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BOUNDARY LAYER CONTROL BY MEANS OF STRONG INJECTION 

by 

Ruey-Jen Yang 

ABSTRACT 

The gas mixture produced by a coal gasifier contains components 

which have serious corrosive effects on the walls of the pipe flow 

system. To reduce these, a non-corrosive gas is injected into the 

stream of the coal gas products, in a direction parallel to the 

pipe wall. The interaction between the injected stream and the 

original pipe flow is investigated analytically and is an example 

of the so-called Wall Jet Problem. 

The model adopted is that of a two-dimensional incompressible 

turbulent free mixing layer, with the corrosive gas H 
2  S forming the 

upper stream and moving faster than the injected non-corrosive gas 

in the lower stream, the latter bounded by the solid wall of the 

pipe. This wall jet flow can be divided into three distinct regions. 

In the first, farthest upstream, the upper (main) stream interacts 

with the lower injected stream in a free mixing process, while a 

turbulent boundary layer develops along the pipe wall bounding the 

lower stream. In the second region the lower half of the free 

mixing layer interacts with the wall turbulent boundary layer. In 

the third region, stream mixing has been completed and all diffusion 

takes place in. a thickened turbulent boundary layer. 

•1 
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The orthonormal version of the numerical method of integral 

relations is applied to solve the momentum and species mean 

turbulent boundary layer equati,ons, along with eddy viscosity 

modeling. Numerical results show that the ratio of the distance, 

where the mass concentration of H 2 S diffuses to the wall surface 

to the slot height of injection, is of the order 0(100) for a given 

velocity ratio of two free streams in the mixing layer. The shear 

stress at the wall surface increases in the streamwise direction in 

the second region. This results from the larger momentum of the 

upper stream causing the sublayer of the wall boundary layer in the 

lower stream to become thinner. 

Approved: 

CAQ  &t  ~ PAL- 
Maurice Holt, Chairman 
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I. INTRODUCTION 

The current interest in energy conversion technology has focused 

attention on the production of synthetic natural gas from coal. Gas 

mixtures, in a coal gasification process, contain hydrogen, carbon 

dioxide, carbon monoxide, steam and hydrogen sulfide. Of those, 

hydrogen sulfide can cause very serious pipe corrosion. Furthermore, 

solid particles contained in the gas stream may be projected against 

a pipe wall causing erosion. In order to protect the pipe wall from 

attack by corrosive gas and damaging particles, an attempt is made to 

inject a non-corrosive fluid; at the pipe entry, to form a thin layer 

on the innerpipe wall. Thus the corrosive gas and solid particles 

can be "washed away" or "blown off" the wall for a time. 

Mass injection into a turbulent boundary layer by tangential 

injection has been studied for many years. In the past decade, the 

practical applications of this -technique include reduction of skin 	- 

friction on an airfoil, prevention of boundary layer separation over 

a surface subject to adverse pressure gradient and protection of 

surface exposed to high-temperature environment encountered in 

combustion chambers, gas turbines, rocket nozzles, and high-speed 

flight vehicles. Recent works on this subject can be found in 

LaRue and Libby (1977, 1980), Cary, Bushnell and Hefner (1979) 

and Brune (1981). The flow condition at the initial stage con-

sidered by those authors is the confluent turbulent boundary layer 

forming when a turbulent flow above a splitter plate mixes with a 

fully developed turbulent channel flow beneath it. 

In this work, we choose a simplified model shown in Fig. 1. 
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The first stream is assumed to be hydrogen sulfide, H 2S, the most 

corrosive component in the gas mixture from a coal gasifier. The 

second stream is the injected fluid, for example, steam. Both 

streams are assumed to be of uniform density and flow at constant 

low speeds. The flow is isothermal, two-dimensional, and the 

boundary layer effects on both sides of the splitter plate can be 

neglected. In other words, a model which is a two-dimensional 

incompressible turbulent free mixing layer in the presence of a 

wall is used in this analysis. A flow of this type involves the 

interaction of a free mixing layer and a wall boundary layer. Three 

zones can be physically perceived. Firstly, at the end of the splitter 

plate the upper and lower streams begin to mix; in the meantime, a 

wall boundary layer is developing along the wall. Also, before the 

two layers merge together, an embedded potential core exists in 

between. Recently, Pot (1979) conducted an experiment to observe 

the phenomena of the interaction between a turbulent wake and a 

turbulent wall layer. He found that the wake and the wall layer 

develop independently before the two layers merge. Therefore, in 

the present work, we assume that the free mixing layer and the wall 

layer are not to be influenced by each other in the first region. 

Secondly, just downstream of the position where these two layers 

merge, there is a domain within which the two viscous regions 

interact. Thus the mixing layer gradually dissolves into a new 

boundary layer type flow. Thirdly, far downstream from the origin 

of mixing, the stream mixing has been completed. In this zone the 

flow can be treated in terms of conventional turbulent boundary 

layer theory. 

The purpose of this work is to find the location where the 
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concentration of the first stream diffuses to the wall. The species 

equation is decoupled from the momentum equation as a result of the 

assumption made, in which both streams are regarded as incompressible 

fluids with the same density, and are isothermal. Thus, the species 

equation can be solved separately after the momentum equation is 

solved. 

The flethod of Integral Relations (MIR), introduced by Dorodnitsyn 

(1960) provides a simple and accurate means. of solving laminar 

boundary layer flows. No approximations are made to the equations. 

Approximations are made in representing unknown integrands appearing 

in the basic integral relations. In two-dimensional boundary layer 

flows, the approximation is based on the representation of the stream- 

wise velocity gradient in the transverse diection.asasimple .a:lgèbraic 

function of the streamwise velocity itself. Such a representation 

should reflect the physical character of the flow. If polynomials 

are used, the order of the approximation depends on the degree of the 

polynomials. In principle this can be as high as desired, but in 

practice the order of approximation is limited by the inversion of 

the resulting matrix, which becomes progressively more ill-conditioned, 

and the amount of algebra required. However, these disadvantages have 

been largely overcome in the orthonormal version of MIR (Fletcher and 

Holt, 1975). As indicated by Yeung and Yang (1981), high order 

approximations should be used to solve turbulent boundary layer flows 

due to the highly inflected velocity profiles of the flows. We 

employ the orthonormal version of MIR in the present analysis. 

