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1. INTRODUCTION

The mass of a ngutro§ is MN“=.939.5731 MeV/c2 and of a proton
: MZ = 938.2796 MeV/cZ. Tﬁe méss of an atomic nuc1¢us yjth'A :
nucleons (N neutrons and 2 protons).consists df'the sum (NMNV+_ZMZ)?
reduced by thg mass associated wjth thg binding energy betyeeﬁ the
nucleons, as required by the relativistic equiva1énce between mass and
energy. These binding energies vary from 2.2 MeV for the deuteron to

1900 MeV for 256

Fm. After ijty years of atomic mass measurements,
the bindfng enérgies are known today experimgnta11y for A1900 nuclei in
their ground-state equi]ibrium’cdnfiguration, as well as for do;ens of
nuclei in deforméd, fission;barrier sadd]e.pqint shapes, and for
hundreds of jntefaction—barrier shapes corresponding to paifs of nuclei
in contaci. These bindjng-energy (or mgss) me;sufements are often mgde
with a precision corresponding to a-sma11:fraction of an MeV and,
together, they represent an ‘immense amdunt of information of practical

relevance for many branches of nuclear physics, nuclear engineering,

and astrophysics. They also represént an exacting challenge to



theoretical efforts at understanding the basié properties of the unique
~ many-body problem preséntéd>to us by an atoﬁic nucleus.

In the macroécopic approach £o nucféér structure, one attempts tq
simplify tﬁe deséripfion of certain aépects.of the nuclear many-body
problem, with ifé 3A 5nd5vidu§1-partic]e.degrees of.freedom (not to
mentioﬁ possible quark degrées of freedom), by focusing.attention on a
numbér of Suitabiy chosen macroscopic features. first and foremost
among tﬁeée are the dégrees of freedom describing the shape of the
nuclear Surface (which, although not perfectly sharp, is known
experimentally to bé.fair1y well defined, except for very sma}]
nuclei). The subject ofvthe present review, "The Mécroécopic Approach
to Nuclear Masses.and Defofmations", is then the}description df
theories, formulae, aﬁd te;ﬁniques for the.caléulation of nuclear
masses (or bﬁnding.energfes) in their dependénce on macroscopic (shape)
‘degrees of freedgm.

The major part of the binding enérgy‘of nuclei may be accounted
for by a simple “Liquid Drop"‘formula, consisting of a volume energy

[assumed to depend quadratically on the relative neutron excess I,
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defined as (N-Z)/A)];,a sufface-energy proportional to the surfaée'
area, and the electrostatic energy of a uniform distribution of
electric charge inside thevnuéleus.f The effectiveness of this simple
Liquid Drop Model treatment of nuclear ground-state energies is
1llustrated‘ih Figure 1. Originally conceived more than 45 years ago
(1,2) for:the purpose of calculating only such ground-state masses, the
model began to assume a wider range of applicability when it was
recognizéd that the gross properties of nuclear fission could be
understood. in terms of the shape dependence of the surface and
electrostatic energies of the nuc]ear drop (3). Unfortunateiy,
however, there was a historically understandable tendency to associate 
the Liquid Drop Model (even}in its static aspects) with a system of
strongly interacting particles characterized by short mean free paths
(and treated according to classical mechanics). Because of this
misconception and the failure of idealized versions of the Liquid Drop
Model to account for nuc]ear dynamics (e.g. excited nuclear states),
the soundness of fhe Liquid Drop Model, even in its description of the

gross, static aspects of nuclear binding energies, began to be



quest%Oned'when the nué]ear She1l Model was found to be a good,
approximation to nuclear structure (4). According to this model, one,'
could think of nuclei as consisting of weakly interacting Eonstituénts
in a common potential well, with quantization of the particle orbits
playing an essential role. How then couid'the Liquid Drop Model of
nuclear binding energies be taken serious]y? We shall discuss.this
questibn in a later section.  Notwithstanding these'reServations,
refinements to the'Liduid Drop Model forwu]a for nuclear masses
continued to be made. »They-did‘not, however, reduce substantially the
remaining discrepahcies between theory and experiment (up to about 10~
MéV), which were soon recognized qualitatively as "She11‘Effects“,
associated, indeed, with the qdahtization of tﬁe nucleon orbits.

‘Major advances in treating the she11 effécts took place about
fifteen years ago. (Before this time the shell effect deviations had
usually been treated in an ad hoc way, by use of tabulated empirical
correction functions (5-8).) In Refs. (9-11) it was recognized that
the main feétures of the shell effect deviations (see Figure.Z) could

be undersfood in terms of the bunching of the quantized nucleon levels



into bands, the bunching being governed by the symmetries of the

‘nuclear shape in question and thus disappearing when the symmetries

were destroyed by a deformation."A semi-émpikica1 a]gebraic.treatment
of shell effects, made possible by.these insights (11-14), was soon
followed by quantitative calculations (requiring, however, numerical
solutions of the Schrodinger équation in an‘appropriate potentia]»we]1)
(15-18).: The fesult of these-ca]cuiations was not only a dramatic
reduction of the Qiscrepancies between theoretical and experimental
masses (from around 10 MeV to around 1 MeV) but also the explanation of
the long-standing puzzle of the mass asymmefry of nuclear fission in
terms of shell effects at the fission barrier, as well as the
explanation of the existencelof relatively stable, strongly deformed
nuclei with axes in the ratio of about 2:1 (the fission isomers). -
Finally, and potentially most significant, these shell-effect
calculations predicted the possible existence of an island of
relatively stable nuclei beyond thevknown 1imité of the periodic table

of elements.



