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Abstract: 

To compare with the wealth of new data on alpha-accompanied fission of 
236U* we have made new trajectory calculations. Initial conditions for 
several parameters were selected from Gaussian distributions by the Monte 
Carlo method and about 15,000 trajectories were run for alpha source at the 
electrostatic saddle point. Momentum and energy are fully conserved in the 
three-body problem, though the usual point charge approximation without 
nuclear forces was used. The main calculations center the alpha source at the 
electrostatic saddle. General agreement with experiment is remarkable 
including even the appearance of low-energy secondary peaks at large angles. 
Effects of shiftingthe source from the saddle point toward either fragment 
are studied, running an additional 15,000 trajectories for each of two 
shifts. Both the satellite peak phenomena and the angular distribution 
indicate the need for a small shift of source toward the light fragment. 

-- 	Keyword abstract: 
NUCLEAR REACTIONS. Alpha accompanied thermal neutron ternary fission 
235U(n,f). Monte Carlo theory; trajectory calculations; ct-particle angular 

-- 	and energy distributions. 
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I. 	Introduction 

It has been known that both spontaneous 3  and induced46  fission 

exhibit a ternary branch of a few tenths of a percent. Usually the third 

charged particle is an alpha particle but with several other rarer species 

observed. One of the factors impelling recent experiments 79  and 

theoretical 1022  research on alpha-accompanied fission (hereafter 

abbreviated to LRA fission, for "long-range-alpha" following Guet et al. 8 ) 

is the possibility of probing the role of the configuration and dynamics of 

the fissioning nucleus at scission, the viscosity, and the division of energy 

between ordered and random motion. 

The state of knowledge a few years ago was reviewed by Vandenbosch and 

Huizenga24 . Since that time there have been significant new studies 8 ' 21 . 

A notable feature of LRA fission is the sidewise angular distribution of 

aiphas, slightly inclined toward the light fragment 
<°L> 

 ranges from 810 

for 236U to 840  for 252Cf). The most probable alpha energies range 

around 16 MeV for 236U. 

Early studies' °2  with trajectory calculations gave a general 

understanding that the aiphas are evidently emitted from the neck region 

around the time of scission. The side-peaked angular distributions are a 

consequence of Coulomb focusing in the field of the two fission fragments. 

The mean alpha energy is sensitive to initial conditions. For example, if the 

alpha particle were initially placed at rest at the saddle point of the 

electrostatic potential from the fission fragments, it would experience 

virtually no acceleration (a slight amount to the extent that the 

charge-to-mass ratios of the fission fragments are not identical). On the 

other hand, the upper limit of alpha energy would be reached if the fission 

fragments remained fixed at their scission point distance, D. As an estimate 

for 236U*  take ZL = 38, ZH = 54, and D = 17 fm with the alpha starting from 
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the electrostatic saddle with initial kinetic energy E. In this limiting 

case the final alpha energy would be E + 30.93 MeV. Experimental values of 

the mean alpha energy are about half this limiting value (for E 	O). 

The various parameters specifying initial conditions evidently cannot be 

uniquely determined by the ternary fission data. Thus, we have made our Monte 

Carlo studies imposing an uncertainty principle constraint on the initial 

position and momentum distributions of the alpha particle, the fragment's 

separation distance. Furthermore, we have fixed the value of initial fission 

fragment kinetic energy based on the Negele et al. calculations 19 , but 

conservation of momentum of the whole system produces an uncertainty on these 

initial kinetic energies. 

II. General Description of the Model 

The geometrical view of the initial condition of the light fragment, 

heavy fragment, and ct-particle is shown in Fig. 1. The process is viewed in 

the center of mass system (which is also essentially the lab system for 

thermal neutron fission). The two fragments are at a distance D apart and 

with masses mL  and  mH  (from here on thesubscripts L and H will indicate 

light and heavy fragments, respectively). The alpha particle is in a plane at 

a distance d from the center of the light fragment and at a distance Rc  from 

the point of intersection of this plane.with the line joining the center of 

the two fragments. In Fig. 1 Cartesian coordinates (xyz) are constructed to 

represent the center of mass of the light fragment, heavy fragment, and the 

ct-particle. The light and heavy fragments have velocities V and 

respectively, and they are mostly pointed toward left al 

out later the deviation due to recoil effects or strict 

momentum). The a-particle has velocity v and could be 

The initial positions and velocities of light fragment, 

ct-particle viewed from the center of mass are generally 

d right (we will point 

conservation of 3-body 

directed anywhere. 

