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1. INTRODUCTION 

The mass of a neutron is MN = 939.5731 MeV/c 2  and of a proton 

Mz = 938.2796 MeV/c 2 . The mass of an atomic nucleus with A 

nucleons (N neutrons and Z protons) consists of the sum (NMN + 

reduced by the mass associated with the binding energy between the 

nucleons, as required by the relativistic equivalence between mass and 

energy. These binding energies vary from 2.2 MeV for the deuteron to 

1900 MeV for 256 Fm. After sixty years of atomic mass measurements, 

the binding energies are known today experimentally for &#1900 nuclei in 

their ground-state equilibrium configuration, as well as for dozens of 

nuclei in deformed, fission-barrier saddle point shapes, and for 

hundreds of interaction-barrier shapes corresponding to pairs of nuclei 

in contact. These binding-energy (or mass) measurements are often made 

with a precision corresponding to a small fraction of an MeV and, 

together, they represent an immense amount of information of practical 

relevance for many branches of nuclear physics, nuclear engineering, 

and astrophysics. They also represent an exacting challenge to 
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theoretical efforts at understanding the basic properties of the unique 

many-body problem presented to us by an atomic nucleus. 

In the macroscopic approach to nuclear structure, one attempts to 

simplify the description of certain aspects of the nuclear many-body 

problem, with its 3A individual-particle, degrees of freedom (not to 

mention possible quark degrees of freedom), by focusing attention on a 

number of suitably chosen macroscopic features. First and foremost 

among these are the degrees of freedom describing the shape of the 

nuclear surface (which, although not perfectly sharp, is known 

experimentally to be fairly well defined, except for very small 

nuclei). The subject of the present review, "The Macroscopic Approach 

to Nuclear Masses and Deformations", is then the description of 

theories, formulae, and techniques for the calculation of nuclear 

masses (or binding energies) in their dependence on macroscopic (shape) 

degrees of freedom. 

The major part of the binding energy of nuclei may be accounted 

for by a simple "Liquid Drop" formula, consisting of a volume energy 

[assumed to depend quadratically on the relative 'neutron excess I, 
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defined as (N-Z)/A)], a surface energy proportional to the surface 

area, and the electrostatic energy of a uniform distribution of 

electric charge inside the nucleus. The effectiveness of this simple 

Liquid Drop Model treatment of nuclear ground-state energies is 

illustrated in Figure 1. Originally conceived more than 45 years ago 

(1,2) for the purpose of calculating only such ground-state masses, the 

model began to assume a wider range of applicability when it was 

recognized thatthe gross properties of nuclear fission could be 

understood in terms of the shape dependence of the surface and 

electrostatic energies of the nuclear drop (3). Unfortunately, 

however, there was a historically understandable tendency to associate 

the Liquid Drop Model (even in its static aspects) with a system of 

strongly interacting particles characterized by short mean free paths 

(and treated according to classical mechanics). Because of this 

misconception and the failure of idealized versions of the Liquid Drop 

Model to account for nuclear dynamics (e.g. excited nuclear states), 

the soundness of the Liquid Drop Model, even in its description of the 

gross, static aspects of nuclear binding energies, began to be 
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questionedwhen the nuclear Shell Model was found to be a good. 

approximation to nuclear structure (4). According to this model, one 

could think of nuclei as consisting of weakly interacting constituents 

in a common potential well, with quantization of the particle orbits 

playing an essential role. How then could the Liquid Drop Model of 

nuclear binding energies be taken seriously? We shall discuss this 

question in a later section. Notwithstanding these reservations, 

refinements to the Liquid Drop Model formula for nuclear masses 

continued to be made. They did not, however, reduce substantially the 

remaining discrepancies between theory and experiment (up to about 10 

MeV), whichwere soon recognized qualitatively as "Shell Effects", 

associated, indeed, with the quantization of the nucleon orbits. 

Major advances in treating the shell effects took place about 

fifteen years ago. (Before this time the shell effect deviations had 

usually been treated in an ad hoc way, by use of tabulated empirical 	
11 

correction functions (5-8).) In Refs. (9-11) it was recognized that 	 4' 

the main features of the shell effect deviations (see Figure 2) could 

be understood in terms of the bunching of the quantized nucleon levels 
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into bands, the bunching being governed by the symmetries of the 

nuclear shape in question and thus disappearing when the symmetries 

were destroyed by a deformation. A semi-empirical algebraic treatment 

of shell effects, made possible by these insights (11-14), was soon 

followed by quantitative calculations (requiring, however, numerical 

solutions of the Schrödinger equation in an appropriate potential well) 

(15-18). The result of these calculations was not only a dramatic 

reduction of the discrepancies between theoretical and experimental 

masses (from around 10 MeV to around 1 MeV) but also the explanation of 

the long-standing puzzle of the mass asymmetry of nuclear fission in 

terms of shell effects at the fission barrier, as well as the 

explanation of the existence of relatively stable, strongly deformed 

nuclei with axes in the ratio of about 2:1 (the fission isomers). 

Finally, and potentially most significant, these shell-effect 

calculations predicted the possible existence of an island of 

relatively stable nuclei beyond the known limits of the periodic table 

of elements. 