Concurrently with this conquest of the nuc1eér'she11 effects,
there followed a substantial fufther improvement in the'treatment of
the Liquid Drop Model (the so-called Droplet Model (19-31)) and the
development.of successful "Proximity" and "Folding" techniques for-
calculating the»nuc]ear interaction between approaching nuclei (32-39),
Iessentia] for a description of the energies of interaction-barrier
.configurations. Taking'togethervthese three contributions,
Liquid-Drop, Proximity, and Shell Effects,.one can today estimate
theoretically the binding and deformation energies of known or
h&pothetica] nuclei with an accuracy often approaching or even
exceeding'l MeV.

| An°iﬁ&ependent advance hés;been the deve]opment of techniques that
solVenthe nuclear many-body problem within a se]f—consistent mean-field
approximation (Hértree-Fock ca]culatibns with simp]ified effective
interactions (40)). These potentially most poherfu] techniques are ‘E
toda&.stiil somewhat limited by the computational.effort that is

required.



Finally, a major advance in interpolation/extrapolation methods
took place around 1966 (41-46), resulting in a very elegant and
generally accurate way of predicting nuclear ground-state masses from

known neighboring masses (See Section 6) (47-53). .



2 .FRAMEWORK

The importancé of the macroscopic description of nué]ear .4
defofmation energies can be appreciateq by viewing the problem in the
context of the wider quéstion of the macro;copic déscription-of nuclear
dynamics. In order to discuss a macroscobic dynamical problem one
often needé three components in the equations of motion, cqrresponding
to inertia], dissipative, and conservative'forces,veach given as a
function of the macroscopic (e.g. shape) degrees of freedom (and their
time derivative;) (54,55). The conservative forces,foilow from the
potential energy (expressed as a function of shape). In the case of
nuclei, the local or abso]ute minima in this potentia1-energy‘1ahdscape
give the ground-state maséeé. Saddle-point passes are relatgd to
(fission) barriers and, gehera11y, the landscape provides the stage on
which dynamical evolutions (to be treated c]assfcal]y or quantally)
will be taking place.

In the context of nu;]ear deformation energies the problem is then
to write down the potential enérgy V of a nucleus of arbitrary éhape--a

diffuse nuclear blob--consisting of A nucleons, as a function (more |



precisely, a functional, V[2]) of its shapeZ. [The blob may be in the
form of one or more deformed diffuse pieces, but the contour Z is, by

definition, a sharply defined figure. The diffuseness of the surface

regipn of the bleb may be specified by a "width" b, of the order of the
range of nuclear forces. The size of the blob (not spherical, in
general) may be specified by a radius R (or volume 4!R3/3).]

In a direct attack on this questfon one may simply attempt a
solution of the many-body problem as a whole, using a suitable
approximation. In the nuclear context, the mean-field Hartree-Fock
approach (using simplified effective intefactions) has been
particularly successful in recent years and promises to provide
eventua11y the most reliable estimates of certain features of the
potential-energy landscape.

The indirect approach, which up to now has provided the main tools
for accounting qqantitative]y for nuclear binding and deformation

“energies, relies on splitting the total potential energy into three
parts and treating them sebarate]y. The physical reasons for the split

have to do with the fact that the nuclear blob & is made up of elements
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(nuc]eons)vthat can feel each other over finite disténces by virtue of
nuclear interactions (of range ~b) and that inside the blob there érev
individual-particle wave-functions that can feel out the shape of the
blob as a whole. (The eigensolution of.the Schrﬁdinger equation in'a
'cavify is sensitive to the shape and size of the cavity as 5 whole).
If it were not for certain specific effects of the finite range of
nuclear forces ahd the globa1 character of the eigenvalue problem, the
total energy could be written as a sum of 'local’ contributions but the
finite range adds a specific 'Proximity part' and the global character
of the wave functions adds a 'Global part'. Thus

V[Z] = Local bart + Proximity paft + Global part.

The shape dependénce of the cha1 part is made up of contributions from
different points onz; each contribution being a function only of the
local conditions at that point. The Proximfty part is made up of
contributions that depend also on cohditiong a finite distance (of
order b) away from the point in question. The Global pa%t cannot be
written as a sum of ]qca1’contributions--it knows)about'the’shape as.a

whole and, in particular, about the symmetries of the shape.
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In less formal language the Local part is, essentia11y, the Liquid
Drop or Droplet contribution to nuclear masses (it is typically of the
order of hundreds of MeV). The Proximity part or Proximity Potential
shows up most strikingly in the attraction (of range ~b) between the
surfaces of two approaching nuclei (it_is typica]]y‘of'the order of
ten§ of MeV). The G16ba1 part, in particular as it is sengitive to
symmetries, contains the Shell Effects (typically of the order of a few
MeV). (The Coulomb energy, which may range from tens to hundreds of
Mev; is also part of the Global contributioh, but it is not
specifically sensitive to the symmétrieé of the ;hape.)

We shall now describe the techniques used to treat these three

parts of the nuclear potential energy.
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3. LOCAL PART
For any "saturating“ system, such as a nucleus or a drop of water,
the main deviations from bulk behavior are confined to a surface layer |

(of width ~b, say) that is small compared to the size of the system

(b/R &« 1). A Leptodermous Potential Energy Theorem may then be
derived (32,54), according to which the local part Jof the potential
energy can be written as the following expansion in powers of b/R:

Relative Order

3

V=rcy (4/3)WR Volume energy 1 A
+c, § do Surface energy | b/R a2/3
+ ‘ o 2 1/3
c3§ K do  Curvature energy (b/R) A
: (1)
¥ c4§ " do Higher order curvature ' 3 o
2 , (b/R) A
+ c4§ K do- corrections :
+ corrections that go to zero as A—» ®© Ao

In the above, the integrals are over the surface & defining the shape of

the system, B is the total curvature and Pthe Gaussian curvature at a

point on the surface (K= Ri] + Ré], r= R{]Rél, where Ry,

R2 are the principal radii of curvature at the point in question).