This report is divided into three main parts. The first part 

discusses the numerical solution of the turbulent boundary layer flow 

and the orthonormal version of MIR is described in detail. The 



numerical results are in very good agreement with experimental data. 

The second part discusses the numerical solution of the turbulent 

free mixing layer. Here MIR shows its advantage in that the approach 

yields a unique solution and this is independent of the third 

boundary condition (Ting, 1959). Comparisons between the numerical 

results and experimental data are also made. The third part dis-

cusses the numerical solution of the interaction between the 

turbulent wall layer and the turbulent free mixing layer. The 

location where the mass concentration of H 2  S diffuses to the wall 

surface is found and some interesting physical phenomena are cited. 
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II. ANALYSIS OF THE TURBULENT WALL LAYER 

2.1 Introduction 

In the vast body of literature dealing with turbulent boundary 

layer calculations, two major methods have been employed: the so-

called integral method and the differential method. In this chapter, 

we investigate a particular solution procedure for the two-dimensional 

incompressible turbulent boundary layer using the Method of Integral 

Relations (MIR). In particular, the efficiency and versatility of 

this method, as applied to turbulent boundary layer calculations, is 

studied. 

The method of integral relations has previously been applied to 

two-dimensional turbulent boundary layer calculations by Abbott and 

Deiwert (1968) and by Murphy and Rose (1968) at the 1968 Stanford 

Conference on turbulent boundary layer calculations. Unfortunately, 

that formulation was found to be inferior to other prediction 

methods presented at the same conference. Here, we shall reformulate 

the problem by using the modified version of MIR developed by Fletcher 

and Holt (1975). As a result, most of the shortcomings indicated by 

Murphy and Rose are overcome. 

2.2 Formulation 

For a two-dimensional, incompressible, steady flow, with the 

usual boundary layer approximations, the momentum and continuity 

equations, in terms of the time-averaged and fluctuating quantities, 

may be written in the form: 

5 
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du 	- ! -E- + 	[(v + E )  U u—+ v—= dy 	p dx 	y 	p 
	(2.1) 

u 	v 
-+-= 0 x 	y 	

' 	 (2.2) 

where u and v are the mean velocity components in the x and y direc-

tions, respectively, and p is the mean pressure; p is the density of 

the fluid and v its kinematic viscosity. The eddy viscosity, £, is 

defined as 

-pU'V' = E 	, 	 ( 2.3) 

where - p u'v' is the so-called Reynolds stress. The following non-

dimensional variables are chosen: 

1/2 	 1/2 	u 
V = vR 	 x 	yRe 	

U=-- , (2.4) 

where L and uCO  are the characteristic length and velocity scales, 

respectively, U is the velocity at the outer boundary layer edge, 

and the Reynolds number Re is defined as 

uL 
Re=---- . 	 (2.5) 

The pressure gradient is related to the outer edge velocity by 

Bernoulli's equation: 

ldp_ 	
du 

 e 
(2.6) 

Using Eqs. (2.4) and (2.6), the original governing equations (2.1) 

and (2.2) become 

U 2HU  + V - = 1  —p- (1-U2) + - -- 1( 1  +-) 	, 	(2.7) 

Lv  y 	edx 	 ey 	' U] 

U 	V 	U 
dU 

 e - + - = - - 	 (2.8) 
e dx 



To apply the Method of Integral Relations, we define a set of linearly 

independent functions {f(U)}  such that 

f(l) = 0 	, 	 i=l,2,...,N 	, 	 (2.9) 

where N is the order of approximation. Multiply Eq. (2.8) by f. and 

Eq. (2.7) by f!, defined as the first derivative of f. with respect 

to U, add and integrate from y=0 to y-~-co: 

- 	 dU 
- let 	2— 	1 

- 

 1 0 f.Udy = 	
— J f[(l-U )dy - — f(0) (—) 

x 	edx 0 	 e 

 dy 	e  J 	- Ufd . (2.10) 
eO 	' 	y 	

1 	edx 0 

Change the variable of integration from y to U and define Z as: 

Z 
= (U)l 	

, 	 (2.11) 
DY 

and Eq. (2.10) can be written as: 

dU f l
f.UZdU = ----- 	[(l-U2)f! -Uf.]ZdU 

I1 	 U 	— 	 1 	1 Bx'O 	 e dx 0 

- -j- f(0) .!_ - -J- f (1 +-) —- dU . 	(2.12) 

Equation (2.12) is the basic integral relation in the present 

analysis. 

We now further define {f.1 as a set of orthonormal functions 

constructed from the Dorodnitsyn functions (l_U), k = 1,2,3... by 

the Gram-Schmidt procedure (Isaacson and Keller, 1966). Hence: 

1 

f. (U) = 	c. (1-U)" 	, 	 (2.13) 
1 	k=llk 
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fo fk i  1-U
dU  =kj ' 	 (2.14) 

with 5kj being the Kronecker delta. Z is then represented by: 

N-1 
b 

0 	 3 
+ E b. 3 f.(U) 

. z = 
	1-U 	 (2.15) 

where b ,b 1 ,b 2 ,... are unknown coefficients to be found. Substituting 

(2.15) into (2.12) and invoking (2.14), we obtain an explicit set of 

ordinary differential equations in the coefficients b,b 1 ,. . . 

db 	lf.0 	db. 	dU 	1 

—i  J -j dU + -f = - -f j [(l-U2)f - Uf]ZdU 
dx 0 	 dx 	edx 0 

f ( 0 ) 1 	f U  . ii 	if 	C 	1 (l+—)—dij 

	

- ii-  z 	 LI 	Z e 	0 	e 

i=1,2,...,N-1 	 (2.16a) 

and 
db flfU dU 

fO
1 

 dU = -J- -s {(l-U2)f- UfN]ZdU 
dx 0 	 edx  

- -J- f(0) ._ - .J_ f(1 +.-) . fdU , 	(2.16b) 

which can be integrated subject to appropriate initial conditions at 

some station x=x.. We shall discuss the initial conditions later. 
1 

The above formulation is. similar to that in a laminar boundary 

layer (Dorodnitsyn, 1960). Apart from the difficulty of evaluating 

the integral 

(1 C 1 
- f(U)dU 

JO 	-' 

in which some kind of eddy viscosity model for c has to be used, one 

problem is that the approximationofZgiven by (2.15) is not accurate 



unless N is rather large. This is mainly due to the highly inflected 

velocity profile in a turbulent boundary layer as opposed to the 

smooth profile in the laminar case. Thus, Murphy and Rose (1968) 

pointed Out that the usual sequence (1-U) 3 , j = 1,2,... is not quite 

satisfactory, even when a four-parameter profile is used (i.e., N =4). 

