start to fly away. 
Part (b) of the figure shows the situation at the max-
imum overlap for this impact parameter and, we as-
sume, the greatest probability for the appearance of 
pions at the surface. In part (c) the disassembly pro-
cess of the fireball is in progress. The question of 
the time at which to start pion trajectories is not 
simple. Cugnon and Koonin 3  assumed a fairly late 
time after most nucleoh collisions were over. We 
have taken the instant of closest approach as our 
time zero, since it is uniquely defined, but this time 
would be strictly justified only if the pion equilibra-
tion time were much shorter than the nuclear transit 
time. Another task is to specify a pion initial distri-
bution in phase space with respect to the center of 
mass of the fireball. We use a more complex 
prescription than a simple thermal source but 
relegate these details to the appendixes. Then a 
Monte Carlo random selection of initial position and 
momentum is made, and we run the classical trajec-
tory of the iT, ir, and ir0  in the field of moving 
spectator point charges. The complexities of finite 
charge distributions are unnecessary, since any tra-
jectory passing inside 0.8R spect  of a spectator frag-
ment center is stopped and recorded as a reabsorbed 
pion. In principle, one should take into account 
hadronic scattering as well as true absorption, but 
that is a complication avoided here as in the previ-
ous Monte Carlo studies. 

What about the effect of the hot expanding parti-
cipant protons? As we shall amplify in the later sec-
tion on determination of the classical Jacobian, the 
Coulomb effects of participant protons on the slow -
pion cross sections should be small and will be fac-
tored in for the center of mass region using expres-
sions derived near the end of this paper. Having de-
cided in the Monte Carlo calculations to treat spec-
tators as two point-charges moving with essentially 
unchanged velocities and to neglect participant 

b hadrons —hadrons--.- 	 . -.—hadrons--. 

maximum overlap 

(a) 	 (b) 

0 
" P  

had rons 

 

(c) 

 

FIG. 3. Schematic sketches of the heavy ion collision and pion production for three successive times (cm.). 
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charge effects at the end, we next must decide about 
the appropriate initial spatial positions. For pions 
we choose to start all pion trajectories from the ring 
at the intersection of the surfaces of the projectile 
and target at closest approach [part (b) of Fig. 3]. 

Let us next consider the geometry of the system at 
maximum overlap. In the spirit of the one-fireball' 2  
or two-fireball' 416  and firestreak' 7" 8  models the 
projectile and target are assumed to make clean 
cylindrical cuts through each other, leaving projec-
tile and target spectator residues (spectators). 

The charge of the spectators is found from 

z jo  
Z1 (b)=Z1— —b- N 1 (b) (i=P,T), 	(2) 

where these variables were already defined in Sec. 
hA. The spectator mass numbers A 1 (b) (i =P,T) 
are also found from a formula similar to Eq. (2). 
Once we remove the participant nucleons we end up 
with peculiar nuclear shapes. Also the center of 
mass of each spectator has been shifted away from 
the region of maximum overlap. In Appendix A the 
shift, 8b, of the center of mass of the spectators with 
respect to the original centers is approximately for-
mulated. Then the distance between the new centers 
is obtained by (see Fig. 20) 

D=b+bp+bT. 	 (3) 

If we assume the spectators to resume spherical 
shapes about the new centroids, then the new radii 
for the spectators become 

R(b)=r0 [A,° —N(b)]" 3  

with r0  = 1.2 fm . 	 (4) 

After making these approximations, the geometry of 
the model and the ring from which pions originate 
appear as shown schematically in Fig. 4. In this fig-
ure Cartesian coordinates (xyz) are given with 
respect to the center of mass of the projectile specta-
tor, the target spectator, and the pion. One should 
notice that the velocity of the projectile and target 
are no longer Vand V-. The slight change is in-
corporated to constrain the total momentum to zero 
in the c.m. frame. In heavy ion reactions at the low 
charge and high energy treated here, this modifica-
tion has almost no effect on the projectile and target 
center of mass velocity, but our program was -
developed to give exact nonrelativistic three-body 
solutions including recoil and all Coulomb effects 
among three bodies. 

C. The initial starting point in phase space 

In this subsection we would like to present the 
equations of the initial positions and velocities of the  

projectile spectator 
nent 

i ) 
'P 

[ii 

spectator 

fragment 

FIG. 4. Sketch defining coordinates and variables for 
pion initial conditions at time t =0 with respect to the 
center of mass frame attached at 0. 

spectators and pion at t = 0 (the time of closest ap-
proach). We randomly choose the pion position on 
the surface intersection ring at the angle O, between 
0 and ir /2 (as shown in Fig. 4). The components of 
the pion velocity along x, y, and z are chosen at ran-
dom (positive as well as negative) from a flat distri-
bution (we later introduce a row-on-row two-fireball 
model weighting function to the final results) as 

u'(21)Viim ' 	 (5) 

where is a random number between 0 and 1 and 
Viim  is the absolute value of the maximum velocity 
component to be chosen. The initial positions and 
velocities of the projectile, target, and pion viewed 
from the center of mass are generally written as 

 

-..(i) 	(1)-' 	(I) 	(I) = e, + 	+ 	, (j = P T,IT) 

 

The components of these two equations are present-
ed in Table I. It is clear that for a given impact 
parameter a random choice of 0, will change Xj 
and zj '  coordinates, leaving yji) unchanged. In this 
table, the ring radius R r  and distance d are defined 
in Appendix A. 

41 
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IQ 

TABLE I. Initial càordinates and velocities of the projectile, target, and pion with respect 
to the c.m. M isthe total mass of the system, rnpT is the total mass of the spectators, and rn 
(i =P,T,n) stands for the individual mass. 8 Y = d —(rnT/rnpr)D. 

R r  and dare defined in Appendix A. 

j 	
XW  y() 

 Zi 

P 	- ( rn,/M)RsinO rn,/M&Y + (rnT/rnpT )D - (rn, /M)R rcosO 

T 	 XP —(rnpT1M)6Y—D+d ZP  

IT 	 (mpr/M)R rsinB —(rnp-/M)8Y (rnpT/M)R V cosO 

j 	 vxj 
( vyj1)  (1) vzj  

P 	- 	 -(rn,1rnpj-)v4 	 - ( M,1MPT)VZff  

T 	 v 
(i) 	 (1) 

IT 	 vx1r 	 vy ir 	 Uzir  

III. DYNAMICS OF THE MODEL 	 I m i ri =0, (i=P,T,ir) 	 (8) 

We shall be concerned in this section with the 
classical solution for the pion and two charged spec-
tator fragments (the three-body problem). Figure 5 
shows the motion of the two spectator fragments 
and the pion with respect to the center of mass at a 
given time t. This figure represents a later time than 
Fig. 4, which defined the initial conditions of the 
problem. The charges are to be considered as point 
charges, as mentioned before. With the use of vari-
ables defined in Fig. 5 we can write the requirement 
of having zero total momentum as  

where m1, r1 , and t at this stage have the units of 
mass, distance, and time, respectively. The kinetic 
energy of the system about the c.m. is 

(i=P,T,ir). 	(9) 

The potential energy of the system is simply the 
Coulomb potential energy of the interacting three 
particles and is written as 

VP0t 	[(x1_x)2+(y1_y1.)2+(z_zj)2]U2 	
(i,j=P,T,). 	 (10) 

i=kj 

The Lagrangian of the system can be constructed 
and used in Lagrange's equation to get the differen- 

x 

7- 

z 

configuration at time t 

FIG. 5. Sketch defining coordinates during the evolu-
tion of the three-body trajectories at time t with respect to 
the center of mass attached at 0.  