Concurrently with this conquest of the nuclear shell effects, 

there followed a substantial further improvement in the treatment of 

the Liquid Drop Model (the so-called Droplet Model (19-31)) and the 

development of successful " Proximity"  and "Folding" techniques for 

calculating the nuclear interaction between approaching nuclei (32-39), 

essential for a description of the energies of interaction-barrier 

configurations. Taking together these three contributions, 

Liquid-Drop, Proximity, and Shell Effects, one can today estimate 

theoretically the binding and deformation energies of known or 

hypothetical nuclei with an accuracy often approaching or even 

exceeding 1 MeV. 

An independent advance has been the development of techniques that 

solve the nuclear many-body problem within a self-consistent mean-field 

approximation (Hartree-Fock calculations with simplified effective 

interactions (40)). These potentially most powerful techniques are 

today still somewhat limited by the computationaleffort that is 

required. 



Finally, a major advance in interpolation/extrapolation methods 

took place around 1966 (41-46)., resulting in a very elegant and 

generally accurate way of predicting nuclear ground-state masses from 

known neighboring masses (See Section 6) (47-53). 

7 



2 .FRAME WORK 

The importance of the macroscopic description of nuclear 

deformation energies can be appreciated by viewing the problem in the 

context of the wider question of the macroscopic description of nuclear 

dynamics. In order to discuss a macroscopic dynamical problem one 

often needs three components in the equations of motion, corresponding 

to inertial, dissipative, and conservative forces, each given as a 

function of the macroscopic (e.g. shape) degrees of freedom (and their 

time derivatives) (54,55). The conservative forces follow from the 

potential energy (expressed as a function of shape). In the case of 

nuclei, the local or absolute minima in this potential -energy landscape 

give the ground-state masses. Saddle-point passes are related to 

(fission) barriers and, generally, the landscape provides the stage on 

which dynamical evolutions (to be treated classically or quantally) 

will be taking place. 

In the context of nuclear deformation energies the problem is then 

to write down the potential energy V of a nucleus of arbitrary shape--a 

diffuse nuclear blob--consisting of A nucleons, as a function (more 



precisely, a functional, V[])  of its shapes. [The blob may be in the 

form of one or more deformed diffuse pieces, but the contour l is, by 

definition, a sharply defined figure. The diffuseness of the surface 

region of the blob may be specified by a widtht' b, of the order of the 

range of nuclear forces. The size of the blob (not spherical, in 

general) may be specified bya radius R (or volume 4TR 3/3).] 

In a direct attack on this question one may simply attempt a 

solution of the many-body problem as a whole, using a suitable 

approximation. In the nuclear context, the mean-field Hartree-Fock 

approach (using simplified effective interactions) has been 

particularly successful in recent years and promises to provide 

eventually the most reliable estimates of certain features of the 

potential-energy landscape. 

The indirect approach, which up to now has provided the main tools 

for accounting quantitatively for nuclear binding and deformation 

energies, relies on splitting the total potential energy into three 

parts and treating them separately. The physical reasons for the split 

have to do with the fact that the nuclear blob Z is made up of elements 
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(nucleons) that can feel each other over finite distances by virtue of 

nuclear interactions (of rangei'b) and that inside the blob there are 

individual-particle wave-functions that can feel out the shape of the 

blob as a whole. (The eigensolution of the Schrodinger equation in a 

cavity is sensitive to the shape and size of the cavity as a whole). 

If it were not for certain specific effects of the finite range of 

nuclear forces and the global character of the eigenvalue problem, the 

total energy could be written as a sum of 'local' contributions but the 

finite range adds a specific 'Proximity part' and the global character 

of the wave functions adds a 'Global part'. Thus 

= Local part + Proximity part + Global part. 

The shape dependence of the Local part is made up of contributions from 

different points on, each contribution being a function only of the 

local conditions at that point. The Proximity part is made up of 

contributions that depend also on conditions a finite distance (of 

order b) away from the point in question. The Global part cannot be 

written as a sum of local contributions--it knows about the shape as a 

whole and, in particular, about the symmetries of the shape. 
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In less formal language the Local part is, essentially, the Liquid 

Drop or Droplet contribution to nuclear masses (it is typically of the 

- 	 order of hundreds of MeV). The Proximity part or Proximity Potential 

shows up most strikingly in the attraction (of range 't.b) between the 

surfaces of two approaching nuclei (it is typically Of the order of 

tens of MeV). The Global part, in particular as it is sensitive to 

symmetries, contains the Shell Effects (typically of the order of a few 

MeV). (The Coulomb energy, which may range from tens to hundreds of 

MeV, is also part of the Global contribution, but it is not 

specifically sensitive to the symmetries of the shape.) 

We shall now describe the techniques used to treat these three 

parts of the nuclear potential energy. 



