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Abstract 

A multiconfiguration self-consistent-field (NCSCF) method based 

on the loop-driven graphical unitary group approach (LDGUGA). has 

been developed that combines the best features of the LDGUGA 

configuration interaction (CI) procedure with the ability to optimize 

the molecular orbitals. In contrast to traditional NCSCP procedures 

which are restricted to small configuration sets, our method can 

handle very large numbers of configurations. Unlike other large 

configuration list MCSCF procedures, however, the CI expansion is not 

restricted to being of a particular form (such as in the CASSCF method). 

The formalism we adopt is an iterative two-step process, that is, 

during each iteration the CI coefficients are optimized for a fixed 

guess at the orbital expansion coefficients and then improved orbitals 

are computed using these CI coefficients. At the heart of the orbital 

optimization step is a novel algorithm for the fast and efficient 



generation and storage of the one- and two-particle density matrices 

and the use of these density matrices in first and approximate 

second-order optimization procedures is discussed. To test the 

applicability of the LDGUGA NCSCF method a series of CI and NCSCP 

studies on various molecular systems were performed These include 

an investigation on the effect of inclusion of higher than double 

excitations in MCSCF and CI calculations for the water molecule, a 

comparison of various large MCSCF wavefunctions for ozone and the 

study of non-physical syiwnetry breaking in cyclopropenyl radicals 

F 	_ 

11 



Acknowledgments 

First and foremost I would like to thank Fritz Schaefer for all 

his help and support during my four years at Berkeley. I am 

particularly grateful.to him for seriously listening to my ideas 

and encouraging me to pursue the better ones. Next I would like 

to thank Dr. Bernard R. Brooks for introducingmeto the loop-driven 

graphical unitary group approach and for all his help in practical 

computer coding. Bernie Brooks was instxumental in the development 

of his NCSCF procedure since the two of us worked out the formalism 

together and much of the subsequent program was written by bm, r 

also owe a lot of my understanding of NCSCF theory to Professor Nick 

Handy who helped me with a number of difficult concepts. In addition, 

he informed me of the investigation on the importance of triple 

excitations in the neon atom carried out by Dr. Stephen Wilson which 

was one factor leading to our higher excitation CI and NCSCF study 

on the water molecule. I would also like to t1ank Paul Saxe who 

performed a number of these calculations and who along with Bernie 

Brooks wrote our two-particle density matrix program. I am indebted 

to Dr. Yoshihiro Osainura for his Hessian matrix element derivation 

which was very useful in writing section IlL I also wish to thank 

Professor Richard Stratt, Dr. Nichel Dupuis, Mr. Douglas Fox, Professor 

Isaiah Shavitt, Dr. Yukio Yamaguchi, Dr. John Goddard, Dr. Byron 

Lengsfield, Dr. Rodney Bartlett and Dr. Mark Vincent for many 

productive discussions. Thanks are also due to Cheryn Gliebe for 

all her help during the past year. Finally I would like to thank 

Carol Hacker who besides doing an excellent job typing this thesis 

iii 



has been very helpful throughout my stay at Berkeley. 

This research was supported by the U.S. National Science 

Foundation, Grant CHE-7622621, the Robert A. Welch Foundation, 

and the Director, Office of Energy Research, Office of Basic 

Energy Sciences, Chemical Sciences Division of the U.S. Depart-

ment of Energy under Contract No. W-7405-ENG-48. 

iv 



Table of Coxtents 

Page 

Introduction 	...... 	................... 1 

TheLDGTJGAMCSCFMethod . 	. 	. 	. 	, 	. 	. 	. 	. 	....... , 	6 

 Review of the Berkeley Loop-Driven Graphical 
• Unitary Group Methodology 	. 	. 	.......... . 	. 	11 

 First-Order Orbital Optimization Procedure-- 
Method 	1 	........................ 24 

 First-Order Orbital Optimization Procedure-- 
Method 	2 	........... 	............ 30 

 An Overview of the Berkeley NCSCF Program System . . . 	39 

 Generation of the Two-Particle Density Matrix 	. . . . 	47 

 Construction of the Lagrangian Matrix 	. . . . . 	. . 	51 

 Avoidance of Computing the Complete Set of M.O. 
Integrals 	......................... 54 

 Construction and Use of the Hessian Matrix . . . . 	. . 	55 

I A Proposed Extrapolation Procedure to Improve 
Convergence . . . . . 	. . . . . . . ...... . . 	60 

III. An MCSCF Study of the Effect of Higher Excitations 
- 	in '7ater . . . . . . . , . 	. 	, . . . , . . 	. 	. 	63 

Theoretical 	....... . , 	. , 	. 	, 	, 66 

Water Energetic Results . 	. . . 	. . 	. 	69 

Comparison with Perturbation Theory Results ..... 75 

WavefunctionAnalysis 	. 	. . 	......... 	83 

Conclusions for Water . ....... 	....... 88 

IV. 	An MCSCF Study on the Ground State of Ozone . . 	. . . . 90 

Theoretical 	................... .9 	 91 

Ozone Energetic Results 	. 	...... . 	. 	. 94 

Conclusions for Ozone ..................100 

V 



2" 	 Page 
V. 	An Examination of the Lowest E State of the 

CyclopropenylRadical 	 ............. 102 

Theoretical ....., , . .............103 

Results and Discussion .,...,..,..,, 105 

Conclusions for the Cyclopropenyl Radical . . . . . . 111 

VI..- ConcludingRemarks 	 ....... •..... 114 

Appendix. A. and Bk  Theory • 	 , . . ' 	 116 

References 	..•...•. 	..•. 	. 	. 	 • ......... • 	120 

vi 



1 

I. Introduction 

The multi-configuration self-consistent field (MCSCF) method 

has had a long and successful history since its original inception 

by Frenkel1  in 1934. The first atomic wavefunction was reported 

only a few years later in 1939 for oxygen by Hartree, Hartree and 

Swirles, 2  but the method was not of much practical use until the 

advent of high speed digital computers. By the mid 1960's the time 

was ripe for the computational development of the MCSCF procedure. 

In 1966 the first molecular wavefunctions were reported by Das and 

Wahl3  for H2 , Li2  and F2 . During the next few years there was much 

activity within the field and a number of significant advances were 

made. 4-9 Interest in the MCSCF approach remained high throughout 

the 70's and shows no signs of waning to date. Many theoretical 

and methodological contributions were made during this period 10-17 

and the MCSCF procedure has become a standard tool among quantum 

chemists. 

Within the last five to ten years MCSCF calculations involving 

small numbers of configurations (usually between 2 and 20) have 

become common place. Wavefunctions of this sort tend to recover 

much of the correlation energy, that is the difference between the 

SCF and the true nonrelativistic energy. They have the additional 

benefit of being relatively compact compared to typical configuration 

interaction (CI) wavefunctions. Calculations of the latter variety 

- 

	

	 typically involve thousands of configurations and are thus much 

more difficult to qualitatively interpret. MCSCF procedures are 

also quite good for describing bond breaking processes and obtaining 
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accurate equilibrium geometries. 12  

The MCSCF method, however, does have a number of drawbacks. One 

of its more serious problems pertains to calculation convergence. 

Molecular MCSCF wavefunctions are always solved for via iterative 

procedures which quite often show unacceptable rates of convergence. 

Certain systems, typically those involving single excitation configura-

tions, will not converge at all either displaying oscillatory or 

divergent behavior. To overcome this, elaborate extrapolation or 

damping procedures have been employed with mixed success. Another 

limitation of the MCSCF formalism is that it has been traditionally 

restricted to small configuration sets. The reasons behind this are 

both computational and philosophical in nature. Up until 1980 the 

largest reported MCSCF wavefunction contained 60 configurations. 18 

Within the last few years major advances have been made in both 

of these areas. With regard to convergence behavior the quadratic 

19-28 
MCSCF procedure has been developed by a number of workers 	and 

appears to be able to surmount many of the previous difficulties. 

Using this technique along with super CI 	and/or augmented 

Hessian21 ' 29  schemes most systems converge within 5 to 10 iterations 

to 8 decimal places, in the energy. Even pathological systems 

containing numerous single-excitations have been shown to converge. 

Another advantage of this method is that excited states of the same 

symmetry can be solved for with little additional effect. 23  

-10 

Restriction of MCSCF calculations to small configuration sets has 

been virtually eliminated via the loop-driven graphical unitary 

group approach (LDGUGA)MCSCF method. 3032  Our current implementation 



can handle CI expansions composed of tens of thousands of 

configurations with the only limits being the size of core memory 

and the amount of computer time available. As a preliminary calcu-

lation, an MCSCF wavefunction for the lowest triplet state of 

cyclopropyne containing 10,115 configurations was computed. 31  This 

wavefunction was composed of over two orders of magnitude as many 

configurations as the previously largest reported NCSCP. Since 

then MCSCF calculations on water and ozone have employed even 

larger numbers of configurations. 33 ' 34  At about the same time as 

our initial NCSCF work, Roos and Siegbahn developed the complete 

active space (CAS) MCSCF method. 3537  Their procedure also handles 

large CI expansions, but these are restricted to a certain form 

namely a complete CI within a given subspace. CI expansions of 

this type have many special properties which are exploited in their 

CASSCF program. The major drawback of this method is that the length 

of the CI increases extremely rapidly as the size of the active 

space is eniarged. Preliminary calculations by Roos and Siegbahn 

were reported for N2  employing 726 configurations and since that 

time a number of other systems have been studied using the CAS 

method. Lastly, recent work by Lengsfield on adapting the quadratic 

NCSCP procedure to moderately large configuration lists has been 

23 	 +  
reported. 	In that paper calculations on the X 	and 2 	states 

of HF containing 1436 configurations are discussed 

In this dissertation the theory behind the LDGTJGA NCSCF method 

will be discussed and the basic philosophical and computational 

differences inherent to our scheme compared to traditional MCSCF 

3 



procedures will be illuminated. Since our biggest departure is in 

the size of CI expansions that can be handled, the techniques that 

are employed to deal with large configuration sets will be stressed. 

Among these are an efficient loop-driven CI based on the graphical 

unitary group approach, the need for the fast generation and storage 

of the two-particle density matrix and its subsequent use in an 

orbital optimization step that has reasonable convergence properties. 

Other computational aspects of the system will also be presented such 

as restricting the integral transformation to transforming only the 

necessary integrals and the efficient formation and use of the 

Lagrangian and Hessian matrices. In a more general vein the 

strengths and weaknesses of the LDGUGA system will be presented. 

This will include what types of configuration sets can and cannot be 

used, the restriction of the point group syimnetry to D2h  and its 

subgroups and the ability to include higher than double excitation 

configurations. 

In addition to the theory a number of applications will be 

presented. The first of these involves a series of CI and MCSCF 

calculations on the ground state of water. The main purpose for 

this study was to try and elucidate the role that higher than double 

excitations play in CI calculations using different orbital basis 

sets. The most extensive computation performed on H 2  0 was an NCSCF 

containing 17,678 configurations which is the largest NCSCF result 

obtained for an molecule to date. Our next investigation dealt with 

the lowest state of ozone. In this study a number of different 

size MCSCP and CI wavefunctions are computed and compared. The 



quality of these wavefunctions are examined in the light of their 

associated total energy and their ability to correctly describe the 

" 

biradical nature of 03 • Lastly the 
2E state of cyclopropenyl 

radical is probed with a number of NCSCF calculations within the 

valence space. Pairs of computations are performed in 2A2  and 
2 
 B 2 

symmetries and the splitting between the two resultant energies is 

compared. 

5 
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II. The LDGUGA MCSCF Method 

In developing the loop-driven graphical unitary group approach 

(LDGUGA) MCSCF method3032  a basic departure from the current 

philosophy was made. In a single configuration SCP calculation 

the orbitals are variatlonally determined such that the energy is 

minimized and for many chemical properties such as the equilibrium 

geometry the SCF procedure often gives a reasonably accurate result. 

However, for a number of systems the SCF wavefunction is a poor 

approximation to the true wavefunction, at least in certain regions 

of the potential energy surface. The multi-configuration SCF 

(NCSCF) method was designed to overcome these deficiencies 

by including the configurations that are necessary to qualitatively 

describe these areas of the surface. An example of this is the 

description of bond breaking in a molecule. Usually a number of 

configurations are needed to represent this process accurately 

including at least those configurations needed to describe both the 

starting molecule and its fragments. 12  Traditionally in MCSCF 

calculations only a small, number of configurations are employed, 

usually the minimum required f or qualitative accuracy. One 

problem that often arises is that since the configuration set must 

be predetermined, it is difficult to ascertain in advance which 

configurations are needed over the entire range of the potential 

energy surface to be examined. Another deficiency is that in many 

cases the wavefunction itself is not of sufficient accuracy and 	 - 

additional extensive CI calculations using these NCSCP orbitals must 

be carried out. 



In implementing our MCSCF method we strove to eliminate the 

restriction to small configurations sets and thus minimize the 

resultant problems of configuration selection and wavefunction 

accuracy. Before going into how this was accomplished certail 

details of the MCSCF formalism in general need to be pointed out. 

in any MCSCF procedure both the orbitals and the CI expansion 

coefficients are variationally determined. The subsequent energy 

expression obtained using this wavefunction is 

ij. 
E = E c1C 	(a1]. 	 C11i  <AIhhJ> 

+ E CAICPjCVkC 	[)qi;vø]) 
	

(1) 

where C1  and C are CI expansion coefficients, C, Cu ., C and
Uk 

ij 	ijk2 

	

Cvk are orbital coefficients, a 1  and b1 	are coupling constants 

and <Aihill> and [Xp;v] are the one and two electron atomic orbital 

(AO) integrals. Equation (1) can be rewritten in terms of molecular 

orbital (MO) integrals as 

E = 	C1C3 E (aij <ihlj>  + 	[ij;k9..]) 	 (2) 

with 

= 	CiC11. 	
(3) 

[ij;k9] = E CAiCjCVkC 	[Aii;vc) 	
. 	 (4) 

XPVa 
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Since it is not possible to directly solve for the coefficients C 

and c an iterative procedure must be employed. There are two 

general types of iterative schemes possible: one, in which 

corrections to both the trial CI and orbital coefficients are 

solved for simultaneously and twq, where first the CI coefficients 

calculated and secondly the changes in the trial orbital coefficients 

are found. The former procedure is called a one-step method and the 

latter a two-step method. Because our MCSCF program and the large 

majority of others are of the two-step variety only two-step 

procedures will be considered. 

In a typical two-step NCSCF method the calculation can generally 

be divided into four separate tasks. The first is the transformation 

of the AO integrals to the MO basis, the second is the solution of 

the CI secular equation to yield the expansion coefficients, the 

third is the construction of the one- and two-particle density 

matrices and the fourth is the computation of the corrections to 

the trial orbitals. The entire process is then repeated until the 

desired level of convergence has been achieved. In a traditional 

MCSCF calculation employing only a small number of configurations 

the bulk of the computer time is spent performing the integral 

transformation. A substantial fraction of this time may be required 

by the orbital optimization step, but solving the secular equation 

and building the density matrices takes essentially no time. This 

caused us to think that if an NCSCF method were built around a very 

fast CI (and density matrix construction) program that quite a 

large number of configurations could be handled before the CI 

8 
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solution and density matrix computation steps began to dominate the 

calculation time. This is the basic idea behind the LDGUGA MCSCF 

approach. 

At the heart of our NCSCF package is the loop-driven CI program 

originally developed by Brooks and Schaefer 38  with subsequent 

improvements by Laidig and Saxe. 39  This CI program utilizes the 

graphical unitary group approach (GUGA) pioneered by Pa1dus 4042  

42-45 	- and Shavitt 	within the loop-driven framework. Since its 

introduction in 1978 the original CI system and its later modified 

versions have demonstrated the efficiency and applicability inherent 

in the LDGIJGA method. During this period theoretical studies 

including the effects of electron correlation have been carried out 

on a number of molecules using the LDGUGA CI programs. Among these 

are the investigation of the stability of cyclopropyne 46  , a study 

of the triplet excited states of HGT, the determination of the 

+48 
harmonic vibrational frequencies of NH 4  , an.examination of 

aluminum-carbon bonding49  and the prediction that methylnitrene is 

stable5°  to name just a few. Currently CI calculations including 

up to 40,000 configurations are routinely performed with the only 

size restrictions being the amount of available core memory. 

Designing our MCSCF procedure around the loop-driven CI 

routines places certain restrictions on the type of configuration 

sets that can be employed. This is because only configuration lists 

that can be represented in a compact numerical form called a distinct 

row table (DRT) can be handled by the CI. At present DRT's 

containing all single or all single and double excitation 
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configurations from one reference can be generated. This can also 

be done for a large number of two reference cases. In addition 

classes of higher excitations can be included such as all single, 

double and triple or all single, double, triple and quadruple 

excitations from one or two references. Full CIs can also be performed 

in any subspace and all single plus double excitations can be 

generated from this set if desired. For a more complete discussion 

of the capabilities of the DRT construction program see Brooks' 

Ph.D. Thesis. 51  Work is currently in progress that will allow the 

DRT for all single and double excitations from an arbitrary set of 

reference functions to be generated. 52  This will greatly increase 

the flexibility of the method. 

Within the DRT framework only limited configuration selection 

can be performed without destroying the advantages of the loop-driven 

formalism. One type of selection which does not significantly 

affect the performance of the CI is restriction of the configuration 

list to the subset which are Hartree-Fock interacting. 53  This does 

not alter closed-shell calculations, but can drastically reduce the 

number of allowed configurations from open-shell references without 

55 
adversely affecting the energy. 

54, Also a certain amount of 

selection can be obtained by restricting excitations into and out of 

specific orbitals. Within the NCSCF, orbitals can be divided into 

three basic types: core, virtual and active. Core orbitals are 

doubly occupied in all configurations in the CI and are often used 

to represent the inner shell orbitals in atoms and molecules. 

Virtuals orb itals are never occupied in the CI and usually have high 
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orbital energies. An orbital is active if at least some excitations 

are allowed into or from it and thus it has an occupancy somewhere 

between '0 and 2. Any DRT that can be generated in the full space 

- 

	

	 can also be limited to just the active orbitals. In many cases 

this can drainaticaUy reduce the size of the CI expansion. 

Another aspect of the LDGUGA MCSCF method that helps in reducing 

the length of the configuration lists is the use of Abelian point 

group symmetry. 5' This is very important since the full Hamiltonian 

is block-diagonal with each submatrix of a particular symmetry.  

type. For example, in water the molecule has C 2 , symmetry and the 

1Tmniltonjan consists of four sub-matrices one for each of the four 

distinct symmetry types: A1 , A2 , B1  and B2 . Because the matrix is 

block-diagonal the individual sub-matrices can be Independently 

diagonalized with the resultant eigenvalues corresponding to eigen-

vectàrs of theblock's symmetry type. 

