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ABSTRACT 

Analytical and numerical methods have been used i n  t h i s  investiga- 

t i on  to m o d e l  the  behavior of geothermal systems under exploitation. 

work is divided i n t o  three parts: 

( 2 )  theore t ica l  s tud ies  of geothermal systems, and ( 3 )  f i e l d  applications.  

The 

( 1 )  development of a numerical code, 

A new single-phase three-dimensional simulator, capable of solving 

heat and mass flow problems i n  a saturated,  heterogeneous porous o r  

f ractured medium has been developed. The simulator uses the integrated 

f ini te  difference method for formulating the governing equations and an 

e f f i c i e n t  sparse solver  for the solut ion of the l inear ized equations. 

In the theore t ica l  studies, various reservoir  engineering problems 

have been examined. These include (a )  well-test analysis ,  (b )  exploi ta t ion 

strategies, (c) in j ec t ion  into fractured rocks, and ( d )  fault-charged 

geothermal reservoirs .  



i v  

I 
(a) The in t e rp re t a t ion  of r e s u l t s  from two-phase w e l l  tests are 

complicated by the  lack of relative permeabili ty data.  It was 

found t h a t  the most important da ta  are the sa tura t ion  values f o r  

the immobile l iqu id  cutoff.  Analysis of w e l l  tests can yield the  

r e l a t i v e  permeabili ty parameters i n  terms of the  flowing enthalpy, 

but not the in-s i tu  saturat ions 

(b) Numerical simulation s tudies  of a two-phase reservoir with a 

shallow steam zone s h o w  t h a t  it is more benef ic ia l  i n  the long run 

to produce f r o m  the  lower-enthalpy l i qu id  zone ra ther  than from the 

s h a l l o w e r  s t e a m  zone. 

(c) 

study i n j e c t i o n  i n t o  fractured geothermal reservoirs. 

An integrated analytical/numerical approach has been used to 

The r e s u l t s  

show t h a t  if the in j ec t ion  w e l l s  are properly s i t e d ,  premature 

breakthrough of the cold water a t  the production w e l l s  through 

f r ac tu res  w i l l  not occur. 

(d)  A semi-analytical m o d e l  has been developed f o r  fault-charged 

reservoirs .  Using temperature profiles from wells, the model w a s  

applied to  the hydrothermal system a t  Susanville,  California, and 

the recharge rate from an inferred f a u l t  w a s  estimated. 

Finally,  numerical simulators were used t o  analyze in j ec t ion  test 

da ta  from Krafla, Iceland, and t o  m o d e l  the  Baca f i e l d  i n  New Mexico. 

Analysis of these tests y ie lds  values f o r  t ransmissivi ty  and s tora-  

t i v i t y  of the Krafla reservoir. The Baca simulations show t h a t  due 

to the  l o w  t ransmissivi ty  it is  questionable whether the reservoir 

can supply steam for the proposed 50 Mw, power p l a n t  for 30 years. 
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INTRODUCTION 

In recent  years considerable research has been devoted t o  the  study 

of geothermal systems i n  the  United States.  This increased i n t e r e s t  i n  

geothermal energy i s  primarily due to  the diminishing a v a i l a b i l i t y  of 

f o s s i l  f u e l s ,  and the subsequent need t o  develop a l t e r n a t e  energy re- 

sources. The ul t imate  goal of research i n t o  nuclear, so l a r ,  and geo- 

thermal energy resources i s  t o  develop methodology economically feasible 

f o r  t he  generation of e l e c t i c i t y  from these  a l t e r n a t e  energy resources 

i n  order t o  complement and gradually decrease the need f o r  f o s s i l  fue ls .  

However, recent  changes i n  the administration i n  Washingtan have resul ted 

i n  a change i n  the d i r ec t ion  of energy-related research. As this is 

wr i t ten  a l l  indicat ions are that federa l  funds for geothermal research 

w i l l  be severely decreased i n  the next few years, d r a s t i c a l l y  c u r t a i l i n g  

t h e  p o t e n t i a l  contr ibut ion of geothermal energy to power needs i n  the 

United States. 

The development of m o s t  geothermal f i e lds  i n  the United S t a t e s  for 

electrical power production, space heating, o r  other appl icat ions i s  i n  

the  beginning stages. Although over 900 MW are presently produced a t  The 

Geysers, California,  representing t h e  largest p o w e r  production from any 

s ing le  geothermal f i e l d  i n  the world, t h e  explo i ta t ion  of most other high- 

temperature geothermal systems is only i n  the exploration stage i f  exis- 

t a n t  a t  a l l .  Exploitation of low-temperature geothermal resources i n  the 

United States has hardly begun, as only a small f r a c t i o n  of the potent ia l  

low-temperature areas i n  the U.S. have undergone deep exploratory d r i l l i n g .  
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By comparison, electrical power has been produced from geothermal 

f ie lds  i n  such countr ies  as I t a l y  and New Zealand fo r  many decades. 

Furthermore, use of geothermal energy fo r  space heating i s  widely em- 

ployed by many countr ies ,  espec ia l ly  in Europe. In Iceland approximately 

75 percent of the homes are heated by geothermal energy, and there are 

plans t o  increase that number t o  over 85 percent within the  next f ive  

years. 

m a l  energy. 

t h e  United States may d r a s t i c a l l y  decrease the near-future impact of 

geothermal energy on the  overall energy p i c tu re  i n  the  United States. 

These examples i l l u s t r a t e  t h a t  the enormous poten t ia l  of geother- 

The reduction of federal funds for geothermal research i n  

OBJECTIVE AND ORGANIZATION OF PRESENT WORK 

The object ive of the  present  work is t o  study the physical behavior 

of geothermal systems i n  order to  obtain a better understanding of t h e i r  

response t o  exploi ta t ion.  These s tudies  may be subdivided i n t o  three 

parts as shown i n  Figure 1 :  

( 1 )  development of a numerical code fo r  simulation s tud ie s  of 

geothermal systems; 

( 2 )  t heo re t i ca l  studies of geothermal systems under exploi ta t ion;  

(3 )  appl icat ion of the numerical code and the r e s u l t s  of theoret-  

i ca l  s tud ie s  to actual f i e l d  conditions. 

In the  f i r s t  par t ,  a new numerical simulator, capable of solving 

one- two- o r  three-dimensional mass and hea t  t ranspor t  problems i n  het- 

erogeneous porous and/or f ractured rocks, is described. The simulator 

I 
I 
I 
I 
I 
I 
I 
I 
B 
I 
I 
I 
I 
I 



3 

CODE TH EORETICAL 
DEVELOPMENT STUDIES -- 

NUMERICAL I SIMULATOR th-1 Ek'Z 1 
' ' I  G H EXPLOITATION 1 

STRATEGIES 

I '  I 

INJ.ECTION INTO 
FRACTURED H ~ R V O l I 6  

FAULT-CHARGED 7 RESERVOIRS 1 

FIELD 
A PPLl CATIONS 

WELLTEST 
ANALYSIS 

AT KRAFLA 

FIELD-WIDE 
MODELING 
AT 0ACA 

, 

, 

I 

, Figure 1 .  Schematic diagram of topics studied. [XBL 811 1-4851 1 
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is very general  as it a l l o w s  f o r  temperature and/or pressure-dependent 

rock and f l u i d  propert ies .  It has the  option of solving the mass and 

energy equations separately or  a complete, simultaneous solut ion of both 

can be chosen using an e f f i c i e n t  sparse solver. The development of t h i s  

new simulator w a s  necessary so that complex problems such as in jec t ion  

i n t o  f rac tured  reservoi rs  could be solved e f f i c i en t ly .  

In the second par t  of t h i s  d i s se r t a t ion ,  t he  simulator as e11 as 

a n a l y t i c a l  methods are employed for  theo re t i ca l  studies of geothermal 

systems. Four fundamental problems of current  i n t e r e s t  to  the  geothermal 

community are addressed: we11 t es t  analysis of single-  and two-phase 

w e l l s ,  r eservoi r  explo i ta t ion  s t r a t eg ie s ,  i n j ec t ion  i n t o  fractured reser- 

voi rs ,  and recharge i n t o  fault-charged reservoirs .  The analysis  of these 

problems g ives  valuable in s igh t s  i n t o  the  basic physics governing mass 

and hea t  flow i n  geothermal systems. 

In the  f i n a l  part, t h e  basic background obtained i n  the theo re t i ca l  

s tud ie s  is  appl ied t o  f i e l d  data. W e l l  test data from t h e  Krafla geo- 

thermal f i e l d  i n  Iceland are analyzed using t h e  new simulator and impor- 

t a n t  reservoi r  parameters are determined. Field-wide simulation studies 

of the  Baca f i e l d ,  New Mexico, are carried ou t  i n  an e f f o r t  t o  estimate 

the po ten t i a l  of the reservoi r  fo r  electrical p o w e r  production. 

BASIC CHARACTERISTICS OF GEOTHERMAL SYSTPlS 

The basic cha rac t e r i s t i c s  of geothermal systems are shown i n  Figure 2. 

The bas ic  fea tures  include a heat  source, a permeable aquifer ,  r e l a t ive ly  

~ 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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Figure 2. Conceptual reservoir model (after White, 1973). 
[XBL 811 1-48421 
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impermeable caprock and bedrock and an adequate supply of water. The 

heat source ( the  magma body) i s  general ly  a magmatic intrusion. In m o s t  

geothermal f i e l d s  the depth or areal d i s t ibu t ion  of the in t rus ion  is not 

known, but  i n  a f e w  f ields geophysical methods have been successfully 

used t o  determine the dimensions of the in t rus ion  and its locat ion rela- 

t ive to the ground surface. For example, seismic microearthquake s tud ie s  

a t  the Krafla geothermal f ie ld  i n  Iceland have iden t i f i ed  a magma body 

located a t  a depth of 3-7 km [Einarsson, 19781 . 
In geothermal systems the heat is transported from t h e  hea t  source 

t o  the aquifer  by conduction and convection. In the aquifer  convective 

hea t  t r a n s f e r  dominates due to the higher permeability of the rocks. The 

reservoi r  rocks i n  a l l  present ly  known geothermal f i e l d s  are volcanic, 

with the exception of the  geothermal f i e l d s  i n  the Salton Trough (e.g., 

East Mesa, Niland, and Cerro P r i e t o ) ,  and the Larderello f i e l d  i n  I t a ly .  

Reservoir f l u i d s  are i n  l iqu id  and/or vapor form. The caprock is of ten 

impervious, espec ia l ly  i n  MpOr-dOmiMted systems. H o w e v e r ,  surface man- 

i f e s t a t i o n s  are of ten present  s ince fractures or f a u l t s  extending t o  the 

surface allow leakage of the reservoi r  f lu ids .  The schematic model shown 

i n  Fiqure 2 i s  valuable as a too1 f o r  explaining t h e  cha rac t e r i s t i c s  of 

geothermal systems, bu t  i n  r e a l i t y  geothermal reservoi rs  are more complex. 

Typically, a geothermal reservoi r  is fractured and possesses many aqui- 

f e r s  located i n  heterogeneous reservoir  rocks. This g rea t ly  complicates 

modeling of geothermal systems and the in te rpre ta t ion  of f i e ld  data. 

I 
I 
I 
I 
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CLASSIFICATION OF GEOTHERMAL FIELDS 

Geothermal f i e l d s  can be c l a s s i f i ed ,  according t o  the s t a t e  (vapor 

or l i q u i d )  of the reservoir f lu ids ,  i n t o  mpor-domimted and liquid- 

dominated fields. In vapor-dominated f i e l d s  the  pressure gradient w i t h  

depth i s  close to  being mpor-static, whereas i n  liquid-dominated f i e l d s  

a near-hydrostatic pressure p r o f i l e  is observed. If only l iqu id  w a t e r  is  

present  i n  the  reservoir, the reservoi r  f l u i d s  are suboooled, and f u r t h e r  

c l a s s i f i c a t i o n  according t o  its temperature is  i n  order. High-tempera- 

t u r e  systems contain f l u i d s  above 1 5OoC, intermediate-temperature systems 

have a temperature range of 90°-1 50°,  and low-temperature systems are 

those of temperatures b e l o w  90°C. In  vapor-dominated systems the f l u i d  

temperature is  approximately 24OOC and the pressure is around 35 bars, 

corresponding t o  the maximum enthalpy of saturated s t e a m  [James, 19681 . 
In addi t ion t o  the above c l a s s i f i ca t ion ,  geothermal reservoirs  can 

be c l a s s i f i e d  according t o  the flow characterisics of the in-s i tu  rocks. 

Thus, there are porous media reservoirs (e .g . ,  geothermal f ie lds  in the 

Salton Trough), and predominantly f ractured reservoirs.  This type of 

c l a s s i f i c a t i o n  has l i t t l e  meaning when considering the  f l u i d  reserves i n  

geothermal reservoirs, b u t  i n  terms of the recoverable energy the two 

types of reservoir d i f f e r  d ra s t i ca l ly .  Because the recoverable energy 

ind ica t e s  t he  power po ten t i a l  of a geothermal resource, t h i s  c l a s s i f i ca -  

t i on  may be the  most important one when considering the economic feas i -  

b i l i t y  of a geothermal project.  
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METHODS OF ANALYZING GEDTHERMAL SYSTEMS 

The primary objec t ive  of mathematical modeling of geothermal reser- 

voi rs  is t o  obtain data that W i l l  assist the f i e l d  developer i n  h i s  deci- 

sion-making process. The developer is in t e re s t ed  i n  knowing t h e  amount 

of energy that can be extracted from a reservoir i n  a given t i m e  period, 

and t h e  most feas ib l e  method of exploi ta t ion.  These are obviously very 

complicated problems, and it is questionable that  t h e  correct answer i n  

technica l  and economical sense can be obtained, even when using the  m o s t  

complex mathematical tools. The complexity arises primarily because of 

the  l imited data that are generally available.  The decision to bui ld  a 

p o w e r  p l a n t  i n  the case of high-temperature appl icat ion,  or a space heat- 

i ng  system i n  the case of a low-temperature geothermal f i e l d ,  i s  general- 

l y  made ea r ly  i n  the l i fe t ime of the project ,  when data of the response 

of the reservoi r  under explo i ta t ion  are not ye t  available. Relying on 

r e s u l t s  of modeling studies performed under those conditions could prove 

disasterous.  

increase the  production i n  shges,  using mathematical modeling a t  each 

s tage  t o  predict the fu ture  behavior of the f i e l d ,  af ter  val idat ion 

aga ins t  the  early-time data. Thus, mathematical modeling should be car- 

r i e d  o u t  continuously throughout t he  l i fe t ime of the project.  

The logical way of developing a geothermal f i e l d  i s  t o  

Many mathematical models have been developed for the ana lys i s  of 

geothermal systems. Basically,  these can be subdivided i n t o  three groups: 

( 1 )  empirical methods, ( 2 )  ana ly t i ca l  methods, and ( 3 )  numerical m e t h -  

ods. Bnpirical methods involve obtaining ana ly t i ca l  functions t h a t  f i t  



9 

t h e  data;  a typ ica l  example is decl ine curve analysis.  The theo re t i ca l  

foundation f o r  t h e  decline curve ana lys i s  w a s  developed by A r p s  (1945, 

1956). Later, Fetkovitch (1973) showed that the  solut ion of Arps' equa- 

t i on  corresponds to  t h e  long-time solut ion of the constant pressure 

production problem [van Everdingen and Hearst, 19491 . Studies of the 

extension of A r p s '  equation and t h e  development of new dec l ine  equations 

have been carried out  by a number of authors [Slider, 1968; Gentry, 1972; 

Gentry and McCray, 1978; Bodvarsson, 19771. Application of empirical  

techniques t o  geothermal data has been ra ther  l i m i t e d  to date. Rivera 

(1977, 1978) applied these techniques t o  data from w e l l s  a t  Cerro Prieto,  

Mexico, and obtained reasonably good matches. However,  Zais and 

Bodvarsson (1980) could not  reproduce Rivera 's  resu l t s .  Z a i s  and 

Bodvarsson applied various empirical equations t o  da ta  from Cerro Prieto,  

Mexico; Wairakei, New Zealand; and other  fields. Althaugh they generally 

do not  obtain very good matches with the  data due to  the scatter i n  the 

data, their comparison of the  d i f f e r e n t  methods i s  q u i t e  useful. 

Analytical  methods involm solut ions of ordinary o r  p a r t i a l  d i f f e r -  

e n t i a l  equations constrained by i n i t i a l  and boundary conditions. 

include t h e  so-called "lumped-parameter" models, where the geothermal 

reservoir is character ized by one or a few homogeneous reservoir  regims. 

A s  t h e  rigorous mathematical equations that govern single- o r  two-phase 

flow i n  porous or f ractured geothermal reservoirs  are highly nonlinear, 

many simplifying assumptions must be made to  a a l l o w  f o r  a closed-form 

a n a l y t i c a l  solut ion t o  these problems. These include highly regular  

These 
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geometries, constant rock and f l u i d  propert ies ,  and constant or simple 

ana ly t i ca l  functions representing t h e  i n i t i a l  and boundary conditions. 

Analytical  methods are q u i t e  useful  i n  ident i fying parameters or groups 

of parameters t h a t  character ize  a given system, but  i n  general, as  wi l l  

be demonstrated i n  this d isser ta t ion ,  i t  is  necessary to  use dis t r ibuted-  

parameter m o d e l s  f o r  a complete, realistic solut ion t o  geothermal problems. 

There are numerous available ana ly t i ca l  so lu t ions  fo r  na tura l  con- 

vection i n  geothermal reservoirs.  These are thoroughly summarized by 

Cheng ( 1978), and w i l l  therefore  not  be described here. Lumped-parameter 

m o d e l s ,  i n  addi t ion t o  distributed-parameter models, have been used f o r  

t h e  simulation of geothermal f i e l d s  under exploitation. There is pres- 

en t ly  some controversy regarding the app l i cab i l i t y  of lumped-parameter 

models t o  the simulation of geothermal systems, due to the coarse space 

discretizaticm t h a t  is generally employed i n  these m o d e l s .  Distributed- 

parameter m o d e l s ,  on the other hand, allow a much more detailed descrip- 

t i on  of a reservoi r  system and the d i f f e ren t  flow regimes that occur i n  

the system. Therefore, i n  t h i s  d i s se r t a t ion ,  emphasis is placed upon the 

development and use  of distributed-parame ter models f o r  theore t ica l  

s t u d i e s  of geothermal systems as w e l l  as p rac t i ca l  f i e l d  applications.  

However, since it is  important to f u l l y  understand the app l i cab i l i t y  and 

l imi ta t ions  of the  mathematical too ls  avai lable  for geothermal reservoir  

simulations, a detailed comparison of the lumped- and the dis t r ibuted-  

parameter methods is  given i n  a later sect ion (Field-wide modeling ,of the 

Baca  f i e l d ,  New Mexico) . 
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THE USE OF D I S " R I B U ~ - P A R A M E T E R  MlDELS 

Distributed-parameter m o d e l s  for the simulation of geothermal f i e l d s  

have only been developed during the  l a s t  decade. Numerical simulators 

capable of modeling mass and hea t  t r ans fe r  f o r  single-phase l i q u i d  water 

were developed f i r s t ,  but only recent ly  have simulators capable of two- 

phase f l u i d  t ranspor t  i n  geothermal reservoi rs  been developed. However, 

the  rapid development of computer sof Ware f o r  t he  solut ion of l i n e a r  

equations requires the continuous development and/or modification of 

numerical simulators f o r  more e f f i c i e n t  and accurate  solut ions of complex 

nonlinear problems. 

Unti l  recent ly  geothermal developers have had l i t t l e  confidence i n  

numerical simulators,  and this has inh ib i ted  t h e i r  appl icat ion t o  geo- 

thermal f i e lds .  However, i n  l i g h t  of the pos i t i ve  r e s u l t s  obtained from 

a recent  comparison of the  d i f f e r e n t  simulators [Stanford Geothermal 

Program, 19801, there  i s  an increasing awareness of the usefulness of 

numerical simulators i n  the development of geothermal f i e  Ids. 

N u m e r i c a l  simulators can be used f o r  t heo re t i ca l  studies of the 

physical behavior of geothermal systems, as -11 as fo r  direct f i e l d  

applications.  Although considerable work has been devoted to theoret-  

ical  s tud ie s  of geothermal systems, a basic understanding of their 

physical behavior i s  l imited.  This is especial ly  t rue  f o r  t he  more com- 

p l ica ted  two-phase systems. However, fundamental s tud ie s  t h a t  include 

w e l l  t e s t i n g  analysis ,  explo i ta t ion  s t r a t eg ie s ,  and in j ec t ion  problems of 



12 

geothermal systems can be found i n  the l i t e r a t u r e .  These w i l l  be ex- 

plored fu r the r  i n  a later section. 

The appl ica t ion  of numerical simulators t o  s p e c i f i c  geothermal 

f i e l d s  can be of tremendous value to the f i e l d  developers. N u m e r i c a l  

. simulators can be used, for  example, t o  

( 1 )  model a system i n  its na tura l  (unexploited) state. This study 

aims a t  determining the hea t  flow, recharge rates, and the i n i t i a l  

d i s t r ibu t ion  of the  f l u i d  reserves i n  the  hydrothermal system. 

( 2 )  study d i f f e r e n t  explo i ta t ion  a l te rna t ives .  The appropriate 

production depths and rates can be determined. 

( 3 )  determine the appropriate w e l l  spacing, based upon a given 

genera ti ng capaci t y  . 
( 4 )  pred ic t  the  d e l i v e r a b i l i t i e s  and the longevi t ies  of the  pro- 

duc t i on  w e l l s .  

( 5 )  determine the  generating capacity and longevity of  the  f i e l d  

based on a given explo i ta t ion  scheme. 

( 6 )  study d i f f e r e n t  i n j ec t ion  a l te rna t ives .  Here one is concerned 
.i 

with the distance between the  production and t h e  in jec t ion  w e l l s ,  

and the  in jec t ion  depths and rates.. 

( 7 )  car ry  o u t  s e n s i t i v i t y  studies.  The limited data generally 

ava i lab le  from geothermal f i e  Ids require a complete sensi  t i v i  ty 

study. This should involve the  most sens i t ive  reservoir  parameters, 

such as the permeability and the porosity,  and also the recharge, 

reservoi r  dimensions, and the i n i t i a l  d i s t r ibu t ion  of the reserves. 

I 
I 
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The above l is t  c l ea r ly  i l l u s t r a t e s  the p o t e n t i a l  of numerical s i m -  

u l a to r s  as tools f o r  obtaining data that can great ly  a i d  the f i e l d  devel- 

oper i n  h i s  decisision-making process . Several important studies have 

addressed some of the problems l i s t e d  above. Numerical simulation 

s tud ie s  of the Wairakei geothermal f ie ld  were carried ou t  by Mercer e t  al. 

(1975),  P r i t c h e t t  e t  al. (1976),  and Mercer and Faust (1979). Jonsson 

(1977) used a numerical simulator t o  study the Krafla geothermal f i e l d  i n  

Iceland, and Z y v o l s k i  and O'Sullivan (1978) s tudied  t h e  Broadlands geo- 

thermal f i e l d  i n  New Zealand, Furthermore sirnulatian s tud ie s  of the Baca 

geothermal f i e l d ,  New Mexico, were carried ou t  by Bodvarsson e t  al. (1980),  

the  East Mesa anomaly was studied by Rimy e t  al. (1979) and Morris and 

C a m p e l l  (1979), and the  Serrazzano geothermal reservoi r  i n  I t a l y  was 

simulated by Pruess e t  al. (1980). 
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CODE DEVELOPMENT 

During t h e  last decade considerable e f f o r t s  have been devoted t o  the  

development of numerical simulators f o r  geothermal applications.  As a 

r e s u l t  of this effort  var ious groups have access t o  single- and two-phase 

simulators. H o w e v e r ,  w i t h  the rapid development of numerical techniques, 

and t h e  software needed for eff ic ient  solut ion of sparse matrices, there  

i s  a continuous need t o  update these numerical codes i n  order t o  increase 

the  capab i l i t y  to handle complex problems. 

s t a t u s  of numerical modeling of geothermal systems is reviewed and the 

In this sect ion the present  

development of a new simulator is described. 

BACKGROUND 

In a broad sense, numerical models f o r  the simulation of geothermal 

systems can be divided i n t o  two categories:  ( 1  ) models developed f o r  

s tud ie s  of the na tu ra l  (unexploited) behavior of geothermal systems, and 

( 2)  models developed f o r  s tud ie s  of geothermal reservoi rs  under exploi- 

t a t i o n  . 
Many inves t iga tors  have conducted numerical studies of na tu ra l  

convection i n  geothermal systems [e.g., Donaldson, 1970; Horne and 

O'Sullivan, 19741 . A thorough review of these studies is given by Cheng 

(1978), and s ince they are outs ide the  scope of the present work, they 

w i l l  not  be described here. 

One of the f i r s t  numerical models developed for s tud ie s  of geothermal 

systems under explo i ta t ion  w a s  that of Sorey (1975). Sorey developed a 
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three-dimensional single-phase simulator for mass and h e a t  t ranspor t  i n  

geothermal reservoirs. 

systems and modeled the Long val ley,  California,  hydrothermal system. 

Mercer e t  al. (1975) developed a single-phase finite-element code using 

pressure and temperature as dependent variables.  They applied the code 

t o  the  Wairakei system, and w e r e  able to match the f i e l d  behavior up t o  

1962. A t  t h a t  t i m e ,  the  system had developed i n t o  a two-phase system, 

so t h e i r  single-phase simulator w a s  not applicable. 

Using h i s  m o d e l  Sorey studied na tu ra l  convection 

A number of papers addressing the problem of two-phase f l a w  i n  geo- 

thermal reservoi rs  began t o  appear i n  the l i t e r a t u r e  i n  1975. Toronyi 

and Farouq A l i  ( 1975) developed a two-phase, two-dimensional simulator 

coupled with a wellbore model. 

Newton-Raphson i t e r a t i o n  t o  solve the equations for  pressure and satura- 

t ion.  H o w e v e r ,  t he  simulator w a s  only capable of ca lcu la t ing  two-phase 

flow, and not  the flow of superheated steam or subcooled l iquid.  A t  the 

Second United Nations Symposium, San Francisco, i n  1975, three papers on 

the  simulation of two-phase flow i n  geothermal reservoirs were presented 

[Faust and Mercer, 1975; Garg e t  al., 1975; Lasseter e t  al., 19751 . Each 
of these papers described a new two-phase code using the  mathematical 

background given by DOnaldsOn ( 1  962), Mercer e t  al. (1974),  and Brownell 

e t  al. (1975). Faust and Mercer (1975) solved f o r  pressure and enthalpy 

using a Galerkin finite-element approximation i n  space and a f i n i t e - d i f -  

ference approximation i n  t i m e .  Garg e t  al. (1975) used the f i n i t e - d i f f e r -  

ence method with f l u i d  densi ty  and in t e rna l  energy as dependent var iables .  

They used a f in i t e -d i f f e rence  method w i t h  
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Lasseter e t  al. (1975) solved the equation f o r  density and in t e rna l  

energy, bu t  used t h e  integrated f i n i t e -d i f f  erence method f o r  d i scre t iza-  

t i on  of t he  flow regime and the  formulation of the governing equations. 

Faust and Mercer (1976) compared the  f in i te -d i f fe rence  approach and 

the  finite-element method f o r  the simulation of geothermal reservoirs.  

They concluded that t h e  f ini te-element  method i s  better sui ted f o r  l i qu id  

geothermal reservoirs due to  reduced numerical dispersion, but t h a t  t he  

f in i t e -d i f f e rence  m e t h o d  i s  preferable fo r  the simulation of v a p o r - d d -  

nated reservoi rs  because it conserves mass and energy b e t t e r  and exhib i t s  

less numerical osc i l la t ion .  

Moench (1976) developed a f in i te -d i f fe rence  model f o r  the simulation 

of vapor-dominated reservoirs.  

and evaporate i n t o  steam, bu t  it is immobile a t  a l l  t i m e s .  Using this 

model, Moench s tudied superheating of discharging s t e a m ,  conductive heat  

t r ans fe r ,  g rav i t a t iona l  e f f e c t s  of a steam column, and energy e f f e c t s  due 

In h i s  model l iquid w a t e r  may be present 

t o  compressible work. 

The simulation of heat  t ranspor t  i n  f ractured,  single-phase geother- 

m a l  r eservoi rs  is  addressed by O ' N e i l l  e& al. (1976) and O ' N e i l l  (1978) . 
0' N e i l 1  used the  so-called double-porosity approach for  developing t h e  

governing equations i n  tenus of the pressure and temperature i n  the, frac- 

tu res  and the  porous blocks. H e  employed the finite-element approach i n  

t h i s  three-dimensional nonisothermal model. Case s tudies  using the  model 

I 
1 

included hot  water in j ec t ion  and the  coupling of the temperature equations 
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i n  t he  f r ac tu res  and the rock matrix. Thomas and Pierson (1976) devel- 

oped a three-dimensional f in i te -d i f fe rence  model f o r  the simulation of 

two-phase geothermal reservoi rs  . Pressure, temperature and sa tu ra t ion  

are used as dependent var iab les  i n  the m o d e l ,  with implicit pressure and 

e x p l i c i t  sa tura t ion  formulation. 

Coats ( 1977) developed a three-dimensional f i n i t e -d i f f e rence  two- 

phase simulator using the  Newton-Raphson i t e r a t i o n  procedure. In con- 

trast t o  most other m o d e l s ,  Coats' m o d e l  includes a w e l l  bore model. 

Lippmann e t  al. (1977) developed a three-dimensional integrated f i n i t e -  

d i f fe rence  model f o r  single-phase geothermal simulations. 

includes the  one-dimensional consolidation theory of Terzaghi ( 1925) f o r  

compaction (subsidence) calculat ions.  Two-phase finite-element simula- 

t o r s  were developed by Huyakorn and Pinder (19771, and voss (1978). 

These s imulators  were developed to i l l u s t r a t e  that the f ini te-element  

technique could be used i n  the development of two-phase simulators 

[Pinder, 19791. 

Their model 

The simulators l is ted above represent the state of the a r t  of the 

numerical simulation of geothermal systems. However, s ince t h e i r  i n i t i a l  

development, many of these simulators have been modified to improve their 

efficiency. A n  exce l len t  example i s  the numerical simulator SHAFT. 

I n i t i a l l y  developed by Lasseter e t  al. (1975) and Assens (1976), t h e  code 

has i n  recent  years been extensively redeveloped, using improved mathemat- 

i ca l  and numerical techniques [mess e t  al., 1979b; pruess and Schroeder, 

19801. Recently, comparison s tudies  between the various simulators 
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discussed above have been conducted [Stanford Geothermal Program, 1980; 

Pinder, 1979; Wang e t  al. , 19801 . The r e s u l t s  of these studies have 

i l l u s t r a t e d  tha t ,  although the various simulators d i f f e r  i n  t h e i r  applic- I 
I a b i l i t y  and f l e x i b i l i t y ,  they generally give consis tent ly  reliable solu- 

t ions  t o  common problems i n  geothermal reservoi r  engineering. 

NUMERICAL CODE 

The recent ly  developed numerical code PT (pressure-temperature) w i l l  I 
I 
I 

be described i n  the following sect ions.  This code is three-dimensional 

and solves numerically the mass and energy t ranspor t  equations f o r  a li- 

quid-saturated medium, and uses the one-dimensional consolidation theory 

of Terzaghi (1925) f o r  calculat ing the deformation of the medium. The 

model employs the Integrated F in i t e  Difference Method ( I F D M )  f o r  discre- 

I 
I 

t i z i n g  t h e  saturated medium and formulating t h e  governing equations 

[Edwards, 1972; Narasimhan and Witherspoon, 19761 . The sets of equations 

are solved by direct means, using an e f f i c i e n t  sparse  solver [Duff, 19771 . 

I The code PT w a s  developed from an  older program CCC [Lippmann e t  al.,  

19771, bu t  uses much more powerful mathematical and numerical techniques. 

In  comparison t o  CCC, PT is 10 t o  100 t i m e s  more e f f i c i e n t  fo r  m o s t  

problems . 
Governing Equations 

The governing equations”emp1oyed i n  the model are the basic mass and 

energy balance l a w s .  The mass flow equation (see Nomenclature) can be 

wri t ten  i n  i n t e g r a l  form as: ’ 
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Equation ( 1 ) applies t o  any cont ro l  element of volume v and surface area 

A, containing s o l i d s  and/or l iqu id  w a t e r .  

The energy equation can s imi la r ly  be wr i t ten  i n  i n t e g r a l  form as: 

where the  term on the left-hand s i d e  i s  t h e  accumulation term with ef the 

i n t e r n a l  energy of the f l u i d  ( l i qu id  water). The f i r s t  t e r m  on the r ight-  

hand s ide  (RHS) represents  heat  t ransfer  by conduction as expressed by 

Fourier ' s  l a w ,  X being the thermal conductivity of the rock-fluid system. 

The remaining tenus on the RHS are the convective term and the source 

term, respectively.  In the convective term,6T denotes the in t e r f ace  

temperature. 

Equations ( 1 )  and ( 2 )  are coupled through the pressure- and the 

temperature-dependent parameters, as w e l l  as through the convecting term. 

In the model, the  f luxes are calculated using Darcy's l a w ,  which can be 

wr i t ten  as: 

where k is  the absolute permeability, p i s  the  dynamic v iscos i ty  of the 

f l u i d  and is the acce lera t ion  due to  gravity.  

Equations ( 1  ) and (3 )  are nonlinear with pressure/temperature- 

dependent parameters p,  k, p, A ,  and C. Furthermore, t h e  parameters +, 
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Br and k are stress-dependent. 

is  used i n  the program, i s  given i n  Appendix B. 

The equation of state fo r  w a t e ' r ,  which 

Deformation 

The model employs the one-dimensional theory of Terzaghi t o  calcu- 

late t h e  vertical deformation of $the medium. 

theory is the re la t ionship  between the e f fec t ive  stress U t  and the pore 

pressure P. 

The basic concept of the 

For a sa tura ted  medium this expression can be wr i t ten  as: 

U' 5 u - P, ( 4 )  N 

where UN denotes the normal stress (overburden). The e f f ec t ive  stress 

can e a s i l y  be calculated from equation ( 4 )  a t  any t i m e ,  given that the 

normal stress uN i s  known and remains constant. 

The consolidation behavior of each material is described by the 

"e - log U' curves," where e i s  the void ratio, related to  the porosi ty  $ 

by the expression: 

1 
I$ =- 

1 + e  ( 5 )  

A typical consolidation curve is shown i n  Figure 3. It cons is t s  of a 

so-called v i rg in  curve and a series of parallel swelling-recompression 

curves ( the  m o d e l  neglects hysteresis  between swelling and repression 

curves). When the  rock is loaded t o  leve ls  never before a t ta ined ,  t he  

deformation is represented by the v i rg in  curse, b u t  f o r  swelling o r  load 

levels below the preconsolidation stress, the  deformation is  represented 

by the swelling-recompression curves. In  the m o d e l ,  t he  I ' e  - log Ut 

curves" are generally approximated by s t r a i g h t  l i nes ,  one of slope cc 
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Figure 3 .  Typical consolidation curve. [XBL 773-5219] 
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(compression index) f o r  virgin loading, and others of slope Cs (swelling 

I 
'index) f o r  unloading/loading below the preconsolidated stress. 

The stress-dependent parameters i n  equations ( 1 )  and (3), c p ,  Br 

and k,  can e a s i l y  be calculated i f  the consolidation c u r m s  f o r  each 

8 material are given. The porosi ty  i s  computed using equation ( S ) ,  and the 

rocks compressibil i ty can be calculated using the  following expression: 

a 
V 

Br = e 

In equation ( 6 ) ,  av i s  the coef f ic ien t  of compressibil i ty fo r  the  

matrix, defined as [Narasimhan, 19751 : 

C 
C de a = - - =  

V dal  2.303 a '  

1 
I 
I ( 7 )  

1n ca lcu la t ing  the permeahility k as a function of void r a t i o ,  t he  

following empirical  r e l a t ion  is  used [Narasimhan, 19751 : 

[ 2.303 k; - eo) 
k = ko exp ( 8 )  

In equation ( 8 ) ,  ko and eo are a r b i t r a r y  reference values of the pe?+ 

meabili ty and void r a t io ,  respectively.  For a given material, Ck is the I 
1 slope of the best f i t t e d  l i n e  of void r a t i o  ( e )  versus log  k. 

AssumPtions 

In the development of the mathematical m o d e l  used i n  the computer 

- code, the  following primary assumptions have been employed: 

1 
I 
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( 1 )  Darcy's l a w  descr ibes  f l u i d  movement through fractured and 

porous media. 

( 2 )  The rock and t h e  f l u i d  are i n  thermal equilibrium a t  any given 

t i m e  . 
(3) Energy changes due to the f l u i d  compressibil i ty,  acce le ra t ion  

and viscous d i s s ipa t ion  are neglected. 

These asumptions are general ly  employed i n  the numerical modeling of geo- 

thermal re semoi r s .  

N u m e r i c a l  Formulati on 

The model employs the Integrated F i n i t e  Difference Method ( IFDM) t o  

d i s c r e t i z e  the flow regime and to handle the spatial gradients. The flow 

regime is  divided i n t o  arbitrari ly-shaped polyhedrons, constructed by 

drawing perpendicular b i sec tors  to l i n e s  connecting nodal po in ts  (Fig. 4 )  . 
This permits easy evaluation of the surface in t eg ra l s  i n  equations ( 1 )  

and ( 2 ) .  Except f o r  t h e  procedure used i n  evaluating the gradients,  t he  

Integrated F i n i t e  Difference Method ( I F D M )  and the modified Galerkin 

F in i t e  Element Method (with diagonal capacity matrix) are conceptually 

very similar [Narasimhan and Witherspoon, 19761 . Both approaches der ive 

t h e i r  a b i l i t y  to handle complex geometries from t h e  i n t e g r a l  mture of 

the formulation. Detailed descr ipt ion of the I F D M  are given by Edwards 

(1972), Sorey (19751, and Narasimhan and Witherspoon (1976) . In  numerical 

notat ion the governing equations can be wr i t ten  as follows: 

mass balance: 

- 1? P g] + ( G f V l n  (9) 
9 9  

m 
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Figure 4. Typical node-connection network and nomenclature. 
[XBL 804-70061 
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energy balance : 

These equations are va l id  f o r  an a r b i t r a r y  node n connected t o  an 

a r b i t r a r y  number of nodes m. The nodal poin t  dis tances  to the in te r face  

f o r  node n and node m are represented by h,m and h , n ,  respect ively 

(Fig. 4) .  

the  outward normal of node n and m. 