tial equations of motion. In general, we get dif-
ferential equations for the projectile spectator, target 
spectator, and pion. One can use to advantage the 
conservation of momentum of the system to decou-
ple, for instance, the target spectator fragment vari-
ables. This will allow us to solve the differential 
equation of the projectile spectator fragment and the 
pion only. As a result of this step, the coupled 
first-order differential equations of the projectile 
spectator fragment and the pion are 

d2 	-' 
= vxP 

dt 
(11) 

Zpe 2  
- 	 [ZIT A X  /A +Z TBX /B], 

dl. mpc 2R0f3o 2  

and similar equations for y and z, 



27 	 MONTE CARLO STUDIES OF PION DISTRIBUTIONS FROM... 	 611 

dI, - 
= 

dt 
(12) 

!_ _Z,.e2 
[—ZpA/A +Z rC/C1 

dl 	m.c 2R0f302, 
 

and similar equations for y and z, where 

 

and similar ones for A, and A, 

A =(A 2 +A, 2 +A 2 ) 312  ,  

BX =(l+mp/mT)xp+(m,./mT)x  

and similar ones for By  and B, 

B=(B 2 H-B, 2 +B 2 ) 3 "2  ,  

CX =(mp/mT)xp+(1+m./mT)x  

and similar ones for C, and C, 

C=(C 2 +C,2 +C 2 )312 ,  

and where the dimensionless variables, £, £', 	and 
flo are given by 

2=x/R 0 , 

6'=v/V0  , 	 ( 16) 

l=t/T0 , 

/30 =V0 /c. 

R 0  is taken to be the average of the radii of the spec-
tator 

Ro=(Rp+RT)12 . 	 (17) 

Also, V0  is taken to be the average of the speed of 
the projectile and target before interaction, i.e., 

V0=(V+V)/2. 	 (18) 

Finally, T0  is taken to be 

T0=R01V0 . 	 (19) 

This system of coupled first-order differential equa-
tions is integrated using the modified Adams-
Moulton predictor-corrector method. The integra-
tion is continued until the change in the pion veloci-
ty becomes <O.001% per step, unless it is terminat-
ed by passage too near a spectator nucleus. 

0 

VELOCITY DISTRIBUTIONS OF SURVIVING PION TRAJECTORIES 

20Ne + 20Ne - X + ir 	E/A = 655 MeV 	b = 0.4 b0  

II 

	

I 1 	 I 	 I 
	 ki 

Initial and Final 

	

-I 	0 	+1 

II 
FIG. 6. Scatter plot of Monte Carlo initial and final 6 11  and 6'1  values for trajectories surviving absorption or orbiting 

capture. Values are shown for one impact parameter 0.4b 0  for the 20Ne + 20Ne system at 655 MeV/nucleon (see text). 
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For an average value of the impact parameter 
(b 0.4b 0 , bø rRp° +R) for 20Ne+ 20Ne at 
E/A =655 MeV we show the results for about 
10000 surviving trajectories (for each type of pion). 
The scatter plots of Fig. 6 give initial and final velo-
city distributions for surviving trajectories of 

i,- , and i, with the abscissa 6 m(t5) and or-
dinate '1 m[t 2 +tI 2]"2 . Note in the final distribu-
tions (upper right plots) the exclusion of IT + from 
the velocity region near target and projectile, and 
note the bunching of it - in these regions. The dis-
tributions are not symmetric in the sign of i, since 
the Monte Carlo selection of positions on the ring is 
only over the range 0 < O. < iT /2 with O the angle 
with respect to the z axis (Fig. 4). Hence, the nega-
tive 61, values are more susceptible to nuclear ab-
sorption (the trajectory falling within 0.8 of a spec-
tator radius). Of course; the final averaged data 
must have the symmetry that is forced by identity of 
target and projectile. Hence, in the final weighted 
sums for pion cross sections, results are binned by 
the absolute value I . The complete exclusion of 
ir + from the regions near target and projectile ve-
locities is a consequence of the classical treatment, 
and a quantal treatment would bring some ir + into 
the classically forbidden region. There is only one 
plot for it ° , since initial and final distributions are 
the same (for surviving trajectories). The it °  distri-
butions of surviving trajectories are of interest, since 
shadowing by spectator pieces removes some initial 
coordinate-velocity selections. It is not possible to 
display on a two-dimensional scatter plot the four 
randomly chosen variables (three velocity com-
ponents and the angular position on the source ring), 
so the IT °  scatter plot is a projection of the four-
dimensional initial distribution on the - i plane. 
The upper left two plots are the analogous velocity-
plane projections of the initial parameters for surviv-
ing trajectories of it - and it . Large empty spaces 
are seen around the projectile and target velocity for 
it - (the initial distribution). These holes define the 
regions of initial conditions leading to it - absorp-
tion and to orbiting trajectories that never converge 
to a constant velocity. (For these low-Z systems we 
do not believe the orbiting trajectories correspond to 
pionic non-s state orbits, 19  since angular momenta 
are much less than 11.) For the initial-velocity 
scatter plot the least absorption effects of all are ob-
served, since the repulsive Coulomb force acts to 
promote it + avoidance of the spectator nuclei. 

IV. CLASSICAL JACOBIAN 

In this section, a detailed study of the Coulomb 
effect on pions (with identical initial distributions  

for it - and it originating from the point of con-
tact between the projectile and target is presented. 
Here we take only the graiing impact parameter, 
b =b0 . Generally, we start with 

d 6a1  

dP1 3dr1 3  ,± 

initial distribution of pions from an infinitesimal, 
initial volume dP3dr3  in phase space. In order to 
map in momentum space from the initial to final 
conditions, one can write 

I dcrj  1 	1 d6a1 	I 

11, dr,I
dPj3 	[dPj3dr,3 	± 	8() 	± 

(20) 

In this equation, it is clear that the change in the 
density of the states (in momentum space) is ex-
pressed via the classical Jacobian 

a 3(P) 
J+= 	-. 

T 	83(P) ,T± 

By considering a simple case where the initial pion 
distributions are independent of spatial coordinates, 
Eq. (20) is simply written as 

d3cy1 I 	d3cr 

dP1 3 	 di 	
(21) 

The ratio of negatively and positively charged pions 
is then 

1daj  1 	Iduf .l 

dP/ j_/ 	[dP13 	 (22) 

One can compute 

a 3 1  
numerically by the method of finite differences by 
mapping initial momenta P. onto final momenta P1 . 
Alternatively, one can compute an initial infini-
tesimal volume in momentum space about a 
momentum P, and compute the corresponding final 
volume about Pj  by mapping initial momenta to fi-
nal momenta. The initial volume can be chosen to 
be the volume of eight tetrahedra as shown in Fig. 7. 
Each tetrahedron has a volume 

Px l  - PXi F 1  - 	 P 1  - 

V,, 1 =- P 2 —P, P 2 —P, P 2 —P, , 	(23) 

Px 3 — Pxi  Py3_Pyi  Pz3_Pzj 
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0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

(P, I  P8 - A .P8 ) 

Iritiol 	 Finol 

FIG. 7. Sketch illustrating the mapping of a 
tetrahedron in momentum space from initial to final con-
ditions. 

where Pi, , , and P 3  are the momenta determin-
ing the tetrahedron corners. Thus 

{v/Avc} 

. 	 (24) 

{v/v: 
 

init 

However, analytical evaluation of the Jacobian is 
possible only if one of the spectator fragments has a 
zero charge (i.e., in the absence of either the projec-
tile or the target spectator fragments). Some ele-
ments of the Jacobian determinants can be found 
analytically from conservation of energy, while the 
others could be obtained from the analytical solution 
of a general Kepler problem. We have compared 
the analytic Jacobian to the numerical one by letting 
one of the spectator charges be zero (in the numeri - 
cal code). This provides a useful estimate of the er-
ror in the numerical calculations. By such checks 
we noted occasional errors in the fourth significant 
figure between the analytical and numerical calcula-
tions, which is sufficient accuracy for this study. In 
Fig. 8 the velocity shift 8V = Vf - is displayed 
(where V is the pion velocity in units of V0  as de-
fined in the previous section) for 40Ar+ 40Ca at 
E IA = 1.05 0eV, V0  = 0.6c. In the same figure, the 
ir /ir + ratios computed from Eq. (24), as well as 
computed from Eqs. (2.7) and (2.8) of Ref. 4, are 
displayed. 