12 

3. LOCAL PART 

For any "saturating" system, such as a nucleus or a drop of water, 

the main deviations from bulk behavior are confined to a surface layer 

(of width Nb, say) that is small compared to the size of the system 

(b/R <<. 1). A Leptodermous Potential Energy Theorem may then be 

derived (32,54), according to which the local part of the potential 

energy can be written as the following expansion in powers of b/R: 

Relative Order 

V = c. (4/3)irR Volume energy 1 A 

+ C 2  d0 Surface energy b/R A2t3  

+ c 3  çK 	do Curvature energy (b/R) 2  A 1/3  

(1) 

+ cf d { Hiher order curvature) 
(b/R) 3  A0  

+ 4  K 
( 	2 

dcr 
corrections 

 

+ corrections that go to zero as A—* 00 	 A 

In the above, the integrals are over the surface E defining the shape of 

the system, t( is the total curvature and rthe Gaussian curvature at a 

point on the surface (R= R' + Ri', 1= R'R' where R 1 , 

R 2  are the principal radii of curvature at the point in question). 
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The coefficients C 1  ... C' 4  areconstants, independent of the 

shape and size of the system, which are, in general, functions of the 

bulk density and composition (neutron excess). With respect to the 

leading volume-energy term, the constants are of the relative order 1, 

b, b 2 , b3 , b3 , which implies energy contributions of order A, 

A2t3 , A 113 , A0 , A0 . 

The derivation of Equation (l)may be found in Blocki et al. (32); 

the important point to stress is that it does not rest on assumptions 

that the particles constituting the system are classical objects with 

short mean free paths. The crucial assumption is that the deviations 

from bulk behavior should be confined to a (relatively thin) surface 

layer, an assumption that is found to be satisfied quite accurately 

also for systems of quantized, weakly interacting (or even 

noninteracting) particles (56,22,54). 

In particular, it is now well established that, when the nuclear 

- 	 problem of quantized individual-particle orbits in a common potential 

is treated by the statistical (nuclear). Thomas-Fermi method, the 

resulting energy reduces, in the appropriate limit of large systems 
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with relatively thin surfaces, to a volume energy, a surface energy and 

curvature corrections, as predicted by Equation (1) (57-59,19). 

It follows that the structure of the Liquid-Drop formula, Equation 

(1), is not an ad hoc parametrization, but a well-defined approximation 

exploiting the smallness of the expansion parameter (b/R), and accurate 

to within the nonlocal effects to be described in Sections (4) and (5). 

Apart from the electrostatic energy, the standard Liquid Drop mass 

formula follows from Equation (1) by writing R = r 0A 1 " 3  (r0  = 

nuclear radius constant, about 1.18 fm), and assuming the volume- and 

surface-energy coefficients c 1 , c2  to depend quadratically on the 

relative neutron excess I. Thus 

	

V = -a(1 -M1 2)A + a2 (l - K5 1 2 )A 2" 3B 5  + higher order terms, 	(2) 

where a 1  and a2  are new constants (with the dimensions of energy), 

is the "syiimetry energy coefficient", and K is the "surface 

symmetry energy coefficient". The quantity 8 	a dimensionless 

functional of the shape , is the surface area of 1' divided by 4R 2 . 

(Thus B = 1 for the spherical shape.) In older treatments, the 

poorly determined coefficient 	was usually set equal to zero. A 
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somewhat more reasonable choice is to put I.( =tk. If this is done 

(13), then Equation (2) predicts that, if the measured nuclear binding 

energies per particle, (V/A), are corrected for the neutron excess, 

shell effects and the electrostatic energy, and are then plotted 

against A "3 , a straight line should result, with -a 1  as the 

intercept and a 2  as the slope. How well this expectation is borne 

out is shown in Figure 3 taken from (13). 

A refinement of the Liquid Drop Model may be achieved by retaining 

in Equation (1) higher order terms in the small expansion parameters 

and 12.  This is indicated in Figure 4. A theory of nuclear 

binding energies retaining only terms of order A corresponds to the 

study of standard nuclear matter. Including the terms of order A 2" 3  

(surface energy) and 1 2A (volume symmetry energy) corresponds to the 

Liquid Drop Model. Retention of the terms in A" 3 , 1 2A2" 3  and 

1 
4  A defines the nuclear "Droplet Model" (19,24,30). It turns out 

that in order to work consistently to this order, it is necessary to 

include in the theory degrees of freedom corresponding to 

compressibility and polarizability (i.e. deviations of the neutron and 
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proton densities from uniform values in the bulk) as well as a 

"neutron-skin" degree of freedom (i.e. the introduction of separate 

neutron and proton effective surfaces FjnIE 	The Droplet Model 

thus becomes very much richer than the Liquid Drop Model and 

establishes contact with many nuclear phenomena such as details of 

nuclear RMS radii, charge distributions, isotope shifts, and Giant 

Dipole resonances. Regarding nuclear ground-state binding energies, 

the Droplet Model Formula is still a closed algebraic expression. 

Another extension of the Liquid Drop Model can be found in the 

work of Weiss and Cameron (60,61) who consider a large number of higher 

order terms in the symmetry energy. Truran, Cameron and Hilf (62) use 

these higher-order terms in an actual fit to masses. Similar factors 

enter in the work of Baym, Bethe and Pethick (63) and Mackie and Baym 

(64) who are concerned mainly with formulating a binding energy 

expression that goes over correctly into an equation of state for pure 

neutron matter when the neutron excess is increased. 

Whether the Liquid Drop or Droplet Model formulae are used for the 

specifically nuclear part of the binding energy, a term representing 
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the electrostatic interaction of the protons must he added. (Although 

the electrostatic energy is, strictly speaking, a example of a Global 

contribution, it is more logical to discuss it along with the Liquid 

Drop or DropletModel Formula.) In the simplest approximation the 

electrostatic energy is taken to be that of a unit orm distribution of 

charge Ze inside the sharp surfaceE. Closed expressions for this 

energy are available for slightly distorted spheres, spheroids of any 

eccentricity, slightly distorted spheroids, and some other special 

cases (65-67,36). In general, however, the Coulomb energy must be 

calculated by numerical quadratures (68,69). Corrections to the 

electrostatic energy for the diffuseness of the charge distribution and 

for the anti-correlation of the protons (due to the exclusion 

principle) are easily estimated. Their inclusion in a mass formula is 

trivial since, to lowestorder in b/R, they turn out to be constants 

independent of shape (14,30). 