In our program only those configurations that are of the same 

symmetry as that of the reference(s) are generated This leads to 

a much smaller secular program to be solved. If the molecular 

symmetry belongs to a degenerate point group the calculation can 

still be carried out in the highest symmetry non-degenerate sub-group 

of the degenerate point group. Since we normally do calculations on 

triatomic or larger systems this is seldom a problem. 

A. Review of the Berkeley LoOp-Driven Graphical Unitary Group 

Methodology 

Before going on to the particulars of our NCSCF method it would 

be helpful to the reader if certain major concepts of the LDGUGA 
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approach were examined. As was mentioned earlier the key factor in 

designing a fast MCSCF procedure that deals with large configuration 

sets is in having a very efficient CI program at its heart. 
51 One 

such program is in the Berkeley CI system of programs 38 ' 39  and this 	 - 

became the basis of our NCSCF routines. The two central new ideas 

within this CI method are the generation and use of the distinct row 

table (DRT) and basing the construction of contributions to the 

51 
Hamiltonian matrix around loops. 

43-45, First the definition and 

subsequent use of the DRT will be discussed 

Basically the DRT is the numerical analog of a Shavitt graph43 ' 44  

which is a pictoral representation of a given configuration set. 

A sample graph is shown in Figure I. As one can see from the figure 

a Shavitt graph is composed of a framework of dots called distinct 

rows and a series of line segments connecting them labeled arcs. The 

top most row is the graph head while the bottom vertex is the 

graph tail. Any path from the head to the tail which passes through 

one row per level defines a particular Celfand56  state or configuration 

and is called a walk. The totality of all walks define the config-

uration set. Each row can be defined by three parameters a jj  

and c ij 
 such that 

 
ij +b ij 

 +c. 

	

ij 	i 	
(5) 

	

a ij  =l/2N 1..3 ij -S 	 (6) 

 iJ =2S1 	 (7)7) 



orbital 

level 5 

5 

level 4 

4 

level 3 

3 

level 2 

2 

level I 

0-2 

head 

a 

C 

Figure I. Sample Shavitt Graph. 
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N tail 	 levelO 

All solid lines - DRT of all single and double excitations 
from the reference 4a,25O 2 . 

All solid plus dashed lines - DRT for the full CI. 
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with i being the level index and j being the vertex index on that 

particular level. N and S are the number of electrons and the
ij 

total spin of the ij row. 40  Looking again at the figure one 

notices that the rows are separated into three columns by the value 

of a. A group of vertices on the same level with identical a values 

differ in b with the right-most point being b=0. Moving to the left 

each row within the group has 1b41. 

To work out a Shavitt graph, one first calculates the values of 

a, b and c needed for the graph head using N equal to the number of 

electrons in the particular system and S equal to the total spin. 

The graph tail is always assigned a = b = c = 0. For the ground 

state of water, for example, N=10 and S=0. This yields a=5 and 

b=0. c is determined by how many orbitas are used in the calcula-

tions. Once the graph head is found segments connecting adjacent 

levels are drawn. Four distinct shapes are possible: one, a vertical 

line segment corresponding to an orbital occupancy of zero in which 

Aa=0 and tb=0; two, a slightly slanted line segment with ta0 and 

tb=-1 corresponding to an alpha occupied orbital; three, a more 

slanted line segment corresponding to a beta occupied orbital where 

ta=-1 and b=+l; and four, a nearly 450 line segment with 1a-1 

and lxb=O corresponding to a doubly occupied orbital. Pictorially 

the four types are represented as 

I 2 	 3 	 4 



In a given Shavitt graph all allowed walks begin at the graph head 

and end at the graph tail. In Figure I the graph for the case of a 

system with 5 orbitals, 4 electrons and a total spin of zero is shown 

composed of both the solid and dashed line segments. If the dashed 

arcs are eliminated the CI is restricted to all single and double 

replacement configuratiotfrom the rightmost walk which is the 

reference. 

As discussed above the Shavitt graph contains all configurations 

allowed in the CI. To actually perform the computation, however, 

some method must be found to identify each particular configuration. 

The location scheme43 ' 44  that was adopted assigns a unique number m 

to each configuration with the leftmost walk defined as m=l. If two 

configurations coincide from the graph head down until some level I 

then the state with the lowerr m value is the leftmost below this 

level. An ordering of this sort is labeled lexical. Each configura-

tion is composed of xi arcs where xi is the number of orbitals in the 

CI step. A property of this lexical ordering is that a value can 

be assigned to each arc such that the index m can be computed for 

each walk by sunnning over the n parameters associated with its 

components. These parameters are called the arc weights, 

Besides defining the configuration ordering the orbital sequence 

must also be determined. In the full CI case the ordering of the 

orbitals is essentially arbitrary. If a restricted form of the 

graph is used, however, it is advantageous to order the orbitals 

in a certain fashion. In our MCSCF program the ordering is as 

15 

follows. 
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UNOCCUPIED 

J orbitals 
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In this diagram core are the MCSCF core orbitals, active are the 

open-shell or partially filled orbitals in the reference(s), doubly 

occupied are the doubly occupied orbitals in the reference(s), virtual are 

the orbitals not occupied in the MCSCF and occupied are the unoccupied 

ôrbitals in the reference(s)0 Having the active block above the doubly-

occupied orbitals and the doubly-occupied above the unoccupied 

orbitals is useful in non-closed shell and multi-reference cases. 

The placing of the core and virtual orbital blocks is not essential, 

but was chosen to accommodate restrictions within the CI gradient 

programs. In a future Implementation the core and virtual sections 

will both be above the actives. The main reason for positIoning the 

unoccupied orbitals at the bottom is that this allows the simplicity 

of the Shavitt graph in this region to be exploited. 

If spatial symmetry is treated correctly or if the configuration 

list is restricted to only the Hartree-Fock interacting set 53  

additional complications arise. In the case of spatial symmetry 

(only valid for nondegenerate point groups) all rows except the 

graph head and tail are expanded into a set of vertices, one for 

each symmetry type. Next all walks are generated with a total 



symmetry equal to that of the reference(s). If no walks pass 

through a given point it is then eliminated from the graph. So, 

therefore, it now takes four quantities to define a row: a, b, 

c and s where s is the a symmetry label. A fifth parameter t is 

necessary if the Hartree-Fock interacting space restrictions are to 

be implemented. Using these five parameters then any Shavitt graph 

or corresponding DRT can be constructed subject to the limitations 

presented in the previous section. 5' 

In the computer the Shavitt graph is stored as its numerical 

analog, the distinct row table. Instead of vertices and arcs a 

series of arrays are formed which describe the rows and how they 

interconnect. Example DRT's and a detailed description of the 

necessary arrays are presented in reference 51. 

The second major concept which needs to be examined is that of 

the loop. 43 ' 44  When two configurations in and in' are compared in the 

DRT they will coincide above a certain level j and also below a 

specific level i-i. (In the worst case the j th  level will be the 

graph head and the i-1 level will be the graph tail). The section 

between the levels j and i-1 which need not coincide is called a 

loop with the loop head being the distinct row at level j and the 

loop tail associated with the row at level i-i. The segments 

joining the graph and loop heads is labeled the upper walk and the 

segment between the graph and loop tails the lower walk. An example 

of a typical loop is shown in Figure II. 

The reason why the loop concept is important in GUGA iinplementa-

tions can best be understood if the Hamiltonian operator is cast 
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into its second quantized form45  

H = 	h E . + E [ii;kP.]e± ,kij  
ij 	 ijkL 

where the si'rmuttion is over the orbitals allowed in the CI and 

and e ij,kk 
 are the one- and two-body unitary group operators. The 

two-body operator can be written in terms of the one-body operators 

as 

eijk = E1E1 - jkEi. 	 (10) 

with the one-body operator defined by 

E. = E4cY Xjcy 	 (11) 

where X.ia 
 and X. are the spin-orbital creation and annihilation 

operators respectively. The summation index a in (7) is over a. 

and 0 spin. The Harniltonian matrix element between configurations 

m and m' can now be expressed as 

H , 	Eh . <nljE .Jm'>+4 	[ij;k2..]<mje 	rn'> 	. 	(12) 
ij 	 ijk2.. 	

ij,k2. 

Now if equation (2) is examined it becomes obvious that the matrix 

elements <niE 3.
.,.
3 
 rn'> and Fine132.. ktm> are just the coupling 

coefficients a, and 	respectively defined in equation (1).mm  

Since for the majority of configurations m and m' in a large CI 

there are only two non-zero coupling coefficients, it is found that 

<mIEij 
 rn'> and <mie,. 	Im'> are zero for most choices of i, j, k 

18 



Figure II. Example of a loop. 

19 

orbital 

6 

21 

3 

uoaer walk 

Fiu. 	 - 

I 
Z: 



20 

and £. It can be shown that if <1utEJm'> is to ever by non-zero ij 

the configurations in and in' must coincide above level j and below 

level 1-1. Furthermore, using equation (10) 

<nileIn'> = 	<mIEIm"><m"IEIm'> ij,k. 	in" 

+ 6k2 <mIEi2,Im'> 
	

(13) 

and, therefore, if <mle. 3 kiln> is to be non-zero the arcs above 
, 

the largest and below the smallest value of i, j, k and Y. must be 

coincident also. If the element <mIEIm'> or <mIe 1 	Im'> is 

non-zero it is also known that their values only depend on the 

shape and position of the loop in the DRT and not in the upper and 

lower walk portions of the two configurations involved. What this 

suggests is then a loop-driven CI procedure. 38  In this scheme 

instead of constructing each element of the Hamiltonian matrix 

separately as in a conventional configuration-driven program or 

sequentially reading through the integral list and forming all 

contributions to the H matrix that are possible as in an integral- 

driven CI, the set of pairs of distinct rows on different levels are 

looped over and all non-zero loops between a given pair are generated. 

Once a loop is formed its value is computed. What is necessary now 

is a procedure for computing this loop value and also how to determine 	- - 

which configuration pairs involve a given loop. 

In the LDGTJGA system of programs the loop value is found through 

the use of segments. 45  A segment is defined as the pair of arcs, 

one from each configuration in and in', between any two adjacent levels. 



For example, the two-body loop that is pictured in Figure II has 

four segments. These segments are classified according to their 

shapes and to each distinct shape a segment value W is associated. 

These segment values are either constants or depend on the b value 

at the top of the m' arc. The unitary group matrix elements can 

, be expressed as 41 45  

3 
<rnIEJm'> = Tr W(Q,b) 	 (14) 

k=i 

<mIelJkLIm> = iT W(T ,b )( E 	x p p T w CT ,b )) 	(15) 
pCS1 	p p xQ,l pCS2  

where S2  and S1  are the interacting and non-interacting regions 

respectively and W are segment values that also depend on a spin 

parameter x. In our program then the loop values are found through 

first multiplying and adding, the appropriate segment values 

together to form the coupling coefficients and then multiplying 

these by the appropriate MO integrals. Since many different loops 

share co=on segments it is not necessary to entirely calculate each 

coupling coefficient from scratch. In the loop-driven program loops 

are generated in an order that takes advantage of this fact. 

Once a loop value has been computed how do we determine which 

Hamiltonian matrix element(s) it belongs to? This is done using the 

51 
loop breakdown algorithm of Brooks and Schaefer. 38, A loop will 

contribute to the H matrix elements between any pair of configurations 

formed by the loop plus one of its upper and one of its lower walks. 

In Figure II the example loop has only a single upper and lower walk 

21 
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so it contributes to only one Hamiltonian element (the matrix H is 

stored in triangular form), however, in general loops can have xi 

upper and m lower walks and will contribute to xi x m matrix elements. 

In this algorithm the lexical numbers of the leftmost configurations 

containing, the left and right sides of the given loop are computed 

by sinmwfng up the individual arc weights. These configurations are 

called the primary upper walkè of the left and right sides respectively 

and are symbolized as IUWK and JUWK. Ilie to the nature of lexical 

ordering all subsequent configurations formed with the same upper 

walk but different lower walks are sequential. This, unfortunately, 

is not the case for a fixed lower walk with variable upper walks. 

If, however the Shavitt graph is inverted so the graph tail is now 

the head and vice-versa, a different lexical ordering can be 

defined. Using this scheme all configurations with the same lower 

walk. but different upper walks are now sequential. This ordering is 

labeled reverse lexical. In our program an array INDX.is computed 

and stored which converts from lexical to reverse lexical ordering. 

If NIJWK and NLWK are defined as the number of upper and lower walks 

respectively and VAL is the ioop value then the Hamiltonian matrix 

element contributes for a given loop can be constructed using the 

following code. 

DO 100 I=l,NLWK 

II = INDX (IUWK) 

.JJ = INDX (JUX) 
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DO 	90 J=1,NUWK 

H(II,JJ) = VAL 

II = II + 1 

JJ = JJ + 1 

	

90 	Continue 

IUWK= IUWK+1 

JUWK = JIJWK + 1 

	

100 	Continue 

The advantage of this algorithm is that no multiplications or other 

complicated arithmetic are needed to compute the subsequent contribu-

tions to H. The calculation of the coupling coefficients through the 

use of segment values and the use of the loop breakdown algorithm to 

construct the Hainiltonian contributions are two of the features that 

make the LDGUGA formalism extremely fast and efficient. 

Before closing this section one improvement to the original 

loop-driven method should be mentioned. In the original implementation38  

the loops were constructed by a tree-search algorithm which means that 

from a given loop head all possible segment shape combinations were 

investigated subject to a list of formation rules. The newest 

57 versions of the program 51, take advantage of the simplicity of the 

58-60 
DRT among the unoccupied orbitals. 	This section of the graph is 

called the external space while the remainder which includes the 

doubly-occupied and active orbitals is called the internal space. 

The interface level between the two sub-spaces is the Fermi level. 

In the external space there are at most four distinct rows per level 
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in the no symmetry single plus double excitation case. In Figure II 

these are labeled W, X, Y and Z. Because the structure of this space 

is so simple all possible types of loops (or partial loops if the 

loop begins in the internal space but ends in the external space) can 

be programmed up separately. When this was implemented substantial 

time savings were gained in the loop value construction stage of the 

CI step. 

For a more complete review of the concepts presented here see 

either Brooks' thesis51  or Shavitt's excellent summary article 45  

B. First-Order Orbital QptiznizationProcedure--Nethod I. 

Currently two methods for computing the changes in the orbitals 

from one iteration to the next have been implemented in the LDGTJGA 

NCSCF program. The first involves the syinmetrizing of the matrix of 

Lagrange multipliers. 30 ' 31  In developing this procedure first note 

that the CI energy expressed in equation (1) can be written, 

E = 	ijkk 	+ j: Q1<iIhIi> 	 (16) 

ij k9 

where Q and C are the one and two particle density matrices defined 

below. 

Q1  = 	C1C a. 
	 (17) 

= 	C1C 	 (18) 
ijkk 

The simple form E takes above is a convenient starting point for 

deriving the iterative equations needed to obtain the MCSCF solution. 



In equation (16) both the density matrices and the MO integrals are 

independent of the choice of orbitals. However, for the present we 

will assume that the density matrices are independent of orbital 

rotation. Applying a unitary transformation, U, to the set of. MO 

- 	 integrals in equation (16) then yields, 

E 	C 	U U U U[ab;cd] + E  Q . qi bjU U <aihib> .(].9)
ab  ab.cd 

ijk.2 ai bj ck ij 
 

If the orbitals used in the original CI (equation (16)) were a 

reasonable starting guess for the MCSCF orbitals and the transforma-

tion matrix U was picked in such a way as to yield a "better" set 

of orbitals in an energetic sense then U could be assumed to be close 

to the unit matrix 1. If this was the case a two-step MCSCF procedure 

could be envisioned. First for a given set of MO integrals the CI 

step could be performed and the configuration coefficients could be 

used to construct C and Q. Next using these fixed values for G and 

Q the MO to MO transformation matrix U could be computed. Now the 

integrals are retransformed to this new NO basis and the steps are 

repeated until convergence. That is until U is the unit matrix. 

What is missing in the procedure outlined above is a method for 

determining the matrix U. If U is close to 1 then it is reasonable 

to express U as, 

(20) 

- 	 where UW  Is just the difference between 1 and U. The matrix 

is expected to be nearly antisyminetric since any unitary matrix can 
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be expressed as 

u = eT = + T + T2/2 + 

where T isantisymmetric. The higher powers of T in this case will 

be negligible making 

 

Expanding equation (19) using equation (20) and discarding terms 

higher than first order in 	yields for the first order change 

in the energy, 

E 1  a E E G jk2ai 6bj 6ck6d. + ijk2. abcd 

6 	a + a 6 u 0- 6 + ai bj ck dP.. 	ai bj ck d2. 

6 6 6 U][ab;cd] + 	Q[U9 bj 6 + 6ij U 
bj  
W]<ajhlb>. 

aibj ckdt 	
ij ab 	

. 
 

 

This equation can be further simplified to 

E 1  1 E Gjjk (4 1J[rj;k2.] + E Q..(2 U)<rIhIj> 
ijk2r 	 ijr 	ir 

 

If 4 times the two electron plus twice the one electron energies 

are added to both sides of equation (24) the result is 

26 

(21) 
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4E2  + 2E1  + E 1 	G1 . ,  (4 
ijk2.r 

(rj;k2.] + E Qir U)<rIIIj> + 
ijr 	

ir 

ii
irGuj1 (4 6ir [rj;k-tl + 

r ir, (2 6 ir)<rtj> 
	

(25) 

where E1  and E2  are the one and two electron energies. Collecting 

terms leaves 

K + E ' 	4 Fa G 	 U[rj;k.] + 
i3k.r 

2 	QirUir<rNj> 	 (26) 
ij r 

where K = 4E2  + 2E1 . Now it is advantageous to note that the 

Lagrangian matrix X is defined as 

Xir 	4 G 	 [rj;k] +E 2  Q1<rJiIi> 	. 	 (27) 

Using this relation equation (26) can be reduced to 

K + E 1  EXI UI 	- 	 (28) 
ir 

What one would like now is a way to minimize the above equation to 

calculate the optimal matrix U. One straight forward way of doing 

this is to perform pair rotations on X. Rewriting equation (28) as 

0 



K+E ;E x U 
ir ir ir 

and expressing the transpose of U as a product of pair rotation 

matrices 

uT= II 	e 
i>j,m 

where 0 ij ,m is the mth pair rotation matrix between orbitals I and 

j, an iterative scheme can be devised. For each orbital pair i and 

j a rotation angle e can be solved fore The largest of these is 

picked and the rotation is applied to the Lagrangian matrix. A new 

set of 0 matrices are calculated and this process is repeated until 

the angle of rotation is below some threshold value 

To find the value of the rotation for a given ij pairniultiply 

X by the general pair rotation matrix 0 and take the trace of the 

resultant matrix. 0 is defined below as 

i 

	

ij 
= 	 0 	 (31) 

	

i 	cosO 	sinG 

	

j 	-sinG 	cosG 

1 

The difference between the trace before and after rotation is 

tr(Xl) - tr(X0 ii  ) = Xii + Xj3  
. - Xii 

 cosO + X
ij 
 sine - 

--  

X 
jJ 	j 

cosO - X sinG 	. 	 (32) 

28 

(29) 

(30) 
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Taking the derivative with respect to 0 on both sides of equation (32) 

and equating to zero gives 

(X + Xj)  sine + (Xj_Xjj)  cosO = 0 	. 	 (33)
jj  

Solving for tanO yields 

x -x ii ij 
tan0= 

Aji jj 

Since 0 is expected to be small and tanO = 0 as 0 approaches zero 

equation (34) can be approximated by 

x -x. = ii ij 
x+x.. 
ii 33 

(35) 

This approximation saves considerable computation time since tan 

operations are very slow on most computers. In practice using this 

approximation did not significantly effect the rate of convergence. 