_(L
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The coefficients 3 ...'c'4 are:constants,vindependent of the‘
shape and size of the system, which are, in éenera], functions of the
bu]kvdensity and composition (neutron excess). With respect to the
leading vb]ume-energy term,vthe constants are of the relative order 1,

2 .3 .3

b, b5, b”, b”, which implies energy contributions of order A,

A2/3, A]/B, A°, A°.

The defiQation of Equation (1) may be found in Blocki et al. (32);
the important point to stress is that it does not rest'on assumptions
that the particles constituting tHe system are classical objects with
short mean free paths. The crucial assumption is that the deviations
from bulk behavior should be confined to a (relatively thin) surface
layer, an assumption that is found to be satisfied quite accurately
also for systems of quantized, weak]y‘interacting (or even
noninteracting) particles (56,22,54).

In particular, it is now well established fhat, when the nucjear
problem of quanfized fndividua]-parfic1e orbits in a common potential

"5 treated by the statistical (nuclear) Thomas-Fermi method, the

resulting energy reduces, in the appropriate 1imit of large systems
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with reiative]y thin surfaces, to a volume ehergy, a surface energy and
curvature corrections, as prédicted by Equation (1) (57-59,19).

It follows that the structufe of the Liquid-Drop formula, Equation
(1), is not an ad hoc parametrization, but a well-defined approximation
exploiting the smallness of the expansion parameter (b/R), and accurate
to within the nonlocal effects -to be described in Sections (4) and (5).

Apart from the eTectrostatic energy, the standard Liquid Drop mass
formula follows from Equation (1) by writing R = roA]/3 (r0 =
nuclear radius constant, about 1.18 fm); and'assuming the_vo]ume- and

surface-energy coefficients Cis Cp to depend quadratically on the

relative neutron excess I. Thus

V= -a](l -L(IZ)A + az(] - HSIZ)A2/3BS +ihigher order terms, (2)

where a, and az are new constants (with the dimensions of energy),
M is the "symmetry energy coefficient", and Ks is the "surface
symmetry energy coefficient". The quantity Bs’ a dimension1es§
functional of the vshape B, 1;5 the surface area of & divided by 4er2.‘

(Thus BS = 1 for the spherical shape.) In older treatments, the

poorly determined coefficient “S was usually set equal to zero. A
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somewhat more réason.ablezchoice is to put KS =K. If this isr done
(13), then Equation.(Z) prediﬁtgvthat,‘if the measured nuclear binding
energies per partié]e, (V/A), are corrected for the neutron excess,
shell effect§ and the electrostatic energy, and are then p1otted
against a3, a §traight Tine'should‘re$u1t, with -a, as the
intercept‘aéd a, as the slobé. How well th%s expectation is borne
“out is shown in F%gufe 3 tﬁken from (13).

A refinemént of thé Liquid Drop Model may be achieved by retaining
in Equation (1) higher order terms in the small expansion parameters
Af]/3 ;nd 12, This is indicated in Figure 4. A theory of nuclear
binding energies retdining on1y terms of order A corresponds to the
sfqdy of standard nuclear matter. Inc1udfng the terms of order A2/3
(surface'energy) and 12A (voiume.symmetry energy) corresponds to the-
Liquid Drop Model. Retention of the terms in A'/3, 12A%/3 and
I4A defines the nuc]eéf "Drop]et'Model" (19,24,30). It turns out
that jn order to work cohsistent]y to this ordek, it is necessary to

include in the theory degfees of freedom corresponding to

compressibility andbpo1arizability (i.e. deviations of the neutron and
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proton densities from uniform values in the bulk) as well as a
"neutron-skin" degree of freedom (i.e. fhe introduction of separate
neutron and ‘proton effective surfac.esnzn,ﬂp). The Drop]gt Model
thus becomes very much richer than the Liquid Drop Model and
establishes contact with many nuclear phenomena such as details of.
nuclear RMS radii, charge distributions, isotope shifts, and éiant
Dipole resonahcés; Regarding nuclear ground-state binding energies,
the Droplet Model Formula is still a closed a]gebrait expression.

Another extension of thevLiquid Drop Model can be found in the
work of Weiss and Cameron (60,61) who consider a large number of higher‘
ordef terms in the symmetry energy. Trurén, Cameron and Hilf (62) use
these higher-order terms in an actual fit to masses. Similar factors
enter in the work of Baym, Bethe and Pethick (63) and Mackie and Bayﬁ
(64) who are concerned mainly with formulating a binding energy
expression. that goes over correctly ipto an equation of state for pure
neutron matter when the neutron excess is increased.

