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_ Abstract

A multiconfiguration self-consistent-field (MCSCF) method based
on the lobp—driven graphical unitary group approach (LDGUGA) has.
been developed that combines the best features of the LDCUGA
configuration interaction (CI) procedure with the ability to optimize
the mo;ecular orbitals. In contrast to traditional MCSCF procédures
which are restricted to_small cpnfigurafion sets, our method can
handle very large numbers of configurations. Uﬁlike other large
configuration list MCSCF procedures, however, the cI éxpansioﬁ is not
restricted to being of a particular form (such as in the CASSCF method).
The formalism we adopt is an iterative two-step process, that is,'
during each iteration the CI coefficients are optimized for a fixed
guess at the orbital expansion coefficients and then imprbved orbitals
are computed using these CT coefficients. At the heart pf the orbital

optimization step is a novel algorithm for the fast and efficient



generation and storage of the one- aﬁd two-particle density matrices
and the use of these density matrices in first and approximate
second-order optimization procedures is discussed. To test the
applicability of the LDGUGA MCSCF method a series of CI and MCSCF
studies‘on various molecular systems were performed. These include
an investigation on the effect of inclusion of higher than double
excitations in MCSCF and CI calculationms for'the water molecule, a
comparison of various large MCSCF wavefunctions for ozone and the

study of non-physical symmetry breaking in cyclopropenyl radical.
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I. Introduction

The multi-configuration self-consistent field (MCSCF) method
has had a long and successful history since its original inception
by Frenkel1 in 1934. The first atomic wavefunction was reéorted’
only a few years later in 1939 for oxygen by Hartree, Hartree and
Swirles,2 but the method was not of much practical use until the.
advent of high speed digital computers. By the mid 1960's the time
was ripe for the computational development of the MCSCF procedure.
In 1966 the first moiecular wavefunctions were reported by Das and
Wahl3 for H2’ L12 and FZ' During the next few years there was much
activity within the field and a number of significaht advances were
tnade.l‘_9 Interest in the MCSCF approach remained high throughout
the 70's and shows no signs of waning to date. Many theoretical
and methodolbgical contributions were made during tﬁis per:i.odlo_17
and the MCSCF procedure has‘becpme a standard tool among quantum
chemists.

Within the last five to ten years MCSCF caiculations involving
small numbers of configurations (usually between 2 and 20) have
become common place; Wavefunctions of this sort tend to recover
much of the correlation energy, that is the difference betﬁeen the
SCF and the true nonrelativistic energy. They have the additional
benefit of being relatively compact.compared to typical configuration
interaction (CI) wavefunctions. Calculations of the latter variety v

typically involve thousands of configurations and are thus much

more difficult to qualitatively interpret. MCSCF procedures are

‘also quite good for describing bond breaking processes and obtaining



accurate equilibrium geometries.12

The MCSCF method, however, does have a nﬁmber of drawbacks. One
of its more serious problems pertains to calculation convergence.
Molecular MCSCF wavefunctions are always solved for via iterative
procedures which quite often show unacceptable rates of convergence.
Certain systems, typically those involving single excitation configura-
tions, will not converge at all either dispiaying oscillatory or
divergent behavior. To overcome this, elaborate extrapolation or
damping procedures have been eﬁployed with mixed success. Another
limitation of the MCSCF formalism is that it has been traditionally
restricted to small configuration sets. The reasons behiﬁd this are
both computational and philosophical in nature. Up until 1980 the
largest reported MCSCF wavefunction contained 60 configurations.1

Within the last few years major advances have been made in both
of these areas. With regard to convergence behavior the quadratic

19-28 a

MCSCF procedure has been developed by a number of workers nd

appears to be able to surmount many of the previous difficulties.

13,15-17

Using this technique alohg with super CI and/or augmented

Hessian21’29

schemes most systems converge within 5 to 10 iteratioms
to 8 decimal places in the energy. Even pathological systems
containing numerous single-excitations have been shown to converge.
Another advantage of this method is that excited states of the same
symmetry can be solved for with little additiomal effect.23
Restriction of MCSCF calculations to small configuration sets has
been virtually eliminated via the loop-driven graphical unitary

group approach (LDGUGA)MCSCF met:hod.:m-32 Our current implementation
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can handle CI expansions composed of tens of thousands of
configurations with the only limits being the size of core memory
and the amount of computer time available,’-As a preliminary calcu-
lation, an MCSCF wavefunction for the lowsst triplet state of

31 This

cyclopropyne containing 10,115 configurations was computed.
wavefunction was composed of over two orders of magnitude as many
configurations as the previously largest reported MCSCF. Since
then MCSCF calculations on water and ozone have employed even
larger numbers of configurations.33’34 At about the same time as
our initial MCSCF work, Roos and Siegbahn developed the complete

35-37  their procedure also handles

active space (CAS) MCSCF method.
large CI expansions, but these are restricted to a certain form
namely a-complete CI within a given subspace. CI expansions of
this type have many-special:properties which are exploited in thcir
CASSCF program. The major drawback of this method is -that the length
of the CI increases extremely rapidly as the sizeaof the active
space is enlarged. Preliminary calculations by Roos and Siegbahn
were reported for N2 employing 726 configurations and since that
time a number»of other systems have been studied using the CAS |
method. Lastly, recent work by Lengsfield on adapting the quadratic
MCSCF procedure to moderately large configuration lists has been
reported.23 In that paper calculations on the X fz: and 2 2: states
of HF containing 1436 configurations are discussed,

In this dissertation the theory behind the LDGUGA MCSCF method

will be discussed and the basic philosophical and computational

differences inherent to our scheme compared to traditional MCSCF



procedures will be illuminated. Since our biggest departure is in
the size of CI expansions that can be handled, the techniques that
are employed to deal with large configuration sets will be stressed.
Among these are an efficient loop-driven CI based on the graphical
unitary group approach, the need for the fast generation and storage
of the two-particle density matrix and its subsequent use in an
orbital optimization step that has reasonable convergence properties.
Other computational aspects of the system will also be presented such
as restricting the integral transformation to transforming only the
necessary ihtegrals and the efficient formation and use of the
Lagrangian and Hessian matrices. In a more general vein the
strengths and weaknesses of the LDGUGA system will be presented.
This will include what types of configuration sets can and cannot be
used, the restriction of the point group symmetry to D2h and its
subgroups and the ability to include higher than double excitation
configurations.

In addition to the theory a number of applicatiomns will be
presented. The first of these involves a series of CI and MCSCF
calculations on the ground state of water. The main purpose for
this study was to try and elucidate the role that higher than double
excitations play in CI calculations using different orbital basis
sets. The most extensive computation performed on H20 was an MCSCF
containing 17,678’configurations which is the largest MCSCF result
obtained for an molecule to date. Our next investigation dealt with
the lowest state of ozone. In this study a number of different

size MCSCF and CI wavefunctions are computed and compared. The



quality of these wavefunctions are examined in the light of their
associated total energy and their ability to éorrectly describe the
biradica; nature of 03. Lastly the 2E" state of cyclopropenyl
radical is probed with a number of MCSCF calculations within the
valence space. lPairs of compﬁtations are performed in 2A2 and 282

symmetries and the splitting between the two resultant energies is

compared.



"II. The LDGUGA MCSCF Method
In developing the loop-driven graphical unitary group approach

30-32

(LDGUGA) MCSCF method a basic departure from the current

philosophy was made. In a single configuration SCF calculation
the orbitals are variationally determined such that the energy is
minimized and for many chemical properties such és the equilibrium
geometry the SCF procedure often gives a reasonably accurate result.
However, for a number of systems the SCF wavefunction is a poor
approximatioﬁ to the true wavefunction, at least in certain regions
of the potential energy surface. The multi-configuration SCF
(MCSCF) method was designed to overcome thesevdefiéiencies

by including the configurations that are necessary to qualitatively
describe these areas of the.surface. An example of this is the
description of bond breaking in a molecule. Usually a number of
configurations are needed to represent this process accurately
including at least those configurations needed to describe both the
starting molecule and its fragments.12 Traditionally in MCSCF
calculations only a small number of configurations are employed,
usually the minimum required for qualitative accuracy. One
problem that often arises is that since the configuration set must
be predetermined, it is difficult to ascertain in advance which
configurations are needed over the}entire range of the potential
energy surface to be examined. Another deficiency is that in many
cases the wavefunction itself is not of sufficient accuracy and
additional extensive CI calculations using these MCSCF orbitals must

be carried out.



In implementing our MCSCF method we strove to eliminate the
restriction to small configufations sets and thus minimize the
resultant problems of configuration selection and wavefunction
accuraci. Before going into how this was accomplished certail
details of the MCSCF formalism in general need to be pointed out.
In any MCSCF procedure both the orbitals and the CI expénsion'
coefficients are vériationally determined. The subsequent energy

expression obtained using this wavefunction is

o ij A
E=Y CC (aTy €\4C <dh|u>
e 13 i% b LA
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where CI and CJ are CI expansion coefficients, Cli"cuj’ Cuk and

. ij ijke
Cvk are orbital coefficients, ary and bIJ

and (A|h|u> and [Ay;vo]l are the one and two electron atomic orbital

are coupling constants

(A0) integrals. Equation (1) can be rewritten in terms of molecular

orbital (MO) integrals as
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Since it is not possible to directly solve for the coefficients C
and ¢ an iterative'procedure must be employed. There are two
general types of iterative schemes possible: one, in which
corrections to both the trial CI and orbital coefficients are
solved for simultaneously and twq where first the CI coefficients
calculated and secondly the changes in the trial orbital coefficients
are found. The former érocedure is called a one-step method and the
latter a two-step method. Because our MCSCF program and the laige
majority of others are of the two-step variety only two-step
procedures will be considered. |

In a typical two-step MCSCF method the calculation can generally
be divided into four separate tasks. The firét‘is the transformation
of the AO integrals to the MO basis, the second is the solution of
the CI secular equation to yield the expansion coefficients, the
third is the construction of the one- and two-particle density
matrices and the fourth is the cdmputatién of the corrections to
the trial orbitals. The entire process is then repeated until the
desired level of convergence has been achieved. 1In a traditiomal
MCSCF calculation employing only a small number of configurations
the bulk of the computer time is-spent performing the integral
transformation. A substantial fraction of this time may be required
by the orbital optimization step, but solving the secular equation
and building the density matrices takes essentially no time. This‘
caused us to think that if an MCSCF method were built around a very
fast CI (and density matrix construction) program that quite a

large number of configurations could be handled before the CI



solution and density matrix computation steps began to dominate the
calculation time. This is the basic idea behind the LDGUGA MCSCF

approach.

At the heart of our MCSCF package is the loop-driven CI program

" originally developed by Brooks and Schaefer38 with subsequent

39 This CI program utilizes the

graphical unitary group approach (GUGA) pioneered by Paldus40-42

and Shavitt42—45 within the loop-driven framework. Since its

improvements by Laidig and Saxe.

introduction in 1978 the original CI systeﬁ and its later modified
versions have demonstrated the efficiency and applicability inherent
in the LDGUGA method. During this period theoretical studies
including the effects of electron correlation have been carried out-
on a number of molecules using the LDGUGA CI programs. Among these’
are the iﬁvestigation of the stability of cycloproPyne,46 a study

of the triplet excited states of HCN,47 the determination of the

harmonic vibrational frequencies of NH4+,48 an examination of
aluminum-carbon bonding49 and the prediction that methylnitrene is
stableso to name just a few. Currently CI calculations including
up to 40,000 configurations are routinely perforhed with the only
size restrictions being the amount of available core memory.
Designing our MCSCF.procedure around the loop-driven CI
routines places certain restrictions on the type of configuration

sets that can be'employed. This is because only configuration lists

that can be represented in a compact numerical form called a distinct

‘row table (DRT) can be handled by the CI. At present DRT's

containing all single or all single and double excitation
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configurations from one reference can be generated. This can also
"be done for a large number of two reference cases., In addition
classes of higher excitations can be included such as all single,
double and triple or all single, double, triple and quadruple
excitations from one or fwo references. Full CIs can élso be performed
in any subspace and all single plus double excitations can be
generate& from this set if desired. For a more complete discussion
of the capabilities of the DRT construction program see Brooks'
Ph.D. Thesis.51 Work is currently in progress that will allow the
DRT for all single and double excitations from an arbitrary set of
reference functioné to ﬁe generatedcsz This will greatly increase
the flexibility of the method.

Within the DRT framework only limited configuration selection
can be performed witpout destroying the advantages of the loop-driven
formalism. One type of selection which does not significantly
affect the performance of the CI is restriction of the configuration
list to the subset which are Hartree-Fock interacting.53 This does
not alter closed—sheli calculations, but can drastically reduce the
number of'éllowed configurations from open-shell references without

54,55 Also a certain amount of

adversely affecting the energy.
selection can be obtained by restricting excitations into and out of
specific orbitals. Within the MCSCF, orbitals can bg divided into
three basic types: core, virtual and active. Core orbitals are
doubly occupied in all configurations in the CI and are often used

to represent the inner shell orbitals in atoms and molecuies.

Virtuals orbitals are never occupied in the CI and usually have high
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orbital energies. An orbital is active if at lgast some excitations
are allowed into or from it and thus it has an occupancy somewhere
between 0 and 2. Any DRT that can be generated in the full spaée
can also be limited to just the active orbitals. 1In many.cases

this can dramatically reduce the size of the CI expansion.

Another aspect of the LDGUGA MCSCF method that helps in reducing
the length ofvthe configuration lists is the use of Abelian point
group symmetry,51 This is very importaht»since the full Hamiltonian

is block—diagonal with each submatrix of a particular symmetry.
type. For example, in water the molecule has sz symmetry and the
Hamiltonian consists of four sub-matrices one for each of the four
distinct symmetry types; Al, A2, Bl and Bz. Becausgvthe matrix is
block-diagonal‘the individual sub-matrices can be independently
diagonalized_with the resultant eigehvalues corresponding to eigen-—
vectors of the block's symmetry type.

In our program only those configurations that are of the same
symmetry as that of the reference(s) are generated. This leads to
a much smaller secular program to be solved. If the molecular
symmetry belongs to a degenerate point group the calculation can
still be carried out in the highest symmetry non-degenerate sub-group
of the degenerate point group. Since we normally do calculations on

triatomic or larger systems this is seldom a problem.

A. Review of the Berkeley Loop-Driven Graphical Unitary Group

‘Methodology -
Beféfe going on to the particulars of our MCSCF method it would

be helpful to the reader if certain major concepts of the LDGUGA
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approach were examined. As was mentioned earlier the key factor in
designing a fast MCSCF procedure that deals with large configuration

sets is in having a very efficiént CI program at its héart.Sl One

38,39 and this

such program is in the Berkeley CI system of programs
became the basis of our MCSCF routines. The two central new ideas
within this CI method are the generation and use of the distinct row
table (DRT) and basing the construction of contributions to the

43-45,51

Hamiltonian matrix around loops. First the definition and

subsequent use of the DRT will be discussed.

Basically the DRT is the numerical analog of a.Shavitt graph43’44
which is a pictoral representation of a given configuration set.
A sample graph is shown in Figure>I. As one can see from the figure
a Shavitt graph is composed of a framework of dots called distinct
rows and a series of line segments connecting them labeled arcs. The
top most row is the graph head while the bottom vertex is the
graph tail. Any path from the head to the tail which passes through
one row per level defines a pafticular Gelfand56 state or configuration
and is called a walk. The totality of all walks define the config-

uration set. Each row can be defined by three parameters aij’ bij

and c¢,., such that
ij

a,., +b,. +ec,. =1 (5)
. = 1/2 Nij-s (6)

b,. =285, , @)



Figure I. Sample Shavitt Graph.
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with i being the level index and j being the vertex index on that

particular level. Nij and Sij are the number of electrons and the

40 Looking again at the figure omne

;otal spin of the ijth TOW.
notices that the rows are separated into three columns by the value
of a. A group of vértices on the same level with identical a values
differ in b with the right-most point being b=0. Moving to the left
each row within the group has Ab=+l. 7

To work out a Shavitt graph, ome first calculates the values of
a, b and c needed for the graph head using N equal to the number of
electrons in the particular system and S equal to the total spin.
The graph tail is always assigned a=b=c=0. For the ground
state of wate%, for example, N=10 and S=0. This yields a=5 and
b=0. c is deﬁerminéd by how many orbitas are used in the calcula-
tions. Once the graph head is found segments connecting adjacent
levels are drawn. Four distinct shapes are possible: one, a vertical
line segment corresponding to an orbital occupancy of zero in which
Aa=0 and Ab=0; two, a slightlyvslanted line segment with Aa=0 and
Ab=-1 corresp;nding to an alpha occupied orbital; three, a more
slanted line éegment corresponding to a beta occupied orbital wheré
Aa=-1-and Ab=+1; and four, a nearly 45° line segment with Aa=~1
and Ab=0 correspénding to a doubly occupied orbital. Pictorially
the four types‘are represented as

1 \\\5 \\\\\\\3 4

. @
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In a given Shavitt graph all allowed walks begin at the graph head
and end at the graph tail. In Figure I the graph for the case of a
system with 5 orbitals,-4 electrons and a total spin of zero is shown
composed of both the éolid and dashed line segments. If the dashed
arcs are eliminated the CI is restricted to'all siﬁgle and double
replacement configurationsfrom the rightmost ' walk which is the
ieference.