One sees the IT - velocities are systematically 
shifted (solid line) toward the projectile (Fig. 4) that 
is closest in velocity space for positive and the 
IT + (dashed line) are shifted away. The ratio of the 
Jacobians for IT - and IT + is shown at the end of the 
arrow. These Jacobians were calculated from the 
volume change of tetrahedra of six close-lying 
points in velocity space. The values agree with re- 
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FIG. 8. Map of velocity shift (for pions with ii  =0) 
fields (c.m. frame) for grazing impact parameter for 1T 

(solid arrows) and ir + (dashed arrows). The position of 
the 40Ar nucleus is in the positive y direction with its velo-
city directed along the positive x axis. The Roman num-
bers near the arrowheads are IT - to 7r + ratios of the clas-
sical Jacobians (phase space factors) calculated exactly 
from trajectory mapping. The italic numbers midway on 
the solid arrow are the corresponding ratios for the ap-
proximation J = 1 —Vi. It is not correct to equate 
these ratios with common initial velocity to ir - /tr + 
Coulomb ratios, since the velocity shifts are so large. One 
would need to divide Jacobians at the samefmnal velocity. 

sults using the conventional 3 X 3 determinantal 
form. The approximate form of Ref. 4, relating the 
Jacobian to the divergence of the velocity shift field 

was used to calculate the values 
displayed in italics. These values are not in agree-
ment, perhaps because the formula is based on a 
common origin expanding charges and on diver-
gence of the velocity shift, which is only a perturba-
tive approximation. Further, our numerical studies 
on the Jacobian show that for the slow pion starting 
from the midpoint of two equal spectator charges of 
opposite velocities, there is an almost complete can-
cellation of Coulomb effects, leaving the Jacobians 
near unity. 

V. THE SOURCE FUNCTION 

In this section we address the fundamental but 
more complex problem of the initial momentum dis-
tribution of pions. Most previous studies of 
Coulomb effects have simply taken a Boltzmann 
distribution about the center of mass. Even for the 
high energy region of the pion spectra where 

F' 

iI  
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Coulomb effects are small there is a systematic ex-
cess of pions near 0° and 180° relative to 90°. Such 
anisotropy calls for source function refinements 
beyond the one-fireball model. We shall take aniso-
tropy into account, at least qualitatively, through a 
two-fireball source of thermal pions. We also intro-
duce a nonthermalized (nascent) pion source term, 
which should be anisotropic like P(P,rr)X data. 
However, the nascent pion contribution to the low 
energy pion region is small, aside from its effect in 
renormalizing the thermal term, and the nascent 

pion term was left isotropic. 
The source function and geometrical factor must 

be used as weighting functions in summing the 
Monte Carlo trajectories to give pion inclusive cross 
sections. The source function S is proportional to 
the double differential cross section for ir0  produc-
tion (no absorption) at a given impact parameter b. 

The final c.m. pion inclusive spectra are calculat-
ed by summing over the impact parameter and 
weighting each impact parameter and summing over 
all initial pion distributions to give 

_L 	d 2a bo 
(inclusive)=f 2Tb 	S(13cm)R,R,b, 	

8() 
db, 

P1  dP1jdP11 	 0 
IT 	 I• 	

J 

(25) 

where P.,, = m IT  /' /c (v = i,f) is the pion momentum (nonrelativistically). From now on 0 is the velocity in 
units of c and m IT c 2  is the pion rest mass in MeV. We note again that S is a function of the beam energy 
(through I3.m.),  reaction geometry (through R and R), impact parameter b, and pion initial velocity com-
ponents f3. and fl. The generalized phase space factor 

8 3 (P1 ) 

is a kind of delta function with five arguments and it maps from the initial two momentum components of TP 
and the ring angle position O, to the final two momentum components, P111  and P11 . The phase space factor 
here will be zero for initial conditions that lead to pion absorption or orbiting. A corresponding quantum 
mechanical Green's function would be smeared over final momenta. By letting ba  = b = ab0  the upper limit of 
integration becomes 1. We ran trajectories for a = 0.1-0.9 in steps of 0.1 as well as a =0.05 and 0.95. One 
can approximate the integration from a = 0.1 to 0.9 by a summation using Simpson's rule. The region from 
a = 0 to 0.1 can be approximated by a triangle and trapezoidal (likewise for the region where a =0.9 to 1.0). 
This is based on the fact that the product bS must be zero at b =0 and b =b0 . From the above approximation 
the inclusive pion distribution [right-hand side of Eq. (26)] is given by 

(iTbo2115)Ga I S(13c.m.,,R,b,) 
a) , 	 (26) 

a 	 a (P1) 

where the coefficients Ca  for all possible values of a are given in Table II. 
Further, the source function S for a given impact parameter can be factored 

(i3cm ,R ° ,R ,b, fl) zoo Y(f3, 	,R,R,b)F[ aë,fl*(/3 cm  ,b), T(f3cm ,b)] , 	 (27)ir  

where Y IT  is the dimensionless integrated pion yield 
function, namely, the average number of pions of a 
particular charge produced in a collision of impact 
parameter b. F is the initial pion-velocity distribu-
tion function per unit volume in momentum space, 
normalized to unity over all momentum space. The 
function F depends on (i) the pion initial velocity 

TABLE II. Values of the modified Simpson's rule 
coefficients for impact parameter weighting. 

a 0.05 0.1 	0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 	0.95 
Ca  0.075 0.175 0.8 0.6 1.6 1 	2.4 1.4 3.2 1.575 1.425 

ff; (ii) the final speed of the fireball(s) /3*,  which 
depends on the impact parameter b and the center of 
mass speed, 13cm; and (iii) the fireball(s) tempera-
ture, which in general depends on f3c.m. and b. 

A. The pion yield function Y (row-on-row model) 

We shall develop a model based on concepts of 
Hufner and Knoll's 20  row-on-row model and 
Sternheim and Silbar's 2 ' nucleon-nucleus pion pro-
duction model. 

In the region of 0.4-0.9 GeV (laboratory), 
nucleon-nucleon elastic scattering is rather forward 
peaked. This forward peaking means that the rate 
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FIG. 9. Pion yield function vs impact parameter by 
row-on-row model with four different assumptions for 
parameters ( 20Ne on 20Ne). The value UT is related to the 
mean free path 1 pr ( i/par) of a nucleon in nuclear 
matter for the probability of producing a pion to drop to 
1 /e of its value. Parameter Xab is the mean free path for a 
pion to survive passage through nuclear matter without 
absorption. 

of loss of forward momentum is slow, and one-
dimensional row-on-row treatment may be justified. 
We simplify the row-on-row formulation by drop-
ping all interest in momentum distributions. That 
is, we may integrate out the momentum distribution 
to determine just the probability of A formation. 