This method has been used with mixed success in a number of MCSCP 

calculations. Cases that converge adequately are typically those in 

which all orbitals are active, that is for all orbitals at least one 

configuration exists that excites one or two electrons into or Out 

of each orbital. Cases where convergence is poor or non-existent 

usually involve- at least a few core or virtual type orbitals. In 

Table I the results of several iterations of an MCSCF calculation 

- 	 on the ground state of water are presented. The MCSCF included all 

361 single and double excitations from the SCF reference in the 

calculation set. More details on this calculation are given in 

(34) 
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Section IIIB. In column 2 of the table the sum of the squares of the 

difference of the Lagrangian matrix is tabulated. This number is an 

indicator of convergence since the Lagrange multiplier matrix is 

symmetric upon convergence. The next column labeled overr. is 'what 

we call the overrotation or damping factor. Each predicted rotation 

in U is multiplied by this prefactor. If the calculation is diverging 

this factor is made less than 1.0 and if it is converging slowly a 

value greater than 1.0 generally improves the rate of convergence. 

Lastly the total energy and the coefficient of the reference configura-

tion are tabulated. From perusing the table one notices reasonable 

convergence for the first 5 iterations but divergence for the next 

three. If however one returns to iteration 4 and changes the over-

rotation factor ot 0.5 the calculation converges. If appropriate over-

rotation factors are chosen convergence to 8 figures in the energy 

can be achieved in about 30-50 iterations. 

C. First-Order Orbital Optimization Procedure—}lethOd 2. 

In developing a second approach it is necessary to examine the 

MCSCF procedure in a different light. This method was originally 

devised by Hinze and we adopted it with only minor modifications. 3°  

For an HCSCF wavefunction 

m 	 m 
<YIHI''> = E = F, Q.. <i!hli> + E 

ij 	 ijk9 

m 	A 	 m 	 A 

Q < ! hIlP > + E 	 (36) 
ij ij 

i 	j 	ijkl.. 



Table I. Convergence behavior of double-zeta water using method 

1 employing 361 configurations. 

Method 1 

iter sq. dif. Overr E C1 

1 1.1 x 10 1.0 -76.15001468 .978735 

2 4.4 x 10 1.0 -76.15013779 .978465 

3 2.8 x 10 1.0 -76.15018605 .978258 

4 2.6 x 1.0 -76.15020970 .978100 

5 3.4 x 10 1.0 -76.15022125 .977981 

6 5.7 x 10 1.0 -76.15022293 .977879 

7 1.1 x 10 1.0 -76.15021200 .977801 

8 2.1 x 10 1.0 -76.15017986 .977239 

 2.6 x 10 0.5 -76.15020970 .978100 

 1.3 x 10 0.5 -76.15022211 .978042 

 1.0 x 10 0.5 -76.15022922 .977988 

 8.9 x 10_6  0.5 -76.15023498 .977938 

 7.6 x 10 6  0.5 -76.15023979 .977892 

 6.6 x 10 6  0.5 -76.15024384 .977851 

 5.8 x 10 6  0.5 -76.15024727 .977811 

31 



32 

where ip represents orbital i and 9  is the two electron operator 

and m is the number of total orbitals. (The two-electron integral 

written using the explicit orbital notation 	is now <(L) (2) Ig(1,2) 

(l)(2)> where 1 and w refer to electrons 1 and 2). The restrictions 

to equation (36) are that 

<ii' Iv' > = 
I j 	ii 

That is that the orbitals form an orthonormal set. Since "1' is 

completely optimized with respect to the orbitals 

m 	 in 
> 	<v'v'>c )=O " 	Q1 <v'1 1hIv'> + E Gi.k <v'v'k 	- 	. 	ii ij 

(37) 

where the parameters e are the Lagrange multipliers. Expanding (37)
ji  

to first order in 6 and neglecting variations in the density matrices 

yields 

in 	 in 

Qi < v'j IIv'j> + E Gij<j*kIIlPjv'> - 
ij 	 ijk2. 

in 

+ E 
Ij k9.. 

in 	 in 
+ 	Q1 <v'IhISv'> + Y 	G1.<v'1v'IgI5v'1v',> - <v'jI&Pj>cjj_ 

ij 	 ijk2 

in 
+ F, Gj.kj<lPi1PkII1Pi&i,> = 0 	. 	(38) 

ij k2. 

Since the labels of the summation indices are arbitrary equation (38) 
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can be rewritten as 

m 	 In 	 A 

Qjj<iIhI*j> + 2 E 

+ <fti I IPj >C 	 + c.c. = 0 	. 	 (39)
ji  

where c.c. stands for the coinpiex conjugate of the first two terms. 

The term that is explicitly written out may be now set equal to zero 

independently of the c.c. term. This is because a pure complex 

perturbation will change the sign of the complex conjugate part of 

equation (39) and therefore, both the explicit and c.c. terms can 

be separately equated to zero. The first term in (39) now becomes 

in 	 in 

=E + 	V G ij kY. ] P 	P c 	 (40)
kk  

kk 

with 

VkL(l) = fd(2) 	(2)g(l,2)ip,(2) 	
. 	 (41) 

Examining equation (36) one realizes that this system of equations is 

analogous to the Pock equations in SCF theory. The quantity in 

brackets in (40) is, therefore, defined as the generalized Pock 

operator F and the corresponding Fock-like equations for HCSCF wave- 

functions can be written as 

FijlPj =Pf 	. 	 (42) 
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It is also known that C = * 
	 11 

(see Hinze page 6430) or 	= 

in our case since we only use real orbitals. Hinze also goes on to 

show that these are the necessary and sufficient conditions of 

convergence. If j  is relabeled k in equation (42) and V is 

multiplied on both sides and integrated, the result is 

i = 	<"j 'Fik 'k> 	
(43) 

On convergence then 

<1j I Pik'k>  - <*ijk'k>) = 0 	. 	 (44) 

It should now be noted that 

X.,. = 2 E <ip 	 (45) 

where X is the matrix defined in equation (27) of the previous section 

as the Lagrangian matrix. On convergence, then, X really is twice the 

transpose of the Lagrange multiplier matrix and, therefore, as 

stated in the preceeding section X becomes symmetric upon convergence. 

The MCSCF problem now reduces to finding an iterative procedure 

that upon convergence will satisfy equation (44). If a "better" 

set of orbitals is defined as 

= 
	

(46) 

where U is a unitary matrix and the Pock operator P is assumed to 

be independent of the orbital basis, then equation (44) can be 

written in this new basis as 



m 
(<P'IF Iiji'> - <±jkk> = 	 (47) 

1k' k 

Expanding the new orbitals in terms of the old yields 

(ULj<PiFjkhLlfl> - U,1 <t&IFjkIP>)Unk = 0 	. 	(48) 

The equation above can be solved directly for the set of all U's, 

however, this can be very time consuming. An alternative to this 

is to notice that U can be decomposed as follows 

U = II U
1j 	

(49) 

where TJ is the pair rotation matrix between orbitals I and j (see
ij  

pictorial representation in preceeding section). The diagonal 

elements of U are unit and the off-diagonal elements are zero 

except forU, U and U. They have the following values 

Uii = 	
= cosO 	 (50) 

U1 = -U j i = sinO 	 (51) 

where e is the angle of rotation between the two orbitals. If the 

assumption is made that the set of rotation matrices coute then 

equation (48) can be solved independently for each pair of orbitals. 

For the pair i,j this equation becomes 

35 



in 

	

- !. 	E (s<lIIiIFjkhPk> + C<p.IFjkhPk> ii 	13 	ki,j 

- C<l) i IFjkk hi' > + sZt,.j IF. 

+ c(s<ii'1IFh1> + 

c<j) IF 	hi' > + s<ip.IF.. i ii i 	• 31hP>) 

— s(s<4i IF 1*> + c<p.IF I ii j 	3 ii  3 

c<tj 
I 

Irii 3 
+ s<P.fF 1* j >) ii'.> 	

3 	ji 

+ s(s<i'1 13 IF..hi'i > + c<j. I F 
3 	ij 

I  ii' > 

- c<li'1 IFIi'1> + 

+ c(s<ii' 1 lF1 hP> + 

	

- c<li'i IFii j hi' > + S)
j Ir 33 3. hi'.>) 	 (52) 

where s = sinO and c = cose. If the additional approximation is 

made that 

cosc = f1_i2 	1 - 1/2 sin2 
	

(53) 

equation (48) can be expanded in powers of sinO alone. If one 

notices that since only real orbitals are used F. = F 1  and 
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expands (52) through second order in sinO the resultant quadratic 

equation in S is 

As 2 +Bs+C = 0 	 (54) 

with 

A = 1/2 (X_X1 ) + 3 Z 	 (55)
ij  

B = X 1  + X + 2 Y 	 (56)
ji  

CX 	X1 	. 	 (57)
ij  

The expressions for Y and 2 are 

= 2 Q.. <ihj> - Q11<ilhli> 	Q.<ithIi> 

+ F, (4 Gijk[iJ;kP.] - 2 GIk[jj;kI.l - 2 Gjjpjii ;k]) 
U. 

 

z =  Q (<ilhli> - <ilhli>) + (Q -Q11)<iIhuJ> 
ii 	ii 

+E [2GJk,([ii;k_[Ji;k2.]) + 2[ij;k](G • k2,-G k2.)] 
kk jJ 	ii 

 

Equation (54) can now be solved for sinO. If the values of s for a 

given A, B and C turn out to be complex, however, the second order 

- - 	 terms are dropped and 
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S = -C/B 	 (60) 
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Once the set of s is found the unitary matrix U is formed via 

U = e 	 (61) 

where S is the antisymmetric matrix whose i,j element is sine 
ii 

for j > 1. This last approximation is much less severe than the 

assumption that the set of pair rotation matrices commute. 

Next let us compare the convergence of this method with method 1 

described in the preceeding section. In Table II ten iterations of 

the HCSCF calculation involving all single and double excitations from 

the SCF reference on double-zeta H 2  0 are displayed. This calculation 

is identical to the water calculation presented in Table I with the 

only difference being their relative rates of convergence. Comparing 

the first few iterations in Table I and the upper set of iterations 

from Table II it is seen that meth.od 1 converges at a faster rate. 

After iteration 4, however, the calculation begins to diverge. Though 

method II appears to converge more slowly in the initial iterations, 

it continues to converge in all subsequent iterations. This tended to 

be our general impression of method 2, namely that it is much more 

stable than method 1. 

As in the case of method 1 an overrotation factor was also 

included. In the current procedure this factor is post-multiplied by 

all rotations in the antisymmetric matrix S. It has been our 

experience that if all orbitals are active in the NCSCF than a factor 

	

of around 3.0 leads to enhanced convergence. Comparing the two sets 	 - 

of iterations in Table II one notices that the lower table (overr. = 

3.0) converges much more rapidly. There is some danger, however, in 



selecting an overrotation factor that is too large. If this happens 

the calculations will tend to overshoot and the iterations will 

oscillate or diverge. Usually we increase this factor slowly from 

one iteration to the next to avoid this problem. 

In Table III a more typical }ICSCF calculation is presented. In 

- 	 this table all 36 iterations in a two configuration MCSCF calculation 

done on the ground state of ozone are listed. More details about this 

computation can be found in section IVB. This is a more representative 

MCSCF calculation because not all of the orbitals are active; in 

fact, just two are active while 11 are of the core and 17 are of the 

virtual varieties. Furthermore, only two configurations are used, 

putting this within the calculation range of all MCSCF practioners. 

Also due to these facts the computation should be inherently more 

difficult to converge. In practice, however, we found that this 

particular MCSCF converged rather well considering that only a firs t-

order method was employed. In examining the table one notices that the 

calculation converges roughly linearly with 4-6 iterations required per 

order of magnitude obtained in the sum of the squares of the difference 

of the Lagrangian matrix. In 36 iterations the energy was good to 

at least eight digits with the principle coefficient converged to 

around the 5th decimal place. From reviewing Tables I-Ill it should 

become obvious why method 2 is normally favored. 

D. An Overview of the Berkeley MCSCF Program System. 

In the previous sections the theoretical details of our MCSCF 

method have been presented. Starting with this section the 
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Table II. Convergence behavior of double-zeta water using method 

2 employing 361 configurations. 

Method 2 

iter sq. dif. overr E C1 

1 1.1 x 10 1.0 -76.15001468 .978735 

2 7.4 x 10 1.0 -76.15008792 .978594 

3 5.3 x io 1.0 -76.15013139 .978469 

4 4.1 x 10 1.0 -76.15015918 .978362 

5 3.3 , 10 1.0 -76.15017837 .978273 

6 2.8 x 10 1,0 -76.15019256 .978198 

7 2.5 x 10' 1.0 -76.15020366 .978133 

8 2.2 x 10 1.0 -76.15021267 .978076 

9 2.0 x 10 1.0 -76.15022018 .978025 

10 1. 1.0 -76.15022654 .977979 

Method 2 

iter. sq. dif. overr E C1 

1 1.1 x 0' 3.0 -76.15001468 .978735 

2 3.4 x 10_5  3.0 -76.15017392 .978221 

3 2.3 x 10 3.0 -76.15020942 .978052 

4 1.6 x 10_5  3.0 -76.15023072 .977931 

5 1.2 x 10 3.0 -76.15024408 .977824 

6 8.4 x 10_6  3.0 -76.15025256 .977731 

7 6.1 x 10 6  3.0 -76.15025802 .977650 

8 4.5 x 10_6  3.0 -76.1502615 977582---- 

9 3.3 x l0_6 3.0 -76.15026389 .977525 



Table II continued. 

iter. 	sq. dif. 	overr 	 E 	 C1 

10 	2.5 x 10_6 	3.0 	-76.15026542 	.977477 

0:0 	 -76.15026865 	.977256 
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Table III. Convergence behavior of a 2 configuration }ICSCF calculation 

on double-zeta ozone. 

iter sq. dif. overr. 
c1  C2 

E 

1 1.83 x 10 2  1.0 .938595 -.345021 -224.26895991 

2 8.88 x 10 1.0 .917032 -.398813 -224.29521303 

3 4.67 x 10 1.0 .908605 -.417657 -224.30227497 

4 2.48 x 10 1.0 .900898 -.434030 -224.30569014 

5 1.65 x 10 1.0 .895989 -.444077 -224.30763307 

6 8.99 x 10 1.0 .891033 -.453938 -224.30877964 

7 6.12 x lO 1.0 .888099 ..459652 -224,30945695 

8 3.34 x 10'
4 

 1.0 .885058 -.465481 -224,30985798 

9 2.30 x 10 1.0 .883359 -.468697 -224.31009471 

10 1.26 x 10 1.0 .881512. -.472162 -224.31023464 

11 8.82 x 10 1.0 .880543 -.473967 -224.31031727 

12 4.84 x 10' 1.0 .879422 ..476043 -224.31036604 

13 3.45 x 10 1.0 .878876 -.477051 .-224.31039488 

14 1.91 x 10 1.0 .878195 ,478303 -224.31041194 

15 1.38 x 10 1.0 .877890 -.478862 -224.31042204 

16 7.73 x 10 1.0 .877475 -.479622 -224.31042803 

17 5.68 x 10_6  10 .877308 -.479928 -224,31043104 

18 3.23 x 10_6  1.0 .877054 -.480392 -.224.31043370 

19 2.93 x 10 6  1.0 .876964 -.480556 -224.31043496 	- - 

20 1.39 X 106 1.0.... .876808 .e480841 . 	 224.31043571 

21 1.03 x 10_6  1.0 .876761 -.480926 -.224.31043616 

22 6.11 x 10
-7 

 1.0 .876664 -.481103 -224.31043644 

23 4.56 x 10 1.0 .876641 -..481145 -224,31043660 
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Table III continued. 

iter. sq. dif. overr. C1  C2 E 

24 2.75 x 10 1.0 .876581 -.481255 ¶-224.31043670 

25 2.05 x 10 1.0 .876570 -.481275 -224.31043676 

26 1.26 x 10 1.0 .876532 -.481344 -224.31043679 

27 9.37 x 10_8  1.0 .876528 -.481352 -224.31043682 

28 5.86 x 10 8  1.0 .876504 -.481395 -224.31043683 

29 4.33 x 10 1.0 .876502 -.481397 -224.31043684 

30 2.75 x 10 8  1.0 .876487 7.481425 -224.31043684 

31 2.03 x 10_8  1.0 .876488 -.481424 -224.31043685 

x 10 8  32 1.31 10 .876478 -.481442 -224.31043685 

33 9.5 x 10 1.0 .876479 -.481441 -224.31043685 

34 6.2 x 10 1.0 .876472 -.481452 -224.31043685 

35 4.5 x 1079 1.0 .876473 .-.481450 -224.31043685 

36 3.0 x 10 1.0 .876469 -.481458 -224.31043685 
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computational aspects will be considered. Before going on and describing 

the individual programs in detail an overview of the entire Berkeley 

XCSCF program system will be described. A flowchart of the system is 

laid out in Figure III. 

At the beginning of the MCSCF calculation the syimetry orbital (SO) 

integrals are computed and stored. This is done using a modified 

version of a program (written by Pitzer) entitled INTS. 61  This 

program calculates its integrals using the method of Rys polynomials. 62 

The SO integrals are a simple, fixed linear combination of atomic 

orbitals and have the correct molecular symmetry. These integrals are 

sorted in SOCONV and only those integrals needed in the SCF are stored. 

An SCF calculation is performed to get a set of starting orbitals. 

If many points are to be calculated on an energy hypersurface, the 

orbitals obtained at an earlier point can be used instead and the SCF 

and sorting steps can be omitted. 