As discussed above the Shavitt graph contains all configurations
allowed in the CI. Té actually perform the computation, however,
some method must be found to identify each particular configuration.

43,44 that was adopted assigns a unique number m

The location séheme
to each configuration with the leftmost walk defined as m=l. If two
configurations coincide from the graph head down until some level i
then the state with the lower m value is the leftmost below this
level. An ordering of this sort is labeled lexical. Each.configura—
tioﬁ is composed of n arcs where n ié the number of orbitals in the
CI step. A property of this lexical ordering is that a value can
be assigned to each arc such that the index m can be computed for
each walk by summing over the n parameters associated with its
components. These parameters are called the arc weights,
Besides'defining the configuration ordering the orbital sequence
must also be‘detefmined. In the full CI case the orderihg of the
orbitals is essentially arbitrary. If a restricted form of the -
graph is used, however, it is advantageous to order‘the orbitals

in a certain fashion. In our MCSCF program the ordering is as

follows.
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CORE n
T
ACTIVE '
DOUBLY
OCCUPIED orbitals
VIRTUAL
) W
UNOCCUPIED 1

In this diagram core are the MCSCF core orbitals, active are the
open-shell or partially filled orbitals in the reference(s), doubly
occupied are the doubly occupied orbitals in the reference(s), virtual are
the orbitals not occupied in the MCSCF and occupied are the unoccupied
orbitals in the reference(s). "~ Having the active block abo&e the doubly-
occupied orbitals and the doubly-occupied above the unoccu;ied
orbitals is useful in non-closed shell and multi-reference cases.
The placing of the core and virtual orbital blocks is not essential,
but was chosen to accommodate restrictions within the CI gradient
programs. In a future implementation the core and virtual sections
will both be above the actives. The main reason for positioning the
unoccupied orbitals at thevbottom is that this allows the éimplicity
of the Shavitt grﬁph in this region to be exploited.

If spatial symmetry is treated correctly or if the configuration
list is restricted to only the Hartree-Fock interacting set
additional complicatiéns arise. In the case of spatial symmetry
(only valid for nondegenerate point groups) all rows except the
graph head and tail are expanded into a set of vertices, one for

each symmetry type. Next all walks are generated with a total
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symmetry equal to that of the refeience(s). If no walks pass
through a.given point it is then eliminated from the graph. So,
therefore, it now takes four quantities to define a row: a, b,

c and s where s is the a symmetry label. Aififth parameter t is
neceésary if the Hartree-Fock interacting space restrictions are to
be implemented. Using these five parameters then any Shavitt graph
or corresponding DRT can be constructed subject to the limitations
presented in the previous section.51

In the computer the Shavitt graph is stored as its numerical
analog, the disfinct row table. Instead of vertices and arcs a
series of arrays are formed which describe the rows and how ﬁhey
interconnect. Example DRT's and a detailed description of the
necessary arrays are presented in reference 51.

The second major concept which needs to be examined is that of
the 1pop.43’44 When two configurations m and m' are compared in the
DRT they will coincide above a certain level j and also below a
specific level i-1l. (In the worst case the jth level will be the
graph head and the i-l1 level will be the graph tail). The section
between the levels j and i~1 which need not coincide is called a
loop.with the loop head being the distinct row at level j and the
loop tail associated with the row at level i-1. The segments
joining the graph and loop heads is labeled the upper walk and the
segment between the graph and loop tails the lower walk. An example
of a typical loop is shown in Figure II.

The reason why the loop concept is important in GUGA implementa-

tions can best be understood if the Hamiltonian operator'is cast
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~into its second quantized form™

BH=Y h E.+ 2 [ijskle (9)
13 13713 19k ij, kL _ —
where the summation is over the orbitals allowed in the CI and Eij

and e are the one- and two-body unitary group operators. The

ij,k2
two-body operator can be written in terms of the one-body operators

as

55,k = EisBee ~ ifig (10)

with the one-body operator defined by

_ t
Eij = . Xic ch (11)
where XIG and X.o are the spin-orbital creation and annihilation
operators respectively. The summation index ¢ in (7) is over a
and B spin. The Hamiltonian matrix element between configurations

-m and m' can now be expressed as

. o | .
B , =3 b <, |a'>+ 2 [ijkl<ale, ,[n'> .  (12)
mm 13 ij i3 zijkl ij, k& .
Now if equation (2) is examined it becomes obvious that the matrix
1

< "> =< > :
elements mlEij|m and 5 mleij,kﬁlm are just the coupling
coefficients a;;, and b;i%z respectively defined in equation (1).
Since for the majority of configurations m and m' in a large CI
there are only two non-zero coupling coefficients, it is found that

<m|Eij|m'> and <m|eij’k2|m'> are zero for most choices of i, j, k
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and 2. It can be shown that if <m|Eij|mi> is to ever by non-zero
the configurations m and m' must coincide above level j and below
level i-1. Furthermore, using equation (10)

<m|e

m'> = Zn;' €m|Eijlm'7><m"|E]‘2|m'>

15 ,ke’

" by Salzla> - a

and, therefore, if <m|eij’k2|m'> is to be non-zero the ar;s above
the largest and below the smallest value of i, j, k and £ must be
coincident also. If the element <m|Eij|m'> or <m]eij’k£|m'> is
non-zero it is also known that their values only depend on the
shape and pdsition of the loop in the DRT and not in the upper and
lower walk portions of the two configurations involved. What this
suggests is then a loop-driven CI procedure,38 In this scheme
instéad of constructing each element of the Hamiltonian matrix
separately as in a conventional configuration~driven program or
sequentially reading through thg integral list and forming all
contributions to the H matrix that are possible as in an integral-
driveh CI, the set of pairs of distinct rows on different levels are
looped over and all non-zero loops between a given pair are generated.
Once a loop is formed its value is computed. What is necessary now
is a procedure for computing this loop value and also how to determine
which configuration pairs involve a given loop.

In the LDGUGA system of programs the loop value is found through
the use of segments.45 A segment is defined as the pair of arcs,

one from each configuration m and m', between any two adjacent levels.
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For example, the two-body loop that is pictured in Figure II has
four segments. These segments are classified according to their
shapes and to each distinct shape a segment value W is associated.
These segment values are either constants or depend on the b value
at the top of the m' arc. The unitaﬁy group matrix elements can

be expressed as41’45

<m|E

j .
ijlm > = ZZ; W(Q, b, ) | (14)

ale,, lu>= TT W@ ,b)( ¥ W_(T b)) (15)
13,kL pes, PP x§2,1 32;2 x p’p

and S

where S are the interaéting and non—interactihg regions

2 1
respectively and Wx are segment values that also depend on a spin
parameter x. In our program then the loop values are found through
first multiplying and adding the appropriate segment values
together to form the coupling cbefficieﬁtsvand then multiplying
these by the appropriate MO integrals. Since many different loops
share common segments it is not necessary to entirely calculate each
coupling coefficient from scratch. In the loop-driven program loops
are generated in an order that takes advantage of this fact.

Once a loop value has been computed how do we determine which
Hamiltonian matrix element(s) it belongs to? This is done using the

38,51 A loop will

loop breakdown algorithm of Brooks and Schaefer.
contribute to the H matrix elements between any pair of configurations
formed by the loop plus one of its upper and one of its lower walks.

" In Figure II the example loop has only a single upper and lower walk
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so it contributes to only one Hamiltonian element (the matrix H is
stored in triangular form), however, in general loops can have n
upper and m lower walks and will contribute to n X m matrix elements.
In this algorithm the lexical numbers of the leftmost configurations
containing the left and right sides of the given loop are computed
by summing up the individual arc weights. These configurations are
called the primary upper walks of the left and right sides respectively
and are symbolized as IUWK and JUWK. Tue to the nature of lexical
ordering all subsequenﬁ configurations formed with the same upper
walk but different lower walks are sequential. This, unfortunately,
is not the case for a fixed lower walk with variable upper walks.
If, however the Shavitt graph is inverted so the graph tail is now
the head and‘vice—versa, a differenﬁ lexical ordering can be
defined. Using this scheme all configurations with the same lower
walk but different upper walks are now sequential. This ordering is
labeled reverse lexical. In our program an array INDX is computed
and stored which converts from lexical to reverse lexical ordering.
If NUWK and NLWK are defined as the number of upper and lower walks
fespectively,and VAL is the loop value then thé Hamiltonian matrix
element contributes for a given léop can be constructed using'the
following code.

DO 100 I =1, NLWK

II = INDX (IUWK)

JJ = INDX (JUWK)
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DO 90 J =1, NUWK
H(II,JJ) = VAL
II = II + 1

J=J3J+1

90 Continue
JUWK = IUWK + 1

JUWK = JUWK + 1
-,100 Continue

The advantage of this algorithm is that no multiplications or other
complicated arithmetic are needed to compute the subsequent contribu;
tions to H. The calculation of the coupling coefficiénts through the
use of segment values and the use of the loop breakdown algorithm to
construct the Hamiltonian contributions are two of the features that
make the LDGUGA formalism extremely fast and efficient.

Before closing this section one improvement to the original
loop~-driven method should be mentioned. In the original implementation38
the loops were constructed by a tree-search algorithm which means that
from a given loop head all possible segment shape combinations were
investigated subject to a list of formation rules. The newest

51,57 take advantage of the simplicity of the

58-60

versions of the program
DRT among the uﬁoccupied orbitals. This section of the graph is
called the external space while the remainder which includes the
doubly~occupied and active orbitals is c§lled the internal space.

The interface level between the two sub-spaces is the Fermi level.

In the external space there are at most four distinct rows per level
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in the no symmetry single pius double excitation case. In Figure II
these are labeled W, X, Y and Z. Because the strqcture of this space
is so simple all possible types of loops (or partial .- loops if the
loop begins in the internal space but ends in the external space) can
be programmed up separately. When this was implemented substantial
time savings were gained in the loop value construction stage of the
CI step.
For a more complete reviewvof the concepts presented here see

either Brooks' thesis51 or Shavitt's excellent summary article.45

B. TFirst-Order Orbital Optimization Procedure--Method I.

Currently two methods for computing the changes in thevorbitals
from one iteration to the next have been implemented in the LDGUGA
MCSCF program. The first involves the symmetrizing of the matrix of
Lagrange multipliers.so’31 In developing this prbcedure first note
thatﬁihe CI energy expressed in equation (1) can be written,

E = G.. .[1i;ke] + 3 Q,.<i|h]3> (16)
1le:<z 15Kk & "1y |

where Q and G are the one and two particle density matrices defined

below.
= S ij .
Uy = ? €% 213 a7
J } .
ijke
Gijk2 E CICJ bIJ * (18)

The simple form E takes above is a convenient starting point for

deriving the iterative equations needed to obtain the MCSCF solution.



25

In equation (16) both the density matfices and the MO integrals are
.independent of the choice of orbitals. However, for the present we
will assume that the density matrices are independent of orbital
rotation. Applying a unitary transformation, U, to the set of MO
integrals in equation (16) then &ields, |

E = ‘aiz:ca Gijkf, UaiUbchkUdﬂ,[ab;Cd] +azb Qiquipbj<a|£lb> .(19)
If the orbitals used in the original CI (equation (16)) were a
'ieasonable starting'guess for the MCSCF orbitals and the transforma-
tion matrix g was picked in such a way as to yield a "better” set
of orbitals in an energetic sense then P could be assumed to be close
to the unit matrix %. If this wés the case a two-steé MCSCF procedure
could be envisioned. First for a given set of MO integrals the CI
step could bélperformed and the configuratibn coefficients céuld be
used to construct g and Q. Next using these fixed values for G and
g the MO to MO transformatipn matrix y could be computed. Now the
integrals are retransformed to this new MO basis and the steps are
repeated until convergenée. That is until U is the unit matrix.

What is missing in the procedufe outlined above is a method for
determining the matrix H. if g is close to %_then it is reasonable

to express U as,
v=1+0d : (20)

where U(l) is just the differeﬁce between 1 and U. The matrix U(l)

is expected to be nearly antisymmetric since any unitary matrix can
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be expressed as

Ue et a1+ T+T2/2+ ... (21)

~

where T is antisymmetric. The higher powers of T in this case will

be negligible making

v = T . (22)

~

Expanding equation (19) using equation (20) and discarding terms

(1)

higher than first order in U yields for the first order change

in the energy,

(1) ~ (1)
ez Y Yo, v s 5., +
1jkf abed ijk&" "ai "bj ck dl

(1) @) v
821%;3 %cxlan * ®ai’pilck Saz *

1) . , 1) (C DUy
5a16bj6ckud2 J[ab;cd] +§j % Q103784 + sijubj J<a|h|b>.

(23)

This equation can be further simplified to

(1) -~ . (1) AL
E s Y ¢ (4 U7/ [r;:kR]) + Q..(2 u;-7)<r|h]3i> .
1{k8x ijk% ir E%i ij ir

(24)

If 4 times the two electron plus twice the one electron energies

are added to both sides of equation (24) the result is
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Q) - (1)
4E2’+2E + E —Z ik,;(l;v )

1 1jkhr

[rj;ke] + %: Q. (2 Uixlr)')q'lﬁlj) +
' . ijr

%c:zrcijk" 4 8, ) [rdsk2] +

oo, @ «lhly o (25)
ijr

where E1 and E2 are the one and two electron energies. Collecting

terms leaves j oot

(1) .~
K+ E = zk: Gisz ir[rJ skl +

2 ;E:‘Qiruir<rlhlj> ' ‘ (26)
ijr .

where.K = 4E2 + 2E Now it is advantageous to note that ‘the

1
Lagrangian matrix X is defined as

X, = Z 4 Gijkl [rj;ke] +;2 Qij<r|ﬁ|j> L _ 27)

jk&
Using this relation equation (26) can be reduced to

K + EY inr L - | _ (28)

What one would like now is a way.to minimize the above equation to
calculate the optimal matrix U. One straight forward way of doing

this is to perform pair rotations on X. Rewriting equation (28) as



L) - } T
K+E ‘%_;Xiruir ;(’5‘1 )iy

and expressing the transpose of U as a product of pair rotation

matrices
T
vr= 1T 6 (30)
i>j ’m ij ’m
where eij o is the mth pair rotation matrix between orbitals i and
1]

j, an iterative scheme can be devised. For each orbital pair i and
j a rotation anglé 6 can be solved for. The largest of these is
picked and the rotation is applied to the Lagrangian matrix. A new
set of 6 matrices are calculated and this process is repeated until
the angle of rotation is below some threshold value.

To fin& the value 6f the rotation for a given ij pair, multiply

X by the general pair rotation matrix eij and take the trace of the

resultant matrix. eij is defined below as
i .3
o, =]t o ] (31)
213 1
i cosf .. sinb
j ~sin6 *cosb
‘1
0 1 .
i J

The difference between the trace before and after rotation is

tr(§}) - tr(%@ij) é xii + ij - Xii cosf + Xij sinf -

ij cosf - in sinb . (32)

28

(29)
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Taking the derivative with respect to 6 on both sides of equation (32)

and equating to zero gives

Y(ij + Xii)‘sinﬁ + (Xij—in) cosd = 0 . | (33)
Solving for tanf yields
X, .=-X,. .
tane = _j_i__.il R (34)
X, X,
ii 733

Since 6 is expected to be small and tan® = 6 as 6 approaches zero

equation (34) can be approximated by

PR 8 . | @39
A xii+xjj
This approximation saves considerable computation time since t::mpl
operations are very slow on most computers. Imn pracﬁice using this
appréximation did not significantly effect the rate of convergence.
This method has been used with mixed success in a number of MCSCF
“calculations. Cases that converge adequately are typically those in
which all orbitals are acfi&e, that is fér all orbitals at least one
configuration exists that excites one or two electrons into or out
of each orbital. C#ses where convergencé is poor or non-existent
usually involve at least a few coré or virtual type orbitals. 1In
Table I the results of several.iterations of an MCSCF calculation
on the gfound state bf water are pfesented. The MCSCF included all

361 single and double excitations from the SCF reference in the

calculation set. More details on this calculation are given in
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Section IIIB. In column 2 of the table the sum of the squares of the
difference of the Lagrangian matrix is tabulated. This number is an
indicator of convergence since the Lagrange multiplier matrix is
symmetric upon convergence. The next column labeled overr. is what

we call the overrotation or damping factor. Each predicted rotation
in U is multiplied by this prefactor. If the calculation is diverging
this factor is made less than 1.0 and if it is converging slowly a
value greater than 1.0 generally improves the rate of convergence.
Lastly the total energy and the coefficient of the reference configura-
tion are tabulated. From perusing the table one notices reasonable
convergence for the first 5 iterations but divergence for the next
three. If however one returns to iteration 4 and changes the over-
rotation factor ot 0.5 the calculation converges. If appropriate over-
rotation factors are chosen convergence to 8 figures in the energy

can be achieved in about 30-50 iteratioms.