heavy fragment, and 

written as 
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The components of these two equations are presented in table 1. In this table 

the initial z-coordinates of the three particles are zero. This is done first 

by letting the alpha particle have initial coordinates y' and z', so R 

[y' 2  + z' 2 ] 12 , and rotating the system so that y' = R. Also in the 

same table the velocity of the ct-particle is in xyz coordinates. Since this 

velocity is going to be chosen at random, we modify the two fragments' 

velocities so as to constrain the total momentum of the system to zero with 

respect to the center of mass. 

III. Dynamics of the Model 

We shall be concerned in this section with the classical solution for 

ct-particle and two charged fragments (three-body problem). Figure 2 shows the 

motion of the two fragments and the ct-particle with respect to the center of 

mass at a given time t. This figure represents a later time than Fig. 1, 

which defined the initial conditions of the problem. The charges are to be 

considered as point charges. With the use of variables defined in Fig. 2 we 

can write the requirement of having zero total momentum as 	 - 

	

m =  0 	 (i = L,H,ct) 	 (2) 

The kinetic energy of the system about the c.m. is 

1 

	

= 	
- m 1 (r 1  .r 1 ) 	 ( i = L,H,ct) 	 (3) 

The potential energy of the system is simply the pure monopole-monopole 

Coulomb potential energy of the interacting three particles and written as 
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= 	
Z1e2 	

2 	2 1 2 	
(i,j = L,H,a) 	(4) 

P0 	j, 	[(x-x.) 	 +(z.-z.) ] / 
i*j 

The Lagrangian of the system can be constructed and used in Lagrange's 

equation to get the differential equations of motion. In general, we get 

differential equations for the light fragment, the heavy fragment, and the 

a-particle. One can use to advantage the conservation of momentum of the 

system to decouple, for instance, the heavy fragment variables. This will 

allow us to solve the differential equation of the light fragment and the 

a-particle only. As a result of this step, the coupled first-order 

differential equations of the light fragment and the a-particle are 

dL 

dt 
= v X L 

d xL = ZLe 

df 	m c2R 2 [Z
aAx /A + ZHB X /B] 

L 	00 

and similar equations for y and z, 

d 
= 

df 	xa 

A 

dv 	Ze 
xa_ a 

d€ 	m c2R 2 	
+ ZHCX /C] 

a 	o 

and similar equations for y and z, 

where 

A 	XL - a and similar ones for A and A. 	 (7a) 

 

 

3/2 
A = (A + A + A) 	

, 	
(7b) 
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B = 	(1 + mL/mH)xL 
A 	 A 

+ (m/mH)x 	and similar ones for B 	and B,  

B= (B+B+B) 3" 2   

= (mL/mH)xL 
A A 

+ (1 + ma/mL)xand similar ones for C 	and C, cJ. 	 y 	Z  
(9a) 

C = (C +C 	+ C) 32 	, (9b) 

and where the dimensionless variables, k, Q, f, and B are given by 

= x/R, 

= v/V c 	 (10) 

£ =t/T0  

130 = Vs/c 

R 0  is taken to be the average of the radii of the two fragments 

Ro = (RL + RH)! 2 	 (11) 

Also, V 0  is taken to be the average of the speed of the light and heavy 

fragments before interaction, i.e., 

V0 = ( V 	+ V )/2 	 (12) 

Finally, T0  is taken to be 

T0  = R0 /V 0  3 	 (13) 

We solve these couplet first order differential equations (Eqs. 5-6) 

numerically by the Adams Moulton predictor-corrector method. The 

trajectories are computed as time goes on, keeping track of all three 

particles (the third one is easily done from conservation of momentum), and 

checking after a long time for the percentage of change in the ct-particle 

velocity. 	 We wipe out trajectories if the a-particle passes within 

0.8 the radius of either of the two fragments. 
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IV. Random Variations of the Initial Coordinates: 

A. 	The fixed starting initial distribution of the system: 

We start by considering a binary fission of 236U only. 

experimental total fragment kinetic energy is 

(KB(')) = 168 ± 4.5 MeV  236 

The reported 

(14) 

and the average total kinetic energy of the two fragments at scission is given 

by Negele et al. 19  

<EKB ( 236U))scjss  = 18.1 MeV . 	 (15) 

For ternary fission, the difference between the total fragment kinetic energy 

in binary fission and a-accompanied fission (energy balance) is written as 

(EKT ( 236u)) = (EKB ( 236 U)) -(E(  236 U 	 (16) 

We take the total fragment kinetic energy for ternary fission of Asghar et 

al. 7 , namely 155.5 ± 0.8 MeV. This gives a difference <tE(U 236 )>, 	13 MeV. 