Instead, they judiciously assigned much larger exponents to the 

factor (1-U) and determined in the course of their numerical solution 

the optimum values of those exponents. This of course destroys the 

completeness requirement of the original method of integral relations, 

and it does not guarantee in principle that the approximation will 

converge to the exact solution if the order of approximation tends to 

infinity. The sole purpose of their scheme is apparently better to 

represent the Z profile in a turbulent boundary layer while using as 

few parameters as possible, since the traditional method of integral 

relations is quite impractical when too many parameters are used. 

However, the present orthonormal version circumvents this "high 

order" difficulty and enables one to preserve the completeness 

requirement while still using as many parameters as possible to 

represent faithfully the Z profile. Indeed, it has been applied to 

the two-dimensional laminar boundary layer to as high as N = 15 with 

little computer expense (Fletcher and Holt, 1975). It is therefore 

believed that the present formulation would be efficient even for 

large values of N. 

2.2.1 Turbulence Modeling 

In order to calculate the last integrals in Eqs. (2.16a) and 

(2.16b), a model for the eddy viscosity e/p is needed. We use the 

following expression for the wall region: 
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= 0.04432 0.4u [e 	-1 0.4u - 0.08u 2 ] 	, 	(2.17) Ti 

which was first deduced by Spalding (1961) and later found independently 

by Kleinstein (1967). For the wakeregion, the Clauser model (1956) 

is used: 

= 0.0168 Re 	 (2.18) 

where u = U/UT and UT = ITw/p, the wall frictional velocity. Re is 

defined as 

* 

Re 	= e 	 (2.19) 

with 6 being the usual displacement thickness. 

The wall shear stress, T.  is given by: 

Du 
T = (p+c) 0 (-) 0  , 	 (2.20) 

where the subscript 0 denotes the wall. 

Experimental data show that the wall region extends to where 

the non-dimensional velocity U assumes a value of roughly 0.7 

(Bradshaw, 1976, p.  53). In general, we denote this value by U. 

The determination of U 
m  will be discussed later. Hence the last 

integral in Eqs. (2.16a) and(2.16b) can be evaluated as 

fU 	1 
(...)dU= 	m(...)du+ f 	(...)dU , 	(2.21) 

o 	 o 	 ii 
m 

where (...) represents symbolically the integrand. 

Before discussing the method used to calculate (2.21), we first 

derive expressions of u and y in terms of the present variables Z 

and U. We begin with Eq. (2.20): 
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T = 	 + c) 0 (-) 0  

Since c =0 at y=O, we have: 

Du 
T = ty 

Using the definition of Z and the nondimensional variables defined 

in (2.4), it can be shown that 

-1 vrRe 	U w 	- e 
2  

Pu00 	Z 0 

or 

	

(uT 	 Ue  

	

UCO 	- Z0Re 2  

Hence, 

u+  = UUZ0Re½ 

(2.22) 

(2.23) 

and 

= V e 	
(2.24) 

Thus the eddy viscosity can be written in terms of Z and U as follows: 

For 0U<U 

0.4U 
VUeZ  OR = 0.04432[: 	 -1 - 0.4UU z0e½ - 0.08U2URe½Z0] , (2.25) 

and forU < Ul m 

= 0.0168 U Re1 	(l-U)ZdU 	 (2.26) ,e 	fo 
* 

and the displacement thickness cS has been written as 

* 	 1 

6= 
 fo 	dy = --

fo  
(l-U)ZdU . 	 (2.27) 

 e 	Re2  



2.2.2 Evaluation of Integrals 

The integrals in Eqs. (2.16a) and (2,16b) can be computed 

exactly except for the shear integrals, which appear as the last term 

in the equations. At present, these shear integrals are evaluated by 

using a method based on the Gaussian-Legendre rule, the algorithm of 

which is available in the Sandia Mathematical Library. 

2.2.3 Determination of U 

Up to now, we have only denoted the outer boundary of the wall 

region by Um•  As mentioned before, experimental results indicate 

that Urn  is roughly 0.7. However, this value of Urn  may not produce a 

continuous curve for E/1.t  across the whole boundary layer. To be 

consistent with the present formulation, then, U must be found by 

determining the intersection of the E/1i  in the inner region with that 

in the outer region. Hence, equating the two expressions (2.25) and 

(2.26), we have: 

0. 04432 [ 
re 0.4U 	

U Z0Re1 - 1 - 0.4U 	U Z0Re½ - 0 . OSU2UZ0Re½] 

1 
= 0,0168U Re½ e 	fo (l-U)ZdU . 	 (2,28) 

The above equation can be solved iteratively to yield U. The 

advantage of using Spalding's model becomes clear: this model is 

explicit in U and hence makes it easier to determine Um  The solu-

tion is sought in the neighborhood of 0.7. In the case of flow with 

adverse pressure gradient, the wake region becomes substantial and 

U rn  is found to be smaller than that of the flow with favorable 

pressure gradient or without pressure gradient. Once U is 

determined, the shear integrals can be evaluated as mentioned earlier. 

12 



2.2.4 Initial Conditions 

The system of ordinary differential equations (ODE) resulting 

from our formulation of the MIR must be provided with initial. con-

ditions on the parameters b 0  and b at some initial station, which 

can be taken as zero by suitable translation of the origin. Unlike 

laminar boundary layer flows, where the initial conditions are 

usually given by exact solutions (similarity solution), we have to 

rely on experimental data to determine the appropriate initial 

conditions. The easiest way in the present formulation is to 

calculate these initial values from experimental data. In general, 

among the experimental data, velocity profile U, boundary layer 
* 

thickness 6, displacement thickness 6 , momentum thickness 0, and 

skin-friction coefficient C f  are available. One then faces the 

problem of choosing the most "effective" data. Our suggestion on 

these choices is as follows: 

The skin-friction coefficient, Cfl  is the most effective 

for ensuring the correct behavior of the velocity profile 

at the wall. 