Whether the Liquid Drop or Droplet Model formulae are used for the

specifically nuclear part of the binding energy, a term repreéenting
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the electrostatic interaction of the profons must be added.v‘(Aithough
the electrostatic energy is, strictiy speaking, ar: example of a Global
contribution, it is more logical to:discuss it along with the Liquid
Drop or Droplet -Model Formula.)  In-the simplest approximation the
electrostatic energy is taken to be that of a uniform distribution of
charge Ze inside the sharp surface ;. Closed expressions for this
energy are available for slightly distorted spheres, spheroids of any
eccentricity, slightly distorted spheroids, and some other special
cases (65-67,36). In general, however, the,Cou1omb‘energy must be
calculated by numerical quadratures (68,69). Corrections to the
electrostatic energy for the diffuseneés of the charge distribution and
for the anti-corre}ation of fhe protons-(due'to the exclusion
principle) are easily estimated. Their inclusion in a mass formula is
trivial since, to lowest order in b/R, they turn out to be constants

independent of shape (14,30).
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4. PROXIMITY PART
It may come és a surprisé that the Leptodermous expansion,
Equation (1), even if carried to an infinite or&er in. the small

]/3, is bound to miss an important piece of even the

parameter €= A~
smooth part'of the nuclear enérgy (quite apart from the cscillating
Global she]lvéffects). Thi; hés to do with the circumstance that, in a .
systém madé up of particles interacting fhrough finite-range forces,
.the interaction energy contains, in genéra], a part that "knows about"
the conditions at two finitely separated points (for e*amp]e, two-
surface e]eménts o?bappproachihg nuclei, or fhe front and back sides of
a sing]e.nuc1éus). }This partAcannot be reduced to a sum of lgcal
contributions; each a functjon of local conditidn§ on the surfacell, .
.and this invalidates the,aésumpfion underlying the local Leptodermous
Potential Energy Theorem. The mathematical feature of this elusive

contribution that evades even an infinite power expansion is its -

non-analiticity, which means that the contribution in question cannot

be ekpanded in a Taylor series. (A typical example of such a term is

exp (—A]/3) i.e. exp (-1/8). See p. 454 in Reference (32).) This
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type of contribution may be only a fraétion of an MeV for a single
undeformed nucleus, but it reaches;20-30AMeV for two nuclei -near -
confact and is of decisive importance for the discussion of such
cbnfiguratohs. It i§.a1so-of considerable importancé for the fission-
sadd]e-poinf configurations of the 1ightef nuclei, in the shape of two
pieces connected by-a small neck.

Krappe, Nix & Sierk (34) have developedva method of calcuiating
potential energies that, in addition to.the Local part, generates also
a Proximity Part. It consists of folding an effective short-range
interaction (of Yukawa type, exp (-x)/x, or, more recently, a special
mixture of a Yukawa and an exponential) into a sharp (or diffuse)
density distributionﬂrepresehting the nuclear shape. A particu]ar1y
elegant version of this method (36) uses the special two-parameter
folding function C(1 - 2x'1) exp(-x), where x = r]2/a and sz is
the separation between twovpoints. This effective interaction hgs the
property of leaving the vo]ume gnergy unaffected (it; average in
uniform matter {s zéro) and it a]sq hgs the desir;b]g property

(required by nuclear saturation) that the interaction energy between
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two semi-infinite slabs should be stationary when the siabs are in
contact. By adjusting the parameters C and a it is then possible to
reproduce the empirical §ufface énergy; as Qe]] as fovgive a useful
;pproximation to the interaction energy between two nuf]ei. As in the
case of the Coulomb energy,'c1osed formulae for the folding energy may
be derived in several cases but, in general, numerical quadratures are
required.

,A less comprehensive but algebraic method 6f tredating the
Proximity contribution in certain cases Qas deye]opéd by B1ockivef al.
(32,33), where one cén also find references to the earlier literature.
It rests on‘the seemingly trivial observation that the interaction
energy between two curved (nuclear) surfaces with least separation s

may be approximately written as

vp(s)s [[ e0) axay (3)

where e(D) is the interaction energy per unit area between two flat,
paraliel surfaces at separation D, and the integral is over the

" transverse dimensions of fhe gap between the curved surfaces, the gap

5
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being specified by the function D(x,y). A change of variables (p. 430,

(32)) leads to
o .
Vp = 2:‘{ e(D)dD , | | (4)

1/2

where R = (Rny) . Rx and R, being the radii of curvature

y
(evaluated at the point of least separation) of the surface obtained by
plotting D versus x and y. Differentiation with respect to s gives the

"Proximity Force Theorem":

F(s)= - (8Vp/ds) = 2R e(s) , (5)

"The force between two gently curved surfaces as a function of the
separation degree of freedom s fs proportional to the interaction
potent%a] per unit area, e(s), betﬁeen'two.flgg surfaces, the constant
of propbrtionalitybbeing 2T times the’rec%proea1 of the square root of
the Gaussian curvature of thé gap Qfdth function ;t the point of ieast
separation between the surfaces."

The theorem reduées the calculation of. the forCe}(or potential

energy) for approaching nuclei to the calculation of the geometrical
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quantity R (which, for two spherical nuclei with radii R]‘and*Ré,‘
tﬁrns out to be equal to the reduced radius, R]Rz/(R]+R2)) and
a universal function e(s) that has been célculated and tabulated,
tbgether wifh its integral, for nuﬁlear surfaces_described by the
nuclear Thomas-Fermi approximation (32).

It is é trival matter to estimate the nuclear interaction energy
V_ between two approaching nuclei using fhe simple cubichxpOnential

p

approximation given in References (32) for the dimensionless quantity
(L), where

_ |
ge:z| oo, | (6)
L w5

In this expression &= s/b, ¥ is the surface-energy coefficient, and b
is the surface width (a1 fm). Equation (6) can be used to rewrite
Equation (4) in the standard form,

Vo(8) = 4T ¥ bR &(D) . (7)
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5. GLOBAL PART (SHELL EFFECTS)

We mentioned in Section 3 that the Loca], Liquid Drop or Droplet
Model behavior of the potential energy is a very general broperty of
thin-skinnéd sysfems but that, in the nuclear context, it may also be
regarded as the resu1t of gpp1&ing the Thomas-Fermi methodbto the
nuclear many-body problem of.(weak]y) jnteracting quaptfzed particles:
in a common potential. .The Thpmas-Fermi method is based on the
statistical assumption that, for a large system, thehdensity of states
in phase spéce (coordingte space plus momentuh space)‘is, on the
averagé, one per h3, where h is Planck's consiant. It fo]lpws at
once that,»on the average, thevenergy En of the nth eigénva]ue of the
solution of the Schrddinger equation in a large, deep potential‘anity

' - n
. . 2/3 _2:'“’ .
is proportional to n“/~, the total energy E (= En)1s
. i o

5/3

max® where n

proportional to n X is the total number of

ma
sequentially filled eigenvalues, and the level density g(en) (numbef '
of eigenva1ues,'dn, per interval of energy dEh) is proportional to

‘ E;/Z.