At scission, for the a-accompanied fission we apply the same approach 

(EKT ( 236U))SCjSS  =EKB ( 236U)) sc i s  - (E( 236U),)555 	 . 	 ( 17) 

where 

(LE(236U)
Xciss. 4-5 MeV .  

Hence 

.(EK6U)) 13 MeV .  sciss. 

In ternary fission the conservation of energy leads to a relation between the 

total 	final 	scission kinetic energy of the three particles as follows: 

(Ea) 	+ 	EKT(236U)) 	- 
ZLZHe2 

+ 
ZZe2 	ZZe2  

+ 	aH 
<B> <> 	(<D>-<d>) 

(KT 
(236U)) + (Ea)s + 

sc 
	ss. 	ci  



so 
The average kinetic energy of a-particle at infinity is measured to be 

16 MeV. 24  Following Halpern in our main set of calculations we take the 

distance d as that of the electrostatic saddle point between the fragments 

(Fig. 1), and it is related to the distance between the two fragments, D, by 

d = [v'ZHILL - l]/[ZH/ZL - 11 D 

 
0.455 0 for ZH = 53 and ZL = 37 

(We later test the saddle-point assumption by shifting the a-position.) If we 

assume a guessed value for the mean alpha particle kinetic energy at scission 

then the mean value of the remaining parameters can be calculated from the 

conservation of energy (Eq. 20). According to Davies et al. 18 , the neck 

radius for scission instability is about 2 Fm. In the appendix we give a 

derivation of a folded potential for the a-particle, and at the scission neck 

radius get an alpha kinetic energy of about 5 MeV. 

Equation (20) then gives D = <0> 	21.9 fm and hence d 0  = <d> 211  9.97 

fm. From conservation of momentum we can also get the two fragment velocities 

as (for a-particle with zero kinetic energy): 

= 0.013 c 

 
0. 

0.009 C 

B. Fluctuations in the separation distance D: 

The fluctuation in the separation distance D inferred from the width of. 

fission fragment kinetic energy distributions is about 1.0 fm, so a fixed 

choice of D = D is not realistic. We choose D randomly from a Gaussian 

distribution of the form 

1 	
(D-D0)21 

/ P(D - D0) = 
	

exp 

[ 
T 

aD 	- 2a2 ] with 
GD 	1.0 fm 	 (23) 

0  



ME 

Then, there is a 

D-D 

f - 	 2 

01 	[(DDo) 

D2 2 
dD 	

] 

Pr(D) = 	 exp - _______ 

chance that what we choose randomly will be less than or equal (D - D 0 ). If 

welet Pr(D) = , where 	is a random variable between 0 and 1, then 

D = D0  + 
	

(24 a) 

where 

= / ct0  erf[2 - 1] , 	 (24b) 

and depends on half the width of the Gaussian through aD  and on the inverse 

of an error function of (2 - 1). Any random choice will give us new value of 

D and hence new location of the saddle point d 0  as it could be evaluated 

from Eq. (21). 

C. Fluctuations of the ct-particle position about the saddle point 

We follow the uncertainty principle in not starting the ct-particle from 

the saddle point but from a Gaussian distribution around it. Let us consider 

that the ct-particle has an uncertainty around d 0  measured by O )  along 

x'-axis, and given by 

I 	1 
P(d - d ) = 	expl- (d-d ° 	I 	, 	 (25) 

0 	 i 	2 427, Gx I L 	2 •x  

where d-d 0  = x' in the exponential part of Eq. (25). 