Second in effectiveness is 6, the boundary layer thickness. 

Although Eq. (2.15) satisfies the boundary conditions 

DU/Dy 	automatically as --co the value of the boundary 

layer thickness would not generally match the experi-

mental data. Hence, to match the boundary layer thick-

ness is to secure a more correct boundary condition at 

the outer edge of the layer. 
* 

Displacement thickness, 6 , is our third choice of data. 

In (a) and (b), we specify the boundary conditions at the 

wall and at the outer edge of the layer. By matching the 

13 



displacement thickness, we expect to get a correct global 

behavior of the velocity profile in the boundary layer. 

It was found that using the above three conditions (i.e., C f S )  

for N=3) to compute the flow over a flat plate, a very satisfactory 

result was obtained. In the case of higher approximations, more data 

are needed. Generally, a trial-and-error procedure is needed to choose 

other "effective" data. However, one can pinpoint these data after 

several attempts by noting that good initial conditions should behave 

as 1b0 1 > Ibi > b21... in Eq. (2.15). Since U=O at the wall, Eq. 

(2.15) becomes: 

N-1 	 N-i 	j 
Z0  = b+ E b.f.(0) = b 0 + E b.( E c.k) 	 (2.29) 

j=l 	 j=l 	k=l 

In the course of constructing orthonormal functions from (l_U)k  by 

the Gram-Schmidt procedure, we found that 

j-1 	j 
11 Ec.J<IEcj 
k=l 3k 	k=l k 

Intuitively, the contribution to Z from the subsequent term in Eq. 

(2.29) should become smaller as the order of approximation gets 

higher. Therefore, as noted, we expect that good initial conditions 

should yield 1b 0 1 > 1b 1 1> 1b 2 1 > . . 

2.3 Results and Discussion 

Flow with zero pressure gradient is tested by the present 

formulation. Flows with favorable and adverse pressure gradient 

were reported by Yeung and Yang (1981). The properties of the fluid 

are chosen to be identical to those given by Cole and Hirst (1968) 

14 

In our calculations, however, this condition was not always met 



for the case ID 1400. Figures 2 to 6 show comparisons between the 

predicted and measured values of the various flow quantities. 

Surprisingly good results were obtained with the approximation N = 3 

just by using the initial conditions that matched Cf.96  and 6. This 

supports the "effectiveness" of the data Cf S and 6 in the determina-

tion of initial conditions. The computer time of this approximation 

is about 5 sec in a CDC-7600 machine. Results, of the approximations 

for N = 4 and N = 5 also show excellent agreement with measured values. 

It should be pointed out that the Cpu time for N = 5 (45 sec) is 

much greater than that for N = 4 (8 sec). This is due to the stiffness 

of the system of ODE's in Eqs. (2.16a) and (2.16b), in which the 

coefficients of c.k  in Eq. (2.13) get larger as N increases. - 

Nevertheless, the CPU times for the present formulation are smaller 

than those quoted in Murphy and Rose (1968), taking into considera-

tion the different computers used. 



III. ANALYSIS OF THE TURBULENT FREE MIXING LAYER 

3.1 Introduction 

The characteristics of a turbulent mixing layer initiated by the 

confluence of two parallel streams has been of interest for many years 

because of its broad applications in technology. Early studies of 

this subject were made by Tollniien (1926), Kuethe (1935) and 

G6rtler (1942). These classical solutions of the problem are based 

on the assumptions that the change of velocity from that of one stream 

to the other takes place in a mixing region of small thickness compared 

to the length of mixing in the streamwise direction and that the 

normal component of the velocity, v, is small compared to the com-

ponent of velocity parallel to the main stream, u. Moreover, all of 

the solutions except that of Kuethe are based on an arbitrary third 

boundary condition (Ting, 1959). 

Within the framework of boundary layer theory, the solution is 

unique for a flow over a plate by specifying three conditions, 

namely at y=O (i.e., on the plate surface) u=v=O, and at y-co, 

u-lu (co  denotes free stream condition). However, the solution is 
Co 

nonunique for the mixing problem since only two conditions are avail-

able, namely u+U1  as y+co,  and u ,, U2  as y9._co.  The absence of a 

third boundary condition admits an infinite number of solutions to 

the mixing problem. Mathematically, if g(y) is a solution satisfying 

the boundary conditions at y =± co, so is g(y+c), where c is any 

constant. It is known that to compare this solution with experi-

mental data, the theoretical distribution of axial velocity must be 

shifted in the transverse direction, so as to obtain a better 
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agreement with experimental data. 

Toilmien (1926) obtained an analytical solution for the mean 

velocity profile of a mixing layer with the lower stream at rest 

(i.e., U2  =0) by applying Prandtl's mixing length hypothesis for the 

turbulent shear stress. He fixed his solution by making the trans-

verse velocity v 1  vanish at the outer edge y - . Küethe (1935) 

extended Tollmien's approach to the case of two non-zero velocity 

streams, using von Karman's suggestion that the third boundary 

condition should correspond to no external forces acting on the total 

fluid system perpendicular to the main flow, i.e., U 
1  v 1 + U 2v2  = 0. 

However, the proof is not convincing. Later, G$rtler (1942) solved 

the same problem as Kuethe by using Prandtl's second hypothesis for 

the turbulent shear stress (i.e., the constant eddy viscosity 

hypothesis). He avoided the question of the third boundary con-

dition. Instead, he fixed his solution by saying that the mean 

speed (U1  + U2 )/2 of the Stream is along the line y = 0. In addition, 

he introduced an empirical constant related to the rate of spread of 

the mixing layer and to the free stream velocity ratio. Mills (1968) 

noticed that the governing equations for the mixing problem, written 

in terms of Crocco variables, no longer contain the variable v, for 

which the boundary condition is not sufficient, and hence the problem 

has a unique solution. The unique solution is independent of the form 

of the third boundary condition. 

The Method of Integral Relations (MIR) originally developed by 

Dorodnitsyn (1960), and later modified by Fletcher and Holt (1975), 

has been applied successfully by Yeung and Yang (1981) to calculate 

the two-dimensional incompressible turbulent boundary layer. In this 

chapter, we discuss the application of ivlIR to the turbulent plane mixing 
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problem. Similar to Mills' formulation, MIR renders the governing 

equations for mixing problems in a form containing no v by 

judiciously selecting a set of weighting functions. Thus, a 

unique solution exists and is independent of the third boundary 

condition. Unlike Mills' method which needs successive approxima- 

tion, after using a transformation to weaken the singularity at the 

outer edges of the mixing layer, the present method overcomes the 

singularity by appropriate weighting functions. 