The quant i ty  ng i s  the d i r ec t ion  cosine of the angle between 

In Equations (9) and ( 10) , B t  and a t  represent the total compressi- 

b i l i t y  and t h e  total thermal expansivity, respect ively,  so tha t :  

B t  = B w  + 8, 

a t  - - a, + a, 

( 1 1 )  

( 1 2 )  

Upstream Weighting 

Tb evaluate the in te r face  temperature Tn,mf the  model employs an up- 

stream weighting c r i te r ion :  

T = dTn + ( 1  - d)T, 0 (13 )  n,m 

where n is  the upstream node and d, t he  upstream weighting f ac to r ,  i s  

restricted i n  value to the range 0.5 to  1.0 f o r  unconditional s t a b i l i t y .  
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Imp1 i c i  t Formula t i on  

In the model, t he  equations are solved impl i c i t l y  t o  allow fo r  

larger t i m e  steps t o  be taken. The implicit formulation is incorporated 

1 by means t he  following expressions: 

0 
Tn = Tn + aTATn 

Tm = T: + aTATm 

pn = P: + spun 

'm = ~ ~ + a & .  P m  
0 

The weighting f a c t o r  a is 

1 .o for unconditionally stable 

a constant. I f  a is spec i f ied  

(14)  

general ly  allowed to vary between 0.5 and 

solut ions,  but  it may also be specified as 

to be zero during the simulation, a f u l l y  
I 

e x p l i c i t  so lu t ion  scheme results (forward differencing)  and time s t e p  is 

restricted t o  a cr i t ical  stable value [Narasimhan, 19751. If a = 0.5, 

t he  Crank Nicholson scheme re su l t s ;  f o r  a = 1.0, a f u l l y  i n p l i c i t  (back- 

w a r d  differencing)  scheme is employed. 

Spatial Gradients 

The spatial  gradients  between nodes are estimated by a l i n e a r  approx- 

imation, i.e., 

'm + 'n 

n,m m,n + D  +P = ( 1 5 )  

The permeability and thermal conductivity of the matrix are evaluated 

using the  harmonic mean to insure  cont inui ty  of f lux a t  the in te r face ,  
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f o r  example, 

4 , m  + Dm,n 

m n,m n m,n 
k = k k  m,n m n k D  + k D  

The dens i ty  a t  the interface is calculated based on a simple 

weighted average: 

+ D  Dn,m 'm m,n 'n 
'n,m D + D  n,m m,n 

P 

(16) 

(17) 

However, i n  the gravi ty  term, the  f l u i d  densi ty  i s  calculated assuming 

l i n e a r  va r i a t ions  i n  temperature and pressure between gr id  blocks: 

1 
= - [Pn + Pml pg 2 

( 1 8 )  

So l u  ti on Technique 

Equations (9)  and (10) can be combined for  simultaneous solut ion in- 

t o  a s ing le  matrix equation. 

[AI{X) = {bl (19) 

The coe f f i c i en t s  i n  the matrix [A ]  are i n  general  a function of the 

temperature and pressure and therefore the equations are nonlinear. The 

vector {X) contains the unknowns (AP and AT) and the vector {b) repre- 

sen ts  the knm explicit quant i t ies .  

The sets of nonlinear equations are solved using an e f f i c i e n t  direct 

Solver [Duff, 19771 and an i t e r a t i v e  scheme f o r  the nonlinear coeff ic ients .  

Basically,  the  solver uses L U  decomposition and a Gaussian elimination 

procedure to solve a set of l i n e a r  equations. 
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The matrix of coe f f i c i en t s  ( the  [A] matr ix)  i s  preordered using 

permutation matrices PI and Q' such that the re su l t an t  matrix i s  i n  block 

lower t r iangular  form. Gaussian elimination is then performed within 

each diagonal block i n  order t o  obtain f ac to r i za t ion  i n t o  the lower tri- 

angular (k) and the upper t r iangular  (yC). Final ly ,  t he  fac tor iza t ion  

i s  used t o  solve the matrix equations. In  this solut ion package [Duff, 

19771, no r e s t r i c t i o n  i s  placed upon the characteristics of the matrix of 

coef f ic ien ts ;  i.e., it need not be s y m m e t r i c a l  or a specif ied degree of 

spars i ty .  

Program St ruc ture  

The s t r u c t u r e  of the program PT is shown i n  Table 1. It cons is t s  of 

a main program and eleven major subroutines. 

role of the major subroutines is also given i n  Table 1. 

A brief descr ip t ion  of the 

The input-output functions are handled by the subroutines I N N  and 

OUT, respectively.  After the input  data has been read in ,  the subroutine 

REE'ER is called for cross-referencing between nodes and connections. 

Then the subroutine TIMER is called and a t i m e  step is determined. THERM 

and n U I D  are called for  the determination of the rock and f l u i d  proper- 

t ies,  respect ively,  based on latest an i lab le  pressures and temperatures, 

and GENER i s  called t o  determine the s t rength  of sources and sinks. Then 

the subroutine SOLVER is  called to set up the matrix coef f ic ien ts  and the 

known vector b. SOLVER then calls the l i nea r  algebra package MA 28 [Duff, 

19771 for so lu t ion  of the l i n e a r  equations. If the Newton-Raphson option 

i s  specified, SOLVER w i l l  then call the subroutine ITER,  which uses 
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Newton-Raphson i t e r a t i o n  u n t i l  convergence is  achieved. I f  v e r t i c a l  

deformation calculat ions are required, t h e  subroutine COMPACT i s  called. 

Final ly ,  t he  subroutine TIMER is called, to  up-date the pressures 

and temperatures of each mode, select the next t i m e  s tep,  and ca l l  the 

subroutine OUT i f  an output i s  needed. 

Table 1. Major Subroutines and Their Functions. 

Subroutine Function 

PT 

I N N  

THERM 

FLUD 

COMPACT 

GENW 

SOLVER 

ITER 

TIMER 

REFER 
MA28 

OUT 

Main program 

R e a d s  i n  input  da t a  

Provides solid proper t ies  

Provides f l u i d  proper t ies  

Calculates compaction 

Determines s t rength of sources and sinks 

Sets up matrix equations 

Performs Newton Raphson i t e r a t i o n  

Selects t i m e  steps and determines i f  output i s  needed 

Cross-references nodes and connections 
solves  l i n e a r  equations 

Provides output 

An i npu t  guide to the program PT is given i n  Appendix A. A general  

descr ipt ion of the basic characteristics of the code follows below. 

Material Properties 

A t  present the code allows spec i f ica t ion  of up to twelve ( 1 2) d i f f e r -  

e n t  materials. For each mabrial  t he  porosi ty ,  permeability, compressi- 

b i l i t y ,  thermal conductivity,  hea t  capacity, and densi ty  of the so l id  must 



30 

be specif ied;  thermal expansivity i s  optional. These parameters may be  

constant or may vary with temperature, and/or e f f ec t ive  stress. The por- 

o s i t y  and rock compressibil i ty can vary with the e f f ec t ive  stress, the  

permeability with both temperature and ef fec t ive  stress, and the thermal 

conductivity and hea t  capaci ty  w i t h  temperature only. These relatias 

are spec i f ied  by tables ,  in te rpola ted  during each t i m e  step. Anisotropic 

permeabili ty (and/or thermal conductivity) can be handled by or ien t ing  

the in t e r f aces  parallel t o  the pr inc ipa l  axes of anisotropy. 

Fluid Properties 

Input parameters are the f l u i d  viscosi ty ,  hea t  capacity, densi ty ,  

expansivity,  and compressibil i ty of w a t e r .  A constant value of the f l u i d  

heat capaci ty  must be specif ied;  other  f l u i d  proper t ies  may also be 

assumed constant. H o w e v e r ,  t h e  code provides the option of specifying 

the v iscos i ty  as a function of temperature, and densi ty  as a function of 

temperature and pressure [Buscheck, 19801 . These functions are given i n  

Appendix B. 

Numerical Options 

The program o f f e r s  

equation o r  only one of 

options of solving both the mass and the energy 

the two. If only one equation is solved, a 

smaller matrix i s  needed and therefore  the calculat ion becomes more 

e f f i c i en t .  ~n the case of solving the  energy equation only, steady mass 

flows f o r  each connection must be specified. An option of using Newton- 

Raphson i t e r a t i o n  is a l s o  included. 

1 
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Spatial Grid 

In the model there  i s  no r e s t r i c t i o n  upon choice of basic node shape 

or t he  numbering scheme of the nodes. The geometric configuration of the 

nodal elements can be a r b i t r a r y  and the gr id  may be one-, two-, or three- 

dimensional, with rectangular,  cy l indr ica l ,  spher ica l  symmetry, or it may 

be completely nonsymmetrical. The dimensions of the nodes and the connec- 

t i ons  between nodes are required input  data.  For complex problems, t h e  

design of the mesh may create the most d i f f i c u l t y  i n  using the  program. 

A u x i l i a r y  computer programs for mesh and input  da t a  generation have been 

developed f o r  severa l  gr id  systems, including the case with cy l ind r i ca l  

or e l l ip t ica l  rings near a well which gradually change to rectangular 

nodes i n  t he  far f i e l d .  This type of mesh is relevant for  the simulation 

of hor izonta l  or incl ined f r ac tu res  in t e r sec t ing  a w e l l  ( cy l ind r i ca l  or 

e l l ip t ica l  cross sec t ions)  or i n t e r sec t ing  other  planar f rac tures  within 

the  rock mass ( l i n e a r  cross sec t ions)  and similar problems. 

Sources and Sinks 

Mass and energy sources and sinks may be specified f o r  any node. 

The rate may be constant or vary With t i m e .  

Init ial  Conditions 

In i t ia l  values of pressure, temperature and preconsolidation stress 

must be specif ied f o r  each g r i d  block. If the restart option is u t i l i zed ,  

the  specified i n i t i a l  values must correspond to the f i n a l  values obtained 

i n  the  previous run. 
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Boundary Conditions 

In the m o d e l ,  prescribed constant po ten t i a l  o r  f lux boundaries may 

be used. F i n i t e  capacity -11s (wellbore storage) as w e l l  as a hetero- 

geneous f l o w  regime ( f r ac tu res )  can e a s i l y  be simulated. 

T i m e  Steps 

There are severa l  options for se l ec t ing  the t i m e  steps to be taken 

The maximum and minimum t i m e  steps may be speci- during the simulation. 

fied, or the t i m e  steps may be autcmatically determined based upon the 

maximum desired pressure and/or temperature changes during a time step. 

The problem is ended when any one of several cri teria is m e t .  These in- 

clude attainment of steady state, reaching the specified upper or lower 

l i m i t  for temperature and/or pressure, completing the required number of 

time steps, and reaching the specified maximum simulation t i m e .  

output 

Output is  provided according t o  specified t i m e s  or specified t i m e  

steps. The pressure, temperature and f irst-order der iva t ives  are pr inted 

for each node. The f l u i d  and energy fluxes are given f o r  each connection. 

The mass and the energy balance are also included i n  the output. A node 

may be specified, for which pressure and temperature are pr inted o u t  after 

each t i m e  step. 
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1 

val idat ion 

In order t o  validate the program, several problems wi th  known solu- 

t i ons  were solved. A br ie f  descr ip t ion  of these problems and a compari- 

son of the ana ly t i ca l  solut ions to  the numerical so lu t ions  are given 

be l o w  . 
The Theis Problem 

Theis (1935) solved ana ly t i ca l ly  for the pressure a t  a w e l l  produced 

a t  a constant rate i n  an i n f i n i t e  homogeneous, i so t rop ic ,  aqu i f e r  of 

constant  thickness. H e  obtained a closed-form solu t ion  i n  terms of an 

exponential  in tegra l .  In simulating this problem, the code PT w a s  used 

i n  its isothermal mode (e.g., only the mass conservation equation w a s  

solved). The mesh used consisted of logarithmically spaced elements 

around a w e l l  element of radius . 1  m (approximately a 4-inch w e l l ) .  The 

f l u i d s  were produced a t  a constant rate from the w e l l  element (.1 kg/m*s). 

The comparison between the ana ly t i ca l  and the numerical solut ion i s  shown 

i n  Figure 5. As the f igure shows, the numerical r e s u l t s  are almost iden- 

t i ca l  t o  t h e  ana ly t i ca l  solution. In the simulation, a total of 80 ele- 

ments were used, bu t  a four-fold reduction i n  the number of elements w i l l  

not  a l ter  the so lu t ion  s igni f icant ly .  AS isothermal calculat ions using 

the  code PT are very cos t - e f f i c i en t ,  one generally does not  need t o  worry 

about the number of elements, as long as the desired accuracy is obtained. 

Constant Pressure Production 

Jacob and Lohman (1952) solved 

the  Theis  problem, bu t  instead of a 

ana ly t i ca l ly  a problem i d e n t i c a l  to 

constant production rate, t he  w e l l  is 
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produced a t  a constant pressure. In t h i s  case, t h e  flow rate  a t  the w e l l  

was monitored instead of the pressure. The solut ion w a s  characterized 

i n  terms of dimensionless f l o w  ra te  and a dimensionless t i m e .  The phys- 

ical  basis f o r  the de f in i t i on  of the  dimensionless flaw rate  stems from 

Darcy's l a w ,  as does the de f in i t i on  of the dimensionless pressure. 

In  simulating this problem, t h e  mesh used must be carefu l ly  designed. 

I n i t i a l l y ,  when the  pressure a t  the well is instantaneously changed from 

t h e  average reservoi r  pressure to a lower production pressure, a sharp 

d iscont inui ty  i n  the  pressure from the w e l l  t o  the reservoir prevails. 

This g ives  rise to enormous flow rates and sharp pressure gradients a t  

e a r l y  t i m e s .  I f  an accurate  simulation of the  flaw ra te  a t  ea r ly  t i m e s  

i s  t o  be obtained, very small elements must be used c lose  t o  the w e l l .  

In  t he  simulation, a wellbore radius of .1 m was used, bu t  close t o  the  

w e l l  logarithmically spaced elements, s t a r t i n g  w i t h  very small elements 

( m ) ,  were used. This  enabled a near-perfect match w i t h  the a n a l y t i -  

cal  so lu t ion  (Figure 6 ) .  If a coarser mesh had been employed, the numer- 

ical  so lu t ion  would have f a l l e n  b e l o w  the ana ly t i ca l  so lu t ion  a t  ea r ly  

times, but the late t i m e  match m u l d  s t i l l  have been sa t i s fac tory .  

Conduction Problem 

In order t o  check the  conduction term i n  the energy balance equation, 

a simple conduction problem w a s  solved. In t h i s  problem only two nodes 

w e r e  needed, w i t h  one connection between them. I n i t i a l l y ,  t he  nodes were 

a t  d i f f e r e n t  temperatures; t he  temperature of nodes 1 and 2 were assigned 

as 25.664OC and 24.336OC, respectively.  very low values were assigned t o  
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Figure 6. Comparison between analytical and numerical solutlon for the 
cons tant-pressure problem . I [XEL 811 0-1 16901 
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the  porosi ty  and the  permeability of the nodes, so that the temperature 

would equ i l ib ra t e  by pure conduction (convection becomes negl igible)  . An 

expression for the temperature of node 2 as a function of t i m e  w a s  e a s i l y  

derived as: 

where T, is the average temperature of the two nodes ( i n  t h i s  case 25OC) 

and D1 and D2 are the distances from t h e  nodal po in t s -o f  nodes 1 and 2 t o  

t h e i r  common in te r face ,  respectively.  Table 2 shows the comparision 

between t h e  ana ly t i ca l  solut ion and the numerical results. The table 

shows t h a t  a very good agreement w a s  obtained. In solving t h i s  problem, 

a maximum temperature change of .002OC per t i m e  step w s  specif ied 

( W A R Y  = .002). 

Table 2. Comparison of ana ly t i ca l  and numerical 

so lu t ions  f o r  the conduction problem. 

Analytical Nume ri ca 1 
Time (sec) Solution (OC) Solution (OC) 

01  

.2 

03 

04 

05 

06 

07 

08 

09 

1.0 

25 5 436 

25 445 1 

25 3644 

25 2984 

25.2443 

25.2000 

25.1 637 

25.1 341 

25.1098 

2500899 

25 5 43 7 

25.4451 

25 3645 

25.2984 

25 2444 

25.2001 

25.1 638 

25 1 342 

25.1 099 

25 e0900 
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Convect ion Problem 

1 

I Another simple problem w a s  solved t o  check the convection term i n  

the energy equation. In t h i s  problem, two nodes and one connection w e r e  

required, w i t h  

I n i t i a l l y ,  t h e  

respect ively . 
temperature a t  

- 
T2 - 

I 
I 

a steady mass flow (q) going from node 1 t o  node 2. 

temperatures of nodes 1 and 2 were 100°C and 20O0C, 

Conductive e f f ec t s  were neglected. The solution f o r  the 

node 2 was: 

( 2 1 )  

where ~i w a s  the i n i t i a l  temperature of node 2. 

the program PT with the option of solving only the  energy balance equa- 

t i on  (NOPT = 2 )  was used. A steady mass f lux  of l .O kg/s was specif ied 

i n  input  block SPECS ( S T E A D Y ) ,  and since there w a s  only one connection, 

the  input  block FLmS w a s  not necessary. 

change of 0.2OC per t i m e  s t ep  (WARY = .2) was specif ied,  a per fec t  

agreement t o  within .Ol°C between the ana ly t i ca l  solut ion and the numer- 

i ca l  r e s u l t s  w a s  obtained. This is  shown i n  Table 3. When the  require- 

In  solving t h i s  problem, 

When a minimum temperature 

ment of the maximum temperature change per t i m e  s t ep  was relaxed to l.O°C, 

a maximum e r r o r  of .23OC resul ted a f t e r  1000 seconds of simulation. 

Conduction and Convection Problem 

m t h i s  problem, a heat  regenerator consisting of a rectangular 

f l u i d  duct and a rectangular so l id  w a s  considered. A t  t i m e  zero, the  

system w a s  a t  O°C and f l u i d  of 1 OOOC temperature began flowing through 

the  f l u i d  duct. The mass f l a w  ra te  w a s  steady, and hea t  losses  to the 

s o l i d  w e r e  specif ied i n  terms of an overa l l  heat  t ransfer  coeff ic ient .  

I 
1 
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Table 3. Comparison of analytical and numerical r e s u l t s  f o r  

t he  convection problem. 

T i m e  ( s e c )  Analytical  Solution ("12) ~ u m e r i c a l  Solution (oc) 

100 

20 0 

300 

400 

500 

60 0 

700 

800 

900 

1000 

190.49 

181 088 

174.04 

167.04 

160.66 

154.89 

149.67 

144.95 

140.67 

136.80 

190.49 

181 088 

174.09 

167 004 

160.66 

1 54 e89 

149.67 

144.95 

140.67 

136.80 

A complete descr ipt ion of the parameters and the mesh used is given by 

Edwards (1972) and the  ana ly t i ca l  solut ion i s  given by C a r s l a w  and 

Jaegar (1959) . 
Again the problem w a s  solved using the  steady flow option i n  the  

program PT (NOPT = 2) .  Comparison between the  ana ly t i ca l  and t h e  numer- 

ical  solutiom in t he  f l u i d  duct, .3 c m  from t h e  i n l e t ,  i s  given i n  Fig- 

ure 7. The s l i g h t  discrepancy a t  ea r ly  t i m e s  i s  due to  numerical disper- 

sion, bu t  the numerical r e s u l t s  converge to  the  ana ly t i ca l  so lu t ion  a t  

later times. 

Horizontal Fracture Problem 

Gringarten (1971) solved ana ly t i ca l ly  the problem of isothermal f l u i d  

flow t o  a w e l l  in te rsec t ing  a s ingle  horizontal  f r ac tu re  i n  a homogeneous 
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porous reservoir.  In h i s  ana ly t i ca l  approach t o  the  problem, Gringarten 

made three  important assumptions: 

( a )  a l l  of the flow to the w e l l  is through the f rac ture ;  

(b )  the flow per u n i t  area i n t o  the  f rac ture  is uniform across 

the f r a c t u r e  surfaces (uniform f l u x  assumption); 

(c)  gravi ty  e f f e c t s  are negligible.  

Figure 8 shows the type curves developed by Gringarten. 

To validate PT fo r  flow through fractured media, Gringarten's prob- 

l e m  w a s  simulated using the mesh shown i n  Figure 9. 

first assumption, i t  w a s  not  necessary to include a w e l l  element i n  the 

mesh. To s a t i s f y  the uniform f l u x  assumption, sinks of var iab le  s t rength  

w e r e  placed i n  the f r ac tu re  elements. The s t rengths  of the sources w e r e  

determined by the surface area of the elements. A l l  of the elements used 

Based on Gringarten's 

i n  the simulation w e r e  placed a t  the same elevation t o  exclude gravi ty  

from t h e  calculations.  

values w e r e  studied. 

and t h e  a n a l y t i c a l  so lu t ions  f o r  % = 1. 

found f o r  t h e  case of hD = 4. 

Two cases with d i f f e r e n t  % (hD = ( H / r f ) ( h x ) )  

Figure 10 shows the comparison between the  numerical 

Similarly,  a good agreement was 

vert ical  Fracture Problem 

The problem of a w e l l  in tercept ing a s ingle  v e r t i c a l  f r ac tu re  i n  a 

porous media reservoi r  w a s  solved ana ly t i ca l ly  by Cinco-Ley e t  al. (1978).  

The primary assumptions used i n  their ana ly t i ca l  approach were as follows: 

( a )  

(b )  gravi ty  e f f e c t s  are negligible.  

the produced f l u i d s  en te r  the w e l l  only through the fracture .  
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I Figure 8. Type curves for. horizontal fracture problem (after Gringarten, 
1971 I [XBL 804-7009] 
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Figure 9. Mesh used for horizontal fracture problem. [XBL 8110-116791 
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In the numerical simulation of t h i s  problem, the program was i n  its 

isothermal mode (NOPT = 1) and the mesh shown i n  Figure 1 1  was used. In 

order t o  s a t i s f y  the f i r s t  assumption m a d e  by Cinco-Ley e t  al., t h e  w e l l  

element w a s  connected only to the f r ac tu re  elements, n o t  to the elements 

represent ing t h e  surrounding formation. Gravity was again excluded from 

the  ca lcu la t ian  by placing a l l  of the nodes a t  the  same elevation. 

Using the mesh shown i n  Figure l l f  the case of Cr = loo 

(Cr = bkf/dcxf) was numerically simulated. Figure 12 shows the compari- 

son between the  numerical values obtained and the values given by Cinco- 

Ley e t  al. The exce l len t  agreement obtained did not warrant any addi- 

tional comparison. 

Field Validation 

PT w a s  recent ly  used f o r  simulation of an aquifer  thermal energy 

s torage experiment conductred by Auburn University [Tsang e t  al. 19811 . 
Two injection-storage-production periods were simulated. The r e s u l t s  of 

the simulation showed excellent agreement w i t h  the temperature d i s  t r ibu-  

t i on  i n  the aquifer a t  various times and the energy-recovery factors .  

This va l ida t ion  of the code aga ins t  f i e l d  data i l l u s t r a t e s  i t s  accuracy 

and f l e d  b i  li t y  . 
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SUMMARY OF CODE DEVELOPMENT 

In t h i s  chapter the developnent of a new numerical simulator for  

modeling geothermal systems was described. The code is  three-dimensional 

and capable of simulating the mass and hea t  t r ans fe r  associated with the  

flow of single-phase l i qu id  water through porous or f ractured media. The 

model has been extensively validated against known ana ly t i ca l  solut ions 

fo r  mass and hea t  t r a n s f e r  i n  porous and f rac tured  rocks. Also i n  this 

chapter,  a de t a i l ed  descr ipt ion of the model i n  terms of its mathematical 

and numerical formulation w a s  given and the  basic  capab i l i t i e s  of the 

code w e r e  i l l u s t r a t e d .  The input  manual can be found i n  Appendix A. 

I 
I 
8 
1 
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THEORETICAL STUDIES OF GEOTHHZMAL RESERVOIRS 

In t h i s  chapter, some t heo re t i ca l  problems i n  geothermal reservoir  

engineering are addressed. These problems include ana lys i s  of -11 tests 

i n  s ingle-  and two-phase reservoirs ,  explo i ta t ion  strategies f o r  two- 

phase geothermal reservoirs ,  and the analysis  of fault-charged geothermal 

reservoirs .  As each of these problems is quite general, only the most 

important  aspects  of the present  work are discussed. 

on ident i fy ing  the  problem and i l l u s t r a t i n g  the  in s igh t  gained through 

the present  work. 

Emphasis is placed 

In the ana lys i s  of these problems, various mathematical techniques 

w e r e  employed. 

t i f y  important parameter groups. H o w e v e r ,  f o r  complex problems such as 

those considered here, numerical studies i n  addi t ion to  ana ly t i ca l  work 

a re  necessary i f  a r e l i a b l e  solut ion is  t o  be obtained. In the ana ly t i ca l  

work, many simplifying assumptions must be made. If  the e f f e c t s  of these 

assumptions on the ove ra l l  solut ion of the problem are not understood, 

one must be very cautious when applyins the results to f i e l d  problems. 

This type of integrated analytical-numerical approach is i l l u s t r a t e d  i n  a 

following sec t ion  where the problem of in jec t ion  i n t o  fractured geothermal 

reservoi rs  is addressed. 

Analytical methods were used t o  pose the problem and iden- 

In many cases, however, the l imited capab i l i t y  of the ana ly t i ca l  

approach does not allow an appropriate treatment of the problem. This is  

espec ia l ly  t rue  i n  complex nonlinear problems such as  nonisothermal or 
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two-phase flow. 

haviors are evident, only numerical methods can be applied. In this 

d i s se r t a t ion  the newly developed simulator PT w a s  used f o r  these types of 

problems and, i n  spec ia l  cases, t h e  two-phase simulator SHAFT79 [Pruess 

and Schroeder, 19801 . 

In these, and other  cases where highly nonlinear be- 

ANALYSIS OF WELL TESTS IN GEOTHEmL RESERVOIRS 

Conventional we11 test ana lys i s  methods have been developed i n  the 

petroleum and groundwater literature and are of l imited use for  geother- 

mal appl ica t ions  because they are generally based on the assumption of 

isothermal f l u i d  flow. These are w e l l  summarized by Earlougher (1977) 

for t he  porous-media type reservoi rs  and Raghavan (1977) f o r  reservoi rs  

i n  which the w e l l s  i n t e rcep t  f ractures .  In geothermal reservoirs ,  prob- 

l e m s  caused by high temperatures and two-phase flaw make w e l l  test da t a  

d i f f i c u l t  t o  obtain,  and complicate t h e i r  analysis.  The high tempera- 

t u re s  encountered i n  geothermal reservoi rs  shorten the useful  l i f e  of 

cables and e l ec t ron ic  equipment. Therefore, presently,  accurate  dawnhole 

pressure da ta  cannot be obtained i n  high temperature (>2OO0C) geothermal 

reservoi rs  [Schrceder e t  al. , 19801 . 
The analys is  of well t es t  data from hot-water (single-phase) reser- 

voi rs  is complicated primarily by the var iab le  f lu id  propert ies  (densi ty  

and Viscosity).  On the other  hand, l i t t l e  i s  known about the ana lys i s  of 

w e l l  test  data from two-phase resevoirs. Papers addressing this problem 

have only appeared recently i n  the l i t e r a t u r e  [Garg, 1978; Grant, 1978; 
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Moench and Atkinson, 1978; Grant, 1979b; Sorey e t  al., 1980; O'Sullivan, 

1980]. The d i f f i c u l t y  i n  analyzing data from two-phase reservoirs  is due 

t o  the  highly nonlinear two-phase compressibil i ty e f f ec t s ,  and the lack 

of knowledge of the r e l a t i v e  permeability functions for poruus and frac- 

tured geothermal reservoirs.  A more de ta i led  discussion of these prob- 

lems is given i n  a later section. 

Inject ion T e s t i n g  of Hot-Water Reservoirs 

~n well test analysis  of data from groundwater or petroleum res- 

emirs ,  t h e  Theis solut ion [Theis, 19351 i s  frequently used. When a 

constant flow rate is used, t h e  solut ion indicates  that a p l o t  of the 

pressure drop versus the logarithm of t i m e  asymptotes t o  a s t r a i g h t  l i n e  

a f t e r  a sho r t  i n i t i a l  period. The slope of t h i s  s t r a i g h t  l i n e  can be 

used t o  ca lcu la te  the transmissivity ( k H )  of the reservoir  whereas the 

i n t e r c e p t  with the time a x i s  w i l l  y ie ld  the t o t a l  formation compressi- 

b i l i t y  Bt. 

D i r e c t  application of the Theis solution t o  well test data from 

hot-water reservoirs is questionable for the following three reasons: 

generally, the  f l o w  rate from/into a geothermal w e l l  is not ( 1 )  

constant but  var ies  with t i m e ;  

( 2 )  usually,  geothermal reservoirs exh ib i t  areal and v e r t i c a l  

temperature gradients and consequently the f l u i d  proper t ies  w i l l  

vary spa t i a l ly ;  

(3) often,  *le11 tests i n  hot-water reservoirs  are performed by 

in j ec t ing  w a t e r  rather than by producing it. The temperature of 
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the in j ec t ed  water is generally d i f f e r e n t  f r o m  the undisturbed 

reservoir w a t e r  and consequently g ives  rise t o  nonlinear f l u i d  

prope r t i  es . 
The variable f l a w  rate can eas i ly  be handled by using superposition 

principles.  variable-rate programs using the superposition of the Theis 

solut ion w i t h  a least-squares statistical optimizer have been developed 

[Mcawards, 19811 . 
Effects of temperature var ia t ion on the pressure response a t  a w e l l  

can be s igni f icant .  Mangold e t  al. (1981) conducted a detailed study of 

nonisothermal e f f e c t s  due t o  areal m r i a t i o n  i n  reservoir  temperatures. 

They found that the  pressure response can be s ign i f i can t ly  altered by 

these effects. H a w e v e r ,  the  magnitude of these effects depends g rea t ly  

on the temperature range, the exten t  of the temperature var ia t ions,  and 

the s i z e  of the temperature anomaly. If the reservoir  temperature anom- 

a l y  extends over a considerable distance,  i t  is unlikely that temperature 

effects w i l l  be observed i n  short-term production tests. 

More s ign i f i can t  thermal effects are observed during cold-water in- 

jec t ion  tests i n  hot-water reservoirs. As in jec t ion  t e s t ing  is currently 

being used a t  a number of geothermal f ields (e.g., Krafla, Iceland; 

Olkaria, Kenya; Los AzufreS, Mexico; Wairakei, New Zealand), a theoret- 

i ca l  basis fo r  analyzing such nonisothermal tests is  g rea t ly  needed. The 

r e s u l t s  of numerical simulation studies addressing this problem are dis- 

cussed below. 
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During in j ec t ion  tests, water a t  a temperature lower than that of 

the reservoir  w a t e r  is  injected i n t o  the geothermal aquifer.  A tempera- 

ture var ia t ion  w i l l  develop in the reservoir ,  with colder w a t e r  c lose to 

the  in j ec t ion  w e l l  and h o t t e r  reservoir w a t e r  f a r the r  away. 

creates differences i n  the density and v iscos i ty  of the f l u i d  within the 

reservoir .  In this study, t h e  numerical simulator PT w a s  used i n  its 

nonisothermal mode. In our numerical model the dependence of v i scos i ty  

and densi ty  of the f l u i d  on temperature is  f u l l y  accounted for .  

This i n  turn  

reservoir. The in jec ted  w a t e r  is a t  a temperature of 

e rvo i r  contains single-phase w a t e r  a t  a temperature of 

as w i l l  be seen later, the r e s u l t s  obtained are va l id  

i f  appropriate correct ion fac tors  are used. 

Problem and Approach. The problem considered is t h a t  of an injec-  

t i o n  w e l l  f u l l y  penetrating a horizontal  hmogeneous i so t ropic  geothermal 

OOOC bu t  the res- 

3OOOC. Actually, 

or any temperature, 

In the numerical simulation, a radial mesh (concentric circles) w a s  

used with fine elements close to the w e l l  covering the region w i t h  

temperature variations.  Farther away from the w e l l ,  the  mesh increased 

logarithmically. The reservoir w a s  modeled as a s ingle  layer  and thus 

buoyancy forces  were neglected. Figure 13 shows a schematic of the model 

used; the parameters used i n  the simulation are given i n  Table 4. 

, 
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Qi 
(Ti = IOOOC ) 

I 

Figure 13.  Model used i n  the study of injection into  a porous media 
geothermal reservoir. [XBt 806-1241] 

. .  
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Table 4. Parameters used i n  the study of in jec t ion  

t e s t i n g  of porous geothermal reservoirs.  

Flow rate  (kg/s) 

Reservoir thickness ( m )  

Permeability ( m 2 )  

Thermal conductivity ( J/m.sec°C) 

Density of solids ( k g b 3 )  

Specif ic  hea t  of s o l i d s  ( J/kg°C) 

Porosity (-) 

Specific hea t  of f l u i d  ( J/kg°C) 

Inject ion temperature (OC) 

Reservoir temperature ( O C )  

. 200 

1 x 10-3 

1 x 10'10 

2.00 

2650 

1000 

40 

4200 

100 

300 

Inject ion Tests .  When 100°C water is  in jec ted  i n t o  a hot  (300OC) 

porous reservoir ,  i n i t i a l l y  a t  equilibrium, the pressure behavior shown 

i n  Figure 14 w i l l  resul t .  A t  e a r ly  t i m e s  the pressure a t  the  in j ec t ion  

w e l l  w i l l  follow the Theis solut ion for the hot reservoir  (30O0C), bu t  

a t  later times, following a t r ans i t i on  period, t he  pressure w i l l  follow a 

line that is parallel to the Theis solution for l W 0 C  water. This behav- 

ior is caused by the differences i n  densi ty  and v iscos i ty  of the in jec ted  

w a t e r  and the reservoir water. Tsang and Tsang (1978) solved this problem 

ana ly t i ca l ly  using t h e  Boltamam transformation and by approximating the  

parameter k/p as a Fermi-Dirac function of r2/t. 

used a numerical simulator t o  study the pressure behavior a t  a production 

w e l l  located i n  a hot  spot; i.e., the well is  completely i n  a localized 

geothermal h o t  region w i t h  colder w a t e r  farther away from t h e  well. 

I 

Mangold e t  al. (1981) 
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- Theis solution 

_--- Analytic approx. - CCC solution 

t/t2 ( sec/m* 1 I 

I 
Figure! 14. pressure behavior a t  an observation well (r = 2.5 m) 

during cold water (100OC) inject ion i n t o  a 3OOOC geothermal 
re servo ir . [xat 799-2077) 
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Figure 15 shows haw varying the permeability and s t o r a t i v i t y  of the 

rock matrix a f f e c t s  the pressure behavior a t  the in j ec t ion  w e l l .  When 

the t ransmissivi ty  and the permeability of the rock matrix are kept  con- 

s t a n t  bu t  the s t o r a t i v i t y  i s  changed, the  curves are j u s t  sh i f t ed  along 

the t i m e  a x i s  as predicted by the Theis solution. H o w e v e r ,  when the per- 

meabili ty is varied and the other two parameters kept  constant, the t i m e  

of deviation from the  3OOOC Theis-curve changes. Th i s  is cons is ten t  w i t h  

the results by Tsang and Tsang (1978) w h o  faand that time of deviat ion is 

dependent on reservoir  thickness as ell as other parameters such as the 

flow rate and the reservoi r  and f l u i d  hea t  capacit ies.  

Injection-Rest-Injection Test. Figure 16 shows the r e su l t s  when 

there i s  i n i t i a l l y  a c i r cu la r  region of cold water (cold spo t )  around the 

wel-1. The type of pressure response shown i n  Figure 16 should r e s u l t  

when in j ec t ion  tests are performed soon a f t e r  d r i l l i n g  i s  completed and 

before the w e l l  has been allowed to hea t  up. This kind of well test pro- 

cedure is used i n  a number of geothermal f i e l d s  (Krafla, Iceland; Olkaria, 

Kenya, etc.). The f igure shows t h a t  a t  ear ly  t i m e s  the pressure follows 

the 100°C Theis curve and then after some t i m e ,  which depends upon the 

radius  of the cold spot,  t h e  pressure increases  along a l i n e  parallel t o  

the 3OOOC Theis curve. A t  still  later t i m e  a m t h e r  t r ans i t i on  occurs and 

the  pressure again starts increasiw a t  a rate corresponding t o  the  100°C 

Theis-curve solution. These results indicate  that  by using an inject ion-  

res t - in jec t ion  w e l l  test procedure, the radius  of the cold spo t  generated 

by the  f i r s t  inject ion can be determined. This i n  turn  allows the 
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8 

I 

Figure 15. Transient injection pressure behavior, when 100°C water i s  
injlected into a 3OOOC reservoir, for different values of 
transmissivity and storativity of the reservoir. 

[XBL 806-1328) 
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Figure 16. Injection pressure behavior, when 100°C w a t e r  i s  injected i n t o  
a w e l l  located i n  a cold-spot (lower temperature regirn). 

[XBL 806-1329] 
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porosi ty  t o  be approximated from equation 22, i f  the heat  capacities of 

the  reservoi r  so l id s  and the  w a t e r  can be estimated. 

T 4pWcW 
V 

~ 

- 5 5 -  

H PA'A V 

~n equation (22) ,  vT i s  the ve loc i ty  of the thermal f r o n t  and vH is  the 

ve loc i ty  of the hydrodynamic front .  