Hence (as before), 

d = d 0  + dE  , 	 (26a) 

where 	d = 	a ,  erf[2 - 1] . 	 (26b) 

Of course, the random variable 	in Eqs. (26) is different from the one used 

in Eqs. (24) but for simplicity we use the same letter. 
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Using the same approach, the uncertainty of the a-particle along y' and z' 

(as shown in Fig. 1) is given in terms of = . Then, we can do the same 

to find y' and z' in a form similar to Eqs. (26). Now, we can compute Rc  by 

R = [y'2 + z 12 1 1'2 
	

(27) 

where 

y' = 	, erf[2 - 1] and similar equation for z'. 	(28) 

V. 	Random Variation of the Initial a-velocities 

In the previous section we chose the a-particle position about o' from a 

Gaussi an 

P(x',y',z 1 ) 	 exp [ 

	

+ 	t2+2 	
(29) = 	1 	 x 

2Gi 2  (2) 	2 	- 
c 
____  2ayi J 

Using the uncertainty principle, the Fourier transform of this distribution 

will give the corresponding Gaussian in momentum space as follows: 

1 	

exp { ( 	

' + (Pi+P1)'\\] 	
(30) P(P 

	

	
= (2)3/2 	2 	- _____ ________ x 

PxPy 	 2 Py' ,J 

where 	
CYPx = 2 

h 

' 	
(31) 

x  

Cr 	- 	h 
y' - ____ 

The momentum distribution could be written in as a function of velocity 

distribution (in units of c) as 

R+ 
	( 32) 

= (2ir)3" 	

1 

2  2Si 	2S1 	j Px '°Py' 2  

where 	S, 1  = 	hc  2 ,.and a similar one for y. 	 (33) 
2ci 1 (m c ) x a 



The standard deviations crx , and 	= 	are to be taken as 0.93 fm and 

1.3 fm, respectively. The choice of 	is obtained from the assumption 

that an estimate of 	may be of order of magnitude of the root mean square 

of the radius of the a-particle. The values of a 	 = Uz , are chosen to be 

rather arbitrarily ( larger and smaller values of cr 
y 
 i were used, and they 

remove the agreement between theory and experiment). 

VI. Parameter Distributions and Results 

In Fig. 3 we plot the initial distributions of several parameters. The 

top curve is the distribution of D, the fission fragment separation distance 

at scission. Both the actual histogram and the Gaussian fit are shown. The 

middle curve gives the distribution of d, the location of the saddle with 

respect to light fragment; it is computed from each random choice of D and is 

not separately chosen. The lowest curve gives the off-axis distribution of 

the initial alpha position, both histogram and computer-smoothed curve shown. 

This distribution follows from the ay i parameter, which was varied to find 

optimum agreement as mentioned before. The most probable values of D, d, and 

Rc  are 21.9 fm, 9.97 fm, and about 1.2 fm. The standard deviations (from 

the Gaussian fit) of D and d are a = 1 fm and a d = 1.04, respectively. 

The upper part of Fig. 4 shows the initial kinetic energy distribution of 

the light fragment with most probable value of 7.4 MeV and standard deviation 

of 0.55 MeV. This energy is not independently chosen but follows from the 

random choice of alpha initial momenta and the conservation of momentum (Table 

I). The lower part shows the final distribution and the fitted Gaussian 

centered at 89.0 MeV with standard deviation 4.2 MeV. This is to be compared 

with Asghar et al. 7  results, 92.85 ± 0.58 MeV and 9.9 ± 0.05 MeV from Table 

I of Guet et al. 8  It must be remembered that the experimental values are 

averaged over all fission mass asymmetries, and our calculations are for a 

fixed asiimetry. Thus, our narrower dispersionis not unreasonable. 
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Figure 5 shows the corresponding heavy fragment initial and final 

distributions, and the same remarks apply. Our total mean kinetic energy of 

152.1 MeV to be compared with experimental values of 153.6 ± 3 and 155.5 ± 0.8 

MeV of Guet et al. 8  and Asghar et al., 7  respectively.  

Figure 6 displays initial and final distributions of the alpha velocity 

component parallel to the fission fragment axis. The initial distribution is 

governed by the dispersion constant cFpx,'  which is tied to a
x , by the 

uncertainty relation. The focusing action of the Coulomb field in narrowing, 

and shifting toward the light fragment is apparent. Figure 7 shows initial 

and final distributions of the perpendicular component of alpha velocity. 

From the cylindrical geometry the initial distribution will be velocity times 

the Gaussian. Again the width of the distribution is tied to the selected 

width for the position distribution. The Coulomb acceleration has raised the 

final mean velocity to more than four times its initial value, and the 

distribution has slightly broadened with a skew toward lower velocities. From 

final peak positions in Figs. 6 and 7 the most probable angle can be 

calculated approximately as tan(V yz /V x ). 