C. First-Order Orbital Optimization Procedure-~-Method 2.

In developing a second approach it is necessary to examine the
MCSCF procedure in a different light. This method was originally

devised by Hinzel1 and we adopted it with only minor modifications.3o

For an MCSCF wavefunction

m ~ - .m
<YJH|¥> = E =2 q, . <i|h|3>+ 3, 6,  [ij5kL]
iy ™ fgxg 13K

m A m ~
<Y [hjp.> + G, .r gV, o> 36
isziJ s 1nlv, iJZ:kl ViV lelvgv> (6



- Table I. Convergence behavior of dquble—zeta water 'using method
1 employing 361 configurations.
Method 1
iter sq. dif. overr E ¢
1 1.1 x 1074 1.0  -76.15001468  .978735
2 4.4 % 107 1.0 -76.15013779 .978465
3 2.8 x 107 1.0 _76.15018605  .978258
4 2.6 x 107 1.0 -76.15020970  .978100
5 3.4 x 107 1.0 -76.15022125  .977981
6 5.7 x 107 1.0 -76.15022293  .977879
7 1.1 x 1074 1.0 -76.15021200 .977801
8 2.1 x 107 1.0 -76.15017983. .977239
4 2.6 x 107 0.5 ~76.15020970 .978100
5" 1.3x 107 0.5 -76.15022211  .978042
6' 1.0 x 10 0.5 ~76.15022922  .977988
7' 8.9x10°° 0.5 -76.15023498  .977938
8'  7.6x10°° 0.5 = -76.15023979  .977892
9" 6.6 x 10°° 0.5 _76.15024384  .977851
10" 5.8 x 10°° 0.5 ~76.15024727 977811

31
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where wi represents orbital i and § is the two electron operator

and m is the number of total orbitals. (The two-electron integral
written uéing the explicit orbital notation wi is now <(1)(2)|g(1,2)|
(1) (2)> where 1 and w refer to electrons 1 and 2). The restrictions

to equation (36) are that

< > = .
That is that the orbitals form an orthonormal set. Since Y is
completely optimized with respect to the orbitals

m ~ m R
8§ Q. <v, |bly,> + G, . <wlg§ww>-<wlw>e Q=
g} ij i 3 ;;%2 ijkf "i'k 3’2

(37)

where the parameters eji are the Lagrange multipliers. Expanding (37)
to first order in § and neglecting variations in the density matrices .

yields

m m

<6wile>€ji

m
+ G, .y o<V, 0. |E|V.¥,>
%:kz ijke 74 'k jz

+ E Q< [n[6y,> + 1321:(2 Gy sren ViV 8180, ¥> = <¥, [Sy>e

m
+ 3 G, <v.y |Blu,sy,> =0 : (38)
13%8 ijkf "i'k j L _

Since the labels of the summation indices are arbitrary equation (38)
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can be rewritten as

m

m N A
g, Qg <8y, [Blyy> + 2 ig.d P A LA e
+ <<Slpi|lbj>€ji +c.c. =0 . (39)

where é.c. étands for the complex conjugate of the first two terms.
The term that is explicitly written out may be now set equal to zero
independently of the c.c. term. This is because a pure complex
perturbation will change the sign of the complex conjugate part of
equation (39) and therefore, both the explicit and c.c. terms can

be separately equated to zero. The first term in (39) now becomes

?[h\)ij +§ sz Gij'klle =§wj€j ; (40)
with
v, = fa@ @@ u @ | 1)

Examining equation (36) one realizes that this system of equations is
analogous to the Fock equations in SCF theory. AThe quantity in
’brackets in (40) is, therefore, defined as the generalized Fock
operator F and the corresponding Fock-like equations for MCSCF wave-
functions can be written as |

m . m

?Fﬁwj ) }j:wjeji ‘ | . (42)
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_ % . 11
It is also known that Eji = Eij (see Hinze ™ page 6430) or eji eij
in our case since we only use real orbitals. Hinze also goes on to
show thét these are the necessary and sufficient conditions of

convergence}, If j is relabeled k in equation (42) and wj is

multiplied on both sides and integrated, the result is

€51 =}£.<wleiklwk> . (43)

On convergence then

m :

It should now be noted that

m .
%5 =2 X W |Fyy [y > (45)

.where X is the matrix defined in equation (27) of the previous section

as the Lagrangian matrix. On convergence, then, § really is twice the

transpose of the Lagrange multiplier matrix and, therefore, as

stated in the preceeding section § becomes symmetric upon convergence.
The MCSCF problem now reduces to finding an iterative procedure

that upon coﬁvergence will satisfy equation (44). If a "better"

set of orbitals is defined as
R | (46)

where U is a unitary matrix and the Fock operator F is assumed to
be independent of the orbital basis, then equation (44) can be

written in this new basis as



m ) )
' 'S o ' t = i
);, g 1F g v Wyl le» =0 (47
Expand;ng the new 6rbitals in terms of the old yields
m . _
% z:n gy Vel P ¥p> = Vg VglFpply> oy =0 . @)

The equation aBove can be solved directly for the set of all u's,

‘however, this can be very time consuming. An alternative to this

is to notice that U can be decomposed as follows

uv= 1 U,, . | - | (49)
1> 1

where Uij is the pair rotation matrix between orbitals i and j (see
pictorial representation in preceeding section). The diagonal

elements of U,, are unit and the off-diagonal elements are zero

ij

except for Uii’ Uij’ Uﬁi and Ujj' They have the following values
Uii = Ujj = cosf | _ ' (50)
U,, = -U,., = sind ’ (51)

ij ji
where 0 is the angle of rotation between the two orbitals. If the
assumption is made that the set of rotation matrices commute . then

equation (48) can be solved independently for each pair of orbitals.

For the pair i,j this equation becomes

35
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m
J1 7 €y kg;ﬁj<s<wilFiklwk> + ey, [Fy [y

e

—vc<‘pi‘IijIwk> + squ Iij'wk>)
+ (s [Fyy [¥y> + vy 7y vy
= o<y [F [v,> + sy |7y, [0,)

- S(S<W1|Fii|¢j> + c ,\U |F11I j

= o<y, [F [v> + s [Fyy [0,)

+ s(s<wi|F.. )

AL

151%4
= e [Fy vy > + sy [Fy 0 >)
+ cle<yy [Fy [0y> + ey |Fy, lvg>

- el [Fy (0> + s [Fy[v>) (52)

where s = sin6 and ¢ = cos®. If the additional approximation is

made that
cos$ = / 1-sin®p = 1 - 1/2 sin’} | O (53)

equation (48) can be expanded in powers of sinf alone. If one

notices that since only real orbitals are used Fij = Fji and



expands (52) through second order in sinf the resultant quadratic

equation in s is

A82 +Bs+C =0

A=1/2 (x'i-xij) + 3 zij

B=X, +X,,6 +2%Y

ii 33 ij
C= xij - in .

The expressions for Y and Z are

Tyy = 2 Qg <tlhls> - p<slhly> - Q;<i|n[i>

+§£ (4 Gy g [133KR] = 2 Gy [335K81 = 2 Gy yp p [145KR1)
| (58)

Z33 = Qy

+§2 [zciju([ii;kz-[jj;kg]) + 2[1j:kR] (cjjkz-ciikz)]

<ilh]e> - <lhl32) + @ -qyy)<tlhls>

(54)

(55)
(56)

(57

(59)

Equation (54) can now be solved for sinb. vathe values of s for a

given A, B and C turn out to be complex, however, the second order

terms are dropped and

s = =C/B

(60)

37
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Once the set of s is found the unitary matrix[U is formed via

U=e?2 (61)

~

where § is the antisymmetric matrix whose i,j element is sinGij
for j > 1. This last approximation is much_less severe than the
assumption that the set of pair rotation matrices commute.

Next let us compare the convergence of this method with method l,
described in the preceeding section. In Table II ten iterations of
the MCSCF calculation involving all single and double excitations from
the SCF reference on double-zeta HZO are displayed. This calculation
is identical to the water calculation presented in Table I with the
only difference being their relative rates of convergence. Comﬁaring
the first few iterations in Table I and the upper set of iterationms
from Table II it is seen that method 1 converges at a faster rate.
After iteration 4, however, the calculation begins to diverge,' Though
method II appears to converge more slowly in the initial iteratioms,
it continues to converge in all subsequent iteraﬁions, This tended to
be our general impression of method 2, namely that it is much more
stable than method 1. |

As in the case of method 1 an overrotation factor was also
included. 1In the current procedure this factor is post-multiplied by
all rotations in the antisymmetric matrix §. It has been our
experience that if all orbitals are active in the MCSCF than a factor
of around 3.0 leads to enhanced convergence. Comparing the two sets
of iterations in Table II one notices that the lower table (overr. =

3.0) converges much more rapidly. There is some danger, however, in
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selecting an overrotation factor that is too large. If ﬁhis happens
the calculations will tend to overshoot and tbe iterations will
osciilate or diverge. Usually we increase this factor slowly from
one iteration to the next to avoid this problem.

In Table III a more typical MCSCF calculation is presented. 1In
this table all 36 iterations in a two configuration MCSCF calculation
done on the ground state of ozone are listed. More details about this
computation can be found in section IVB. This is a more representative
MCSCF calculation because not all of the orbitals are actiﬁe; in
fact, just two are active while 11 #fe of the core and 17 are of the
virtuﬁl varieties. Furthermore, only two configurations are used,
putting this within the calculation range of all MCSCF practioners.
Also due to these facts the computation should be inherently more
difficult to converge. In practice, however, wé found that this
particular MCSCF converged rather well §0nsidering’that only a first-
order method was employed. In exgminingvthe table one notices that the
calculation converges roughly linearly yith 4-6 iterations required per
order of magnitude obtained in the sum of the squares of the difference
of the Lagrangian matrix. In 36 iterations the énergy was good to
at least eight digits with the principle coefficient'converged to
around the 5th decimal place. From reviewing Tables I-~III it should

become obvious why method 2 is normally favored.

D. An Overview of the Berkeley MCSCF Program System.

In the previous sections the theoretical details of our MCSCF

method have been presented. Starting with this section the
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Convergence behavior of double-~zeta water using method

Table II.
2 employing 361 éonfigurations.
iter sq. dif. overr E cl
1 1.1 x 107% 1.0 -76.15001468  .978735
2 7.4 x 107 1.0 -76.15008792  .978594
3 5.3 x 107 1.0 -76.15013139 .978469
4 4.1 x 107° 1.0 -76.15015918  .978362
5 3.3 x 107 1.0 -76.15017837  .978273
6 2.8 x 107 1.0 -76.15019256  .978198
7 2.5 x 107 1.0 ~76.15020366 978133
8 2.2 x 107 1.0 -76.15021267 .978076
9 2.0 x 107 1.0 -76.15022018 .978025
10 1.7 x 107 1.0 -76.15022654  .977979
‘Method 2
iter. sq. dif. overr E c1
1 1.1x100 3.0  -76.15001468  .978735
2 3.4 x 107 3.0 ~76.15017392  .978221
3 2.3 x 107 3.0 . -76.15020942  .978052
4 1.6 x 107 3.0  -76.15023072  .977931
5 1.2 x 107 3.0 -76.15024408 .977824
6 8.4 x 107 3.0 -76.15025256  .977731
7 6.1 x 10° 3.0 -76.15025802  .977650
8 4.5 x 10°° 3.0 -76.15026156 977582 -
9 3.3 x 107 3.0 ~76.15026389  .977525



Table II continued.

iter. sq. dif. = overr E Cl

10 2.5 x 107° 3.0 ~76.15026542 .977477

- .
. . .
. .
. . .
. . .

- -]

0.0 - -76.15026865 .977256
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Table I1I. Convergence behavior of a 2 configuration MCSCF calculation
on double¥zeta ozone.
iter sq. dif. overr. ) © E_
1 1.83 x 1072 1.0 .938595  -.345021  ~224.26895991
2 8.88 x 107> 1.0 .917032  -.398813  -224.29521303
3 4.67 x 107> 1.0 .908605  -.417657  ~224.30227497
& 2.48 x 1073 1.0 .900898  -.434030  -224.30569014
5 1.65 x 107> 1.0 895989 - —.444077  ~224.30763307
6 8.99 x 107 1.0 .891033  -.453938  -224.30877964
7 6.12 x 1074 1.0 .888099  ~.459652  «224.30945695
8 3.34 x 107 1.0 .885058  -.465481  =224,30985798
9 2.30 x 107 1.0 883359 -.468697  ~224.31009471
10 1.26 x 107% 1.0 881512 ~.472162  -224.31023464
11 8.82 x 107> 1.0 .880543  ~.473967  -224.31031727
12 4.84 x 107> 1.0 879422  «.476043  -224.31036604
13 3.45 x 107> 1.0 .878876  ~.477051  ~224.31039488
14 1.91 x 107 1.0 878195  «.478303  -224.3104119
15 1.38 x 107> 1.0 877890  -.478862 =224.31042204
16 7.73 x 107° 1.0 877475  -.479622  ~224.31042803
17 5.68 x 1070 1.0 .877308  -.479928  ~224,31043104
18 3.23 x 107° 1.0 .877054  -.480392  =224.31043370
19 2.93 x 1078 1.0 .876964  ~.480556  ~224.31043496
20 1.39 x 10°¢ 1.0 .876808  -.480841 <224.31043571
21 1.03 x 107° 1.0 876761  ~.480926  ~224.31043616
22 6.11 x 107’ 1.0 .876664  -.481103  -224.31043644
23 4.56 x 107’ 1.0 876641  «.481145  -224,31043660
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iter. sq. dif. overr. ! %) ' E _
24 2.75 x 1077 1.0 .876581  ~-.481255  <224.31043670
25 2.05 x 10~/ 1.0 876570  -.481275 ~224.31043676
26 1.26 x 107/ 1.0 876532 -.481344  -224.31043679
27 9.37 x 10°° 1.0 .876528  -.481352  -224.31043682
28 5.86 x 107° 1.0 876504  -.481395  -224.31043683
29 4.33 x 107 1.0 .876502  -.481397  -224.31043684
30 2.75x107° 1.0 .876487 - -.481425  -224.31043684
31 2.03x10°° 1.0 .876488  ~-.481424  -224.31043685
32 1.31 x 10°° 1.0 876478 -.481442  ~224.31043685
33 9.5 x 1072 1.0 876479  -.481441  -224.31043685
34 6.2 x 107° 1.0 (876472 -.481452  -224.31043685
35 4.5 x 10° 1.0 .876473  -.481450  -224.31043685
36 3.0 x 107 1.0 876469 ~.481458  -224.,31043685
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cdmputational aspects will be considered. Before going on and describing
the individual programs in detail an overview of the entire Berkeley
MCSCF program system will be described. A flowchart of the system is
laid out in Figure III.

At the beginning of the MCSCF calculation the symmetry orbital (S0O)
integrals are computed and stored. This is done using a modified
version of a program (written by Pitzer) entitled INTS.61 This
program calcplétes its integrals using the methqd of Rys polynomials.
The SO integrals are a simple, fixed linear combination of atomic
érbitals and have the correct molecular symmetry. These integrals are
sorted in SOCONV and only those integrals needed in the SCF are stored.
An SCF calculation is pefformed to.get a set of starting orbitals.

If maﬁy points are to be calculated on an energy hypersurface, the
orbitals obtained at an earlier point can be used instead and the SCF
and sorting steps can be omitted.

After the SCF, the DRT is calculated using DRTGEN. The DRT needs
to be computed only once for a given potential energy surface..

However since it is very fast to construct and the output file needs
to be saved, it is usually calculated at each energy point. The
limitations on the type of configuration sets that can be hahdled in
the CI are presented in section II. After the DRT is obtained the
SO to MO integral transformation is carried out using TRANS. The
orbitals are sorted from the SCF ordering to a more convenient
ordering specified by the program'DRT. More details about our

transformation program will be presented in section IIG.
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Next the CI is solved for the desired éigenvalue(s) and eigen-

| vector(s). One will notice from the figure.that there are two paths
following TRANS. Either fhe programs BUGME and DIAG or the programs
BUGFT and DIAGFT are executed. The first two programs, BUGME and DIAG,
are the diagonalization tape CI programs preseﬁted by Brooks in his
Ph.D. thesis.”! In BUGME the Hamiltonian matri# is computed and stored
on an output tape in the form of loops. DIA¢ reads this tape every
iteration of the Davidson's diagonalization and computes the CI energy
along with the corresponding eigenvector. The only problem with this |
is that the BUGME output tape grows very rapidly with the size of the
configuration sét° On the Harris 800 minicomputer we have a limit oé-
roughly 12,000 configurations. This leads to an output tape of around
70 M bytes. Clearly for cases of more than 10,000 configurations it
would be advantageous to eliminate this tape if possible. This was

the impetus for &eveloping two new CI programs BUGFT and DIAGFT.

In the case of BUGFT ;his long tape hé# been shortened by a factﬁr of
approximately 100. This is accompiished by splitting up the work
differently between the two programs. BUGFT now outputs only partial
loops within the internal s?ace (see section IIB). These are read in
by DIAGFT and thé lower halves of the loops are computed each iteration
by spécialized subroutines taking advantage of the particular character~

istics of the external space as first suggested by S:i.egbahn.58"60 Part

of these special features were exploited in BUGME-DIAG, however, full
advantage is now obtained in BUGFT-DIAGFT. The additional external

 space subroutines were written by Douglas Fox.  Computationally

BUGFT-DIAGFT is nearly identical in CPU time to BUGME-DIAG. Since
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partial loops are constructed during each iteration in.the former case
but not the latter it is obvious that performing the multiplications
necessary in the Davidson diagonalization is the major time step.