3.2 Formulation 

It was observed by Brown and Roshko (1974) that density effects 

on the spreading angle of turbulent plane mixing between two streams 

of different gases were relatively small; the strong effects were due 

to compressibility. Thus a turbulent mixing of two semi-infinite 

streams of a homogeneous incompressible fluid, shed from a splitter 

plate, is assumed for the present study. It is well, known that the 

contribution of molecular transport in all equations governing a 

fully developed free turbulent mixing of two streams at larger 

Reynolds number can be neglected. With this information the usual 

time-averaging techniques and assumptions associated with the 

boundary layer approximation of the mixing process lead, for, two-

dimensional, isobaric, steady flow, to theequations: 

u Dv 
x - + -

y 
 = 0 (3.1) 

u—+v (\) Du  
- By 	t 	

, 	 (3.2) 

u Bm 	Bm 	B 	Bm —+ v—=---. 

	

(Dt 	' 	 (33) 
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where u and v are the mean velocity components in the x and y direc-

tions, respectively; the origin is taken as the point at which mixing 

begins; m is the mean mass concentration of the upper stream, and 

and Dt  are defined, in analogy with molecular diffusion, as 

- U'V' = V 
t 3U/3y  

- mtv' = D 
t 
 m/y , 	 (3.5) 

where u',v' and lilt  are fluctuating quantities. The coefficients 

and Dt  need empirical relations which will be discussed later. The 

boundary conditions for Eqs. (3.1), (3.2) and (3.3) are 

y -*00, u+U1  , m -*M 

y --00, u -'U 	, m--O  

It is convenient to work with the following non-dimensional 

variables: 

U = (u - U 2 )! (U 1  - U2) , X = U2/U1  

(3.6) 

V = (v-U2)/(U1 -U2) , M =m/M1  

Using (3.6), the governing equations (3.1), (3.2), (3.3) and the cor-

responding boundary conditions become 

0 	, 	 (3.7) 

(U 
+ 

A )  U 	A 	u 
- -+ 
- 	(V + 	 = U1-U2 	(Vt --) , 	(3.8) 

(U+lxA)M 	A 	M 
- -+ 
- 	(V + 	 = u1-u2 	(D 	) , 	(3.9) 
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U -fl 	, 

(3.10) 

y - °° , U-0 , M - 0 

Using the assumptions vt = D and M is a function of U only, one can 

easily show that M=U from Eqs. (3.8), (3.9) and (3.10). Although 

the spread of species concentration is not'the same as that of 

momentum in the turbulent mixing problem, the above assumptions are 

not bad for the short distance in which we are interested along the 

streamwise direction. This is because the boundary layer thickness 

grows linearly with respect to x, as is well known in the literature 

(see for example, Townsend, 1976). Therefore, once the velocity 

profile has been determined, the species concentration profile can 

also be obtained through M=U. 

Let {f.(U)} be a set of linearly independent functions which 

satisfy f.(0) =f.(l) =0, where i=l,2,...,N, and N denotes the order 

of approximation. Multiply Eq. (3.7) by f 1  and Eq. (3.8) by fj, 

defined as the first derivative of f with respect to U, add and 

integrate from y-°° to y--°°: 

x 

	

f.1  (U + 	dy = 	
-1 	

tt 	
2 

1-2 j 	
) dy . 	(3.11) 

J00  
00 

Change the variable of integration from y to U anddefine Z as 

- 	U -1 
( dy ) 

Then, Eq. (3.11) can be written as 

	

+ 	)ZdU = 
u-1u2 f 	dU . 	(3.12) 

x fo 
Notice that the above equation is exact since we have not made any 

assumption for V at y =± o0 . V is cancelled through f(0) 	=0. 



Since V no longer appears in the present formulation, the traditional 

third boundary condition for the mixing problem does not exist. 

Z has a singularity of the following type: 

1 
U (1- U) 

due to the behavior of velocity profile at, both edges of the mixing 

layer, i.e., lIZ approaches zero as U-0 and U--l. In order to make 

the integral on the right-hand side of Eq. (3.12) finite, the 

functions f. are chosen as Uk(l_U)k  or the combination of 

uk(i_U), k=l,2,... 	This is consistent with the conditions which 

we impoased on f. before, i.e., f.(0) =f.(l) =0. 

To apply the orthonormal. version of MIR, we represent 

N-i 
a + E a.f. 

A 	° Z(U + I T)= 	U(l-U) 	' 	. 	 (3.13) 

where a,a1 ,. . . ,a 1  are unknown coefficients to be found, and 

is a set of orthonormal functions constructed from Uk(l_U)(  by the 

Gram-Schmidt procedure (Isaacson and Keller, 1966). 'Hence: 

f(U) =kldik(lU)k 

and 

f  1 f f C  
I  lu 

U(l-U) = ij ( 3.14) 

with 6 being the Kronecker delta. Substituting Eq. (3.13) intoi j 

Eq. (3.12) and invoking Eq. (3.14), we obtain an explicit set of 

ordinary differential equations in the coefficients a,a1,.. 
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da 
0 

1 	f. 	da. 	 1 dU 
dx fo U(l-U) dU + 	= ui1u2 10 t i z 

i = 1,2,,.. ,N-1 	 (3.15) 

and 
da 	1 	f 	 11 	,dU o 	N  

	

dx fo U(l-U) dU = u-u2 J0 Vf T ' 	 (3.16) 

which can be integrated subject to appropriate initial conditions at 

some station x=x.. We shall discuss the initial conditions later. 
1 

3.2.1 Turbulence Modeling 

Prandtl (1942) proposed a model, Eq. (3.4), which is analogous 

to the Newtonian law of friction in laminar flow. He assumed that 

the coefficient of turbulent viscosity, V, is constant over a cross 

section of the free mixing layer. He obtained 

Vt = K5(U1-U2) , 
	 / 	

(3,17) 

where 5 is the width of the mixing zone; K is an empirical constant 

which is equal to 0.0044. In terms of the present variables Z and U, 

Eq. (3.17) becomes 

Vt = K(U1-U) J ZdU . 	 (3.18) 

It is clear that Vt  is a function of x only. 