Injection-Falloff Tes t .  A t  the t i m e  when in j ec t ion  has j u s t  been 

terminated there  i s  a pressure as m l l  as a temperature gradient  within 

the  geothermal reservoi r  (Figure 17). 

performed, the pressure response shown i n  Figure 18 results. The pres- 

sure  will i n i t i a l l y  decl ine a t  a rate corresponding t o  the l 0 o 0 C  Theis 

solut ion,  bu t  later a change i n  s lope w i l l  occur and the  3OOOC Theis 

curve w i l l  be followed. These r e s u l t s  are cons is ten t  w i t h  those obtained 

by Mangold e t  al. ( 1981 1 . 

If a t  this t i m e  a f a l l o f f  test is 

Injection-Production Test. A case w a s  s tudied where production 

immediately followed an in j ec t ion  period ( t h a t  is, with reservoi r  i n i t i a l  

conditions as shown i n  Figure 17). 

the  w e l l ,  shown i n  Figure 198 i s  characterized by three d i s t i n c t  s t r a i g h t  

l ines .  A t  f i r s t  the pressure decreases a t  a rate that corresponds to 

t w i c e  the r a t e  given by the Theis solut ion fo r  100°C water. Later on the 

pressure decrease follows a s lope that equals twice the slope given by 

the Theis solut ion fo r  3OOOC water. 

decrease i n  comparison w i t h  the Theis solut ion is that two independent 

The calculated pressure behavior i n  

The reason fo r  the doubled pressure 



61 

O'r 1 GeS' 

0 
0 

-- PSI 

300 O C  IOOOC IOOOC 300 O C  

Figure 17. Schematic diagram showing reservoir ctmditions immediately 
after inject ion.  [XBL 806-1330] 
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1 Figure 18. Pressure fall-off af ter  1.2 days of injection. [XBL 806-1331] 
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Figure 19. Pressure transient behavior during a production t e s t ,  
immediately following 1.2 days of injection. [XBL 806-13321 
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forces  cont ro l  the drawdown, the  constant withdrawal rate and the i n i t i a l  

pressure f a l l o f f  condition i n  the reservoir .  Superposition of these two 

effects causes the double slopes. 

After the two  double slopes a t r a n s i t i o n  occurs, following which the 

pressure starts decl ining a t  a rate corresponding t o  the Theis solut ion 

fo r  300OC water. During the t r a n s i t i o n  the pressure i n  the w e l l  a c tua l ly  

increased, probably due t o  rapid changes in the Viscosity of the w a t e r .  

AS shown i n  Figure 19, t h e  temperature of the produced water changed from 

ioooc t o  3OOOC during -the t r ans i t i on ,  implying a more than threefold 

decrease i n  the viscosity of the water. 

Discussion. Data from i n j e c t i o n  tests of porous media geothermal 

reservoirs show severa l  l i n e a r  segments on a pressure-log time plot .  

This behavior is due t o  the dependence of f l u i d  densi ty  and Viscosity on 

temperature. O u r  r e s u l t s  indicate that when an inject ion-rest- inject ion 

procedure is  employed, the  radius of the cold spo t  resu l t ing  from the 

first in j ec t ion  period can be determined. Consequently an estimate of 

the e f f ec t ive  porosi ty  of the reservoi r  can be obtained. 

An injection-production test can be advantageous because l a rge r  

pressure changes can be observed (twice the rate predicted by the Theis 

so lu t ion) .  An observation of three different l i n e a r  segments i n  the data 

may a l s o  lead t o  a better determination of the reservoir  parameters. It 

must be noted, however, that other  f ac to r s ,  such as boundaries and permea- 

b i l i t y  var ia t ion  within the reservoir ,  may cause a similar break i n  the 
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slope i n  the data shown i n  F igures  14-19. 

when analyzing injection test data. 

the injected water and the reservoir f luids is essent ia l  for a proper 

determination of the reservoir hydrauli c pa rame ter s . 

One must therefore be careful 

A knowledge of the temperature of 
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Effects of Relative Permeability Parameters i n  Two-Phase Reservoirs 

AS previously mentioned, i t  is only recent ly  that theore t ica l  studies 

of w e l l  t e s t  analyses of two-phase geothermal systems have appeared i n  the 

l i t e r a t u r e .  Moench and Atkinson (1978) numerically studied the pressure 

behavior of a w e l l  i n  a vapor-dominated reservoi r  w i t h  immobile l iquid 

water. They found that pressure buildup exhibits an anomalous plateau 

caused by condensation effects i n  the reservoi r  near the w e l l .  Later 

Moench (1978) extended the m o d e l  t o  include the effects of heat conduc- 

t ion.  Garg (1978) developed an ana ly t i ca l  so lu t ion  f o r  the pressure 

response of a w e l l  i n  a f lashing or a two-phase reservoir produced a t  

constant ra te .  

the logarithm of t i m e  is a s t r a i g h t  l ine ,  and the slope of the l i n e  i s  

inversely proportional to the t o t a l  kinematic mobility ( t o  be defined 

later). Grant (1978) compared two-phase pressure gradients to  s ingle-  

He found t h a t  a p l o t  of the downhole pressure versus 

phase gradients  f o r  geothermal w e l l s .  H e  found that the compressibil i ty 

of a two-phase mixture is 10-10,000 times g r e a t e r  than the compressibil- 

i t y  of single-phase steam or l i qu id  water. 

k H  values remain unaffected, the  QStH values are affected by several  

orders of magnitude. Sorey e t  al. ( 1980) showed t h a t  the flowing enthalpy 

reaches a constant value when a well completed i n  a two-phase reservoi r  

i s  produced a t  a constant rate. 

region around the w e l l  may reach higher l i qu id  sa tura t ions  than the un- 

dis turbed l iqu id  saturat ion.  They explain t h i s  phenomenon i n  terms of 

heat  losses  close t o  the w e l l  due t o  intensive boiling. Details of the 

mathematical approach taken by Sorey e t  a l .  are given by Grant (1979b). 

The consequence is that w h i l e  

They a l s o  showed that during buildup the 
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O'SulLivan (1980) developed a semi-analytical  s i m i l a r i t y  solut ion 

for w e l l  test ana lys i s  of two-phase geothermal reservoirs.  A more de- 

tailed descr ipt ion of h i s  approach is given i n  the following section. 

One of the most fundamental problems i n  the ana lys i s  of we11 test 

d a t a  from two-phase reservoi rs  is the lack of understanding of the  re la -  

t i v e  permeabili ty functions f o r  s t e a m  and l iquid w a t e r .  

affects the confidence i n  the numerical simulation of geothermal systems. 

This a l s o  grea t ly  

In two-phase flow i n  a porous material the mobili ty of each individ- 

u a l  phase i s  retarded by the  presence of the other. The degree of i n t e r -  

ference depends on the  volumetric proportion of the two phases. T h i s  

phenomenon is expressed mathematically by the saturation-dependent rela- 

t i v e  permeabili ty functions krl and k,, f c r  the l iqu id  and vapor phases, 

respect ively,  which multiply the matrix permeability. Because the t w o  

phases m o v e  d i f f e r e n t i a l l y ,  the mixture behaves l i k e  a f l u i d  with a 

saturation-dependent "effective" or t o t a l  kinematic v i scos i ty  ut given by: 

where v1 and Vv are t h e  kinematic viscosities of the l iquid and vapor 

phases, respectively.  Similarly,  the enthalpy transported by the  mixture 

depends on the  r e l a t i v e  permeability functions and is d i f f e r e n t  from t h e  

in-place enthalpy. This "flowing" enthalpy hf is  given by: 

hf = V + hv 31 V 

where hl and hv a re  the l iquid and vapor enthalpies,  respect ively.  
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?he movement of mass and energy i n  a geothermal reservoir  is very 

s t rongly influenced by the  magnitude of these two quan t i t i e s ,  t h e  total 

kinematic Viscosity and the flowing enthalpy, which i n  turn, from equa- 

t i ons  (23) and ( 2 4 ) ,  obviously depend on the  nature of the r e l a t i v e  per- 

meabili ty functions, Unfortunately the dependence of Sl and k, on 

l i q u i d  sa tura t ion  S1 is presently not known and is very d i f f i c u l t  t o  

deduce from laboratory experiments o r  f i e l d  data.  

various inves t iga tors  have reported on s tud ie s  regarding the r e l a t i v e  

permeabili ty functions, Experimental work on determining the  r e l a t i v e  

permeability curves has been reported by C o r e y  ( 19541, Chen e t  al. ( 1978), 

Counsil and Ramey (19791, and others. Grant (1977b) and Home and Ramey 

(1978) used flowrate and enthalpy da ta  from the Wairakei geothermal f i e l d  

i n  New Zealand t o  obtain information about the r e l a t i v e  permeability 

parameters. 

permeabili ty curves have been reported by JOnSSOn ( 1978), S u n  and Ershaghi 

(1979) and Bodvarsson e t  al. (1980). Final ly ,  Sorey e t  al. (1980) 

i l l u s t r a t e d  e f f e c t s  of the r e l a t i v e  permeability on the pressure drop and 

enthalpy var ia t ions  during production from a s ingle  w e l l  by considering 

Numerical modeling s tud ie s  on the importance of the r e l a t ive  

r e l a t i v e  permeability curves suggested by Corey (1954) and Grant (1978). 

In  the present study, the  s e n s i t i v i t y  of vt and hf t o  v a r i a t i m s  i n  

the  r e l a t i v e  permeability functions is examined f i r s t .  Then, the deter-  

mination of vt and hf from well-test r e s u l t s  i s  discussed. A method of 

using these measurements together w i t h  theore t ica l  p l o t s  of krl and k, 
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versus hf to deduce the general  shape of the relative permeability func- 

t i ons  is suggested. Final ly ,  the e f f e c t s  of the relative permeability 

functions on the  pressure decline of flowing enthalpy build-up during a 

constant-rate production test is considered. It i s  shown that the charac- 

teristic rise i n  the flowing enthalpy from its in i t i a l  value to  a s tab le  

value a f t e r  a moderate t i m e  is strongly influenced by dependence of hf on 

S1 (and hence krl and k, on SI). 

Sens i t i v i ty  study. various r e l a t i v e  permeability curves fo r  steam- 

l i qu id  water have been proposed i n  the l i t e r a t u r e  [Corey, 1954; Chen e t  

al. , 1978; Home and Ramey, 1978; and Counsil and Ramey, 19791 . However, 

s ince the curves t h a t  have been suggested are qu i t e  d i f f e ren t  from each 

other ,  the  choice of relative permeability curves t o  be used i n  simula- 

tion simdies of hermal systems is rather arb i t ra ry .  Therefore a t  

s shage it is nt to iden t i fy  which characteristics of t he  rela- 

t i v e  permeabili ty curves are s igni f icant .  

The r e l a t i v e  permeability curve8 are characterized by the cutoffs 

w h e r e  the steam or l iqu id  became8 either f u l l y  mobile or immobile. A 

s e n s i t i v i t y  study has been oonducted to determine the r e l a t i v e  importance 

of each of the  cutoffs.  

ta l  flow (no gravi ty)  the r e l a t i v e  permeability curves influence reser- 

v o i r  behavior only through the f l w n g  emthalpy, hf ,  and the t o t a l  kine- 

matic viscosi ty ,  ut. Therefore by observing the e f f e c t  of the individual 

cu tof fs  on these quant i t ies ,  t h e i r  relative importance can be determined. 

4 .  

The approach used is qyi te simple; f o r  horizon- 
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In  the present  study a t t en t ion  is given primarily to either Corey- 

type curves or s t r a igh t  l i n e  curves ( s e e  Figure 20). A t  present the 

Corey r e l a t i v e  permeability curves are  most widely used i n  reservofr  

numerical modeling. The curves, i l l u s t r a t e d  i n  Figure 2 0 ,  ind ica te  the 

two-phase conditions under which both phases are'mobile; the mobility of 

each phase i s  severely retarAd by the presence of the other. The sum 

of the individual  r e l a t i v e  permeabilities only reaches unity when one of 

the f l u i d s  is immobile. The o ther  curws sham i n  Figure 20 a r e  the "x" 

r e l a t i v e  permeabili ty curves, where the mobili ty of each phase is  a 

l i n e a r  funct ion of the sa tura t ion  and no cu tof fs  are present. The "x" 

curves represent  the other  extreme, where the phases are  independent of 

each other  and their mobi l i t i es  are only a function of their volume frac- 

t ion.  Thus these r e l a t i v e  permeability represent  the l i ke ly  extremes of 

w h a t  the real r e l a t i v e  permeability functions may be. 

, *  
. a  

The most important aspect of these curves is &he "cutoffs"  where 

steam or  w a t e r  becomes either f u l l y  mobile or immobile. I n  the following 

s e n s i t i v i t y  study, f i v e  s t r a igh t - l i ne  functions are considered: four 

possible curves each having one .30% cutof f ,  and what is referred t o  as  

the "Xu curves, w h i c h  correspond t o  the case w i t h  no cu to f f s  (broken 

l i n e s  i n  Figure 20)  . 
Figure 21 shows the effect of the cutof fs  on the flowing enthalpy. 

For comparison, t he  "X" r e l a t i v e  permeability curve is shown as the thick 

s o l i d  l ine .  The f igure shows that when considering enthalpy, the  immo- 

b i l e  l i qu id  cutoff i s  much more important than the other cutoffs.  



I IO 

.80 

I 60 

K rv 

.40 

I20 

0 

Figure 20. 

71 

- Corey curves ( Sr1 = #30 Srv = .05)  -- X curves 

.Liq:uid soturot ion 

The Corny and the "x" relative permeability curves. 
[XBL 801 2-65561 
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Figure 22 shows the e f f e c t  of the cu tof fs  cm the t o t a l  kinematic 

v i scos i ty  (vt) .  

f o r  comparison. In this case, both the l iqu id  w a t e r  cu tof fs  s e e m  t o  be 

considerably more important than the vapor cutoffs.  However, i n  terms of 

the percentage deviation from the  "x' curve ( the thick so l id  l i n e ) ,  the 

importance of the immobile l iquid w a t e r  cutoff is considerably more than 

the  f u l l y  mobile l iqu id  w a t e r  cutoff . The vapor cu tof fs  again are not 

very important. Similar conclusions regarding t h e  importance of the cut- 

Again the 'x" r e l a t i v e  permeability curves are included 

o f f s  are obtained by Sun and Ershagi (19791, i n  considering the  h e a t  out- 

p u t  from a one-dimensional system. 

W e 1 1  t e s t  data. During a w e l l  tes t  i n  a two-phase reservoir ,  the 

downhole pressure follows a decline curve similar to that shown i n  Fig- 

ure  23. The exact shape of the curve varies w i t h  reservoir  conditions 

but  i n  general  it does not follow a s t r a i g h t  l i n e  (Theis curve) because 

the mobility changes as the sa tura t ion  changes near the w e l l .  Neverthe- 

less, t h e  slope of the decline curve ( m )  can be used t o  ca lcu la te  the 

mobili ty a t  each pressure using the formula [Garg, 1978; sorey e t  a l ,  

1980; or O'Sullivan, 19801 : 

kH 2.303q 
-I 

41rm Vt 
( 2 5 )  

The flowing enthalpy of the produced f l u i d  typ ica l ly  follows a curve l i ke  

that shown i n  Figure 24, r i s i n g  fram a n  i n i t i a l  value t o  a s t ab le  higher 

value a f t e r  a moderate t i m e .  simultaneous measurements of pressure and 

flowing enthalpy thus allow vt  and hf to be calculated provided kH i s  

known (e.g., from an in j ec t ion  test). 
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Liq u id Sat u ro t i on 

I 
Figure 22. The relationship between kinematic y h c o s i t y  and l iquid 

saturation for l inear relative permeability curves. 
’ 

[ XBL 8 01 2-6 541 I 



75 

Log time 

Figure 23. Pressure transient behavior during a well test in a two-phase 
re servoi r . [XBL 801 2-65381 
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Ti me 

F i g u r e  24. Flowing enthalpy during a w e l l  test i n  a two-phase reservoir. 
[XBL 801 2-65391 
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Using equations (23)  and ( 2 4 ) ,  Gv and krl can then be calculated.  

BY repeating this process a t  a number of values of flawing enthalpy 

( e i t h e r  a t  d i f f e r e n t  times during the test or by using d i f f e r e n t  produc- 

t i o n  rates), p lo t s  of k, and krl versus hf can be obtained. 

the  corresponding l i qu id  sa tura t ion  S1 is not known and cannot be m e a s -  

ured s a t i s f a c t o r i l y ,  the required r e l a t i v e  permeability curves cannot be 

obtained. 

However, as 

Although de ta i l ed  r e l a t i v e  permeability curves cannot be obtained, 

the  p l o t s  of krl and k, versus hf are useful. Theoretical  p l o t s  of t h i s  

type f o r  the "x" curves and Corey curves (Figure 20) are  shown i n  Figures 

25 and 26. Figure 25 shows the flowing enthalpy as a function of the liquid 

r e l a t i v e  permeability f o r  the Corey and the "x" curves. The f igure shows 

khat although the two a r m s  have d i s t i n c t l y  d i f f e r e n t  cha rac t e r i s t i c s ,  

&ey form a ra the r  small zone of probable liquid r e l a t i v e  permeability 

values. The vapor r e l a t i v e  permeability when p lo t ted  against flawing 

enthalpy for  the Corey and the "X" r e l a t i v e  permeability curves (Fig- 

ure 26) a l s o  i l l u s t r a t e s  the basic difference between the  two cases, b u t  

the curves are fu r the r  apart. A comparison of f i e l d  r e s u l t s  W i t h  those 

of Figures 25 and 26 should give a clear indica t ion  of whether the rela- 

t ive permeabili ty curves a t  the geothermal f i e ld  i n  question more closely 

resemble the Corey or the "x" reLative permeability curves. 

The rise i n  flowing enthalpy. As explained earlier, the  flawing 

enthalpy i n  a constant-rate w e l l  test reaches a stable value a f t e r  some 

t i m e .  Sorey e t  al. (1980) studied the rise i n  flowing enthalpy using an 
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approximate ana ly t i ca l  method and fa tnd  a s t rong dependence on the rela- 

t ive permeability curves used. A semi-analytic technique developed by 

0' Sullivan (1980) has been used t o  study the e f f e c t  of the r e l a t i v e  per- 

meabili ty curves on the  rise i n  the flowing enthalpy i n  more de t a i l .  In 

order to explain the main features of the r e su l t s ,  a hr ief  ou t l ine  of the 

basic equations is required. 

Basic Equations. Following O'Sullivan (1980) by using the  t ransfor-  

mation 11 = ./E8 the mass and the energy balance equations fo r  a two- 

phase system can be written: 

dQe q 2 dAe - + -  - = o  
dn 2 dn (27 )  

In equations ( 2 6 )  and (2718 

l a t i o n  terms, respect ive l y  8 

and Ae are the mass and the energy accumu- 

Am = $P (28)  

Ae ( 1  - $)prCrT + $(ph - PI (29)  

The densi ty  ( p )  and enthalpy (h )  of the f l u i d  mixture are defined as: 

The mass (Q,,) and the energy (a,) f luxes can be w r i t t e n  as (ignoring 

conduction ) : 

I 
I 
I 

I 
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Qe = hf$* ( 33) 

where the mobili ty T, is given by Tm = k / V t .  

pendent var iables ,  equations (261, (271, (321, and (33) can be combined 

t o  yield:  

Using &, P, and S1 as inde- 

dS1 % 
Tm 

n - e - -  dn 

Similarly,  equations (26) and (27) can be combined t o  give: 

(34) 

Equations (34 and 35) w i l l  be used as a basis i n  the following discussion 

e phenanemn of stable enthalpy during a constant-rate w e l l  test 

has been obsemed &n w e l l  data Srom Wairakei and during numerical simula- 

ns  of w e l l  tests (Sorey e t  al. , 1980 and O'Sullivan, 1980). Analyti- 

cal ve r i f i ca t i an  of a long-time stable flawing enthalpy can be obtained 

by considering equation (35)  i n  the l i m i t  as Q * 0 (large times) w h i c h  

yie lds  simply: 

=' 0 Or hf = corrstant *f 
dlil . 

As rl + 0 and hf approaches its constant value, equation (34) can be 

approximated w: 
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In the above derivat ions,  t h e  

been used i n  the formula: 

I 
I 

chain ru l e  for p a r t i a l  d i f fe ren ta t ion  has 

- =  &f (G)K+ dS1 (2)s,% 
dm 

P 

The second term on the right-hand s i d e  of equation (38) i s  small and 

therefore  t h i s  equation can be used i n  a discrete form t o  approximate the I 
rise i n  flcwkng enthalpy as follows: 

I 

The accuracy 

In equation I 
' of this formula is confirmed by independent calculations.  

( 3 9 ) ,  AS1 represents the t o t a l  change i n  sa tura t ion  up t o  the 

"I 
I 
I 
I 
I 
I 
I 

enthalpy is reached. From equa- 

a t i v e  permeability cur  ' 

8 and therefore  a l s o  &,f, 

i n i t i a l  conditions 

(T, S I ) ,  porosi ty ,  mass flowrate and t o t a l  kinematic mobility. 

t ionships  between Ahf and these  parmeters must be establ ished before af 
can be used t o  inves t iga t e  the shape of the  r e l a t ive  permeability curves. 

The rela- 

Figure 27 shows the rise i n  flowing enthalpy versus the i n i t i a l  

flowing enthalpy for  three i n i t i a l  temperatures. 

show t h a t  the rise of flowing enthalpy is dependent upon the in i t i a l  

The curses i n  Figure 27 

temperature and t h e  i n i t i a l  flowing enthalpy i n  the reservoir.  The depen- 

dence on the  i n i t i a l  temperature can be explained by considering equa- 

Uons (34)  and (39). 
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The sa tura t ion  changes given by equation (34)  are more pronourrced a t  

lower temperatures (or equivalently a t  lower pressures) ,  primarily due t o  

the  lower t o t a l  kinematic mobility (G) a t  lower temperatures. 

quently, the flawing enthalpy changes w i l l  be larger a t  lower temperatures 

(equation 39). 

explained using Figure 28. 

the change i n  f l w n g  enthalpy is most pronounced a t  m e d i u m  values of 

sa tura t ion  and the rise i n  the flowing enthalpy is therefore largast a t  

those in i t i a l  sa tura t ion  values. 

Conse- 

The dependence of Ab on the i n i t i a l  saturat ion can be 

For the Corey r e l a t i v e  permeabilty curves, 

me rise i n  flowing enthalpy a l s o  depends an the porosity + and the 

Figure 29 shows a p l o t  similar to that in Figure 27, mass f l o w  rate Q,,. 
bu t  a higher porosi ty  was used i n  the simulation ($  = .25). Sorey e t  al. 

ones sham in Figures 27 and 29 

edure. Their curves i n  general  show 

a considerabry smaller rise i n  flawing enthalpy than the curves shown i n  

Figures 27 and 29. The difference is due to the approximations involved 

i n  der iving the ana ly t i ca l  expressions used by Sorey e t  al. 

method presented here does not necessi ta te  the use of those approximations. 

The numerical 

sh ip  between the rise i n  flawing enthalpy and poros i ty  

&s shown i n  Figure 30 f o r  an i n i t i a l  temperature of 25OOC and several 

values of i n i t  saturat ion.  In  a l l  of the cases, the  lower the poros- 

i t y ,  the grea te r  the rise i n  flowing enthalpy. In  cases of high i n i t i a l  

l4quid sa tura t ion ,  a Linear re la t ionship between the rise i n  flowing en- 

*alpy and ( 1  - $) /$  was observed f o r  porosi ty  values higher than $ = .05. 

~ 

I 
I 

I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 

I 
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Figure 28. The relationship between flowing enthalgy and l iquid 
satirration for the Corey re la t ive  permeability curves. 
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A t  lower i n i t i a l  l i qu id  sa tura t ions  the nonlinear effects are more pro- 

nounced. These r e s u l t s  have been confirmed by an independent ana ly t i ca l  

study. 

%e re la t ionship  between the mass flawrate and the stable flowing 

enthalpy is shown i n  Figure 31. Three curves representing d i f f e r e n t  

values of the i n i t i a l  sa tura t ion  are shown, bu t  i n  a l l  three cases, the 

ini t ia l  temperature of 25OOC and a porosi ty  of 0.05 was used. The curves 

representing high i n i t i a l  sa tura t ion  (Si > . 8 O )  show an approximately 

l i n e a r  re la t ionship  between the flowrate and the stable flowing enthalpy, 

bu t  a t  l o w e r  i n i t i a l  s a tu ra t ions  (Si = .64) a m o r e  nonlinear behavior is 

observed. The near-linear re la t ionship  a t  high i n i t i a l  l iquid satura-  

t i ons  can be derived ana ly t i ca l ly  by considering equations (34)  and (39 ) .  

A t  high i n i t i a l  sa tura t ions ,  t he  der ivat ives  dhf/dP and dhf/dSi are negli-  

g ib l e  fo r  the Corey r e l a t i v e  permeability curves (see Figure 27) ,  and 

equation (34)  can be wr i t ten  as: 

3 -  

dS1 n d r \ =  

The terms i n  the numerator and denominator of equation (40)  are almost 

constant a t  higher i n i t i a l  l iquid saturat ions.  Consequently, 

Qm 
AS1 a - 

Tm 
(41 )  

and from equation (391, 

Qm 
Tm 

Ahf a - . (42)  
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The s l i g h t  nonlinear e f f e c t s  i n  the high i n i t i a l  sa tura t ion  curves shown 

i n  Figure 30 are probably due t o  the f a c t  that Tm decreases s l i g h t l y  

w i t h  pressure and saturat ion.  

Sorey e t  al .  (1980) observed a near-linear re la t ionship  between the 

flowing enthalpy and f lawrate  from wells in Wairakei, New Zealand. Their 

use of l i n e a r  p lo ts ,  such as the  one sham i n  Figure 30, t o  obtain the 

i n i t i a l  resevoir  enthalpy f o r  t he  w e l l s  i n  New Zealand is w e l l  j u s t i f i ed .  

H o w e v e r ,  i n  the case of a low i n i t i a l  saturat ion,  l i n e a r  approximations 

may be somewhat i n  error .  

In l i g h t  of the preceding discussion it is  clear that the  rise i n  

flowing enthalpy is complicated by various fac tors ,  such as the  porosi ty ,  

f lowrate,  and the  i n i t i a l  conditions. H o w e v e r  i f  a l l  of these fac to r s  

are known, the change i n  sa tura t ion  may be approximated and the slope of 

the hf versus S1 curves (dhf/dS1) can be determined (equation 39). This 

i n  t u rn  w i l l  y i e ld  informatian regarding the  r e l a t i v e  permeability 

parame ter 8. 

Conclusions. The primary r e s u l t s  obtained i n  this study are as 

follows : 

( 1 )  

the r e l a t i v e  permeability curves, a s  they grea t ly  a f f e c t  the flow- 

ing enthalpy and the t o t a l  kinematic mobility. 

( 2 )  The r e l a t i v e  pe rmeab i l i t y  parameters can be determined from 

f i e l d  da t a  i n  terms of the flawing enthalpy, and compared to 

The l i qu id  cu tof fs  are the m o s t  important characteristics of 

I 
D 
8 
I 
I 
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theoretical curves (e.g., Corey and "x" curves). Th i s  w i l l  enable 

an approximate determinatiar of the conventional relative p e r m e a b i l -  

i t y  curves i n  terms of sa tura t ion  t o  be made. 

(3) 

relative permeability curves, provided that parameters such as kh 

and 0 are known (e.g., frcm in jec t ion  and interference tests). 

H o w e v e r ,  t h e  rise i n  flowing enthalpy is complicated by many o ther  

fac tors ,  such as the porosi ty  and the ext rac t ion  rate. 

The rise i n  flowing enthalpy can give information regarding the 
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. RESERVOIR EXPLOITATION STRATEGIES 

In the development of a geothermal resource, a n  appropriate produc- 

t i o n  s t r a t egy  must be selected. 

optimal well s p a d n g  and conqletion depths. 

s ions are based s o l e l y  on achievable l eve l s  of power production, without 

giving due consideration to  ultimate energy recovery. Thus, t h e  produc- 

t i o n  w e l l s  are often located very close t o  each other and the completion 

depth is determined based on available exploration data. 

This includes determination of the 

In many cases these deci- 

This may lead 

t o  short-l ived production w e l l s  and a low recovery ratio for the geother- 

mal resource. Select ion of an explo i ta t ion  strategy shauld be based on 

appropriate  reservoir engineering calculat ions tha t  w i l l  r e s u l t  i n  an 

optimum balance between energy recovery and investment costs. 

t i ons  aimed a t  optimizing f i e l d  development w e r e  carried o u t  by Morris 

Calcula- 

and Campbell ( 1979) f o r  the East Mesa geothermal f i e l d  i n  the Imperial 

val ley,  California.  

The e c o n d c  value of a geothermal w e l l  depends not only on its 

de l ive rab i l i t y ,  as i n  t h e  case of an o i l  well, ht al so  on the enthalpy 

of the produced f lu ids .  If there is a -0-phase zone o r  a vapor zone 

present  i n  the field (e.g., B a a ,  U.S.A.; O l k a r i a ,  Kenya; Broadlands, 

New Zealand), there  is an incent ive to  produce fromthem, rather than 

from deeper l iquid reservoirs ,  because f l u i d s  of higher enthalpy can be 

obtained. The short-term benef i t s  are obdous ,  but i n  the long run, a 

lower energy recovery r a t i o  f r o m  t he  field may r e s u l t ,  as will be shown 

below. 
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Reservoir W i t h  a Steam Cap 

In t h i s  study, t he  behavior of a l i q u i d - d d n a t e d  geothermal reser- 

vo i r  i n  response t o  production from d i f f e r e n t  horizons is studied using 

numerical simulation methods. The O l k a r i a  geothermal f ie ld  i n  Kenya is 

used as an example where a two-phase vapordominated zone over l ies  the 

main l i q u i d - d d n a t e d  reservoir.  One of the important questions a r i s ing  

i n  the development of the Olkaria f ie ld  is from which zone i s  it most 

benef ic ia l  t o  produce. The present  study is the first attempt t o  answer 

that question. The p o s s i b i l i t y  of improving eaergy recovery from vapor- 

dominated reservoirs by tapping deeper horizons is a l s o  considered. The 

data used i n  the following discussion have been reported by Noble and 

Ojiambo (19751, 0. N. Feasibility Reports (19761, M c N i t t  (19771, and 

Bjornsson (1978).  

Surface exploration of the O l k a r i a  geothermal f ield started i n  1956. 

Exploratory d r i l l i n g  began i n  1973 and approximately 20 production w e l l s  

have been d r i l l e d  to  da te  a t  the  site. 

cated the presence of a large resource extending o w r  an area of a p p r d -  

mately 100 km2. The w e l l s  are located within tbs lowest r e s i s t i v i t y  zone 

((20 0hm-m) e which covers an area of 12 km2. 

from approximately 1000 t o  1700 m. 

developed based on well data [Bjornsson, 19781. 

Resistivity surveys have indi-  

The w e l l s  range i n  depth 

The following reservoi r  m o d e l  has been 

A t  700-800 m depth (below the caprock) the wells have penetrated a 

50-150 m - t h i c k  vapor-dodnated zone. 

t a i n  10-25% by volume immobile res idua l  water. A thick water-dominated 

The vapor zone is believed t o  con- 
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reservoir underl ies  the vapor zone. 

basement depth is approximately 3600 m, ind ica t ing  that the thickness of 

Seismic data have indicated t h a t  the 

the water zone is approximately 2700 m. The w a t e r  reservoi r  i s  believed 8 
1 
t 
1 
I 
1 
I 

t o  be i n  a two-phase condition w i t h  steam sa tu ra t ion  i n  the range of 10- 

259 by ~ 0 l U P l e .  

A pressure of 35 bars has been measured i n  the vapor zon8, corres- 

ponding t o  a temperature of approximately 24OeC. 

water zone is believed t o  follow the curve f o r  boi l ing po in t  versus depth 

The pressure i n  the  

[Truesdell  and White, 19731. This would ind ica t e  that the temperature of 

the basement rocks exceed8 36OOC. 

The reservoi r  rocks cons i s t  of a d d  lavas,  tuffs, and agglomerates. 

The lava flows are typ ica l ly  on the order of 50  m thick.  W e l l  tests 

performed on the wells have indicated an average reservoi r  permeability 

of 10-20 md. This type of testing, i n  general ,  w i l l  reflect horizontal  

permeabili ty of the reservoir rocks. 

I A t  O l k a r i a ,  i f  the f l u i d  is produced mainly f r o m  contact zones 

between lava flows, the vertical permeabili ty may be s ign i f i can t ly  lower 

than t h e  hor izonta l  permeabili ty (10-20 ma). Assessment of the produci- 

8 
Numerical Approach I 

8 
Q) 
I 

b i l i t y  of the O l k a r i a  reservoi r  must therefore  include a thorough sensi- 

t iv i ty  ana lys i s  of the e f f e c t s  of anisotropic  permeabili t ies.  

The numerical simulations w e r e  carried oue using the  code SHAFT79 

that w a s  developed by Pruess and Schroeder (1980). The reservoi r  model 
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used i n  the numerical simulations is shown i n  Figure 32, The vapor zone 

is assumed t o  be 150 m thick, and underlain by a 2700 m - t h i c k  l iquid-  

dominated zone. The caprock and bedrock are assumed t o  be closed t o  mass 

and heat flow. 

The conductive heat flow through the basement and caprock, and the 

r e l a t i v e l y  small f l u i d  discharge a t  the surface are neglected i n  the 

model. 

these approximations should not s ign i f i can t ly  affect the computed res- 

ponse of the reservoir t o  exploi ta t ion.  

Due to  the  large production rate assumd i n  the calculat ions,  

The mesh used i n  the study cons is t s  of a t o t a l  of 59 disk-shaped 

elements, varying i n  thickness f r o m  10 t o  200 m. The elements form a 

one-dimensional mrtical column w i t h  the top 15 elements (a t o t a l  of 

150 m) represent ing the i n i t i a l  vapor zone, 

represent  the in i t i a l  water zone, with f i n e  (10 m - t h i c k )  elements c lose 

t o  the boundary between the vapor and the water  zones, and thicker ele- 

ments at greater depths. 

The remaining 44 elements 

me reservoir is assumed t o  cover a 1 2  km2 area, which corresponds 

t o  t h a t  of t he  l a r g e s t  resistivity low a t  Olkaria. 

model ignores horizontal  variations i n  reservoi r  proper t ies  and condi- 

dOSlS. The four  cases studied are shm schematically i n  Figure 32. In 

C a s e  1, it is assumed that the w e l l s  produce so le ly  from the vapor zone. 

C a s e  2 considers production from t h e  w a t e r  zone only. In  C a s e s  3 and 4, 

The present  reservoir 
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the f l u i d s  are produced from both the vapor and the water zones. The 

thickness of the production i n t e m l u s e d  i n  each case is  shown i n  Fig- 

ure  32. 

The reservoir parameters used i n  the study are given i n  Table 5. 

It should be noted that i n  C a s e  4 smaller values were used f o r  reservoi r  

permeabili ty (2 m d )  and porosi ty  ( 5 % ) .  The in i t i a l  pressure,  temperature 

and vapor sa tura t ion  p r o f i l e s  are shown i n  Figure 33. W e  neglect the 

small amount of steam t h a t  may be present  in the water zone; it m u l d  

have l i t t l e  i m p a c t  on the simulated reservoir  behavior. 

zone, the  pressure and temperature follow the sa tura t ion  curve. 

Below the vapor 

T a b l e  5. Parameters U s e d  i n  the Study. 

Parameters Cases 1, 2, and 3 Case 4 

AbaOlU ta p a r m e a b i  li t y  

Porosity 

Heat capacity of rocks 

Density of rocks 
Thermal conduc t i v i  lq 

R e l a t i v e  permeabilities 

Residual (immobile) 

liquid sa tura t ion  

Residual (immobile) 

vapor sa tura t ion  

20 m d  1 lad 

10% 5% 

1000 1000 J /kg°C 

26 50 2650 kg/m3 

2.0 2.0 J / m o s o o C  

Corey Equations (see equations 43 and 44) 

0.35 0.35 

0.05 0.05 
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The r e l a t i v e  permeability functions used w e r e  the 4th-order Corey 

Equations ( s e e  last sec t ion) .  These functions are i l l u s t r a t e d  i n  Fig- 

ure 20 and can be expressed as: 

'rl 
s > 1 - Srl 

s <  1 -  

s > srv 

< 'rv 
rv 

(43) 

1 - Srl - s 
where S* = , - 

'rl - 'rv 

In t h i s  analysis ,  the s p e c i f i c  r e l a t i v e  permeability functions used are 

not of primary importance as the basic fea tures  of reservoi r  behavior are 

the  same regardless  of the ass- r e l a t i v e  permeability curves. 

The production s t r a t egy  employed i n  the  modeling s t u d i e s  w a s  t o  pro- 

duce the required s t e a m  supply f o r  a 45 MUe power plant. 

leads t o  var iable  mass f l o m a t e  w i t h  t i m e .  When the f l u i d  is produced 

from the water zone, i n  comparison w i t h  production from the vapor zone, a 

considerably larger mass of f l u i d  is needed to obtain the  required s e a m  

supply ( theo re t i ca l ly  120 kg/s of steam are needed f o r  a 45 MWe power 

p lan t ) .  

the steam f rac t ion  in t h e  separators  must be calculated and the total 

flow rate a t  each t i m e  s t e p  adjusted accordingly. 

were incorporated i n t o  SHAFT79 t o  carry o u t  the calculat ions:  

This requirement 

In order to s a t i s f y  the constant steam reqnirement c r i t e r ion ,  

The following equations 
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(46)  

Equation (45)  approximates the two-phase flow from the w e l l  bottom t o  the 8 
qt = qs/Sq 

separators  as an iso-enthalpic  expansion. 

s t e a m  qua l i t y  in the  separators  (S,). The enthalpy values used i n  

equation (45)  were calculated based on an 8-bar separator pressure. 

It was used ~ ca lcu la te  the 

1 
Saturated steam enthalpy does not vary much wi th  pressure, so that df f -  

f e r e n t  separator pressure values w i l l  not  s ign i f i can t ly  alter the results. 

The total mass flow rate (qt) was calculated using equation (46) .  

In a l l  of the cases studied, w e  assumed that the required steam 

supply was produced uniformly over the production internal. In other  

words, more mass of f luid w a s  produced from a water-dodnated element 

than from a vapordominated element. The amount of steam t o  be extracted 

from an element is proport ional  to  the size (i.e., thickness)  of the 

I 
I 

element. 