Thus
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g e n?/3 (8)
n
max :
L™, o ' ®
9(E,) = J&- = £/% . (10)
- . n .

For a cavity that is not very deep or very.large, surface-layer
corrections to the above formulae may be readily derived (following, |
for example, the method of Reference (70)). 1In any case, 1nsofaf as
the statistical assumption is valid, fhe level density g(En) and
related quantities are smodth functions of En or n. In the case of
an irregular cavity, devoid of any‘symmetries, the eigenvajues wou]d,i
iﬁ genera1,_be nondegenérate and the inaccuracy of the statistical
assumption would be relatively sﬁaT], reflecting only the discrete
spacing éf the eigenvalues and random f]uétuations around the average.
The presence of degeneracies will cause deviations from the statistical
. {Liquid Drop or Droplet Model) behavior, the deviations being in
proportion to the strength of the degeneracies in-question. Thus the

approximate 2 x 2 spin-isospin degeneracy of the nuclear problem has

long been known to contribute to the special stability of light
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"a]pha-paftic]e" nuc1ef'and‘was'ear1y suggested (71, p. 7)'as a factor
in the even-odd staggefing of huc]ear masses (corresponding:to the
special Staﬁility of eveh-even nuclei). Much more drastic are the
~ deviations associated with the (21+1) degeneracy of eigenvalues in a
spherically symmetric-pofential (,Qis the éngu]ar momentum quantum
number), or the even strbhgér dégené?acies associated with the
isotropic harmonic oscillator botentia1'or the inverse-distance
potential. 1In all these cases, {nstead of an almost smdbth spectrum of
levels one haé,a "bunched" spectrum, with several levels per bunchvand
with gaps in between that would otherwise'be populated by the debunched
levels. The reason for the relative stability of systems yith a
particle numbgr corresponding to a closed shell (a partic]e number
cdrrespohding to a filled buncﬁ'of.jevels) is cléafr when one begins
‘to fill a new bunch of 1evels; the‘eigenva1ues are at first anomalously
high compéred to an average (pne has to overcome an anoma]ously large
gap) so tﬁe first particles are relatively poorly bound. On the other
hand, when comp1eting the filling of a bunch, one is putting particles

into eigenvalues that are by now lower than debunched eigenvalues would
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be (they would bevha1f-way up tﬁe next gap). Thus, the eigenvalues
Ens considerea as a function of the particle number, n, go up and
downv1ike a zig-zag,.crossing and recrossing the average (a vertical
iig followed by a sloping zaQ). ‘The total energy is a running integral
over'this zig-zag, and its‘dgviation from the average will be>a series
of ;rches, with deepest cusped points:corresponding to the especially
well-bound c]osed.she11s. The tops of the arches--half-filled
shells--will have anomalously poor bindings (high masses).
Mathematically, the binding energy anomaly--the shell effect--can thus

 be written as((13), Equation (2))

o " max Nmax | |
~ VseLLs =Z €, (bunched) -k €, (unbunched) f (11)
n=1 ~ n=1 .
"max ‘ \max
N &€ (bunched)dn - € (unbunched)dn . (12)
0 - Yo

This formula underlines both the treatments of shell effects in Refs.
(9-13) and (15-18, 72-76).
In the semi-empirical treatment of Reference (13) the unbunched

spectrum of the separate proton and neutron eigenvalues was taken to be
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that of the Thomas-Fermi method (proportional to n2/3);_ This
spectrum was then imagined cut up into bands corresponding to the known

neutron or proton magic numbers for spherical nuclei: N, Z = M., with

-ia

Mi = 2, 8, 14 (or 20), 28, 50, 126, 184 . The bands were squeezéd

by a (comhon) adjustable factor and slightly moved down together by a
second adjustable: factor to form the bunched spectrum. Iﬁsertion in
Equation (12) then gave the proton and neutron shell corrections for
the spherical shape. Since fhe bunching responsib}e for the known
magic numbers is associated with the spherical shape, this bunching and
the resulting shell effects should be damped out as the shape is

- distorted from the sphere. This wasvachfeved in the semi-empirical
method by mu]fip]ying the shell effect for the spherical shape by a
she]_l damping fqnction in the form of a gaussian, exp(-ez), where

is tbe ropt mean square deyiation of the nuclear surface frbm the
sphere, in units of an adjustable range parameter a. When this
three-parameier algebraic shell correction is added to a Liquid Drop or
Droplet Mode] formula, a fair account can be given of the’n0c1ear

ground state masses, equilibrium deformations, and fission barrier
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heights. (Tﬁe comparison with thevgrouhd state masses is shown in
Figure 2).