After the CI is finished the eigenvectorvis read in by TWOPDM,
the two-particle density matrix construction program. TWOPDM construéts
botﬁ the one and twofparticle density matrices and writes them to an
output tape. More on TWdPDM is presented in the next section.

The program MCSCF next reads in the TWOPDM output tape and
calculates the '"improved" unitary transformation.matrix. MCSCf first
reads and sorts both the MO integfalé and ﬁhe density matrik elements
into a suitable ordering and outéuts each list to a scratch tape.

Now ﬁhe’sératch'tapes are sequentially read and the Fock matrix
(Lagrangian) is constructed. Using either method 1 or 2 a new unitary
transformation matrix is constructed. This is multiplied onto the
old matrix and written on an output file, completing one iterationm.
For subsequent iterations the matrix U is read by TRANS along with _
the SCF vector. The two are multiplied to yield a new SO to MO trans~
formation matrix and the integrals»are retransformed., The iterations
are coﬁtinued until both the change in the ene:gy'and in the sum of
the squares of the differences of the Lagrangian elgments are below

some threshold.

E. Generation of the 'Two-'—P_a',:ti(:le’ ‘Density Matrix.

In any MCSCF method that handles large configuration sets the
ability to generate the two-particie density matrix fast and efficiently
is crucial for the orbital optimization stage to be competitive with

the CI portion in a two-step MCSCF procedure. TFor methods designed
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to only handle a few select configurations this is not as important
a consideration. In a.small MCSCF the vast majority of computer time
is spent in the orbital transformation step. Constructing the Hessian
matrix is also time consuming if a second-order MCSCF procedure is
used, but ali other steps are negligible if only a few configurations
are employed. We designed the LDGUGA MCSCF program to be able to handleb
very large numbers of configurations and in cases like this the
relative timings of the individual procedures can change drastically.
In our largest MCSCF calculations of 17,678 configurations the CIL
Davidson's diagonalization took the majority of the CPU time followed
by the generation of the two-particle density matrix and the diagonal~
ization tape construction steps. In our more typical MCSCF calculations
I estimate the time required to generate the two-particle density
matrix at between 10-30Z of the total.

The traditional way to generate the two-particle density matrix
is to read in the CI coupling coefficients, biikz, from an external

tape and combine these elements with the corresponding configuration

coefficients, CI’ to form Gijkl' The general formula for Gijkl is,

_ 1jke
Cijre ~ 2 €1€5P1r : _ (62)

1J

In a conventional CI the coupling coefficients are stored on what is
called the formula tape along with identifiers for its six indices,
Since there are on the order of sz4 coupling coefficients where N is
the number of configurations and m is the number of orbitals this
tape can get very large and is usually stored on an external device

like a disc drive. If the number of density matrix elements is too
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large to hold in central memory as is often the case either the tape
must be read several times or the tape must 5e sorted so that all
coupling coefficients that contribute to a given subset of g are
sequential on the formula tape. Either of these solutions was
deemed tooexpensive in our case. Fufthermore, the fact that using a
formula tape would severely limit the size CIs that could be handled.

The approach we originally decided to implement did not use a
formula tape. It was actually a modified version of the diagonaliza-
tion tape construction program, BUGME. In BUGME a block of integrals
are read into core. This integral block consists of at least all
integrals ki for a fixed 1i,j o;'a minimum of n2 where n is the number
of orbitals. Usually we try to hold at least n3 integrals or all
jk% for a fixed index i, since the program is more efficient if this
is possible. Then all loops involving the integrals in core are
generated. For each loop a value is calculated which is a sum of
products of coupling coefficients and integrals, and‘the loop informa~-
tiqn is written onto the diagonalization tape. These loops are read
in and broken down using the loop-breakdown algorithmsl (see section
IIA) and in the next program DIAG the contributions to the individual-
Hamiltonian matrix elements are generated.

In TWOPDM, our two-particle density matrix generation program,
instead of holding a block of integrals in core the same space is
assigned for the storage of the density matrix elements. In other
words,>the'density matrix is stored in the saﬁe structure as that of
the integrals.5l In this scheme unique density matrix elements with

the same indices are stored seqﬁentially (an example of this 1is that
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the elements G423l’ G4321 and G4132 are grouped together) and the one-
particle elements are stored together with the two-particle elements.
Initially the arrays holding the density matrix are zeroed. Then
using the loop-driven algorithm all loops contributing to the density
matrix elements in core are generated. For each loop one or two
coupling coefficients are computed,” A given Ioop is next broken down
using the loop-breakdown algorithm and the coupling coefficients are
multiplied by the appropriate CI coefficients. These contributions
are then summed into their respective density matrix elements. The
address for a particular element is computed using the integral offset
arrays defined by Brooks.51 These arrays take advantage of full
Abelian point group symmetry and no element which is zero by symmetry
is stored. After all loops contributing to the block of density
matrix elements currently in core are processed the finished block
is written to an external file and the in~core block is zeroed. This
entire process is repeated until all blocks have been constructed.
Below is an outline of this procedure.
1. Read in DRT arrays.
2. Read in CI vector and store in arrayVC.
3. Compute ' block structure for g; the two-particle density-
matrix (D.M.)
A. Loop over blocks of G and zero out current block.
I. Loop over gfoups of D.M. elements where a group
contains all j, k and 2 elements from a fixed i.
a. Calculate loops involving D.M. elements from

‘group 1 and break down loops to obtain loop value d.



1. loop from 1 to the number of lower walks
(NLWK) . m = 1, NLWK

2. loop from 1 to the number of upper walks
(NUWK). n = 1, NUWK

3. calculate d

NLWK NUWK

d= ) ¥ C(INDX(IUWK+m)+n)
' m n

X C(INDX (IUWK+m)+n)
where C is the CI coefficient array, INDX is
the lexical to reverse lexical ordering array
and IUWK and JUWK are the primary upper walks
for the right and left sides of the loop.

b. d is multiplied by the appropriate coupling
coefficieﬁts and summed into the correct 9
element.

II. Write out finished block of D,ﬁ. elements to external
tape and zero in cbre elements. |

4. Write an end-of file marker to the D.M. output tape.

F. Coﬁstfuction of the Lagrangian Matrix.

Since the Lagrangian matrix is used both in determining the new
unitary transformation matrix and as an indicator of convergence (it
is symmetric upon convergence) it is necessary to generate it every

{iteration. The formula for this matrix is

. om m A | ’
X, =4 3, Gijkl[rj;k'q'] + ZZQiquhl:P_ (63)

ir . ) 3
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where m is the number of non-virtual orbitals. These sums do not
involve virtual type indices since density matrix elements involving

these orbitals are zero. Therefore,

X4 =0 , 3§ € virtual space . (64)

One also notices in equation (63) that the tw0veléctron iﬁtegrals
involve at most one index in the virtual space. This means that
integrals with two through four virtual indices are not needed in
the MCSCF calculation and, therefore, need not be computed in the
integral transformation'step. This can result in a considerable
savings and will be discussed in the next section. ’
Constructing X then is a nm4 process where n is the total
number of orbitals. In the extreme case of all orbitals béing
active, m=n, the calculatign becomes n5 in complexity. This is
equivalent in effort to roughly 25% of the integral transformation
time. So 1if our p:ogfam is to be efficient in the general case
then an efficient algorithm must be used to find X. The algorithm
we adopted begins by sorting both the MO integrals and the density
matrix elements and writing them to external storage. The integrals
and density matrix elements are sorted into triangles, one for each
i and j index, and each triangle holds all k and & indices. Elements
that are zero by symmetry are stored explicitly. After the sort is

complete the k& triangle of each is brought in and the following

contributions to X are found

X () = %:Gijkl[rj k2] . (65)
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After the sort it is only necessary to read through the external

storage tapes once to construct X.

We also take advantage of many of the symmetry properties of
§, g, and the integrals. Since our CI is restricted to non~degenerate
- point groups only symmetry of this sort will be comsidered. In such
cases if i and r belong to different symmetry species Xir = 0.
This is tested for by the program and if i and r are of different

symmetries the contribution to X, is not computed. Also since both

ir
the MO integrals and the‘density matrices must be tbtally symmetric
then the symmetry of 1 or r must.equal the cross=-product symmetry of
j» k and &. Elements that do not satisfy this condition are equal
to zero on the storage tapes, so in the program zero elements are
checkéd for. These twb procedures result in a considerable time
savings in cases where molecular symmetry is present and do not
appreciably slow down the program when none is present.

In determiﬁing the matrix E using method 1 or 2 only the

differences X are needed never either Xij or in alone.

137541
Therefore, if one knew in advance that a particular difference

Xij-x.i were zero it would not be necessary to compute either Xij.or

X This turns out to be the case whenever the energy is invariant

hES

to rotations between orbitals i and j. This happens when any two
orbitals are indistinguishable in the calculation such as when both
are doubly occupied or empty in all configurations within the MCSCF.

Therefore, core-core and virtual-virtual rotations are invariant

and the corresponding off-diagonal Lagrangian elements X :
: K - : core,core

and X need not be computed. Also for specialized

virtual,virtual
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configuration sets many of the active-active rotations are energy
invariant. In the case of the complete active space (CAS)SS-37 no
active-active X elements need be computed. TFor all single and double
excitations from a closed-shell reference all active-active rotations
between any pair of orbitals that are either both doubly_occupied or both
unoccupied in the reference are invariant. In the future minor

modifications will be made to the optimization program so that these

Lagrangiah elements will not be computed.

G. Avoidance of Computing the Complete Set of MO Integrals.

In the preceeding section it was seen that integrals involving
2, 3 or 4 indices in the virtual space are not needed in a first-order
MCSCF method. If the total number of orbitals is n then the number
of integrals in the complete set are proportional.to n4. If m is the
number of non-virtual orbitals the number of necessary integrals is
nmg. In many MCSCF calculations m is less than half the total n.
If m =~%-n then one finds that only 1/2 of the total integrals need
be calculated. This results in a substantial savings 1in space.
Computing only the necessary integrals also saves a considerable

amount of time. The transformation from the A.0. to the MO integrals

is usually broken up into 4 steps as follows

n
[iv,u0] =3 ¢, [Av;ua] (66)
A v
. n .
[133u0] =3 ¢, [1vsno] (67)
Vv

n .
[133ko] =3 c , [13;5u0] ' , (68)
M
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[13;k8] =20 C  [155ka] . (69)
o .

In the full integral transformation each.stép is proportional to n5
in effort. If, however, i, j and k are restricted to the set of non-
virtual indices then the amount of work necessary for each of the

4, m2n3, m3n2, and m3n2

four steps becomes proportional to mn
respectively. If m is much smaller than.n then the time to do the

first quarter transformation dominates the calculation.

35-37 30,51

In second~order MCSCF methods and in CI gradient programs
additional integrals are needed. In the former case 2 virtual
index integfals are used and in the latter_case 3 virtual index
integrals are required. These integrals can still be:computed in
é time proportional to mn4 so this is no major problem. In the near
future we hope to have an integral transformation program which
generates all integrals except the 4 virtual index case. This, however,
requires major rewriting of the pfogram. Recently a version of our
standard transformation program has been adapted so that all 1 and a
subset of the 2 and 3 index integrals are computed. This program is
proportional to mn4 in CPU time and but can't be used for second-order

MCSCF or CI gradient calculations since not all integrals have been

generated for these cases.

H. Construction and Use of the Hessian Matrix.

Up to this point all of the orbital optimization schemes presented
have been of the firsteorder type. That is they involved some expansion
of the unitary transformation matrix that was truncated to first order.

For systems in which the CI coefficients are loosely coupled to the
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orbital expansion coefficients one finds roughly linear convergence in
the MCSCF. One could expand the unitary matrix U to second order in

the antisymmetric matrix T as follows

g=}+'r+'£2/2" (70)

and solve the resulting equaﬁions for T. However, for most MCSCF
calculations this does little to improve cénvergence. This is because
usually the coupling of the CI and orbital coefficients is of the

same order or more important than the second order terms in the orbital
expansion equations. The second order changes in the CI coefficients
and the second order coupling terms can also be computed‘to yield
what is called a quadratic MCSCF. However, these additional terms
are extremely expensive both in storage space and in time necessary
to compute. There are, though, certain classes of MCSCF wavefunctions
in which the CI énd orbital coefficients are only slightly coupled.

| One class of these are complete active space (CAS) wavefunct:f.ons.:jsm37
The configuration sets for these wavefunctions include a full CI

amongst the active orbitals. TFor CAS systems then thére are no active-
active rotations as these are all invariant to the energy. This is

quite advantageous since rotations of this type usually couple

strongly with the orbital expansion coefficients.

Since (CASSCF's are well behaved and also predict reasqnable
properties for chemical systems we would like to be able to routinely
compute them. Though they can currently be calculated using the
methods 1 and 2 described earlier they tend to show nearly quadratic

convergence if the second-order equations for T are solved to yield U.



Expanding equation (16) using (70) and discarding terms higher than

order 2 gives

13 513
+2 [y Q..h . +2 [r3;k2]]
; ; 1j rj % 13k8
\ (71)
* ?izr[zs:'TisTsr (;Qijhrj +2 % ijkz[r‘]’ku)] :

+ 22 %:'Ti‘“j (‘é Gy jpeq [mmskL] + ZER'-Gika[mk;nl])]

E, + 2§[Tij€ij + (z;:TisTsj)eij]

+

2; [y il g pica[msRe] + 2D G kD]
J mn kL

(72)

The second equality makes use of the definition of the Lagrange
multipliers defined in equation (43). Differentiating (72) with

respec t to 'I‘ab and remembering thgt T 1 j=-T 1 one finds that

3E
57— = 2(€p76pa) * D TiaEppteyy) - 2 Tap(Eiateay)
ab 1>a 1>b

Z'r (e, s )+ZT (eaJ+eJa)

a>j b>j
+ 2 Z TiJ (Yabi_] baiJ ain baji) (73)
i>j '

with

57
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= Quybgs ¥ 2D Gyyplaiske] + 2.6, ., [aksil) . (74)
1L

Yabij

If the energy as a function of T is expanded in a Taylor's series about

the unperturbed energy to second order the result is

3E 1 2%k
E(T) = Ep + ) Ty Go7 b)o * 32, TapTea 5T o7 20 (75)
ab a8 ab ab’e
cd
or
E=E,+gT +-% THT , (76)

where g is the gradient and E is the Hessian matrik. If the derivative .

of (76) is taken

/3y -0=g+mHr . 77

Comparing (73) with the equation (77) above one notices that

32K
Hyjke T T[0Ty 2CY g 510510 Vi g Yy 101

+ 8 0CEnctery) — S50 Eppteyy)

- Gik(€j2+€2j).+ ij(eiz+€£i) . (79)

Finally the system of equations

(80)

HT =-g
~~ 2
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is solved for T and the unitary matrix U is formed via U= eg.
In order to solve the system of equations (76) the vector g
and>matrix H must be constructed. The gradient g is easily formed
‘once the Lagrange multipliers have been computed. The real problem
then is making the Hessian H. The ordering of the integral and
density matrix elements used to construct the Lagrangian matrik X
(see section IIF) is the same as neede& for building E 50 an
additional sort is not necessary. Curreﬁtly our existing MCSCF
program is nearly completed and we hope to have it operational by
October 1981. This Hessian matrix construction code is to be integral
driven, meaning that a bldck containing>all integrals with £i§ed
‘indices 1 and j and variable indices k and £ are brought into core
and every H contribution using these intéérals is computed. Once an
intégral block is in core the density matrix g is read sequentially |
block by block until all elements of g have been processed. Then the
next integral block is read in and so forth. If the integral list is
to be read only once enough core space must be ailocatedvso that the
Hessian matrix will fit entirely in core.? This is not as severe a
requirement as it would seem since only eiements of H between pairs
of non—redundént rotations need to be computed.37 in other words,
this means’that only terms involving two rotational pairs both having
non-zero gradients'need to be calculated. In a typical MCSCF this
results in a substantial reduction of the number 6f Hessians element
to be forﬁed and also reduces the amount of core storage necessary.
In the special case of a CAS configuration set the necessary Hessian

elements are very few in number since active-active, core-core, and
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virtual-virtual terms ih the gradient are zero.
Once H is found the system (80) must be solved. This can be

done directly by finding H-l and solving for T =—H‘-l g. However,

ﬁo find g-l requires all elements of the Hessian matrix, not just

the non-redundant terms. Also matrix inversion is an order N~ process
where N is the number of orbitals pairs. We instead use the iterative
procedure of Pople gE_gl;§4 Their scheme requires only the non-
redundant elements of H and is order Mz where M is the number of
non~redundant orbital pairs. Another advantage of the iterative
procedure is that the elements of H can be processed in any order

and the entire Hessian matrix need not be in core at any given time.
In our CI gradient system of programs we have previously employed
30,51,65

this procedure to solve quite large systems of equations.,

We have found the procedure to be very successful and to have adequate

convergence behavior.