Simulation Results 

Case 1: Production From Vapor Zone Only 

In t h i s  case, the f l u i d  w a s  Ipoduced s o l e l y  from the vapor zone (see 

Figure 34 shows a p lo t -  of pressure versus depth a t  d i f f e r e n t  

t 
8 

Figure 32) . 
t i m e s  f o r  t h i s  case. The i n s e t  in Figure-34 i l l u s t r a t e s  the production 

I in te rva l .  !Che f igure shows that during t he  18.7 years of simulation, the 

pressure changed q u i t e  slowly i n  the system, but  rather more rapidly i n  

I( the vapor zone than i n  the underlying w a t e r  reservoir.  This i s  due t o  
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the more in tense  boi l ing  I n  the vapor zone than i n  the w a t e r  reservoir.  

The pressure i n  the water zone changed only because the in i t i a l  pressure 

was s o m e w h a t  higher than the sa tura t ion  pressure. 

Figure 35 shows vapor sa tura t ion  p r o f i l e s  a t  d i f f e r e n t  t i m e s  during 

the  simulation. The boi l ing f r o n t  advanced downwards with t i m e ,  reaching 

a depth of 1000 m below t h e  caprock a t  the end of the simulation (18.7 

years 1. 

creased quite rapidly with t i m e ,  due to  boillng. 

t he  vapor zone, the vapor sa tura t ion  ac tua l ly  decreased a t  ea r ly  t i m e s  

(me vapor sa tu ra t ion  I n  the  upper portion of the vapor zone in- 

In the lower port ion of 

due t o  upflow of liquid water, but then the saturation gradually started 

building up again. The upflow of w a t e r  occurred because of the extensive 

boi l ing  and associated temperature and pressure decl ine i n  the vapor zone, 

r e su l t i ng  I n  pressure gradients  that exceed the hydrostat ic  pressure 

gradient  fo r  liquid w a t e r .  Later on, howemr, the water upflow ceased 

because the w a t e r  mobili ty a t  the top of the water reservoi r  w a s  s tead i ly  

decreasing due t o  the increasing vapor sa tura t ion  ( r e l a t i v e  permeability 

e f f e c t s ) .  

The t o t a l  mass production rate is shown i n  Figure 36. The f l u i d  w a s  

produced uniformly from the top 15 elements i n  the mesh, representing the 

vapor zone. Since a l l  of the elements were equal i n  s ize ,  each produced 

8.0 kg/s of steam. Figure 36 shows that i n i t i a l l y  120 kg/s of seam- 

water mixture was produced, bu t  the rate rapidly increased t o  245 kg/s. 

The var ia t ions  i n  the flow rate occurred because of the upflow of water  

i n t o  the vapor zone, a s  shown i n  Figure 35, by the decrease i n  vapor 
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saturat ion.  During t h e  simulation, the vapor elements c lose  t o  the 

in i t ia l  vapor-water i n t e r f ace  decreased i n  vapor saturat ion.  When the 

l iqu id  sa tu ra t ion  exceeded the immobile l iquid sa tu ra t ion  ( i n  our case 

Sr1  .35), a mixture of l i qu id  and vapor w a s  produced. A t  that t i m e ,  

the mass of f l u i d  produced had t o  be increased t o  s a t i s f y  the cons t ra in t  

of a constant steam withdrawal rate. As shown i n  Figure 36, t h e  t o t a l  

flow rate declined again a f t e r  6 years because of an increasing vapor 

sa tu ra t ion  i n  the steam elements. 

Due t o  large computing costs, t h e  simulations of C a s e  1 were termi- 

nated after 18.7 years. A t  this time, the top elements i n  the vapor zone 

had sa tura t ions  close t o  1 .O and the imminent phase t r ans i t i ons ,  w i t h  

t h e i r  associated large changes in  pressures and f lm rates, necessi ta ted 

small time steps. In Case 1, hili4 occurred only a t  the top of the 

reservoir (the vapor zone and the upper p a r t s  of the w a t e r  zone) as the 

temperature changes i n  Figure 37 c l e a r l y  show. Consequently the vapor 

elements increased rapidly i n  vapor saturat ion.  

t h i s  type of reservoir behavior indicates that  very soon after the vapor 

elements make a t r a n s i t i o n  to single-phase conditions, the pressure i n  

the vapor zone w i l l  start t o  f a l l  dramatically [Pruess e t  al., 1979a; 

Previaus experience with 

Bodvarsson e t  al. 8 19801 . It is probable t h a t  the pressure w i l l  f a l l  so 

rapidly i n  the vapor zone that production could not be sustained f o r  more 

than 25 years. 
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Case 2: Production From the Water Zone Only 

In t h i s  case the f l u i d s  were produced from the w a t e r  zone underlying 

the vapor cap (Figure 32). The vapor zone and the top 100 m of the w a t e r  

zone were cased off;  hauever, the  wells viere perforated over a 500 m - t h i c k  

i n t e r v a l  i n  the w a t e r  zone. This case gives rise to a rather remarkable 

and i n t e r e s t i n g  deplet ion pat tern,  as w i l l  be discussed below. 

Figure 38 shows the pressure var ia t ions i n  the reservoi r  a t  d i f f e r -  

e n t  times duriag the simulation. The init ial  pressure d i s t r ibu t ion  is 

given f o r  reference purposes. The f igure shows that a t  ea r ly  t i m e s  the 

pressure decreased rather evenly in the w a t e r  zone, b u t  ac tua l ly  increased 

i n  the vapor zone. 

decreased along w i t h  the temperature due to boi l ing,  bu t  i n  the lower 

portions of the  w a t e r  zom, tbe pressure decrease w a s  due to a steady up- 

In the upper portion of the w a t e r  zone, the pressure 

flow of water. In the vapor zone, however, paessures and temperatures 

increased because vapor, which had been mobilized by the boi l ing process, 

flowed up from depth and condensed near the tap. The upflow of vapor re- 

plenished mass reserves near the production horizons, and gave rise to 

a very long reservoir  l i f e .  The pressure gradients i n  the upper p a r t  of 

the system were lower than hydrostatic,  thetreby preventing upward flow of 

water. The pressure gradients  were considerably higher than vaporstat ic ,  

however, which permitted mobile vapor t o  f l w  upward. This resulted i n  

condensation in the upper p a r t  of the w a t e r  zone as m l l  as i n  the vapor 

zone. 
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A t  later times, the boiling spread down to  the deeper portions of 

the reservoir ,  c rea t ing  upflow of vapor and condensation i n  the upper 

part of the w a t e r  zone as mU. as i n  the vapor zone. These processes 

eventually gave rise to almost isothermal conditions and uniform boiling 

throughout the e n t i r e  reservoir after 200 years  of simulation. 

time the pressure had increased by 50 bars  i n  the  vapor zone and 35 bars 

in the production zone; in the  l i q u i d  zone (2000 m below the caprock) t he  

pressure had decreased by 50 bars (Figure 39). 

A t  that 

The sa tura t ion  p r o f i l e s  are shown for  d i f f e r e n t  t i m e s  i n  Figure 40. 

The boiling f r o n t  advanced rapidly downwards, reaching t h e  bottom of the 

reservoi r  after less than 50 years. The vapor sa tura t ion  in the vapor 

zone decreased during the  first 100 years of simulation due t o  the upflow 

and condensation of steam from depth. 

most pronounced near the bottom of the reservoi r  due t o  the large up€low 

of water and s t e a m  and the effect of the impermeable boundary a t  the 

bottom of the reservoir.  'Phis gave rise to re l a t ive ly  higher sa tura t ions  

a t  the  b o t t o m  of t he  reservoir a t  large times, eventually leading t o  

single-phase vapor conditions after l i t t l e  over 100 years. The satura- 

tion p r o f i l e s  show c l e a r l y  the nearly uniform depletion process t h a t  took 

place i n  the res-voir, giving rise t o  a very long productive l i f e  of the 

reservoir [Pruess et  al. , 197-1 . 

After 50 years, the boiling was 

The processes of production-induced boi l ing,  upflow and condensation 

of steam, and subsequent increase i n  temperature and pressure a t  shallower 
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depths w h i c h  were noted i n  the present simulation ac tua l ly  have been 

observed i n  some wa te r -ddna ted  geothermal fields. Henley (1979) and 

A l l i s  (1979) reported increases  i n  the flow rates and temperatures of 

surBace manifestations a t  the Wairakei and Tauhara geothermal f ields 

after explo i ta t ion  started. Similar effects have been observed a t  the 

Tongonan geothermal f ie ld  i n  the Philippines [V. Stefansson, pr iva te  

communication, 1 981 1 . 
Total  f l u i d  production to  provide enough steam f o r  45 MWe is shown 

as a function of t i m e  i n  Figure 41. 

water were produced because of the low vapor sa tu ra t ion  i n  the production 

I n i t i a l l y  la rge  amounts of l i qu id  

nodes and from then on, a mixtures of vapor and l iqu id  water w a s  produced. 

on nodes increased, t he  vapor 

ncreased and eventually,  after 120 years, only 

s t e a m  was produced. A t  this t i m e  the l iqu id  sa tu ra t ion  i n  the production 

nodes had f a l l e n  below the immobile l iqu id  sa tu ra t ion  and the t o t a l  f l a w  

rate produced corresponded to the theo re t i ca l  steam requirement for  a 

45 MWe power p l an t  (120 kg/s). 

Case 3: Prgluction From Both Vapor.. and Liquid Zones 

Figure 32 shows schematically the.production in t e rva l  used i n  C a s e  3. 

It w a s  assumed that the  w e l l s  are d r i l l e d  to a t o t a l  depth of 1300 m. 

The perforated i n t e r v a l  w a s  550 m long and the w e l l s  were open both i n  

the i n i t i a l  vapor zone and i n  the water zone. 
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During t h e  simulation, the pressure and sa tu ra t ion  changes with t i m e  

w e r e  very similar t o  those obtained i n  C a s e  2. 

of steam i n  the upper port ions of the reservoi r  gave rise t o  a similar 

uniform deplet ion pa t t e rn  as noted i n  C a s e  2. 

l a r i t y  are obvious; t he  high vapor sa tura t ion  in the vapor zone and the 

long production i n t e r v a l  (550  m) l e d  t o  low production rates f r o m  the 

vapor zone. This *in tu rn  caused condensation t o  control  the pressure 

changes i n  the vapor zone and the upper port ion of the water zone. 

Upflow and condensation 

The reasons fo r  t h i s  simi- 

Com- 

parison of t h i s  case with C a s e  1 i l l u s t r a t e s  c l e a r l y  that high flowrates 

from the  vapor zone w i l l  decrease the productive Life of the reservoi r  

considerably, whereas l o w  to moderate production rates w i l l  enable produc- 

t i on  of high-enthalpy f lu ids ,  and a l s o  result i n  a longer reservoir  l ife,  

Comparison of C a s e s  2 and 3 show t h a t  in C a s e  3 the reservoir pres- 

sures were higher a t  a l l  t i m e s .  The reason f o r  this is  obvious when one 

compares the t o t a l  mass withdrawn i n  the  two cases (Figures 41 and 42) , 

In C a s e  3, the f l u i d s  were produced from both the vapor and the w a t e r  

zones, r e s u l t i n g  i n  higher average flowing enthalpy of  the liquid-vapor 

mixture. This i n  turn,  when compared with Case 2, resu l ted  i n  a smaller 

f l u i d  mass2 to be extracted from the  reservoi r  a t  any given t i m e .  

Case 4: Production From Both the Vapor and the Water !&ones, 

Assuming IDW V e r t i c a l  Permeability 

The f ina l  case studied differed from C a s e  3 only i n  that  lower 

reservoir permeability and porosi ty  values w e r e  used i n  the simulation 

(Table 5).  In t h i s  case, the permeability and porosi ty  were reduced t o  
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Figure 42. Flow rate changes dud-  production f r o m  both vapor and 
liquid zones (Case 3 ) .  [XBL 814-2924] 
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2 md and 5%, respectively.  The permeability of the Olkaria reservoi r  

i n fe r r ed  from w e l l  tests i s  10-20 md. This value e s sen t i a l ly  represents  

the average horizontal  permeability of t he  reservoir.  

c h a r a c t e r i s t i c s  of the Olkaria reservoir  s e e m  t o  ind ica te ,  however, that 

t h e  vertical permeabili ty may be considerably lower. C a s e  4 represents  

an attempt t o  study the s e n s i t i v i t y  of our r e s u l t s  to changes i n  vertical 

permeability. 

estimated as 5-10%; i n  t h i s  case the lower l i m i t  of 5% was used. This 

case should represent a more pessimistic outlook on the behavior of the 

Olkaria geothermal f i e l d  under exploi ta t ion.  

The geological 

The average porosi ty  of the Olkaria reservoir  has been 

The pressure p r o f i l e s  a t  d i f f e r e n t  t i m e s  are shown i n  Figure 43. 

Although the t o t a l  simulation t i m e  only s l l g h t l y  exceeded 7 0  years, t h e  

general  deplet ion trend of the  reservoir can be c l ea r ly  seen. 

shows that the  pressure decreased rather rapidly i n  the production region, 

bu t  only s l i g h t l y  i n  the deeper port ions of the reservoir .  

t h a t  the boi l ing  was confined t o  a rather small region around the produc- 

t i o n  in t e rva l ,  due t o  the low permeability of the reservoir.  

Figure 43 

This shows 

The vapor sa tura t ion  p r o f i l e s  given i n  Figure 44 similarly show the 

slow advance of the boi l ing  f r o n t  during exploitation. 

C a s e  3 shows that i n  C a s e  4, a f t e r  7 0  years, t h e  boi l ing f r o n t  had ad- 

vanced only to  a depth of 1600 m below the caprock, whereas i n  Case 3, 

the boi l ing  f r o n t  had advanced t o  the bottom of the reservoir  (2850 m 

below t h e  caprock) i n  less than 50 years. Also, i t  is  of importance t o  

note t h a t  the vapor sa tura t ion  i n  the vapor zone always increased with 

A comparison w i t h  
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t i m e .  This  i l l u s t r a t e s  the effect of the lower permeability allowing 

less upflow of vapor and consequently less condensation i n  the vapor zone. 

The t o t a l  flow rate  (st), as shown i n  Figure 45, was very similar to 

t h a t  of C a s e  3. HOwemr, a t  later t i m e s  it w a s  smaller due t o  the higher 

vapor sa tura t ion  i n  the production nodes. 

The r e s u l t s  from this case show c l ea r ly  that the v e r t i c a l  permeabil- 

i t y  is a very important fac tor  i n  the determination of the longevity of a 

liquid-dominated reservoir.  

Single-phase Liquid-Dominated Reservoirs 

The general r e su l t s  shown above f o r  the Olkaria-type geothermal 

reservoi r  should a l s o  be applicable to liquid-daninated reservoirs  w i t h -  

o u t  an i n i t i a l  steam cap (e.g. Salton Sea, U.S.A.; Cerro Prieto,  Mexico; 

Krafla, Iceland). I f  the i n i t i a l  reservoir  pressure i s  above the satura- 

t i o n  pressure corresponding t o  the reservoir  temperature, soon after 

exploi ta t ion starts the pressure will drop to the sa tura t ion  pressure 

[Bodvarsson e t  al., 19801. After that, a --phase zone w i l l  develop i n  

the  upper port ion of the reservoir and conditions similar to those pres- 

en t ly  found a t  Olkaria w i l l  result. 

recent ly  been observed a t  the Svartsengi geothermal f i e l d  i n  Iceland 

[J. Eliasson, pr iva te  communication, 19811 . Although the aquifer  a t  

Svartsengi i n i t i a l l y  contained only single-phase l iqu id  w a t e r ,  a two- 

phase zone has recently been formed a t  the top of the  aquifer. Note that 

Production-induced boi l ing has 
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i f  the colder water recharge is s igni f icant ,  t h e  two-phase zone could be 

restricted t o  the near-well regions, as i n  Cerro P r i e t o  [Grant e t  al.,  

1981 I 

Vapor-Dominated Reservoirs 

L e t  us now consider the question of whether production from deeper 

horizons i n  vaporilominated reservoirs  could give rise t o  effects similar 

t o  those discussed a b o e .  Two conditions must be m e t  in order fo r  pro- 

duction from depth t o  cause an increasing upflow of steam w h i c h  would re- 

plenish mass reserves i n  shallower horizons and give rise to temperature 

and pressure increases  due t o  condensation. F i r s t ,  t h e  i n i t i a l  r e l a t i v e  

permeability fo r  s t e a m  must be s ign i f i can t ly  less than 1 a t  depth so that  

production-induced increases i n  vapor sa tura t ion  w i l l  r e s u l t  i n  a higher 

steam mobili tyj  and second, v e r t i c a l  pressure gradients  a t  depth must be 

subs t an t i a l ly  larger than vaporstatic, preferably approaching hydrostat ic ,  

so that mobile steam w i l l  ac tua l ly  be driven upward i n  s ign i f i can t  amounts. 

It is  not known whether e i t h e r  of these conditions exist i n  vapor- 

dominated reservoirs.  

table," which, although never c l ea r ly  ident i f ied ,  has for a long t i m e  

been hypothesized to  underl ie  vaporilominated reservoirs  [White et  al., 

1971; Weres e t  al., 19771 . -low a water table, pressure gradients would 

have to be c lose  t o  hydrostatic,  and vapor sa tura t ion  presumably would be 

small or absent. A t  Larderello, I t a l y ,  there may be some evidence that 

v e r t i c a l  pressure gradients a t  depth s ign i f i can t ly  exceed vaporstat ic  

values. However, published data for  The Geysers, U.S.A. [Dykstra, 19811, 

Both conditions could be m e t  i n  a "deep water 
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do not give any ind ica t ion  of large v e r t i c a l  pressure gradients a t  depth. 

Therefore, upflow of steam appears t o  be l imited by pressure gradients so 

t h a t  any increase  i n  mobility would only have small ef fec ts .  

it appears doubtful whether the e f f ec t ive  mobility for  v e r t i c a l  steam 

flow could be s ign i f i can t ly  increased by a production-induced rise i n  

vapor saturat ion.  Recent work on MpOr-dOmiMted reservoirs ,  which has 

spec i f i ca l ly  addressed the e f f e c t s  a r i s i n g  from the  fractured nature of 

these systems, i nd ica t e s  that the v e r t i c a l  f l o w  of steam may be essen- 

t i a l l y  unaffected by r e l a t i v e  permeability [Pruess and Narasimhan, 19811. 

The reason for t h i s  i s  that steam moves along vertical f r ac tu res  which 

contain l i t t l e  or no water even i n  the pre-exploi ta t ion state, so that 

Moreover, 

the relative permeability of the steam phase is  1. Production from depth 

would increase vapor sa tura t ion  and mobility i n  the rock matrix, but this 

may have a negl ig ib le  effect on the v e r t i c a l  f l o w  because the matrix 

permeabili ty i s  much smaller than the fracture permeability. 

In summary, i t  is unlikely that conditions i n  vapor-dominated reser- 

vo i r s  are such that deplet ion a t  g r e a t  depth could s ign i f i can t ly  replenish 

the f l u i d  and heat reserves a t  shallow depth. But given the uncer ta in t ies  

about the  l i qu id  sa tura t ions  i n  vapor4omiMted reservoi rs  a t  depth, it 

may still be worth 

energy recovery. 

t ry ing  t o  tap  deep horizons i n  an attempt t o  improve 
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Conclusions 

Different  reservoir  explo i ta t ion  s t r a t e g i e s  for a liquidilominated 

geothermal reservoi r  with an overlying two-phase zone (Olkaria, Kenya) 

have been studied. The s tud ie s  ind ica t e  that:  

1. Production from depth can give rise to an optimal energy recovery 

of the reservoir.  If the permeability i s  adequate, a remarkably uniform 

deplet ion process may r e s u l t  i n  which a counterflow of steam and l iqu id  

water r e s u l t s  i n i t i a l l y  i n  the mining of heat  and mass from lower por- 

t ions  of the reservoi r  while pressures a re  stable, or even increase,  i n  

the  shallower portions. Later, uniform boil ing w i l l  occur everywhere i n  

the  reservoir .  Field data from Wairakei, New Zealand, have ve r i f i ed  sme 

of the  m e c h a n i s m s  operative i n  t h i s  process. 

2. Extensive production from t h e  vapor zone may be advantageous i n  the  

s h o r t  run, bu t  i n  the long run, local ized boi l ing will enhance single- 

phase vapor conditions i n  the production regions and w i l l  r e s u l t  i n  a 

sho r t  productive l i f e  f o r  the reservoir.  

3. The uniform boi l ing process described i n  ( 1 )  i s  very sensi t ive t o  

the  reservoi r  v e r t i c a l  permeability. 

very low, upflaw of s ign i f i can t  mass of steam w i l l  no t  occur, and con- 

sequently the  pressure increase due t o  steam condensation i n  shallow 

regions of the  reservoi r  w i l l  not result. 

If the v e r t i c a l  permeability i s  
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4. The r e s u l t s  discussed above should be appl icable  t o  other l iquid-  

dominated reservoirs ,  regardless whether or not a shallow two-phase zone 

i s  present  i n i t i a l l y .  

5 0  

enhance production i n  shallow regions of vapor-dominated reservoirs.  Due 

t o  the uncer ta in t ies  regarding the  l i qu id  sa tura t ions  of those systems a t  

depth, such a p o s s i b i l i t y  cannot be ruled o u t  a t  present. 

It i s  questionable whether production from the deeper regions w i l l  

In assessing the r e s u l t s  from this sect ion,  one must bear i n  mind 

t h a t  a simple reservoi r  m o d e l  was used, vhich was not expected t o  quan- 

t i t a t i v e l y  account for f i e l d  behavior. Future inves t iga t ions  should 

employ a more detai led m o d e l  t o  determine the s e n s i t i v i t y  of the r e s u l t s  

to  reservoir geometry, horizontal  and vertical var ia t ions  i n  reservoi r  

propert ies ,  and d i f f e r e n t  r e l a t i v e  permeability curves. This, of course, 

w i l l  mean using a distributed-parameter m o d e l  that is appropriately 

designed f o r  the problem a t  hand. 
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I N J E C T I O N  INTO FRACTURED GM)THERMAG RESERVOIRS 

Reinjection of geothermal wastewater i s  gradually becaning a pre- 

ferred means of w a s t e  disposal. A t  present,  continuous re in jec t ion  i s  

pract iced a t  The Geysers, Cal i fornia  [Chasteen, 1975; Kruger and O t t e ,  

19731; Ahuachapan, E l  Salvador [Einarsson e t  al., 1975; Cuellar, 19751, 

Mak Ban, Philippines [Horne, 19811, and f i v e  Japanese geothermal f ields 

( O t a k e ,  Onuma, Onikobe, Hatchobaru, and Kakkonda) [Horne, 1981; Kubota 

and Aosaki, 1975; Hayashi e t  al., 19781 . Small-scale re in jec t ion  tests 

have been reported a t  a number of geothermal fields, e.g., Baca, New 

Mexico [Chasteen, 19751, East Mesa, California [Mathias, 1975; Benson e t  

al., 19781, Larderello, I t a l y  [mess, pr iva te  communi cation, 1981 1 , 

Cerro P r i e t o ,  Mexico [Cortez, 19811, Broadlands, New Zealand [Brixley and 

Grant, 19791 ; and Tongonan, Philippines [ Studt, 19801 . The increasing 

i n t e r e s t  i n  re in jec t ion  undoubtedly results f r o m  growing environmental 

concerns regarding tox ic  minerals (e.g., boron, a rsen ic)  present i n  

geothermal wastewater. 

Although reinject ion is current ly  employed mainly as a means of 

w a s t e w a t e r  disposal,  it can grea t ly  enhance the energy recovery from a 

geothermal f ie ld .  The operator8 of The Geysers geothermal f i e l d  are con- 

s ider ing  increasing the amount of injected water  by using imported water, 

thereby attempting t o  take advantage ob t h i s  important benef i t  of reinjec- 

t i o n  [Pruess, p r iva te  communication, 19811. A number of invest igators  

have produced theo re t i ca l  and numerical studies an the effect of re injec-  

t i o n  on energy recovery from geothermal f ie lds  [Kasameyer and Schroeder, 
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1975; Pritchett e t  a l . ,  1977; Lippmann e t  al., 1977; O'Sullivan and 

Pruess, 1980; Schroeder e t  al., 19801 . Reinjection a l s o  a ids  i n  main- 

ta in ing  reservoi r  pressures. This has been i l l u s t r a t e d  a t  the Ahuachapan 

geothermal f i e l d ,  where d i r e c t  cor re la t ion  between the percentage of 

produced water in jec ted  and the reservoi r  pressure decline w a s  found 

[Witherspoon, p r iva t e  communication, 19811. 

The danger i n  employing re in jec t ion  i s  the p o s s i b i l i t y  that the 

colder water w i l l  prematurely break through from i t s  zone around the 

i n j ec t ion  w e l l  i n t o  the production region, thus  d r a s t i c a l l y  reducing t h e  

e f f ic iency  of the operation. The movement of the cold water (thermal 

f r o n t )  i n  porous-media reservoi rs  is f a i r l y  w e l l  known from theoretical 

s tud ie s  by various inves t iga tors  [Lauwerier, 1955; Bodvarsson, 1972; 

Gringarten and Sauty, 1975; Lippmann e t  al. , 1980; Tsang e t  al , ,  19781 , 

H o w e v e r ,  f l u i d  movement i n  most geothermal reservoi rs  (except those i n  

the  Imperial Valley and perhaps Larderello,  I t a l y )  i s  control led by 

f rac tures ,  a more complicated s i tua t ion .  It is generally believed that 

the  cold w a t e r  w i l l  advance very rapidly through the f rac tures  and pre- 

maturely break through a t  the production w e l l s .  

The object ive of t h i s  sect ion i s  t o  inves t iga te  the advancement of 

the thermal f r o n t  during in jec t ion  i n t o  a f rac tured  reservoir  system. 

A reservoi r  system consis t ing of equally spaced horizontal  f r ac tu res  

in t e r sec t ing  an in j ec t ion  w e l l  i s  considered. Analytical and numerical 

s tud ie s  are car r ied  out,  addressing the important question of how 
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f rac tures  a f f e c t  t he  movement of the thermal f r o n t  during inject ion.  

Fundamental studies re la ted  t o  this problem have been reported by various 

researchers [Kasameyer and Schroeder, 1975; Romm, 1966; Bodvarsson, 1969, 

Gringarten e t  al. , 1975; Bodvarsson and Tsang, 198Chl . 
The experience gained from t h e  large-scale re in jec t ion  experiments 

ind ica tes  t h a t  the advancement of the thermal f r o n t  depends t o  a g rea t  

ex ten t  on the geologic conditions that preva i l  a t  each geothermal site. 

Horne (1 981 ) repor t s  thermal interference i n  four  of the f i v e  Japanese 

geothermal fields where re in jec t ion  i s  practiced (Onuma, Onikobe, 

Hatchobaru, and Kakkonda). However, a t  the O t a k e  geothermal f i e l d ,  where 

re in jec t ion  has been employed s ince 1972 [Cuellar, 19751, no thermal 

e f f e c t s  from re in jec t ion  have been observed. A t  Ahuachapan, premature 

thermal breakthrough has not occurred, although the w a t e r  w a s  in jected a t  

high flow rates for  f i v e  years through an in jec t ion  w e l l  located only 

150 m away from a good producer [Witherspoon, pr iva te  communication, 

19811. These examples i l l u s t r a t e  the basic need to study the advancement 

of the thermal f r o n t  through fractured media so that criteria can be 

establ ished f o r  determining injection-well  locations and flaw rates based 

on some general geologic conditions. In the present study, such a cri- 

t e r ion  i s  developed f o r  geothermal systems with horizontal  f r ac tu res  or 

layered reservoi r  s . 
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Basic M o d e l  

The physical  model considered is shown i n  Figure 46. The model 

cons is t s  of an in j ec t ion  w e l l  f u l l y  penetrating a reservoir w i t h  a number, 

n, of equally spaced horizontal  f ractures .  The fractures are a l l  iden- 

t ical  w i t h  a constant aperture,  b, and a l l  extend t o  inf in i ty .  The in- 

j ec t ion  rate, qt, i s  assumed t o  be constant and the same f l u i d  mass flow 

rate, q, en ters  each fracture (q t  = n.q). Gravity e f f e c t s  are neglected 

and therefore ,  due to  symmetry, only the basic  sec t ion  shown i n  Figure 46 

needs t o  be considered. 

In  t h i s  study, the  problem is approached using both ana ly t i ca l  and 

numerical techniques. In  the ana ly t i ca l  work, t he  rock matrix associated 

with the f r a c t u r e  w a s  assumed t o  be impermeable and therefore only the 

e f f e c t s  of thermal conduction were present. 

of the simplifying assumptions in the  ana ly t i ca l  work were relaxed and 

cases where the rock matrix is permeable w e r e  considered. 

In the numerical study, m o s t  

Analytical Approach 

Mathematical Model 

As i l l u s t r a t e d  i n  Figure 47, only one f r ac tu re  from t h e  general 

problem i l l u s t r a t e d  i n  Figure 46 was considered i n  the ana ly t i ca l  study. 

Besides the general  assumptions discussed above, t h e  following addi t ional  

assumptions were made: 

( 1 )  The flow i n  the f r ac tu re  i s  steady and purely radial, with 

the w e l l  located a t  r = 0. The f rac ture  of aperture b i s  a t  an 
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F i g u r e  46. Basic model of an injection well penetrating a reservoir with 
equally spaced horizontal fractures. [XBL 805-7081] 
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elevat ion of z = 0 w i t h  the rock matrix extending v e r t i c a l l y  to 

z = +D. 

( 2 )  

a t  t = 0, t he  temperature of the in jec ted  water is f ixed a t  Ti. 

(3) The fracture may contain some solids ($f < 1 )  and an instan-  

taneous thermal equilibrium between the f l u i d  and t h e  solids i n  the 

f r ac tu re  is assumed. Furthermore, i n  the fracture, horizontal  con- 

duction is neglected and a uniform temperature i n  the v e r t i c a l  dir- 

ec t ion  is  assumed ( i n f i n i t e  v e r t i c a l  thermal conductivity) . 
( 4 )  

Horizontal conduction is  neglected and the v e r t i c a l  thermal conduc- 

t i v i t y  is f i n i t e .  H e a t  flow boundaries a t  z = fD are assumed t o  be 

per fec t ly  insulated (no heat f l o w ) .  

( 5 )  The energy resistance a t  the contact  between the  f rac ture  and 

the  rock matrix is assumed t o  be negl ig ib le  (infinite heat  t ransfer  

. coe f f i c i en t )  and therefore the f r ac tu re  temperature i s  equal t o  the  

I n i t i a l l y ,  t he  temperature i s  To everywhere i n  the system, bu t  

The rock matrix above and below the f r ac tu re  is impermeable. 

rock matrix temperature a t  the contact points (z = +o).  

( 6 )  No nonl inear i t ies  are allowed; Le., the dens i ty  and hea t  capa- 

city of the fracture f l u i d s  and solids, as well as the density,  hea t  

capacity,  and thermal conductivity of the rock matrix are assumed t o  

be constant. 

The d i f f e r e n t i a l  equation governing the  f l u i d  temperature i n  the 

f r ac tu re  can be derived by performing an energy balance i n  a cont ro l  

volume within the  fracture.  The der ivat ion i s  similar t o  those reported 
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by Lauwerier ( 1955) I Bodvarsson 

The f r ac tu re  equation is: 

(1969)*  and Gringarten e t  al. (1975). 

(47)  

where Tf is the  temperature of the f l u i d  i n  the f r ac tu re  and Tr is  the 

temperature i n  the rock matrix. The temperature i n  the rock matrix is 

governed by the one-dimensional heat  conduction equation: 

The i n i t i a l  and boundary conditions can be expressed as: 

y 
z=D 

The dimensionless parameters E, T, ?'I* 8 and TD are defined as: 

A t  
2 *  T -  

'rcrD 

z 
D *  

?'I = -  

(48)  

(49)  

(53) 

(54) 

(55) 

( 5 6 )  

~ 
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( 2  + e )  - as + e - - 2 -  a? an  

Subst i tut ing equations (53)-(57) i n t o  equations (47)  and (48)  yields:  

Fracture : 

= 0. 
n-0 

( 5 8 )  

Rock: 

The i n i t i a l  conditions and the  -oundary cond 

0 T < O ,  

1 ? ) O ,  
T (O ,? )  = 
Df 

= 0. 
n=l 

t ions becane : 

(61)  

( 6 2 )  

( 6 3 )  

Equations ( 5 8 )  and (59) along w i t h  the cons t ra in ts  given by equations 

(60)-(63) form a coherent, s e l f - su f f i c i en t  set of equations. The simul- 

taneous solut ion of the  equations using t h e  Laplaoe transformation i s  

derivad i n  Appendix C. In the Laplace domain the solut ions fo r  the frac-  

ture and the rock temperatures are: 
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Fracture : 

(64)  

Rock : 

1 
P 

+ tanh {cosh 6 rl - s i n h  6 rl tanh G } .  (65)  
( 2  + e )  v = - e x p  - 

where p is the Laplace parameter. Unfortunately, equations (64) and (65)  

are d i f f i c u l t  t o  i nve r t  ana ly t i ca l ly  from the Laplace domain so a numer- 

ical  inve r t e r  was used. The inve r t e r  was  developed by Stehfest (1979) 

and f o r  this problem i t  gave r e s u l t s  accurate w i t h i n  0.7%. 

Results of the Analytical  Studies 

The Thermal Diffusion Process. In the following discussion, the 

concept of a "thermal f ront"  w i l l  frequently appear. Although conven- 

t i o n a l l y  " f ront"  refers t o  a sharp discont inui ty  moving through matter, 

here the de f in i t i on  of 

following expression: 

the term "thermal f ron t "  w i l l  be based on the 

2 
T. - To 

R2 I 
1 

~n equation (661, R denotes the radial dis tance from the  in jec t ion  

w e l l  t o  the locat ion of the thermal f r o n t  i n  the fissure. The de f in i t i on  

given by equation (66)  i s  derived on the basis of energy balance consid- 

e ra t ions  so that, i f  d i f fus ion  is neglected, the location of the result- 

i n g  sharp f ron t  W i l l  a t  any time be given by Equation ( 2 0 ) .  In the 
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ana ly t i ca l  work ,  the  location of the thermal f r o n t  is approximated as 

the locat ion of the isotherm representing t h e  average of the temperatures 

of the  in j ec t ed  water and the i n i t i a l  reservoir  temperature 

(TTF = [Ti + To]/2). 

thermal f r o n t  is taken as the average isotherm. 

Similar i ly ,  i n  the rock matrix the  location of the 

Figures 48 and 49 show the thermal diffusion from t h e  f r ac tu re  t o  

the rock matrix f o r  8 < and 8 3 100, respectively.  The dimension- 

less parameter, 8, represents the ratio of the  energy content of the 

f r ac tu re  t o  t h a t  of the rock. Low values of 8 ind ica te  a negl igible  

energy content i n  the f r ac tu re  while Large values correspond t o  a negli- 

g i b l e  energy content i n  the rock. For the  problem a t  hand, 8 w i l l  m o s t  

l i k e l y  be less than f o r  a l l  practical purposes. 

In Figures 48 and 49, each p lo t ted  l i n e  ind ica tes  the location of 

the  thermal f r o n t  a t  the  specif ied dimensionless t i m e .  

that during cold water in j ec t ion  i n t o  the fractured rock, t h e  thermal 

front will advance very rapidly along the  f r ac tu re  a t  ear ly  t i m e s ,  as 

only a small amount of heat is obtained from t h e  rock. Later on, how- 

ever, as the available surface area for  hea t  t ransfer  from t h e  rock t o  

the f r a c t u r e  increases,  t he  rate of advancement of the thermal f r o n t  

along the  f r ac tu re  decrease8 and t h e  cold f r o n t  starts to penetrate the 

rock matrix. Eventually, the thermal f r o n t  i n  the  rock matrix catches 

up with the thermal f r o n t  i n  the f r ac tu re  a t  a time corresponding t o  

T * 1.0, and after that a uniform energy-sweeping mechanism will prevai l .  

The f igures  show 
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Figure 48. Plots of thermal fronts  at various dimensionless times, f for 
8 < 0.01; rl is dimensionless vertical distance and 5 i s  dimen- 
s ion les s  advancement along the fracture. [XBL 815-2951] 
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Figure 49. Plots of thermal fronts at variaus dimensionless times T for 
e < 100. [XBL 815-29521 
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Thi.s p a r t i c u l a r  d i f fus ion  process emerged from numerical s tud ie s  per- 

formed earlier [Bodvarsson and Tsang, 198Oa1, which led t o  the present 

a n a l y t i c a l  work. 

It is i n t e r e s t i n g  t o  compare Figures 48 and 49. The primary d i f f e r -  

ence is that the dimensionless advancement ( E )  of the thermal f r o n t  along 

the fracture a t  any given dimensionless t i m e  ( T )  i s  always less in  the 

case of la rge  8 (Figure 49). For large 8 ,  t h e  rock matrix does not 

affect the  movement of the thermal f r o n t  along t h e  f rac ture ,  so that the 

locat ion of the thermal f r o n t  along the  f r ac tu re  a t  any g iven  t i m e  is 

governed by the following expression: 

t rb  'fCf 

r w w  
- = - -  

2 q p c  (67) 

Equation (67 ) ,  derived by Bodvarsson (1972), appl ies  to a single-layer 

radial system w i t h  insulated upper (caprock) and lower (basement) boun- 

daries. This expression w i l l  be discussed fu r the r  below. 

Advancement of the Thermal Front Along the  Fracture. The rate of 

water advancement along the  f r ac tu re  is of course one of the major con- 

cerns i n  the present  problem. In Figure 50,  type curves representing the 

movement of the thermal f r o n t  i n  the f r ac tu re  (r l  = 0) a re  given f o r  var- 

ious  values of 8. The cha rac t e r i s t i c s  of the curves are such t h a t  subdi- 

viding the discussion i n t o  three subsec t ions -ea r ly ,  intermediate,  and 

late-time behavior--is warranted. 