‘ The-Strutinsky}ﬁetﬁod (15-18,75) may be considered as resulting

from Equation (12) by changing the variable of integration from n to€:

, & ’ EF
VsHELLS™ S g(e)Ede-S\ Ye)ede , (13)
. : - -

where g(g) is the actual level density, d€/dn, of the bunched
eigevalues, and G(€) is the level density of the unbunched
eigenvalues. The Fermi energy 5% is determined by particle-number

norma]ization,

& |
NorZ-= J; g(e) dg . - | (14)

-

In practice, the bunched levei density g(g) (a series‘of delta
functions) is dbtained by calculating numerically a11vthe eigenvalues
in a suitable shell model potential wifh spin-orbit coup]ing. .(A
modified oscillator (73), a Woods-Saxon we}] (18) or a potential
obtained by folding a Yukawa interaction into a sharp-surfaced

generating density (75)). The level density er) is most often
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obtained by smoothing g(€) by means of an essentially Gaussian smearing

function of suitable range c, i.e.,

2 - -

..‘ _ e;ta' 5‘)2/ ' ek ' .
g(e) = g(e) = [1 + Modification]de' . (15)
cvm _

- a0

The "Modification" is a polyhomia] in the argument (€-¢’)/c, chosen to
maximize the smoothing of the rapid oscillations in'g, while doing the

least damage to the 1ong-fange shooth dependence of g on energy.

3

e L _
An additional feature of the Strutinsky method is the inclusion of

a correction to the binding energy Arising from the paifing of nucleons
moving in time-reversed orbits. This pairing correction is jmportant
for a realistic description §f nuclear energies and is relatively
easily treated by means of the Bardéen-Cooper-Schrieffer method, once
the eigenvalues en have been calculated with the aid of a computer
(73,18,75). The final correction to the smooth, local binding energy
consists then of separate shell and pairing correctioﬂs for the
neutrons énd protons.

_The Strutinsky method has essentially no adjustable parameters

and, given the requisite computational effort, provides the shell
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correction for any nuclear shape. When combined with a suitable Liquid
Drop or Droplet formula, it has been'spectacu1ar1y successful in
accounting for known features of nuclear deformation energies and in
making predictioﬁs of new phenomena.

For examples, the reader is refefred to .Secion 6 and to the vast
literature reviewed in Reference (76), Thg foundation of the method
and, in particular, its rg]atipn to seif-consistent Harfreé-Fock
treatments of the nuclear problem, aré discussed by Brack and others

(18,77) and Bohr-Mottelson (78) Vol. II p. 367-371.
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6. SPECIFIC TREATMENTS

In the foregoing sections we described the principal physical
ingredients that go into typical macroscopic theories of nuclear
binding and deformation energies. In the present section we shall
review briefly the relevant literature and provide some details in a
few cases. The various developments can be traced in the proceedings
of a long series of conferences on”atomic masses (79-85), a series on
nuclei far from siabi]ity (86;90), and a series of conferences on the
physics and chemistry of fission (91-94).

Reference (12) was one of the first extensive tabulations of
predicted masses that combines the Liquid Drop model with
semi-empirical algebraic shell corrections (11,13). 1t also stressed
the dependence of nuclear binding energies, including shell effects, on
_the shape of the nucleus (rather than concentrating on the ground-state
masses only). We shall give some details of this mass formula as an
example of this type of treatmenf.

The (atomic) mass.wag written as a sum of a liquid drop part and a

shell correction, as follows:



M(N,Z,shape) = MLD(N,Z,shape) + MSHELLS(N'Z’Shape)'- - (16)

“The liquid drop part is given by

=MN+MZ - a](T-KIZ)A + a,(1 -k 12

2/3

M JA

LD S

| 2,-1/3 2. -1 | - '
+cql°A7 7B, - 2T + § | (17)

The first two terms are the masses of the neutron and of the hydrogen
atom (this then allows for the masses of the Z atomic e]ectrons);_the.
next two are the volume .and surface eﬁergies, with a common quadratic
dependence on £he relative néUtron excess I. The shépe dependence of
the surface energy is contained in Bs’ the ratio of the area of the
shape in question tb that of a sphere of equal vo]uﬁe. The next term
- is the e1ectrdstatic energy, whose shape dependence is contained in
BC (the ratio of the Coulomb energy 6f the shape in question to that
of the'sbhere). The next term is av(shape-independent) correction to
the electrostatic energy‘due to the diffuseness of the charge
distribution. The last term is the even-odd correction, taken J

empirically as:t1]A]/2 MeV for odd-odd or even-even nuclei and zero
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for odd-mass nuclei. The quantities 3y, az,h(, cy are four
adjustable pgrameters (c4 js related to c3).
The shell correction, which results from cutting up the nuclear
energy spectrum'into bands defingd by the magic numbers Mi’ as
‘described in Section 5, is §iven by

_ 2
. -0
MSHELL_'S = C s(N,2)e . ', (18)

where ©= (RMS deviation of shape from sphere)/a

_F(N#E(Z)  ,1/3
S(N,2) = - cA (19)
(n/2)%73
FIN = aqg(h - M) -2 (VP2 -3, form, & NEm,
with | _
M. = 2,8,14(or 20),28,50,82,126,184 . (20)

The quantitiés C, a, ¢ are three adjustable parameters.

For a given N}and Z the ground-state mass and deformation were
calculated from Equation (16) by_minimizing the total energy with
respect to ellipsoidal distortions. The mass table generated in this
way (12) listed the Liquid Drop mass, the Shell correction, the
deformation, various decay energies, and the predicted fission barrier

for about 8000 different combinations of N and Z.  (The inclusion of
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fission barriers is necessary for a_firm determination of the
adjustable surface and Coulomb energy coefficients.)