I. A Proposed Extrapolation Procedure to Improve Convergence.

Before closing section II I want to discuss an ektrapolation
proéeduré that is currently being developed for the LDGUGA system.
The purpose of this is to speed up the rate of convergence by using
information from the previous iteration in the formation of the
new unitary transformation matrix g. Up to this point the only
variable parameter in our MCSCF method has been the overrotation
factor a. This arbitrary constant was chosen by the operator to

increase convergence with the resultant matrix U being defined as.

U= T | (81)
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in method 2 where T is the usual antisymmetrix matrix of orbital
rotations. What we would like to do is find a different factor for
each i1,j pair of orbitals such that i>j. If the antisymmetric

matrix of these parameters is defined as r then U can be written as

S . _ _ v
U = e~ where Tij rijTij. . (82)

What is now needed is a procedure to compute I,

The method we decided to implement is the following. After the
k™® MCSCF iteration the matrices U(k), r(k) and g(k) are written
to an external tape (g(k)is the current gradient matrix whose ij
elemeht.is defined as Xij(k)-xji(k))‘ At the start of each orbital
optimization step the new gradient, g(k+1), is generated. The storage
tape from the previous iteration is read in and g(k+1l) and g(k) are

compared. How the ij elements of the two matrices differ determines

‘the new multiplicative factor cij(k+l) such that

() = ¢, (HDr,, () . | | (83)

13 3 13

This is dome for all ij pairs (i j), r(k+l) is computed and the matrix
U(k+1) is constructed. This procedure is then repeated every iteration
until the MCSCF has converged. The problem'néw reduces to finding

f(i) and f(k)' Initially.we set rij(l) =g fqr all»ij pair (i>j).
Usually o is set to 1.0 unless prior information is known indicating
that another value should be used. At the end of the second iteration

the parameters c can be calculated. A relatively simple formula for

computing ¢ is as follows



giiﬁk)

®-g;, D | (84)

c, (k+l) =
ij 8i3
We also have adopted a few additional restrictions to keep the

orbital changes down to a reasonable size each iteration. First,

no element of r can ever Be greater than 10.0 or less than 0.10

and second

ri(kﬂ)
0.333 < | - | < 3.0 . o ‘ (85)

ij
If any element exceeds these bounds it is set equal to the maximum or
minimum value allowed.

While this procedure is not very complex it is, nonetheless,
expected to enhance convergence by a considerable amount. Extra-
polation, however, should only be used once one is reasonably sure of
being within the vicinity of the desired minimum. That is, there-are
usually several distinct minima in the MCSCF equations and if one is

not careful a method like this will tend to force convergence to the

wrong solution.

62
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ITI. An MCSCF Study of the Effect of Higher Excitations in the Water

Molecule | |

The second application of the LDGUGA MCSCF method was in performing
a series of computations on the water molecule;33"These resulté were
part of a test study of tﬁe effects of inclusion of higher than double
excitations in CI and MCSCF calculations. We chose to do this study
for a number,of reasons, the first having to do with the relative
importance of triple and quadruple excitations.

Traditionally, triple excitations were thought to cbntribute
little to the total correlation energy. In a CI using canonical
SCF orbitals double excitaﬁions alone account for at least 90% of the
correlation energy in closed-shell ground state systems éf 10 electrons
or 1ess66-68 and it has been numerically shown that single excitations
contribute very little to the corfelation energy (at most é few
percen;)69 This implies that triple, quadruple and higher ekéitations
are responsible for less than 10Z of fhe total correlation energy and
it is widely believed that the quadruple excitations account for most

70-73

of this remaining fraction. From many-body perturbation theory

arguﬁents it is generally assumed "that the dominant contributions
of quadruple and higher even excitations in an extended CI expansion

are to cancel the unlinked diagram errors of the double~excitations

CI".73

Unlinked diagram contributions are terms that are summed in at a

given level of perturbétion theory, but are cancelled in higher orders.

70,74

According to the Linked Cluster Theorem, _if the perturbation

expansion is summed to infinite order only "linked” terms are
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inéluded, the unlinked termsvsumming to zero. Since the relative
size of the unlinked cluster terms increases as the square of the
number pf electrons N2 while the linked terms are linear in N it is
apparent for large N that the unlinked élustex terms will dominate

in a truncated expansion if they are included. >?’>~83

Recent calculations by Wilson, et al.84-87

however, have
challenged these long held views. Their work suggests that the fourth
order linked triples contribution to the correlation energy is much
larger than had been previously believed. Originally they reported
that this contribution for the neon atom employing a sizeable basis

set of Slater type orbitals (STOs) was -0.009073 hartrees compared

to the fourth order linked quadruple result of 0.000405 hértrees.a4
This would make the iinked triples.more important by over a factor of
20. This triples term was later found to be in error with a corrected
value of --0.001134.85 Though this contribution is much smaller, it

is still muqh larger than anticipated. Around the same time period

Wilson also computed the fourth order linked triples energy for water using
a 39 STO basis set.86-87 Earlier Bartlett 35_31;75 calculated ghe

fourth order linked single, double and quadruple diagram contributions

for this system and if all four terms are summed tbgether thertotal

fourth order energy involving only linked terms is -0.0110 hartrees.
Bartlett also determined that the unlinked terms in the same order

add up to -0.0100 hartrees. Since single and double excitation CI's

are often corrected for unlinked cluster effects is it not then also

necessary to correct for the linked terms as well?
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One reason for choosing HZO as our test molecule is that we
needed a system with a reasonably large number of single and double
excitations in which the number of triple and quadruplevexcitations
would be small enough to be computationally feasible. As it turnms

out if a double-zeta basis set is employed both of these conditions

are met. In our CI studies of this 14 orbital system 17,678 configu-

rations afe generated if all fourfold or less excitations are
included. |

Another goal bf this research is to determing if the rel#tive
importance of classes of e#citations changes when different sets of
molecular orbitals are used. To fhe best of our knowledge little
work has been done in this area previously. We were priméfily
interested in the effects found in going from the SCF to the MCSCF
orbitals within a fixed configuration set. For example, as stated
earlier it was expected that for a straight CI employing SCF orbitals
triple excitations would have little importance, however, if MCSCF-
orbitals were used instead would this still be the case? .

Lastly the water molecule was selected because it appeared to
be well behaved in the MCSCF proceduré. For our‘largest MCSCF
calculation of 17,678 configurations it was essential that the
computation converge fairly>quickly since each iteration was quite
expensive. This pérticﬂlar MCSCF wavefunction at the time it was
calculated included over 100 times as many configurations as the
next largest published calculation (60 configurations).lg Though
unpublished calculations of several hundred configurations had been

performed this is still a very large increase in the size of the
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MCSCF problem.

Very few variational studies on the effects of triple and quadruple
excitations in molecules had been performed prior to this work. Of
the existing previous investigations a number were done by Shavitt

8-92

and co-workers. These studies were carried out of a number of

small molecules: BH3, H20, HZC=CH2 and BeHz. The BH3 investigation
was performed using a minimum basis set and found that the triple and
quadruple excitations contribute 0.8%7 and 1.9% of the full CI correla-
tion energy respectively.88 Next water was examined employing a STQ
double-zeta . basis set and the triples and quadruples were found ﬁb
recover 1.5% and 3.07% of fhe CIiincluding all excitations through
quadruple correlation energy.90 In this study, however, only the’
valence electrons were correlated so these percentages are only
approximate. What is really interesting is their results for water
are very basis set dependent. When they‘SWitched to a contracted
Gaussian type orbital (GTO) basis the corresponding values for the
triple and quadfuple excitations became O.SZ and 4.3%7. 1In a later
study, minimum basis ethylene was found to have a trigle excitation
contribution of 0.5% compared to a 6.7Z% figuré for the quadruples.
Lastly the triples and quadruples correlation energy contributions
have been estimated for double-zeta plus polarization BeH2 at 0.47%
and 2.4% respectively.91 These earlier studies then seem to suggest

that for small systems the triple excitations are any where from 10

to 50% of the importance of the quadruple excitationms.

A. Theoretical.

For our study of the water molecule we adopted a procedure
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similar to one used previously by Hosteny, Gilman, Dunniﬁg, Pipano
and Shavitt (HGDPS).90 In these calculations a contracted Gaussian
double-zeta basis set was employed as in the previous HGDPS study.
The precisé designation of this basis set is 0(9s5p/4s2p), H(4s/2p).93'—94
We felt that this basis set was adequate'for our purposes as we wished
to observe the trends in a series of CI and MCSCF calculations and

not predict quantitatively chemical properties such as the eéuilibrium
geometry. For the hydrogen atoms a scale factor of 1.2 was multiplied
to their Gaussian s function coefficiénts. The exact cartesian

geometry used was 0(0.0,0.0,-0.009000), H(+1.515263,0.0,-1.058898).

This geometry is very close to the single and double excitation CI
theoretical equilibrium geometry determined for double-zeta H,0. 1In
internal coordinates thisigeometry corresponds to an O-H bond distance
 of 0.976'2 and an H-0-H boﬁd angle of 110.6°.

The major difference between our study and that of HGDPS is that
in the present investigation all ten electrons were correlated whereas
in their earlier study only the eight valence electrons were
correlated. The freezing of the core electrons, thét is restricting
the core orbitals to be doubly occupied in al l configurations within a
CI calculation, generally has little effect on the pfedicted'chemical
behavior of the system invol'ved.95 However, the amount of correlation
energy obtainéd from thesé core excitations is generally a large
fraction of the total. The reason these excitations are usually
neglected is that the energy lowering due to the core-core and éore—
virtual type excitations is roughly constant with respect to conforma-
tional changes in the molecule or between low-lying energetic states.

Since unlinked cluster contributions to the energy increase as the
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number of correlated electrons goes up,
importance of higher excitations should increase if excitations are
allowed out of the core orbitals.

Initially a canonical SCF wavefunction was determined for the
1A1 ground state of water. Following this a éeries of CI computations
were performed to investigate the effects of inclusion of various
classes of excitations. The SCF and subsequent CI and MCSCF calcu-
lations were carried out in sz symmetry. Four different CI
calculations were performed using the SCF orbitals: the first
containing all single excitations (CIS), the second all single and
double excitations (CISD), the third all single, double and triple
excitations (CISDT) and the fourth all‘single, double, triple and
quadruple excitations (CISDTQ). The number of spin and spatially
adapted lA configurations of each of these sets is 20,.361, 3203

1
and 17678 respectively.

In additién to carrying out CIs employing the SCF orbitals for
these four configuration sets MCSCF calculations were also performed
in each of these spaces. The four computations will be labeled MCS,
MCSD, MCSDT and MCSDTQ respectively. Since excitations from all
occupied into all virtual type orbitals were i#ncluded, all orbitals
have a partial occupancy in the MCSCF sense. Therefore, instead of
the typical four rotation classes: core-active, virtual-active,
core~virtual and active-active, only the last class, active-active,
involves non-zero rotations. This fact was antiéipated to aid in
MCSCF convergence since each of these classes has a different

convergence behavior. For these water calculations convergence method
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2 was used for the majbrity of iterations with method 1 being
employed for the remainder. Additional discussion in convergence

can be found in sections IIB and IIC.

B. Water Energetic¢ Results.

Our energetic results for water are summarized in Table’IV. Also
included in this table is the full CI result of Saxe, Handy and
Schaefer (SHS)96’for H20. Their computation was done with the
identiéal basis set and at the same geometry employed here. The
full CI calculation was actually carried out about six monthsvafter
the completion of the present study. Therefore, at the time of our
calculation the "true" correlation energy was not known.

For the 1A1 ground state of water an SéF energy of -76.009838
hartrees was found. Comparing thié result to the 256,473 configuration
coﬁplete CI of SHS omne noteé that the actual correlation energy for
a doubie—zeta basis set at this geometry is -0.148028 hartrees which
corresponds to a total energy of -76.157866 hartrees. The largest
straight CI we performed waé CISDTQ. For this 17,678 configuration
CI a total energy of -76.157626 hartrees was obtained. 1In tﬁe SDTQ
case 0.147765 hartrees of correlation energy was recovered or 99.8%
of the true correlation energy. Tﬁis result supports the view long
held by qﬁantum chemists that.excitations higher than‘the quadruple
.level are unimportant for the size systems we are dealing with466—68
Indeed in the present ekample higher than quadruple excitations
account for less than 0.27% of the correlation energy.

What percentage of the correlation energy is recovered in the

standard CISD calculation? It turns out that 94.7Z of this energy
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is obtained. If this result is subtracted from the 99.8% value for
CISDTQ one finds that together the triﬁle and qﬁadruple excitations
account f§r only 5.137% of the trﬁe.correlation energy. The total
energy of CISDT is only slightly lower than the CiSD resﬁlt (976.151156
compared to -76.150015 hartrees). This implies that in the CISDT
calculation the addition of the triple excitations .only recovers 0.77%
of the full CI correlation energy. This finding agrees with earlier

‘ ' 8-92

work done by Shavitt and co¥workers,8 who found the addition of

triple excitations to have only a small effect on the total energy.
If the CISDTQ and CISDT energies are_sﬁbtracfed it was found that the
inclusion of the quadruplé excitations lowers the energy by 0.006470
hartrees which is 4.4%7 of the real correlation energy.

Since the CIS energy is equal to the SCF energy due to Brillouin's
theorem97 the CI containing only all double excitations of SHS is
compared to our CISD calculation to estimate the effect of including
single excitations in CIs containing'at<leést all single and double
excitations. Subtracting the two energies yields a difference of
0.000837 hartrees or 0.57% of the correlation energy. However, the
total energy is not additive in the sense that, E(full CI) # ESCF +
AE(CIS) + AE(TID) + ... . The effects of singles in CISD was found
to be 0.57%, but in CIS it -is 0.00% of fhe correlation energya' Since
it had been suggested that triple excitations were more important
than‘previously bel:i.evedsl'-"87 (see Section III) might not then the
triple excitations be correspondingly more important in CISDTQ than
in CISDT. In the last paragraph the energy difference bétween the

two CIs had been entirely attributed to the addition of the quad-

ruple excitations, however, some of this lowering could be due to an
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increased importance of the triple excitations through their inter-
action with the quadruples. To see if this is so the single excitation
lowering energy of 0.000837 hartrees is added to the CI containing all
double plus quadruple excitations (CIDQ) result of SHS and this sum
is compared to the total energy of CISDTQ. This procedure furnishes
a value for the triples energy lowering of 0.001069 hartrees or
0.72% of the correlation energy. This value is nearly the same as
the previéus estimate of 0.77%. Therefore, unless the effect of
single excitations in "CISDQ" is much different from the valué found
for CISD it is safe to conclude that the triple excitation‘contribution
is indeed small, on the order of 17 of the true correlation energy.
Next the effects of changing from the SCF to the MCSCF orbitals
for our four CI expansiéns are examined. The greatest chénge in the
amount of correlation energy recovered is found in going from CIS
to MCS. As stated before the CIS energy is equal to the SCF energy
and has a value of -76.009838 hartrees. However, the MCS energy is
much lower than this at -76.083339 hartrees. This wavefunction
contains onlyv20 configurations but accounts for approximately half
the full CI correlation energy (49.7%Z). It was shown earlier that
single excitations in CISD and most likely in CIs containing
additional higher excitation classes as well are associated with

roughly 0.5%Z of the correlation energy. This impliés that ‘the

relative importance of a particular class of excitations ¢am be

drastically charnged by modifying the orbital basis. One way of

gauging the extent of the differences between two orbital basis

sets . is to compare their reference configuration energies.
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If the reference configuration is designated (1), then the reference

energy of (1) is given by H11 + E where H represents the

nucrep

: Hamiltonian and Enucrep is the nuclear repulsion energy. In the MCS
case the reference energy is -75.60935 hartrees, up 0.40049 hartrees
from the SCF energy. Since this is a very large energy change the
CIS and MCS orbitals must be_substahtially different.

What accounts for.this dramatic ehergy lowgring'in the MCS case?
This is easiestly explained if one invokes the "super CI" or
‘ Brillouin-Levy-ﬁerthier (BLB) outlook on the MCSCF problem.s’ls’ls’16
The BLB approach takes advantage of what is called the'ektended
Brillouin's theorem.5 This theorem proves that for a converged MCSCF
wave function the Hamiltonian matrix elements between the MCSCF wave-
function and the set of singly excited configuratiohs formed from
wMC arévidentically zero. Using this theorem an iterative MCSCF
procedure can be envisioned. First the Hamiltonian matrix within
the space of wMC and all singly excitea configurations is formed.
‘Then the secular equation is solved‘and the lowest eigenvector is
then used to calculate the changes in the orbitals, Next, the
integrals are retransformed and the process 1is reﬁeated.' At convergence
the top row and column of the super CI Hamiltonian is zefd except
for the diagohal element which is the MCSCF energy. What this implies
is that for a converged MCSCF solution all relative single e#citations
have been annihilated. Now lets ;eturn.to,the MCS case. The single
excitations from MCS are just double excitations with respect to .

the SCF reference. As was shown earlier double excitations from the

SCF account for roughly 94% of the correlation energy in CISD and,



74

‘therefore, annihilation of these configurations should lead to a
large energy lowering for MCS over CIS. As we discovered this was
indeed the case with MCS accounting for over half of the CISD
correlation energy. .