I 
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F i g u r e  50. Type curves for the movement of the thermal front i n  the 
fracture for various values of 8. [ XBL 8 15 -29 50A] 
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A t  ea r ly  

dimension le 8s 

T =  

EQuation (68) 

times, f o r  

dis tance 5 

- 5 .  2 + 8  

i s  derived 

a given value of 0 ,  the relat ionship between the 

and the dimensionless t i m e  T is: 

(68) 

i n  Appendix C. Subst i tut ion of the physical 

quan t i t i e s  for the dimensionless var iab les  (equations 53-57) yields  

equation (67). This indica tes  that a t  ear ly  t i m e s ,  the cold-water f r o n t  

(thermal f r o n t )  w i l l  advance along the f r ac tu re  as if  no rock matrix is 

present. 

A t  intermediate times, t h e  rock W i l l  s t a r t  t o  conduct heat  to the 

f r a c t u r e  and consequently slow down the advancement of the cold-water 

f r o n t  along the fracture .  

gence of each 8 curve t o  the locus ( 8  = 0 ) .  

This is e k d e n t  i n  Figure 50 by the conver- 

A t  intermediate times the relationship between the dimensionless 

dis tance 5 and the dimensionless t i m e  T can be expressed as [Bodvarsson 

and Tsang, 198Obl: 

4.396 2 
2 5  T =  

( 2  + 0 )  

subs t i tu t ion  of equations (53)-(57) i n t o  equation (69) yields:  

t = 4.396 'PrCr ( $ ) 2 .  
(PwCw) 

Equation ( 7 0 )  corresponds to the Lauwerier equation [Lauwerier, 19551 

as expressed by Bodvarsson and Tsang ( 198Cb). me problem solved by 

(69) 
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Lauwerier is iden t i ca l  t o  the present problem, except tha t  Lauwerier 

assumed an i n f i n i t e  outer rock boundary condition, which i s  a special 

case of our solution (D + -1. Equation (70)  shows that the t i m e ,  ‘I, i s  

proportional t o  the r a d i a l  distance t o  the fourth power. This indicates  

the  p o w e r  of the heat conduction and how it e f fec t ive ly  retards the 

advancement of the thermal f r o n t  along the  fracture.  

The t r ans i t i on  between the early-time behavior and intermediate-time 

behavior occurs a t  dimensionless t i m e  and dimensionless dis tance given 

respect ively by : 

e 2  T =- 
4.396 I (71)  

4 u a t i o n s  (71 ) and (72)  are derived by equating equations (68) and 

(69 ) .  Equations (71) and (72)  seem quite reasonable, since a large frac- 

t u r e  aper ture  and consequently a la rge  8, limits and retards the effects 

of conduction. 

In the case of f ractured reservoirs ,  equations (71) and (72)  may not  

have much practical value, because the t r ans i t i on  occurs after such a 

shor t  t i m e .  Howewer, when in j ec t ion  into layered reservoirs is consid- 

ered, these equations may be useful. Rewriting equations (71) and (72 )  

i n  terms of real variables  (equations (53)- (57)  1 yields: 

2 
b 2 ( P f C f )  

t =- 4.396 5 I (73 )  
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r = /  Q PWCwPfCf 
4.396*n*b prcrX (74) 

As evident i n  Figure 508 a t  large dimensionless times the 8 depen- 

dence no longer exists and the  following simple r e l a t ion  between ~e 

dimensionless t i m e  T and the dimensionless dis tance 5 resu l t s :  

T = ' 5 8  ( 75) 

Equation (75) i s  derived i n  Appendix C and holds f o r  both the f r ac tu re  

and the rock matrix. 

ones i n  equation (75) yields:  

Subst i tut ing real variables f o r  the dimensionless 

A8 is t o  be expected, equation (76) is equivalent to equation (67), but 

with combined f r ac tu re  and rock matrix thermal parameters. Equation (76) 

can be fu r the r  s implif ied i n  cases of very large or very small 8 as 

follows: 

(77) 

For fractured reservoirs, the first expression ( e  << 2)  would apply, 

whereas the second expression ( e  > 2)  may be useful  i n  case8 of strati- 

fied reservoirs  w i t h  r e l a t i v e l y  small shale breaks (e.g., Cerro Prieto,  

Mexico) 
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The t r ans i t i on  from the intermediate-time solut ion t o  the long-time 

solut ion occurs when the conductive hea t  flow from the rock matrix t o  the 

fracture becomes affected by the no-heat-flow boundary condition a t  r\ = 1 

( insulated a t  z = D). 

given by the following equation: 

The t rans i t ion  occurs a t  the  t i m e  and location 

Equation (78)  i s  obtained by equating equations (69)  and (75 ) .  Substi- 

t u t ion  of equations (53)- (57)  i n t o  equation (78) yields:  

2 + -  
C 4.396.r 'A 

w h e r e  t, and r, denote the time and radial 

( 80) 

distance from t h e  in jec t ion  

w e l l  when a uniform energy sweep is achieved. Again, f c r  very large o r  

very small values of 0, equations (79)  and (80 )  can be simplified as 

follows: 

r =,( 
C 

e B 2.0. 

e << 2.0. 

q'b'p c 
wPfCf e >> 2.0. 

4.396*r*prc,X 
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Note t h a t  f o r  a small 8, the  t i m e  of uniform energy sweep depends only on 

the thermal proper t ies  of the rock matrix and the d is tance  t o  the  insula- 

ted boundary [ ( D )  ], but not on the flow ra t e ,  the  f r ac tu re  aperature and 

width, o r  thermal parameters. 

Advancement of the Thermal Front i n  the Rock Matrix 

Figures 51 and 52 show the  advancement of t he  thermal front i n  the 

rock matrix f o r  small and large values of 8, respectively.  The graphs 

show that the lower the value of q (q = z / D ) ,  t he  earlier the  curve con- 

Temperature Distr ibut ion i n  the Fracture and the Rock Matrix 

verges to  the rl = 0 curve w h i c h  represents  the thermal f r o n t  along t h e  

fracture. This relationship is ce r t a in ly  reasanable since the lower the 

value of T) the c lose r  the observation point  i s  t o  the fracture .  The 

curves i n  Figures 51 and 5 2  a l so  show that, a t  low values of e, the dimen- 

s ion le s s  parameters 5 and T behave independently (T does not change w i t h  

changes i n  E) .  

49. A t  ea r ly  t i m e s  during in jec t ion ,  the isotherms in the rock matrix 

c lose  t o  the in j ec t ion  w e l l  (small 5) are p a r a l l e l  t o  the  f rac ture  (pure 

vertical hea t  flow). The horizontal  temperature gradient  is p rac t i ca l ly  

negligible.  Therefore, f o r  a given T), the thermal f r o n t  w i l l  a r r ive  a t  

the same dimensionless t i m e  regardless of the value of E. 

This behavior can be explained i n  tenus of Figures 48 and 

~~ ~ ~~ 

The temperature d i s t r ibu t ion  i n  the system a t  various dimensionless 

t i m e s  i s  shown i n  Figure 53. 

varying from 0.1-0.9 are shown i n  s teps  of 0.1. 

representing the temperature of the in jec ted  w a t e r  (TD = 1 .O) and the 

In the p lo ts ,  temperature contours fo r  TD 

[The temperature contours 
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F i g u r e  51. Advancement of the thermal f r a t  in the rock matrix for small 
values of 8. [ X X  815-2949] 



146 

IO4 t 
IO0 
IO2 1 
10'2 - 

 IO-^ - 
- 

62 100 

f 
162 

/ 

I d '  i 
At 

T = p T  

t 
I 
I 
I 
I 
1 
I 
I 
I 
1 
8 
I 
I 
8 Figure 52. Advancement of the thermal front in the rock matrix for large 

values of 8. [XBL 815-2948] 



147 

.8 

I .o 

.8 

.4 

.2 

0 

I 
r = .IO 

- 

io-3 10-2 IO' 

Figure 53. Temperature distrihtion i n  the fracture and rock matrix at 
various dimensionless times . [XBL 815-29531 
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temperature of the nat ive reservoir  w a t e r  (T,, = 0.0) are not shown, due 

t o  d i f f i c u l t i e s  i n  t rac ing  them with the  numerical inverter.]  Although 

the basic phenomenon explaining t h e  behavior shown i n  Figure 53 has al- 

ready been discussed (with reference to Figures 48 and 49), t he  graphs 

i n  Figure 53 can be quite useful  i n  determining thermal t rans ien ts  from 

inject ion.  Furthermore, t h e  data p lo t ted  i n  Figure 53 may a i d  i n  esti- 

mating the  recoverable energy from a geothermal system, given the exploi- 

t a t i o n  scheme (we11 spacing, flow rates, etc. 1. 

The temperature d i s t r ibu t ion  along t h e  f rac ture  is shown i n  Figures 

54 and 55 for intermediate and late t i m e s ,  respectively.  A t  early t i m e s ,  

that is, a t  t i m e s  before t h e  influence of the  rock matrix is f e l t ,  t h e  

thermal f r o n t  i n  the f r ac tu re  i s  sharp s ince horizontal  conduction i n  

the  f r a c t u r e  is neglected. The thermal f ront ,  hwever,  becomes d i f f u s e  

as the energy flow between the f r ac tu re  and t h e  rock matrix begins. 

u re  54 shows how d i f fuse  the thermal f r o n t  becomes during intermediate 

t i m e s  ( a f t e r  the rock matrix starts to contr ibute  s ign i f i can t  energy b u t  

before the no-heat-flow boundary condition is f e l t  a t  rl = 1 ) .  The curve 

is characterized by a rather sharp f ron t  bu t  a very d i f fuse  tail, The 

temperature d i s t r ibu t ion  i n  the f r ac tu re  and i n  the rock matrix (i,e., 

fo r  a l l  values of II) a t  la te  t i m e s  i s  shown i n  Figure 55. 

Fig- 

In the reverse case, with in jec t ion  of hot  w a t e r  i n t o  a colder 

reservoir ,  the  late-time behavior is i l l u s t r a t e d  i n  Figure 56. The 

f igu re  shows that  a hot  zone corresponding t o  the temperature of the 

in jec ted  w a t e r  has developed, with a t r ans i t i on  zone fur ther  away from 
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Figure 54. Diffuseness of the thermal front at intermediate times. 
[XBL 815-2954] 
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Figure 55. Diffuseness of the thermal front at late times. 
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Figure 56. The heat transfer mechanism i n  the s y s t e m  at late times 
for the reverse case - hot-water injection into a colder 
re s e w  i r  . [XBL 815-29561 
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the in j ec t ion  w e l l  and a cold wa te r  zone s t i l l  further away. The heat i s  

transported by convection along t h e  f r ac tu re  u n t i l  the t rans i t ion  zone i s  

reached. In the t r ans i t i on  zone, the heat  is conducted ve r t i ca l ly  i n t o  

the rock matrix, w i t h  a heat f lux density as shown i n  Figure 57.  The 

parameter Qa represents a dimensionless energy l o s s  from the fracture t o  

the rock matrix. 

l a w  of heat conduction: 

% is  the energy f lux  calculated by means of the Fourier 

(83) 

As Figure 57 shows, the maximum energy l o s s  occurs a t  E/T e 1;  that 

is, a t  the radial dis tance from t h e  w e l l  corresponding t o  the locat ion of 

the thermal f r o n t  (see equation ( 7 5 ) ) .  Since 8 is less than 0.01, prac- 

t i c a l l y  a l l  of the in jec ted  energy w i l l  be conducted t o  the rock matrix 

( the  energy po ten t i a l  of the f r ac tu re  i s  negl igible  compared t o  that of 

the rock matrix) and consequently the area under the curve i n  Figure 57 

w i l l  equal unity. 

As Figure 56 i l l u s t r a t e s ,  i n  the ana ly t i ca l  so lu t ion  developed i n  

this study, horizontal  conduction w a s  neglected. 

the concentrated area of heat  t ransfer  shown i n  Figure 57 and the result- 

ing  sharp f ron t  (Figure 5 5 ) .  

cussed be low. 

This assumption caused 

The importance of t h i s  assumption i s  dis- 
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Figure 57. Heat flux density along the fracture a t  late times. The 
parameter Q represents dimensionless energy loss from 
fracture to rock. [XBL 815-2957] 
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Numerical Studies 

In addition t o  the ana ly t i ca l  work discussed above, parallel numer- 

i ca l  studies were carried out. The objective of the numerical studies is 

twofold: 

( 1 )  t o  study the importance of the assumptions made i n  the analy- 

tical work; and 

(2 )  to extend the ana ly t i ca l  work to cases where the rock matrix 

is permeable i n  order t o  understand the importance of f l u i d  movement 

i n t o  the rock matrix. 

In t h i s  study the recent ly  developed numerial code PT w a s  used (see 

sec t ion  on code development, page 18). 

Comparison of Analytical and Numerical Results 

As a f i r s t  s tep,  t h e  problem considered i n  the ana ly t i ca l  work was 

solved using the numerical code and applying the same assumptions as i n  

the ana ly t i ca l  work. Figure 58 shows a schematic v i e w  of the mesh used; 

because of symmetry, only half of the basic sec t ion  shown i n  Figure 47 

w a s  modeled. The f rac ture  elements (bottom layer )  were connected t o  two 

constant-pressure, constant-temperature boundary elements ( la rge  nodes ) 

t o  insure  constant mass flow and a constant in jec t ion  temperature Ti.  

The v e r t i c a l  l i n e s  dividing t h e  rock mass i n t o  elements are dotted 

t o  i l l u s t r a t e  that there are no horizontal  connections between the rock 

elements and subsequently no horizontal  conduction i n  the rock matrix. 

The fracture elements w e r e  connected to enable a steady mass f l aw ,  bu t  

I 
t 
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Figure 58. Schematic of the m e s h  used in the numerical calculations. 
[XEL 815-92581 
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the thermal conductivity of the fracture elements was set t o  zero. The 

nodal po in ts  of the fracture elements were placed a t  the rock-fracture 

boundary to s a t i s f y  the boundary condition that the temperature of the 

rock a t  z = 0 ( T l  = 0) i s  iden t i ca l  t o  the fracture temperature. Finally,  

a very high rock thermal conductivity m s  used so that only small t e m p e r -  

a t u r e  gradients  would develop in  the rock matrix and therefore  minimize 

the space d i sc re t i za t ion  errors.  The fracture aperture of 10-4 m was 

a r b i t r a r i l y  selected and a f r ac tu re  spacing ( 2 x D )  of 0.02 m w a s  used. 

Fixing a l l  volumetric hea t  capacities as uni ty  (pwcw = pfcf  = prcr = l ) ,  

a value of 8 = 0.01 resulted.  

Figure 59 shows the comparison between the ana ly t i ca l  and the 

numerical r e s u l t s  f o r  8 = 0.01. The f igure s h o w s  an excel lent  agreement 

between the ana ly t i ca l  and the numerical resu l t s .  However, although 

equation (66) was always used to  determine the locat ion of the thermal 

front ,  the  equivalent isotherm was not always TTF, the average of the 

temperature of the in jec ted  w a t e r  and the i n i t i a l  reservoir  temperature. 

In  the case of the early-time simulation (T < 1 0'4), TTF i s  the proper 

isotherm, as the thermal f r o n t  becomes d i f fuse  due t o  numerical disper- 

s ion  bu t  remains symmetrical (see Figure 6 0 ) .  However, i n  the simulations 

representing intermediate < T < 1.0) and late t i m e s  (T > 1.01, heat  

t r ans fe r  between the fracture and the rock matrix is present. This and 

the associated numerical dispersion y ie lds  a nonsymmetrical thermal front.  

In  these cases, t h e  proper isotherm representing the thermal f r o n t  was 

selected by using graphical in tegra t ion  as i l l u s t r a t e d  i n  Figure 61 
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Figure 59. Comparison of ths analytical and numerical results 
for 0 = 0.01. [XEL 815-29 501 
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F i g u r e  61. Graphical integration s h d n g  an intermediate-time thermal 
front isotherm as T~ = 0.44. [XBL 815-2961] 
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(equating the areas  of the two shaded por t ions) .  Using t h i s  approach, 

the thermal f r o n t  for  the intermediate-time simulation was selected a s  

TD = 0.44. 

the appropriate value w a s  TD = -33. 

A t  later t i m e s ,  when the thermal f r o n t  became more d i f fuse ,  

Importance of Assumptions Employed i n  Analytical  Approach 

In order t o  understand the importance of the assumptions employed i n  

the a n a l y t i c a l  work, a number of ccmputer runs using the numerical code 

PT w e r e  made, In these simulations some of the more crit ical  assumptions 

l i s ted  on page 128 were relaxed. Thus, a t r ans i en t  mass flow is consid- 

ered w i t h  variable f l u i d  proper t ies  p ( P , T )  and p(T) ,  and horizontal  con- 

duction both i n  the f r a c t u r e  and the rock matrix is allowed. The r e s u l t s  

show that the steady-state mass-flow assumption i s  indeed very reasonable 

and does not lead to  s ign i f i can t  e r rors  i n  the thermal field. 

s ider ing  only the locat ion of the thermal f ron t ,  the assumption of no 

hor izonta l  conduction i n  the rock matrix i s  a l s o  reasonable. Figure 62 

shows the comparison between the ana ly t i ca l  results and the numerical 

r e s u l t s  ( w i t h  t r ans i en t  mass flow and hor izonta l  conduction) f o r  the  

advancement of the thermal f r o n t  along the f rac ture  for the case 6 = .01. 

When con- 

A t  late t i m e s ,  however, horizontal  conduction w i l l  become the domi- 

nant means of heat  t ransfer ,  both i n  the rock and i n  the f racture .  Fig- 

ures 63 and 64 show the thermal d i f fus ion  i n t o  the rock matrix a t  various 

t i m e s  f o r  the cases of no horizontal  conduction and wi th  horizontal  con- 

duction, respectively. The parameters and the mesh used i n  the simulation 

I 
I 

I 
I 

are given i n  Table 6. The f igures  show that before the thermal f r o n t  i n  
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IO2 
IO4 1 - Analytical solution 

Numerical results 
(Relaxed assumptions) 

I I I I 

IO2 

F i g u r e  62. Comparison of analytical  and numerical results (with relaxed 
assumptions) for advancement of the thermal front along the 
fracture. [XBL 815-29671 
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Figure 63. Temperature distribution i n  the rock matrix a t  various times; 
no horizontal conduction. [XBL 815-2975Al 
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F i g u r e  64. Thermal diffusion into the rock matrix at various times; 
horizontal conduction. [ XBL 8 15 -29 66AI 
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Table 6. Parameters used i n  the  study of the e f f e c t s  of 

horizonta 1 conduc tion. 

Parameters Fracture ( f l u i d )  Rock Matrix 

Thermal conduc t i v i  ty 

A( J /m*s*  oc) 1.0 10.0 

Specif ic  heat,  C( J/kg*OC) 1000.0 1000.0 

Porosity, (-1 1.0 0001 

Fracture aper ture  b 10-4 m 

Fracture spacing 2D 0.02 m 

Flow rate q 

Density, p(kg/m3) 1000.0 1 OOOaO 

1 x 10-2 m3/s 

Mesh: 

(a )  Radial spacing 

(b) V e r t i c a l  spacing 

10 x 0.1 m, 20 x 1 m, 
2r 3, 7, 8 r  10, 15, 20, 

60, 90, 150, 250, 350 m. 

5 x 10-5, 1 

1 x 10-4, 3 10-4, 

1 x 10-3, 3 10-3, 

IO-Sf 3 x IO-Sf 

5.556 x m. 

the  rock catches up w i t h  the  thermal f r o n t  i n  the  f rac ture  (T < 1 a O ) t  t h e  

e f f e c t s  of horizontal  conduction are negligible.  This is reasonable, 

s ince  a t  ear ly  times the vertical temperature gradients are orders of 

magnitude la rger  than  the  horizontal  gradients (see Figure 53). However,  

a f t e r  uniform sweeping conditions prevai l ,  the  horizontal  conduction d o m -  

inates and eventually,  when the f l u i d  veloci ty  i n  the f rac ture  becomes 

very small ( r a d i a l  e f f e c t s ) ,  t h e  thermal f r o n t  W i l l  advance purely through 

conduction. This mechanism i s  shown schematically i n  Figure 65. 
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Figure  65. The late-time heat transfer mechanism for the rock-fracture 
system when horizontal cmduction is considered. 

[XBL 815-29771 
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The importance of horizontal  conduction when uniform sweep condi- 

t ions  are reached c l ea r ly  ind ica tes  t h a t  the present ana ly t ica l  solut ion 

cannot be used t o  ca lcu la te  the temperature d is t r ibu t ion  a t  la te  times. 

A n  approximate solut ion can, however, be obtained using the constant- 

pressure solut ion for  flow to a w e l l  of f i n i t e  radius by van Everdingen 

and H u r s t  (1949). After adapting t h e  solut ion t o  the  present problem, 

it becomes: 

r T - T. A ( t  - tc' 

'rCrrc 

- r = -  1 

tD - 2 '  rc 
where T = D To- Ti ' (85) 

The symbol rc denotes the radial d i s h n c e  from the  in jec t ion  w e l l  t o  the 

locat ion where uniform sweep begins and can be calculated using equation 

(80);  t is the t i m e  s ince in jec t ion  began, and tc is the t i m e  uniform 

sweep conditions start and can be calculated using equation (79). The 

primary assumption made when the temperature d i s t r ibu t ion  i s  calculated 

using equation (84) i s  t h a t  a sharp f r o n t  exists a t  r = rC. 

t = tc, the  f r o n t  i s  ac tua l ly  not  very di f fuse ,  as i l l u s t r a t e d  i n  Fig- 

ure 55, and the assumption is probably reasonable, especial ly  a t  late 

times (t >> tC)* 

a t u r e  a t  the  production w e l l  i n  cases of thermal breakthrough. 

present  problem, the  common approach of modeling the  f rac tures  as paral- 

l e l  p l a t e s  has been employed ( H e l e  Shaw approach). It is  however, w e l l  

A t  t i m e  

Equation (84) may be useful i n  estimating the temper- 

In  the 



167 

known that f r ac tu re  apertures and consequently f ingering and dispersion 

effects w i l l  occur [mini, 1977; Neuzil and Tracy, 19811, Dispersion i n  

thermal flow is an in t e re s t ing  area fo r  fur ther  research. However ,  our 

preliminary considerations indicate  that i ts  main e f f e c t  is t o  increase 

thermal f r o n t  smearing and may have less e f f e c t  on the thermal f r o n t  

movement , 

Importance of Permeability i n  Rock Matrix 

In  the ana ly t i ca l  work, the assumption of an impermeable rock matrix 

w a s  made. When the rock is permeable, hea t  t ransfer  by convection 

between the f rac ture  and the rock matrix w i l l  take place i n  addition t o  

the conductive heat t ransfer .  The thermal f r o n t  along the f r ac tu re  (Fig- 

ure 5 0 )  w i l l  therefore advance more slowly than the ana ly t i ca l  solut ion 

predicts.  In addressing t h i s  problem, the following approach was taken: 

( 1 )  The nonisothermal mode of program PT was used t o  calculate the 

advancement of the thermal f r o n t  i n  the fracture with t i m e  f o r  sev- 

eral  values of kD = kf/kr,  where kf is the permeability of the frac-  

t u re  and kr is the permeability of the rodt  matrix. 

( 2 )  By assuming t h a t  conduction is negl igible  compared t o  the  con- 

vective heat  t r ans fe r  between the  f rac ture  and the rock m a t r i x ,  the  

location of uniform s w e e p  conditions could be calculated,  based on 

steady-state flow patterns, 

Convection and Conduction, As a f i r s t  e f f o r t  i n  examining the 

e f f e c t s  of conduction and convection, a f i n i t e  permeahility was assigned 

t o  the rock elements, while cold water w a s  in jec ted  i n t o  the fracture 
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elements. Only the most general  case w a s  studied, taking i n t o  account: 

( 1 )  t r ans i en t  mass flow 

( 2 )  horizontal  and vertical conduction i n  the rock matrix ,and hori- 

zontal  conduction i n  the f r ac tu re  

(3) horizontal  and v e r t i c a l  permeabili ty i n  the rock matrix, of 

equal magnitude (no anisotropy) 

(4 )  nonconstant f l u i d  parameters p = f (P,T) and p = f (TI.  
4 %  

The parameters used i n  the study are l i s t e d  i n  Table 7 along w i t h  

the g r i d  spacings. 

w h e r e  temperature changes are expected and logarithmic spacing is. used i n  

regions of the rock where isothermal flow is  anticipated.  The computer 

runs w e r e  made using only one set of geometric parameters, 0 = bu t  

a number of d i f f e r e n t  values of dimensionless permeability kD were used. 

The r e s u l t s  for the advancement of the thermal f r o n t  i n  the f r ac tu re  are 

shown i n  Figure 66. 

In general, a uniform spacing i s  used i n  regions 

The r e s u l t s  show t h a t  the rock permeability can have a large effect 

on the movement of the thermal f ront ,  and understandably, a t  any given 

time the higher the  penneabili ty of the rock matrix, the more the move- 

ment of the thermal f r o n t  i n  the f r ac tu re  w i l l  be retarded. The r e s u l t s  

i n  Figure 66 a l s o  indicate that i f  the permeability ra t io  kD is greater 

than lo4 the effect of the convective heat t r ans fe r  is negligible.  I How- 

ever, one must bear i n  m i n d  that these r e s u l t s  are only val id  for the 

set of parameters l isted i n  Table 7, although they are expressed i n  a 
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Figure 66. Effect of permeable rock matrix on the advancement of the 
thermal front along the fracture. [XBL 815-29841 
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T a b l e  7. Parameters and gr id  spacing used i n  the nonisothermal 

permeable rock study. 

Parameters 
Fracture 

Fluid Rock 

Thermal conductivity , 
A ( J / m * s o o C )  1.0 2.0 

Specific hea t ,  C(J/kg*OC) 4200.0 1000.0 

Porosity, 4 (-1 1.0 001 

Permeability k(m2) 1 x 10-9 1 x 10-9 - 1 10-16 

Compressibility ~ ( p a - 1 )  5 x 10-10 5 x 10-10 

Density, p(kg/m3) 1000.0 2650.0 

Fracture aperture b 

Fracture spacing 2D 

Flow rate q 

10-4 m 
0.02 m 

1 x 10-2 m3/s 

Mesh: 

(a) Radial spacing 

(b) Vertical spacing 

5 x 0.02, 17 x 0 .5 ,  03, 0.5, 0.7, 0.8. 

1.0, 1.0, 1.5, 1.5, 2, 6, 15, 25, 35, 

60, 90, 150, 250, 350 m, etc. 

5 x 10-5, 1 x 10-5, 3 x 10-5, 

1 x 10-4, 3 x 10-4, 

1 10-3, 3 x 10-3, 

5.56 x m. 

dimensionless form i n  Figure 66. For any a r b i t r a r y  set of parameters 

independent calculations are required. 
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Convection Dominated Systems. The above r e s u l t s  show that convec- 

t i on  due to  a permeable rock matrix can have considerable effect on 

thermal d i f fus ion  i n t o  the rock during in jec t ion .  It is therefore of 

i n t e r e s t  to  examine the case where the heat  t ransfer  between t h e  f rac ture  

and t h e  rock matrix is dominated by convection. 

one only needs to  follow the f l u i d  paths  to f ind  o u t  where the hea t  is 

being transported. 

By neglecting conduction, 

In t h i s  study, t he  f r ac tu re  m o d e l  shown i n  Figure 67 was used. As 

before, this model is va l id  for any number of equally spaced fractures. 

The following assumptions were employed: 

( 1 )  

( 2 )  The mass f l o w  i s  steady, and a l l  f l u i d  and rock parameters are 

constant. 

(3)  In the f r ac tu re  only r a d i a l  f l a w  is considered; i n  the rock 

matrix both r a d i a l  and vertical flow are considered. 

(4 )  

the geometry of the problem is i d e n t i c a l  t o  the  problem discussed i n  

t h e  ana ly t i ca l  work. 

( 5 )  

permeability i n  both r and z d i rec t ions  (no anisotropy).  

The water is in jec ted  i n t o  t h e  f rac ture  a t  r = 0. 

A constant pressure boundary is located a t  r = %. Otherwise, 

The fracture has a permeability kf and the rock matrix has  a 

Based on the  m o d e l  shown i n  Figure 67 and the above assumptions, 

mass balance on elements i n  the f r ac tu re  and the rock matrix y ie lds  the  

following equations : 
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Figure 67. Schematic model of convection-dominated rock/fracture system. 
[XBL 815-2968] 
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Fracture : 

a2pf , aPf +--I 2kr apr 

ar 
= o .  - + - -  

2 r ar bkf az z=O 

~ o c k  Matrix: 

a2pr a q  a2pr - + r a r + - = O .  
ar a2 

2 

The boundary conditions can be expressed mathematically as: 

QV lim r - 
r+O ar 

Now the following dimensionless parameters are introduced: 

r r = -  
D D  

2 n = -  D 

r RD = - 
0 

R 

k D r  

2rkP 

9 V  
P D = - P  

(87) 

( 8 % )  
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apD a 2~ a p  

arD 

Df +Tar  1 Df + 2 w . e  
D D  2 

Subst i tut ing equations (89) i n t o  equations (86) and (87) yields:  

Fracture : 

= o  
TI-0 

r apD 

arD 
- 

~ 0 c k  Matrix: 

* o  
r =O 

a 2 ~ D  

arD 

r - 
2 

r apD 
+ 1 +--  

rD arD 

a2pD 
r 

an2 
= o  

The boundary conditions given by equations ( 8 8 )  become: 

P ( R D =  1 )  = 0 
f D 

= 1  

%Inxl = 0 

(90) 

(91) 

The above equations were solved numerically using the  computer code 

PT i n  i t s  isothermal mode. The mesh used is shown i n  Figure  68. The main 
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r(m) Fiacture 

Figure 68. Mesh used i n  the study of convection-dominated systems. 
[XBL 815-2969] 
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cha rac t e r i s t i c s  of the  mesh are that it is logarithmically spaced both 

r ad ia l ly  and ve r t i ca l ly ,  and the nodal po in ts  are located a t  the log-mean 

center  of the nodes. This type of g r id  s e t t i n g  has proven t o  be most e 
I accurate for  diffusive-type problems. The grid w a s  tes ted by running the 

Theis problem [Theis, 19351 w i t h  a constant pressure boundary ( the  solu- 

t i on  i s  given by Witherspoon e t  al., 1967) and the r e s u l t s  were within 1% 

of the a n a l y t i c a l  solution. - 

The pressure d i s t r ibu t ions  along the  dimensionless radial coordinate 

2 
I 
1 

rD are shown i n  Figures 69-71 fo r  W G.01, W = 1 ,  and W 

t ive ly .  In all cases the distance to the constant pressure boundary Ro 

w a s  very large. This parameter has no s ign i f i can t  effects on the r e s u l t s  

i f  it is spec i f ied  la rge  enough so as not to a f f e c t  the f l u i d  flow near  

the w e l l .  

curves converge a t  large dimensionless radi i .  

100, respec- 

The parameter Po ( 1  + 2 W )  was used i n  the f igures  because the 

I 
1 
I 
P 

The curves i n  Figures 69-71 show a number of i n t e re s t ing  character is-  

F i r s t ,  i n  a l l  cases the curves converged a t  approximately rD = 1.0. tics. 

This ind ica tes  that a t  r a d i a l  distances from t h e  w e l l  greater than that 

corresponding t o  rD = 1 no v e r t i c a l  pressure gradient exists and conse- 

quently, no flow between the f r ac tu re  and t h e  rock matrix takes place. 

Figures 69-71 a l s o  show that c lose  t o  the w e l l  (rD i s  small) the re  is no 

radial (horizontal)  pressure gradient i n  the  rock matrix (this is a con- 

sequence of equation 92d). In  explaining these charac te r i s t ics ,  it is  

helpful  t o  consider the f l u i d  flow i n  the system. 

dimensionless flow along the  f r ac tu re  with qHD, defined as: 

Figure 72 shows the 
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F i g u r e  69. Pressure distrihution along the dimensionless radial 
[XBL 815-2978] coordinate rD for o < 0.01. 
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Figure 70. Pressure distribution along the dimensionless coordinate rD 
for w = 1 .  [XBL 815-29791 
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‘0 

F i g u r e  71. Pressure distrihtion along the dimensionless radial 
coordinate rD for o > 1 00. [XEL 815-2980] 
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Figure! 72. Dimensionless f lu id  flow along the fracture 
[XBL 815-2981] 
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where qFH(r) i s  the flow along the f rac ture ,  and q i s  the total  flow. 

~n t h i s  p l o t  a l l  of the curves a lso  converge a t  f D  - 1.0 t o  a s ingle  

curve t h a t  can be represented by the equation: 

qm(l  + 2w) = 1. ( 9 4 )  

Expanding equation (93) by using Darcy's l a w  and rearranging, yields: 

kf - - a r b  (E) 
(95) 

1 - u - 
- 1 + 2 u *  

47rrD (z) qHD - kr - -  kf a r b  (z) - -  
ar f p ar r u 

It is obvious that equation ( 9 5 )  is  satisfied only when: 

which is exact ly  the  behavior shown i n  Figures 69-71. In other  words, 

the flow from the f rac ture  to the rock matrix takes place close to the 

w e l l  (rD < 1.0); fur ther  away the flows i n  the f r ac tu re  and the  rock 

are governed only by t h e i r  t ransmissivi t ies  (kfb and k,D). 

The data  plot ted i n  Figure 72 a l s o  shows t h a t  very c lose  to the 

w e l l  t he  flow i n  the f r ac tu re  is constant and equal to  the in jec t ion  rate. 

Although the f l u i d  flow from the  fracture to the rock matrix per u n i t  area 

is l a r g e s t  c lose to the w e l l ,  the  surface area there is s m a l l  and conse- 

quently the  total flow is  small. %e cumulative flow from the  fracture 

to the  rock matrix i s  plot ted i n  Figure 73. Note t h a t  the horizontal  ax i s  

i s  now defined as rD(l + w ) .  In Figure 73, there  are tvm l imit ing curves 
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2 

Figure 73. Cumulative flow from fracture t o  rock matrix. [XBL 81 5-29821 
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representing high and low values of w o r  equivalently high and low rock 

transmissivity.  The f igure shows that most of the flow between the  frac-  

t u r e  and the rock matrix takes place over the i n t e r v a l  

The sca l ing  of the dimensionless radial coordinate with the dimensionless 

parameter W, is due t o  the f a c t  t h a t  the higher the rock permeability, the  

c lose r  t o  the w e l l  where s ign i f i can t  v e r t i c a l  flow will occur. 

The implications for  the cold-water in jec t ion  problem are qui te  ob- 

vious. Figure 7 2  shows t h a t  a l l  of the f l u i d  flow from t h e  f rac ture  to 

t he  rock matrix w i l l  take place within the dimensionless dis tance rD = 1 

from t h e  w e l l .  This indicates t h a t  i f  conductive heat t ransfer  i s  negli-  

g ib le ,  a l l  of the hea t  exchange from t h e  f rac ture  to  the rock matrix will 

occur w i t h i n  rD = 1 from t h e  w e l l .  Therefore, i n  cases where the rock- 

matrix permeabili ty is not negligible,  t h i s  can be used as a cons t ra in t  

on the  basic type curves shown i n  Figure 50. This will be i l l u s t r a t e d  i n  

a numerical example in the following section. It should, however, be 

emphasized t h a t  t h i s  cons t ra in t  can only be  used i n  cases where w > 10.0, 

s ince w represents  t he  ratio of the convective heat  fluws i n  the rock and 

i n  the  fracture .  For example, i f  o is 1.0, only 50% of the in jec ted  

f l u i d  w i l l  en t e r  the  rock matrix and consequently only 50% of the energy 

w i l l  en te r  the  rock matrix. 

f l u i d  flowing along the  fracture.  

The remaining 50% will be contained i n  the 
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Application t o  Field EScamples 

In many geothermal f ields the major f l u i d  conduits i n  volcanic rocks 

are the contacts  between subsequent lava layers  [Fr idleifsson,  1975; 

Newcomb e t  al.,  1972; O'Brien e t  al. , 1981; Benson e t  al., 19811. These 

contacts  may extend over a large area and behave hydrologically as hori- 

zontal  f r ac tu re s  of large areal extent. For example, consider a 1000 m- 

thick geothermal reservoi r  cons is t ing  of s i x  rather impermeable layers  

with the contac t  po in ts  between the layers  being the  pr inc ipa l  f l u i d  con- 

dui t s .  The number of high-permeability contact  zones is not precisely 

known but  a spinner survey indicates the presence of tWr, t o  five-major 

zones. A n  abandoned production w e l l  is located 250 m away f r o m  t h e  near- 

e s t  producer. If it is used as an in j ec t ion  w e l l ,  t he  f i e l d  developer is 

in t e re s t ed  i n  knowing when the in jec ted  water w i l l  break through a t  the 

production w e l l .  

are shown i n  T a b l e  8. Using the parameters i n  Table 8 and the type curves 

i n  Figure 50,  the  arms i n  Figure 74 were developed. To account for the 

effect of the production w e l l  on the ve loc i ty  f ie ld ,  the in j ec t ion  rate 

w a s  doubled before the data shown i n  Figure 74 were calculated. Now using 

a w e l l  spacing ofi'250 m,  the  thermal f r o n t  w i l l  reach the production w e l l  

i n  13 and 65 years for two and five f rac tures ,  respectively.  Since the 

planned l i fe  of the p ro jec t  i n  question i s  assumed t o  be 15 years and 

s ince  the approach to  the problem is conservative (no rock permeability, 

etc.), the developer is reasonably c e r t a i n  that premature thermal break- 

through w i l l  no t  occur. 

The f l u i d  and reservoir data needed for  calculat ions 

8 
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Figure 74. Location of the thermal front i n  the fractures versus time for 
different fracture spacing. [XBL 815-29831 
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Table 8. Parameters used i n  multifractured reservoir .  