IN  

4. PROXIMITY PART 

It may come as a surprise that the Leptodermous expansion, 

Equation (1), even if carried to an infinite order in the small 

parameter E = A 113 , is bound to miss an important piece of even the 

smooth part of the nuclear energy (quite apart from the cscillating 

Global shell effects). This has to do with the circumstance that, in a 

system made up of particles interacting through finite-range forces, 

the interaction energy contains, in general, a part that "knows aboutt' 

the conditions at two finitely separated points (for example, two 

surface elements of appproaching nuclei, or the front and back sides of 

a single nucleus). This part cannot be reduced to a sum of local 

contributions, each a function of local conditions on the surfacer, 

and this invalidates the assumption underlying the local Leptodermous 

Potential Energy Theorem. The mathematical feature of this elusive 

contribution that evades even an infinite power expansion is its 

non-analiticity, which means that the contribution in question cannot 

be expanded in a Taylor series. (A typical example of such a term is 

exp (_AL'3)  i.e. exp (-lIE). See p.  454 in Reference (32).) This 
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type of contribution may be only a fraction of an MeV for a single 

undeformed nucleus, but it reaches 20-30 MeV for two nuclei •near 

contact and is of decisive importance for the discussion of such 

configuratons. It is also of consIderable importance for the fission 

saddle-point configurations of the lighter nuclei, in the shape of two 

pieces connected by•a small neck; 

Krappe, Nix & Sierk (34) have developed a method of calculating 

potential energies that, in addition to the Local part, generates also 

a Proximity Part. It consists offolding an effective short-range 

interaction (of Yukawa type, exp (-x)/x, or, more recently, a special 

mixture of a Yukawa and an exponential) into a sharp (or diffuse) 

density distributionrepresentiflg the nuclear shape. A particularly 

elegant version of this method (36) uses the special two-parameter 

folding function C(l - 2x) exp(-x), where x = r 12/a and r 12  is 

- 	 the separation between two points. This effective interaction has the 

property of leaving the volume energy unaffected (its average in 

uniform matter is zero) and it also has the desirable property 

(required by nuclear saturation) that the interaction energy between 
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two semi-infinite slabs should be stationary when the slabs are in 

contact. By adjusting the parameters C and a it is then possible to 

reproduce the empirical surface energy, as well as to give a useful 

approximation to the interaction energy between two nuclei. As in the 

case of the Coulomb energy, closed formulae for the folding energy may 

be derived in several cases but, in general, numerical quadratures are 

required. 

A less comprehensive but algebraic method of treating the 

Proximity contribution in certain cases was developed by Blocki et al. 

(32,33), where one can also find references to the earlier literature. 

It rests on the seemingly trivial observation that the interaction 

energy between two curved (nuclear) surfaces with least separation s 

may be approximately written as 

Vp(s) -, ff e(D) dx dy , 	 (3) 

where e(D) is the interaction energy per unit area between two flat, 

parallel surfaces at separation D, and the integral is over the 

transverse dimensions of the gap between the curved surfaces, the gap 
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being specified by the function D(x,y). A change of, variables (p.  430, 

(32)) leads to 

VP = 2IS 	e(D)dD , 	 (4) 

where 	= (RR) 1"2 . R X 
and Ry  being the radii of curvature 

(evaluated at the point of least separation) of the surface obtained by 

plottingD versus x and Y. Differentiation with respect to s gives the 

"Proximity Force Theorem": 

- (V/aS) = 2ie(s) , 	 (5) 

i.e. 

"The force between two gently curved surfaces as a function of the 

separation degree of freedom s is proportional to the interaction 

potential per unit area, e(s), between two flat surfaces, the constant 

of proportionality being 21t times the reciprocal of the square root of 

the Gaussian curvature of the gap width function at the point of least 

separation between the surfaces." 

The theorem reduces the calculation of the force (or potential 

energy) for approaching nuclei to the calculation of the geometrical 
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quantity R (which, for two spherical nuclei with radii R 1  and 

turns out to be equal to the reduced radius, R 1 R 2/(R 1 +R 2 )) and 

a universal function e(s) that has been calculated and tabulated, 

together with its integral, for nuclear surfaces described by the 

nuclear Thomas-Fermi approximation (32). 