In this energy region if the nucleon undergoes an 
inelastic collision to produce a A or pion, its kinetic 
energy will fall below the threshold to make a 
second inelastic collision. A second contribution to 
the decreasing probability of pion production as a 
nucleon penetrates a row comes as follows: Owing 
to forward peaking each elastic collision gives a 
mean energy loss of only about (AE)el =40 MeV. 
Hence, there is a steady "frictional" energy loss rate 
in the laboratory frame due to elastic collisions 

	

dElab 	
(AE) 	 (28) 

- dx 

Also, in the energy region considered, the pion pro-
duction cross section is rising with a logarithmic 
derivative22  

dcrN 	in 

dEjab lo
NN -3.805 X 10 — ' (MeV)' 

Thus 

1 	 d[lnoN]in  
=p aN(AE)' 	+UN 

}, 
(29) 

pr 	Ipr 	
dElab 

where the subscript pr on the mean free path stands 
for production (of pions). The pion yield function 
Y is formulated in Appendix B, and its dependence 
on the impact parameter is shown in Fig. 9 for the 
20Ne on 20Ne case with Aab= co and Xab=4 fm (Ref. 
23) for two different values of Xpr. 

We note that the relative weighting of central and 
peripheral collisions for pion production varies with 
different choices of parameters. In particular, the 
row-on-row model with mean free paths greater 
than nuclear dimensions emphasize central collisions 
more heavily than the simple model of proportional-
ity to a number of participant nucleons (this could 
be shown by comparing Fig. 9 and Fig. 2). 

B. The thermal part of the pion-velocity distribution 
source function (the two-fireball model) 

Now we should like to weight the Monte Carlo re-
sults with a more realistic• model than the flat 
momentum distributions employed before in this pa-
per. In the' bombarding energy region considered 
the free nucleon-nucleon total cross section is just 
past its minimum, and elastic scattering is rather 
forward-backward peaked. Thus, the longitudinal 
momentum decay. length Xlmd of Sobel et al. 24  is 
comparable to the radius of 20Ne. Their Fig. 1 
shows Xl md nearly constant around 2.6 fm from 
200-700 MeV. Hence, the simple one-fireball 
model, with its hot thermal pion source at the center 
of mass of the system, is not realistic. More realistic 
for these energies for light nuclei is the two-fireball 
model of Das Gupta' 4  and Das Gupta and Lam.' 5  

We follow the same phenomenological approach 
as Ref. 14 except that we use the longitudinal 
momentum decay length 1'1md  of Fig. 1 of Sobel 
et al. 24  and alternatively a value of twice this. At 
relativistic energies E/A =2.1 GeV, Heckman 
et al. 25  and El-Bakry26  found that it was necessary 
to lower the effective oNN  by a factor of 0.5 to get 
agreement in the soft spheres model with the mea-
sured interaction length of 160  and 12C ions in emul-
sion. Furthermore, Negele and Yazaki 27  have point-
ed out that the mean free paths of the nucleons of 
50-150 MeV are experimentally about 5 fm, com-
pared to the theory calculations, including Pauli 
blocking of about 3 fm. Negele and Yazaki 27  go on 
to resolve the discrepancy by taking proper account 
of the nonlocality of the nuclear optical potential. 

Let us now formulate the two-fireball model in 
terms of Eq. (2.1) of Sobel et al.,24  by a somewhat 
different method than that of Das Gupta.' 4  Equa- 
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tion (2.1) of Ref. 24 could be rewritten as 

d[lnP ml 

dx 	
=1/Xlmd . 	 ( 30) 

For nucleons in a slab of average thickness (x) we 
integrate to get 

cm. &D =Pnexp(—(x)/Afmd) 	
(31) 

=rP, 

where P 	stands for incident momentum in theM. C.

c.m. system and r is simply the ratio of the final 
c.m. momentum to the initial one. Of course, the 
ratio r depends on the slab thickness (x) and the 
longitudinal momentum decay length, Xlmd, which 
in turn depends on the energy Xlmd(Fcm ). 

The integration of Eq. (30) assumes 11md  is in-
dependent of the energy, which is valid according to 
Fig. 1 of Ref. 24 approximately between 
200 <E IA <700 MeV in the laboratory system. 
Equation (31) can be applied for a slab of a number 
of nucleons by simply multiplying by the number of 
nucleons. 

Let us now simplify the problem by considering 
only symmetric nuclei of radius R as shown in Fig. 
10(a). We have previously calculated the number of 
participant nucleons from the projectile and target 
(N=Np+NT). In a symmetric system 
Np =NT =N12, where N is the total number of par-
ticipant nucleons for a given impact parameter b. 
The nonrelativistic temperature for an ideal gas of 
nucleons is then given by 

2 	cm 
(32) 

One can use the approximate change in the total re-
lativistic energy, IEcm , of the two fireballs derived 
in Appendix C to get 

T = .mNc2[1+ek/(2mNc2)]h/e2 

—[l+r2ek/(2mNc 2 )]"2 } . 	( 33) 

The final velocity of the projectile and target fire-
balls is given by 

fl* =[1+2mNc2 /(r2ek)]df2 	 (34)  

- 	 projectile Spectator 	
N/2 ptalectile 	
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prolecrile 	 fragment 	
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FIG. 10. Sketches illustrating the geometrical approxi-
mation used on participant pieces to get an equivalent 
thickness for a two-fireball model calculation. Only sym-
metric nuclei of radius R are considered. Fireballs are ap-
proximated as elliptical cylinders with major and minor 
axes matching the true cuts and with volumes equaling 
those of the true cuts (as described in Appendix Q. 

One can see that if r = 1, i.e., there is no longitudinal 
momentum loss, the final velocities are equal to the 
initial ones. Of course, this gives T =0, which is ex-
pected for complete fireball transparency. 

Figure 11 plots the numerical values calculated 
for fl 1' and temperatures T of the final two fireballs 
as a function of impact parameter. The 20Ne + 20Ne 
system at 655 MeV/N laboratory energy is treated, 
and the two cases are the Xlmd of Sobel et al. 24  and 
for twice that value. For comparison we show the 
Das Gupta and Lam' 5  temperatures for the neon 
system, though they are not strictly comparable 
since they were computed for the somewhat higher 
laboratory energy of 800 MeV/N. Our temperatures 
are simple kinetic temperatures, which would be 
lowered if energy used in pion production was taken 
into account. Since we are near the threshold region 
for pion production, we assume this pion cooling to 
be small. We do not want to assume chemical 
equilibrium between pions and nucleons, so we can-
not invoke such formulas for temperature calcula-
tions. On the other hand, the neglect of condensa-
tion into alpha particles and other composites works 
in the opposite direction; allowing composites raises 
the temperature. 

After finding 13* and T from the relativistic equa-
tions we proceed to write the initial pion velocity 
dependence function defined in the source function 
S (using nonrelativistic variables) as 

mc 2  
fth (13 W,fl*,T)=Nth  {exp{_ 	[(flf)_fl*)2+fl)2] }+exp{_ mc2 

[fl1i2 +fl*2+flY2] 111 (35) 2T 	 2T 

where the normalization constant Alh is given by 

Nh=(2mT) 3 "2 /2 

which has the dimensions of inverse momentum 
cubed. 

We believe the use of the nonrelativstic 
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FIG. 12. Graphs illustrating the pure thermal pion 
source function along 00  for the two-fireball model. The 
signs + and - refer not to pion charge but to the contri-
butions of projectilelike and targetlike fireballs, respec-
tively 

The functions are shown for three different impact 
parameters. 

C. Contributions of nonthermalized pions 
to the source function 40 

01234567 

Impact Parameter, b (fm) 

FIG. 11. Graphs showing the results of two-fireball 
model calculations. Open triangles use the longitudinal 
momentum decay length of Sobel et al. (Ref. 24) and solid 
dots use A/md of twice this value (see text). The upper part 
of the figure gives the fireball velocity (c.m.) vs impact 
parameter, and the lower part gives the fireball tempera-
ture, with a comparison to values of Ref. 12 (straight line) 
and Ref. 15 (dashed line). 

Boltzmann distribution is justified in our applica-
tion, since we are concerned only with pions of less 
than 15 MeV kinetic energy in the c.m. frame. 