The velocity distributions of Figs. 6 and 7 are combined in Fig. 8 to 

display initial and fjnal alpha kinetic energy distributions. The initial 

distribution is nearly a standard Boltzmann distribution with a temperature 

around 1.5 MeV. The initial alpha velocity distribution we chose is not 

isotropic. The position uncertainty in either perpendicular direction is 

taken as about 1.4 times greater than in the parallel direction. Although we 

did not extensively explore the effect of anisotropy, the final conditions 

gave much better results than for the isotropic choice. Maybe such positional 

anisotropy can be rationalized in terms of normal modes of vibration of the 

system at scission. Certainly we do not imply that we have proved anisotropy 
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to be required. Since we use the uncertainty principle as a constraint, the 

positional anisotropy implies a forward-backward anisotropy in initial 

velocity distribution. 

The final kinetic energy distribution averaged over all angles in Fig. 8 

is well fit by a Gaussian, although we shall see that individual angle cuts 

are not. The Gaussian parameters are <E > = 15.9 MeV and standard deviation 

of 5.1 MeV. 
CL 

In several figures to follow we have chosen angle and energy intervals as 

near as possible to figures of Guet et al. 8  Thus, we can better facilitate 

a careful comparison with their experiments. Our order of presentation also 

follows theirs. Except in a few cases we have not superposed their data on 

our graphs, since numerical values of their data were not available to us. 

Thus, it may be helpful for the reader to have a copy of their article 

available while examining some of our figures. 

Our Fig. 9 is analogous to their fig. 3, giving alpha energy 

distributions for fixed angles, the interval being ±2.5° from the stated 

angle. The angle is measured from the direction of thelight fragment. We 

show the event number histograms and computer-fitted Gaussians. The cross 

comparison of the main features, Gaussian centroid and width, are best made on 

Fig. 10, but we first discuss shapes in Fig. 9. One should bear in mind that 

our Monte Carlo calculation is for fixed mass asymmetry, and their 

presentation of data in fig. 3 is for all asymmetries. For the angles 68° 

through 88° we get fairly good unskewed Gaussian fits. For 93° and larger 

angles we see a secondary peak develop at lower energies. In their fig. 3 

data the secondary peak at lower energies is manifested at both large and 

small angles. Guet et al. 2 ' in their own Monte Carlo study have stated that 

the low-energy component at small angles comes from trajectories starting near 
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the light fragment heading toward the heavy fragment and backscattering from 

it. We shall later show our tests shifting the alpha source from the saddle 

toward either of the fragments. 

Our Fig. 10 appears analogous to their fig. 4 but actually is a 

comparison with their fig. 6 curves for the particular mass asymmetry range we 

actually calculated, namely, AL =95,  ZL = 37. The lower curve gives the 

experimental mean energy as a function of angle. We must sound a note of 

caution in these comparisons, since the basis of getting <E> is somewhat 

different. Guet et al. 8  state for their fig. 6, with which we compare, and 

their fig. 4 that "the average is taken from 7.5 MeV to the maximum measured 

energy," whereas for their similar earlier fig. 5 <E> is "output of a least 

squares Gaussian fit above 13 MeV". 

Since the experimental distributions develop low energy peaks at large 

and small angles, the average or mean energy will not always correspond to the 

most probable. For our theory we make at each angle a simple least squares 

fit of all our events to a single symmetric Gaussian and plot its parameters 

in Fig. 10. The points show our values for the main calculations. 

Our mean energy points show the same concave-upward shape but do not rise 

as do the data for small angles. On the Monte Carlo theory calculation of 

Guet et al. 21  they did reproduce the upward energy trend at small angles. 

Since a major difference of our two Monte Carlo studies is their use of 

uniform distribution along the neck and our use of Gaussian at the saddle 

point, it would seem that the high energy shift at low angles comes from 

alphas originating away from the saddle. Our standard deviations are 

uniformly somewhat larger than experiment. 

As one sees from Fig. 11 our theoretical all-energy angular distribution 

(histogram) perfectly matches theGuet et al. data 8  (dots) around the 
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maximum. However, the match is less good in the wings of the curve. Our Fig. 