It is a trival matter to estimate the nuclear interaction energy 

VP  between two approaching nuclei using the simple cubic-exponential 

approximation given in References (32)for the dimensionless quantity 

(C) , Where 

e(D) dD 
	

(6) 
2T B 

In this expression C = s/b, Y is the surface-energy coefficient, and b 

is the surface width (vl fm). Equation (6) can be used to rewrite 

Equation (4) in the standard form, 

= 411 Zr b 	 . 	 (7) 
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5. GLOBAL PART (SHELL EFFECTS) 

We mentioned in Section 3 that the Local, Liquid Drop or Droplet 

Model behavior of the potential energy is a very general property of 

thin-skinned systems but that, in the nuclear context, it may also be 

regarded as the result of applying the Thomas-Fermi method to the 

nuclear many-body problem of (weakly) interacting quantized particles 

in a common potential. The Thomas-Fermi method is based on the 

statistical assumption that, for a large system, the density of states 

in phase space (coordinate space plus momentum space) is, on the 

average, one per h 3 , where h is Planck's constant. It follows at 

once that, on the average, the energy En  of the nth eigenvalue of the 

solution of the Schrbdinger equation in a large, deep potential cavity 

2/3 
is proportional to n 	,. the total energy E (=Z 	€)is 

proportional to 
5/3  where nmax  is the total number ofmax 

sequentially filled eigenvalues, and the level density g(E) (number 

- 	 of eigenvalues, dn, per interval of energy dç) is proportional to 

El /2 n 

Thus 
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Ee 
	

(8) 

max 
5/3 E max 

1 

dn cc e g(E) = 
	

" 

For a cavity that is not very deep or very large, surface-layer 

corrections to the above formulae may be readily derived (following, 

for example, the method of Reference (70)). In any case, insofar as 

the statistical assumption is valid, the level density g(€) and 

related quantities are smooth functions of S or n. In the case of 

an irregular cavity, devoid of any symmetries, the elgenvalues would, 

in general, be nondegenerate and the inaccuracy of the statistical 

assumption would be relatively small, reflecting only the discrete 

spacing of the eigenvalues and random fluctuations around the average. 

The presence of degeneracies will cause deviations from the statistical 

(Liquid Drop or Droplet Model) behavior, the deviations being in 

proportion to the strength of the degeneracies in question. Thus the 	 - 

approximate 2 x 2 spin-isospin degeneracy of the nuclear problem has 

long been known to contribute to the special stability of light 
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"alpha-particle" nuclei and was early suggested (71, p.  7) as a factor 

in the even-odd staggering of nuclear masses (corresponding to the 

special stability of even-even nuclei). Much more drastic are the 

deviations associated with the (21+1) degeneracy of eigenvalues in a 

spherically symmetric potential (is the angular momentum quantum 

number), or the even stronger degeneracies associated with the 

isotropic harmonic oscillator potential or the inverse-distance 

potential. In all these cases, instead of an almost smooth spectrum of 

levels one has a "bunched" spectrum, with several levels per bunch and 

with gaps in between that would otherwise be populated by the debunched 

levels. The reason for the relative stability of systems with a 

particle number corresponding to a closed shell (a particle number 

corresponding to a filled bunch of levels) is clear: when one begins 

to fill a new bunch of levels, the eigenvalues are at first anomalously 

high compared to an average (one has to overcome an anomalously large 

gap) so the first particles are relatively poorly bound. On the other 

hand, when completing the filling of a bunch, one is putting particles 

into eigenvalues that are by now lower than debunched eigenvalues would 
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be (they would be half-way up the next gap). Thus, the eigenvalues 

considered as a function of the particle number, n, go up and 

down like a zig-zag, crossing and recrossing the average (a vertical 

zig followed by a sloping zag). The total energy is a running integral 

over this zig-zag, and its deviation from the average will be a series 

of arches, with deepest cusped points corresponding to the especially 

well-bound closed shells. The tops of the arches--half-filled 

shells--will have anomalously poor bindings (high masses). 

Mathematically, the binding energy anomaly--the shell effect--can thus 

be written as((13), Equation (2)) 

umax 	 nmax 

VSHELLS = 	e(bunched) -1 	€(unbunched) 	 (11) 

n=l 	 n=l 

'max max 
= 

EO £(bunched)dn - so e(unbunched)dn . 	(12) 

This formula underlines both the treatments of shell effects in Refs. 

(9-13) and (15-18, 72-76). 

In the semi-empirical treatment of Reference (13) the unbunched 

spectrum of the separate proton and neutron eigenvalues was taken to be 
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that of the Thomas-Fermi method (proportional to n2"3 ). This 

spectrum was then imagined cut up into bands corresponding to the known 

neutron or proton magic numbers for spherical nuclei: N, Z = M 1 , with 

M 1  = 2, 8, 14 (or 20), 28, 50, 126 )  184 . The bands were squeezed 

by a (common) adjustable factor and slightly moved down together by a 

second adjustable factor to form the bunched spectrum. Insertion in 

Equation (12) then gave the proton and neutron shell corrections for 

the spherical shape. Since the bunching responsible for the known 

magic numbers is associated with the spherical shape, this bunching and 

the resulting shell effects should be damped out as the shape is 

distorted from the sphere. This was achieved in the semi-empirical 

method by multiplying the shell effect for the spherical shape by a 

shell damping function in the form of a gaussian, exp(-d), where 

is the root mean square deviation of the nuclear surface from the 

sphere, in units of an adjustable range parameter a. When this 

three-parameter algebraic shell correction is added to a Liquid Drop or 

Droplet Model formula, a fair account can be given of the nuclear 

ground state masses, equilibrium deformations, and fission barrier 



heights. (The comparison with the ground state masses is shown in 

Figure 2). 