In Fig. 12 the source function along 00  and its 
components are plotted for various impact parame-
ters. As the impact parameter increases, the centers 
of the two fireballs move apart and the asymptotic 
falloff becomes greater by virtue of the lower tem-
perature. The lower temperature raises the normali-
zation coefficient. 

It is a matter of some disagreement the extent to 
which the ratio of pions to nucleons in the fireball 
approaches chemical equilibrium, as assumed in cer-
tain fireball model codes. We have chosen to as-
sume in the small 20Ne+20Ne  system that the num-
bers of pions are given by 'the geometry of the row-
on-row model, which depends on numbers of inelas-
tic collisions and path lengths to escape from nu-
clear matter. This approach, in the spirit of the 
Sternheim-Silbar2 ' p-nucleus calculations, seems 
favored by the observation by .  Nakai et al. 28  of 
prominent ir + spectral features closely resembling 
P + P = IT + + X. If, however, we were to base our 
yield function on a Boltzmann factor with the two-
fireball temperature, it would likely have little effect 
on the overall results or conclusions of this paper. 
The extent to which pions and nucleons thermally 
equilibrate is less clearcut a priori, since the pion-
nucleon scattering cross sections become very large 
near the (3,3) resonance. The data of Nakai et al. 28  
for 20Ne or NaF at E/A of 800 MeV clearly show a 
nonthermal (nascent) pion component, resembling 
p(p,IT) data at 730 MeY. The data of Wolf 
et al. 29  for 40Ar+Ca at E/A of 1.05 GeV show the 
nascent pion peaks to be essentially washed out. 
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The above data are suggestive that the more massive 
system provides sufficiently longer path lengths for 
pions to scatter in hot nuclear matter and approach 
the thermal distribution. 

We shall use a simple model taking a linear com-
bination of thermal and nascent pion distributions. 
The proportions of these components will surely de-
pend on the impact parameter, via a size parameter 
for the participant blobs. We shall take as the size 
parameter the cylinder thickness (x(b)) we calcu-
lated for the two-fireball formulation. The thermal-
ization path is characterized by a A for pion nu-
cleon scattering [XSc4PUNNY ' ], which we take as 
about 2 fm. 

Thus, the source factor of Eq. (27) becomes 

F=fexp( - ( x(b))/X) 

+fFh[l — exp( — ( x(b))/Xs)] (36) 

with fth  given by the two-fireball model expression 
Eq. (35) and the nonthermalized f, taken as an ex-
pansion of a pure p-wave simplified isobar model. 30  

We made some numerical studies of the normali-
zation integral with the z-resonance denominator. 
We found for 13=0.5 or less the pion spectrum nor-
malization is well approximated by assuming the 
nascent pion spectrum is purely P 2  up to sharp cut- 
off at Pmax. 

max / 

This approximation is valid for the low bombarding 
energies where the resonance lies near or beyond 
Pmax, the maximum momentum (c.m.) that a pion 
can have from a nucleon-nucleon collision at a given 
energy. We have not folded in Fermi motion for the 
nascent pion spectrum, since such folding would not 
strongly affect the normalization or low-energy por-
tion of the spectrum. 

Figure 13 shows 0° cuts of the two-fireball 
thermal-plus-nascent pion source function for three 
impact parameters. The nascent pion contributions 
are small relative to the thermal pions for the low 
pion energies we treat. However, the nascent pion 
spectrum puts most of the pions out at large mo-
menta and thus significantly lowers the normaliza-
tion of the thermal pions as one goes to a large im-
pact parameter. This effect can be clearly seen by 
comparing Figs. 12 and 13. 

VI. FINAL RESULTS 
AND COMPARISON WITH DATA 

In order to compare with pion inclusive data of 
20Ne on NaF at E/A of 655 MeY, the detailed two-
fireball source function described above was used to 
construct the weighting function for the 100000  
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FIG. 13. Graphs illustrating the 0° contributions of 
thermalized and nonthermalized (nascent) pions. The 
separate contributions and the total are shown for the 
three impact parameters. This source function is that 
used to weight Monte Carlo results. 

Coulomb surviving trajectories for each type of pion 
and for each impact parameter. Thus, they were 
combined with appropriate weighting for the vari-
ous impact parameters to yield results to compare 
with pion inclusive data. 

In Fig. 14 areplotted the surviving percentages of 
trajectories (for about 12000 trials for each type of 
pion and for a given impact parameter) as a function 

— bc 
U) 

0 

C.) 
U) 

0 

F- 

8C 

> 

ci) 
0 

60 
1) 
0 

I) 
0 

0 I Z 34 5 67 

Impact Parameter b (fm) 

FIG. 14. Plot of the surviving percentage of Monte 
Carlo trajectories for the three different pion charges as a 
function of the impact parameter. 
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of impact parameter. As discussed earlier in con-
nection with the scatter plots of Fig. 6, trajectories 
of all three charge states are lost to "absorption" if 
they pass within 0.8R of a spectator center, the fac-
tor 0.8 being chosen rather arbitrarily as inside the 
surface region. Furthermore, additional ir - trajec-
tories are lost to orbiting. In our model there is no 
loss at zero impact parameter, since the spectator 
nuclei have become vanishingly small, and hot parti-
cipant matter is neglected. The final weighted aver -
ages of the Monte Carlo trajectories are displayed in 
the next several figures. 

In Fig. 15 spectra of ir0  vs fl_ L  are plotted for five 
fixed ranges of fi ; that is, the spectra are vertical 
cuts on a fi vs fll, plane. Each bin is divided by its 
volume in three-dimensional velocity space to give 
differential cross sections E.d 3a/dP3 , normalized 

oL- 20 Ne + 20Ne - X + 
1r0 

E E/A= 655 MeV 

:00.1  

to agree with ir 	data, as discussed shortly. 
Lorentz-invarjant cross sections Ed 30,

/dP3  will be 
essentially the same in this low energy region, where 
the relativistic total energy E17. is approximately con-
stant (mc 2). The 7r 0  cross sections are flat. The 
statistical uncertainty of low /3 points is the 
greatest, since by geometrical weight the fewest 
events are in these bins (see Fig. 6). The width of 
the slices in f3 is 0.1, and is only slightly larger 
than the quoted experimental resolution of Sullivan 
et al. 3 ' The last interval 611 =0.46-0.56 is chosen 
to center about the beam velocity.  

Figure 16 shows the corresponding f3  spectra for 
ir -. The peak at beam velocity in the lowest curve 
is as expected. The data 8  at 90°±5° in the c.m. are 
plotted for comparison with the first spectrum. Of 
course, the positions of momentum space included 
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FIG. 15. Histograms of the final Monte Carlo ir0  vs fi1 
for five different cuts of width 0. lc. Uppermost is at c.m. 
and lowermost is centered about the beam velocity. The 
normalization is the same as the one used in Fig. 16. 
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FIG. 16. Same as Fig. 15 except for ir. The data for 
90° C.M. 

20Ne+NaF are shown in the top graph with 
theory normalized to these data. 
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FIG. 17. Same as Fig. 16 except for irk. The same 
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by data and theory are not quite the same but are 
comparable when experimental resolution is taken 
into account. Furthermore, the velocity-space 
matching and resolution are not important for flat 
spectra. The small peak at cm. (the lowest bin of 
the top spectrum), if real, would have been washed 
out by experimental resolution and perhaps also the 
lack of symmetry in the Ne+NaF experiment. 

For the IT + spectra in Fig. 17 there is the expect-
ed deep depression at beam velocity (the lowest 
curve). Indeed, the beam velocity spectrum at the 
bottom of Fig. 17 has a compressed scale in. order to 
display the curve. 