3.2.2 Location of theDividing Streamline 

Using Eqs. (3.1) and (3.2), and noting that the transverse 

velocity component v is zero while the tangential shear stress is 

continuous along the dividing streamline, one can obtain: 

To 
u(U1-u)dy + J u(U2 -u)dy = 0 



Here the dividing streamline is chosen as the x-axis passing through 

the origin. Denote Ud  as the dimensionless velocity component along 

the x-axis and use the present variables U and Z. Then the above 

relation becomes: 

fu

x 	
l 	l 2 

 UZdU + -- I
U 
 ZdU = I U ZdU + -i-- fo UZdU . 	(3.19) 

d 	 d 

An iteration procedure has to be used to obtain Ud  which is a 

function of x. Once Ud  is found, the location y can be calculated 

from the following relation: 

f
u 	

y
U

ZdU . 	 (3.20) 
Ud 

3.2.3 Initial Conditions 

Initial values of {a ,a1,.. . ,aNl} at an initial station x, 

have to be specified in order to integrate the system of ordinary 

differential equations (3.15) and (3.16). It may be deduced from 

the momentum equation that a turbulent mixing layer between two 

constant velocity incompressible free streams can be self-preserving 

(see for example, Townsend, 1976). Thus, the initial condition can 

be selected fairly arbitrarily, say from experimental data or from 

the approximate analytical solutions, provided that they do not 

contradict boundary conditions at y = ± co when the self-preserving 

solution is of interest. 

Grtler's solution gives a good approximation to the shape of 

the observed mean velocity profile., although it has to be shifted 

bodily in the transverse direction in order to fit the experimental 

data. However, this shift is independent of the slope, U/y, of the 

mean velocity profile for a given U value. Here G3rt1er's solution 

23 



is illustrated to obtain the necessary conditions. G3rtler's 

solution gives 

2 

	

U = ½(l + 2 - f 	dq) , 	= ay/x , 	(3.21) 

where G is a constant which has the following empirical relation 

(Birch and Eggers, 1972): 

cr 	0 	
, a =11 

	

- 	 0 

Thus, the slope of U gives 

2 l_U 	la - 
(3.22) 

Comparing Eqs. (3.13) and (3.22), and invoking Eq. (3.21), we obtain 

N coupled algebraic equations in N unknowns, a0,a1,... ,aNl.  Thus, 

solution for the N unknowns can be found, for example, by an itera-

tion procedure. 

3.3 Results and Discussion 

With A being a parameter, several cases were tested using the 

4th approximation (N =4) and results are shown in Figs. 7 and 8. A 

recent review on the experimental data of turbulent plane mixing 

layer has been completed by Rodi (1975). Experimental data were, 

marked on the same figures whenever appropriate. Figure 7 shows 

that the mixing layer penetrates more into the lower-speed stream 

than it does into the higher-speed stream. This is due to the 

continual deceleration of the fluid on the higher-speed side of the 

mixing layer and the acceleration of the fluid on the lower-speed 

side, which results in a slight deflection of the streamlines towards 

the lower-speed stream. In addition, lines of constant velocity ratio 
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show the linear dependence on distance in the streamwise direction. 

This can also be seen from similarity analysis and is confirmed by 

all experimental data. 

A comparison of the mean velocity distribution at the different 

longitudinal positions shows that the mixing layers have a region in 

which geometric, similarity exists and in this region the mixing 

layer is self-preserving. Figure 8 shows the U profiles against 

y* =(y-y0.5')/.(y0.l_y0.9 ) where y05  refers to the value of y at 

U=O.5, others likewise. The agreement between the theoretical and 

experimental results is seen to be quite good. We observe that there 

is almost no change in the shape of the mean velocity profile with 

respect to the velocity ratio except at the edge of low U. This 

change in shape is also observed in. experiments. In addition, it 

was shown from numerical experiments that U profiles against 
y* 
 do 

not depend on K , the empirical constant for turbulent viscosity 

Thus, the numerical values of K can be selected arbitrarily if one 

wants to find the self-preserving solution of the problem. 
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IV. ANALYSIS OF THE INTERACTION BETWEEN THE FREE MIXING 

LAYER AND THE WALL LAYER 

4.1 Formulation 

The turbulent free mixing layer merges with the turbulent wall 

layer at x=x 0  (see Fig. 1) and the interaction between these two 

layers then begins. The velocity distribution at, and the location 

of, station x0  can be obtained from Chapters 2 and 3 by the assump-

tion that the free mixing layer and the wall layer develop indepen-

dently in the x-direction and the velocity distribution of the 

merged flow at x0  is simply the linear superposition of' the mean 

velocity profiles of the two layers. The justification for this 

assumption is presented in Pot (1979). We assume that the boundary 

layer approximations still apply to the merged flow. Therefore, the 

problem to be considered here may be formulated as follows: At a 

given station x=x, the velocity profile is known; determine the 

downstream development of the boundary layer with this initial 

profile. 

The governing equations for the mean quantities of the merged 

flow, which is still assumed to be two-dimensional, isobaric and 

incompressible, are: 

x 	y 	' 	 (4.1) 

u—+ V ax 	 = -p-- [(v + ) •5'1 	 (4.2) y 	y 

U5'+ V 	
=' 	[(D+Dt) -] 
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where u and v are the mean velocity components in the x and y 

directions, respectively; m is the mean mass concentration of the 

upper stream; p  is the density, v is the kinematic viscosity, and 

D is the coefficient of mass diffusivity of the merged fluid flow. 