Moving on to the MCSD results a total energy of —76.150269A
hartrees is obtained. This result is only 0.0003 hartrees below
the corresponding CISD energy. This can be understood by employing
the same reasoning as used to explain the massive energy lowering
for MCS. In the BLB5’13’15’16 picture the MCSD wavefunction annihilates
certain classes of triple excitations, these being the corresponding
single excitations for this MCSCF. Since the triple excitations are
relatively unimportant in an energetic sense, we would expect little
differeﬁce between the energies of CISD and MCSD. Also interesting
to note is that while the difference between CISD and CISDT is
.001141 hartrees the splittiﬁg of CISD and MCSD is only 0.00254
hartrees. Therefore, in this instance annihilation of the triple .
excitations in MCSD recovered less than a quarter of the triples'
contribution to the energy of CISDT.

The triple excitations in MCSDT are, however, very important.

For this MCSCf a total energy of ~76.155765 hartrees was found or an.
energy lowering relative to CISD of 0.005750 hartrees. This
difference is over 5 times as large as the corresponding lowering of
CISDT relative to the single and doubles CI. The extended Brillouin's
theorem5 can again be invoked to ekplain this result. In the CISDT

case the triple excitations were found to be rather unimportant,

however, in the MCSDT the annihilation of the corresponding quadruple
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excitations increased the importance of the triple excitations
drastically. This is due to thé fact that in the CIs performed
using SCF orbitals the quadruplés‘were second only to the double
e#citations.in energetic importance. 98.67% of the full CI correlation
energy was obtained for MCSDT (coﬁpared to 95.5,for CISDT) or over
70%lof the remaining correlation energy beyond the single énd double
excitation CI. |

For MCSDTQ we would expect very little energy lowering for two
reasons. One that quadruple excitations are expected to be unimportant
~and their annihilation would recover little additional corrglation
~ energy and two, that CISDTQ has already éccounted for over 99.8% of
the correlation energy leéving very little left to include. As
anticipated MCSDIQ was only marginly lower in.energy than.CISDTQ,
recovering only'ZTZof the remaining correlation energy. Therefore in
the straight CI and in the MCSCF calculations the relative importance
of triple and quadruple excitations was switched. In the case of the
SCF orbital CIs, quadruple e#citations accounted for 4.4% of the
correlation energy while the.triple excitations only netted 0.8%.
The order is inverted in the MCSCF calculation with the triple
excitations worth 3.77 versus the quadruple excitations garnering
1.3% of the correlation energy. This result shows that the level
of importance of a gi?en class‘of excitafions is not an absolute,

but is dependent of the choice of orbital basis.

C. Comparison with Perturbation Theory Results.

In this section the current results are comapred with the

. _ 8
perturbation theory predictions of Bart]_.e.tt9 and of Wilson and
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Guest.99 Their calculations were all performed using the Moller-
Plesset variant of many-body perturbation theory (MBPT)100 and
were carried out using the same double~zeta basis set and molecular
geometry specified in section IITA. Their results are summaried in
Table V.

Summing the second and third order energies together with the
SCF energy yields -76.150707 hartrees which is very close to the
CISD result of =76.150015 hartrees. A calculation of this type is
abbreviated MP3. In general one wouid expect to find the single and
double excitation CI energy to be only sligﬁtly more reliable than
the sum of the perturbation energies through third order. In fact
there exist CI schemes in which the sum to third order using Moller-
Plesset partitioning is obtained on the first iteration of the CI
procedure.lOlk With reference to CISD, the missing ingredients in
MP3 are the effects of single excitations (which do not enter until
the fourth order) and relaxation of the reference configuration
with the remainder of the configuration set.

Adding the fourth order single, double and quadruple ekcitation
~ contributions to MP3 yields wﬁat is called SDQ-MBPT(4) by Bartlett,
In the case of water the energy obtained for SDQ—MBPT(A) is §76,155513
hartrees and this calculation recovers -0.145675 hartrees of correlation
energy. Computing this energy is proportional in time to finding
the CISD solution, that is they are botth6 proéesses with respect

100,102

to the number of basis functioms. However, the SDQ-MBPT(4)

result comes much closer to the exact energy recovering 98.47% of

the correlation energy and 70.0% of the energy attainable beyond CISD.
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What is missing now from the fourth order energy is the triples
diagram contribution. Calculating this term, however, is inherently
more difficult than performing a singles and doubles CI and requires
an 07 brocess with respect to the number of basis functions.100
Wilson and Guest found this term to be equal to «0.001364 hartrees
- and when summed into the SDQ-MBPT(4) result yields ~-0.147039 hartrees
~of correlation energy.. A calculation of this sort is labeled

SDTQ-MBPT(4) and should include the majority of the triple and

quadruple excitation gffecté found in CISDTQ. fhis is indeed the

case with SDTQ-MBPT(4) obtaining 99.5% of the CISDTQ ana 99.3% of the
full CI correlation energy.

Also‘performed by Bartlett was a cﬁupled cluster calculationlo0
which is very simiiar to an MBPT computation except that now certain
diagrams are summed to infinite order. The calculation that was(
carried out is called coupled cluster doubles (CCD) and in it double
andidisconnected quadruple excitation diagrams are summed to all orders.
The straight CCD result is -76.155273 hartrees and recovers 67.0Z
of the additional correlation energy past CISD. What is neglected
from this calculation is the effect of single and triple'excitations.
Adding the fourth order singles and triples contribution to CCD yields
-76.157545 hartrees or a correlation energy of -0.147707 hartrees.

This is the most extensive perturbation theory calculation done
on this particular system and obtains 99.87 of the correlation energy.-
All three calculations SDQ-MBPT(4), SDTQ—MﬁPT(4) and CCD plus

the fourth order single and triple contributions are much less

expensive to compute than CISDTQ, but recover almost all of the



80

additionai correlation energy beyond CISD. This would seem to suggest
that these pertubation theory approaches are the way to go if additional
correlation energy is required past the CISD level. Thqﬁgh this
appears to be the case for water theré are many problems associated
with MBPT which would tend to diminish the usefulness of these
procedures in general. First, Moller-Plesset fartitioning is not
well-defined for open-shell systems unless @0'15 found using the
unrestricted Hartree-Fock (UHF) formalism.103 The problem with UHF

is that it's solutions are not generally eigenfunctions of S .
Secondly,'if the molecule is not well described by a single configur-

rétion, MBPT expansions about the dominate reference often converge

very poorly.

In closing this section a series of Ak and B 104-107 calculations

|3

performed on HZO using the same basis set and geometry are presented
and compared to our CI and MCSCF results. These computations are
unpublished work done by Laidig and Schaefer and are summarized in
Table VI. For readers who are unfamiliar with the Ak and Bk
procedures, their theory is presented in Appendix I.

The 5asic idea behind this series of calculations was to correctly
include the effects of single and double excitation configurations
| while using the Ak or Bk perturbation procedure to estimate the
triples and quadruples contribution to the correlation energy. If
the perturbation procedures are carried out to infinite order the
CISDIQ energy of -76.157626 hartrees will be obtained, so all energy
comparisons are relative to CISDTQ and not the full CI result, In '

both the Ak and B, calculations the primary configuration space P

k
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was chosen as the set of the reference plus all its single and double
excitations and will be designated SD, The secondary space Q was
composed of the set of all triple and quadruple excitations henceforth
called TQ. 1In the Ak procedure the P space Hamiltonian is diagonaiized
to yield wo and Epstein-Nesbet perturbation t:heorylos-109 is applied
to this wavefunction. If this expansion is truncated after the second
or third ordersllo the subsequent calculations will be labeled Ak or
Ak3 respectively. Analogously EAk and EAk are defined as the ézcond
and third order energies. In the %econd oraer Bk method (Bk ) the
off-diagonal Q-Q block of the Hamiltonian is set to zero andzthe
matrix is diagonalized. EBk is found by subtracting the P space CI
energy from the energy assoc%ated with the modified P + Q Hamiltonian.

Bk calculations can also be carried out if desired and EB is found
3 k

using equation (95) found in Appendix I. The time required3to

perform an Ak2 or Bk2 caiculation is much less than in the corresponding
CISDTQ case as the vast majority of the Hamiltonian elements are

never computed. If the calculations are extended to the third order,
however, all elements of the H matrix must be determined. It is
nevertheless a simpler procedure than thé CI since the Hamiltonian
elements are only used once as compared to once per diagonalization
iteration in the CI.

For water the Ak2 procedure yielded a total energy of ~76.158226
hartrees which corresponds to a correlation energy of 0.148388 hartrees.
This is 100.4% of the CISDTQ correlation energy and 107.97% of the
triples and quadruples contribution. Using the Bk method a somewhat

2
lower energy of -76.158871 hartrees was found and the resulting
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correlation energyvis -0.149033 hartrees. The Bk energy is lower than
. . )

the Ak value by around 600 microhartrees. This is expected because

2
relaxation of the P by the Q space is allowed in the Bk » but not the
2

Ak2 procedures. The fact that both the Akz and Bkz energies were below
the full CI result was not anticipated, however, This is most likely
due to the oscillatory nature of Epstein-Nesbet ?ertutbation theory.73
In most cases E3 is positive an& a éubstantial fraction of the size of
E2 in magnitudé. Since wCISD is a very complete zeroth orde; wave
function it is reasonable that E, overshoots and E3 corrects back
toward the CISDTQ energy.

Moving on to the third order results_,.EAk and EBk are indeed
positive with values of 0.001436 and 0.001746'hgrtrees rgspectively.'
Since EAk and EBk are —0.0082l1 and -0.008856 hartrees, this makes
the third“order energies between a factor of 5 and 6 smaller than the
corrgéﬁonding second order results. In terms of total energies Ak3
 yields -76.156789 hartrees while Bk3 is slightly less at e76q1§7125.
This means the Ak3 procedure reéovers 99.4% of the CISDTQ correlation
energy and that Bk3 net 99.7Z. These results are impressive since
they obtain almost all the correlation. energy of CISDTQ and are
substantially simpler to obtain. To get comparable accuracy in MBPT

all fourth order perturbation terms must be computed.

D. Waﬁefunction Analysis.

In this section the various wavefunctions for water will be
consideredf The principle CI coefficient C1 for our eight CI and
MCSCF caléuiations and for the full CI of SéS are listed in the

last column of Table IV. 1In all cases this configuration is the
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reference configuration

In addition the ten largest CI coefficients and their corresponding
configurations-are displayed in Table VII. There is no tab;e for
the ordinary CI results, as wavefunctions of this sort have been
examined previously in the literaturelll and we found no peculiar
features warranting additional attention.

For the three calculations using the SCF orbitals, CISD, CISDT,
and CISDTQ, the corresponding values of ¢, are 0.97874, 0.97819
and 0.97542. All three of these coefficients are typical of previously
reported values for the lAl ground state of water.111 Also the
fact that ¢y drops in magnitude with the addition of each new class
of excitations is to be expected since if the off-diagonal Hamiltonian
elements connecting the new class to the previous ones are small as
expected, the coefficients for this new‘class will also be small.
This will tend to decrease the importance of all the principle
configurations by a constant factor. Continuing in this trend is the
primary coefficient for the full CI of SHS with a value of 0.97528
which is very close to the CISDTQ aresult. Moving on to the MCSCFs
~ the values for MCSD and MCSDTQ are 0.9773 and 0.9630 respectively.
Each of these.values is slightly less than the analogous straight CI
result. This is reasonable since one usually expects the value of
the principle coefficient to decrease in MCSCF versus ordinary CI
calculations with the same configuration list. The reason behind this

is that the SCF orbitals used in the standard CI particularly favor
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the reference configuration due to the nature of the SCF procedure.
Also thé MCSDTQ c, is smaller than the MCSD value as expected.

In the MCS and MCSDT cases one notices for the first time a
qualitative change in the form of the wavefunctionm., Iﬁ both of these
calculations the value of the‘mostlimportant coefficient is much
smaller than in the previous exampléé, namely 0.89326 for MCS and
10.90537 for MCSDT. Since using the SCF orbitals in a CI involving
only single excitations leads to zero corfelation energy one would
expect the orbitals to change dramatica;ly in the MCS. The low
- value of cy fdr MCS suggests thaf the orbitals did indeed change and
the large amount of cofrelation energy obtained for this wavefunction
implies that the reference-single excitation Hamiltonian matrix
elements were relatively big. The situation for MCSDT is'very siﬁilar
to‘MCS. This can be seen both in comparing their principle
coefficients and also in examining their orbitals. The final MCSDT
orbitals were much more like the MCS than the MCSD orbitals and would
have made a much better set of starting eorbitals in the MCSCF calculation.

The fact that c, is slightly larger in MCSDT than in MCS is due to

1
. the presence of double excitations which tend to favor a greater value

for the referénce coeffiqieht.

Next lets examine the ten most important configurations for the
four MCSCF calculations. Since the wavefunction for MCSD most closely
resembles its_corresponding CI its coefficients will be examined first.
As expected the majority of the most important coﬁfigurﬁtions are
double e#citatiOns namely 8 of the first 10 largest coefficients.

Besides the reference the list also contain one single excitation,
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1b1+2b1, as the eighth most important configuration. However, the

double exci;ation between these same orbitals, lbi*Zbg is’second only
to the reference in importance and, therefore, one would expect the
corresponding single excitation to be relatively important also.
Comparing the HCSDTQ wavefunction to that of MCSD we note that
9 out of the 10 most important configurations are on both lists.
This implieé that qualitatively the two wavefunctions are very
similar. Furthermore, the majér configurations for these two MCSCF
wavefunctions are nearly identical with their corresponding straight
CI results. The most noticeable difference between MCSD and MCSDTQ
'is in the relative importance of the lbl+251 excitation. In MCSDTQ
the configuration is now the second in importance, while the double
excitation, lbi+2bi has moved down to the fourth position. This is
the opposite of the MCSD ordering. We have no explanation for this
result ekcept to note that the lbl*Zbl excitation is the most important
~ excitation in MCS.
Turning now tp_the MCS and MCSDT wavefunctions. one notices that
the nine e#citations, No. 2-No. 10, are ali single excitatioms.
Singe we only included single excitations inm MCS this is trivially
obvious, Sut why is this the case in MCSDT which contains double
and triple excitations aé well, .One possible explanation. for this

5 ,13,15,16 In

can best be examined bybreve:ting to the BLB picture,
- this framework the triple excitations at convergence have annihilated
the quadruple excitations. If the final orbitals are similar to the

MCS orbitals then the reference and its single excitations are strongly

coupled. Since triple excitations are double excitations from the
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class of singly excited configurations than the corresponding
Hamiltonian matrix element between a given single and triple excitation
is expected to be relatively large. In diagonalizing the H matrix this
allows the triples to indirectly couple rather strongly to the reference
configuration.

Up to now we have been stressing the differences between the
various orbitals used and between the values of the configuration
coefficients. However, it should be noted that the overlaps between
the total wavefunctions for any of these CI or MCSCF calculations-is
very high, at least 99% and their AO density matrices are very similar.
In the cases where the principle coefficient was much smaller than the
typical value of 0.97 (MCS and MCSDT) the orbitals also varied a lot.
Since all of these wavefunctions are very complete from a total
energy viewpoint (our worst correlated calculation MCS recovered
99.9% of the total energy) the orbital and configuration coefficient

changes must be coupled in a cancelling manner.

E. Conclusions for Water.

The most interesting result obtained from the series 6f MCSCF
and CI calculations performed on water was that the relative importance
of classes of excitations depend largely on the orbital chéice. The
most dramatic example we found was for the CI involving all single,
doublé and triple excitations. In the CI employing SCF orbitals the
double excitations were the most important class. However, using the
MCSCF orbitals the single excitations became the most important. In
CISDT the triple excitations accounted for only 0.8%7 of the correlation

energy, but in MCSDT 3.7% of this energy was recovered. Therefore, in
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the latter orbital basis the triple excitations were more important
by nearly a factor of five.
| It was also found that the small MCS calculation recovered
almost 50% of the true correlation energy. This calculation with a
total of 20 configurations obtained 49.7% of the correlation energy
of the 256,473 configuration full CI. It would seem then for molecules
MCS éalculations would be a relatively inexpensive way to get a
significant fraction of the correlation energy. |

Lastly it was discovered, at least in these calculations, tﬁat
triple excitations in CIs using canonical SCF orbitals were much
less important than Wilson had initially claimed. As expected the
quadruple excitations turned out to be the dominant excitations
beyond doubles and as a class recover over 6.5 times as much energy
as the triple excitations. This conclusion agrees well with past

higher excitation CI studies of Shavitt and co-workers.
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IV. An MCSCF Study on the Ground State of Ozone

In our second MCSCF study we chose to investigate the 1A‘I.ground
state of the ozone molecule.34 In éontrast to water, ozone is not
correctly described using simple single—cqnfiguration SCF‘theory;v
In fact it was found in an earlier study that a triplet state of 03
was predicted to be below the lowest ;Al state by 2 eV at the SCF
le‘vel.112 Therefore, to attain qualitative accuracy additional
configurations must be included in the theoretical framework. The
simplest such treatment is the two-configuration SCF (TCSCF)
procedure in which both the orbitals and the CI coefficients are
variationally optimized. In this paper a number of different results
are presented from calculations performed beyond the SCF level. These
include the TCSCF and a series of larger MCSCF and CI results.