One normalization constant for Figs. 15-17 was 
fixed to match ,  the IT data. The IT + theoretical 
curve is slightly high for the lowest two bins of the 
top spectrum of Fig. 17 as compared with experi- 

.ment. 8  However, it should be noted that the corn-
'parison with data on these plots is mainly to be tak-
en for slope comparisons. The theoretical ratio of 
IT - to ir + still needs to be corrected for the 10% 
neutron excess in NaF compared to the theoretical 
20Ne target. Also, correction for the participant 
("hot") charge still needs to be made. Later in this 
paper'we estimate corrections for the neutron excess 
in NaF and for the hitherto-neglected 'effect of par-
ticipant charge. 

As mentioned above, we chose the velocity range 
in our plots comparable to the energy and angular 
resolution of Sullivan et al. 3 ' Thus, we can directly 
compare to the experimental Lorentz-invariant dif -
ferential cross sections E,d 3a/dP3 , which we shall 
also do here for the 00  spectra, and we plot against 
P. The relativistic total energy E varies by less 
than 25% over the pion energy range considered. 

Figure 18 compares experiment and theory for 
iT - at 00,  with the theory being multiplied by an ar-
bitrary factor (different than the one used for the 
previous three figures) to give matching in the flat 
region. There is a reasonable agreement with the 
beam velocity peak in position and width, but the 
theoretical peak rises somewhat higher above the 
base than the experimental. Somewhat surprising is 
a secondary bump near "1'3H"  of 0.13, evident in both 
experiment and theory. 

Figure 19 compares experiment and theory for 
IT + at 0°. The scale is correct for the data, and the 

ir Cross Section at 00  cm. 

Exp.20Ne+NaF 	
E/f-\ 

- Theo. 20 Ne + 20Ne J 655 MeV 

0.1 	0.2 0.3 0.4 0.5 0.6 

P, /mc (c.m.) 

FIG. 18. Cut along 00  for ir. The theory is shown 
both by a histogram and a computer-smoothed curve. 
The width of the cut is 13  to 0. lc, comparable to experi-
mental resolution. Data are plotted with error bars and 
the theory has been normalized to the flat portion. 
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I 	I 	I 	I 
- 	+ Cross Section at Q  cm. - 

: 	Exp. 20Ne + NaF 'I 

:-1- heo. Ne+ NeJ 655MeV- 

0.1 0.2 0.3 0.4 0.5 0.6 

P71  /m.c (c.m.) 

FIG. 19. Same as Fig. 18 except for irk. The normali-
zation constant for the theory is the same as for, Fig. 18. 

normalization factor applied to the theory is the 
same as that in Fig. 18 for the IT -. Thus, IT - lIT + 

ratios may be graphically estimated. The IT + data 
at c.m. are somewhat below theory, but as discussed 
for Fig. 17 the subsequent corrections for neutron 
excess and for participants raise the IT + points to 
agreement at c.m. 

For the iT + the theoretical curve is not as flat as 
the experimental, and the beam velocity minimum is 
too low in the theory. We have varied the impact-
parameter weighting and can get slightly better 
agreement for unrealistically strong weighting of 
central collisions. The more likely explanation of 
the discrepancy is the neglect of quantum effects. 
The region of the IT + beam velocity minimum will 
be most sensitive to the neglect of quantum mechan-
ical effects, for these slow-moving pions in the pro-
jectile frame spend appreciable time near the projec-
tile and have wavelengths in this frame long com-
pared to nuclear dimensions. 

A. The IT - hr + ratio at center of mass 

Finally, we critically examine the main question 
that prompted this theoretical study, namely, what 
IT - /IT + ratios are predicted at and near center-of-
mass velocity. Since the theoretical IT + and IT - 
spectra are not flat near the center of mass and the 
statistics are limited, care must be taken in choosing 
the momentum intervals over which to average. We 
have chosen to average in such a way as to compare 
with data of Sullivan. 8  The experimental ratios 
show some fluctuation from point to point around 
the center of mass, but there is no systematic trend. 
Thus, we average the IT - /IT + ratio for 18 data 
points surrounding the center of mass, namely, six 
momenta (laboratory) from 74 to 96 MeV/c and 00, 

40,  and 8° (laboratory). The average of these ratios is 
1.76±0.1. These momentum and angular ranges 
correspond approximately to limits of 13j and /3 
from 0 to 0.1. 

We determine the theoretical spectator effect ratio 
first by averaging the IT - /IT + ratios of nine bins 
about the same size as experimental bins. This aver-
age of ratios is 1.40. 

In comparing theoretical and experimental 
IT - lIT + ratios it is necessary to take into account 
that the experimental systems studied have a neu-
tron excess. Quite aside from Coulomb effects, the 
neutron excess will produce an excess of IT - over 
IT +  in what we will call the "primitive" IT /IT+  ra-
tio. The primitive ratio is also model dependent. 
We shall assume the (3,3) isobar and row-on-row 
models. We shall assume the ratio is not altered by 
charge exchange scattering, consistent with our ear-
lier assumption of thermal but not chemical equili-
brium between pions and nucleons. Sternheim and 
Silbar2 ' did need to include charge exchange scatter-
ing for IT from proton-nucleus reactions, but their 
ratio of pions formed initially is very deficient in 
IT because the projectile has maximal isobaric 
asymmetry (no neutrons). 

Sullivan, 8  following Sternheim and Silbar, 2 ' using 
Clebsch-Gordan branching relations for i decay, 
has given Eqs. (6.8) and (6.10) from which we get 
the primitive IT - lIT + ratio. 

Y_/Y =(1ONpN T +ZTNp+NTZp)/(1OZpZ T +ZTNp+NTZp). 

For 20Ne+ 21 Ne (average target nucleus) we get 

Y_ /Y= 131/121= 1. 083 

We need to assess the effects of participant charge 
on the ratio. It is not straightforward to calculate 
this effect, since the pions and protons do not start 
from a common center. However, we shall make an  

estimate by the following model: Let the fireball 
protons begin expanding with speed u, in a uniform-
ly charged spherical shell at some mean radius 
R (0. 6r0A I Let the pion start from the surface 
R ( r0AU' 3  with r0 =1.2 fm). In order to have a fi-
nal velocity of zero a IT - must have a radial out-
ward speed of v•. The pion will experience at first 
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an attractive Coulomb force, but the force suddenly 
goes to zero as the proton shell passes the pion. We 
can, by simple algebra, derive the dependence of the 
final ir - velocity v,1 on the initial velocity v,. 

v =v — [(u —vj) 2 +2a(Rr —R c )]
112 

 

(37) 

where a is the magnitude of the acceleration, here 
considered constant since the pion has low velocity, 
and the force from the shell acts from the origin. 

a =Ze2 1mR r 2 . 

The Jacobian (or Coulomb phase space factor) be-
comes 

I—I 

0 01 
avxi  

0 	1 0 	
8v 

Iavxf  
=I 

I 	x1 
0 	011 

For the case of interest here vi <<va;  hence, the 
cross derivatives in the Jacobian determinant ap-
proach zero and the diagonal elements for the per-
pendicular directions go to unity. 

Differentiating Eq. (37) gives the result 

I 	2a(R—R,) 1_1/2 

(v—v) 

Ze 2 	(R r R c ) 

R rm(v c 'va ) 2 	Rr 	
(38) 

where we have indicated also the result for ir + by 
the lower signs. For a numerical estimate we ap-
proximate the participant charge and size for an 
average impact parameter leaving half the total 
charge in the fireball. We take Z = 10 and 
R=1.2x20 1 "3 =3.26 fm. The mean velocity of the 
expanding fireball we take as the original c.m. value 
/3=0.51, ignoring pion cooling effects. From this 
we calculate that vi = 0.025 with 

= 1+0.054 and J = 1-0.054. 	(39) 

That is, the participant (fireball) charge contributes 
a factor of 1.11 to the ir/ir ratio at the c.m. 
Multiplying these factors, 1.083 for neutron excess, 
1.40 for spectators, and 1.11 for participant charge, 
we get a theoretical 1T/iT c.m. ratio of 1.68. 