The quantities.c/p and Dt  are defined as 

Vt = /p =_u'v'4! 	 (44) 

D =_m'vt/.! 	 (45) 

where u',v' and m' are fluctuating quantities. The modeling for 

/p and D will be discussed later. The boundary conditions are 

	

y=O , u=O , v=O , 	m/y=O , 

y --CO, uU1  , m--M1  

where the subscript 1 denotes the free stream condition which is 

constant. Introduce the following nondimensional variables: 

u 	vRe2 	- x 

	

Uj 	, V= 	, Xf 
1 	 1 

(4.6) 
½ 	 UL 

L 	M 

	

—_yRe 	 in 	 - 1 e---- 

Here L is a reference length. Using Eq. (4.6), the governing equa-

tions and the corresponding boundary conditions become: 

	

0 ., 	 (4.7) 
x Dy 

	

, 	 (4.8) 
y Dy 
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, 	 (4.9) 
y 9y 	t 

y = 0 , U = V = 0 , 

(4.10) 

y - 	 , U - 1 , M - l 

Notice that the species equation is decoupled from the momentum 

equation. Therefore, the species equation can be solved separately 

after the momentum equation. To solve the momentum equations by 

means of MIR, which has been described in Chapter 2, we have the 

following basic integral relation: 

f
l 	 f(0) 	1 

f.UZdU
= 

- ____
- f(l + 	 dU , 	 (4.11) 

where the weighting function f(U)  and the definition of Z are given 

in Eqs. (2.9) and (2.11), respectively. We also assume M is a 

function of U only. Multiplying Eqs. (4.7), (4.8) and (4;9) by 

f.M,fM and f respectively, adding and then integrating the result 

across the boundary layer with respect to y,  and introducing the 

variable Z, we get the basic integral relation for the mass concentra-

tion which reads 

-a-- 
 f f 

1 	 z
. UMZdU 

= 	M f! (0) 	1 	 t
,.1 

01 	f{i 	D 	(1 ~ .)E 	idM 
+ -+ 	 du 

- x 0 	 0 	0 	
-]---  

- 	 + ) 
M 	dU . 	 (4.12) 

The above equation can be further simplified by noting that for U<U 0 , 

where U is the streamwise velocity component at the lower edge of 

the concentration boundary layer, M is equal to zero. Thus, before 

the concentration of the first stream diffuses to the wall surface, 



Eq. (4.12) is reduced to 

fu

1 	 p1 	 D 	f 
 f.IJMZdU = - j 	[1 ++(1+ --) -] -..J dUx 	1 	 U 	 t 

0 	 0 

(1 	f'.' 

f (l+-)M--dU . 

	

	 (4.13) 
U 

0 

Notice that U0  is a function of x, it is equal to U 2/U1  at x=x0  

where the free mixing layer merges with the wall layer and equal to 

zero at the wall surface, where the concentration of the upper 

stream diffuses. 

The interpolating function for Z is chosen from Eq. (2.15) and 

weighting functions for f1  are given by Eq. (2.13), satisfying Eq. 

(2.14). The interpolating function for M is chosen to satisfy its 

physical boundary conditions, namely at U = 1, M = 1; and at U = U 0 , 

M/y=O, M=O. To the first approximation, 

M = l-U°2  • . 	 (4.14) 

Substituting expressions of Z, f. and M in Eqs. (4.11) and (4.13), 

we obtain a system of ordinary differential equations: 

db fl f.0 	db. 	f!(0) 	p1 	f't
0 	1 	 1 	1 	I 	6 	1 

i-u dU + - = - _____ - (1 + -) T dU 

	

dxO 	 dx 	o 

i = 1,2,... ,N-1 	, 	(4.15a) 

db 	fNUdU 
	

f(0) l
6 
 f;•;

2 fl  r-ir 	= - z 	- f Cl 	T dU , 	(4.15b) 

	

dx 0 	 o 	0 +  
and 

	

dU 	db 	db 	 db 

	

o 	o 	1 	 N-1 A — +A —+A —+...+A 

	

1 - . 2 - 	3 - 	N+l 	- 

	

dx 	dx 	dx 	 dx 

D 
+ 	+ 	

. 

	

[1 	D 	,-, . 	tE 	1dM 
T 	dU , 	(4.16) - (1 + -) 

0 
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where A1,A2,. .. ,A 1  are certain coefficients varying with N. For 

example, if we choose N = 3 then 

A 	-b(l+U)/6+(3U2 -U -2)(b 1 c11 +b 2 c 21 )/30 1 	o 	o 	o 	o 

- b 2 c22 (l 3U2  + 2U3)/30 
0 	0 

A2  = (3-2U -U2 )/l2 
0 0 

A3  = c11 (3-4U-U2 +2U3)/60 

A4  = c11 (3-411-U2 +2U3)/60 

+ c22 (l - 2U + 2U 3  - U4)/60 
0 	0 0 

Initial conditions for the system of. the ordinary differential 

equations (4.15) and (4.16) are discussed later. 

4.1.1 Turbulence Modeling 

Pot (1979) conducted an experiment to investigate the behavior 

of the interaction between a wake and a wall layer. He found that 

the flow was not that of a normal equilibrium boundary layer during 

the interaction process. However, many problems have been solved in 

the literature by employing the traditional Prandtl's mixing length 

concept and Van Driest-Clauser eddy viscosity model to predict the 	 - 

same type of flow (Cary, Bushnell and Hefner, 1979; Miner and Lewis, 

1974; Dvorak, 1973; Kacker, Paiand,Whitelaw, 1969). Reasonable 

results, in comparison with experimental data, were obtained. 

The turbulence structure of the interaction between the free 

mixing layer and the wall layer is complex and so far little under-

stood. Seban and Back (1962) correlated the experimental data for 



the mean velocity profile in turbulent boundary layers with 

tangential injection. They found that the mean velocity distribu-

tion was in good correspondence with the law of the wall and the law 

of the wake if the initial boundary layer effects on the splitter plate 

at the slot was thin. Hence we have confidence to employ the 

models, Eqs. (2.17) and (2.18), resulting from the law of the wall 

and the law of the wake to predict the type of flow cdnsidered herein 

since the effects of the initial boundary layer on both sides of the 

splitter plate are assumed to be negligible. 

The magnitude of the turbulent mass diffusivity, Dt,  is always 

of the same order of magnitude as the turbulent eddy viscosity, 

(Bradshaw 1976, p.  233). Experimental values of the turbulent 

Schmidt number S =tIDt,  for the wake-wall boundary layer flowct  

were found to be 0.5±0.2 (Kacker, Pai and Whitelaw, 1969). Since 

there is little justification for using a particular value or 

functional variation for S
ct  , we take S Ct  =0.7 and \/D=l in the 

present investigation. The last integral in Eq. (4.16) now can be 

evaluated as 

	

fu 	fl 
m 	

dU +(...)dU if

fUU 
	 U 	 m 	0 

 (...)J 	
0 

f
1 
 (...)dU if U <U 

m 	0 

0 

where (•.) represents symbolically the integrand, Urn  is the value 

where the wall region meets the wake region and is determined by 

Eq. (2.28). 