11 is analogous to their Fig. 9. However, note that their Fig. 9 counts only 

alphas E > 7.5 MeV, and this would seem to affect mainly small angle data as
0. 

can be seen from Fig. 11. Taking their cut-off into account makes for greater 

disagreement with our points. However, in our final section we explore 

shifting the alpha source position and see that a shift toward the light 

fragment acts to correct this angular distribution mismatch. 

In Fig. 12 we show, in analogy to their fig. 10, the angular 

distributions of alphas for fixed energy intervals. Our plot shows absolute 

number of Monte Carlo events per bin, whereas their experimental figure 

appears to have renormalized the angular distribution within each energy bin. 

The highest two energy intervals have the broadest angular distributions in 

both experiment and theory. In the other four boxes the most probable angle 

agrees in all cases, except they show for E = 11-13 MeV 78° and 83° equally 

probable. The experimental and theoretical widths seem quite comparable. 

As mentioned earlier, we wished specially to investigate shifting the 

alpha source along the line of centers. Figure 13 shows the distribution of a 

position on the x-axis for the two new calculations (shifted from saddle 

point). The shifts are arbitrary and amount to about one-third the distance 

to a fragment surface (considered as a sphere). Our testing of these shifts 

was prompted by remarks of Guet et al. 21  that the low-energy satellite peaks 

come from aiphas starting well away from saddle. However, the results are 

more complex than their discussion indicated. 

Our Figs. 14 and 15 are energy distributions at fixed angles for the 

shifts toward light and heavy fragment, respectively. These figures are 

analogous to Fig. 9 for the saddle-point center. On fig. 14 we see that the 

shift toward light does not produce any clear double-peaking, but there is a 

pronounced broadening and shift to low energy for small angles. 
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The shift toward the heavy fragment produces dramatic double-peaking, as 

is clear from Fig. 15. This double-peaking is most prominent for the larger 

angles 88°-98°. For the angle 1110  the number of events is small and it is 

difficult to get useful information. It seems likely for the shift toward 

heavy fragment that two classes of trajectories can lead to the same final 

angle. The trajectory that starts sideways experiences a maximal acceleration 	- - 

and gives the upper energy peak. The other class of trajectory must start 

toward the light fragment and experience a rather larger deflection and time 

delay in the saddle point region. As it leaves the saddle region, the fission 

fragments will already have separated and the Coulomb acceleration will be 

much reduced. 

We present in Fig. 16 separate angular distribution plots for the shifted 

cases. The position shift toward light fragment moves the peak of the angular 

distribution toward larger angles and vice versa. A small admixture of 

light-shifted component could improve the angular distribution of Fig. 9. 

Clearly we would not want to add much of the heavy-shift case, since the 

angular shift is wrong and the experimental data do not show much of low 

energy satellites at 88° and 93°. Our unshifted results in Fig. 9 already 

produce enough satellite strength at 98° and 111°. On the other hand, our 

unshifted results do not give enough satellite strength at the small angles 

68° and 73°. Thus, adding in some of the Fig. 14 results from light shift 

would help reproduce this feature. We conclude that an alpha source 

distribution somewhat shifted from saddle toward light fragment might give 

optimum agreement with experiment down to fine details of satellite 

structure. In their experimental paper, Guet et al. 8  express doubt about 

their large angle satellites being alphas, saying they might be hydrogen 

isotopes. The natural occurrence of satellites in our Monte Carlo work makes 

the alpha assignment more likely. 
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VII. Discussion 

We believe that our calculations and those of ref. 21 show the adequacy 

of Monte Carlo work based on the dominant monopole-monopole Coulomb 

interaction. The refinements of the higher moment interactions explored by 

Carjan and Leroux 23  remain to be more fully taken into account, but they 

will require a greater attention todynamics of large-amplitude nuclear 

vibrations. Likewise, nuclear forces in the calculation could alter 

trajectories grazing one of the fragments. It is not always clear from 

earlier trajectory papers whether energy and momentum were strictly conserved, 

as we did, or whether the alpha moved in the field of the unperturbed fission 

fragments. It is hard to say how much difference it makes to take the recoil 

terms into account. 

Without much more study varying parameters of initial conditions it is 

hard to say how uniquely fixed are the conditions in parameter space. We used 

a theoretical value of 13 MeV for scission-point fission kinetic energy. It 

seems unlikely that substantial departures from this value could be 

compensated by other parameters. 