The Strutinsky method (15-18,75) may be considered as resulting 

from Equation (12) by changing the variable of integration from n to€: 

VSHELLS= 	g(€)EdE - 	 '() Ed€ ; 	 (13) 

- 

where g() is the actual level density, d/dn, of the bunched 

eigevalues, and (E) is the level density of the unbunched 

eigenvalues. The Fermi energy 8F  is determined by particle-number 

normalization, 

N or Z = 	 d 	. 	 (14) 

In practice, the bunched level density g(C)  (a series of delta 

functions) is obtained by calculating numerically all the eigenvalues 

in a suitable shell model potential with spin-orbit coupling. (A 

modified oscillator (73), a Woods-Saxon well (18) or a potential 

obtained by folding a Yukawa interaction into a sharp-surfaced 

generating density (75)). The level density ?'(E)  is most often 
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obtained by smoothing g(€) by means of an essentially Gaussian smearing 

function of suitable range c, i.e., 

p 	-(e-')/c 
= 	

e 	 [1 + Modification]d' . (15) 

OD 	 ciTTr 

The SiModificationhl  is a polynomial in the argument (€-€')/c,  chosen to 

maximize the smoothing of the rapid oscillations in g, while doing the 

least damage to the long-range smooth dependence of g on energy. 

An additional feature of the Strutinsky method is the inclusion of 

a correction to the binding energy arising from the pairing of nucleons 

moving in time-reversed orbits. This pairing correction is important 

for a realistic description of nuclear energies and is relatively 

easily treated by means of the Bardeen-Cooper-Schrieffer method, once 

the eigenvalues Cn  have been calculated' with the aid of a computer 

(73,18,75). The final correction to the smooth, local binding energy 

consists then of separate shell and pairing corrections for the 

neutrons and protons. 

The Strutinsky method has essentially no adjustable parameters 

and, given the requisite computational effort, provides the shell 
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correction for any nuclear shape. When combined with a suitable Liquid 

Drop or Droplet formula, it has been spectacularly successful in 

accounting for known features of nuclear deformation energies and in 

making predictions of new phenomena. 

For examples, the reader is referred to Secion 6 and to the vast 

literature reviewed in Reference (76). The foundation of the method 

and, in particular, its relation to self-consistent Hartree-Fock 

treatments of the nuclear problem, are discussed by Brack and others 

(18,77) and Bohr-Mottelson (78) Vol. [I p.  367-371. 
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6. SPECIFIC TREATMENTS 

In the foregoing sections we described the principal physical 

ingredients that go into typical macroscopic theories of nuclear 

binding and deformation energies. In the present section we shall 

review briefly the relevant literature and provide some details in a 

few cases. The various developments can be traced in the proceedings 

of a long series of conferences on atomic masses (79-85), a series on 

nuclei far from stability (86-90), and a series of conferences on the 

physics and chemistry of fission (91-94). 

Reference (12) was one of the first extensive tabulations of 

predicted masses that combines the Liquid Drop model with 

semi-empirical algebraic shell corrections (11,13). It also stressed 

the dependence of nuclear binding energies, including shell effects, on 

the shape of the nucleus (rather than concentrating on the ground-state 

masses only). We shall give some details of this mass formula as an 

example of this type of treatment. 

The (atomic) mass was written as a sum of a liquid drop part and a 

shell correction, as follows: 
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M(N,Z,shape) = MLD(N,Z,shape) + MSHELLS(N , Z , shape). 	 1 (16) 

The liquid drop part is given by 

MLD = M n  N + M H 
 Z - a 1 (l-K1 2)A + a2(l -K1 2 )A2" 3B 5  

+ c3Z2A"3B - c4Z2A 	+ & . 	 (17) 

The first two terms are the masses of the neutron and of the hydrogen 

atom (this then allows for the masses of the Z atomic electrons), the 

next two are the volume and surface energies, with a common quadratic 

dependence on the relative neutron excess I. The shape dependence of 

the surface energy is contained in B,  the ratio of the area of the 

shape in question to that of a sphere of equal volume. The next term 

is the electrostatic energy, whose shape dependence is contained in 

B c (the ratio of the Coulomb energy of the shape in question to that 

of the sphere). The next term is a (shape-independent) correction to 

the electrostatic energy due to the diffuseness of the charge 

distribution. The last term is the even-odd correction, taken 

empirically as±l1A 2  MeV for odd-odd or even-even nuclei and zero 
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for odd-mass nuclei. The quantities a 1 , a2,, c3  are four 

adjustable parameters (c4  is related to C3). 

The shell correction, which results from cutting up the nuclear 

energy spectrum into bands defined by the magic numbers Mi,  as 

described in Section 5, is given by 

- G2  
MSHELLS = C s(N,Z)e 	, 	 (18) 

where 0= (RMS deviation of shape from sphere)/a 

S(N,Z) - F(N)+F(Z) - cA'" 3 	 (19) 
- (A/2) 213  

F(N) 	= q(N - M 11 ) - - (N5 "3  - M"), for M 1 	N < M 1  

with 

= 	2,8,14(or 20),28,50,82,126,184 . 	 (20) 

The quantities C, a, c are three adjustable parameters. 

For a given N and •Z the ground-state mass and deformation were 

calculated from Equation (16) by minimizing the total energy with 

respect to ellipsoidal distortions. The mass table generated in this 

way (12) listed the Liquid Drop mass, the Shell correction, the 

deformation, various decay energies, and the predicted fission barrier 

for about 8000 different combinations of N and Z. (The inclusion of 
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fission barriers is necessary for a firm determination of the 

adjustable surface and Coulomb energy coefficients.) 