Flowrate, q, 

Thermal conductivity, A, 
Fluid density,  pwr 

Fluid specific heat, cw, 

Rock densi ty ,  P r ,  

Rock spec i f i c  heat, Cy ,  

Fracture porosi ty ,  4 ,  
Fracture aperture , b , 

10.0 

2.0 

1000 

4000 

2500 

1000 

1.0 

1 x 10-4 

t 
a 
1 
I 

As another f i e l d  example, consider a simplified reservoir  model of 

the Cerro P r i e t o  f i e l d  reported by Tsang e t  al. ( 1979) and shown i n  Fig- 

ure 75. In this case, the aquifers were assumed t o  be the major f l u i d  
d 
1 
I 
i 
I 

conduits and the shale breaks the low permeability layers.  The in jec t ion  

w e l l  was assumed to f u l l y  penetrate both of the aquifers and t o  supply 

the same quant i ty  of cold water to each. Neglecting gravi ty ,  o r  assuming 

strong anisotropy, f i x ing  the in jec t ion  rate as 20 kg/s, and using the 

same rock and f l u i d  thermal proper t ies  as are shown in Table 8 ,  the 

advancement of the thermal f r o n t  i n  the aquifers  W i t h  t i m e  w a s  calculated.  

m t h i s  case, 8 = 4.0. In order to ca lcu la te  when a l l  of the energy from 

the shale layers  can be extracted,  equation (79)  was used t o  yield 

1 
I 

t = 400 years. (98)  

This is the t i m e  when uniform energy sweep occurred. The rad ia l  distance 

to the poin t  of uniform sweep was calculated using equation ( 8 0 )  a s  

r = 1635 m. 
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Figure 75. Geological model of the Cerro Prieto geothermal field 
(after Tsang et al. I 1979) . [XBL 803-68291 
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I f  the geothermal p r o j e c t  is planned f o r  30 years, t h e  cold w a t e r  f r o n t  

w i l l  only have advanced 240 m away from t h e  in j ec t ion  w e l l .  

Now l e t  us consider the case of two horizontal  f r ac tu res  i n  the 

aquifers  i n  Figure 75.  

ture is low4 m, a f rac ture  permeability of 8.33 x low1' m 2  can be calcu- 

lated based on the cubic l a w  [Witherspoon et  al.,  19801 : 

In this case, D = 50 m, and i f  the f r ac tu re  aper- 

,. 
( 1  0 0 )  

bL kf = - 
1 2  

The permeability of the Cerro P r i e to  aquifers  has been reported as approx- 

imately 6.5 x m 2  [Tsang e t  al., 19791 and therefore w = 40. Recog- 

nizing t h a t  earlier ana lys i s  of the permeable rock matrix can be used, 

providing w > 10, a critical radius  of 50 m i s  calculated. Since the  

f r ac tu res  W i l l  no t  a f f e c t  the  thermal f r o n t  50 m away from t h e  w e l l ,  our 

earlier ca lcu la t ion  of 240 m i n  t h i r t y  years is va l id  i n  spite of the 

presence of the f rac tures  i n  the reservoir.  

Conclusions 

In t h i s  study, t he  thermal behavior during cold-water in jec t ion  i n t o  

f rac tured  geothermal reservoirs  has been considered. The model used con- 

s i s t e d  of an in jec t ion  w e l l  f u l l y  penetrating a geothermal reservoi r  with 

horizontal  f ractures .  The approach employed i n  the study was twofold; 

first,  a ra ther  simple mathematical model w a s  developed and solved analy- 

t i c a l l y ;  second, numerical calculat ions w e r e  car r ied  out  i n  order t o  in -  

ves t iga te  the importance of the  assumptions employed i n  the  ana ly t ica l  

study and t o  extend the app l i cab i l i t y  of the resul ts .  

~ 
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The r e s u l t s  from the  ana ly t i ca l  work were given i n  the form of type 

curves t h a t  can be used t o  design the locat ions of the in jec t ion  w e l l s  

with reference t o  the production w e l l s  and the  in j ec t ion  rate. The type 

curves can a l s o  be used to  predict the t i m e  of thermal breakthrough i n  

ex i s t ing  injection/production systems. A number of curves showing t h e  

thermal contamination i n  the impermeable rock matrix (or adjacent layers )  

may be useful  i n  calculat ing the recoverable energy i n  a reservoir  system 

fo r  given w e l l  locations and rates. 

In the  numerical study, t he  importance of the more cri t ical  assump- 

t i ons  employed i n  the ana ly t i ca l  work were studied. 

steady-state mass flow was found t o  be reasonable whereas the assumption 

of no-horizontal conduction i n  the rock matrix (adjacent layer )  gave 

erroneous temperature d i s t r i k r t i o n s  a t  very la te  t i m e s .  A m e t h o d  of 

approximating the  temperature d i s t r ibu t ion  a t  late t i m e s  was suggested. 

The assumption of 

Extension of the analytical work to include permeable rocks was 

studied numerically. 

s ion less  parameters ident i f ied.  The primary assumption used i n  t h i s  part 

of the  work is that the  conductive heat  t r ans fe r  is negl igible  compared 

t o  the  convective hea t  t ransfer  (high Peclet number). This enables one 

t o  consider only the stream l i nes  under s-ady-state conditions. The 

problem was solved numerically using t h e  computer code PT i n  i ts  isother-  

mal mode. The r e s u l t s  obtained ind ica t e  t h a t  a t  r a d i a l  dis tances  from 

the in jec t ion  w e l l  larger than the  thickness of the rock matrix, uniform 

A mathematical model was developed and key dimen- 
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energy-sweep conditions w i l l  develop. In  c e r t a i n  cases (w > 10) t h i s  

r e s u l t  can be used as a cons t ra in t  on estimates obtained with the devel- 

oped type curves. 

Finally,  t w o  simple numerical examples using a hypothetical doublet 

and the Cerro P r i e to  geological model w e r e  given. In the doublet case, 

a reservoir  with 2 to 5 f rac tures  was considered and breakthrough t i m e s  

of 13 and 65 years, respect ively,  were calculated. Using typ ica l  injec-  

t i on  rate and t h e  C e r r o  P r i e t o  geological model, our calculations indi-  

cated t h a t  t he  thermal f r o n t  would have advanced only 240 m away from t h e  

in j ec t ion  w e l l  after 30 years of inject ion.  It was further i l l u s t r a t e d  

that t h i s  estimate w a s  independent of f r ac tu res  i n  the reservoir.  

~ 
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I 
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FAULT-CHARGH) GEOTHERMAL RESERVOIRS 

One of the most important tasks i n  geothermal reservoi r  engineering 

i s  t o  p red ic t  the useful  l i fe t ime of the resource for a given exploita- 

t i o n  scheme. I n  order t o  make these predict ions,  reliable estimates must 

be ava i lab le  of the amount of hot water i n  place, the rate a t  which it 

can be extracted ( t ransmiss iv i ty  of the reservoi r ) ,  and the r a t e  and ex- 

t e n t  of hot-water recharge i n t o  the system. The first two estimates can 

of ten  be readi ly  obtained from simple volumetric calculat ions and w e l l -  

t e s t  data ,  respect ively;  reliable estimates of the recharge are much more 

d i f f i c u l t  to  evaluate. 

the rate of recharge i n t o  a fault-charged hydrothermal reservoir  i s  

developed. 

In t h i s  sect ion a simple m o d e l  f o r  calculat ing 

A l l  geothermal reservoi rs  are control led t o  some extent  by f a u l t s  

and f r ac tu res ;  i n  some, however, a s ingle  f a u l t  or the in t e r sec t ion  of 

two or more major f a u l t s  is believed t o  act as the main conduit fo r  

recharge. High-temperature examples of such fault-charged systems a re  

Roosevelt Xot Springs, Utah, and East Mesa, California.  Low t o  moderate- 

temperature systems of this type are Klamath F a l l s  and Vale, i n  Oregon, 

and Susanville,  California. In this section the m o d e l  developed f o r  

evaluating such systems is f i r s t  described and then applied to the 

Susanville,  California,  geothermal resource, a shallow, low-temperature 

hydrothermal system. 



192 

~ 

1 
P 

In contrast t o  the temperature logs from most geothermal wells, 

those from wells in  fault-charged geothermal reservoirs often display 

anomalous behavior. One such profile, shown i n  Figure 76, was obtained 

from a well i n  the "steamer d is t r ic t"  of the K l a m a t h  Falls KGRA (O'Brien 

e t  al., 1981). The profile shows the typical linear characteristics 

associated w i t h  conductive heat transfer i n  the top 200 f t ,  then a typ- 

i c a l  convective type profile down to 250 f t .  A t  a depth of 250 f t  the 

profile displays a definite reversal, and below this level the tempera- 

ture  profile reflects downflow i n  the well. 

this atypical behavior i s  that a faul t  recharges an aquifer located a t  a 

depth of 200-250 f t  below the ground surface. 

travels up the fau l t  u n t i l  it intersects the permeable aquifer: it is 

then transported laterally i n  the aquifer. As the hot water moves 

through the aquifer, heat is lost mainly via conduction to the overlying 

and underlying strata.  Variations i n  the temperature profiles between 

wells a t  d i f fe ren t  d i s b n c e s  from t h e  recharging f au l t  can be used to 

estimate the recharge rate. 

One possible explanation for 

The relatively hot water 

Various mathematical models applied to fault-charged hydrothermal 

systems are cited i n  the literature. Kil ty  e t  al. (1978) and Goyal and 

mssoy (1981) developed two-dimensional models= (semi-analytic solutions) 

of the East Mesa, California, f ie ld  and the Monroe, U t a h ,  hydrothermal 

system, respectively. Sorey (1975) and R i n e y  e t  al. (1979) applied 

numerical models to the Long Valley and East Mesa, California, systems, 

respectively. 
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Figure 76. Temperature profile from a w e l l  a t  K l a m a t h  Falls, Oregon 
(after 0’ Brien e t  al. , 1981 ) . [XBL 801 1-29791 
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In cont ras t  t o  these models, we w i l l  not  consider v e r t i c a l  temper- 

ature var ia t ions  within the aquifer ,  bu t  accurately w i l l  model the tran- 

s i e n t  heat losses to the caprock and bedrock. The model may therefore 

be quite useful i n  analyzing r e l a t i v e l y  young fault-charged th in  hydro- 

thermal systems, *ere t r ans i en t  heat losses are important, as w e l l  as 

i n  theo re t i ca l  s tud ie s  of the evolution of such systems. 

Mathematical M o d e l  

Figure 77 shows the reservoir  system on which the mathematical m o d e l  

i s  based. Hot w a t e r  flows up the f a u l t  and feeds a shallow aquifer. The 

fault  is shown by broken l i n e s  t o  i l l u s t r a t e  that no heat losses  are 

considered when the f l u i d  i s  flawing up the fau l t .  I n i t i a l l y  the t e m -  

perature i n  the system is l inea r  w i t h  depth (normal geothermal gradient)  

as control led by the constant-temperature boundaries at  z = D (ground 

surface)  and z = -H. A t  t i m e  t = 0 hot water starts to f low i n t o  the 

reservoir a t  a temperature Tf. 

listed below: 

The primary assumptions employed are 

( 1  The mass f l a w  rate is steady i n  the aquifer, horizontal  con- 

duction is neglected, and temperature is uniform i n  the v e r t i c a l  

d i rec t ion  ( t h i n  aquifer). Thermal equilibrium between the f l u i d  

and the so l id s  is instantaneous a t  each location. 

( 2 )  The rock matrix above and below the aquifer  is impermeable, 

and horizontal  conduction i n  the rock matrix is neglected. 

( 3 )  The energy res i s tance  a t  the contact  between the aquifer and 

the rock matrix is negl igible  ( i n f i n i t e  heat t ransfer  coef f ic ien t ) .  
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Figure 77. The mathematical model considered for fault problem. 
[XBL 816-3178] 



196 

(4 )  The thermal proper t ies  of the formations above and below t h e  

aquifer  may be d i f f e ren t ,  but a l l  thermal parameters fo r  t he  liquid 

and the rocks a r e  constant. 

The d i f f e r e n t i a l  equation governing the  temperature i n  the aquifer  

a t  any t i m e  t can readi ly  be derived by performing an energy balance on a 

cont ro l  volume i n  the aquifer :  

In the  caprock and the  bedrock, t h e  one-dimensional heat-conduction equa- 

tion controls the temperature: 

a 2T1 a T1 
A1 2 = P I C l  at ' az 

2 > 0 :  

aT2 
= P2c2 at z < 0: 

The i n i t i a l  conditions are: 

Ta(x,0) = Tl(xIZ,O) = T2(x,Z,0) = Tbl-a(z - D). 
The boundary conditions are: 

T a ( O i t )  = Tf t > 0, 

T (x,-B,t) = Tb2 = Tbl + a ( B  + D).  
2 

( 102) 

( 103) 

(1  04) 

(105a) 

( 105b) 

( 1 0 5 ~ )  

( 1  05d) 
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2 
aTD 

n=O an 
- - I C -  
aTD 1 n = 0 :  

The following dimensionless parameters are introduced: 

a aTD aTD 

a5 
a --- aS, = 0 ,  

n=o 

- 
T 1  - 2 '  

P I C I D  

H Paca 

PICl 
e l  =-- ,  

z q = -  
D '  

p2c2 

P I C 1  
Y = - '  

- - Tbl 

TD - Tf - Tbl' 

aD 
T =  
g Tf - % 1  ' 

Substitution of equations (lo%)-( 105i) into  equations 101-103 yields: 

1 
a 2TD 1 aTD 
-=- 

' 
n > 0 :  

an2 

(107) 

(108) 



198 

2 
a TD2 

1 
2 K a T  

rl < 0:  
arl 

The i n i t i a l  conditions become: 

( 109) 

( 1  10) 

( 1  l l a )  

( 1  l l b )  

I 
I 
8 
1 

The solution of equations (107)-(111)  can be obtained i n  the Laplace 

domain (see appendix D) as the following set: 

8 
T 

I 0 = 0 :  u = -  1 [ i  - T I  exp - [ + tanhr'p + 3 + ] 5  + Q  P ( 1 1 2 )  

tanh 5 P 9 
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In equations (1 12)-( 114), u, v, and w represent  the temperatures i n  the 

Laplace domain of the aquifer,  th rock above the aquifer,  and the rock 

below the aquifer,  respectively.  

As equations (112)-(114) cannot eas i ly  be inverted from t h e  Laplace 

domain, the numerical scheme developed by Stehfes t  (1979) was used. The 

r e s u l t s  are discussed below. 

Evolution of fault-charged hydrothermal systems 

The model has been employed t o  study the evolution of fault-charged 

hydrothermal systems. Figure 78 shows a p l o t  of dimensionless tempera- 

t u r e  TD versus depth a t  a given location f o r  several  d i f f e ren t  values of 

dimensionless t i m e  T The f igure shows that i n i t i a l l y  (T = 0)  the  sys- 

t e m  is i n  equilibrium with a l i nea r  geothermal gradient. 

hot  w a t e r  starts t o  flow i n t o  the permeable aquifer;  i n  the  ear ly  s tages  

of development, only the aquifer  is being heated. Later on, however, the  

conductive heat t ransfer  between the aquifer and the adjacent rocks 

1' 1 

A t  T~ = 0 the 

increases,  causing the surrounding rock to  be heated and the temperature 

i n  t h e  aquifer  to s t ab i l i ze .  

The temperature i n  the aquifer  and the caprock reaches steady state 

a t  a dimensionless t i m e  T, between 1 and 10. A t  this t i m e  the tempera- 

t u r e  i n  the  rock formation below the aquifer  is nowhere near  a steady- 

state condition. The high value of Q = 30 shows that the  constant- 

temperature boundary a t  the ground surface is much closer  t o  the aquifer 

than the  deep boundary and shauld therefore control the  thermal response. 
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Figure 78. Evolution of a fault-chargel 
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In  the example shown i n  Figure 78, t h e  s t e a d y - s a t e  temperature of the 

aquifer  a t  the locat ion i n  question is  approximately TD = 0.91. 

Similar development of the thermal f i e l d  i s  observed a t  other  loca- 

t i ons  away from t h e  f a u l t  ( d i f f e r e n t  E l  ) . 
t i o n  i s  shown a t  a locat ion fu r the r  away from t h e  f a u l t  (E1 = 1 .O); a l l  

o ther  parameters remain the  same. In t h i s  case the steady state dimen- 

s ion le s s  temperature i n  the  aquifer reaches a l o w e r  value and consequent- 

l y  t h e  temperature gradient i n  the caprock is not as sharp. Similarly,  

closer t o  the  f a u l t  ( E 1  < .1 )  the aquifer  w i l l  be f u l l y  heated to the 

temperature of the in jec ted  w a t e r  (TD = 1.0). 

stand the  behavior of the  ana ly t i ca l  solut ion (equations ( 112)-(  1 14) ), 

t h i s  discussion is divided i n t o  ear ly  t i m e ,  intermediate t i m e  and late- 

t i m e  behavior. 

In Figure 79 t h e  thermal evolu- 

In  order t o  f u l l y  under- 

Early-time behaviar 
~~ ~ 

A t  ear ly  times t h e  solut ion for the temperature in the aqui fe r  s i m -  

p l i f ies  considerably, so t h a t  inversion i n t o  real space is possible (see 

Appendix D). The solut ion i n  real space is 

TD = [ 1  - Tsl U [ T l -  e l e l ]  + Ts ( 1  15) 
a 

where U denotes the u n i t  function. Bquation ( 1  15) shows t h a t  when the  

dimensionless t i m e  T l r  is less than 81 E l ,  the i n i t i a l  temperature Tg 

prevails. 

the aqui fe r  temperature equals the temperature of the f a u l t  w a t e r .  No 

temperature changes occur i n  the  caprock and the  bedrock a t  ear ly  times. 

Howemr, in the thermal region, when Tl is grea te r  than e l  E,, 
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Intermediate-time behavior 

A t  intermediate times, before the boundary conditions a t  z = D and 

z = - (B  + D )  are fe l t ,  the present  solut ion i s  iden t i ca l  t o  the Lauwener 

(1955) so lu t ion  except for the i n i t i a l  geothermal gradient  and the d i f f e r -  

e n t  rock propert ies  i n  the  caprock and the  bedrock. Thus, t h e  Lauwerier 

so lu t ion  i s  also a special case of the present  solution. In order t o  

check the  v a l i d i t y  of the present  solut ion and the accuracy of the 

numerical inver te r ,  this m o d e l  w a s  compared t o  the  Lauwerier solut ion 

(Figure 80). For this comparison the geothermal gradient  w a s  neglected 

(Tg = 0) and the  rock propert ies  i n  the bedrock and the  caprock were 

i d e n t i c a l  ( y  = 1.0, K = 1 .O) .  As Figure 80 shows, a near-perfect match 

was obtained thereby ver i fying the accuracy of the present  model and the 

numerical inverter .  It should be noted, however, that the parameters 

associated with the  L a u w e d e r  solut ion i n  Figure 80 are as defined by 

Lauwerier (1955). 

Late-time behavior 

A t  late t i m e s  the so lu t ions  for t h e  temperatures i n  the Laplace 

domain (equations (112-114)) also simplify to the extent  t h a t  inversion 

t o  real space is possible. In rea1 space the so lu t ions  become (see 

Appendix D ) :  

n = D: T~ = [I - T I exp - [I + : ] E ,  + T~ 
g a 
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Equations (1 16)-( 118) show t h a t  the steady-state temperature p ro f i l e s  are 

independent of 8 ,  as w e 1 1  as the heat  capacities of the caprock and the 

bedrock y. Further analysis  of equations (116)-(118) i s  given below. 

Evolution of thermal f i e l d  i n  the  aquifer  

Figure 81 shows the evolution of the thermal f i e l d  i n  the aquifer  for  

= .005 and other parameters as specified i n  the figure. It shows that 

c lose  t o  the f a u l t  (small 6 , )  t h e  temperature rises almost immediately 

t o  the temperature of the recharging water. The f igure a l s o  shows that a 

steady-state thermal f i e l d  i s  reached shor t ly  af ter  dimensionless t i m e  

exceeds 1.0, Although the steady-state thermal f i e l d  i s  independent 
=1 

of €I1 ( s e e  equations (116-1 18) 1, t he  t rans ien t  development of the thermal 

f i e l d  i s  grea t ly  affected by 8,. This is  i l l u s t r a t e d  i n  Figures 82-84. 

In general, the  f igures  show t h a t  f o r  any given dimensionless t i m e ,  t h e  

smaller el is, t h e  fu r the r  away from t h e  f a u l t  the thermal f r o n t  has 

advanced. 

t he  aqui fe r  normalized t o  that of the caprock. Thus, t he  higher the 

value of el the  grea te r  the heat  capacity of the aquifer  and consequently 

the less portion of the aquifer can the recharged (ho t )  water hea t  up. 

Also, Figures 82-84 show that for higher =lues  of el, the location of 

the thermal f r o n t  (TD = .SO) can be expressed by the simple re la t ion ,  

This is reasonable since el represents the heat  capacity of 

( 1  19) ‘1 = 
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Figure 82. el-dependence of. the temperature profile along the aquifer 
for f l  = . o l e  [XBL 811 0-116761 
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8 
Figure  83. +dependence of the temperature prof i l e  along the aquifer 

for r1 = . l o .  [XBL 811 0-1  16771 
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Figure 84. +dependence of the temperature profile along the aquifer 
for T, = 1.0. [XBL 8110-116781 
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D 
QDt = d l ( T i Q -  Tbl )  

This has a l s o  been found e a r l i e r  (see equation 68). q u a t i o n  (119)  does 

not hold f o r  low values of e l  a t  the dimensionless t i m e s  shown i n  Fig- 

ures 82-84, since low values of 81 imply low aqui fe r  heat  capacity,  and 

consequently s ign i f i can t  heat conduction losses  t o  the caprock and bed- 

rock w i l l  occur a t  these dimensionless t i m e s .  

ll=O 

Heat losses from t h e  aquifer  

H e a t  losses from t h e  aquifer  t o  the caprock and bedrock can be 

calculated a t  any given t i m e  by the Fourier law of heat conduction ( s e e  

equation (83) 1. In  terms of dimensionless parameters the Fourier l a w  of 

heat conduction can be wr i t t en  as 

( 1  20) 

where the f i r s t  and the second terms on the  right-hand s i d e  represent  t he  

hea t  losses  to the caprock and the  bedrock, respectively.  

represents  the t o t a l  hea t  l o s s  t o  the caprock and the bedrock. 

Thus, QDt 

The heat  losses  from t h e  aquifer  t o  the caprock and bedrock fo r  a 

given loca t ion  away from t h e  f a u l t  (5, = . l o )  are shown i n  Figure 85. 

The f igure  shows t h a t  a t  ea r ly  t i m e s  there  are no heat losses t o  the  cap- 

rock or the  bedrock as the thermal f r o n t  has not arrived. Later on, the 

hea t  losses  increase t o  a maximum a t  T1 

rapidly.  A t  T~ = 1.0, the  heat  losses  to the caprock s t a b i l i z e  bu t  those 

t o  the  bedrock continue t o  decrease and eventually become negative (i.e., 

hea t  flows from the  bedrock i n t o  the  aqui fe r )  a t  very large times. This 

. l o ,  b u t  after t h a t  decrease 
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behavior can be readi ly  explained, when Figures 78 and 79 are considered. 

The heat losses  from t h e  aquifer  t o  the caprock s t a b i l i z e  when the con- 

s t a n t  temperature boundary a t  z = D i s  f e l t  (approximately a t  T~ = 1 . O ) ,  

and a steady l i n e a r  gradient  is established. However, due t o  the con- 

s t a n t  temperature boundary a t  z = -(B + D ) ,  a l inear ,  steady temperature 

gradient (pos i t ive  with depth and therefore  results i n  negative heat  

l o s ses )  i s  only achieved a t  late t i m e s  as the  bedrock is being heated. 

The t o t a l  hea t  losses  from t h e  aquifer  s t a b i l i z e  a t  the approximate value 

of 1.0 a t  la te  t i m e s .  

The total heat losses f r o m  the aquifer, QDt versus dimensionless 

dis tance el a t  various dimensionless t i m e s  f o r  d i f f e r e n t  values of el are 

shown i n  Figures 86-89. The figures show that a t  ear ly  times very large 

hea t  losses  occur c lose t o  the f a u l t  (small E l ) .  However, the  hea t  f lux  

c lose  t o  the  f a u l t  decreases logarithmically with t i m e .  It can be shown 

mathematically t h a t  the hea t  losses  close t o  the  f a u l t  w i l l  decrease with 

t i m e  as specif ied by the following expression ( C a r s l a w  and Jaeger, 1959): 

2 
QD t =-. (121) 

I 
I 
I 
I 
1 
1 
I 
I 
1 
I 
I 
I 

Equation (121) i s  va l id  only i f  K = y = 1.0, and a t  times before the  con- 

stant-temperature boundary a t  z = D is  felt.  

Another i n t e re s t ing  characteristic of the curves shown i n  Figures 86-- 

89 i s  t h a t  they can be enclosed by a s ingle  l i ne ,  representing the  area 
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Figure 86. Total dimensionless heat losses (Q, 1 from the aquifer for 
[XBL 811 0-1 16631 t el = .OOOI. 
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Figure 87. Total dimensionless heat losses (QD 1 fran the  aquifer for 
[XBL 811 0-1  16641 t e, = . O I .  
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Figure 88. Total dimensionless heat losses (Q, ) fram the aquifer fo r  
[XBL 811 0 - 1  16671 t e, = 1.0. 
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Figure 89. Total dimensionless heat losses (Q, ) from the aquifer for 
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is  that the advancement of the thermal f r o n t  along the aquifer  is l inear -  

l y  related t o  the dimensionless t i m e .  Also, t he  steady-state curves i n  

Figures 86-89 are iden t i ca l ;  this again i l l u s t r a t e s  that the steady-state 

temperature d i s t r ibu t ion  is independent of e l .  

t h e  hea t  loss curves for  la rge  = lues  of e l ,  are probably a r t i f a c t s  

created by the  numerical inverter .  There does not s e e m  t o  be a theoret- 

The pecul iar  m a x i m a  i n  

ical bas i s  fo r  these maxima. 

Heat losses a t  the surface 
~~ ~~ ~ 

The hea t  losses a t  the ground surface can a l s o  be calculated using 

the Fourier l a w  of heat  conduction, and evaluating the der iva t ive  a t  the 

surface (2  = D) . Figure 90 s h o w s  the hea t  losses  a t  the surf ace versus 

dis tance f r o m  t h e  f a u l t  (t1), for a given set of parameters. The f igure 

shows that the thermal f r o n t  reaches the surface close to the f a u l t  a t  a 

dimensionless t i m e  of TI = .001. The heat f lux  a t  the surface increases  

s t e a d i l y  W i t h  dimensionless t i m e  to a steady sta te  value of 1.0 a t  dimen- 

s ion le s s  t h e  T1 > 10. For the parameters sham i n  Figure 90, t h e  anoma- 

lous  hea t  f luxes a t  the surface due to  the fault-charged aqui fe r  beneath 

extends to a dimensionless distance of approximately 6, = 10. 

away from t h e  f a u l t ,  normal hea t  losses due to  the normal geothermal gra- 

d i en t  prevai 1. 

Further 

Steady-state conditions 

Equations (116-118) give  the steady-state temperatures i n  the aqui- 

f e r ,  caprock, and bedrock. Figure 91 s h o w s  the steady-state temperature 

d i s t r i b u t i o n  i n  the aqui fe r  f o r  various values of K/Q. The f igure shows 
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Figure 90. Heat losses at the ground surface. [XBL 81 10-1 16731 
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Figure 91. Steady-state temperature distribution in the aquifer for 
various values of K/U. [XBL 811 0-116741 
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that the smaller the value of K/U, the fur ther  away from the f a u l t  the 

thermal f i e l d  extends. The parameter K/U represents the heat losses  to 

the bedrock, w i t h  high values indicat ing either that the thermal conduc- 

t i v i t y  of the bedrock i s  high, o r  t h a t  the lower constant-temperature 

boundary i s  c lose  to the aquifer  (small B). 

Ime steady-state heat  losses  from the aquifer  can e a s i l y  be derived 

using equations (116)-(118). The expression f o r  the steady heat  losses  

is (see Appendix D): 

1 = [ l  - TgJ [l + ;] exp - [l - 51 6, ( 1  22) 

The total steady heat losses  from the aquifer versus the distance from 

the f a u l t  are shown i n  Figure 92 f o r  various values of u. In t h i s  case 

the geothermal gradient  is specified a s  zero and K is fixed a t  1.0. Ime 

figure shows that the lower the value of u, the higher the heat losses  

c lose to the f a u l t  and the  shor te r  the extent  of the thermal f i e l d  from 

the f a u l t .  This behavior is  reasonable as u is inversely related t o  the 

steady heat losses  to the bedrock. For very la rge  values of u the heat 

losses  to the bedrock a r e  negl igible  and consequently the total hea t  

losses  from the aquifer equal the heat f lux a t  the ground surface.  

Application to Susanville Geothermal Project  

As a first attempt to va l ida te  t h i s  model f o r  fault-charged hydro- 

thermal systems, it w a s  applied t o  data from the geothermal system a t  

Susanville,  California.  The more than 20 exploration wells i n  Susanville 
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Figure 92. Steady-state heat losses from the aquifer for various values 
of u. [XBL 811 0-1 16751 
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have located a low-temperature ( <  8 O o C ) ,  shallow geothermal aquifer  of 

l imited areal extent  [Benson and O'Brien, 1981 I . Figure 93 shows the 

locat ion of the w e l l s  and the temperature contours a t  an elevation of 

1150 m, which corresponds to a depth of 125 m, where the primary aquifer  

i s  found. The temperature aontours shown i n  Figure 93 suggest that the  

reservoi r  i s  charged by a f a u l t  with a NW s t r ike :  the f a u l t  being located 

s l i g h t l y  west of a l i n e  in t e r sec t ing  w e l l  S-9 and the D a v i s  w e l l .  

steep temperature gradients  to the w e s t  of the proposed f a u l t  i l l u s t r a t e  

t h a t  it is  recharging t h e  aquifer only t o  the east. Temperature contour 

maps a t  d i f f e r e n t  depths show faul t - re la ted  charac te r i s t ics  similar t o  

those shown i n  Figure 93. Furthermore, many of the w e l l s  a t  Susanville 

show a reversa l  with depth s i d l a r  t o  t h a t  shown i n  Figure 76 f o r  the 

Klamath F a l l s  w e l l .  

The 

One po ten t i a l  use f o r  the hydrothermal energy a t  Susanville is space 

heating. However, the  l imited areal extent  of the hydrothermal system 

(Figure 93) ind ica tes  that the  mass of hot water ( t h e  l imi t ing  tempera- 

ture taken as 60°C) amounts t o  only 1-3 x lo7 m3 (depending upon the 

aquifer  thickness selected). Current plans ( U . S .  Department of Energy, 

1980) ca l l  f o r  an extract ion rate of approximately 0.035 m3/s  (550 g p m )  

f o r  space heating of 14 public  buildings. I f  recharge i s  neglected, this 

corresponds to a lifetime of 9-27 years. If the pro jec t  is intended f o r  

20 years, i t s  success W i l l  depend grea t ly  upon the  recharge rate. A re- 

liable estimate of the  recharge into the Susanville hydrothermal system 

is therefore  of considerable economic in t e re s t .  Application of our model 

JI 
f 
I 
I 
t 
I 
I 
I 
I 
I 
1 
I 
I 
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Figure 93. Temperature contours at  1150 m elevation a t  Susanville (after 
Benson e t  a l . ,  1981 1 [XBL 807-72471 
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t o  the  Susanvi l le  anomaly can give the first estimate of the recharge 

ra te .  

Table 9 shows the parameters selected from t h e  w e l l  data. The maxi- 

mum temperature measured i n  the f i e l d  i s  approximately 8OoC i n  w e l l  s-9, 

which is located very close t o  the proposed f a u l t  (see Figure 93). The 

temperature of the  w a t e r  recharging t h e  aqui fe r  i s  therefore f ixed a t  

80°C. Picking 6OoC as the average aquifer temperature, the  f l u i d  param- 

eters can be obtained, p, = 983 kg/m3, cw = 4179 J/kg O C .  I t  is  now pos- 

sible t o  determine that the appropriate value of 8, = 0.31 (equation 

(106c)) .  

Table 9. Parameters used f o r  the Susanville model. 

Parameter Value 

Aquifer thickness , b 35 m 

Depth t o  aquifer ,  D 125 m 

Aquifer porosi ty ,  + 0.2 

Thermal conductivity of rock, Xl 1.5 J/rn*s.OC 

Rock heat  capacity,  c1 

Rock densi ty ,  p l  2700 (kg/m3) 

1000 ( J/kg* oc) 

The object ive of t h i s  exerc ise  is t o  use the model t o  match the t e m -  

perature contour data shown i n  Figure 93 and the temperature profiles 

from individual  w e l l s  i n  an attempt to estimate t h e  hot water recharge. 

A f t e r  a number of computer runs, t h e  match shown i n  Figures 94 and 95 was 

obtained. As Figure 94 shows, t h e  calculated temperature contours compare 
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i .  

very w e l l  with the observed ones i n  the h o t t e s t  region of the f ie ld ,  

c lose  t o  the  proposed f a u l t .  Further away, however, t he re  are large d i f -  

ferences between the  calculated and the  observed temperatures. There are 

severa l  possible  reasons f o r  t he  discrepancy. F i r s t ,  only l i m i t e d  da ta  

are ava i lab le  away from t h e  f a u l t  (only wells S-5 and S-lo), so that t e m -  

pera ture  contours are not accurately hown. Second, evidence shows that 

there is  a high regional flow of ground-water towards the southeast  and 

that mixing of the colder s h a l l o w  groundwater with the hot f l u i d s  is tak- 

ing  place. Third, t he  subsurface geology is  considerably more complex 

than can be accounted f o r  by the simple m o d e l  we have used here. In any 

case, t h e  model matches t h e  temperature p r o f i l e s  of wells close t o  the 

proposed f a u l t  very w e l l ,  a s  shown i n  F igure  95. 

The match shown i n  Figures 94 and 9 5  was obtained using two d i f f e r e n t  

sets of parameters. F i r s t ,  i f  the lower constant temperature boundary is 

placed very deep (H >> D), t he  parameters abtained indicate t h a t  the 

hydrothermal system has  been under development approximately 2000 years 

and t h a t  the f a u l t  charges the system a t  a rate of 9 x 

Second, a very similar match is obtained i f  the constant temperature boun- 

dary i s  placed a t  a depth of about 400 meters (U = 2.0); i n  this case the 

parameters obtained show t h a t  steady-state temperature conditions are 

reached (consequently the evolution t i m e  cannot be determined except that 

it exceeds 10,000 years)  b u t  t he  calculated recharge r a t e  is the same a s  

i n  the  f i r s t  case (9 x 

subsurface formations a t  Susanville,  t h e  second case s e e m s  more l ike ly .  

m3/s*m.  

m3/s 'm).  If one considers the age of the 
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Also it i s  not unl ikely t h a t  a deeper permeable aquifer  with c i rcu la t ion  

of colder water i s  present  a t  the si te,  and this would a c t  a s  a constant 

temperature boundary. 

cern 

t i m e  

heat  

Anyway, t h e  accuracy of the calculated recharge rate is of more con- 

t o  the developers of the Susanvi l l le  hydrothermal system than the 

of evolution. If the  hea t  losses from t h e  aquifer  are control led by 

conduction as we have assumed i n  the  present  model, t he  calculated 

recharge rate should be reasonably accurate. However ,  i n  the model hori-  

zontal  conduction is neglected i n  the model, and this may make the actual 

recharge rate greater than  w h a t  we have calculated.  

I f  we assume t h a t  the calculated recharge rate is co r rec t  and t h a t  

t he  f a u l t  recharges over a dis tance of 2500 m, the total rate of recharge 

i s  approximately 0.0225 m3/s.  

mately 70% of the proposed ex t rac t ion  rate; consequently a p ro jec t  l i f e -  

t i m e  of 25-75 years could be expected, o r  approximately three times the 

longevity i f  no recharge is considered. 

t h a t  the  s impl ic i ty  of t h e  present  model does not warrant d e f i n i t e  con- 

clusions.  The r e s u l t s  presented here should be considered as rough f i r s t  

estimates 

This recharge rate corresponds to  approxi- 

It should be emphasized, however, 

unfortunately, de t a i l ed  hea t  flaw data over t he  Susanville anomaly 

are not available a t  present;  such da ta  would have been useful  i n  confirm- 

ing  t h e  accuracy of the model. 

values p lo t t ed  aga ins t  dis tance from t h e  proposed f a u l t .  

Figure 96 shows the calculated hea t  f l o w  
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Figure 96. Calculated heat flaws a t  Susanville. [XBL 816-31 821 
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Conclusions 

8 

A simple 

t e m s  has been 
I two-dimensional model for fault-charged hydrothermal sys- 

developed and used i n  theore t ica l  s tud ie s  of such systems. 

The r e s u l t s  obtained ind ica te  t h a t  the evolution of the thermal f i e l d  i s  

g rea t ly  dependent on 81, a parameter denoting the  ratio of the heat  capa- 

c i t y  of the aquifer to that of the caprock. The lower the value of 

the g rea t e r  the heat  losses from the aquifer  to the caprock and bedrock. 

A steady-state thermal f i e l d  i n  the caprock i s  establ ished a t  dimension- 

I 
I 
I 
I 
I 
I 
8 
I 

less t i m e  of = 1-10. The steady-state temperature f i e l d  i s  g rea t ly  

dependent on the dis tance to the constant temperature boundary condition 

a t  the ground surface (z = D). The constant temperature boundary condi- 

t i on  below the  bedrock (z = - ( D  + B)) has negl igible  e f f ec t s ,  as long as 

the bedrock i s  much thicker  than the caprock (D << B). Consequently the  

hea t  losses frura the aquifer are pr imari ly  governed by the constant t e m -  

perature  condition a t  the ground surface. 