After the SCF, the DRT is calculated using DRTGEN. The DRT needs 

to be computed only once for a given potential energy surface9 

However since it is very fast to construct and the output file needs 

to be saved, it is usually calculated at each energy point. The 

limitations on the type of configuration sets that can be handled in 

the CI are presented in section II. After the DRT is obtained the 

SO to NO integral transformation is carried out using TRANS. The 	 - 

orbitals are sorted from the SCF ordering to a more convenient 

ordering specified by the program DRT. More details about our 	 - 

transformation program will be presented in section hG9 



Next the CI is solved for the desired éigenvalue(s) and eigen-

vector(s). One will notice from the figure that there are two paths 

following TRANS. Either the programs BUGNE and DIAG or the programs 

BUGFT and DIAGFT are executed. The first two programs, BUGNE and DIAC, 

are the diagonalization tape CI programs presented by Brooks in his 

Ph.D. thesis. 51  In BUGME the Hamiltonian matrix is computed and stored 

on an output tape in the form of loops. DIAG reads this tape every 

iteration of the Davidson's diagonalization and computes the CI energy 

along with the corresponding elgenvector. The only problem with this 

is that the BUGNE output tape grows very rapidly with the size of the 

configuration set. On the Harris 800 minicomputer we have a limit of 

roughly 12,000 configurations. This leads to an output tape of around 

70 M bytes. Clearly for cases of more than 10,000 configurations it 

would be advantageous to eliminate this tape if possible. This was 

the impetus for developing two new CI programs BUGFT and DIAGFT. 

In the case of BUGTr this long tape has been shortened by:  a factor of 

approximately 100. This is accomplished by splitting up the work 

differently between the two programs. BUGFr now outputs only partial 

loops within the internal space (see section IIB). These are read in 

by DIAGFT and the lower halves of the loops are computed each iteration 

by specialized subroutines taking advantage of the particular character- 

58 60 
istics of the external space as first suggested by Siegbahn. 	Part 

of these special features were exploited in BUGME-DIAG, however, full 

advantage is now obtained in BTJCFT-DIAGFT. The additional external 

space subroutines were written by Douglas Fox. Coinputationafly 

BUGFT-DIAGFT is nearly identical in CPU time to BUGNE-DIAG. Since 
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Figure III. The Berkeley LDGUGA MCSCF Programs 
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partial loops are constructed during each iteration in the former case 

but not the latter it is obvious that performing the multiplications 

necessary in the Davidson diagonalization is the major time step. 

After the CI is finished the eigenvector is read in by TWOPDM, 

the two-particle density matrix construction program. TWOPDN constructs 

both the one and two-particle density matrices and writes them to an 

output tape. More on TWOPDN is presented in the next section. 

The program MCSCF next reads in the TWOPDM output tape and 

calculates the "improved" unitary transformation matrix. MCSCF first 

reads and sorts both the NO integrals and the density matrix elements 

into a suitable ordering and outputs each list to a scratch tape. 

Now the scratch tapes are sequentially read and the Pock matrix 

(Lagrangian) is constructed. Using either method 1 or 2 a new unitary 

transformation matrix is constructed. This is multiplied onto the 

old matrix and written on an output file, completing one iteration. 

For subsequent iterations the matrix U is read by TRANS along with 

the SCF vector. The two are multiplied to yield a new SO to MO trans-

formation matrix and the integrals are retransfornied. The iterations 

are continued until both the change in the energy and in the sum of 

the squares of the differences of the Lagrangian elements are below 

some threshold. 

- -. 	 E. Generation of the Two-Particle Density Mtrix. 

In any NCSCF method that handles large configuration sets the 

ability to generate the two-particle density matrix fast and efficiently 

is crucial for the orbital optimization stage to be competitive with 

the CI portion in a two-step NCSCP procedure. For methods designed 



to only handle a few select configurations this Is not as important 

a consideration. In a small NCSCF the vast majority of computer time 

is spent in the orbital transformation step. Constructing the Hessian 

matrix is also time consuming if a second-order MCSCF procedure is 

used, but all other steps are negligible if only a few configurations 

are employed. We designed the LDGUGA NCSCF program to be able to handle 

very large numbers of configurations and in cases like this the 

relative timings of the individual procedures can change drastically. 

In our largest NCSCF calculations of 17,678 configurations the CI 

Davidson's diagonalization took the majority of the CPU time followed 

by the generation of the two-particle density matrix and the diagonal- 

ization tape construction steps. In our more typical NCSCF calculations 

I estimate the time required to generate the two-particle density 

matrix at between 10-30% of the total. 

The traditional way to generate the two-particle density matrix 

is to read in the CI coupling coefficients, blCP,  from an external 

tape and combine these elements with the corresponding configuration 

coefficients, C 1 , to form GijkZ . The general formula for G Jky  is, 

GjkZ = 	C C 	. 	 (62) 
IJIJ 

In a conventional CI the coupling coefficients are stored on what is 

called the formula tape along with identifiers for its six indices. 

Since there are on the order of N 2 4 m coupling coefficients where N is 

the number of configurations and in is the number of orbitals this 

tape can get very large and is usually stored on an external device 

like a disc drive. If the number of density matrix elements is too 
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large to hold in central memory as is often the case either the tape 

must be read several times or the tape must be sorted so that all 

coupling coefficients that contribute to a given subset of G are 

sequential on the formula tape. Either of these solutions was 

deemed tooexpensive in our case. Furthermore, the fact that using a 

formula tape would severely limit the size CIs that could be handled. 

The approach we originally decided to implement did not use a 

formula tape. It was actually a modified version of the diagonaliza-

tion tape construction program, BUG}IE. In BUGME a block of integrals 

are read into core. This integral block consists of at least all 

integrals kI.. for a fixed i,j or a minimum of n2  where n is the number 

of orbitals. Usually we try to hold at least n 3  integrals or all 

jk2 for a fixed index i, since the program is more efficient if this 

is possible. Then all loops involving the integrals in core are 

generated. For each loop a value is calculated which is a sum of 

products of coupling coefficients and integrals, and the loop informa-

tion is written onto the diagonalization tape. These loops are read 

in and broken down using the loop-breakdown algorithm 51  (see section 

ILk) and in the next program DIAG the contributions to the individual 

Hamiltonian matrix elements are generated. 

In TWOPDN, our two-particle density matrix generation program, 

instead of holding a block of integrals in core the same space is 

assigned for the storage of the density matrix elements. In other 

- words, the density matrix is stored in the same structure as that of 

the integrals. 51  In this scheme unique density matrix elements with 

the same indices are stored sequentially (an example of this is that 
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the elements C4231, 4321  and C4132  are grouped together) and the one-

particle elements are stored together with the two-particle elements. 

Initially the arrays holding the density matrix are zeroed. Then 

using the loop-driven algorithm all loops contributing to the density 

matrix elements in core are generated. For each loop one or two 

coupling coefficients are computed. A given loop is next broken down 

using the loop-breakdown algorithm and the coupling coefficients are 

multiplied by the appropriate CI coefficients. These contributions 

are then summed into their respective density matrix elements. The 

address for a particular element is computed using the integral offset 

arrays defined by Brooks. 5' These arrays take advantage of full 

Abelian point group symmetry and no element which is zero by symmetry 

is stored. After all loops contributing to the block of density 

matrix elements currently in core are processed the finished block 

is written to an external file and the in-core block is zeroed. This 

entire process is repeated until all blocks have been constructed. 

Below is an outline of this procedure. 

Read in DRT arrays. 

Read in CI vector and store in array C. 

Compute.. block structure for G. the two-particle density 

matrix (D.N.) 

A. Loop over blocks of G and zero out current block. 

I. Loop over groups of D.N. elements where a group 

contains all j, k and 2. elements from a fixed 1. 	 - 

a. Calculate loops involving D.M. elements from 

group i and break down loops to obtain loop value d. 



loop from 1 to the number of lower walks 

(NLWK). m = 1, NLWK 

loop from 1 to the number of upper walks 

(NIJWK). n = 1, NUWK 

calculate d 

NLWK NUWK 
d = 	 C (INDX (IUWK+m) +n) 

X C (INDX (IUWK+m) +n) 

where C is the CI coefficient array, INDX is 

the lexical to reverse lexical ordering array 

and IUWK and JUWK are the primary upper walks 51  

for the right and left sides of the loop. 

b. d is multiplied by the appropriate coupling 

coefficients and summed into the correct G 

element. 

II. Write out finished block of D.N. elements to external 

tape and zero in core elements. 

Write an end-of file marker to the D.M. output tape. 

F. Construction of the Lagrangian Matrix. 

Since the Lagrangian matrix is used both in determining the new 

unitary transformation matrix and as an indicator of convergence (it 

- 

	

	 is symmetric upon convergence) it is necessary to generate it every 

iteration. The formula for this matrix is 

X 	 .k[rj;kfl + 
2 Q..<rJhJi> 	 (63) 

ir = 4 
	G  
jkk 
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where m is the number of non-virtual orbitals. These sums do not 

involve virtual type indices since density matrix elements involving 

these orbitals are zero. Therefore, 

X1  = 0 , j E virtual space 	. 	 (64) 

One also notices in equation (63) that the two-electron integrals 	
* 

involve at most one index in the virtual space. This means that 

integrals with two through four virtual indices are not needed in 

the NCSCF calculation and, therefore, need not be computed in the 

integral transformation step. This can result in a considerable 

savings and will be discussed in the next section. 

Constructing X then is a nm4  process where n is the total 

number of orbitals. In the extreme case of all orbitals being 

active, m=n, the calculation becomes n 5  in complexity. This is 

equivalent in effort to roughly 25% of the integral transformation 

time. So if our program is to be efficient in the general case 

then an efficient algorithm must be used to find X. The algorithm 

we adopted begins by sorting both the NO integrals and the density 

matrix elements and writing them to external storage. The integrals 

and density matrix elements are sorted into triangles, one for each 

i and j index, and each triangle holds all k and £ indices Elements 

that are zero by syimnetry are stored explicitly. After the sort is 

complete the k triangle of each is brought in and the following 

contributions toX are found 

52 

X10d.) =EGi.kj[rj;k2J 	 (65) 
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After the sort it is only necessary to read through the external 

storage tapes once to construct X. 

We also take advantage of many of the symmetry properties of 

11 	 X, C, and the integrals. Since our CI is restricted to non-degenerate 

point groups only symmetry of this sort will be considered. In such 

cases if i and r belong to different sy=etry species X1  = 0. 

This is tested for by the program and if i and r are of different 

symmetries the contribution to X1  is not computed. Also since both 

the MO integrals and the density matrices must be totally symmetric 

then the symmetry of I or r must equal the cross-product symmetry of 

j, k and X. Elements that do not satisfy this condition are equal 

to zero on the storage tapes, so in the program zero elements are 

checked for. These two procedures result in a considerable time 

savings in cases where molecular symmetry is present and do not 

appreciably slow down the program when none is present. 

In determining the matrix U using method 1 or 2 only the 

differences X -X 1  are needed never either X,j  or X alone.ji  

Therefore, if one knew in advance that a particular difference 

X ij •ji -X. 	 iJ were zero it would not be necessary to compute either X . or 

X. This turns out to be the case whenever the energy is invariant 

to rotations between orbitals I and J. This happens when any two 

orbitals are indistinguishable In the calculation such as when both 

are doubly occupied or empty in all configurations within the MCSCF. 

- - 	 Therefore, core-core and virtual-virtual rotations are invariant 

and the corresponding off-diagonal Lagranglan elements X core,core 

and Xvirtual,virtual need not be computed. Also for specialized 
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configuration sets many of the active'.active rotations are energy 

invariant. In the case of the complete active space (CAS) 3537  no 

active-active X elements need be computed. For all single and double 

excitations from a closed-shell reference all active-active rotations 	 -. 

between any pair of orbitals that are either both doubly occupied or both 

unoccupied in the reference are invariant. In the future minor 

modifications will be made to the optimization program so that these 

Lagrangian elements will not be computed. 

G. Avoidance of Computing the Complete Set of NO Integrals. 

In the preceeding section it was seen that integrals involving 

2, 3 or 4 indices in the virtual space are not needed in a first-order 

MCSCF method. If the total number of orbitals is n then the number 

of integrals in the complete set are proportional to n4 . If m is the 

number of non-virtual orbitals the number of necessary integrals is 

run 3 . In many NCSCF calculations m is less than half the total n. 

If m = n then one finds that only 1/2 of the total integrals need 

be calculated. This results in a substantial savings in space. 

Computing only the necessary integrals also saves a considerable 

amount of time. The transformation from the A.O. to the NO integrals 

is usually broken up into 4 steps as follows 

[iv,pa] 
	

(66) 

[ij;i.icTl 	EC.1iV;)Jc11 
	

(67) 	 - 

[ij;ka) =E cUk[ii;PcJ] 
	

(68) 
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[ij;kl] 	 CCYJZ 	. 	 (69) 

In the full integral transformation each step is proportional to 

in effort. If, however, 1, j and k are restricted to the set of non-

virtual indices then the amount of work necessary for each of the 

- 	 four steps becomes proportional to mnh,  m2n3 , in3n2 , and m 3  n  2 

respectively. If m is much smaller thann then the time to do the 

first quarter transformation dominates the calculation. 

In second-order MCSCF methods3537  and in CI gradient programs 30 ' 51  

additional integrals are needed. In the former case 2 virtual 

index integrals are used and in the latter case 3 virtual index 

integrals are required. These integrals can still be' computed in 

a time proportional to mn so this is no major problem. In the near 

future we hope to have an integral transformation program which 

generates all integrals except the 4 virtual index case. This, however, 

requires major rewriting of the program. Recently a version of our 

standard transformation program has been adapted so that all 1 and a 

subset of the 2 and.3 index integrals are computed. This program is 

proportional to mn4  in CPU time and but can't be used for second-order 

NCSCF or CI gradient calculations since not all integrals have been 

generated for these cases. 

H. Construótion and Use Of the Hessian Matrix. 

Up to this point all of the orbital optimization schemes presented 

have been of the first-order type. That is they involved some expansion 

of the unitary transformation matrix that was truncated to first order. 

For systems in which the CI coefficients are loosely coupled to the 
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.orbital expansion coefficients one finds roughly linear convergence in 

the MCSCF. One could expand the unitary matrix U to second order in 

the antisymmetric matrix T as follows 

= + T + T/2 
	

(70) 

and solve the resulting equations for T. However, f or most NCSCF 

calculations this does little to improve convergence. This is because 

usually the coupling of the CI and orbital coefficients is of the 

same order or more important than the second order terms in the orbital 

expansion equations. The second order changes in the CI coefficients 

and the second order coupling terms can also be computed to yield 

what is called a quadratic NCSCF. However, these additional terms 

are extremely expensive both in storage space and in time necessary 

to compute. There are, though, certain classes of NCSCF wavefunctions 

in which the CI and orbital coefficients are only slightly coupled. 

One class of these are complete active space (CAS) wavefunctions. 35-3 7 

The configuration sets for these wavefunctiona include a full CI 

amongst the active orbitals. For CAS systems then there are no active-

active rotations as these are all invariant to the energy. This is 

quite advantageous since rotations of this type usually couple 

strongly with the orbital expansion coefficients. 

Since :CASSCF's are well behaved and also predict reasonable 

properties for chemical systems we would like to be able to routinely 

compute them. Though they can currently be calculated using the 	 - 

methods 1 and 2 described earlier they tend to show nearly quadratic 

convergence if the second-order equations for T are solved to yield U. 



Expanding equation (16) using (70) and discarding terms higher than 

order 2 gives 

E=Q h + 
ii 	i 	

ijk9.. Glk,[ii;ki) 

+ 2T ir 
	

+ 2 	Gk[rJ ;k9.]] 
r 

+  2 E[ c'Tis T sr 4. 
(V'Q 

31
h  j r + 2 	Gfri;k2))] 	

(71) 
L_r 

ir s 	 jkk 

+ 2 7 
[ET1mTJ n (Gjjk[mn;k2 ] + 2EG  £ [xnk;n2.])] ikj 

ij 	mn 	 k9... 

= E0  + 2E[T1c1  + (ETiT5j)c1] 
ij 	 S 

+ 2 Z [ E TT. ( 	Gj . pjThfl ;ld] + 2 E Gjk.,[mk;n2 ])J 
13 mn 	 kk 

(72) 

The second equality makes use of the definition of the Lagrange 

multipliers defined in equation (43). Differentiating (72) with 

respec t to Tab  and remembering that T1 _T 1  one finds that 

DE  =2 

	

abCba) + E T1 (cjb+c.Di )  - 	T BT 
 ib ia ai ab 

i>a 	 i>b 

-E T
( +c

j
)+ T(c+cj  ) aj bj b bj aj a 

a>j b>j 

+ 2 E T1. (Yabij_Yba1j_Yabji+Ybj ) 	(73) 

i>j 

57 

with 
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Y 	=Q h +2 
abij 	bj ai 	E (GbJk[ai;1di + 2. Cbkj Y. [ak;]) 	. (74) 

k9. 

If the energy as a function of T is expanded in a Taylor's series about 

the unperturbed energy to second order the result is 

' E T  b T  d (_
2E  

E(T) = E0  +E Tb(aT 	
ab 

+ 2 	 T T 	 (75) 

ab 
ab 	 ab cd 

cd 
or 	

E = E0  + go T + 	 (76) 

where g is the gradient and H is the Hessian matrix. If the derivative 
IN 

of (76) is taken 

= 0 = g + lIT 	 (77) 

Comparing (73) with the equation (77) above one notices that 

g1 = 2(e1 _c) 	 (78) 

2 

H 	 =2(Y 	-Y ljk = Tij k9. 

	

T 	ijkk jiktijkji2.k 

+ 6. it (c 
 jk 

+C
k3 •) - 6  3 	ikki 

- 6ikj
+c 

 3 
.) + 6 

j 
 (c 

i 
 4-c ) 	. 	 ( 79) 

k 	P. Li 

Finally the system of equations 

=- 	 (80) 
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is solved for T and the unitary matrix U is formed via U = e. 

In order to solve the system of equations (76) the vector g 

and matrix H must be constructed. The gradient g is easily formed 

once the Lagrange multipliers have been computed. The real problem 

then is making the Hessian H. The ordering of the integral and 

density matrix elements used to construct the Lagrangian matrix X 

(see section lIP) is the same as needed for building H so an 

additional sort is not necessary. Currently our existing NCSCF 

program is nearly completed and we hope to have it operational by 	- 

October 1981. This Hessian matrix construction code is to be integral 

driven, meaning that a block containing all integrals with fixed 

indices I and j and variable indices k and 2. are brought into core 

and every H contribution using these integrals is computed. Once an 

integral block is in core the density matrix G is read sequentially 

block by block until all elements of C have been processed. Then the 

next integral block is read in and so forth.. If the Integral list ts 

to be read only once enough core space must be allocated so that the 

Hessian matrix will fit entirely in core. This is not as severe a 

requirement as it would seem since only elements of H between pairs 

of non-redundant rotations need to be computed. 37  In other words, 

this means that only terms involving two rotational pairs both having 

non-zero gradients need to be calculated. In a typical 14CSCF this 

results in a substantial reduction of the number of Hessians element 

- - to be formed and also reduces the amount of core storage necessary. 

In the special case of a CAS configuration set the necessary Hessian 

elements are very few in number since active-active, core-core, and 



virtual-virtual terms in the gradient are zero. 