In later versions of this type éf treatment the shaﬁe dependence
of the shell correction was modified, on physical grounds, to
"(l-Zeg)exp(-e?) (14). Later this shell corfection was combined
with the Droplet Model, to create another table qf nuclear masses and
other propertiés (30). A feature of this table is that it inclﬁdesf
predicted (effective sharp) radii of the neutron and proton
Qistributions.:;These followed from minimizing the energy with respect
to the Droplet Model degrees of freedom déscribing the neutron and
bfoton density distributipns. The Droplet Model formula has:a
-structure similar to Equation'(]S)zbutFis more complicated and has four
additional shape-dependent functiohaTs{in addition to,Bs and Bc'

It also includes the’exchange correction (1inear.in Z) for the -
anticorrelation of the protons and a semi-embirica] "Wigner Term",
proportional toilll, believed to reflect the tighter binding of -

particles in identical (or closely similar) quantized orbitals (30).
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- Part of the Droplet Model mass table just mentioned (30) also
appears in the extremely useful collection of calculated masses that
has been assembled by Maripuu (95). This same co]]ectioh also contains
a Droplet Model ca]culatidn by von Groote, Hilf & Takahashi (28) that -
.improves the agreement Qith the measured masses by introducing
additioné} flexibility into the schematic shell correction function.

In anofhef contribution to this co]]ectiqn, Seeger & Howard (96)
~ combine a LDM (modified along Droplet Model lines) with shell
corrections calculated using the Strutinsky method.

At this point it is probably good to rem{nd the reader that the
aaoptién of Strutinsky shell EOrrectiohs (15-18,72,77,97-99)
constitutes a.major adyance but aiso a break:with the prevjous
semi-empirical shell corrections, which were algebraic in nature. The
improved predictive power of the Strutinsky method -and its essentially
unlimited range of applicability are obtained at the cost of a major
increase in calculational complexity. No aspéct of this method is
amehab]e to hand calculation, and large electronic computer

calculations are required for every result.
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An enormous literature based on applications of the Strutinsky
methqd,has grown up around the prediction of the various nuclear
-properties,*including the properties of superheavy elements that are
thought to form én.island of st;bi]ity beyond the end of the known
periodic table. Besides the early wofk by Strutinsky (15-17), some of
the landmark papers in this area are those of Nilsson et al. (73),1
Brack et al. (18), Boslterli et al. (75), and the review in this series
by Nix (76). Figure 5 gives an i]]ustrationvpf results obtained with
the Strutinsky method.
| A sfgnificant recent compilation of nuclear properties that makes
use of the Strutinsky method is that of Moller & Nix (37,38). The LDM
part of their energy expression employs a surface energy detérmined by
folding a particular combination of a Yukawa and an exponéntia]
interaction into the specified nuclear dénsity distribution, as
explained in Section 4. This treatment of the Proximity part, in
addition to providing an épproximation to the interaction energy of
approaching nuclei, appears to have a very significant effect on

lowering the fission barriers of medium and light nuclei. Several
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other refinements are included in the.treatment (corrections for the
protoh form factor, an exact treatment of the diffuseness correction to
the electrostatic energy, fhe'éffect of a slight charge asymmetry in
the nuclear force,_corrections for zero-pojnt motions in the ground
state).  But the correction that‘produced a reé]iy signifitant'
improvement in-the fit to nuclear.grOUnd-state masses resulted from the
simple inclusion of a shape-iqdependent A° ferm (i.e. a constant) in
the Liquid Drop part of the formula. This cut the RMS deviationé'in
the ground-state masses from 1.93 MeV to 0.97 MeV and seemed to remove
virtually all systematic smooth deviations between theory and
experiment. ‘This may be the first'time that significant contact
between experiment and the Leptodermous’expansion has taken place at
the A° level.

The tréatment of the Proximity Part of the macroscopic energy with
the aid 6f a folding technique (36) requires numerical integrétions
similar to those involved in the evaluation of the electrostatic
energy. The more résfricted,but algebraic treatment that follows from

the Proximity Force Theorem in Section 4 has been found useful for
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discussing the interaction energy between nuclei. The expression for
"VP’ given in Section 4, when combined:with thé e1ec§rostatic
interaction energy of two figid spheres, overéstimates the experimental
interaction barriers between two nuclei (as heé;ufed for brojecti]es
and targets throughout the periodic tables) by about 4 1 2% (160). (A
discrepancy in this sense is not unexpected, since actﬁa] nuclei are.
not rigid3and, by deforming under the influence pf the nuclear forcgs,
-may lower the interact{on bafrier)f

In addition to the theories of nuclear binding and deformation
energies,‘which are the subjectbof this review, we §houfd Mention two
'treatments that do not go peyond the-distussion bf eqﬁj]ibrium nuclgar
masses.  The fifst is that of Zeldes and cp;workers (101-105).. They
employ shell model considerations in éonstructing algebraic expressjons
containing a large number of pérameters adjusted to account for various
aspects of the nuclear level scheme. A table of mass prediction; based
on this ‘approach has been prepared by Liran & Zeldes (106). It agrees
extremely well with the known masses on which it is based and is most

reliable for short-range extrapolations.
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Another approach is that ofﬂnuclear mass relations, which was

reviewed jn this sefies by Garvgy (45). For example, there is the
isobaric-mu]tip]et mass equation (107-109),'which is obtained from the
(mpre genera]).wigner supermu]tipTet theory'(110,11]).“ This equation |
asserts that thg (2T + 1) masses of an isobaric multiplet with isospin
T should be related by the expression,

= a4 2
M(T.)) = a+ sz + QTZ

, (21)

In this same category of mass relations, but of wider applicability, is

the Garvey & Kelson (41-46) Approéch i]]ﬁstrated in Figure 6, which is
based on'adding and subfractfhg hasses SO thét, within the framework of
a shell mbdel‘freatment, the'varioﬁs‘interagt%ons between the particles
would cancel. The magses 6% six nﬁc]ei shdu]d sum to zero when
comb;ned acébrding to these pafterns;' If‘five massés are known, these
relations can be‘used tovpreditt the mas; of'the missing'member._ In
this way tab]es of pfedicted massés can be built up by successive
application of the basic relations. However, in their simplest forms,

the predittions can go badly astray if naively applied to long-range

extrapolations (112, 48). The advantages and limitations of this type
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of mass relations have been investigated by Jéhecke &fofhers'(47-53),
who find a number of ways of enhancing their 1ong-range predictive
power. The method hasva1so‘been app]igd by Monahan & Serduke (113-115).