A feature we wish to explore is the extent of biradical character
present in the ground state of 03. In the mid 70's Goddard and
co—workers112’113 discovered that this state of ozone could be well
represented as a biradical, that is, it could be described as a system
containing two singly occupied 7 orbitals that do not interact. They‘
found that if the highest ™ orbital is represented by a GVB pair the
resultant non-orthogonal orbitals are centered on each of thelterminal

oxygen atoms. Furthermore, these two singly occupied orbitals have
a very small overlap (S = 0.28) and are, thereforg, only weakly
interacting. The éorresponding wavefunction coﬁposed of these two
non-orthogonal orbitals can be transformed to an equivalent TCSCF

wavefunction involving only orthogonal orbitals. Using these

orthogonal orbitals the two configurations in the TCSCF are
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L. 2.2 .2 2,2 2
(bl = Sa1 3b2 lbl 6a1 4b2 la2 reference 1
2.2 ..2.2,2 2
<I>2 = Sal 3b2 lbl 6a1 4b.2 2bl ~ reference 2 .

Due to the small overlap between the two localized orbitals it is

expected that &, alone is a poor description of the exact ozone wave-

1
function and that the coefficient of @2 in a TCSCF procedure will be
relatively large. This is indeed the case in our present TCSCF
calculation in which ¢, = 0.876 and c, = -0.481.

Another reason for chosing.tﬁe ozone moleéule is that it should
present more of a challenge computationally than water. Since all
orbitals were active'in the water MCSCFs the calculations tended to
display well behaved convergence. In at least one of the ozone MCSCF
calculations, however, the orbitals belong to all three categories:
~ core, active and virtual. In general calculations involving core

and virtual orbitals are more difficult to converge. See sections

IIB and IIC for more details and examples of ‘the rates of convergence.

A. Theoretical.

| For ozone as in.the case of water we employed the standard-
contracted Gaussian double-zeta basis set of Dunning and Huzin_aga.93’94
This basis set was considered adequate since our study was mainly
qualitative and we were primarily interested in the varying amounts
of correlation energy obtained using different CI expansions and
orbital sets. The geometry was fixed at 6(000) = 116.8° and r(0-0) =

o
1.271 A. This corresponds to a precise cartesian geometry of (0.0,

0.0,0.0) for the central oxygen and (0,%2.0457412,1.2585484) for the
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two terminal atoms. This particular-choice for the geometry is very
(-]

close to the experimental geometryll4 of rO(O-O) = 1,278 A and

90(000) = 116.8°. The SCF and subsequent CI and MCSCF calculations

were carried out in C2V symmetry.

As stated before from previous studiesll:i'll4 it was found that

the lA1 ground state of ozone has two dominant configuration (1) and
(2). The standard procedure for a system like this would be to first
carry out a two-configuration SCF(TCSCF) calculation. This wavefunction
should be of at least qualitative accﬁracy'in the region of the 03
pofential energy surface near the equilibrium geometry. If a more
quantitative result were desiredvthe TCSCF orbitals could be used in
a CI calculation containing all single and double excitations from both
of the two important reference configurations. In this study we
intend to see if the procedure outlined above is in fact the most
economical method for obtaining the most correlatign energy. That
is is there another CI expansion and/or orbital basis set choice of
at least the same quantitative accurach which is cheaper from a
computational viewpoint.

One can envision an alternate procedure to thg standard one
presented above in which an MCSCF calculation involving all single
and double excitations from just the most important reference is
performed. First notice that reference (2) is included in this
configuration set as it is the 1ai+2bi double excitation from
reference (l). Also a large percentage of single and a small

percentage of double excitations from (2) are included, Since this

is an MCSCF procedure both the orbital and configuration coefficients
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are variationally optimized to minimize the total energy. Thus it
is.possibie that réference (2) could end up with a large CI coefficient
analogous to the TCSCF case if this leads to the lowest energy.

The major dfawback to the one reference single and double
excitation MCSCF is that most of the single and double excitations
from (2) are missing from the configuration set. We reasoned that
if the number of configurations were large enough and the orbitals
and CI;cqefficients were given complete freedom to adjust these
additional configurations may not be necessary. The question we
set out to answer ;hen was, "can a deficiency in the wavefﬁnction,
i.e., the omission of certain single and double excitations, be overé
caﬁe by allowing the wavefunction additional flexiBility?" In this
case the édditional flexibility would be in the complete optimization
of the molecular orbitals.

Three additional calculations were also performed. The first of
these ﬁas a standard single élus double excitation CI from (1) using
the straight SCF orbitals. This calculation was needed to give us
some idea of how much ektra correlation energy is obtained if an MCSCF
procedure.is carried out in this:same configuration space. The |
second calculation was a CI containing all single and double excitations
from both references (1) and (2) using the one~configuration SCF
(OCSCF) orbitals. This was performed to determine if the ICSCF orbitals
were ﬁecessary or if the OCSCF orbitals are adequate. Léstly, an
MCSCF in the full two reference single plus double excitation
configuration space was computed. The energy associated with this

wavefunction is a lower bond with respect to the other calculations
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done in our study on ozone and will be treated as a benchmark with

which to compare the other wavefunctions.

B. Ozomne EnérggtiC'Results.

We begin this section by first comparing the OCSCF results to
the analogous TCSCF calculation (all energetic results are collected
in Table VIII). At the chosen geometry.using a double~zeta basis set
and an energy of -224.3104 hartrees is found for the TCSCF case,

This very large energy lowering along with the TCSCF coefficients
for the references (1) and (2) (cl = 0.876, c, = -0.481) confirm that
the OCSCF description is quite poor and that the TCSCF gives a much
more qualitatively accurate picture of the lAl ground state of ozone.
The fact that the TCSCF wavefunction is far superior to the OCSCF
wavefunction came as no surprise since it is a consequence of the
biradical nature of 03 established earlier by Dunning; Hay and

Goddard;112’113

A sihgle and double excitation CI from reference (1) was next
carried out using the standard SCF orbitals. This CI contained a
total of 6825 configurations and for brevity's sake will be laheled
CI6825. Examining the list of important configurations for this
calculation one discovers that ¢, = 0.933 and ey = -0.149, Thg:ne#t
largest coefficient is for the configuration ¢3 = e Sai 3b§ 6ai
4b§ lag Zbi with a coefficient of -0.065. Since this value is much
smaller than c, we felt justified in only carrying out a TCSCF as
opposed to a three-~ or four-configuration SCF calculation to obtain

a qualitatively accurate wavefunction. 1In the CI6825 case the ¢,

.coefficient while still large is much smaller than in the correspoﬁding
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TCSCF cése. This suggests that the CI6825 wavefunction contains
little of the biradical character inherent in the ozone molecule

and may be qualitatively lacking in this regard. Examining thé

energy of CI6825, however, one nétices a nearly four~fold increase

in the amount of correlationm energy-recovefed comﬁared to the earlier
TCSCF result. In an absolute energetic sense then the 6825 configura-
tion CI is far superior to the two-configuration SCF.

Optimizing the orbital coefficients in the CI6825 leads to an
MCSCF in the same single and double e#citation space. This computation
‘will be abbreviated as MC6825. Performing this calcuiation leads to
" an energ; lowering of 0.0016 hartrees compared to the CI using OCSCF
orbitals, or a total energy of -224.6155 hartrees. The energy
differen;é for the analogous water calculations (the difference
between the CISD and MCSD energies) is 0.0003 hartrees or roughly
6.5 times less than in ozone. If this difference is converted into
the fraction of the total energy in both cases, one finds the effect
of using MCSCF instead of the OCSCF orbitals is still more important

in 0 ‘than in HZQ namely by a factor of around 7.2 This energy lowering

3
is much less than we expected for 03, hoﬁever, in li‘gh,t‘of‘ the arguments
presented in the preceeding section.f The coefficient of reference (2)
is only -0.162 in the MC6825 case, only slightly larger than the

CI6825 value of -0.149. As in the case of the CI, the MC wavefunction
badly underestimates the birgdicél cﬁaracter of ozone, and thus is |
not acceptable for studying the lAl poténtial energy surface near the
minimum. |

For the single and double excitation CI from both important
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reference configurations (1) and (2) using the TCSCF orbitals a total
energy of -224.64765 hartrees was determined. This configuration set
is the largest used in this study and is composed of 13,413 individual
configurations. When the OCSCF orbitals are employed instead, the
energy is found to be higher by 0.0075Ihartrees leading to a total
energy of -224.640183 hartrees. To avoid confusion the CI using
TCSCF orbitals will be called TC13413 and the equivalent calculation
employing OCSCF orbitals, 0Cl3413. In both of these calculations the
magnitude of the coefficient of (2) was substantially larger than in
‘the one reference CIs, CI6825 and MC6825. In the case of 0C13413 C,
is ~0.2957, over twice as large as the CI6825‘vélue of ~0,1493, and
in TC13413 the céefficient is still greater at ~0.3553. It is
obvious then thaé the single and double excitations that are missing
from the 6825 configuration results are necessary for a qualitatively
accurate description of ozone, and that just pptimizing the orbitals
for this smaller CI expansion will not overcome this deficiency.

As it turns out the MC6825 calculation only recovered 6.0% of the
difference betweén the OC13413 and CI6825 energies and 4,6% of the
TC13413-CI6825 eﬁergy splitting.

An MCSCF calculation within the full 13413 configuration set was
also performed.yielding a total energy of «224,649326 hartrees giving
us our lowest variational result. This result is 0.0091 hartrees
below the OC13413 energy, but is only 0,0017 hartrees below the
TC13413 value. This is very interesting in that it illustrates that
while either choice of OCSCF or TCSCF orbitals gives a qualitatively

accurate description of ozone, the TCSCF orbitals are much superior
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froﬁ an energetic standpoint. Also vefy little is gained in fully
optimizing the complete 13413 configuration list as'just optimizing
the important references (1) and (2) yields 81.6% of the recoverable
energy. It appears that from a cost effectiveness standpoint the

- TCSCF followed by a CI containing all single and double excitations
from the two optimized references is the most inexpensive way to get’
a quantitatively accurate wavefunction with the correct biradical
description for 03.

A slightly puzzling aspect of this research concerns the amoﬁnt
of energy lowering in going from CI6825 to MC6825 compared to the
analogous lowering between TCi3413 and MC13413. Since the.larger CI
is much more complete than the one reference single and double |
excitation CI, i.e., has nearly twice as many configurations, it was
expected that the energy recovered in gbing from the OCSCF to the
MCSCF oxrbitals would be less than for performing the same procedure
in the smaller CI, However, this was not the case. In the 6825
configuration CI 0.0016 hartrees were gained, while for the bigger
13,413 configuration set a value of 0.0017 hartrees was obtained.

At this time we have found no straight-forward explanation for this.

Returning to our best calculation, MC13413, the values for the
coefficients of (1) and (2) are found to be 0,887 and -0.337
respectively. Using this wavefunction we would like to be able to
predict the extent of pure biradical character in the lAl ground state
of ozone. In the case of an idealized pure biradical the coefficients
of the two important configurations would be equal except for a

phase factor of * 1 and all the other configuration coefficients would
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be zero. Therefore, if ozone were a perfect biradical one would
expect that cg = ¢, = 1/Y/2 . Hayes and Siulls about a decade ago
devised a simple formula for estimating the fraction of biradical

character B employing just the coefficient of the second most

important reference configuration,

c )
2 =2¢2 . | (86)

S e 2

Notice that if c, = 1//2 = 0.707 then B = 1. (The last column of
Tafle VIII lists the B values for our series of calculations).
Applying this procedure to MC13413 yields our best estimate for the
fraction of biradical character in 03 6f 0.227 or 22.77%. Cdmpéring
this best result to the MC6825 and CI6825 values of B = 0.052 and

B = 0.044 respectively one sees that these calculations seriously
underestimaté the amount of biradical character, On thé opposite
extreme the TCSCF over estimates the biradical nature of ozone by
about 1007 with a correspoﬂding B value of 0.464, The standard 13413
configuration CIs, however, agree quite well with our estimatefof
23%. Sincg any wavefunction for the ground state of ozone in which
the values of tﬁe coéfficients of (1) and (2) are known can be used
to determine B we can compare our best guess with estimates predicted
from the ﬁﬁblished coefficiepts of others. As an example, the:
calculated B value for the 1557 configuratibn CI wavefunction of Hay
and Dunningll6 has a value of .204 or 20.4%. One reason behind
choosing their calculation is that it was done using a larger

double-zeta plus polarization basis set. The largest deficiency
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of our study is that we omitted polarization functioné from our basis
set as the CI expansions became too large to handle. In many cases,
however, these higher angular momentum functions are necessary if
quantitative chemical properties such as the equilibrium geometr& are
desired. 1In this particular system though we believe that these
polarization effects are small with respect to thé determination of the
biradical character of 03 since the Hay and Dunningll6 result of 20.4%

agrees well with our best estimate of 22.7%.

C. Conclusiocns for Ozone.

In seétion IV a number of large MCQCF and CI calculations have
been presented. Our largest MCSCF wavefunction for ozone contained
13,413 configurations which is the second largest MCSCF calculation
reported to date (excluding full CIs). We discovered that the energy
of the 13,413 configuration MCSCF is only marginally lower than the
13,413 bonfiguration CI using TCSCF orbitals. Since the former calcula-
tion is much more expensive than the latter the inclusion of the 13000
plﬁs additional configurations in the orbital optimization procedgre was
found to be unnecessary. In contrast, though, the use of the TCSCF
instead of the OCSCF orbitals in this CI computation leads to an
energy lowering of 0.0075 hartrees which is over 4 times as much energy
as was gained in gding from TCSCF to MCSCF orbitals. Our recommendation
would thus be to first carry out a TCSCF and follow it with a CI
including all single and double excitations from both references.

It was also discovered that an MCSCF in.the one reference single
plus double e#citation space is very close in energy to the straight

CI result and only recovered between 4-6% of the energy splitting between
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the one and any of the two reference single and double excitation CIs.
In addition, the magnitude of c, was much closer to the CI6825 result
than any of the 13,413 configufation calculations. We therefore must
answer the question poséd earlier, "can a deficiency in the wavefunction
be overcome by allowing the wavefunétion additional’flekibility", with
a qualified no. That ié to say that, at least iﬁ the case of ground.
- state 03, omission of certain classes of cdnfigurations from the CI
expansion éannot be compensated for by allowing the orbitals to
change. | ‘

Lastly we predict a biradical character for ozone of appro#imately

23%. This comparesvfavorably with estimates made employing previously

116

published high quality wavefunctions. It was also found that both

the TCSCF and the one reference CI wavefunction predict substantially
different amounts of biradical character. It was expected that the
TCSCF overestimates by around 100%.  It will be interesting to see

if this same trend is found in other molecules with a sizeable

biradical nature such as the cyclopentadiyl systgm.ll7
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V. An Examination of the Lowest ZE" State of the Cyclopropenyl Radical
The ‘cyclopropenyl radical C3H3 has received much attention because
it is a simple example of a molecule that is expected to undergo a
Jahn-Teller distortion.lls-lzs If an electron is added to the lowest
unoccupied molecular orbital (LUMO) of the Dy, ground state of the -
- cyclopropenyl catiom it will enter a degenerate e" orbital to form the
~ lowest ZE" state of the radical. According to the Jahn-Teller Theorem126
a non-linear-molecule of E symmetry will spontaneously diétort in such
a way as to lift the degeneracy. In the case of the C3H3 radical this
distortion Will lower the symmetry to sz or possibly Cs or C2.125
If the true wavefunction withih the Born-Oppenheimer approximation were
known at the D3h and surrounding geoﬁetrigs it would be easy to find
out what the '"real" equilibrium structure looks like. However, when
this complete wavefunction is not known certain complications arise.
If a full CI within a given basis set could be computed at any D3h
geometry it would lead to a wavefunction having D3h symmetry whether the
calculation was foréed to be of this symmetry or not. However, for

caiculations done below the full CI level the wavefunction symmetry may

break (i.e., belong to a point group of lower symmetry) unless the

124,125

correct symmetry is forced by the program, Just such a situation

arises for the C3H3 radical.

In the case of the cyclopropenyl radical if SCF or truncated CI

or MCSCF calculations are performed at a D3h geometry the resulting

wavefunctions will be of only sz symmetry unless otherwise constrained.127

" .
The 2E state corresponds to a pair of states in the lower sz point

group: 2A2 and 2Bl, which should physically be degenerate in energy
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at the D,, geometry. However, if the calculations are carried out in

3h

C, symmetry the energies of the two states will be different. The

2v
purpose of this research is to study the effects of using different

CI expansions and orbital basis sets on the ZBl—ZA2 energy splitting.
What we would like to find is a reasonably inexpensive calculation

procedure that predicts a very small splitting.

A. Theoretical.

In our study of the cyclopropenyl radical we employed the standard
Dunning and Huzinaga contracted Gaussian double-zeta (DZ) basis set93’94
whose precise designation is C(9s6p/4s2p) and H(4s/2s). All calcula-
tions were performed at avsingle'D3h geometry with all C-C bond
distances fixed at 1.40 2 and all C-H bond lengths set ét 1.08 X.