The effect of shifts of ce-source from saddle-point toward one or the 

other fragment we shOwed to be dramatic. The angular distribution shifts in 

the opposite way, and double peaks become prominent. We concluded that the 

best starting conditions might involve aslight shift toward light fragment. 

A future goal might well be the formulation of a dynamic model for the 

initial conditions of alpha and fission fragments and to extend to fragments 

other than alphas. We hope our work constitutes a step toward these goals. 
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Appendix A 

Models of Alpha Initial Conditions 

Our hope in starting this work was that We could formulate a model that 

would so constrain the alpha initial conditions that other fission parameters 

could be determined. It did not prove simple to arrive at a unique 

- 

	

	prescription for the initial alpha conditions, but we set forth some of the 

considerations. 

We first began working with Swiatecki's 25  simplified dynamic model for 

heavy-ion fusion, running it for the inverse process, fission. The program 

calculated fragment separation, fragment kinetic energy, neck diameter, as a 

function of time. One-body dissipation is built into the equations. One must 

choose an initial kinetic energy at saddle, usually 1 MeV. 

We presumed the perpendicular part of the alpha wave packet would be 

governed by the potential provided by the neck nucleons. If motion were not 

too fast, the alpha should adiabaticaly adjust to its ground state in the 

potential. If motion became fast, i.e. near scission, we thought we might 

have to apply time-dependent perturbation theory to the alpha wave packet. 

However, it turns out that the alpha wave packet should be quite stationary in 

the last stages before scission. To see this let us formulate the nuclear 

matter density profile across the neck as a Gaussian 

p = p0  exp (-y2/R) 	. 	 (Al) 

We assume a Gaussian potential of range r 0  between neck nucleons and the 

alpha. 

4- 	4- 	 -+ 	4- 2 2 
V(r - r) = V 0  exp (-Jr - rl /r 0 ) 	 ( A2) 
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After some algebra folding the force and the density distribution we get 

the following simple expression for the alpha potential 

V(y) = Vsat 	2 2 exp [-y2/(R + r)] , 	 (A3) 
[R +r 0 ] 

where Vsat  gives the saturation value of the potential as the neck radius 

becomes infinite. From arguments based on binding energies of the light 

ct-particle nuclei we estimate Vsat  as -23 MeV. The range r 0  is presumably 

around the normal nuclear force range of 1.4 fm. 

To get the size of the lowest alpha wave function in this inverted 

Gaussian potential we take the curvature at the minimum and approximate with 

a harmonic oscillator potential V 	Vmin +(112)cy 2 ), with spring constant C. 

C = 2 Vsat  R [R + r]2[(An - 4)/An] , 	 (A4) 

where the last factor, involving nucleon number in the neck, is applied to 

give a measure of self consistency. 

Then the alpha zero-point energy is Ey  =(1/2)ri (CImct ) L'2 . There are 

two perpendicular directions so zero point energy is doubled. Table Al shows 

the time evolution of 236U fission into ZL = 38, AL =97,  ZH = 

= 139. That we eventually used other theoretical calculations for 

initial fragment scission kinetic energy came 'from discussion with 

Swiatecki 26 . However, note that the kinetic energy as the neck reaches the 

unstable 2 fm is numerically about the same as we took from other theory 22 . 

The remarkable and encouraging feature is that the alpha zero-point energy 

takes on a nearly constant value near scission. (Recall that Davies et al. 18  

say scission instability occurs at a neck radius of about 2.0 fm.) This 

constancy comes about from two opposing tendencies; namely, as the neck 
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narrows at first the alpha well becomes narrower but as narrowing reaches the 

force range, the potential becomes shallower, eventually giving a wider well. 

The perpendicular direction zero-point energy of 5 MeV is reasonable but a 

good bit higher than the values we eventually chose for optimum Monte Carlo 

results. Perhaps lower energy and greater position uncertainty come from 

considering bending modes at scission. 

Our original idea was that the alpha zero-point motion along the axis was 

constrained about the saddle by the gently rising electrostatic potential. 

Eventually we rather tightly restricted the alpha along the saddle and showed 

that a shift, especially toward heavy fragment, could not be tolerated. 

We believe that the axial position might more be governed by nuclear 

shell model considerations for a particular pair of fragments. The relative 

distances of scission and of alpha source from the fragments will depend on 

the relative deformability of their nuclear shapes, hence the relation of 

their nuclear numbers to the closed shell or subshell numbers. The dispersion 

of the axial position would depend on zero-point vibration amplitudes of the 

fragments in an out-of-phase normal mode. 