Finally,‘as we mentioned in Section 2, a bold attempt is being
. made to go beyond‘the indirect approach and actually address'the_fu11
many body problem of nuclear structure with the aid of the Hartree-Fock
apprqximation. In spite of the difficd]tvnumerica1 calculations
required, this area has seen a great deal of growth in the last decade;
cufrent-deve1§pmenfs have Eecentl& been reviewed in this series by
Quentin & F]océrd (40). A survey of nuclear radii throughout‘the
periodic table usiné Hartrée—Fock methods has been undertaken by
Beiner, Lombard & Mas (116);‘wh6 ﬁave~also brepared a téb}e of nuclear
masses (1i7); A number of related studies is curreﬁt]y underway by
Toﬁdeur (118-122) and by Pearson and éo-workers (123-126).,

While sfil] somewha£ phenomeno]dgica1 in nature,vbecaﬁée of the
effectivé fdrcé’(chosen for cé]cu]ational convenience) and the

Hartree-Fock approximation, this approach gives the Local, Proximity,

and Global contributions to the energy within a single unified



self-consistent approach. This may be essential for the proper
treatment of the problem when large excursions away from known nuclei

(in shape, particle number, or N/Z) are being considered.

41
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7. CONCLUDING REMARKS

After approximately half ‘a century of nuclear physics there is -
available today a large amount of experimental informgtion’on the
masses and deformation energies of nuclei relatively close to the line
of beta stability. Thg interpretation of these measurements, which
started off {n the thirties with semi-empirical fits to ground-state
masses, hds improved over the ye;rs»and has become intégrated into
detailed theories of nuclear structure and deformabilities. The
resulting understanding of both the gross features, as approximated By

a Liquid Drop or Droplet Model formula, and of the fine shell-effect

details, calculated using the Strutinsky method, . is genéra]]y adequate

to .account for the binding energies with an accuracy that may be
considerab]y‘better tHan 1 MeV‘(better than 0.1%) for short-range
’extrapo1ations; but becomes uncertain for more distant extrapolations.
The relatively recent breakthrough in describing quantitatively the
shell effects was associated with the indirect approach, jn which éhe11
corrections are added to a smooth background, provided byvthe‘Liquid

Drop Model. In the future, especially when very distant extrapolations
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come into consideration (as in astrophysics) the direct approach of
attacking the full many-body problem (in a suitable approximation)}hay
become relatively more important. However, even then, the.indirect
macroscopic approaéh, suﬁtably enriched to take into. account the new
situations (e.g. very neutron-ri;h neutron-;tar matter, or the bubble
or foam topologies of collapsing supernovae) should continue to be a
-valuable tool fqr understanding these complex précesses.

This work was supported by the Director, Office of Energy Research,
Division of Nuclear Physics of the Office of High Energy and Nuc]éar'
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Figure 1.

Figure 2.

Figure 3.
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The mass decrements-(closely related to nuclear binding
energies)_are plotted for 97 beta-stable nuclei. The curve
is a liquid-drop fit based on the "local" part of the nuc1éar
potentia]-enérgy expresion. The deviations are du; mostly to
shell effects.

The shell correction to nuclear binding energies (i.e., the

experimehtal mass minus a droplet mode1 fit) is displayed as

" a function of neutron number [line (a)]. Line (b) is a

theoretically calculated shell correction, using a schematic

'modél of bunched levéls in the.upper part and the Strutinsky

shell-correction method in the lower part. Line (c) is the

“remaining deviation (30).

The experimental nuclear binding ehergy per particle,
corrected for the'neutron excess, ‘shell effects and the
N . . - ] - v -1/3 -
electrostatic energy, is plotted versus A . The

conformation of the experimental points to a linear trend

"down to mass numbers as low as 10 (see the labels along the

data points) confirms the validity of the Leptodermous



Figure 4.

Figure 5.

Figure 6.
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Expansion:and suggests a re]atfve]y small value for
correction terms beyond the surface. energy.

The orders of various terms in the expansion of the energy of

1/3 2

a nucleus in powers of A~ and I~. The Liquid Drop

Model includes terms of orderAA; A2/3 and IZA.' The

Droplet Model is defined by the requirement that it should

' ' 4
include, in addition, all terms of order al/3, 1242/3 and T°A.

The dashed lines represent the ca]éu]ated Liquid Drop Model

: deformatign energies of a number of superheavy nuclei. The

solid lines show how the déformation energy is chaﬁggd when
Strutinsky she11 effects are added (75).

Schematic representatibn of the so-ca]]eq transverse énd
Tongitudinal mass relations. The boxes represént nuclei from
the nuclidic chart Qith N horizontal and Z verﬁica]. The
presence of a plus or a minug sign in a b;x jndicates that
the mass value of the respective nucleus is to be added or

substracted. If the Garvey-Kelson mass relations were exact,

the sum of the six masses would be zero.
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