4.1.2 Initial Conditions 

The location x0  is determined by s = 	+ . (see Fig. 1). 
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Based on the nature of parabolic partial differential equations and 

the assumption for the mean velocity distribution at x 0 , only the 

initial conditions and boundary conditions in the free stream and 

the wall are required and the mean velocity profile of the merged 

flow coincides with that of the superposition of both free mixing 

layer and wall boundary layer at x0 , the necessary initial values for 

{b,b 1 ,... ,b 1 ) can be obtained by the following method. We consider 

the mean velocity and Z distributions at x0  as shown in Fig. 9. The 

singularity of Z within 0 <U < 1 only exists at x = x0  because the 

interaction between the free mixing layer and the wall layer causes 

a momentum change which will smooth the velocity profile, and hence 

the Z profile after x 0 . Presumably, we may extrapolate the U and Z 

profiles as shown in the dashed line on the same figure, and there-

fore use the newprofiles as initial conditions. This is possible 

because the estimate of the locations of the edges of the wall 

boundary layer and the free mixing layer is rough, say at U=0.98 

for the wall layer and U=0.l (note the definition of U for the 

mixing layer is different from that of the wall layer) for the lower 

edge of the free mixing layer. The method of obtaining initial 

values for {b0,b1,... ,bNl}  based on the new profile is the same as 

that described in Chapter 2. The initial value for U 0  in Eq. (4.16) 

is simply equal to A at x=x 0 . 

4.2 Results andDiscussion 

In this section, theoretical predictions, based on the approxi-

mation N=3, for velocity profiles, skin friction coefficients and 

concentration profiles are presented and discussed; representative 

integral properties are also presented. The calculations were 
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carried out at three values of the velocity ratio U 2/U1 , namely 0.9, 

0.7 and 0.51; and at one value of slot height, namely s = 1 cm. The 

flow conditions of the injected mass are fixed and identical to those 

given in Coles and Hirst (1968) for the case ID 1400. 

The shapes of the mean velocity profiles along the streamwise 

direction are shown in Figs. 10, 11 and 12. It can be seen that 

there is a region in which the velocity gradient is increasing near 

the wall surface. This is due to the larger momentum of the upper 

stream which thins the sublayer of the wall boundary layer caused by 

the lower stream. Consequently, the local skin friction increases 

within this region. The corresponding concentration profiles of the 

upper stream are also shown in the same figures. The distribution of 

U, which is the parameter determining the concentration profile, is 

shown in Fig. 13. It may be noted that the larger the value of th& 

velocity ratio, the greater is the distance to the location where 

the mass concentration diffuses to the wall surface. As indicated in 

Chapter 3, a smaller velocity ratio results in a larger mixing region; 

thus the merging between the mixing layer and the wall layer occurs 

over a shorter distance. Physically, the larger velocity ratio 

produces greater momentum in the upper stream and the lower stream 

is unable to sustain the greater impingement within the same distance. 

It is interesting to examine the local skin friction distribu-

tion in Fig. 14. For velocity ratio U 2/U 1 =0.9 and U2/U1 0.7, the 

local skin friction distributions first decrease and then increase 

over a short distance, finally decreasing in the streamwise direction. 

The first decrease exists because the lower stream can sustain the 

impingement of the upper stream over a short distance. The increase, 

as mentioned earlier, is due ,  to the sub layer of the wall layer and 
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results from the lower stream being thinned by the impingement of the 

upper stream. The final decrease is due to the development of the 

flow in the conventional turbulent boundary layer. For the velocity 

ratio U2/U1 = 0.51, unlike the other cases, the skin friction 

increases and then decreases, owing to the fact that the lower 

stream can not sustain the impingement of the upper stream under 

such a velocity ratio. 

Figures 15, 16 and 17 show the distributions of the integral 

properties, namely shape factor H, displacement thickness 6
* 
 and 

momentum thickness 0. During the interaction process of the free 

mixing layer and the wall layer, the shape factor decreases due to 

the decrease in displacement thickness (recall that the sublayer 

next to the wall is thinned) and the increase in momentum thickness. 

Finally, the shape factor approaches a constant value which is equal 

to that for a conventional turbulent boundary layer over a flate 

plate with zero pressure gradient. 

All arguments made above are physically reasonable; however, the 

predictions should be compared with experimental data. Unfortunately, 

to the author's knowledge, there is no such data corresponding to the 

type of flow considered here. It is therefore suggested that the 

experiments on such flow be conducted in the future. 
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V. CONCLUSION 

A model for reducing the corrosive effects on a wall surface in 

a coal gasification process has been established. In this, a non-

corrosive gas is injected beneath the main stream of the coal gas 

products in a direction parallel to the wall surface. The solution 

procedure consists of (1) solving the development of a turbulent wall 

boundary layer, (2) solving the development of a turbulent free 

mixing layer, and (3) solving the interaction between the wall layer 

and the mixing layer. 

The application of the orthonormal version of the Method of 

Integral Relations (MIR) to the present investigation has been 

studied. As far as the development of the turbulent wall boundary 

layer is concerned, numerical results are shown to be in good agree-

ment with experimental data. In addition, a means of determining 

the initial conditions from the experimental data at the initial 

station has been suggested and has proven to be effective. 

Regarding the development of the turbulent free mixing layer, MIR 

eliminates the velocity component v from the governing equations. 

The traditional.third boundary condition does not appear in the 

present formulation. Numerical results are also shown to be in good 

agreement with the available experimental data. 

Numerical results of the analysis for the interaction between 

the wall layer and the mixing layer are plausible. A new boundary 

layer type flow is found within the distance, of the interaction. 

In this, the skin friction coefficient may increase or decrease 

firstly, depending on the ratio of the main stream speed to the 
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injected stream speed, then subsequently increases, and finally 

decreases along the streamwise direction. The interaction 

eventually leads to the formation of the conventional turbulent 

boundary layer. 

Finally, the species equation is solved and the ratio of the 

distance protected from attack by the corrosive gas to the slot 

height is found to be of the order 0(100). 
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