Thus, further studies concentrating on alpha distributions for particular 

fission asymmetries could elucidate these ideas. 
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Table 1. Initial coordinates and velocities of the light fragment, heavy 

fragment, and a-particle with respect to the center of mass. 

j 	
yc i) 	 ci) 

L 	(m 
a  /M)5x + (mH/M)D 	_(ma/M)R c 	 0 

0 H 	_(mLH/M)cS x - D + d 	
(i)  

a 	_(mLH/M) 6  x 	 (mLH/M) R c 	 0 

xJ 	 yJ 	 zi 

L 	v 0- - ( m/mLH) 	 (ma/mLH) vza 

H 	v° - SV 	 V M 	 V M 
H 	 yL 	 zL 

a 	 vW 
xa 	 yct 	 za 

M is the total mass of the system, mLH  is the total mass of the light and 

heavy fragments, an i m 1  (i = L,H,a) stands for the individual mass. 

6x = d - (mH/mLH)D. 

= [mLV 	mHVH + mav 	]/mLH. 
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Table Al 

Dynamic Calculation of Fission Evolution 

- . 
	 Time 

(0.815xl0 21 s) 

Distance 

D(fm) 

Neck 
Radius 

R(fm) 

Fragment 
Kinetic 
Energy 

(MeV) 

Alpha 
Potential 

Depth 

(MeV) 

Alpha 
Zero-
point 
Energy 

(Mev) 

0 10.64 1.000 (saddle) 

3.1 11.98 4.12 0.222 (neck first appears) 

4.0 12.82 3.84 0.654 -10.25 2.34 

4.5. 13.54 3.58 1.275 -19.90 3.79 

5.0 14.56 3.19 2.710 -19.22 4.56 

5.2 15.10 2.97 3.798 -18.75 4.84 

5.4 15.74 2.70 5.479 -18.04 5.12 

5.6 16.52 2.34 8.207 -16.84 5.35 

5.7 16.97 2.11 10.23 -15.86 5.37 

5.8 17.48 1.82 12.95 -14.37 5.13 

5.9 18.05 1.45 16.72 -11.79 3.76 
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Figure Legends 

Fig. 1. 	Schematic diagram of coordinates at time zero for the 

alpha-particle, fission-fragment system. 

Fig. 2. 	Schematic diagram of coordinates for the process at later time. 

Fig. 3. 	Initial probability distributions of some parameters. The top curve 

is the distribution for fragment separation distance D. The middle 

curve is the x-separation d between alpha and light fragment. The 

lowest curve is the off-axis distance distribution for the alpha. 

Fig. 4. 	Initial and final kinetic energy distributions of the light fragment. 

Fig. 5. 	Initial and final kinetic energy distributions of the heavy fragment. 

Fig. 6. 	Initial and final distributions of x-component of alpha velocity. 

Units are V 0  (=0.011 c), average mean initial velocity of light 

and heavy fragment. 

Fig. 7. 	Initial and final distributions of the perpendicular (yz) component 

of alpha velocity. 

Fig. 8. 	Initial and final alpha kinetic energy distributions. 

Fig. 9. 	Final alpha energy distributions for fixed angles 2.5° of the 

labeled angle 
0L' 

 the angle between alpha and light fragment 

final velocity vectors. Alpha source entered at electrostatic 

saddle point. 

Fig. 10. Plots of mean alpha energy (lower) and width (standard deviation, 

upper) vs angle for a particular fission asymmetry. Points are our 

theory and solid curve is experiment of ref. 8. 

Fig. 11. Final alpha angular distribution (histogram theory--all energies) 

(dots experiment of ref. 8--energies > 7.5 MeV). 

Fig. 12. Alpha angular distribution for fixed energy intervals, theory. 
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Fig. 13. Initial alpha axial position distributions for two cases studying 

shifts of source from saddle point. 

Fig. 14. Same as Fig. 9 except that alpha source is shifted from saddle 

toward light fragment. 

Fig. 15. Same as Figs. 9 and 14 except that alpha source is shifted from 

saddle toward heavy fragment. 

Fig. 16. Final alpha angular distributions (all energies) for the two 

source-shift cases. 
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