Once H is found the system (80) must be solved. This can be 

done directly by finding H and solving for T =-H g. However, 

to find H 1  requires all elements of the Hessian matrix, not just 

the non-redundant terms. Also matrix inversion is an order N 3 process 

where N is the number of orbitals pairs. We instead use the iterative 

procedure of Pople et al. 
64 Their scheme requires only the non-

redundant elements of H and is order H 2  where M is the number of 

non-redundant orbital pairs. Another advantage of the iterative 

procedure is that the elements of H can be processed in any order 

and the entire Hessian matrix need not be in core at any given time. 

In our CI gradient system of programs we have previously employed 

this procedure to solve quite large systems of equations. 30,51,65  

We have found the procedure to be very successful and to have adequate 

convergence behavior. 

I. A Proposed Extrapolation Procedure to Liprove Convergence, 

Before closing section II I want to discuss an extrapolation 

procedure that is currently being developed for the LDGUGA system. 

The purpose of this is to speed up the rate of convergence by using 

information from the previous iteration in the formation of the 

new unitary transformation matrix U. Up to this point the only 

variable parameter in our NCSCF method has been the overrotation 

factor c. This arbitrary constant was chosen by the operator to 

increase convergence with the resultant matrix U being defined as 

60 

U=e 	 (81) 
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in method 2 where T is the usual antisymnietrix matrix of orbital 

rotations. What we would like to do is find a different factor for 

each i,j pair of orbitals such that i>j. If the antisymmetric 

matrix of these parameters is defined as r then U can be written as 

u = e! where ij 	 (82) 

What is now needed is a procedure to compute r. 

The method we decided to implement is the following. After the 

kth MCSCF iteration the matrices U(k), r(k) and g(k) are written 

to an external tape (g(k)is the current gradient matrix whose ij 

element is defined as X1 (k)_X 1 (k)). At the start of each orbital 

optimization step the new gradient, g(k+l), is generated. The storage 

tape from the previous iteration is read in and g(k+l) and g(k) are 

compared. How the ij elements of the two matrices differ determines 

the new multiplicative factor c 1  (k+l) such that 

r1(k+l) = cij(k+l)rjj(k) 
	

(83) 

This is done for all ij pairs (1 j), r(k+1) is computed and the matrix 

U(k+l) is constructed. This procedure is then repeated every iteration 

until the MCSCP has converged. The problem now reduces to finding 

r(l) and c(k). Initially we set r 1 .(1) = c for all ij pair (i>j). 

Usually a is set to 1.0 unless prior information is known indicating 

that another value should be used. At the end of the second iteration 

- 

	

	 the parameters c can be calculated. A relatively simple formula for 

computing c is as follows 



g3.3 
. . (k) 

c1(k+l) = 
g.

1 3 	 -gij 

We also have adopted a few additional restrictions to keep the 

orbital changes down to a reasonable size each iteration. First, 

no element of r can ever be greater than 10.0 or less than 0.10 

and second 

r (k+l)
il  0.333 < 	r13(k) 	

< 3.0 	. 	 (85) 

If any element exceeds these bounds it is set equal to the maximum or 

minimum value allowed. 

While this procedure is not very complex it is, nonetheless, 

expected to enhance convergence by a considerable amount. Extra-

polation, however, should only be used once one is reasonably sure of 

being within the vicinity of the desired minimum. That is, there are 

usually several distinct minima in the I1CSCF equations and if one is 

not careful a method like this will tend to force convergence to the 

wrong solution. 
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III. An MCSCF Study of the Effect of Higher Excitations in the Water 

Molecule 

The second application of the LDGUGA MCSCF method was in performing 

a series of computations on the water molecule. 33  These results were 

part of a test study of the effects of inclusion of higher than double 

excitations in CI and MCSCF calculations. We chose to do this study 

for a number, of reasons, the first having to do with the relative 

importance of triple and quadruple excitations. 

Traditionally, triple excitations were thought to contribute 

little to the total correlation energy. In a CI using canonical 

SCF orbitals double excitations alone accáunt for at least 907 of the 

correlation energy in closed-shall ground state systems of 10 electrons 

or 1ess6668  and it has been numerically shown that single excitations 

contribute very little to the correlation energy (at most a few 

percent) 69  This implies that triple, quadruple and higher excitations 

are responsible for less than lOX of the total correlation energy and 

it is widely believed that the quadruple excitations account for most 

of this remaining fraction. 7073  From many-body perturbation theory 

arguments it is generally assumed "that the dominant contributions 

of quadruple and higher even excitations in an extended CI expansion 

are to cancel the unlinked diagram errors of the double-excitations 

cr'. 73  

Unlinked diagram contributions are terms that are summed in at a 

given level of perturbation theory, but are cancelled in higher orders. 

7074 i According to the Linked Cluster Theorem, ' 	f the perturbation 

expansion is summed to infinite order only "linked" terms are 
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included, the unlinked terms simmvfng to zero. Since the relative 

size of the unlinked cluster terms increases as the square of the 

number of electrons N2  while the linked terms are linear in N it is 

apparent for large N that the unlinked cluster terms will dominate 

in a truncated expansion if they are frcluded. 73 ' 7583  

Recent calculations by Wilson, et a].. 84-87 however, have 

challenged these long held views. Their work suggests that the fourth 

order linked triples contribution to the correlation energy is much 

larger than had been previously believed. Originally they reported 

that this contribution for the neon atomemployi .ng a sizeahle basis 

set of Siater type orbitals (STOs) was -0.009073 hartrees compared 

to the fourth order linked quadruple result of 0.000405 hartrees, 84  

This would make the linked triples more important by over a factor of 

20. This triples term was later found to be in error with a corrected 

value of _0.,001134.85  Though this contribution is much smaller, it 

is still much larger than anticipated.. Around the same time period 

Wilson also computed the fourth order linked triples energy for water using 

75 a 39 STO basis set. 
86-87 

 Earlier Bartlett et al. calculated the 

fourth order linked single, double and quadruple diagram Contributions 

for this system and if all four terms are su=ed together the total 

fourth order energy involving only linked terms is -0.0110 hartrees, 

Bartlett also determined that the unlinked terms in the same order 

add up to -0.0100 hartrees. Since single and double excitation Cl's 

are often corrected for unlinked cluster effects is it not then also 

necessary to correct for the linked terms as well? 



One reason for choosing H 2 
 0 as our test molecule is that we 

needed a system with a reasonably large number of single and double 

excitations in which the number of triple and quadruple excitations 

would be small enough to be computationally feasible. As it turns 

out if a double-zeta basis set is employed both of these conditions 

are met. In our CI studies of this 14 orbital system 17,678 configu-

rations are generated if all fourfold or less excitations are 

included. 

Another goal of this research is to determine if the relative 

importance of classes of excitations changes when different sets of 

molecular orbitals are used. To the best of our knowledge little 

work has been done in this area previously. We were primarily 

interested in the effects found in going from the SCE to the MCSCF 

orbitals within a fixed configuration set. For example, as stated 

earlier it was expected that for a straight CI employing SCF orbitals 

triple excitations would have little importance, however, if MCSCF 

orbitals were used instead would this still be the case? 

Lastly the water molecule was selected because it appeared to 

be well behaved in the NCSCF procedure. For our largest MCSCF 

calculation of 17,678 configurations it was essential that the 

computation converge fairly quickly since each iteration was quite 

expensive. This particular NCSCF wavefunction at the time it was 

calculated included over 100 times as many configurations as the 

next largest published calculation (60 configurations). 18  Though 

unpublished calculations of several hundred configurations had been 

performed this is still a very large increase in the size of the 

65 
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MCSCF problem. 

Very few variational studies on the effects of triple and quadruple 

excitations in molecules had been performed prior to this work. Of 

the existing previous investigations a number were done by Shavitt 

and co-workers. 8892  These studies were carried out of a number of 

small molecules: BR3 , H20, H2C=CH2  and BeH2 . The BH.3  investigation 

was performed using a minimum basis set and found that the triple and 

quadruple excitations contribute 0.8% and 1.9% of the full CI correla 

tion energy respectively. 88  Next water was examined employing a STO 

double-zeta basis set and the triples and quadruples were found to 

recover 1.5% and 3.0% of the CI including all excitations through 

quadruple correlation energy. 9°  In this study, however, only the 

vaience electrons were correlated so these percentages are.only 

approximate. What is really interesting is their results for water 

are very basis set dependent. When they switched to a contracted 

Gaussian type orbital (GTO) basis the corresponding values for the 

triple and quadruple excitations became 0.8% and 4.3%. In a later 

study, minimum basis ethylene was found to have a triple excitation 

contribution of 0.5% compared to a 6.7% figure for the quadruples. 91  

Lastly the triples and quadruples correlation energy contributions 

have been estimated for double-zeta plus polarization BeH 2  at 0.4% 

and 2.4% respectively. 91  These earlier studies then seem to suggest 

that for small systems the triple excitations are any where from 10 

to 50% of the importance of the quadruple excitations. 

A. Theoretical. 

For our study of the water molecule we adopted a procedure 
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similar to one used previously by Hosteny, Gilman, Dunning, Pipano 

and Shavitt (HGDPS). 90 In these calculations a contracted Gaussian 

double-zeta basis set was employed as in the previous HGDPS study. 

The precise designation of this basis set is 0(9s5p/4s2p), H(4s/2p). 9394  

We felt that this basis set was adequate f or our purposes as we wished 

to observe the trends in a series of CI and MCSCF calculations and 

not predict quantitatively chemical properties such as the equilIbrium 

geometry. For the hydrogen atoms a scale factor of 1.2 was multiplied 

to their Gaussian s function coefficients. The exact cartesian 

geometry used was 0(0.0,0.0,-0.009000), H(±1.515263,0.0,-1,058898). 

This geometry is very close to the single and double excitation CI 

theoretical equilibrium geometry determined for double-zeta H 20. In 

internal coordinates this geometry corresponds to an 0-H bond distance 

of 0.976 A and an H-0-H bond angle of 110.6 ° . 

The major difference between our study and that of HGDPS is that 

in the present investigation all ten electrons were correlated whereas 

in their earlier study only the eight valence electrons were 

correlated. The freezing of the core electrons, that is restricting 

the core orbitals to be doubly occupied in al 1 configurations within a 

CI calculation, generally has little effect on the predicted chemical 

behavior of the system involved. 95  However, the amount of correlation 

energy obtained from these core excitations is generally a large 

fraction of the total. The reason these excitations are usually 

neglected is that the energy lowering due to the core-core and core-

virtual type excitations is roughly constant with respect to conforma-

tional changes in the molecule or between low-lying energetic states. 

Since unlinked cluster contributions to the energy increase as the 



number of correlated electrons goes up, 7072 ' 74  the relative 

iinportance of higher excitations should increase if excitations are 

allowed out of the core orbitai.s. 

Initially a canonical SCF wavefunction was determined for the 

ground state of water. Following this a series of CI computations 

were performed to investigate the effects of inclusion of various 

classes of excitations. The SCF and subsequent CI and MCSCF calcu-

lations were carried out in C 2 , synnnetry. Four different CI 

calculations were performed using the SCF orbitals: the first 

containing all single excitations (CIS), the second all single. and 

double excitations (CISD), the third all single, double and triple 

excitations (CISDT) and the fourth all single, double, triple and 

quadruple excitations (CISDTQ). The number of spin and spatially 

adapted 
1
A1  configurations of each of these sets is 20, 361, 3203 

and 17678 respectively. 

In addition to carrying out CIs employing the SCF orbitals for 

these four configuration sets MCSCF calculations were also performed 

in each of these spaces. The four computations will be labeled NCS, 

14CSD, MCSDT and NCSDTQ respectively. Since excitations from all 

occupied into all virtual type orbitals were included, all orbitals 

have a partial occupancy in the MCSCF sense. Therefore, instead of 

the typical four rotation classes: core'-active, virtual-active, 

core-virtual and active-active, only the last class, active-active, 

Involves non-zero rotations. This fact was anticipated to aid in 

NCSCF convergence since each of these classes has a different 

convergence behavior. For these water calculations convergence method 

Aj 



2 was used for the majority of iterations with method 1 being 

employed for the remainder. Additional discussion in convergence 

can be found in sections IIB and IIC. 

B. Water Energetic Results. 

Our energetic results for water are summarized in Table IV. Also 

included in this table is the full CI result of Saxe, Handy and 

Schaefer (SHS) 96  for H20. Their computation was done with the 

identical basis set and at the same geometry employed here. The 

full CI calculation was actually carried out about six months after 

the completion of the present study. Therefore, at the time of our 

calculation the "true" correlation energy was not known. 

For the 1A1  ground state of water an SCF energy of -76.009838 

hartrees was found. Comparing this result to the 256,473 configuration 

complete CI of SHS one notes that the actual correlation energy for 

a double-zeta basis set at this geometry is -0.148028 hartrees which 

corresponds to a total energy of -76.157866 hartrees, The largest 

straight CI we performed was CISDTQ. For this 17,678 configuration 

CI a total energy of -76.157626 hartrees was obtained. In the SDTQ 

case 0.147765 hartrees of correlation energy was recovered or 99.8% 

of the true correlation energy. This result supports the view -  long 

held by quantum chemists that excitations higher than the quadruple. 

level are unimportant for the size systems we are dealing with.. 66-68 

Indeed in the present example higher than quadruple excitations 

account for less than 0.2% of' the correlation energy. 

What percentage of the correlation energy is recovered in the 

standard CISD calculation? It turns out that 94.7% of this energy 
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is obtained. If this result is subtracted from the 99.8% value for 

CISDTQ one finds that together the triple and quadruple excitations 

account for only 5.13% of the true correlation energy. The total 

energy of CISDT is only slightly lower than the CISD result ('-76.151156 

compared to -76.150015 hartrees). This implies that in the CISDT 

calculation the addition of the triple excitations only recovers 0.77% 

of the full CI correlation energy. This finding agrees with earlier 

work done by Shavitt and co-workers, 8892  who found the addition of 

triple excitations to have only a small effect on the total energy. 

If the CISDTQ and CISDT energies are subtracted it was found that the 

inclusion of the quadruple excitations lowers the energy by 0.006470 

hartrees which is 4.4% of the real correlation energy. 

Since the CIS energy is equal to the SCF energy due to Bri1louins 

theorem97  the CI containing only all double excitations of SHS is 

compared to our CISD calculation to estimate the effect of including 

single excitations in CIs containing at least all single and double 

excitations. Subtracting the two energies yields a difference of 

0.000837 hartrees or 0.57% of the correlation energy. Rowever, the 

total energy is not additive in the sense that, E(full CI) 0 ESCF  + 

E(CIS) + E(CID) + ..... The effects of singles in CISD was found 

to be 0.57%, but in CIS itis 0.00% of the correlation energy. Since 

it had been suggested that triple excitations were more important 

- 	 than previously believed 8487  (see Section III) might not then the 

triple excitations be correspondingly more important in CISDTQ than 

in CISDT. In the last paragraph the energy difference between the 

two CIs had been entirely attributed to the addition of the quad-

ruple excitations, however, some of this lowering could be due to an 
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increased importance of the triple excitations through their inter-

action with the quadruples. To see if this is so the single excitation 

lowering energy of 0.000837 hartrees is added to the CI containing all 

double plus quadruple excitations (CIDQ) result of SHS and this sum 

is compared to the total energy of CISDTQ.. This procedure furnishes 

a value for the triples energy lowering of 0.001069 hartrees or 

0.72% of the correlation energy. This value is nearly the same as 

the previous estimate of 0.77%. Therefore, unless the effect of 

single excitations in "CISDQ" is much different from the value found 

for CISD it is safe to conclude that the triple excitation contribution 

is indeed small, on the order of 1% of the true correlation energy. 

Next the effects of changing from the SCF to the MCSCP orbitals 

for our four CI expansions are examined. The greatest change in the 

amount of correlation energy recovered is found in going from CIS 

to NCS. As stated before the CIS energy is equal to the Sc energy 

and has a value of -76.009838 hartrees. However, the NCS energy is 

much lower than this at 46.083339 hartrees. This wavefunction 

contains only 20 configurations but accounts for approximately half 

the full CI correlation energy (49.7%). It was shown earlier that 

single excitations in CISD and most likely in CIs containing 

additional higher excitation classes as well are associated with 

roughly 0.5% of the correlation energy. This implies that 'the 

relative importance of a particular class of excitatiOns can be 

drastically changed by modifying the orbitalbasis. One way of 

gauging the extent of the differences between two orbital basis' 

sets 	is to compare their reference configuration energies. 
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If the reference configuration is designated (1), then the reference 

energy of (1) is given by H11  + E nucrep  where H represents the 

Hamiltonian and E 	is the nuclear repulsion energy. In the NCS nucrep 

case the reference energy is -7560935 hartrees, up 0.40049 hartrees 

from the SCF energy. Since this is a very large energy change the 

CIS and HCS orbitals must be substantially different. 

What accounts for this dramatic energy lowering in the NCS case? 

This is easiestly explained if one invokes the "super CI" or 

Brillouin-Levy-Berthier (BLB) outlook on the MCSCF problem. 5 ' 13 ' 15 ' 16  

The BLB approach takes advantage of what is called the extended 

Brillouin s theorem. 
5 This theorem proves that for a converged NCSCF 

wave function the Hamiltonian matrix elements between the NCSCF wave-

function and the set of singly excited configurations formed from 

are identically zero. Using this theorem an iterative }ICSCF 

procedure can be envisioned. First the Hamiltonian matrix within 

the space ofand all singly excited configurations is formed. 

Then the secular equation is solved and the lowest eigenvector is 

then used to calculate the changes in the orbitals. Next, the 

integrals are retransformed and the process is repeated. At convergence 

the top row and column of the super CI Hainiltonian is zero except 

for the diagonal element which is the NCSCF energy. What this Implies 

is that for a converged NCSCF solution all relative single excitations 

- 

	

	 have been annihilated. Now lets return to the MCS case. The single 

excitations from MCS are just double excitations with respect to 

the SCF reference. As was shown earlier double excitations from the 

SCF account f or roughly 94% of the correlation energy in CISD and, 
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therefore, annihilation of these configurations should lead to a 

large energy lowering for MCS over CIS. As we discovered this was 

indeed the case with MCS accounting for over half of the CISD 

correlation energy. 

Moving on to the NCSD results a total energy of -76.150269 

hartrees is obtained. This result is only 0.0003 hartrees below 

the corresponding CISD energy. This can be understood by employing 

the same reasoning as used to explain the massive energy lowering 

for MCS. In the BLB5 "3 ' 15 ' 16  picture the MCSD wavefunction annihilates 

certain classes of triple excitations, these being the corresponding 

single excitations for this MCSCF. Since the triple excitations are 

relatively unimportant in an energetic sense, we would expect little 

difference between the energies of CISD and MCSD. Also interesting 

to note is that while the difference between CISD and CISDT is 

.001141 hartrees the splitting of CISD and NCSD is only 0.00254 

hartrees. Therefore, in this instance annihilation of the triple 

excitations in MCSD recovered less than a quarter of the triples' 

contribution to the energy of CISDT. 