This ratio is in quite satisfactory agreement with 
the ratio of 1.76±0.1 calculated, as described earlier 
in this section, from data tabulated by Sullivan. 8  

Time and resources were not sufficient for us to 
run other than exploratory Monte Carlo calculations 
on other systems, such as 40Ar+ 40Ca and 
238w + 

Consider now the experimental measurement of 
the central ir - / + ratio in 40Ar + 40Ca at E IA of 
1.05 GeY. The ratio is essentially the same as for 
20Ne+NaF at E/A of 655 MeV. In lieu of detailed 
Monte Carlo calculations on Ar+Ca we use our Eq.. 
(38) and the very similar formula of Ref. 4 to scale 
spectator Coulomb effects as 

ZR'k 2 A 213  (Yc . m.1)  

where Z is the charge, R is the nuclear radius, and k 
is the wave number (momentum) of a pion moving 
with beam velocity in the c.m. frame. When we ap-
ply this scaling law, we find that the increased 
charge of the Ar + Ca experiment is more than com-
pensated by the higher energy. These comparisons 
are summarized in Table III. 

It is interesting to note the similarity of Eq. (38) 
to the classical expression '(2.15) of Gyulassy and 
Kauffmann. 4  If we neglect v, compared to v, a 
good approximation, our correction term to the 
Jacobian differs from theirs only by being reduced 
by the factor (R,. —R )/R r , a factor of 2 or 3 reduc-
tion, depending on the choice of mean initial radii 
for protons and pions as expansion begins and nu-
clear charge exchange equilibrium with pions is lost. 
If we start proton expansion at the origin, our ex-
pression reduces to theirs for the special case of 
pions at the c.m. 

We believe that the various Coulomb correction 
formulas for pions near the projectile velocity, as ap-
plied by Gyulassy and Kauffmann, 4  by Sullivan 
et al., 3 ' and by Radi et al. 6  are.justified. The pro-
jectile spectator is bound or weakly excited to evapo-
rate a few protons, and the charge of the one specta-
tor dominates the Coulomb correction on pions near 
it in velocity space. 

On the other hand, we hold reservations about 
analytical expressions hitherto applied to pion 
Coulomb corrections at midrapidity, such as the reg-
ular Coulomb function, applied by Siemens and 
Rasmussen 32  and the perturbative formulas of Gyu-
lassy and Kauffmann, 4  based on expansion of 

TABLE III. Zero energy (c.m.) 	11?-  ratio factors. 

20Ne+NaF 40Ar+Ca 
at 	at 

655A MeV 1050A MeV 

Spectator Coulomb factor 	1.40 	1.36a 
Neutron-excess factor 	1.083 	1.17 
Participant Coulomb factor 	1.11 	1.10 

Final product 	 1.68 	1.75 
Experiment (Ref. 7) 	1.76±0.1 	1.5±0.2 

aCalculated by scaling from 20Ne Monte Carlo results. 
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charged particles from a common origin. 
We have a disagreement for very slow pions (c.m.) 

with Gyulassy-Kauffmann expressions for the graz-
ing impact parameter, where the pion starts exactly 
midway between the spectator charge centers. In 
this case, we found Jacobians very close to unity for 
ir - and ir + However, our final result for the cen-
tral ir - hr + ratio of 1.68 is fortuitously close nu-
merically to the result of using their expressions. 
Apparently the location of pion starting points off 
the line of centers spoils the cancellation of 
Coulomb effects. There is certainly a complicated 
vector addition of Coulomb forces that makes it 
doubtful that the effects can be expressible as a sum 
of scalar terms for the various moving charge 
centers. 

Certainly much work remains to be done to 
understand the Coulomb effects on heavy-ion pion 
spectra. Future Monte Carlo studies ought to be re-
lativistic and extend to higher pion momenta to con-
nect with the wealth of data from Nagamiya et al. 33  

One should treat spectator and participant charge 
on the same footing. In this regard it would be 
desirable to have a rerun of the Cugnon and Koo-
nm 3  Monte Carlo calculations with the pion source 
function modified and absorption within a certain 
density of nuclear matter taken into account. That 
is, it would be desirable to have the spatial part of 
the source function concentrated on the surface of 
the interactive volume, namely outside the nuclear 
density, at which pion-nucleon charge exchange re-
actions are prevalent. We are not able to compare 
directly with their results, since our calculation is 
for the 20Ne + 20Ne system at E hA = 655 MeV and 
theirs is for a system of double the charge and at 
higher energy. We can only speculate that their 
peak in the ir_/ir+  ratio at c.m., which is contrary 
to subsequent experiment, perhaps arises from pions 
formed near the origin with small velocities. Their 
central fireball potential will provide an attractive 
well for ir - and a repulsive hill for ir . It could 
also be that quantum effects could be significant in 
suppressing sharp peaks or valleys in the distribu-
tions. 

Going yet a step beyond the Cugnon and Koonin 3  
Monte Carlo work, one might run a nucleus-nucleus 
cascade code and for each event carry out the 
Coulomb modified trajectories of the pions. Of 
course, it would be desirable to have such calcula-
tions for more than one energy or Z value. Al-
though we did not have time to run the calculation 
for many variations in source function parameters, 
it is likely that the final results are not very sensitive 
to the several parameters in our source function. 
We did wish to formulate a fairly complete source 
function, although it remains for further work to  

match high-energy pion spectra not treated here. 
One may be suspicious of classical calculations of 

low energy pions, since wavelengths exceed nuclear 
dimensions. However, in recent years much has 
been done to bring in quantal effects through the 
classical action integral. We are doubtful that quan-
tal interference effects would survive averaging over 
the large number of final states. As we pointed out, 
though, the neglect of quantal. effects probably led 
us to exaggerate the beam velocity + depression, a 
problem that needs attention in future work. 
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APPENDIX A: SPECTATOR CENTROID SHIFTS 
AND THE RADIUS OF MAXIMUM 

OVERLAP RING 

For simplicity, we compute the shift of center of 
mass of the spectators by scraping out segments of 
maximum height S as seen from Fig. 20. In this fig-
ure the geometry gives us the shift of the new cen-
troids, 8b, with respect to the original centers as fol-
lows: 

S 2[18R12 _16R,°S +s 2 ] 

4[4R?3 _3R 10S 2 S 3 ] 
where S R ° +R—b. 

The radius of the maximum overlap ring, R r , and 
the distance between the center of this ring and the 
center of the original projectile spectator fragment, 
d, can be found from geometry as 

R r 2[S(S_R)(S_R)(S_b)}" 2/b , (A2) 

d =[(R)2Rr2]''2 , 	 (A3) 

where S in Eq. (A2) is given by 

S=(R+R--b)/2.• 

b= (i=P,T), (Al) 

'I 
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new centroid 
	

C 	
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S 

- 

new centroid 
FIG. 20. Sketch illustrating the geometry of calcula-

tion of centroids of spectator fragments.  