The m o d e l  has been applied to  the  hydrothermal system a t  Susanville,  

California.  A reasonable match with the areal temperature d i s t r ibu t ion  

i n  the  primary aquifer, and the  temperature p r o f i l e s  of individual  w e l l s  

was  obtained. This allowed an estimate of the  recharge rate from the  
f 
I 
I 

f a u l t  i n t o  the hydrothermal system t o  be obtained. As the  calculated 

recharge rate i n t o  the Susanville hydrothermal system proved to  be q u i t e  

s ign i f i can t ,  a threefold increase i n  the po ten t i a l  of the Susanville 

hydrothermal anomaly f o r  space heating purposes is predicted. 
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SUMMARY OF THEORGTICAL STUDIES 

In this chapter a few important geothermal reservoir  engineering 

problems have been addressed. The studies of well tes t  analysis  of geo- 

thermal reservoi rs  showed that the  conventional isothermal methods can be 

applied t o  w e l l  t e s t  data from hot  water geothermal reservoirs ,  i f  the 

appropriate  values of the f l u i d  proper t ies  are used. Furthermore, two o r  

more l i n e a r  segments i n  the pressure t r ans i en t  da ta  can be iden t i f i ed  and 

consequently, averaged reservoir parameters can be obtained. 

Analysis of w e l l - t e s t  data from two-phase geothermal reservoirs  is 

much more complex than t h a t  of single-phase reservoirs.  Since under two- 

phase conditions,  t he  f l u i d  pressure is  dependent on the f l u i d  tempera- 

t u r e  t h e  pressure drop i n  the  reservoir i s  ind i r ec t ly  related t o  the  

ex ten t  and rate of boil ing. The problem is  fu r the r  complicated by the  

r e l a t i v e  permeability functions,  which a t  present  are unknown. In f a c t ,  

these funct ions may d i f f e r  f r o m  reservoir t o  reservoi r  and even from w e l l  

t o  w e l l .  In  the present  study it was found t h a t  the immobile l iqu id  cut- 

off  is the most important characteristic of the r e l a t i v e  permeability 

functions. Furthermore, it i s  shown t h a t  the r e l a t i v e  permeability 

parameters can be determined as functions of the  flowing enthalpy, from 

pressure and enthalpy t r ans i en t  data. 

Presently,  it is commonly believed t h a t  the production of high- 

enthalpy f lu ids  from two-phase zones is more benef ic ia l  than the  pro- 

duction from liquid-dominated zones. However the  present s tud ie s  of 
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explo i ta t ion  s t r a t e g i e s  from two-phase geothermal reservoirs  such a s  

Olkaria showed, that i n  the long run, production of lower-enthalpy f l u i d s  

from deeper horizons may be more benef ic ia l  as a more uniform depletion 

process resu l t s .  Production from deeper horizons may g rea t ly  enhance the 

energy recovery from two-phase geothermal systems. 

In  the  s tud ie s  of in jec t ion  i n t o  f rac tured  geothermal reservoirs ,  it 

w a s  found, that f r ac tu res  may not cause premature breakthrough of the 

colder w a t e r s  i n t o  the production region, as commonly has been believed. 

Although the  f r ac tu res  are t h e  primary f l u i d  conduits, conductive hea t  

t r ans fe r  f r o m  t h e  rock matrix i n t o  the f rac tures  causes drastic reduction 

i n  t h e  ve loc i ty  of the thermal f r o n t  along t h e  fractures .  Thus, a f t e r  a 

period of t i m e ,  t h e  thermal f r o n t  i n  the f rac tures  w i l l  advance a t  the 

same rate as the thermal f r o n t  i n  the rock m a t r i x ,  and consequently a 

uniform energy sweep w i l l  result. Type curves i l l u s t r a t i n g  t h e  advance- 

ment of the thermal f r o n t  along the  f rac tures ,  r e l a t i v e  to that  of the 

rock matrix, have been developed. 

A simple model f o r  fault-charged geothermal reservoirs has been 

developed. The r e s u l t s  obtained using the  model ind ica te  t h a t  most of 

the  hea t  losses from t h e  aquifer  are due to  the constant temperature 

boundary condition a t  the ground surface. The temperature p r o f i l e s  can 

be used t o  estimate the  recharge rate i n t o  such systems. Application of 

the  present  model t o  the hydrothermal system a t  Susanville, California, 

demonstrates t h a t  t he  calculated recharge rate s igni f icant ly  increases  

the  p o t e n t i a l  of the resource f o r  space heating applications.  
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FIELD APPLICATIONS 

In an earlier sect ion,  a l i s t  of possible appl icat ions of numerical 

simulators t o  f i e l d  data w e r e  given. These appl icat ions can bas ica l ly  be 

subdivided i n t o  two categories:  

( 1  ) simulations of individual  w e l l s ,  and 

( 2 )  field-wide simulation studies. 

In  t h i s  chapter, the  appl icat ion of numerical simulators t o  the  Krafla 

geothermal f i e l d  i n  Iceland, and the V a l l e s  Caldera (Baca) geothermal 

f i e l d  i n  New Mexico is  i l l u s t r a t e d .  A t  Krafla, i n j ec t ion  tes ts  a re  used 

t o  obtain the  t ransmissivi ty  and s t o r a t i v i t y  of the reservoir.  These 

tests are performed using variable flow rates, and much colder w a t e r  than 

t h e  undisturbed reservoi r  w a t e r  is injected.  The app l i cab i l i t y  of con- 

vent ional  type curve matching techniques t o  the  data i s  therefore  ques- 

tionable. The data i s  analyzed using the  numerical simulator PT. 

D a t a  from the  Baca geothermal f i e l d  have been used f o r  a field-wide 

simulation study using the  numerical simulator SHAFT79 [Pruess and 

Schroeder, 19791 . 
geophysical, and w e l l  data to estimate the  reservoir capacity f o r  the 

f i e ld .  The reservoir model developed is then used to estimate t h e  lon- 

gevi ty  of t h e  reservoi r  based on a 50 MWe p o w e r  production. 

from the f ie ld  are l imi t ed ,  a very simple hydrological nodel i s  used i n  

t h e  simulations. However ,  t he  study i l l u s t r a t e s  how numerical simula- 

t ions  can a id  the f i e l d  developer i n  the decision making process. 

The approach taken is to use t h e  ex i s t ing  geological,  

As t h e  data 
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MODELING OF WELL TESTS AT KRAFLA, ICELAND 

The Krafla geothermal f i e l d  i s  located i n  the neovolcanic zone i n  

northeas t e rn  Iceland (Figure 97).  The neovo lcanic  zone is  charactertized 

by f i s s u r e  s w a r m s  and cen t r a l  volcanoes. 

located i n  a caldera ( 8  x 10 km), w i t h  a large cent ra l  volcano, a l s o  

named Krafla (Figure 98). As shown i n  Figure 97, one of the large fis- 

sure  s w a r m s  goes r i g h t  through the caldera. Detailed descriptions of the 

regional  geological characteristics of the Krafla f i e l d  are given by 

Saemundsson (1974), Bjornsson e t  al. (19771, Jakobsscm e t  al .  ( 1  978), 

Saemundsson (19781, and Bjomsson e t  al. (1979) . 

The Krafla geothermal f i e l d  i s  

The f i s su re  s w a r m s  i n  the Krafla area are volcanically active.  In  

1975 a r i f t i n g  episode occurred a t  Leirhnjukur (east of the main f i e l d )  

and s ince then several  surface volcanic episodes have occurred [Bjornsson 

e t  al.,  1977; Bjomsson e t  al. , 19791 . Along w i t h  these episodes, a rise 

and f a l l  of the ground surface has been experienced [Bjornsson e t  al.,  

19771. The ground surface rises gradually with t i m e  as magma is accumu- 

l a t i n g  i n  chambers below the  ground surface,  but  per iodical ly  f a l l s  

rapidly as magma is  released i n t o  t h e  f i s s u r e  swam t o  form dykes o r  

penetrates  a l l  t he  way t o  the surface. Several large m a g m a  chambers have 

been located a t  depths of 3 t o  7 km below ground surface using seismic 

s tudies  [Einarsson, 19781 . 
Surface geophysical exploration a t  Krafla w a s  i n i t i a t e d  i n  1970. 

In 1974, two exploration w e l l s  were dr i l led ,  and the subsurface data 
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Figure 97. The spreading zone i n  North Iceland. Mapped by Kristjan 
Saemundsson (after Bjornsson et a l . ,  1979) . [XBL 793-8932] 
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Figure 98. Outline geo log ica l  map of the Krafla Caldera and associated 
f i s s u r e  swarm. Mapped by Kristjan Saemundsson ( a f t e r  
Bjornsson e t  a l . ,  1979).  [XBL 793-8931 I 
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indicated the  presence of a high-temperature 03OO0C) geothermal f i e l d .  

Presently,  18 wells have been d r i l l e d  a t  Krafla and da ta  from these w e l l s  

provide t h e  basis fo r  the reservoir  m o d e l  t o  be described i n  the  next 

section. The locat ions of the w e l l s  are shown i n  Figure 99. 

Reservoir Model 

The subsurface geology of the w e l l s  in fe r red  from cut t ings  have been 

described by Kristmannsdottir e t  al. (1975-1977) and Gudmundsson and 

Steingrimsson (1981 1. Basically, the  subsurface rocks can be subdivided 

i n t o  three formations: the hya loc las t i te  formation, t h e  lava formation, 

and t h e  in t rus ive  formation (Figure 100). The hyaloc las t i te  formation i s  

predominant i n  the top 800 m but  it is  subdivided by a lava layer a t  

depths of 200-400 m. A t  depths of 800-1100 m, a thick l aye r  of the lava 

formation prevails. 

and below t h a t  the in t rus ive  formation dominates. In the new w e l l  f i e l d  

south of the Krafla volcano, the uppermost hya loc la s t i t e  and lava sequen- 

ces are not  present  bu t  the in t rus ive  formation dominates from ground 

surface down [Gudmundsson and Steingrimsson, 1981 1 . 

A mult iple  s i l l  i s  located a t  depths of 1100-1300 m, 

In  1977, a model of the  Krafla f ie ld  w a s  presented [Stefansson e t  al . ,  

19771. 

accepted model of the  f ie ld  [Steingrimsson and Stefansson, 19771. 

Stefansson (1981 1 presented a detailed descr ipt ion of the model which is 

summarized i n  the following discussion. 

This model was later s l i g h t l y  modified to y i e ld  t h e  present ly  
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Figure 100. Sectional geological drawing of the Rrafla geothermal f i e l d  
(a f t er  Stef ansson, 1981 1.  [XBL 788-14741 
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In the old w e l l  f i e l d  ( w e l l s  1-12, 151, t he  pressure and temperature 

data from t h e  w e l l s  have indicated the presence of two reservoirs. The 

upper reservoir  contains single-phase l iqu id  w a t e r  a t  a mean temperature 

of 205OC. This reservoir  extends from a depth of 200 m t o  a depth of 

about 1100 m. The deeper reservoi r  is  two-phase, w i t h  temperatures and 

pressures following the  sa tura t ion  curve with depth. This reservoir  d i r -  

e c t l y  underlies a t h i n  confining layer  (the multiple sills) a t  a depth of 

1100-1300 m t o  greater than 2200 m ( the  depth of the deepest well). The 

two reservoi rs  seem t o  be connected near the gul ly ,  Hveragil. In the new 

w e l l  f i e l d  (south of the  K r a f l a  volcano), the  upper reservoir  has not 

been iden t i f i ed  and only a s ingle  two-phase liquid-dominated reservoir  

seems t o  be present. 

W e l l  t e s t i n g  a t  Krafla 

A common procedure a t  Krafla is t o  perform an in jec t ion  test i n  a 

new w e l l  soon a f t e r  d r i l l i n g  i s  completed. This procedure has been 

applied t o  the  last  1 2  wells d r i l l e d  a t  Krafla ( w e l l s  7 t o  18). The pur- 

pose of the in jec t ion  test is  twofold: 

( 1 )  t o  attempt t o  s t imulate  the w e l l ,  i.e., increase the  injec-  

t i v i t y ;  

( 2 )  to obtain data t h a t  can be analyzed t o  y i e ld  t h e  t ransmissivi ty  

of the w e l l .  

The experience obtained from in j ec t ion  t e s t ing  of -11s i n  Krafla as -11 

as i n  severa l  other geothermal f i e l d s  (e.g., Wairakei, New Zealand; 

Namafjall, Iceland; TOngOMn, the  Phi l l ipp ines) ,  has shown t h a t  i n  many 
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cases apparently dry w e l l s  (small w a t e r  losses)  have been su f f i c i en t ly  

st imulated t o  become reasonably good producers [Stefansson, personal 

communication, 1980). The reasons for  t h i s  are n o t  presently known, bu t  

severa l  possible explanations have been proposed: 

( 1 )  cleaning of f r ac tu res  

( 2 )  opening up  of f rac tures  due t o  increases i n  pore f l u i d  pressure 

( 3 )  thermal cracking close t o  the w e l l  due t o  the temperature d i f -  

ference between t h e  in jec ted  w a t e r  and the hot  reservoi r  w a t e r .  

Conventional ana lys i s  of the: w e l l  tes t  data has been reported by Sigurds- 

son and Stefansson (1977) and Sigurdsson (1978).  In  this present  study 

the  use of numerical simulators f o r  w e l l  test ana lys i s  is i l l u s t r a t e d .  

A l s o ,  a clear i l l u s t r a t i o n  of permeability increases occurring during an 

in j ec t ion  test i s  given. 

Analvsis of i n i ec t ion  test da t a  

W e l l  KJ-13 a t  K r a f l a  was d r i l l e d  i n  June-July 1980 (Figure 99) .  A 

s implif ied casing diagram f o r  the w e l l  is  shown i n  Figure 101. The f ig-  

ure  shows t h a t  the w e l l  i s  cased down to a depth of 1021 m, with 9 5/8 in .  

casing; below that a 7 5 /8  in. s l o t t e d  l i n e r  extends duwn to the bottom 

of the  w e l l  ( a t  2050 m). The f igure a l s o  shows the  location of a major 

f r ac tu re  feeding t h e  w e l l  a t  a depth of 1600-1700 m. 

A f e w  days after d r i l l i n g ,  t w o  i n j ec t ion  tests were performed on 

July 10 and 1 1 ,  1980, respectively.  During the  tests a pressure trans- 

ducer w a s  located a t  a depth of approximately 200 m below ground surface 
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Figure 101 . Simplif ied casing diagram f o r  Krafla w e l l  K 3 - 1 3 .  
[XBL 812-2600] 
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and continuous readings w e r e  obtained a t  the surface. The approximate 

temperature of the  in jec ted  w a t e r  w a s  2OOC. 

me in jec t ion  rates a t  the surface a r e  shown i n  Figure 102 along 

with the  water-level data for the second test. After the  f i r s t  in jec t ion  

tes t  w a s  completed (July l o ) ,  continuous in j ec t ion  w a s  made during the  

night,  with a stable in jec t ion  rate of approximately 29 kg/s fo r  the l a s t  

few hours before the second tes t  started ( a t  t i m e  t = 0 as  shown i n  Fig- 

ure  102). The second in j ec t ion  test consisted of an i n i t i a l  f a l l o f f ,  

th ree  in j ec t ion  segments with increasing flow rates, and f i n a l l y  a second 

f a l l o f f .  During t h e  test, a f r e e  surface water table i s  present  i n  the  

w e l l  and consequently wellbore storage e f f e c t s  are present. Furthermore, 

t h e  ana lys i s  of the in jec t ion  tes t  seemed t o  be complicated by thermal 

effects as 2OoC temperature w a t e r  is in jec ted  i n t o  a two-phase reservoi r  

of much higher temperature. In  the  present  ana lys i s  it is assumed that 

the  f r ac tu re  zone a t  1600-1700 m depth i s  the  primary aquifer ;  thermo- 

dynamic conditions a t  t h i s  depth correspond to a temperature of approxi- 

mately 320OC. 

The f i r s t  s t e p  i n  the ana lys i s  of t h i s  w e l l  test was t o  cor rec t  f o r  

t he  w e l l b o r e  s torage e f fec ts .  This can be e a s i l y  accounted for by using 

var iable  flow rate ana lys i s  r a the r  than t h e  constant s tep-rate  surface 

flow r a t e s  shown i n  Figure 102. As the wellhead f l o w  r a t e  and t h e  w a t e r  

l e v e l  i n  the  w e l l  are known, t h e  sandface f l o w  r a t e  can be calculated on 

the  basis of simple mass balance as follows: 
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Figure 102. In jec t ion- te s t  data for well KJ-13 .  [XBL 812-2597] 
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( 1  23) 
2 - 9, - 9, - A s n r g w  

where As denotes the change i n  the water level.  EQuation (123 )  simply 

s t a t e s  t h a t  the w a t e r  enter ing the w e l l  (q,) must leave the w e l l  (9,) o r  

be contained i n  the w e l l ,  causing a change i n  the  water l e v e l  (AS). 

Certainly,  a f t e r  some t i m e  a steady-state condition w i l l  be reached where 

the  flow rates a t  the wellhead and a t  the sandface a re  iden t i ca l  and con- 

sequently the w a t e r  l eve l  is  stable ( A s  = 0). However, f o r  the Krafla 

w e l l s  (casing diameter 9 5 / 8  in .  ) t he  wellbore s torage effects w i l l  l a s t  

f o r  approximately 1 1/2 hours, and therefore  the  variable-flow r a t e  

approach must be employed i n  the  test analysis. 

In  attempting t o  match the water-level da ta  shown i n  Figure 102, 

the  two-phase simulator SHAFT79 [Pruess and Schroeder, 19791 and later 

the  single-phase nonisothermal simulator PT were used. However, these 

attempts were unsuccessful as a reasonable match with the water-level 

da t a  f o r  t h e  e n t i r e  t es t  (the i n i t i a l  f a l l o f f ,  t h e  three in jec t ion  s teps ,  

and t h e  second f a l l o f f ) ,  could not  be obtained. Further attempts =re 

made using the  simulator PT i n  its isothermal mode and the var iable-  

flow rate Theis-type simulator ANALYZE [McEdwards  and Benson, 1981 ]. 

reasonable match w i t h  the f ield data for the e n t i r e  test was obtained 

(Figure 103). The match is very good a t  a l l  times, except for  the th i rd  

in j ec t ion  step where the  calculated water-level values are s l i g h t l y  less 

than the  observed values. Figure 103 also shows the sandface flow r a t e s  

used i n  the  simulation as w e l l  as the wellhead flow rates. 

A 
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The parameters obtained from t h e  match w e r e :  

-8 3 - -  kH - 1.52 x 10 m /pa'sec P ( 1  24) 

( 1  25) 
-7 +BtH = 8 x 10 m/pa 

The t ransmissivi ty  (kH) of the reservoir  cannot be determined, a s  it is 

not obvious i f  the v iscos i ty  of the cold in jec t ion  w a t e r  or the hot res- 

ervoir w a t e r  should be used i n  the analysis. Furthermore, the total com- 

p r e s s i b i l i t y  (8,) cannot be e x p l i c i t l y  calculated,  as  the porosity ( 4 )  

and t h e  e f f e c t i v e  reservoir thickness ( H )  are not known. Further discus- 

s ion  of the reservoi r  parameters determined from t h e  in j ec t ion  test i s  

given later i n  this section. 

Now l e t  us  examine the apparent isothermal behavior observed i n  the  

in j ec t ion - t e s t  data. Since the  f l u i d  v iscos i ty  changes by more than an 

order of magnitude over the temperature range 20 t o  32OoC, one would not 

expect isothermal pressure behavior i n  the data, espec ia l ly  when the data 

are taken during both in jec t ion  and f a l l o f f  periods. This i s  because, 

f o r  a constant  thickness, i n f i n i t e ,  har izonta l  reservoir ,  the  pressure 

changes during in j ec t ion  w i l l  correspond t o  the  cold-water f l u i d  prop- 

erties whereas during the falloff period, the pressure changes w i l l  

correspond to the f l u i d  properties of the ho t  reservoir.  

i l l u s t r a t e d  i n  an earlier sectian where nonisothermal e f f e c t s  i n  w e l l  

tests of hot-water reservoi rs  were studied. 

This has been 
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In an attempt t o  explain the isothermal behavior of the data f r o m  

the  in j ec t ion  test, two p o s s i b i l i t i e s  must be explored: 

( 1 )  the  undisturbed reservoi r  conditions (e.g., T = 32OOC) cont ro l  

the  pressure response a t  the w e l l ,  and 

( 2 )  the temperature of the injected w a t e r  i s  the control l ing factor .  

As cold w a t e r  has been in jec ted  i n t o  the w e l l  a t  a l l  t i m e s  during d r i l l -  

ing  (approximately 45 days) and a l s o  during the  few days a f t e r  d r i l l i n g  

bu t  p r io r  t o  the second in j ec t ion  test ( the  test being considered), there  

must be a cold-water zone around the w e l l .  Consequently, the  f i r s t  pos- 

s i b i l i t y  seems unlikely. I f  the cold water zone around the w e l l  is the  

cont ro l l ing  f ac to r ,  this zone must extend fu r the r  from t h e  w e l l  than the 

pressure disturbance during each in j ec t ion  step. As the  reservoir  is 

fracture-dominated, the  theory developed earlier ( in jec t ion  i n t o  frac-  

tured geothermal reservoi rs )  can be used to estimate the s i ze  of the 

cold-water zone around t h e  w e l l .  Using typ ica l  values f o r  t h e  rock prop- 

erties and an in jec t ion  rate of 20 kg/s ( t h e  average in jec t ion  rate p r io r  

t o  test) ,  t h e  curve i n  Figure 104 was calculated. I f  only the in jec t ion  

period from t h e  end of d r i l l i n g  t o  the s ta r t  of the test is  considered 

(1.e. , neglecting cooling e f f ec t s  due t o  in jec t ion  during d r i l l i n g ) ,  t he  

f igure  shows that the  cold-water f ron t  w i l l  have advanced approximately 

50 m from the  w e l l  ( t i m e  period of 2-3 days). This estimate is indepen- 

d e n t  of the s i z e  of the f r ac tu re  zone, since 8 is very small (see equa- 

t i o n  ( 5 6 )  f o r  de f in i t i on  of 8 ) .  
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Figure 104. Advancement of the c o l d  water front along the fracture. 
[XBL811 1-4841 ] 
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The rad ius  of influence fo r  the pressure disturbance due t o  a 

t yp ica l  i n j ec t ion  step can be calculated d i r e c t l y  from t h e  reservoir  

d i f  fu s iv i  t y  as follows: 

r = ,/E ( 1  26) 

Multiplying t h e  numerator and the denominator by the e f f ec t ive  thickness 

of the  f r a c t u r e  zone H, t h e  parameter groups determined from t h e  w e l l  

tes t  (see equations (124)  and (125) ) can be used t o  determine the radius  

of influence ( r ) .  For an in j ec t ion  step l a s t i n g  1 hour, a radius of 

influence of 16.5 m can be calculated. As this value is  less than the 

calculated radial ex ten t  of the cold-water zone (-50 m ) ,  isothermal 

pressure behavior can be expected. If t h i s  analys is  is correct ,  t h e  

f l u i d  parameters corresponding t o  the  cold in j ec t ion  w a t e r  should be used, 

and consequently this implies a t ransmissivi ty  of kH = 1.5 x 10-1 

(15 Darcy-m). 

m3 

The f r a c t u r e  zone (aqui fe r )  feeding Krafla w e l l  KG13 i s  believed t o  

be very thin,  on the order of 1 m (Stefansson, personal communication, 

1981 1. 

zone, say 4 = . lo,  a very high total compressibil i ty,  Bt = 8 x 10-6 pa-1 

can be calculated using equation ( 1  25). This high t o t a l  compressibil i ty 

can be explained by the two-phase conditions i n  the reservoir  or by high 

f r ac tu re  compressibility. The compressibil i ty of two-phase f l u i d s  is  two 

t o  four  orders  of magnitude larger  than those of single-phase l iqu id  or 

steam w a t e r  [Grant and Sorey, 19791. The two-phase compressibil i ty 

I f  one assumes a reasonable value for  the porosity ( 4 )  f o r  this 
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depends on many parameters such as temperature, sa tura t ion ,  porosi ty ,  

and the  relative permeability curves [Bodvarsson and Pruess, 19811 . 
Figure 105 s h o w s  the re la t ionship  between f l u i d  compressibil i ty and vapor 

sa tura t ion  f o r  various values of porosity. In  ca lcu la t ing  t h e  curves 

shown i n  Figure 105, a reservoir temperature of 3OOOC and the Corey rel- 

ative permeabili ty curves e r e  used. Comparison of the t o t a l  compressi- 

b i l i t y  6, (previously determined t o  be 8, = 8 x loe6 pa") the  curves 

shown i n  Figure 105 yields  a porosi ty  value of $ = .05 and vapor satura- 

t i o n  of Sv .20. These values agree very w e l l  with values of porosi ty  

and vapor sa tura t ion  in fe r r ed  from other f i e l d  data [Stefansson, 19811. 

H o w e v e r ,  i t  i s  doubtful that the  high compressibil i ty determined from t h e  

in j ec t ion  tests is  due t o  the presence of two-phase f lu ids ,  because of 

the cold water zone surrounding the w e l l .  It i s  therefore  more l i k e l y  

t h a t  the  high compressibil i ty i s  due to  deformable f ractures .  In that  

case, the  increase i n  w e l l  losses during in j ec t ion  tests may be due t o  

opening up of f r ac tu res  caused by increased pore pressures. 

The second in j ec t ion  test t h a t  was analyzed was performed on KG12. 

This w e l l  is cased w i t h  9 5 / 8  in.  casing down t o  a depth of 952 m, and 

below t h a t  t o  the bottom of the w e l l  (2222 m ) ,  a 7 in.  s l o t t e d  l i n e r  i s  

i n  place. The major f r a c t u r e  zone is located a t  a depth of 1600 m, b u t  

some contr ibut ion t o  t h e  production from t h e  w e l l  may come from f rac tu res  

located a t  a depth of 1000 m (Stefansson, p r iva t e  communication, 1981 ) . 
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1 

The in j ec t ion - t e s t  data, consis t ing of water-level da ta  and wellhead 

flow rates are given i n  Figure 106. As the f igu re  shows, a t  sane t i m e  

p r i o r  t o  the  test, cold water a t  a rate of 30 l/s was in jec ted  i n t o  the 

w e l l .  After an i n i t i a l  f a l l o f f  l a s t i n g  f o r  approximately 1 1/2 hours, 

four  in jec t ion- fa l lof f  segments with increasing in j ec t ion  rates were used. 

On the average, each of the in jec t ion  steps only l a s t e d  40 minutes, so 

t h a t  wellbore storage effects are quite important. 

Analysis of the in jec t ion  tes t  of w e l l  KG12 was carried ou t  using 

the  simulator PT i n  its isothermal mode. Figure 107 shows the best match 

obtained between the  observed and the calculated water-level values. It  

also shows the var iable  flow rate used i n  the simulation (broken l i n e )  t o  

account for the wellbore storage effects. As the figure shows, the cal- 

culated values compare very w e l l  w i t h  the observed data. However, t he  

e n t i r e  t es t  could not be simulated using a constant value for k H / L  For 

the i n i t i a l  fa l loff  and the f i r s t  inject ion-fal loff  cycle, the  data w e r e  

matched reasonably w e l l  using kH/M = 1.2 x however, approximately 

200 minutes after the in j ec t ion  test began, a ce r t a in  decrease i n  the 

water l e v e l  i s  observed although the in j ec t ion  rate i s  kept constant 

(Figure 107). This implies an instantaneous change i n  the t ransmissivi ty  

of the  reservoi r  a t  t h i s  t i m e .  This was v e r i f i e d  by the numerical simu- 

l a t i o n  s ince,  i f  the kH/P factor w a s  kept constant a t  kH/U = 1.2 x 10-8 

over the  e n t i r e  simulation, the calculated pressure changes would grea t ly  

exceed t h e  observed ones. Therefore, i n  the simulation the k H / V  fac tor  

had t o  be increased t o  account for the apparent st imulation effects due 
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t o  the  cold-water in jec t ion .  In the simulation shown i n  Figure 107, t he  

kH/v f ac to r  w a s  increased by a f ac to r  of t w o ,  from an  i n i t i a l  value of 

1.2 x 

in j ec t ion  tests can grea t ly  st imulate geothermal w e l l s  and probably 

increase the  future  productivity of the w e l l s .  

t o  a f i n a l  value of 2.4 x 1 O-8. This c l ea r ly  i l l u s t r a t e s  t h a t  

In t he  simulation shown i n  Figure 107, a constant s t o r a t i v i t y  value 

w a s  used, @BtH = 8 x This value i s  i d e n t i c a l  t o  the  value obtained 

from t h e  ana lys i s  of w e l l  KG-13. This indicates e i the r  a ra ther  constant 

v e r t i c a l  d i s t r i b u t i o n  of the f l u i d  reserves ( 4  and Sv r a the r  uniform), or 

m o r e  l i k e l y ,  a f a i r l y  u n i f o r m  f r a c t u r e  compressibility. 

Conclusions 
~ 

In jec t ion  tests from t w o  w e l l s  a t  the Krafla f i e l d  have been suc- 

cess fu l ly  analyzed using the  numerical code PT i n  i t s  isothermal mode. 

The tests w e r e  complicated by wellbore storage e f f e c t s  and possible  non- 

isothermal e f f ec t s .  The ana lys i s  of the tests showed t h a t  nonisothermal 

e f f e c t s  are not  present  i n  the data; the  probable explanation being that 

a cold-water zone i s  present  around the w e l l s  during the  tests. The 
** * 

resul ts  of t he  simulations provided an estimate of the transmissivity and 

the  s t o r a t i v i t y  of t h e  formation around the  w e l l s .  High values of the  

to ta l  compressibil i ty i s  a t t r i bu ted  t o  a high f r ac tu re  compressibility. 

It w a s  also shown i n  the ana lys i s  of one of the  tests ( K G 1 2 ) ,  that perm- 

e a b i l i t y  increases  occur during the  test. This indicates that in j ec t ion  

tests may stimulate geothermal w e l l s  to  become better producers. 
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FIELD-WIDE MODELING OF THE BACA GEOTHERMAL FIELD, NEW MEXICO 

The B a c a  geothermal f i e l d  i s  located i n  the Valles Caldera, New Mex- 

ico ,  about 55 miles north of Albuquerque. 

by the  Union O i l  Company of Cal i fornia  and the Public Service Company of 

New Mexico. To date, over 20 geothermal w e l l s  have been d r i l l e d  i n  the 

V a l l e s  Caldera, varying i n  depth from 2000 t o  over 9000 f t  [Union, 19781 . 
Six of the w e l l s  have been d r i l l e d  i n  the Sulfur  Creek area, t h e  remain- 

de r  along Redondo Creek (Figure 1 0 8 ) .  

The f i e l d  i s  being developed 

The w e l l s  i n  t he  Sulfur  Creek area have penetrated a high-temperature 

but  low-productivity formation. In the Redondo C r e e k  area, t h e  w e l l s  have 

encountered a high-temperature ( >550°F) liquid-dominated reservoir .  

In te rpre ta t ion  of the w e l l  da ta  by Union O i l  (1978) indicates the presence 

of a liquid-dominated reservoir  and a separate steam reservoir ,  which a re  

not  i n  hydraulic communication. However, a recent study by Grant (1979a) 

suggests t h a t  there is ac tua l ly  only one liquid-dominated reservoi r ,  with 

an overlying two-phase zone. 

- 

It is extremely important t o  make reliable estimates of the  mass of 

hot water i n  place ( reservoi r  capaci ty)  and the length of time the  reser- 

voi r  can supply s t e a m  for a 50 MWe p o w e r  p l an t  ( reservoi r  longevity).  

The reservoi r  longevity depends both on the  reservoi r  capacity and on the  

ove ra l l  development plan f o r  t h e  f i e l d  (flow rates, in jec t ion ,  etc.). 

In  t h i s  first study the reservoi r  capacity is e s t i m a t e d  by volumetric 

calculat ions,  using ex is t ing  geological, w e l l ,  and geophysical data. 
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Ring fracture zone * Rhyolitic domes - Fault system 

--- Hot reservoir boundary 

Figure 108. Base map of the V a l l e s  Caldera showing shallow temperature I 
gradients (OF/lOO f t ) ,  geophysical survey l i n e s  ( e .g . ,  A-A' 1, 
specific fau l t s ,  and the estimated hot water reservoir 
boundary . [XBL 791 2-1 33491 
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An i n i t i a l  study of the reservoi r  longevity i s  a l s o  made using the  two- 

phase numerical simulator SHAFT79 [Pruess and Schroeder, 19791. Because 

of the lack of avai lable  data,  a number of assumptions w e r e  made during 

the course of the study. Therefore, the  results presented here should 

only be considered as estimates. 

Geology 

The topographically high V a l l e s  Caldera i s  a subcircular  volcanic 

depression, 20 t o  25 km i n  diameter, formed 1.1 mil l ion years  ago. This 

resurgent caldera  is character ized by a r ing f r ac tu re  zone where a number 

of r h y o l i t i c  volcanic domes are found [Union, 19781. A broad s t r u c t u r a l  

dome, W i t h  a summit a t  Redondo Peak, i s  located near the center of the 

caldera  and is bisected by a Large northeast trending central graben 

(Redondo Creek). A de ta i l ed  geological descr ipt ion of the V a l l e s  Caldera 

region can be found i n  Bailey and Smith (19781, Dondanville (1971 1 ,  

Slodowski (1977), and Sterbentz (1981). Geologic cross  sect ions of the 

V a l l e s  Caldera region are shown i n  Figure 109. 

The Bandelier Tuff is composed of severa l  m e m b e r s  of c losely welded 

to  nonwelded r h y o l i t i c  t u f f  and tuf f  breccia [Bailey and Smith, 19781. 

U p  t o  1900 m (6300 f t )  of the tuff have been penetrated by the w e l l s  i n  

Redondo Creek. The matrix permeabili ty of the t u f f  is general ly  l o w ,  b u t  

open fractures provide permeable channels i n  its deeper layers. The bulk 

of t h e  produced w a t e r  i n  the exis t ing  commercial w e l l s  comes from the 

Bandelier Tuff [Union, 19781 . 
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The Pal iza  Canyon Andesite underl ies  the Bandelier Tuff and varies 

i n  thickness from 0 t o  over 600 m (2000  f t ) .  It i s  believed t o  have low 

permeability due t o  i t s  l o w  matrix permeability and lack of open frac- 

tu re s  [Union, 19781 . 
Some of the w e l l s  i n  V a l l e s  Caldera have penetrated a t h i n  layer  of 

poorly consolidated Ter t ia ry  sands and deeper layers  of sedimentary rocks 

(Ab0 Formation). These ove r l i e  the basement rock i n  the Valles Caldera 

region, a Precambrian granite.  

Reservoir Capacity 

Volumetric Estimation 

As a f i r s t  step, we have made a volumetric estimation of the  hot 

water contained i n  the reservoir (reservoir capacity).  The parameters 

needed t o  ca lcu la te  the reservoi r  capacity are the areal extent  of the 

hot  water zone and the  average thickness and poros i ty  of the reservoir .  

Geological information, w e l l  data, and shallow them l -gradien t  contours 

were used t o  estimate the areal extent  of the hot w a t e r  zone. These data 

are supported by geophysical data from t e l l u r i c  and magnetotelluric (MT) 

surveys performed by Geonodcs (19761, and a controlled-source e lec t ro-  

magnetic ( E M )  survey performed by Graup 7 ( 1972). Tel lur ic  data can give 

information regarding lateral var ia t ions i n  r e s i s t i v i t y  while magnetotel- 

l u r i c  and electromagnetic soundings are mainly sensi t ive t o  resis t i v i  ty 

var ia t ions  with depth. The t e l l u r i c  and magnetotelluric l i nes  are shown 

i n  Figure 108; the  electromagnetic sounding poin ts  are not shown but they 
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form a discrete series of measurements through Redondo and JaramiUo 

creeks . 
The reservoi r  temperature contours are coarse and not very r e l i a b l e  

due t o  the  limited amount of avai lable  data. The contours indicate ,  

however, a sharp temperature gradient  southeast  of the main temperature 

anomaly (Figure 110). The shallow temperature gradient  contour map (Fig- 

ure  108) shows a similar sharp decrease i n  temperature t o  the east. 

These gradients probably r e s u l t  from e i t h e r  the presence of a perm- 

e a b i l i t y  b a r r i e r  between Redondo Creek and Redondo Peak or an inflow of 

colder water from t h e  southeast  i n t o  the ho t t e r  reservoir.  The mapped 

f a u l t  between Redondo Creek and Redondo Peak [Bailey and Smith, 19781 

detected by t e l l u r i c  p r o f i l e  G G '  (Figure 108) tends to support the 

former explanation. W e  therefore  assume that the hot reservoir  boundary 

t o  the  east lies between Redondo Creek and Redondo Peak. 

The shallow temperature gradients  and geophysical data were used to  

estimate the  hot  reservoi r  boundaries i n  the  north-south direct ion.  The 

deep reservoi r  contour map is too localized t o  give this information. 

Figure 111 s h o w s  t he  shallow temperature gradients and the t e l l u r i c  

p r o f i l e s  along l i n e  B-B'. 

extending from s t a t i o n  12 t o  s t a t i o n  28 or 29, which corresponds w e l l  t o  

the  area of high thermal gradients. The higher frequency p lo ts  do not  

show t h i s  anomaly, suggesting that the  conductor l ies deep ( the  lower 

The t e l l u r i c  data ind ica te  a r e s i s t i v i t y  l o w  

frequency s igna l  penetrates  deeper 1. Magnetotelluric data a l s o  show a 
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Figure 110. Deep reservoir temperature contour (3000 f t  ASL) i n  OF 
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r e s i s t i v i t y  l o w  over the same area and a layered r e s i s t i v i t y  model f i t  

t o  the  data ind ica tes  a conductor (5-20 ohm-m) a t  an approximate depth 

of 1 km [Group 7, 19721. W e  w i l l  assume t h a t  the r e s i s t i v i t y  anomaly i s  

due t o  the  presence of t he  hot  reservoi r  and t h a t  t he  boundaries of the 

hot  reservoi r  correspond t o  s t a t i o n s  1 2  and 29 i n  the south and the 

north, respect ively . 
To the  w e s t ,  the  temperature data are  too limited t o  help e s t ab l i sh  

the  ho t  water reservoir  boundary. The t e l l u r i c  p r o f i l e s  along l i nes  D-D' 

and H-HI together w i t h  magnetotelluric data do, huwever, show a d i s t i n c t  

r e s i s t i v i t y  con t r a s t  near the Bond-1 w e l l ;  t he  low r e s i s t i v i t y  anomaly 

extends t o  the  east. As t he  Sulfur  Creek w e l l s  are hot but  not produc- 

t i v e ,  t h e  r e s i s t i v i t y  anomaly seems to reflect formation porosity varia- 

t ions.  Due to the lack of addi t ional  da ta  t o  support t h i s  p o s s i b i l i t y  we  

w i l l  assume t h a t  the reservoi r  extends as f a r  w e s t  a s  the primary reser- 

voi r  formation, the Bandelier Tuff. This assumption places the western 

l i m i t  of t he  reservoir a t  the r ing  f r a c t u r e  zone. F r o m  t h e  above cri- 

teria, the  estimated areal ex ten t  of the hot reservoi r  is approximately 

40 km2 (Figure 1 08) . 
The average thickness of the reservoi r  was estimated using the  w e l l  

temperature logs and geological data. The base of the caprock was esti- 

mated from t h e  temperature logs as the depth a t  which convection starts 

to  cont ro l  t h e  heat  transfer ( i*e* ,  the  depth where the temperature 

gradient  becomes small). The bottan of the reservoir  w a s  assumed t o  



266 

correspond t o  the bottom of the Bandel ier  Tuff (Figure 109), yielding an 

average reservoir  thickness of 600 m (2000 f t ) .  