The triple excitations in MCSDT are, however, very important. 

For this MCSCF a total energy of -76.155765 hartrees was found or an 

energy lowering relative to CISD of 0.005750 hartrees. This 

difference is over 5 times as large as the corresponding lowering of 

CISDT relative to the single and doubles CI. The extended Brillouin's 

theorem 
5  can again be invoked to explain this result. In the CISDT 

case the triple excitations were found to be rather unimportant, 

however, in the NCSDT the annihilation of the corresponding quadruple 
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excitations increased the importance of the triple axcitations 

drastically. This is due to the fact that in the CIs performed 

using SCF orbitals the quadruples were second only to the double 

excitations in energetic importance. 98.6% of the full CI correlation 

energy was obtained for NCSDT (compared to 95.2 for CISDT) or over 

70% of the remaining correlation energy beyond the single and double 

excitation CI. 

For NCSDTQ we would expect very little energy lowering for two 

reasons. One that quadruple excitations are expected to be unimportant 

and their annihilation would recover little additional correlation 

energy and two, that CISDTQ has already accounted for over 99.8% of 

the correlation energy leaving very little left to include. As 

anticipated NCSDTQ was only marginly lower in energy than CISDTQ, 

recovering only 27% of the remaining correlation energy. Therefore in 

the straight CI and in the MCSCF calculations the relative importance 

of triple and quadruple excitations was switched. In the case of the 

SCF orbital CIs, quadruple excitations accounted for 4.4% of the 

correlation energy while the triple excitations only netted 0.8%. 

The order is inverted in the MCSCF calculation with the triple 

excitations worth. 3.7% versus the quadruple excitations garnering 

1.3% of the correlation energy. This result shows that the level 

of importance of a given class of excitations is not an absolute, 

- 	 but is dependent of the choice of orbital basis. 

C. Comparison with Perturbation Theory Results. 

In this section the current results are cotnapred with the 

perturbation theory predictions of Bartlett 98  and of Wilson and 
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Guest. 99 Their calculations were all performed using the Noller-

Plesset variant of many-body perturbation theory (NBPT) 10°  and 

were carried out using the same double-zeta basis set and molecular 

geometry specified in section lilA. Their results are summried in 

Table V. 

Summing the second and third order energies together with the 

SCF energy yields -76.150707 hartrees which is very close to the 

CISD result of -76.150015 hartrees. A calculation of this type is 

abbreviated NP3. In general one would expect to find the single and 

double excitation CI energy to be only slightly more reliable than 

the sum of the perturbation energies through third order. In fact 

there exist CI schemes in which the sum to third order using Muller-

Plesset partitioning is obtained on the first iteration Of the CI 

procedure. 10' With reference to CISD, the missing ingredients in 

MP3 are the effects of single excitations (which do not enter until 

the fourth order) and relaxation of the reference configuration 

with the remainder of the configuration set. 

Adding the fourth order single, double and quadruple excitation 

contributions to 11P3 yields what is called SDQ-MBPT(4) by Bartlett. 

In the case of water the energy obtained for SDQ-MBPT(4) is 76.155513 

hartrees and this calculation recovers -0.145675 hartrees of correlation 

energy. Computing this energy is proportional in time to finding 

the CISD solution, that is they are both 0 6  processes with respect 

to the number of basis functions. 100"02  However, the SDQ-11BPT(4) 

result comes much closer to the exact energy recovering 98.4% of 

the correlation energy and 70.0% of the energy attainable beyond CISD. 
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What is missing now from the fourth order energy is the triples 

diagram contribution. Calculating this term, however, is inherently 

more difficult than performing a singles and doubles CI and requires 

an 	process with respect to the number of basis functions) 00  

Wilson and Guest found this term to be equal to "0.001364 hartrees 

and when suimned into the SDQ-.NBPT(4) result yields -0.147039 hartrees 

of correlation energy. A calculation of this sort is labeled 

SDTQ-NBPT(4) and should include the majority of the triple and 

quadruple excitation effects found in CISDTQ. This is indeed the 

case with SDTQ-MBPT(4) obtaining 99.5% of the CISDTQ and 99.3% of the 

full CI correlation energy. 

Also performed by Bartlett was a coupled cluster calculation'°°  

which is very similar to an !1BPT computation except that now certain 

diagrams are summed to infinite order. The calculation that was 

carried out is called coupled cluster doubles (CCD) and in it double 

and disconnected quadruple excitation diagrams are summed to all orders. 

The straight CCD result is -76.155273 hartrees and recovers 67.0% 

of the additional correlation energy past CISD. What is neglected 

from this calculation is the effect of single and triple excitations. 

Adding the fourth order singles and triples contribution to CCD yields 

-76.157545 hartrees or a correlation energy of -0.147707 hartrees. 

This is the most extensive perturbation theory calculation done 

on this particular system and obtains 99.8% of the correlation energy. 

All three calculations SDQ-NBPT(4), SDTQ-MBPT(4) and CCD plus 

the fourth order single and triple contributions are much less 

expensive to compute than CISDTQ, but recover almost all of the 
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additional correlation energy beyond CISD. This would seem to suggest 

that these pertubation theory approaches are the way to go if additional 

correlation energy is required past the CISD level. Though this 

appears to be the case for water there are many problems associated 

with HBPT which would tend to diminish the usefulness of these 

procedures in general. First, Nller.-Plesset partitioning is not 

well-defined for open-shell systems unless 	is found using the 

unrestricted Hartree-Fock (UHF) formalism.' 03  The problem with UHF 

is that its solutions are not generally eigenfunctions of 

Secondly, if the molecule is not well described by a single configur-

ration, HBPT expansions about the dominate reference often converge 

very poorly. 

In closing this section a series of A and Bk 
 104-107

calculations 

performed on H 2 
 0 using the same basis set and geometry are presented 

and compared to our CI and NCSCF results. These computations are 

unpublished work done by Laidig and Schaefer and are slTnmlarized in 

Table VI. For readers who are unfamiliar with the A and Bk 

procedures, their theory is presented in Appendix I. 

The basic Idea behind this series of calculations was to correctly 

include the effects of single and double excitation configurations 

while using the A.K  or B. perturbation procedure to estimate the 

triples and quadruples contribution to the correlation energy. If 

the perturbation procedures are carried out to infinite order the 

CISDTQ energy of -76.157626 hartrees will be obtained, so all energy 

comparisons are relative to CISDTQ and not the full CI resu1t In 

both the Ak  and  Bk  calculations the primary configuration space P 
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was chosen as the set of the reference plus all its single and double 

excitations and will be designated SD, The secondary space Q was 

composed of the set of all triple and quadruple excitations henceforth 

called TQ. In the A.K  procedure the P space Hamiltonian is diagonalized 

to yield ip and Epstein-Nesbet perturbation theory10809  is applied 

to this wavefunction. If this expansion is truncated after the second 

or third orders 	the subsequent calculations will be labeled Ak  or 

Ak respectively0 Analogously EA  and E 	 are defined as the second 
3 	 k2 	k 

and third order energies. In the second order Bk  method  (Bk ) the 
2 

off-diagonal Q-Q block of the Hamiltonian is set to zero and the 

matrix is diagonalized. EB  is found by subtracting the P space CI 
k 

energy from the energy associated with the modified P + Q Hamiltonian. 

B 
k3 	 Bk 

calculations can also be carried out if desired and E 	is found 

using equation (95) found in Appendix I. The time required 3to 

perform an Ak  or Bk  calculation is much less than in the corresponding 
2 	2 

CISDTQ case as the vast majority of the Hamiltonian elements are 

never computed. If the calculations are extended to the third order, 

however, all elements of the H matrix must be determined. It is 

nevertheless a simpler procedure than the CI since the Hamiltonian 

elements are only used once as compared to once per diagonalization 

iteration in the CI. 

For water the Ak  procedure yielded a total energy of -76.158226 
2 

hartrees which corresponds to a correlation energy of 0.148388 hartrees. 

This is 100.4% of the CISDTQ correlation energy and 107.9% of the 

triples and quadruples contribution. Using the Bk  method a somewhat 
2 

lower energy of -76.158871 hartrees was found and the resulting 
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correlation energy is -0.149033 hartrees. The Bk  energy is lower than 
2 

the A value by around 600 microhartrees. This is expected because 
2 

relaxation of the P by the Q space is allowed in the Bk , but not the 
2 

A procedures. The fact that both the Ak  and  Bk  energies were below 
2 	 2 	2 

the full CI result was not anticipated, however %  This is most likely 

due to the oscillatory nature of Epstein-Nesbet perturbation theory. 73  

In most cases E3  is positive and a substantial fraction of the size of 

E2  in magnitude. Since PCISD  is a very complete zeroth order wave. 

function it is reasonable that E 2  overshoots and E3  corrects back 

toward the CISDTQ energy. 

Moving on to the third order results, E 	and EB  are indeed 

positive with values of 0.001436 and 0.001746 hrtrees rspectively. 

Since E 	and EB  are -0.008211 and -0.008856 hartrees, this makes Ak2 	k2  
the third order energies between a factor of 5 and 6 smaller than the 

correéponding second order results. In terms of total energies A.k 
3 

yields -76.156789 hartrees while Bk  is slightly less at -76.157125. 
-3 

This means the A.K  procedure recovers 99.4% of the CISDTQ correlation 
3 

energy and that Bk  net 99.7%. These results are impressive since 
3 

they obtain a1mst all the correlation energy of CISDTQ and are 

substantially simpler to obtain. To get comparable accuracy in NBPT 

all fourth order perturbation terms must be computed. 

D. Wavefunctibn Analysis. 

In this section the various wavefunctions for water will be 

considered. The principle CI coefficient C 1  for our eight CI and 

HCSCF calculations and for the full CI of SHS are listed in the 

last column of Table IV. In all cases this configuration is the 
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reference configuration 

= la 
2  2a1  2  lb2  2  3a12  lb 12  

In addition the ten largest CI coefficients and their corresponding 	 - 

configurations are displayed in Table VII. There is no table for 

the ordinary CI results, as wavefunctions of this sort have been 

examined previously in the literature 111  and we found no peculiar 

features warranting additional attention. 

For the three calculations using the SCF orbitals, CISD, CISDT, 

and CISDTQ, the corresponding values of c 1  are 0.97874, 0.97819 

and 0.97542. All three of these coefficients are typical of previously 

reported values for the 1  A ground state of water. 111 Also the 

fact that c1  drops in magnitude with the addition of each new class 

of excitations is to be expected since if the off-diagonal Hamiltonian 

elements connecting the new class to the previous ones are small as 

expected, the coefficients for this new class will also be small. 

This will tend to decrease the importance of all the principle 

configurations by a constant factor. Continuing in this trend is the 

primary coefficient for the full CI of SHS with a value of 0.97528 

which is very close to the CISDTQ aresult. Moving on to the NCSCFS 

the values for MCSD and HCSDTQ are 0.9773 and 0.9630 respectively. 

Each of these values is slightly less than the analogous straight CI 

result. This is reasonable since one usually expects the value of 

the principle coefficient to decrease in NCSCF versus ordinary CI 

calculations with the same configuration list. The reason behind this 

is that the SCF orbitals used in the standard CI particularly favor 
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the reference configuration due to the nature of the SCF procedure. 

Also the MCSDTQ c1  is smaller than the NCSD value as expected. 

In the 11CS and NCSDT cases one notics for the first time a 

- 	 qualitative change in the form of the wavefunction. In both of these 

calculations the value of the most important coefficient is much 

smaller than in the previous examples, namely 0.89326 for NCS and 

0.90537 for NCSDT. Since using the SCF orbitals in a CI involving 

only single excitations leads to zero correlation energy one would 

expect the orbitals to change dramatically in the NCS. The low 

value of c1  for NCS suggests that the orb itals did indeed change and 

the large amount of correlation energy obtained for this wavefunction 

implies that the reference-single excitation Hamiltonlan matrix 

elements were relatively big. The situation for NCSDT is very similar 

toMCS. This can be seen both in comparing their principle 

coefficients and also in examining their orbitals. The final NCSDT 

orbitals were much more like the NCS than the MCSD orbitals and would 

have made a much better set of starting orbitàls In the I4CSCF calculation. 

The fact that c1  is slightly larger in NCSDT than in NCS is due to 

the presence of double excitations which tend to favor a greater value 

for the reference coefficient. 

Next lets examine the ten most important configurations for the 

four NCSCF calculations. Since the wavefunction for NCSD most closely 

resembles its corresponding CI its coefficients will be examined first. 

As expected the majority of the most important configurations are 

double excitations namely 8 of the first 10 largest coefficients. 

Besides the reference the list also contain one single excitation, 
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1b1+2b1 , as the eighth most important configuration. However, the 

double excitation between these same orbitals, 1b 
2  1-)--2b  2 

 
2  is second only 

to the reference in importance and, therefore, one would expect the 

corresponding single excitation to be relatively important also. 

Comparing the MCSDTQ wavefunction to that of MCSD we note that 

9 out of the 10 most important configurations are on both lists. 

This implies that qualitatively the two wavefunctions are very 

similar. Furthermore, the major configurations for these two MCSCF 

wavefunctions are nearly identical with. their corresponding straight 

CI results. The most noticeable difference between NCSD and MCSDTQ 

is in the relative importance of the 1b 1+2b1  excitation. In MCSDTQ 

the configuration is now the second in importance, while the double 

excitation, 1b-*2b has moved down to the fourth position. This is 

the opposite of the NCSD ordering. We have no explanation for this 

result except to note that the 1b 1 2b1  excitation is the most important 

excitation in NCS. 

Turning now to the NCS and MCSDT wavefunctious one notices that 

the nine excitations, No. 2-No. 10, are all single excitations. 

Since we only included single excitations in I4CS this is trivially 

obvious, but why is this the case in MCSDT which contains double 

and triple excitations as well. One possible explanation, for this 

1615, , 

can best be examined by reverting to the BLB picture, 5 13, In 

this framework the triple excitations at convergence have annihilated 

the quadruple excitations. If the final orbitals are similar to the 

HCS orbitals then the reference and its single excitations are strongly 

coupled. Since triple excitations are double excitations from the 
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class of singly excited configurations than the corresponding 

Hamiltonian matrix element between a given single and triple excitation 

is expected to be relatively large. In diagonalizing the H matrix this 

allows the triples to indirectly couple rather strongly to the reference 

configuration. 

Up to now we have been stressing the differences between the 

various orbitals used and between the values of the configuration 

coefficients. However, it should be noted that the overlaps between 

the total wavefunctions for any of these CI or NCSCF calculations is 

very high, at least 99% and their A0 density matrices are very similar. 

In the cases where the principle coefficient was much smaller than the 

typical value of 0.97 (NCS and HCSDT) the orbitals also varied a lot. 

Since all of these wavefunctions are very complete from a total 

energy viewpoint (.our worst correlated calculation NCS recovered 

99.9% of the total energy) the orbital and configuration coefficient 

changes must be coupled in a cancelling manner, 

E. Conclusions for Water. 

The most interesting result obtained from the series of MCSCF 

and CI calculations performed on water was that the relative importance 

of classes of excitations depend largely on the orbital choice. The 

most dramatic example we found was f or the CI involving all single, 

double and triple excitations. In the CI employing SCF orbitals the 

double excitations were the most important class. However, using the 

MCSCF orbitals the single excitations became the most important. In 

CISDT the triple excitations accounted for only 0.8% of the correlation 

energy, but in MCSDT 3.7% of this energy was recovered. Therefore, in 
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the latter orbital basis the triple excitations were more important 

by nearly a factor of five. 

It was also found that the small NCS calculation recovered 

almost 50% of the true correlation energy. This calculation with a 

total of 20 configurations obtained 49.7% of the correlation energy 

of the 256,473 configuration full CI. It would seem then for molecules 

MCS calculations would be a relatively inexpensive way to get a 

significant fraction of the correlation energy. 

Lastly it was discovered, at least in these calculations, that 

triple excitations in CIs using canonical SCF orb.itals were much 

less important than Wilson had initially claimed.. As expected the 

quadruple excitations turned out to be the dominant excitations 

beyond doubles and as a class recover over 6.5 times as much energy 

as the triple excitations. This concluszion agrees well with past 

higher excitation CI studies of Shavitt and co-workers.. 
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IV. An MCSCF Study on the Ground State of Ozone 

In our second MCSCF study we chose to investigate the 1k1 .ground 

state of the ozone mo].ecule. 34  In contrast to water, ozone-is not 

correctly described using simple single-configuration SCF theory. 

In fact it was found in an earlier study that a triplet state of 03  

was predicted to be below the lowest 1A1  state by 2 eV at the SCF 

level 112 Therefore, to attain qualitative accuracy additional 

configurations must be included in the theoretical framework. The 

simplest such treatment is the two-configuration SCF (TCSCF) 

procedure in which both the orbitals and the CI coefficients are 

variationally optimized. In this paper a number of different results 

are presented from calculations performed beyond the SCF level, These 

include the TCSCF and a series of larger }ICSCF and CI results. 

A feature we wish to explore is the extent of biradical character 

present in the ground state of 0 3 . In the mid 70s Goddard and 	- 

co-workers 2 ' 113  discovered that this state of ozone could be well 

represented as a biradical, that is, it could be described as a system 

containing two singly occupied iT orbitals that do not interact. They 

found that if the highest ii orbital is represented by a GVB pair the 

resultant non-orthogonal orbitals are centered on each of the terminal 

oxygen atoms. Furthermore, these two singly occupied orbitals have 

a very small overlap (S = 0.28) and are, therefore, only weakly 

interacting. The corresponding wavefunction composed of these two 

non-orthogonal orbitals can be transformed to an equivalent TCSCF 

wavefunction involving only orthogonal orbitals. Using these 

orthogonal orbitals the two configurations in the TCSCF are 
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= 5a 3b 1b 6a 4b 1a 	 reference 1 

= 5a 3b 
2. lb 6a 4b. 2b 	 reference 2 

Due to the small overlap between the two localized orbitals it is 

expected that 4D alone is a poor description of the exact ozone wave-

function and that the coefficient of 0 2  in a TCSCF procedure will be 

relatively large. This is indeed the case in our present TCSCF 

calculation in which c1  = 0.876 and c2  = -0.481. 

.nother reason for chosing the ozone molecule is that it should 

present more of a chalL nge computationally than water. Since all 

orbitals were active in the water }fCSCFs the calculations tended to 

display well behaved convergence. In at least one of the ozone MCSCF 

calculations, however, the orbitals belong to all three categories: 

core, active and virtual. In general calculations involving core 

and virtual orbitals are more difficult to converge. See sections 

IIB and IIC for more details and examples of the rates of convergence. 