(o.00000aoo) 
I. 	 'I 	 'I 

projectile row 	 target row 

FIG. 21. Sketch of row-on-row one-dimensional 
geometry with parameters identified. 

nucleon in the target row (then m =XT/A+ 1). In 
Eq. (132) X pr  is the pion production mean free path 
defined by Eq. (29) and apr  is a proportionality con-
stant. By symmetry the attenuation of cross section 
for trailing nucleons in the projectile row also falls 
exponentially. The pion production from two nu-
cleons, one at Xp in the projectile row and the other 
at XT in the target row, is now 

8b 

D , bt 
8b 1  

APPENDIX B: 
ROW-ON-ROW MODEL 

FOR PION YIELD FUNCTION 

As a simplified version of the row-on-row model, 
let us start by assuming two interacting rows of 
lengths ip and IT (representing projectile and target, 
respectively). The nucleons in a row are spaced by a 
mean free path, X, when one considers a row of a 
cross-sectional area 

= 	ot 	 (Bi) 
PUNN 

The situation is schematically shown in Fig. 21. We 
assume that the probability of producing a pion by 
the first nucleon in the projectile row, incident on a 
nucleon at a distance XT from the first nucleon in 
the target row, is given by an exponentially decreas-
ing function of distance as 

_
xTIX  

, 	 ( 132) 

where Xp = 0 indicates the first nucleon in the pro- 
jectile row and XT indicates the m th, for instance, 

y=RT 	rPT< 
Ppr1tot(Rp,RT,b)=2 fy  b Rp 

dy 
'z=O 

where 

if rp<r7 
rPT={ 	if rT<rP 

(B5b) 

(B3) 

The overall probability for two rows of length ip 
and It is simply obtained after integrating Eq. (113) 
over dxpdX T  to have 

2rlp/1 pr )] Ppr(lp,lr)apr 	I l_exp(...... pr  

X[l—exp(—IT/Xpr)] . 	( B4) 

The next step is to apply Eq. (B4) to a specific reac-
tion. Let us assume a projectile of radius R °  and 
target of radius R (we will drop the superscript 0 
in the formulas for convenience). In the center-of-
mass frame they are moving with f3p  and fiT,  respec-
tively. In part (a) of Fig. 22 we display the 
geometry of the reaction with the differential ele-
ment of two disks at height y from the center of the 
target. In part (b) two rows in the interacting disks 
are shown. One can get the total pion production 
probability by integrating over all possible y and z 
variables to get 

(B5a) 

The integrand of the integral of Eq. (135a) is shown 
on the left side of Fig. 23 for b =0.3(Rp+RT) for 
the 20Ne on 20Ne system. On the right side a projec-
tion along the y axis is shown. The pion production 

dzPpr 1p2[Rp 2 _(b —y) 2 —z 2 ] 1/2
' 1T = 2[RT 2— y 2— z 2]'"2  
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FIG. 22. Sketch of three-dimensional row-on-row 

geometry for calculation of pion yield at a given impact 
parameter (see text). 

mean free path is taken to be Xp r =X as given by Eq. 
(B 1) and calculated at 655 MeV/nucleon (laborato-
ry). 

Since pions produced well into the middle of the 
projectile and target rows have less chance to appear 
on the surface, then in the spirit of the Sternheim-
Silbar model, 2 ' one should allow pions to be ab-
sorbed also. If we consider the case given by Eq. 
(B3) and refer to Fig. 21, we see that a pion pro-
duced nearly at rest from a nucleon at a distance XT 

in the target row and a nucleon at a distance Xp in 

I,  

a- 

2 

y (fm) 

FIG. 23. Plots of the integrand in the integral for the 
pion yield function [Eq. (B5a)] at a given impact parame-
ter (see text). Coordinates are defined in Fig. 22. On the 
right-hand side a projection onto they axis is displayed.  

the projectile row must survive passage of a length 
(IT—XT) of the target row and survive (lp—xp) of 
the projectile row to be observable. As seen from 
Fig. 1 of Hecking, 23  pion mean free paths are never 
negligibly long. If Xab  stands for the pion absorption 
mean free path, then the probability of forming a 
pion at XT (in the target row) from a nucleon at Xp 

(in the projectile row) and surviving thickness 
(IT —X T ) in the target row and (lp—xp) in the pro-
jectile row is written as 

P(xp,xr)=aeXp[_(Xp+Xr)/Ap r] 

xexp[ —(li XP)/Aab] 

Xexp[—(l T —x T )/.ab] , (136) 

where a is a proportionality constant. Upon in-
tegration over dxpdxT we get 

P(lp,lT )=a) 2exp[ —(lv +lT )/X ab] 

x[l—exp( —1/A.)]pr  

X[l—exp(-1T/)] , 	(B7a) 

where 
ab - prpr/[1 +(Xpr/Aab)] 

—+ Xpr. 	 (137b) 
ab 

As in the case of no absorption (Xab = o) the total 
observable pion production is symbolically denoted 
byP b  (Rp,R,b) and could be calculated by re-
placing Eq. (B5a) by the right hand side of Eq. 
(B7a). The pion yield function is generally the total 
pion production probability per nucleus-nucleus col-
lision 

Y(flcm,Rp,RT,b)P/tot(Rp , RT , b )  

APPENDIX C: 
GEOMETRICAL APPROXIMATION 

USED FOR THE TWO-FIREBALL MODEL 

For a given impact parameter we let N .2 nu-
cleons from the projectile or the target fill a cylin-
drical slab of thickness (x). This cylindrical slab, 
which represents the overlapping matter, will be 
considered as an elliptical cylinder with an area of 
an ellipse of semimajor and semiminor axes that are 
the same as for the fireball cylindrical cuts. These 
lengths are given [as shown in part (c) of Fig. 10] by 
the following: 

semimajor axjs=(R 2 —b 2 /4)"2 , 
(Cl) 

semiminor axis = R — b /2. 

To find an average slab thickness (x) we use the 
volume as related to the number of participant flu- 
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cleons, N12, for each fireball. Then 	
i.m. =[1 +2mNc 2 /ek] "2  , 	 (0) 

(x) =N/[2np(R —b/2)(R 2 --b 2 /4)"2 ] 

(C2) 

Hence, for the impact parameter b under considera-
tion the ratio 

r=exp(—(x)/Xj md) 

is given. For such a symmetric system the center-
of-mass velocity with respect to laboratory is a spe-
cial case of Eq. (1) and is given by 

where mNc and Ek are already defined in Sec. II. 
The initial velocity of the projectile and target fire-
balls in the center-of-mass frame are identical to 
13c.m. for such a symmetric system, 

(pf) /3 m. (tf) /cm =/3, 	 (C4) C:m 

where the notations pf and tf stand for the projectile 
fireball and the target fireball, respectively. The ini-
tial target fireball momentum in the center-of-mass 
frame is given as 

P(i) - 	( 1) 	 U) 
c.m.(pf) 	Yc.m. 	Iab(pf) - cm. lab(pf) 

where 

_l/(1 	p 	2\1/2 
Yc.m. 	1-'c.m. / 	, 

and where the initial momentum and total energy of the projectile fireball in the laboratory are given by 

PJ,(pf)  = 	I +2mNc 2 /Ek]"2  , 	 (C6a) 

E(pf)=ek[l+mNc2/Ek] . 	 (C6b) 

The above equations give 

P(pf)=__ek[mNc2/(2ck)]' . 	 •( C7) 

Using Eq. (31), we get the final total energy of the projectile fireball in the center of mass to be 

EV(pf) =.mNc 2[l+r 2Ek /(2mNc 2 )] 1 /'2  

One can now find the change in the total relativistic energy of the two fireballs (the conditions of the target 
fireball are the same as the projectile fireball for any symmetric system) as 

Ecm  r=NmNc 2 f [1 +ek/(2mNc 2 )] 1'2 —[ I +r 2ck/(2mNc 2 )} L2 } 	 (C8) 

The final velocity of the projectile and target fireballs is given by 

13/rn.pf) flc{rn.(tf) =[ 1 +2mNc2/(r2ek )]—l/2=/3* 	 (C9) 

*Present  address: Cyclotron Institute, Texas A&M 
University, College Station, TX 77843. 
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