In later versions of this type of treatment the shape dependence 

of the shell correction was modified, on physical grounds, to 

(1-2e2 )exp(- 2 ) (14). Later this shell correction was combined 

with the Droplet Model, to create another table of nuclear masses and 

other properties (30). A feature of this table is that it includes. 

predicted (effective sharp) radii of the neutron and proton 

distributions. These followed from minimizing the energy with respect 

- 	to the Droplet Model degrees of freedom describing the neutron and 

proton density distributions. The Droplet Model formula has a 

structure similar to Equation (16) but is more complicated and has four 

additional shape-dependent functionals in addition to B and B. 

It also includes the exchange correction (linear in Z) for the 

anticorrelation of the protons and a semi-empirical "Wigner Term", 

proportional to )I,  believed to reflect the tighter binding of 

particles in identical (or closely similar) quantized orbitals (30). 
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Part of the Droplet Model mass table just mentioned (30) also 

appears in the extremely useful collection of calculated, masses that 

has been assembled by Maripuu (95). This same collection also contains 

a Droplet Model calculation by von Groote, Hilf & Takahashi (28) that 

improves the agreement with the measured masses by introducing 

additional flexibility into the schematic shell correction function. 

In another contribution to this collection, Seeger & Howard (96) 

combine aLDM (modified along Droplet Model lines) with shell 

corrections calculated using the Strutinsky method. 

'At this point it is probably good to remind the reader that the 

adoption of Strutinsky shell corrections (15-18,72,77,97-99) 

constitutes a major advance but also a break with the previous 

semi-empirical shell corrections, which were algebraic in nature. The 

improved predictive power of the Strutinsky method and its essentially 

unlimited range of applicability are obtained at the cost of a major 

increase in calculational complexity. No aspect of this method is 

amenable to hand calculation, and large electronic computer 

calculations are required for every result. 



36 

An enormous literature based on applications of the Strutinsky 

method has grown up around the prediction of the various nuclear 

properties, including the properties of superheavy elements that are 

thought to form an island of stability beyond the end of the known 

periodic table. Besides the early work by Strutinsky (15-17), some of 

the landmark papers in this area are those of Nilsson et al. (73), 

Brack et al. (18), Bositerli et al. (75), and the review in this series 

by Nix (76). Figure 5 gives an illustration of results obtained with 

the Strutinsky method. 

A significant recent compilation of nuclear properties that makes 

use of the Strutinsky method is that of Möller & Nix (37,38). The LOM 

part of their energy expression employs a surface energy determined by 

folding a particular combination of a Yukawa and an exponential 

interaction into the specified nuclear density distribution, as 

explained in Section 4. This treatment of the Proximity part, in 

addition to providing an approximation to the interaction energy of 

approaching nuclei, appears to have a very significant effect on 

lowering the fission barriers of medium and light nuclei. Several 
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other refinements are included in the treatment (corrections for the 

proton form factor, an exact treatment of the diffuseness correction to 

the electrostatic energy, the effect of a slight charge asymmetry in 

the nuclear force, corrections for zero-point motions in the ground 

state). But the correction that produced a really significant 

improvement in the fit to nuclear ground-state masses resulted from the 

simple inclusion of a shape-independent A° term (i.e. a constant) in 

the Liquid Drop part of the formula. This cut the RMS deviations in 

the ground-state masses from 1.93 MeV to 0.97 MeV and seemed to remove 

virtually all systematic smooth deviations between theory and 

experiment. This may be the first time that significant contact 

between experiment and the Leptodermous expansion has taken place at 

the A° level. 

The treatment of the Proximity Part of the macroscopic energy with 

- 	 the aid of a folding technique (36) requires numerical integrations 

similar to those involved in the evaluation of the electrostatic 

energy. The more restricted but algebraic treatment that follows from 

the Proximity Force Theorem in Section 4 has been found useful for 



discussing the interaction energy between nuclei. The expression for 

V 1,, given in Section 4 9  when combined with the electrostatic 

interaction energy of two rigid spheres, overestimates the experimental 

interaction barriers between two nuclei (as measured for projectiles 

and targets throughout the periodic tables) by about 4 ± 2% (100). (A 

discrepancy in this sense is not unexpected, since actual nuclei are 

not rigid and, by deforming under the influence of the nuclear forces, 

may lower the interaction barrier). 

In addition to the theories of nuclear binding and deformation 

energies, which are the subject of this review, we should mention two 

treatments that do not,go beyond thediscussion of equilibrium nuclear 

masses. The first is that of Zeldes and co-workers (101-105).. They 

employ shell model considerations in constructing algebraic expressions 

containing a large number of parameters adjusted to account for various 

aspects of the nuclear level scheme. A table of mass predictions based 

on this approach has been prepared, by Liran & Zeldes (106). It agrees 

extremely well with the known masses on which it is based and is most 

reliable for short-range extrapolations. 
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Another approach is that of nuclear mass relations, which was 

reviewed in this series by Garvey (45). For example, there is the 

isobaric-multiplet mass equation (107-109), which is obtained from the 

(more general) Wigner supermultiplet theory (110,111).. This equation 

asserts that the (2T + 1) masses of an isobaric multiplet with isospin 

T should be related by the expression, 

M(T) = a + bT + cT 
	

(21) 