A. Theoretical. 

For ozone as in the case of water we employed the standard 

contracted Gaussian double-zeta basis set of Dunning and Huzinaga. 93 ' 94  

This basis set was considered adequate since our study was mainly 

qualitative and we were primarily interested in the varying amounts 

of correlation energy obtained using different CI expansions and 

orbital sets. The, geometry was fixed at (000) = 116.8° and r(O-0) = 

1.271 A. This corresponds to a precise cartesian geometry of (0.0, 

0.0,0.0) for the central oxygen and (0,±2.0457412,1.2585484) for the 
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two terminal atoms. This particular choice for the geometry is very 

114 
close to the experimental geometry 	of r0 (0-0) = 1.278 A and 

116.8 0 . The SCF and subsequent CI and MCSCF calculations 

were carried out in C 2, symmetry. 

As stated before from previous studies 113-114it  was found that 

the 1A1  ground state of ozone has two dominant configuration (1) and 

(2). The standard procedure for a system like this would be to first 

carry out a two-configuration SCF(TCSCF) calculation. This wavefunction 

should be of at least qualitative accuracy in the region of the 03  

potential energy surface near the equilibrium geometry. If a more 

quantitative result were desired the TCSCF orbitals could be used in 

a CI calculation containing all single and double excitations from both 

of the two important reference configurations. In this study we 

intend to see if the procedure outlined above is in fact the most 

economical method for obtaining the most correlation energy. That 

is, is there another CI expansion and/or orbital basis set chMce of 

at least the same quantitative accurach which is cheaper from a 

computational viewpoint. 

One can envision an alternate procedure to the standard one 

presented above in which an MCSCF calculation involving all single 

and double excitations from just the most important reference is 

performed. First notice that reference (2) is included in this 

configuration set as it is the la*2b double excitation from 

reference (1). Also a large percentage of single and a small 

percentage of double excitations from (2) are included. Since this 

is an MCSCF procedure both the orbital and configuration coefficients 
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are variationally optimized to minimize the total energy. Thus it 

is possible that reference (2) could end up with a large CI coefficient 

analogous to the TCSCF case if this leads to the lowest energy. 

The major drawback to the one reference single and double 

excitation NCSCF is that most of the single and double excitations 

from (2) are missing from the configuration set. We reasoned that 

if the number of configurations were large enough and the orbitals 

and CI coefficients were given complete freedom to adjust these 

additional configurations may not be necessary. The question we 

set out to answer then was, "can a deficiency in the wavefunction, 

i.e., the omission of certain single and double excitations, be over-

come by allowing the wavefunction additional flexibility?" In this 

case the additional flexibility would be in the complete optimization 

of the molecular orbitals. 

Three additional calculations were also performed. The first of 

these was a standard single plus double excitation CI from (1) using 

the straight SCF orbitals. This calculation was needed to give us 

some idea of how much extra correlation energy is obtained if an NCSCF 

procedure is carried Out in this same confIguration spaces The 

second calculation was a CI containing all single and double excitations 

from both references (1) and (2) using the one-configuration SCF 

(OCSCF) orbitals. This was performed to determine if the TCSCF orbitals 

were necessary or if the OCSCF orbitals are adequate. Lastly, an 

NCSCF in the full two reference single plus double excitation 

configuration space was computed. The energy associated with this 

wavefunction is a lower bond with respect to the other calculations 
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done in our study on ozone and will be treated as a benchmark with 

which to compare the other wavefunctions. 

B. Ozone Energetic ReSults. 

We begin this section by first comparing the OCSCF results to 

the analogous TCSCF calculation (all energetic results are collected 

in Table VIII). At the chosen geometry using a double-zeta basis set 

and an energy of -224.3104 hartrees is found for the TCSCF case, 

This very large energy lowering along with the TCSCF coefficients 

for the references (1) and (2) (c1  0.876, c2  = -0.481) confirm that 

the OCSCF description is quite poor and that the TCSCF gives a much 

more qualitatively accurate picture of the 1A1  ground state of ozone. 

The fact that the TCSCF wavefuriction is far superior to the OCSCP 

wavefunction came as no surprise since it is a consequence of the 

biradical nature of 0 3  established earlier by Dunning, Hay and 

Goddard. 112 ll3  

A single and double excitation CI from reference (1) was next 

carried out using the standard SCF orbitals. This CI contained a 

total of 6825 configurations and for brevity's sake will be labeled 

C16825. Examining the list of important configurations for this 

calculation one discovers that c1  = 0,933 and c2  = -0,149, The.next 

largest coefficient is for the configuration 	=... 5a 3b 6a 

4b 1a 2b with a coefficient of -0.065. Since this value is much 	 - 

smaller than c 2  we felt justified in only carrying out a TCSCF as 

opposed to a three- or four-configuration SCF calculation to obtain 

a qualitatively accurate wavefunction. In the C16825 case the c2  

coefficient while still large Is much smaller than in the corresponding 
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TCSCF case. This suggests that the C16825 wavefunction contains 

little of the biradical character inherent in the ozone molecule 

and may be qualitatively lacking in this regard. Examining the 

energy of C16825, however, one notices a nearly four-fold increase 

in the amount of correlation energy recovered compared to the earlier 

- 

	

	 TCSCF result. In an absolute energetic sense then the 6825 configura- 

tion CI is far superior to the two-configuration SCF. 

Optimizing the orbital coefficients in the C16825 leads to an 

MCSCF in the same single and double excitation space. This computation 

will be abbreviated as NC6825. Performing this calculation leads to 

an energy lowering of 0.0016 hartrees compared to the CI using OCSCF 

orbitals, or a total energy of -224.6155 hartrees. The energy 

difference for the analogous water calculations (the difference 

between the CISD and NCSD energies) is 0.0003 hartrees or roughly 

6.5 times less than in ozone. If this difference is converted into 

the fraction of the total energy in both cases, one finds the effect 

of using HCSCF instead of the OCSCF orbitals is still more important 

in 03  than in H 2 4 namely by a factor of around ?.2  This energy lowering 

is much less than we expected for 03  however, in light of the arguments 

presented in the preceeding section. The coefficient of reference (2) 

is only -0.162 in the MC6825 case, only slightly larger than the 

C16825 value of -0.149. As in the case of the CI, the NC wavefunction 

badly underestimates the biradical character of ozone, and thus is 

not acceptable for studying the 1A1  poterLtial energy surface near the 

minimum. 

For the single and double excitation CI from both important 
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reference configurations (i.) and (2) using the TCSCF orbitals a total 

energy of -224.64765 hartrees was determined. This configuration set 

is the largest used in this study and is composed of 13,413 individual 

configurations. When the OCSCF orbitals are employed instead, the 

energy Is found to be higher by 0.0075 hartrees leading to a total 

energy of -224.640183 hartrees. To avoid confusion the CI using 

TCSCF orbitals will be called TC13413 and the equivalent calculation 

employing OCSCF orbitals, 0C13413. In both of these calculations the 

magnitude of the coefficient of (2) was substantially larger than in 

the one reference CIs, C16825 and NC6825. In the case of 0C13413 C 2  

is -0.2957, over twice as large as the C16825, value of -0.1493, and 

in TC13413 the coefficient is still greater at .-0..3553. It is 

obvious then that the single and double excitations that are missing 

from the 6825 configuration results are necessary for a qualitatively 

accurate description of ozone, and that just optimizing the orbitals 

for this smaller CI expansion will not overcome this deficiency. 

As it turns out the MC6825 calculation only recovered 6.0Z of the. 

difference between the 0C13413 and C16825 energies and 46% of the 

TC13413-C16825 energy splitting. 

An MCSCF calculation within the full 13413 configuration set was 

also performed yielding a total energy of -224,649326 hartrees giving 

us our lowest variational result. This result is 0.0091 hattrees 

below the 0C13413 energy, but is only 0,0017 hartrees below the 

TC13413 value. This is very interesting in that it illustrates that 

while either choice of OCSCF or TCSCF orbitals gives a qualitatively 

accurate description of ozone, the TCSCF orbitals are much superior 



from an energetic standpoint. Also very little is gained In fully 

optimizing the complete 13413 configuration list as just optimizing 

the Important reférénces (1) and (2) yields 81.6% of the recoverable 

energy. It appears that from a cost effectiveness standpoint the 

TCSCF followed by a CI containing all single and double excitations 

from the two optimized references is the most inexpensive way to get 

a quantitatively accurate wavefunction with the correct biradical 

description for 03 . 

A slightly puzzling aspect of this research concerns the amount 

of energy lowering in going from C16825 to NC6825 compared to the 

analogous lowering between TC13413 and MC13413. Since the larger CI 

is much more complete than the one reference single and double 

excitation CI, i.e., has nearly twice as many configurations, it was 

expected that the energy recovered in going from the OCSCF to the 

NCSCF orbitals would be less than for performing the same procedure 

in the smaller CI. However, this was not the case. In the 6825 

configuration CI 0.0016 hartrees were gained, while for the bigger 

13,413 configuration set a value of 0.0017 hartrees was obtained. 

At this time we have found no straight-forward explanation for this. 

Returning to our best calculation, NC13413, the values for the 

coefficients of (1) and (2) are found to be 0,887 and -0.337 

respectively. Using this wavefunction we would like to be able to 

predict the extent of pure biradical character in the 1A1  ground state 

of ozone. In the case of an idealized pure biradical the coefficients 

of the two important configurations would be equal except for a 

98 

phase factor of ± 1 and all the other configuration coefficients would 
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be zero. Therefore, if ozone were a perfect biradical one would 

expect that C1  = -C2  = l/v' . Hayes and Siu 5  about a decade ago 

devised a simple formula for estimating the fraction of biradical 

character B employing just the coefficient of the second most 

important reference configuration, 

2 
C2 	 2 B= 	2=2c2 	. 	 (86) 

Notice that if c2  = 1142 0.707 then B = 1. (The last column of 

Table VIII lists the B values for our series of calculations). 

Applying this procedure to HC13413 yields our best estimate for the 

fraction of biradical character in 0 3  of 0.227 or 22.7%. Comparing 

this best result to the MC6825 and C16825 values of B = 0.052 and 

B = 0.044 respectively one sees that these calculations seriously 

underestimate the amount of biradical character,. On the opposite 

extreme the TCSCF0ver estimates the biradical nature of ozone by 

about 100% with a corresponding B value of 0.464, The standard 13413 

configuration CIs, however, agree quite well with our estimate of 

23%. Since any wavefunction for the ground state of ozone in which 

the values of the coefficients of (1) and (2) are known can be used 

to determine B we can compare our best guess with estimates predicted 

from the published coefficients of others. As an example, the 

calculated B value for the 1557 configuration CI wavefunction of Hay 

116 
- 	 and Dunning 	has a value of .204 or 20.4%. One reason behind 

choosing their calculation is that it was done using a larger 

double-zeta plus polarization basis set. The largest deficiency 
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of our study is that we omitted polarization functions from our basis 

set as the CI expansions became too large to handle. In many cases, 

however, these higher angular momentum functions are necessary if 

quantitative chemical properties such as the equilibrium geometry are 

desired. In this particular system though we believe that these 

polarization effects are small with respect to the determination of the 

biradical character of 03  since the Hay and Dunning
116  result of 20.4% 

agrees well with our best estimate of 22.7%, 

C. Conclusions for Ozone, 

In section IV a number of large NCSCF and CI calculations have 

been presented. Our largest NCSCF wavefunction for ozone contained 

13,413 configurations which is the second largest NCSCF calculation 

reported to date (excluding full CIs). We discovered that the energy 

of the 13,413 configuration NCSCF is only marginally lower than the 

13,413 configuration CI using TCSCF orbitals,. Since the former calcula-

tion is much more expensive than the latter the inclusion of the 13000 

plus additional configurations in the orbital optimization procedure was 

found to be unnecessary, In contrast, though, the use of the TCSCF 

instead of the OCSCF orbitals in this CI computation leads to an 

energy lowering of 0.0075 hartrees which is over 4 times as much energy 

as was gained in going from TCSCF to MCSCF orbitals. Our recommendation 

would thus be to first carry out a TCSCP and follow it with a CI 

including all single and double excitations from both references. 

It was also discovered that an NCSCF in the one reference single 

plus double excitation space is very close in energy to the straight 

CI result and only recovered between 4-6% of the energy splitting between 
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the one and any of the two reference single and double excitation CIs. 

In addition, the magnitude of c2  was much closer to the C16825 result 

than any of the 13,413 configuration calculations. We therefore must 

answer the question posed earlier, "can a deficiency in the wavefunction 

be overcome by allowing the wavefunction additional flexibility", with 

a qualified no. That is to say that, at least in the case of ground. 

state 03  omission of certain classes of configurations from theCI 

expansion cannot be compensated for by allowing the orbitals to 

change. 

Lastly we predict a biradical character for ozone of approximately 

23%. This compares favorably with estimates made employing previously 

published high quality wavefunctions. 6  It was also found that both 

the TCSCF and the one reference CI wavefunction predict substantially 

different amounts of biradical character. It was expected that the 

TCSCF overestimates by around 100%. It will be interesting to see 

if this same trend is found in other molecules with a sizeable 

biradical nature such as the cyclopentadiyl systemil7 
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V. An Examination of the Lowest 2E" State of the Cyclopropenyl Radical 

The cyclopropenyl radical C 3  H  3  has received much attention because 

it is a simple example of a molecule that is expected to undergo a 

Jahn-Tefl 	 118-125er distortion. 	If an electron is added to the lowest 

unoccupied molecular orbital (LUMO) of the D3h  ground state of the 

cyclopropenyl cation it will enter a degenerate e" orbital to form the 

lowest 
2 
 E 

 is 
 state of the radical. According to the Jahn-Teller Theorem 126 

a non-linearmo1ecule of E symmetry will spontaneously distort in such 

a way as to lift the degeneracy. In the case of the C 
3  H  3  radical this 

distortion will lower the symmetry to C 2,,, or possibly C8  or C2 . 125  

If the true wavefunction within the Born-Oppenheimer approximation were 

known at the D3h  and surrounding geometries it would be easy to find 

Out what the "real" equilibrium structure looks like. However, when 

this complete wavefunction is not known certain complications arise. 

If a full CI within a given basis set could be computed at any D3h 

geometry It would lead to a wavefunction having D3h symmetry whether the 

calculation was forced to be of this symmetry or not. However, for 

calculations done below the full CI level the wavefunction symmetry may 

break (i.e., belong to a point group of lower symmetry) unless the 

correct symmetry is forced by the program.l24125  Just such a situation 

arises for the C 
3  H  3  radical. 

In the case of the cyclopropenyl radical if SCF or truncated CI 

or MCSCF calculations are performed at a D3h  geometry the resulting 

wavefunctions will be of only C 2,,, syxmnetry unless otherwise constrained. 127 

" The 2E state corresponds to a pair of states in the lower C 2  point 

group: 2 
 A 2  and 2B1 , which should physically be degenerate in energy 
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at the D3h  geometry. However, if the calculations are carried out in 

C2  symmetry the energies of the two states will be different. The 

purpose of this research is to study the effects of using different 

CI expansions and orbital basis sets on the 2B1-2A2  energy splitting. 

What we would like to find is a reasonably inexpensive calculation 

procedure that predicts a very small splitting. 

A. Theoretical. 

In our study of the cyclopropenyl radical we employed the standard 

Dunning and Huzinaga contracted Gaussian double-zeta (DZ) basis set 93 ' 94  

whose precise designation is C(9s6p/4s2p) and H(4s/2s). All calcula-

tions were performed ata single D3h  geometry with all C-C bond 

distances fixed at 1.40 A and all C-H bond lengths set at 1.08 A. 

The exact cartesian geometry used was (0.0,0.0,0.0), (0.0,±1.322826, 

-2.291202) for the three carbon atoms and (0.0,0.0,2.040932), (0.0, 

±3.090324.-3311668) for the three hydrogen atoms. Since the geometry 

was not optimized in this study and our primary purpose was to determine 

the 2B1-2A2  energy splitting at this D3h  geometry we deemed a DZ basis 

set to be adequate. Also the geometry selected does not correspond 

to the minimum on the D3h  surface for this basis set, but was picked 

because it is in the range of previous theoretical work. 

H 

/\ 

H" 

I.40A 
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To determine how the 
2  B 1  - 

2 
 A 2  splitting varies as the level of 

theory is changed a series of calculations were carried out on both 

the lowest 
2 
 B 1 

 and 
2 
 A states of C3H3 . All of these calculations 

were done in C2 , symmetry at the D3h  geometry. Initially one reference 

SCF calculations were performed on these two states w±th the 2 B and 

2A2  reference configurations being 

= ... 5a 3b 1b 6a 2b 1  

1 2)= ... 5a 3b lb 64 1a2  

Beyond the SCF level a number of CI and NCSCF calculations were 

obtained. First a set of three single and double excitation CI 

wavefunctions were computed f or each state. In the largest, involving 

11829 and 11800 confIgurations for the 
2  B 1  and 

2 
 A 2  states respectively, 

all orbitals were allowed in the CI. In the second the 18 orbitals 

with the highest orbital energies were forced to have zero occupancy 

in the CI (.in other words, one half of the orbitals of each symmetry 

type were frozen) reducing the number of configurations to 1069 for 

either state. In the third CI the three lowest orbitals (in an 

energetic sense) were also frozen resulting in 549 configurations 

in both the 2 B and 2 A 2  cases. These three calculations will be 

abbreviated as CLALL, CIMIN and C1549. In this last CI the orbitals 

are partitioned such that there are 18 of the virtual, 3 of the core 

and 15 of the active varieties. This limits excitations to being 

within the valence space. The concept of the valence space is easy 



to visualize if one envisions the C-C and C-H bond lengths being 

stretched to infinity. When this happens the set of 15 active 

orbitals reduces to the 2s and 2p shells on the carbon atoms and the 

ls orbitals of the hydrogens. 

Besides these three CIs a number of additional calcuations were 

performed within the valence space. The first of these is an NCSCF 

computation within the same 549 configuration space defined above and 

is called MC549. To investigate the effect of higher then double 

excitations in this subspace on the 2B1-2A2  splitting, three 

further calculations were carried out. The first was a straight CI 

using SCF orbitals whose configuration set is composed of the reference 

plus all single, double and triple excitations within the valence 

space. Following the standard CI an MCSCF calculation employing the 

same configuration list was carried out to ascertain the effects of 

optimizing the orbitals. These two calculations will be labeled CISDT 

and MCSDT. Lastly a single, double, triple and quadruple excitation 

CI using the SCF orbitals was performed and will be identified as 

CISDTQ. Originally NCSCFs containing the reference plus valence 

space single excitations were to be computed for the 
2  B 1  and 

states. However, extreme convergence difficulties were encountered 

and these two calculations were abandoned. 