The exact cartesian geometry used was (0.0,0.0,0.0), (0.0,11.322826,
-2.291202) for the three carbon atoms and (0.0,0.0,2.040932), (0.0,
i3.090321.n3311668) for the three hydrogen atoms. Since the geometry
was not optimized in this study and our primary purpose was to determine
the 2B1-2A2 energy splitting at this D3h geometry we deemed a DZ basis
set to be adequate. Also the gedmetry selected does not cérrespond

to the minimum on the D3h surface for this basis set, but was picked

because it is in the range of previous theoretical work.

H
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To determine how the 2Bi-zA2 splitting varies as the level of
theory is changed a series of calculations were carried out omn both

the lowest 2Bl and 2A2 states of C3H3. All of these calculations

were done in sz symmetry at the D3h geometry. Initially one reference-

SCF calculations were performed on these two states with the 2Bl and

2

) reference configurations being

2 2 2 4,2 . 2
@1( Bl) oo 5al 3b2 lb1 6a1 Zbl

0, (a) = ... 582 3b5 12 6l 1a, - .
Beyond the SCF level a number of CI and MCSCF calculations were
obtained. First a set of three single and double excitation CI
wavefunctions were computed for each stéte. In the largest, involving
11829 gnd 11800 configurations for the 2B1 and 2A2 states respectively,
all orbitals were allowed in the CI. In the second the 18 orbitals
with the highest orbital energies were forced to have zero occupancy
in the CI (in other words, one half of the orbitals of éach symmetry
type were frozen) reducing the number of configurations to 1069 for
either state. In the third CI the three lowest orbitals (in an
energetic sense) were also frozen resulting. in 549 configurations
in both the 2Bl and 2A2 cases. These three éalculations will be
abbreviated as CIALL, CIMIN and CI549. In this last CI the orbitals
are partitioned such that there are 18 of the virtual, 3 of the core
and 15 of the active varieties. This limits excitations to being

within the valence space. The concept of the valence space is easy
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to visualize-if one envisions the C-C and C-H bond lengths being
stretched to infinity. When this happens the set of 15 active
orbitals rednces to the 2s and 2p shells on the carbon atoms and the
1ls orbitals of thé hydrogens.

Besides these three CIs a number of additional calcuations were
performed within the valéncevépace.' The first of these is an MCSCF
computétion within the same 549 configuration spacé defined above and
is called MC549. To investigate the efféct of higher then double
excitations in this subspace on the 231—2A2 splitting, three
further calculations were carried out. The first was a straight CI
using SCF orbitals whose configuration set is composed of the reference
plus all single, double and triple excitations within the valence
space. TFollowing the standard CI an MCSCF calculation employing the
same configuration list was carried out to ascertain the effects of
qptimizing the orbitals. These two calculations will be labeled CISDT
and MCSDT. Lastly a single, double, triple and quadruple excitation
CI using the SCF orbitals was performed énd will be identified as
CISDIQ. Originally MCSCFs containing the reference plus valence

2

space single excitations were to be computed for the B1 and A2

states. However, extreme convergence difficulties were encountered

and these two calculations were abandoned.

B. Results and Discussion.

In Table IX the total energies for the calculations specified
in the preceeding section are presented. First, the SCF results are
examined. For the zAi state a total energy of -115.104667 hartrees

was obtained and for the corresponding 2B1 state a lower energy of
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-115.109144 hartrees was found. This leads to a splitting of 0.604477
hartrees or 2.81 kcal/mole. This diffefence is of the same.order as .
the minimum basis SCF results of Davidson and Bordenlz4 in which a
value of around 5 kcal/mole was reported. Poppinger, Radom and
Vincentl25 (PRV) also published SCF 2Bl-:ZA2 éplittings for both the
minimum and the split valence 4-31G basis sets for which they obtained
4.79 and 3.23 kcal/mole respectively.

Moving on to the straight CI results the energies of the 2Bl'and
25, states are found to be -115.389963 and -115,387954 hartrees
respectivelyrin the all orbital single and double eicitation CI approxi-
. mation. These calculations which involve nearly 12,000 configurations
reduce the splitting to 0.002009 hartrees or 1.26 kcal/mole. This
energy difference is less than half the SCF value. If the 18 highest
reference unoccupied orbitals are now frozen in the single and
doubles CI the corresponding 2B1 and 2A2 energies are -115.165587 and
-115.167098 hartrees. This leads to a splitting of -0.001512 hartrees
or -0.95 kcal/mole, where the minus sign indicaﬁes that the ordering
of the two states has changed. This state reversal 1s most likely
due to the choice of the frozen orbitals in the CI. If all the
reference unoccupied orbitals are kept in the CI the energy is
invariant to unitary transformations among this orbital subset.
However, if any of these orbitals are frozén the energy is no longer
invariant. From the SCF point of view, however, the unoccupied orbitals
are only'required to be orthogonal to the occupied space and amqngstA
themselves and are thus rather arbitrary. What probably happeped was

2 : .
that by chance the set of A2 unoccupied orbitals that were retained
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in the CI were energetigally more favorable than the correspondiﬁg
zBé orbitals. If in addition to the 18 virtual orbitals 3 core
orbitals are ffozen the single and doubles CI energieé are found
to be -115.165484 and ~115.166984 hartrees for the zBl and 2A2 states,
Here one notices that the ordering of the states is again reversed
with the splitting being -0.001510 hartrees or 40.94 Rcal/méle.
Proceeding onto the first of our MCSCF results the 2Bl—ZA2 energy
_gap is found to be +0.001336 hartrees for the valence space singles
and doubles MCSCF (MC549). This 0.84 kcal/mole difference is roughly
2/3 of the analogous CIALL splitting (1.26 kcal/mole), but the CI
contains only about 1/20 of the number of configurations. This
result is encouraging since MCSCF calculations of this variety can
be performed on nearlyball systems that can be handled using SCF theofy
alone. In terms of abéolute enefgies, -115.290106 and -115.288770
haftrees were obtained for the 2B1 and 2A2 states respectively. These
‘results are surprising in that these small 549 configurations MCSCF
calculations recovered around 65Z of the full CI singleé plus doubles
correlation‘energvahile the CIs using SCF orbitals in the same valence
space recovered aboﬁt 20%.. Qétimizing the orbitals then leads to
roughly 3 times as much correlation energy and the correct prediction
of the state ordering.

Three additional sets of calculations were carried out within the
valence space to test the effect of inclusion of higher than double
excitations. The first two of these employed a configuration set
cdnsisting of all valence single, double and triple excipations.

The total energies for the straight CISDT computations are;—115.166563
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and -115.168311 hartrees for the 2Bl and 2Al states respectively
which leads to a splitting of ~0.001748 hartrees or =1.10 kcal/
mole., The oxrdering of the two states is again inverted as in the
CIVIR and CI549 cases with the gap now‘l#rger by roughly 0.15
hartrees. This result is at first glance surprising siﬁce the CISDT
calculation is much more extensive than either of the CIVIR or CI549
calculations; On closer examination, however, since thé 2A2_state
is above the 2Bl state in the SCF approximation one would expect

that as the size of the CI increases so will the ratio of the 2A2

and 231 correlation energies.

The second type of calculation performed using the all valence
single, double and triple configuration set was MCSDT. Certain
difficulties arose in converging these two wavefunctions expecially
for the 2A2 state. Because of this the energetic results in Table IX
are only reported to 4 or 5 decimal places for the 2A2 and Bl states
respectively. These results are believed to be accurate to the
number of digits listed, however, additional work is being dome to
make absolutely certain. As in the case of MC549 the 231 is below
the 2A2 state and for MCSDT a splitting of 0.001l hartrees or around
0.70 kcal/mole is found. This difference is the smallest obtained
employing variational energies and at least 0.14 kcal/mole less than
the MC549 result.

We 1astly carried stréight CI calculations employing all valence
single, double, triple and quadruple excitations for both the two

states of cyclopropenyl radical. As in the other three CIs with

18 frozen SCF wvirtual ‘orbitals, CISDTQ predicts the 2A2 to be below
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the zBl state. This time an energy splitting of -0.002207 hartrees
or -1.38 kcal/mole is found. What the four calculations: CIVIR, CI549,
CISDT and CiSDTQ show us is that if the CI expansion is restricted to
the minimum basis or valence space it is necessary to optimize the
orbitals if the ZAZ-ZBl energy ordering is to be correctly predicted
even if a very large number of configurations are included.

In addition to the variational results if CIALL is cofrected
for the effects of unlinked clusters using the Davidson's correction
a splitting of only 0.55 kcal/mole is obtained. This result is less
than 1/2 of the straight CIALL difference and maintains the "correct"
ordering of the two states. This seems to suggest the validity of
employing this correction to all singles and doubles CI energies.

Before closing this section certain features of the CI and MCSCF

wave functions should be discussed. It was in the course of perform-

ing these calculations that we discovered that even though cyclopropenyl

radical is adequately described by one reference, two additional

configuration in both the 2A2 and 2Bl are moderately important

also. For the 2A2 state these configurations are

2, _ L2 .2 2
@2(.A2) = .., 5a1 3b2 lbla 6al 2bla laZB

2, | _ 2 .2 .0
,(°a)) = ... 5a] 3b; b

2 .2
1 6al. 2bl la

2

and for the 2B

| State they have

2 2 2 .0 2 . 2
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2

2 2
al lbl 6al la

2
3b 2

25y =
¢3( Bl) = e s 5 2

The values of the coefficients of these configurations plus the SCF
references are compiled in Table X.v | ‘ |

In all the CI and MCSCF calculations the princiﬁle coefficients
were roughly 0.95 with the values of the other two coefficients
being between about 0.06 and 0.15. . In the four calculations that
contained frozen SC? virtual orbitals thg valﬁes of C2 are much
higher in both states (around 0.15) than in the other calculations.

Also C, for the 2Bl is much larger roughly 0.10 compared to the MCSCF

3
values of around 0.08, The MCSDT coefficients appears to be quite
similar to the MC549 values, though the importance of single
e#citations in the former is far greater. Siﬁce there 1s some
question aﬁ this time as to the validity of our MCSDT results due

to certain convergenée difficulties the wave functions may in fact -
be somewhat different, In particular the last digit reported for
the coefficients of MCSDT in Table X may be suspect. Currently more

work is being done in an attempt to converge these MCSCF wave functions

to a greater degree.

C. Conclusions for the CycloPrOpenyl Radical

For the cyclopropenyl radical it was found that at a D3h
geometry an artificial energy splitting of nearly 3 kcal/mole exists
for the truly degenerate 2A2 and 231 states at the SCF level of
theory if the calculations are carried out in sz'symmetry. This
energy gap can be substantially lessened if subsequent MCSCF or CI

calculations are performed. In the case of all single and double
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excitation CIs the splitting is reduced by over 50%. If thése two
energies are corrected for unlinked ciuster effects_the»zAznzB1
difference is only 0.55 kcal/mole.
Good results are also obtained for valence space MCSCF calculations.
In the MCSCF employing all valence singlé'and déuble e#citations the
splitting is roughly 2/3 of the full CISD result and oni§ about 1/20
of-thernumber of configurations are needed. If triple é#citations
are added the gap is reduced still more to around 0.70 kcal/mole.
However, if the orbitals are not optimized in the valence space Cls
poor agreement is obtained apd the incorrect zAz—zBl ordering is found.
As .out outgrowth of this work a number of additional calculations
will be carried out on these two states of the .cyclopropenyl radical.
The first of these consists of a small MCSCF followed by a CI
containing all single and double excitations from each refergnce.
This small MCSCF will be made up of a full CI among the lowest a,
and the two lowest bl'orbitals for both.states. Also an MCSCF including
all valence single and double excitations from the 3 important
references will be obtained, In addition MCSCFs in both the full
single and double and the all valence single, double, triple and
quadruple excitétion'spaces will be computed. These results plus

the present éalculations will be presented in a future publication.
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VI. Concluding Remarks

. In this dissertation it was shown that the loop-driven graphical
unitary group approach can be extended to include the ability to
determine large MCSCF wavefunctions. The largest wavefunction
computed using this method contained 17,678 configurations and is
the largest MCSCF calculation performed anywhere33 to date. In contrast
to other MCSCF procedures which can handle large configuration
sets the orbital optimization step does not assume any special form
for the configuration list (such as in the CASSCF method where the
configuration set is required to be a full CI within an orbital
su‘bspacc-z.,)a.s“37 In fact the LDGUGA MCSCF'méthod can employ very
flexible configuration lists including all single and double eicita—
tions from one or two references, full CI in any subspace and
inclusion of classes of higher than double excitatioms.

At the heart of this MCSCF formalism is the efficient computation

and storage of the two-particle density matrix. This feature

38,39 developed by Bernie

coupled with the loop-driven CI method
Brooks leads to a very fast and versatile MCSCF procedure. Though

at present our prograﬁ is restricted to only first-order convergence
various extensions such as the construction and implementation of the
orbital Hessian matrix and a proposed extrapolation procedure were
discussed herein.

To demonstrate the power of the LDGUGA method a number of

molecular calculations were presented. These included a series of

CI and MCSCF results for water,33 ozone34 and the cyclopropenyl radical.

A number of these computations explored the effect of higher
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excitations in MCSCF calculations, an area that previoﬁsly had not

been extensively investigated.
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Appendix I. Ak and B, Theory

k
methods are examples of truncated CI schemes and

k
were initially presented by Gershgorn and Shavitt.lo4 The methods

The Ak and B

are based on partitioning perturbation theory128 and have been

105-107 In practice

implemented and e#tended by a number of authors.
Ak and Bk techniques allow the use of much larger configuration sets
than can be handled in a non-truncated CI and the hope is that
relatively little energy will be sacrificed.

In developing the theory it is useful to envision that the CI

Hamiltonian H is partitioned as follows:

B bl S0 - R . (87)

In constructing this Hamiltonian the configuration space (composed
‘of N configurations) has been divided into two subspaces P and Q.

P denotes the primary space and usually includes all the important
configurations as determined through some selection process. Q,
the secondary space, is composed of the remainder of the ;otal
configuration space.. EO, E and'g' are then PxP, PxQ and QxQ sub~-
matrices reépectively. If (87) is multiplied out the following two

equations are found

Hoc + th' = Ec (88)

he. + H'e' = Ec' . (89)
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Solving (89) for c' and substituting into (88) yields
0,.T " _ _ .
8+ B EL-E) hley = Bypr G = E gy - BENCD

This reduces fhe full NxN CI equations to the solution of a P#P
problem using geff' However, calculating Eeff is at least as much
‘work as solving (87) directly so nothing is gained. The time consuming
aspect'in_constructing Heff involves finding the inverse of (E}—g').
What one wants to use then is an approximation to this inverse that is
relatively simple to obtain and that still gives the majority of the
NxN CI energy.

Since g', the QxQ Hamiltonian, is diagonally dominate a

reasonable approximation would be that
(EL-E) T & (e1-D) - (91)
with

Dy

The 0, 1f 1 # i, €T

Dii = Hii .

Solving equation (90) using the approximation (91) is called the Bk
method. The most straight-forward way to solve for E is to diagonalize
H in equation (87) with g' set zero to D or in other words to set

all off-diagonal elements of g' to zero. The neglect of these

elements makes this a éecond—order perturbative scheme since only

the matrix elements that directly interact with H are kept.
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The Ak method is very similar to the Bk except that Ho is

diagonalized first to yield

wO = 2 cn¢n (92)
n_ .

where @n is configuration n and the sum is over all elements of P,
The subscript k in both ;he Ak‘and Bk methods refers to the k
configurations in the primary space. Next straight first-order

Rayleigh-Schrodinger perturbation theory is applied to (92) yielding

. <o |ul¥,>
v, =¥+ -—-——-— ¢ =Y _ + i c § (93)
0 oty By, o 0 G mo

The seéond—order energy associated with (93) is

"2 i; il 5 ¢ —i“—l‘l> (94)
2 n=k+1 E0 Hnn ig: Z' a

The major difference between the second-order Ak and Bk results is

that Bk is usually lqwer_%n energy since the_primary space
coefficients are allowed in relax while in the Ak case they are
fixed. Since constructing the off-diagonal elements of E' is the
major time step in the full NxN CI the Ak and Bkh;alcuiations are
much faster if the P space is much less than the Q space as is
normally the situation.

In going to the third-order in energy the off-diagonal elements

of H' must now be calculated. In both cases Ak and Bk’ the correction

formula is

A
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N v
Ey = :E; ‘ CanHinn '110 ' \ (95)
m,n=k+1

The Bk coefficients in the Q‘space (Cm, 1EQ) are obtained from the
diagonalization of the‘approkimate Bk Hamiltonian and invthe Ak scﬁéme
are calculated while forming Ei using equation (94). Eq for the two
methods will be different since their two sets of coefficients generally
differ.

In both methods as presented_the Epstein-Nesbet (EN) partitioning
~of the Hamiltonian was used. This has advantages in that it is well
defined for open-shell and multi-reference states as well as for
closed shells. Also it is easier to adapt to existing CI codes.
The disadvantage with respect to MSller—Plgsset r) p#rtitiohing
is‘that thé mégnitude of E3 is usually_much.larger'in EN than in the
MP scheme. This makes calculating the third order correction more

important than if we had used the other partitioning.
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