In this same category of mass relations, but of wider applicability, is 

the Garvey & Kelson (41-46) approach illustrated in Figure 6, which is 

based on adding and subtracting masses so that, within the framework of 

a shell model treatment, the various interactions between the particles 

would cancel; The masses of six nuclei should sum to zero when 

combined according to these patterns. If five masses are known, these 

relations can be used to predict the mass of the missing member. In 

this way tables of predicted masses can be built up by successive 

application of the basic relations. However, in their simplest forms, 

the predictions can go badly astray if naively applied to long-range 

extrapolations (112, 48). The advantages and limitations of this type 
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of mass relations have been investigated by Jänecke & others (47-53), 

who find a number of ways of enhancing their long-range predictive 

power. The method has also been applied by Monahan & Serduke (113-115). 

Finally, as we mentioned in Section 2, a bold attempt is being 

made to go beyond the indirect approach and actually address the full 

many body problem of nuclear structure with the aid of the Hartree-Fock 

approximation. In spite of the difficult numerical calculations 

required, this area has seen a great deal of growth in the last decade; 

current developments have recently been reviewed in this series by 

Quentin & Flocard (40). A survey of nuclear radii throughout the 

periodic table using Hartree-Fock methods has been undertaken by 

Beiner, Lombard & Mas (116), who have also prepared a table of nuclear 

masses (117). A number of related studies is currently underway by 

Tondeur (118-122) and by Pearson and co-workers (123-126). 

While still somewhat phenomenological in nature, because of the 

effective force (chosen for calculational convenience) and the 

Hartree-Fock approximation, this approach gives the Local, Proximity, 

and Global contributions to the energy within a single unified 



self-consistent approach. This may be essential for the proper 

treatment of the problem when large excursions away from known nuclei 

41 

(in shape, particle number, or N/Z) are being considered. 
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7. 	CONCLUDING REMARKS 

After approximately half a century of nuclear physics there is 

available today a large amount of experimental information on the 

masses and deformation energies of nuclei relatively close to the line 

of beta stability. The interpretation of these measurements, which 

started off in the thirties with semi-empirical fits to ground-state 

masses, has improved over the years and has become integrated into 

detailed theories of nuclear structure and deformabilities. The 

resulting understanding of both the gross features, as approximated by 

a Liquid Drop or Droplet Model formula, and of the fine shell-effect 

details, calculated using the Strutinsky method, is generally adequate 

to account for the bindi .ng energies with an accuracy that may be 

considerably better than 1 MeV (better than 0.1%) for short-range 

extrapolations, but becomes uncertain for more distant extrapolations. 

The relatively recent breakthrough in describing quantitatively the 

shell effects was associated with the indirect approach, in which shell 

corrections are added to a smooth background, provided by the Liquid 

Droj Model. In the future, especially when very distant extrapolations 
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come into consideration (as in astrophysics) the direct approach of 

attacking the full many-body problem (in a suitable approximation) may 

become relatively more important. However, even then, the indirect 

macroscopic approach, suitably enriched to take into account the new 

situations (e.g. very neutron-rich neutron-star matter, or the bubble 

or foam topologies of collapsing supernovae) should continue to be a 

valuable tool for understanding these complex processes. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear 

Physics of the U.S. Department ofEnergy under Contract DE-AC03-76-SF00098. 
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Figure 1. The mass decrements (closely related to nuclear binding 

energies) are plotted for 97 beta-stable nuclei. The curve 

is a liquid-drop fit based on the local" part of the nuclear 

potential-energy expresion. The deviations are due mostly to 

shell effects. 

Figure 2. The shell correction to nuclear binding energies (i.e., the 

experimental mass minus a droplet model fit) is displayed as 

a function of neutron number [line (a)].  Line (b) is a 

theoretically calculated shell correction, using a schematic 

model of bunched levels in the.upper part and the Strutinsky 

shell-correction method in the lower part. Line (c) is the 

remaining deviation (30). 

Figure 3. The experimental nuclear binding energy per particle, 

corrected for the neutron excess, shell effects and the 

electrostatic energy, is plotted versus AV 3 ;  The 

conformation of the experimental points to a linear trend 

down to mass numbers as low as 10 (see the labels along the 

data points) confirms the validity of the Leptodermous 
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Expansion and suggests a relatively small value for 

correction terms beyond the surface energy. 

Figure 4. The orders of various terms in the expansion of the energy of 

a nucleus in powers of A 113  and 1 2 . The Liquid Drop 

Model includes terms of order A. A213  and 1 2A. The 

Droplet Model is defined by the requirement that it should 

include, in addition, all terms of order A 1 ' 3 , 12A2"3 and 1
4A. 

Figure 5. The dashed lines represent the calculated Liquid Drop Model 

deformation energies of a number of superheavy nuclei. The 

solid lines show how the deformation energy is changed when 

Strutinsky shell effectsare added (75). 

Figure 6. Schematic representation of the so-called transverse and 

longitudinal mass relations. The boxes represent nuclei from 

the nuclidic chart with N horizontal and Z vertical. The 

presence of a plus or a minus sign in a box indicates that 

the mass value of the respective nucleus is to be added or 

substracted. If the Garvey-Kelson mass relations were exact, 

the sum of the six masses would be zero. 
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