B. Results and Discussion. 

In Table IX the total energies for the calculations specified 

in the preceeding section are presented. First, the SCF results are 

examined. For the 2A2  state a total energy of -115.104667 hartrees 

was obtained and for the corresponding 2 B state a lower energy of 

105 
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-115.109144 hartrees was found. This leads to a splitting of 0.004477 

hartrees or 2.81 kcal/mole. This difference is of the same order as 

the minimum basis SCF results of Davidson and Borden124  in which a 

value of around 5 kcal/mole was reported. Poppinger, Radoin and 

Vincent125 	 - (PRy) also published SCF 2B 1 2A2  splittings for both the 

minimum and the split valence 4-31G basis sets for which they obtained 

4.79 and 3.23 kcal/mole respectively. 

Moving on to the straight CI results the energies of the 	and 

states are found to be -115.389963 and -115.387954 hartrees 

respectively in the all orbital single and double excitation CI approxi-

mation. These calculations which involve nearly 12,000 configurations 

reduce the splitting to 0.002009 hartrees or 1.26 kcal/mole. This 

energy difference is less than half the SCF value. If the 18 highest 

reference unoccupied orbitals are now frozen in the single and 

doubles CI the corresponding 
2 
 B 
1 
 and 

2 
 A 2  energies are -115.165587 and 

-115.167098 hartrees. This leads to a splitting of -0.001512 hartrees 

or -0.95 kcal/mole, where the minus sign indicates that the ordering 

of the two states has changed. This state reversal is most likely 

due to the choice of the frozen orbitals in the CI. If all the 

ref erence unoccupied orbitals are kept in the CI the energy is. 

invariant to uni.tary transformations among this orbital subset. 

However, if any of these orbitals are frozen the energy is no longer 

invariant. From the SCF point of view, however, the unoccupied orbitals 

are only required to be orthogonal to the occupied space and amongst 

themselves and are thus rather arbitrary. What probably happened was 

that by chance the set of 2A unoccupied orbitals that were retained 



in the CI were energetically more favorable than the corresponding 

orbitals. If In addition to the 18 virtual orbitals 3 core 

orbitals are frozen the single and doubles CI energies are found 

to be -115.165484 and -115.166984 hartrees for the 2R and 
2 
 A 2  states, 

Here one notices that the ordering of the states is again reversed 

with the splitting being -0.001510 hartrees or -0.94 kcal/mole. 

Proceeding onto the first of our NCSCF results the 	energy 

gap is found to be +0.001336 hartrees for the valence space singles 

and doubles MCSCF (MC549). This 0.84 kcal/mole difference is roughly 

2/3 of the analogous CIALL splitting (1.26 kcal/mole), but the CI 

contains only about 1/20 of the number of configurations. This 

result is encouraging since MCSCF calculations of this variety can 

be performed on nearly all systems that can be handled using SCF theory 

alone. In terms of absolute energies, -115.290106 and -115.288770 

hartrees were obtained for the 
2  B1  and 

2  A 2 
 states respectively. These 

results are surprising in that these small 549 configurations MCSCF 

calculations recovered around 65% of the full CI singles plus doubles 

correlation energy while the CIs using SCF orbitals in the same valence 

space recovered about 20%. Optimizing the orbitals then leads to 

roughly 3 times as much correlation energy and the correct prediction 

of the state ordering. 

Three additional sets of calculations were carried out within the 

- 	 valence space to test the effect of inclusion of higher than double 

excitations. The first two of these employed a configuration set 

consisting of all valence single, double and triple excitations. 
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The total energies for the straight CISDT computations are -115.166563 



H 
a, 
C) 
r1 

10 
a, 

H 

a) 	54 

o 	a 
H 
U 

o 	ci 

00 

1.4 
0 

44 

Cl) 

v-i 

Cl) 
a, 

U 

4.J 
a, 
00 
'-4 
a) 

a) 
t44 
0 

I 	•4r 

5-4 

a) 
H 
•0 
a, 

00-s 

a, 

4J 
v-I 54 
COCØ 

0 
E-4 

0) 

0 
-v-I 

4-4 41 
0a, 

54 

o oa 
ZH 

il-I 
0 
0 
0 

b0' 
5-40) 
a,a) 
00) 

IJI 

o 
f-s 

a, 
0 
0 

-'-I 
I1.44J 
0a, 

54 

000 
ZH 

'.4-4 
0 
0 
0 

a, 
P. 

0 
0 

-'-I 
4.5 
a, 

U, 
H 
a, 

a, 
C-) 

a) 
s-I 
a) 	c'.i 

4.4 
HI. 

C4 

00 
54 
a, 

a, 
H 
0 v-I O U, U, - - 0 0 03 
E 03 Cl U, C\ O. CO H N 

. . . . 
H Cl H C C C C H 0 H 

U 

a, 
a) 

N 
N 

O 
0 

- 
CO 

C 
H 

C 
1-1 

'b CO N- 
0 

a, - 0 03 Irs it) Cfl N v-I 	C4 
I-i 
.IJ 
54 

- 
0 
0 

C4 
0 
0 

C 
0 
0 

v-I 
0 
0 

v-I 
0 
C 

H 
0 
C 

v-I 
0 
0 

H 	C.l 
0 0 
C 0 

a, . . . . 
C c 

. 
c C H 

0) 

4-) 
U 
41) 

Cl) 
0) 
1-4 

to 
0 
0 
H 
41 
(0 
1-4 

00 
-v-I 
141 
0 
0 
U 

a, 
v-I 

54 

CO 

0 
CO 

0) 
v-I 
p. 
H 
54 

4.5 

a) 
v-I 

0 

al 
a, 

v-I 
00 
0 
H 
a, 

v-I 
H 

CO 

41 
0 
a) 
Cl) 
a) 
5-1 
p. 
0) 
$-I 

Ce 

0 
(a 

C/) 

U) 
H 

I CO 

- c) 03 N - %b C) 
- %D N 03 03 C O CI 	N 
v-I Q\ CO U, -T H It) UI 	C'4 
0. 0' 03 It) ir, 0 0 C'4 	03 
003 v-I ',O %O 0 'O ON 	"0 
v-I C'-) - H H C'J H ('I 	v-I 

It) It) it) irs It) it) U it) 
H v-I v-I v-I H H H 
H H H H v-I v-I v-I H H 

I I I I. I I I. I 	I 

	

v-I ON 	0' (7) 	ON 	0) 	- 	 it) 
C1 iD 	 N- 	N 03 

	

03 	03 0 	It) 	it) 	IT 	- 	iO 

	

v-I 	H v-I 	 N 	N C 

	

H 	v-I 

N - IT  03 -11 C v-I 
'0 It) ON 0) 03 N- v-I 03 
'0 0' 0' 0 0) N C' - 	- 
- N N N '0 CO CO HO 
003 H '0 iO CO O 0) 	N 
H Cfl - H H C'3 H cI 	H 

UI U U, U If I It) It) 	It) 
e-4 H v-I v-I v-I H H v-I 	H 
v-I 4 v-I v-I H s-I v-I v-I 	v-I 
I & I I I I I I 	I 

	

HO 	00' 	0' 	CN 	0 	0 It) 

	

0 	C \O 	- 	- 	N 	N - 

	

03 	03 0 	U 	It) 	- 	 '0 

	

v-I 	H H 	 N NC 
H H 

0 
0 
H 

U 
() 
'-4 
I-1 
O E-1 

a, 0 
Cl) Cl) C 

Cl) CI)0) I 1-4 I 1-4 
I 1 H v-I 

Cl) w0 C/) C/) CO C/) a, C/) 
H HO I I I I 
a, CO0) H H 41 v-I 45 H 
41 41' cO CO 1-s a, 54 a, 
H HH H H 
0 o > .iJ 4) > 4) > 4) 
14 1-4(0 1-s 5-i 1-4 5-1 
0 O p -v-I HO) COO) HO) COO) HO) 

> > I-s H S-s > 5-4 
v-I HO) 0 10 0 10 0 
H v-I 03 03 U 44 U CO U 44 C) CO U 
a, a,,-I H H 0 H 0 H 

IC') C/)C'-I ICfl C/)C' ICfl 
0 	4-I H H H 0 H 0 H 
C/j 	00 00 Z 0 Z 0 

108 



109 

and -115.168311 hartrees for the 
2 
 B and 

2 
 A 1  states respectively 

which leads to a splitting of -0.001748 hartrees or -1.10 kcal/ 

mole. The ordering of the two states is again inverted as in the 

CIVIR and C1549 cases with the gap now larger by roughly 0.15 

hartrees. This result is at first glance surprising since the CISDT 

calculation is much more extensive than either of the CIVIR or C1549 

calculations. On closer examination, however, since the 
2 
 A 2  state 

is above the B1  state in the SCF approximation one would expect 

that as the size of the CI increases so will the ratio of the 

and 2 
 B 1  correlation energies 

The second type of calculation performed using the all valence 

single, double and triple configuration set was MCSDT. Certain 

difficulties arose in converging these two wavefunctions expecially 

for the 
2 
 A state. Because of this the energetic results in Table IX 

are only reported to 4 or 5 decimal places for the 
2 
 A 2  and 

2 
 B 1  states 

respectively. These results are believed to be accurate to the 

number of digits listed, however, additional work is being done to 

make absolutely certain. As in the case of MC549 the 
2 
 B is below 

the 2A2  state and for NCSDT a splitting of 0.0011 hartrees or around 

0.70 kcal/mole is found.. This difference is the smallest obtained 

employing variational energies and at least 0.14 kcal/mole less than 

the NC549 result. 

- 	 We lastly carried straigh.t CI calculations employing all valence 

single, double, triple and quadruple excitations for both the two 

states of cyclopropenyl radical. As in the other three CIs with 

2  18 frozen SCF virtual orbitals, CISDTQ predicts the A 2  to be below 
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the 
2 
 B state. This time an energy splitting of -.0.002207 hartrees 

or -1.38 kcal/mole is found s  What the four calculations: CIVIR, C1549, 

CISDT and CISDTQ show us is that if the CI expansion is restricted to 

the minimum basis or valence space it is necessary to optimize the 

orbitals if the 	energy ordering is to be correctly predicted 

even if a very large number of configurations are included. 

In addition to the variational results if CLALL is corrected 

for the effects of unlinked clusters using the Davidsons correction 

a splitting of only 0.55 kcal/mole is obtained. This result is less 

than 1/2 of the straight CLALL difference and maintains the "correct" 

ordering of the two states. This seems to suggest the validity of 

employing this correction to all singles and doubles CI energies. 

Before closing this section certain features of the CII and NCSCF 

wave functions should be discussed. It was in the course of perform-

ing these calculations that we discovered that even though cyclopropenyl 

radical is adequately described by one reference, two additional 

configuration in both the 2  A 
2  and 

2 
 B 1  are moderately important 

also. For the 2  A state these configurations are 

2 	2= ... 5a 3b 1b
1c2 6a 2b1c la2  

3 	2= ... 5a 
3b lb 6a 2b 1a 2  

and for the 
2 
 B 1  state they have 

it 2  ( B 1) 	... 5a 3b lb 6a 2b 1  14 2  



ill 

3 ( 2B 1) = ... 5a 3b lb1  6a la 

The values of the coefficients of these configurations plus the ScF 

references are compiled in Table X. 

In all the CI and NCSCF calculations the principle coefficients 

were roughly 0.95 with the values of the other two coefficients 

being between about 0.06 and 0.15. In the four calculations that 

contained frozen SCF virtual orbitals the values of C 2  are much 

higher in both states (around 0.15) than in the other calculations. 

Also C3  for the 
2  B is much larger roughly 0.10 compared to the NCSCF 

values of around 0.08. The MCSDT coefficients appears to be quite 

similar to the NC549 values, though the importance of single 

excitations in the former is far greater. Since there is some 

question at this time as to the validity of our NCSDT results due 

to certain convergence difficulties the wave functions may in fact 

be somewhat different. In particular the last digit reported for 

the coefficients of NCSDT in Table X may be suspect. Currently more 

work is being done in an attnpt to converge these NCSCF wave functions 

to a greater degree. 

C. Conclusions for the Cyclopropenyl Radical 

For the cyclopropenyl radical it was found that at a D3h 

geometry an artificial energy splitting of nearly 3 kcal/mole exists 

for the truly degenerate 
2 
 A2  and 

2 
 B 1 

 states at the SCF level of 

theory if the calculations are carried out in C 2  5ytry, This 

energy gap can be substantially lessened if subsequent NCSCF or CI 

calculations are performed. In the case of all single and double 
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excitation CIs the splitting is reduced by over 50%. If these two 

energies are corrected for unlinked cluster effects the 

difference.is only 0.55 kcal/tnole. 

Good results are also obtained for valence space NCSCF calculations. 

In the NCSCF employing all valence single and double excitations the 

splitting is roughly 2/3 of the full CISD result and only about 1/20 

of the number of configurations are needed. If triple excitations 

are added the gap is reduced still more to around 0.70 kcal/mole.. 

However, if the orbitals are not optimized in the valence space CIs 

poor agreement is obtained and the incorrect 2A2-.2B1  ordering is found. 

As .out outgrowth of this work a number of additional calculations 

will be carried Out on these two states of the cyclopropenyl radical. 

The first of these consists of a small NCSCF followed by a CI 

containing all single and double excitations from each reference. 

This small NCSCF will be made up of a full CI among the lowest a2  

and the two lowest b 1  orbitals for both. states Also an MCSCF including 

all valence single and double excitations from the 3 important 

references will be obtained, In addition NCSCFs in both the full 

single and double and the all valence single, double, triple and 

quadruple excitation spaces will be computed 	These results plus 

the present calculations Will be presented in a future publication. 
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VI. Concluding Reniarks 

In this dissertation it was shown that the loop-driven graphical 

unitary group approach can be extended to include the ability to 

determine large NCSCF wavefunctions. The largest wavefunction 

computed using this method contained 17,678 configurations and is 

the largest MCSCF calculation performed anywhere33  to date. In contrast 

to other MCSCF procedures which can handle large configuration 

sets the orbital optimization step does not asstnne any special form 

for the configuration list (such as in the CASSCF method where the 

configuration set is required to be a full CI within an orbital 

subspace)357  In fact the LDGUGA MCSCF method can employ very 

flexible configuration lists including all single and double excita-

tions from one or two references, full CI in any subspace and 

inclusion of classes of higher than double excitations. 

At the heart of this MCSCF formalism is the efficient computation 

and storage of the two-particle density matrix. This feature 

coupled with the loop-driven CI method 38 , 39 developed by Bernie 

Brooks leads to a very fast and versatile MCSCF procedure. Though 

at present our program is restricted to only first-order convergence 

various extensions such as the construction and implementation of the 

orbital Hessian matrix and a proposed extrapolation procedure were 

discussed herein. 

To demonstrate the power of the LDGUGA method a number of 

molecular calculations were presented. These included a series of 	 * 

CI and NCSCF results for water, 33  ozone34  and the cyclopropenyl radical. 

A number of these computations explored the effect of higher 
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excitations in MCSCF calculations, an area that previously had not 

been extensively investigated. 
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Appendix I. A and Bk  Theory 

The A.K  and  Bk  methods are examples of truncated CI schemes and 

were initially presented by Gershgorn and Shavitt. 104  The methods 

are based on partitioning perturbation theory 128  and have been 

:Iinplemented and extended by a number of authors. 10507  In practice 

and Bk  techniques allow the use of much larger configuration sets 

than can be handled in a non-truncated CI and the hope is that 

relatively little energy will be sacrificed. 

In developing the theory it is useful to envision that the CI 

Hamiltonian H is partitioned as follows: 

0 	T 	C 	 C 
_H_ 	h 	0= E 	 (87) 

	

h .10 	C 	 C' 

In constructing this Hamiltonian the configuration space (composed 

of N configurations) has been divided into two subspaces P and Q. 

P denotes the primary space and usually includes all the important 

configurations as determined through some selection process. Q, 

the secondary space, is èomposed of the remainder of the total 

configuration space. 110,  h and H' are then PxP, PxQ and QxQ sub- 

matrices respectively. If (87) is multiplied out the following two 

equations are found 

+ hTt = Ec0 	 (88) 

	

+ R'c' = Ec' 	. 	 (89) 
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Solving (89) for c' and substituting into (88) yields 

[H0 + hT(E1H?)ih]c = eff 
	E 	

. 	 (90) 

This reduces the full NxN CI equations to the solution of a PxP 

problem using H eff 
 However, calculating fleff  is at least as much 

work as solving (87) directly so nothing is gained. The time consuming 

aspect in constructing Heff involves finding the inverse of (El-H'). 

What one wants to use then is an approximation to this inverse that is 

relatively simple to obtain and that still gives the majority of the 

NxN CI energy. 

Since H', the QxQ Hamiltonian, is diagonally dominate a 

reasonable approximation would be that 

(ELH') 	(E]) ' 	 (91) 

with 

D0ifi#i 	 i,jEr 
ij 

D=H 
ii 	ii 

Solving equation (90) using the approximation (91) is called the Bk 

method. The most straight-forward way to solve for E is to diagonalize 

H in equation (87) with H' set zero to D or in other words to set 

all off-diagonal elements of H' to zero. The neglect of these 

elements makes this a second-order perturbative scheme since only 

the matrix elements that directly interact with H are kept. 



118 

The A.K  method is very similar to the Bk  except that 

diagonalized first to yield 

	

o= n fl 	 (92) 

where 
n 
 is configuration n and the sum is over all elements of P. 

The subscript k in both the A and Bk  methods refers to the k 

configurations in the primary space. Next straight first-order 

Rayleigh-Schrdinger perturbation theory is applied to (92) yielding 

= 	+ 	 n = 	 n 
+ 	c n 
	(93) 

	

n=k+l 	0 nn 	 n=n 1 

The second-order energy associated with (93) is 

	

k 	 T  HH. 

	

E2 = :':;- t<I10>I2 = 'V.' 	'S' 	in nj 

	

n 1 	a nn 	id3:l 	nl E0-H'  nn 

The major difference between the second-order A.K and  Bk results is 

that Bk  is usually lower In energy since the primary space 

coefficients are allowed in relax while in the A.K  case they are 

fixed. Since constructing the off-diagonal elements of H' is the 

major time step in the full NxN CI the A.K  and  Bk  calculations are 

much faster if the P space is much less than the Q space as is 

normally the situation. 

In going to the third-order in energy the off-diagonal elements 

of H' must now be calculated. In both cases A and Bk,  the correction 

formula is 



ll 

E3  = 	CCH. 	110 	
(95)mn  m,n= +1 

The Bk  coefficients in the Q space (C, Q) are obtained from the 

diagonalization of the approximate Bk  Hamiltonian and in the Ak  scheme 

are calculatedwhile forming E 2  using equation (94). E3  for the two 

methods will be different since their two sets of coefficients generally 

differ. 

In both methods as presented the Epstein-Nesbet (EN) partitioning 

of the Hamiltonian was used. This has advantages in that it is well 

defined for open-shell and multi-reference states as well as for 

closed shells. Also it is easier to adapt to existing CI codes. 

The disadvantage with respect to Mller-Plesset (NP) partitioning 

is that the magnitude of E3  is usually much. larger in EN than in the 

NP scheme. This makes calculating the third order correction more 

Important than if we had used the other partitioning. 
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