Few da ta  are avai lable  regarding the matrix porosi ty  of the Bande- 

l i e r  Tuff. After studying w e l l  resistivity logs and core data [Core 

Laboratories, Inc., 19751, an average porosity of 5% was assumed. The 

product of the porosity and the thickness (+HI i s  then 30 m (100 f t ) ,  

corresponding very c lose ly  to the value of 27 m (90 f t )  obtained from t h e  

interference tes t  i n  the Redondo Creek area [Union, 19781. 

The estimated reservoir  capacity can be calculated as a product of 

the areal ex ten t  of the hot  reservoir  and its average porosity-thidrness 

product. Using a densi ty  of 825 kg/m3 ( f o r  a temperature of 23OOC) the 

reservoi r  capacity i s  1 .O x 10l2 kg (2.2 x 10l2 lbs) of hot f lu id .  

sens i  t i v i  t y  of Results 

In  estimating the  reservoir  capacity, a number of assumptions were 

employed. Some of the more important ones are l i s t e d  below. 

1 . The reservoir  contains l iqu id  w a t e r  only. 

2. The hot  f l u i d  reservoir  extends to the northwest as f a r  as the 

r ing  f r ac tu re  zone. 

3. The subsurface r e s i s t i v i t y  l o w  is due t o  the presence of the 

hot-water reservoir.  

4. The reservoir  resides i n  the lower p a r t  of the Bandefier Tuff 

and does not extend i n t o  deeper formations. 

D 
I 
I 
I 
I 
1 
I 
i 
I 
I 
I 
I 
I 
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If a two-phase zone over l ies  the main l iqu id  w a t e r  reservoir ,  the  

f i r s t  assumption could lead t o  overestimation of the reservoir  capacity. 

Similarly,  i f  the reservoir  does not extend a l l  t h e  way t o  the r ing  f r ac -  

t u r e  zone as the  dry w e l l s  i n  Sulphur Creek might indicate ,  the  reservoir  

capacity might again be overestimated. I f ,  on the  other hand, the  pro- 

duction reservoi r  is  fed by a deeper source of hot w a t e r ,  the  estimated 

value of the reservoir  capacity may be too conservative. 

Reservoir Lonuevitv 

Numerical Approach 

The longevity of the Baca f i e l d  w a s  s tudied using the  two-phase d i s -  

tributed-parameter m o d e l  SHAFp79. The reservoi r  w a s  simulated using one 

basic rectangular  mesh, w i t h  overall dimensions corresponding t o  those 

estimated i n  the previous sec t ion  (Figure 112). Due to symmetry, only 

half  of the  system w a s  modeled. Rather than simulating ind iv idua l  w e l l s ,  

t h e  f l u i d  w a s  produced uniformly over one node representing half of the 

w e l l  f i e l d  (assumed t o  be 1 km2) .  

The parameters used i n  the simulation a re  given i n  Table 10. Most 

of these parameter values were taken d i r ec t ly  from open-file Union reports.  

For the  permeability-thickness product (kH), the value 1.8 x 

( o r  6000 md'ft) obtained from t h e  interference test performed by Union 

O i l  (October 1975 t o  A p r i l  1976) was used. This value compares favorably 

w i t h  w e l l  test data from individual  w e l l s .  The porosity-thickness product 

used was the value estimated i n  the previous sect ion (30 m ) .  

m 3  
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The Mesh Used In The Simulation 

0 1 2 - P: production node 
I injectionnode Scale (km) 

Figure 112.  The mesh used i n  the longevity study for "closed reservoir" 
cases . [XBL 7912-133541 
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Table 10. Parameters used i n  simulation of B a c a  Field.  

Constant flow rate q t  = 330 kg/S 

Rock heat capacity 

Perm. t h i  ckness k H  = 1.8 x m3 (6,000 md'ft) 

Thermal conduct. = 2.0 J / s .mOC 

Porosity thickness I$H = 30 m (100 f t )  

cv = 950 J/kg*OC 

I n i t i a l  pressure 

I n i t i a l  temperature T i  = 300OC 

P i  =: 110 bars 

In the simulations a version of Corey's relative permeability 

equations w a s  used [Faust and Mercer, 19791 . Mathematical expressions 

f o r  Corey's 4 th  order equations are given i n  Table 5. The res idua l  

l i qu id  and s t e a m  s a tu ra t ions  w e r e  f ixed a t  0.30 and 0.05, respectively.  

In  order t o  study the effects of the r e l a t i v e  permeability curves on the  

r e s u l t s ,  various other curves mre used. The findings of this study a r e  

d i  scussed be low . 
Simulations Using a Constant Mass Flawrate 

W e  s tudied f i v e  cases using a constant mass flow ra t e .  The with- 

drawal rate w a s  based on the  amount of steam theore t i ca l ly  required f o r  

a 50 MWe power plant  and a constant value for t h e  mass f r ac t ion  of steam 

i n  the  separators [Union, 19781 . The f i v e  cases studied were a bounded 

reservoir, a n  i n f i n i t e  reservoir ,  and three in jec t ion  cases. Each case 

was run u n t i l  the  pressure i n  t h e  production node dropped below the de- 

signed wellhead pressure of 10  bars  [Union, 19781. The longevity of the 

f i e l d  i n  each case was defined as the t i m e  it took to  reach this point. 
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The pressure, temperature, and vapor sa tura t ion  a t  the production node 

are p lo t t ed  versus t i m e  f o r  three of these cases i n  Figure 1 13. 

The simulation of the  closed reservoir  w a s  terminated a f t e r  7.4 

years due t o  the  low pressure i n  the production node. As Figure 113 

shows, t h e  pressure falls very rapidly u n t i l  t he  production node goes 

two-phase. Under two-phase conditions, t h e  pressure i s  not re la ted  to 

the  densi ty  bu t  t o  the temperature. The pressure f i r s t  s t a b i l i z e s  a f t e r  

t he  node b e c o m e s  two-phase because of the  the  large heat  capacity of t he  

node and the  l o w  i n i t i a l  bo i l ing  rates. Later the pressure gradually 

decl ines  along with the temperature. When the vapor sa tura t ion  reaches 

1.0, t he  pressure again becomes dependent on density,  and the low inflow 

of f l u i d  from adjacent  nodes (due t o  the low absolute permeability and 

the  effect of the  r e l a t i v e  permeability curves) causes the pressure t o  

drop very rapidly.  

Figure 114 s h o w s  the variation with t i m e  of the boi l ing rate a t  the  

production node, t he  vapor sa tura t ion  of the  produced f l u i d s ,  and the 

vapor sa tura t ion  i n  the adjacent nodes f o r  the bounded reservoir case. 

The boi l ing  rate increases rapidly soon a f t e r  the production node becomes 

two-phase and reaches a maximum when only steam i s  produced. A t  t h a t  

t i m e  t he  boi l ing  rate corresponds to  the production rate. Later, the 

boi l ing  rate decreases again due to  the  decreasing mass of f l u i d  enter ing 

t h e  production region. The increasing vapor sa tura t ion  i n  the nodes 

adjacent t o  the  production node causes a reduction i n  the mobili ty of the 
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l iqu id  phase and consequently decreases the  mass of f l u i d  enter ing the  

production node . 
For the  i n f i n i t e  reservoi r  case a larger  mesh ( 2 0  x 21 km2) was 

used. The r e s u l t s  ind ica te  that t h e  pressure i n  the  production region 

w i l l  drop below 1 0  bars after about 10 years, again due t o  t h e  l imi t ed  

flow of f l u i d s  i n t o  the production node ( l o w  permeability e f f e c t s ) .  The 

general  behavior of t he  temperature, pressure, and vapor sa tura t ion  i s  

the  same a s  f o r  the bounded reservoir case (Figure 113). This shows that 

the  f ac to r  cont ro l l ing  t h e  longevity appears t o  be the low permeability- 

thickness product rather than the  amount of hot  water i n  place. 

Three in j ec t ion  cases were simulated using an in j ec t ion  flow rate  

equal t o  half  the production mass f l a w  rate. The reservoi r  boundaries 

were closed. The water w a s  injected 1 km t o  the southeast  (node 211, 

1 km t o  t h e  northwest (node 19) ,  and 4 km t o  the northwest (node 16) of 

t he  production region f o r  t he  three  cases. In each case the pressure i n  

t h e  production node dropped b e l o w  1 0 bars after 1 3 t o  14 years. 

Figure 113 a l s o  includes a plot of the temperature, pressure, and 

vapor sa tura t ion  versus time i n  the production node when w a t e r  is 

in jec ted  through node 21. The curves are similar to those f o r  the no- 

in j ec t ion  case, except that t h e  pressure fa l l s  below 1 0  bars  before the 

production node reaches superheated steam conditions. This behavior i s  

due t o  increased boi l ing  i n  the  production node s ince more w a t e r  is 

coming in .  The boi l ing causes the temperature, and consequently the 
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pressure,  t o  drop s teadi ly .  

behavior. Table 1 1  summarizes the r e s u l t s  f o r  the f i v e  cases. 

The other  two in jec t ion  cases show similar 

Table 11. Summary of cases and primary r e su l t s .  

Conditions a t  the end of the run 

V a p o r  

Boundary Time Pressure Temp sa tur -  

C a s e  Flow rate conditions In jec t ion  ( y r s )  (bars  ) O C  a t ion  

Cons tan t 

Cons tan  t 

constant  

Cons tan t 

Constant 

Va r i a b l  e 

Variable 

Va r i  ab1 e 

Variable 

Closed None 7.4 10 237 1.0 

1 
I 

" In f in i t e "  None 9.6 10 21 4 1.0 

Closed 4 km t o m  12.9 10 180 0.99 

Closed 1 km to NW 13.7 10 180 0.91 

Closed 1 km to NE 14.0 10 1 80 0.87 

Closed None 25 10 214 1 .o 
"Semi- 

i n f i n i t e "  None 26 10 213 1.0 

" In f in i t e "  None 35 10 1 85 1.0 

Bounded 

e w i t h  a 

f a u l t  None 50 10 180 0.48 

Simulations Using a Variable Flow Rate 

Generally during a simulation, the vapor sa tura t ion  i n  the produc- 

t i o n  node constantly changes, and consequently the s t e a m  q u a l i t y  i n  the 

separators changes. For a given power production a c e r t a i n  mass of steam 

is  needed, and the  amount of f l u i d  mixture from t h e  reservoir  should be 

adjusted t o  m e e t  that requirement. 

flow r a t e ,  which was used i n  the simulation described above, i s  therefore 

The assumption of a constant mass 
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inaccurate  and leads to lower estimates of reservoi r  longevity. me var- 

iable flow rates are calculated using the  same approach as i s  used i n  the 

sect ion on exploi ta t ion s t r a t e g i e s  (see equations (45 and 46) 1. 

Four cases w e r e  simulated using a var iable  flow rate; a closed res- 

e rvoi r ,  a semi-closed reservoir ,  a n  i n f i n i t e  reservoir ,  and a closed 

reservoi r  with recharge from deeper layers. 

northeast  and the  southwest boundaries were expanded from 3 t o  10 km, 

leaving t h e  other  two boundaries unchanged. 

because very l i t t l e  separated w a t e r  w a s  obtained a f t e r  about three years 

of simulation, and in j ec t ing  such a small amount of w a t e r  would not a l te r  

the  r e s u l t s  s ign i f icant ly .  Figure 115 s h o w s  the calculated flow r a t e  as 

a function of t i m e  f o r  the bounded reservoi r  case. 

In the  semi-closed case, t h e  

No in jec t ion  runs were made, 

The closed reservoi r  case and the  semi-closed reservoi r  case gave 

very similar re su l t s ;  t he  pressure i n  the production node dropped below 

10 bars after 25 and 26 years, respectively.  In the " inf ini te  reservoir"  

case t h e  same large mesh was used ( 2 0  x 21 km2), and t h e  required amount 

of steam was supplied f o r  35 years  before the pressure f e l l  below 1 0  bars. 

Final ly ,  a run w a s  made assuming that  the reservoir w a s  recharged 

from deeper layers  through a 20 m-wide f a u l t  zone extending along Redondo 

Creek (recharging nodes 6,  13, and 20) .  The f a u l t  zone w a s  modeled as a 

constant-pressure boundary 600 m below the assumed reservoir ,  having a 

permeability-thickness product of 1.8 x 10-l2 m3 (60,000 m d ' f t ) .  

r e s u l t s  obtained indicate a reservoir longevity of 49 years under these 

The 
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Figure 115. Production rate versus t i m e  for the closed-boundary case. 
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conditions. A summary of the r e s u l t s  from these var iab le  flow rate  cases 

i s  included i n  Table 11. 

Sens i t i v i ty  of Results 

In modeling two-phase flow i n  geothermal reservoirs ,  one must con- 

sider two important factors :  the mesh dependence of the r e su l t s ,  and 

how dependent the r e s u l t s  are upon the pa r t i cu la r  r e l a t i v e  permeability 

curves used. W e  conducted a br ief  study to  determine the s e n s i t i v i t y  of 

our r e s u l t s  to these factors.  

In  order t o  determine the s e n s i t i v i t y  of the r e s u l t s  to the mesh 

used i n  t h e  simulations, a new, f i n e r  mesh was constructed. The f i n e  

mesh cons i s t s  of 81 elements, each element having a volume four times 

smaller than the corresponding element used i n  t he  earlier simulations 

(Figure 112). The production element, however, remained t h e  same s ize .  

Using the  f i n e  mesh we studied t h e  case of a constant mass flow r a t e  with 

closed reservoi r  boundaries (case #1) . Figure 116 s h o w s  a comparison 

between the f i n e  and the coarse mesh r e s u l t s  for the pressure behavior i n  

t h e  production node. Although the two curves are qu i t e  similar a t  ea r ly  

times, t h e  curve corresponding t o  the f i n e  mesh is shifted about 2 bars 

above the  curve corresponding t o  t h e  coarse mesh. 

This behavior can be explained i f  one considers t h a t  i n  the  case of 

t he  f i n e  mesh, t he  nodes adjacent t o  the production node undergo phase 

t r a n s i t i o n  ( t o  a two-phase condition) a t  an earlier t i m e  than the larger  

nodes i n  t he  coarse mesh, and consequently steam flows i n t o  the production 
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node a t  an earlier t i m e .  This i n  turn implies that  less boi l ing  w i l l  be 

required i n  t h e  production node i n  the case of the f i n e  mesh a t  any given 

t i m e ,  r e su l t i ng  i n  a smaller pressure drop. H o w e v e r ,  the  higher steam 

flow i n t o  the production node i n  the case of the f i n e r  mesh causes a 

higher vapor sa tura t ion  a t  any given t i m e  i n  t he  node, so t h a t  super- 

heated conditions are reached earlier. It i s  therefore  apparent that i n  

terms of longevity, t he  coarser mesh g ives  r e s u l t s  that are s l i g h t l y  more 

opt imis t ic  (increased longevity) than what might be expected. 

In our study of the e f f e c t s  of the r e l a t i v e  permeability curves on 

our r e s u l t s ,  we used curves suggested by Counsil and Ramey (1979) and 

Grant (1977) i n  addi t ion t o  the Corey curves. The curves by Counsil and 

Ramey are based upon experimental r e s u l t s  over a small range of vapor 

sa tu ra t ion  ( - 2 0  < S < . 301, and f o r  our simulation s tud ie s  the data w a s  

l i n e a r l y  extrapolated t o  cover the f u l l  range of saturat ion.  The curves 

developed by Grant are based upon data from t h e  Wairakei geothermal f i e ld .  

The r e l a t i v e  permeability of the l iqu id  is the same a s  given by the 4th 

order Corey equations, b u t  the steam phase is considerably m o r e  mobile. 

Mathematical expressions for the  curves used i n  this study are given i n  

Table 12, and the  curves are i l l u s t r a t e d  i n  Figure 117. 

Figure 1 18 shows pressure behavior a t  the  production node f o r  case 

#1 and d i f f e r e n t  r e l a t i v e  permeability curves. The f igure shows that the 

longevity ( the  time when the  pressure f a l l s  b e l o w  10  bars) i s  bas ica l ly  

unaffected by the  pa r t i cu la r  r e l a t i v e  permeability curve chosen. The 

pressure p l o t s  based on the  Counsil and Ramey curves l i e  a t  a l l  t i m e s  
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Table 12. Relative permeability equations 

(p lots  are shown i n  Figure 117) .  

1 Corey's Curves: 

I s * ] *  
k rw = {  0 

s < sm 

s - > srw 

1 - s  - s  rw where S* = - 'rw - 'rv 

Grant's Curves: 

[S*l 

k m = {  0 

k = l - k  rv rw 

Counsil and Ramey's Curves: 

s - 020 

krv = { 8o 
0 

s < s- 

s - > sm 

S < e 3 0  

S > 030 - 
s > 020 

s - < 020 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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Figure 117.  Relative permeability curves used i n  the study. 
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below the  r e s u l t s  based upon Coreys equations. This i s  t o  be expected 

since the  mobi l i t i es  of the steam and the l iqu id  are generally less i n  

the case of the  Counsil and Ramey curves. The pressure behavior based on 

Grant's curves is  less a t  ear ly  t i m e s  than i n  the case of Corey's curves, 

because more of the steam i s  being produced and consequently, more boil-  

i ng  occurs i n  the production node. One must keep i n  mind t h a t  t he  mass 

r a t i o  of steam and l iqu id  produced depends on the r e l a t i v e  permeability 

curves used. However, i n  the case using Grant's curves, t h e  longevity i s  

s l i g h t l y  higher, because of the much more mobile steam phase. 

In addi t ion t o  the runs shown i n  Figure 118,  a couple of runs were 

made using modifications of the curves by Counsil and Ramey. In the 

f i r s t  run the  s t e a m  w a s  made immobile a t  a vapor sa tura t ion  of 0.60, bu t  

t h e  r e l a t i v e  permeability of the  steam increased l inear ly ,  becoming f u l l y  

mobile a t  a vapor sa tura t ion  of 1.0. The r e s u l t s  obtained agreed very 

c lose ly  with the  former run using Counsil and Ramey's curves, ind ica t ing  

t h a t  the  steam r e l a t i v e  permeability curve may not  be very important f o r  

t h i s  problem. 

In  the second case studied, the  res idua l  water sa tura t ions  were 

f ixed a t  0.60, and the curves e r e  again l i nea r ly  extrapolated so that 

the  l i qu id  phase becomes f u l l y  mobile a t  a vapor sa tura t ion  of 0.0. In 

t h i s  case the longevity increased to almost 9 years. The increased 

mobility of t he  w a t e r  phase causes considerably more l iqu id  t o  en ter  the 

production node and consequently the longevity increases. 
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A b r i e f  study was made of the e f f e c t s  of the r e l a t ive  permeab l i t y  

curves on the  longevity when a var iab le  m a s s  flow r a t e  is used. In the 

study the curves of Counsil and Ramey w e r e  used and the r e s u l t s  compared 

to  those obtained when the Corey curves were used. The r e s u l t s  compared 

qu i t e  w e l l  and a longevity of 23 years w a s  obtained f o r  the former case, 

compared t o  25 years  f o r  the latter (case #6).  

Comparison between lumped- and d i s t r ibu ted  parameter models w i t h  

appl icat ion t o  Baca. 

It i s  of i n t e r e s t  t o  compare the lumped-parameter approach t o  t h e  

distributed-parameter approach fo r  the B a c a  f ie ld .  As lumped-parameter 

models are widely used f o r  predicting the  response of geothermal reser- 

voi rs  to exploi ta t ion,  same discussion of the basic approach i s  i n  order. 

In  the  lumped-parameter method t h e  reservoi r  is characterized by one, 

two, o r  th ree  homogeneous blocks, and therefore  spatial var ia t ions  i n  

thermodynamic var iables  (TIPIS) ,  f l u i d  and rock propert ies  are more o r  

less neglected. Application of mass and energy balances t o  these blocks 

r e s u l t s  i n  a set of l i n e a r  ordinary d i f f e r e n t i a l  equations. The equa- 

t i ons  are generally readi ly  solvable ana ly t ica l ly ,  although i n  some cases 

numerical in tegra t ion  is necessary. 

The f i rs t  lumped-parameter m o d e l  developed f o r  a geothermal f i e l d  i s  

t h a t  of Whiting and Ramey (1969) for  the  Wairakei geothermal f i e l d  i n  New 

Zealand. They obtained exce l len t  f i t  with average f i e l d  pressure f o r  t h e  

t i m e  period 1956-1965, and predicted the f i e l d  behavior from 1966-2000. 
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More recent da ta  from Wairakei have not corresponded w e l l  t o  the  predic- 

ted pressure behavior by the lumped-parameter m o d e l  [Witherspoon e t  al., 

19751 . Other lumped-parameter m o d e l s  have been developed and applied to 

the  Wairakei geothermal f i e l d  [McNabb, 1975; Grant, 1977a; Robinson, 

19771 ; these are summarized by Fradkin e t  al. (1981 ) . Other developers 

of lumped-parameter models are Castanier e t  al. (1980), who applied t h e i r  

model t o  the E a s t  Mesa geothermal f i e l d  i n  the Imperial val ley,  and 

Brigham and Morrow (1974) w h o  developed a lumped-parameter model ( t h e  so- 

called P/Z m o d e l )  f o r  vapor-dominated f ie lds .  

Distributed-parameter models, as discussed i n  an earlier sect ion,  

are those w h i c h  consider spatial var ia t ions  i n  the dependent var iables  

i n  addi t ion t o  the var ia t ions  w i t h  t i m e  [Brigham and Morrow, 19741 . In  

addi t ion,  t h e  physical p roper t ies  of the f l u i d  and/or t he  rocks are 

allowed t o  vary spa t i a l ly .  Therefore, numerical models are i n  general  

much more f l e x i b l e  than ana ly t i ca l  models. N u m e r i c a l  methods involve 

dividing t h e  area of i n t e r e s t  ( t he  geothermal reservoi r )  i n t o  elements 

(blocks) ,  and applying mass and energy balance pr inc ip les  to each element. 

For each element two equations are present,  and simultaneous solut ion of 

a l l  of the equations f o r  a l l  of the nodes will enable determination of 

the unknowns (e.g., pressure and temperature). The numerical m o d e l  

requires a prior knowledge of the  i n i t i a l  conditions, b u t  the boundary 

conditions are i n  the geometric design of the problem. Advancement i n  

t i m e  is acquired by solving the equations a t  each t i m e  step, and then 

reassigning the primary var iab les  t h e i r  new value, before attempting the  

next t i m e  step. 
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In recent  years there  has been considerable discussion regarding the  

distributed-parame ter models, and their appl icat ion t o  geothermal reser- 

voi r  engineering. These models have frequently been compared t o  lumped- 

parameter m o d e l s  [Fradkin e t  al.,  1981 i Castanier e t  al., 1980; Castanier 

and Sanyal, 1980; Donaldson and Sorey, 19791, and evidence w a s  advanced 

t h a t  the  lumped-parameter models have been more accurate i n  predict ing 

the  f i e l d  behavior of the  Wairakei geothermal f i e l d  than dis t r ibuted-  

parameter m o d e l s  [Fradkin e t  al., 1981; Donaldson and Sorey, 19791. 

H o w e v e r ,  it appears t h a t  some important considerations have been over- 

looked or simply neglected i n  this comparison. It is  a l s o  generally 

stated t h a t  distributed-parameter models are f a r  too complicated and 

expensive f o r  modeling of geothermal f i e l d s  f o r  which data are limited. 

However ,  one must r e a l i z e  t h a t  lumped-parameter m o d e l s  are the complete 

equivalent of distribu-d-parameter models with coarse space d iscre t iza-  

t i o n  and constant  f l u i d  and rock parameters. Instead of developing a 

lumped-parameter m o d e l ,  one therefore  need only employ a d is t r ibu ted-  

parameter m o d e l ,  with only a few nodes representing the  geothermal system. 

In  t h i s  way the same accuracy ( o r  inaccuracy) w i l l  be obtained a t  a very 

low cos t ,  a s  the cost of running d is t r ibu ted  models with few elements i s  

neg li g i  b le . 
Another point  that is general ly  overlooked is  that lumped-parameter 8 

I models are only applicable when spatial var ia t ions  i n  rock propert ies  

and t h e  d i s t r ibu t ion  of the  f l u i d  reserves  can be neglected. The most 

I important parameter i n  determining the  app l i cab i l i t y  of lumped-parameter 
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models t o  a geothermal f i e l d  may be the rock ( f r a c t u r e )  permeability. 

I n  cases of low-permeabili t y  reservoirs ,  production w i l l  generate large 

s p a t i a l  var ia t ions  i n  pressures,  and the f l u i d  t ransport  i n  the reservoir  

becomes a c r i t i c a l  issue.  As lumped-parameter models a re  equivalent to  

distributed-parameter models, with a severely l imited t ransport  function, 

the  po ten t i a l  generating capacity of the geothermal reservoir  w i l l  be 

grossly over-estimated i f  the lumped-parame t e r  approach i s  employed. 

In the case of the Wairakei geothermal f i e l d ,  the  l a t e r a l  permeabil- 

i t y  is very high [Fradkin e t  a l . ,  19811, and therefore  lumped-parameter 

models may adequately pred ic t  the reservoi r ' s  response t o  exploi ta t ion.  

However, i n  cases where the permeability is low (e.g. East Mesa, Cali- 

forn ia ;  Baca, New Mexico; Olkaria, Kenya; Krafla, Iceland) ,  the  use of 

lumped-parameter models w i l l  lead t o  gross over-estimation of the gener- 

a t i n g  capacity of the reservoir.  

Fiqure 119 shows how the lumped-parameter models can overestimate 

the recovery of energy from low-permeability geothermal f i e lds .  A simple 

r a d i a l  geometry of a geothermal reservoir  is considered, w i t h  a w e l l  

f i e l d  of radius  rw, and a reservoir  radius of r. 

oped by assuming various values f o r  r2/Hrw and running models f o r  a range 

of values f o r  q / k H .  Resul t s  from a distributed-parameter model are  com- 

pared t o  those from a lumped-parameter model. For a high value of perme- 

a b i l i t y  (or  low extract ion r a t e  q), the  lumped-parameter model cor rec t ly  

predicts  the recovery r a t i o ,  a s  uniform depletion w i l l  occur i n  the res-  

ervoir .  However, a t  low values of permeability (or  equivalently high 

Figure 119 was devel- 
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ext rac t ion  rates), the  predicted recovery r a t i o  by the lumped-parameter 

model i s  much too high. Consequently, i f  the developer of the f i e l d  

u t i l i z e s  r e s u l t s  given by the lumped-parameter m o d e l  he w i l l  grossly 

overestimate the generating p o t e n t i a l  of the f i e l d ,  and an inco r rec t  

development plan w i l l  r esu l t .  

For direct comparison with the  distributed-parameter r e s u l t s  some 

ca lcu la t ions  f o r  t h e  B a c a  reservoi r  were car r ied  ou t  using t h e  lumped- 

parameter method. In the lumped-parameter approach a s ingle  element 

representing the  e n t i r e  reservoir  w a s  used. 

50 MWe p o w e r  p l an t  w a s  produced from t h i s  element i n  an i d e n t i c a l  manner 

as previously explained i n  the  simulations using t h e  distributed-param- 

eter model. The reservoi r  volume, previously estimated, was used as the 

volume of the reservoir  element. The reservoi r  boundaries were assumed 

closed t o  mass and hea t  flow. The r e s u l t s  obtained indicated t h a t  the 

Baca reservoi r  w a s  capable of providing steam f o r  a 50 MWe p o w e r  p l an t  

f o r  400 years. A t  t he  end of the simulation, the reservoir had becane 

sa tura ted  with superheated steam; thus, t h e  bulk of the  mass i n i t i a l l y  

contained i n  the  reservoir  had been depleted. 

The steam required f o r  a 

Comparison of the  r e s u l t s  of the  lumped-parameter m o d e l  t o  those of 

the distributed-parameter model (Table 11) c l e a r l y  i l l u s t r a t e  why lumped- 

parameter models are not  applicable to  low-permeability geothermal reser- 

voi rs  such as the Baca  reservoir.  The lumped-parameter approach assumes 

an i n f i n i t e  f l u i d  t ranspor t  po ten t i a l  of the  reservoir.  In cases of low- 

permeabili ty reservoi rs  such as the Baca reservoir ,  this leads t o  a gross  
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overestimate of the p o t e n t i a l  power-generating capacity of the reservoir.  

The r e s u l t s  from t h e  simulation studies using the  dis t r ihted-parameter  

model c l ea r ly  i l l u s t r a t e s  t h a t  the longevity of the Baca reservoir  i s  

l imited by the r e s t r i c t e d  flow from t h e  reservoir  i n t o  the production 

region. The l imited transport functions inherent i n  the lumped-parameter 

approach, therefore ,  make lumped-parameter models inapplicable t o  the  

Baca reservoir .  For a 50 me 

p o w e r  p lant ,  q/kH = 2 x 10l1 f o r  B a c a ,  and using t h e  estimated areal and 

v e r t i c a l  dimensions of the reservoir ,  r 2 / H r w  = 40. 

numbers with the data i n  Figure 119 yields  a recovery ra t io  of only .03. 

This value is cons is ten t  with the r e su l t s  obtained using the  d i s t r i h t e d -  

parameter model. 

This can be i l l u s t r a t e d  using Figure 1 19. 

Comparison of these 

Conclusions 

W e  have estimated t h e  reservoir capacity of the B a c a  f i e l d  using the  

volumetric approach, and the longevity using a volumetric approach and 

the numerical simulator SHAFT79. The areal ex ten t  of the hot  reservoi r  

w a s  estimated t o  be 40 km2 and the porosity-thickness product t o  be 30 m. 

These values mrrespond t o  a reservoi r  capacity of 1 .O x 1012 kg of hot  

f l u i d  i n  place. 

W e  a l s o  s tudied t h e  longevity of the B a c a  f i e l d ,  using e i t h e r  con- 

s t a n t  or time-dependent production rates. Five cases were studied using 

the  constant  rate: one closed reservoir ,  one infinite reservoir ,  and 

three  i n j e c t i o n  cases. All of these cases showed that the f l o w  ra te  

could be maintained no longer than 15 years due to the r e su l t i ng  l o w  

I 
I 

I 
I 
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pressure i n  the production region. In a low-permeabi li t y  reservoi r  whi ch 

the  B a c a  reservoi r  appears t o  be, t h e  boi l ing is  very local ized,  causing 

a rapid drop i n  the  temperature and, subsequently, i n  the pressure i n  the 

production region. The constant flaw rate cases represent an overly 

pessimistic s i tua t ion ,  because the  steam q u a l i t y  of the produced f l u i d s  

increases  with t i m e ,  and consequently a smaller t o t a l  amount of f l u i d  i s  

ac tua l ly  needed f o r  a 50 MWe p o w e r  plant. 

For the  cases of var iab le  production the flow rates are calculated 

based on the  steam required f o r  a 50 MWe p o w e r  p l an t  and the s t e a m  f r ac -  

t i on  i n  the  separators. These runs ind ica te  a reservoir  l i f e  of 25 t o  

49 years, depending upon the assumed reservoir  boundary conditions. 

In studying t h e  s e n s i t i v i t y  of our longevity estimates, we have 

found t h a t  the r e s u l t s  are meshdependent t o  some degree and t h a t  the 

longevity values obtained by using the  coarse mesh M Y  be s l i g h t l y  op t i -  

mistic. A br ie f  study using r e l a t i v e  permeability curves suggested by 

Counsil and Ramey and by Grant seems to indicate t h a t  the r e s u l t s  on 

longevity are not very sens i t i ve  to the pa r t i cu la r  r e l a t i v e  permeability 

curves chosen. The key f ac to r  is the mobili ty of the l iqu id  phase. If 

r e l a t i v e  permeability curves are employed where the Liquid phase i s  more 

mobile than i n  the  curves we have used, t h e  longevity may increase con- 

siderably.  

In general, t he  s tud ie s  of the longevity of the B a c a  f i e l d  s e e m  t o  

ind ica te  the following: 
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1. 

reservoi r  is the kH product of the system. The low kH product 

(6000 m d - f t )  obtained from w e l l  tests a t  B a c a  d ra s t i ca l ly  limits 

the  longevity of t h e  f i e l d  ( s e e  Table 1 1 ) .  This indicates  the urgent 

need t o  determine the  kH product more accurately,  perhaps using an  

in j ec t ion  tes t  ra ther  than drawdown tests. 

The cont ro l l ing  f ac to r  i n  determining t h e  longevity of t he  B a c a  

2. Placing t h e  production w e l l s  over as large an area as possible 

w i l l  help to obtain the required steam supply, without reducing t h e  

pressure below a cr i t ical  value. 

3. 

f i e l d  considerably, but the avai lable  waste water may become very 

limited shor t ly  a f t e r  power production starts. 

In jec t ing  t h e  waste w a t e r  should increase the lifetime of the 

4. The use of lumped-parameter models to  estimate the generating 

p o t e n t i a l  of a low-permeability reservoir such as the Baca reservoi r  

w i l l  lead t o  very optimistic resu l t s .  This is  obvious, when one 

compares the  distributed-parameter model r e s u l t s  to those obtained 

by the lumped-parameter method. 

Since a number of assumptions were necessary i n  carrying o u t  t h i s  

analysis ,  it should be rea l ized  t h a t  the r e s u l t s  shauld only be consid- 

ered as rough estimates. 
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SUMMARY OF FX ELD Ap PLICATIONS 

In t h i s  chapter, t he  use of numerical simulators for  the a n a l y s i s  

of geothermal reservoir  data has been i l l u s t r a t e d .  Numerical ana lys i s  

of t w o  i n j ec t ion  tests of w e l l s  a t  the Krafla geothermal f i e l d  i n  Iceland 

yielded values for  important reservoir parameters, kH/p and +&H. The 

simulation r e s u l t s  indicated t h a t  the isothermal nature of the  in j ec t ion  

tes t  data is  due t o  the cold water zone around the w e l l s ,  from cold water 

in j ec t ion  during d r i l l i n g  as w e l l  as d i r e c t l y  pr ior  t o  the in j ec t ion  

tests. The high compressibil i ty values obtained from the tests could be 

due t o  the presence of two-phase f l u i d s  as w e l l  as t o  f r ac tu re  deforma- 

b i l i t y .  The ana lys i s  ind ica tes  t h a t  the lat ter explanation is  more 

l i k e l y  . 
Field-wide simulation s tudies  are carried o u t  for  the Baca geother- 

m a l  f i e l d  i n  New Mexico. Existing geological, geophysical, and w e l l  data 

are used t o  estimate the reservoir capacity of t he  f i e ld .  N u m e r i c a l  

simulation s t u d i e s  are carried out  to  examine the longevity of the field 

when f l u i d s  equivalent to 50 Me are produced. These s tudies  ind ica te  

t h a t ,  due to  the  l o w  transmissivity of t h e  Baca  reservoir ,  i t  is ques- 

t ionable  whether t he  reservoi r  w i l l  be able to de l iver  s t e a m  f o r  a 50 MWe 

p o w e r  p l an t  f o r  t he  designed lifetime of 30 years. It  is  emphasized t h a t  

the  s i z e  of the production area i s  of g r e a t  importance, and i n  the  case 

of B a c a  the production area should be kept as large as possible. It is 

furthermore i l l u s t r a t e d  that the low t ransmissivi ty  w i l l  cause a rapid 
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increase i n  the steam q u a l i t y  a t  the separators  with i m e  and conse- 

quently waste water avai lable  for  re in jec t ion  purposes w i l l  be severely 

l imi ted  soon a f t e r  production starts. 

In  summary, t h e  examples i l l u s t r a t e d  above show that numerical 

simulators can be of great use t o  the developers of geothermal f i e lds .  

In the case of well-test ana lys i s  t he  simulator can account f o r  wellbore 

s torage  e f f ec t s ,  nonlinear thermal e f f ec t s ,  and nonsymmetrical hetero- 

geneous fractured or porous media formations. This w i l l  great ly  increase 

the  confidence of the f i e l d  developer i n  the  r e su l t s ,  and he w i l l  be able 

to use t h e m  i n  h i s  future  decision making. 

The r e su l t s  from t h e  Baca simulations show how numerical simulators 

can help i n  determining the  power po ten t i a l  of a geothermal f i e l d .  This 

may be one of the  most important appl ic i t ions  of numerical simulators,  as 

it is  of g r e a t  economic importance. that t h e  po ten t i a l  capabi l i ty  of a 

geothermal resource is not over- or underestimated. On the other  hand, 

r e s u l t s  obtained using t h e  lumped-parame ter approach may considerably 

overestimate the generating p o t e n t i a l  of a f ie ld .  The economic feas i -  

b i l i t y  of geothermal p ro jec t s  should therefore  be determined based on 

numerica 1 simulation resu l t s .  
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CONCTAJ S IONS 

The primary objec t ive  of the work presented i n  this d i s s e r t a t i o n  is 

t o  apply mathematical modeling techniques to geothermal systems i n  order 

t o  obtain a better understanding of their behavior under exploi ta t ion.  

The present ly  available mathematical techniques f o r  simulations of geo- 

thermal systems can be c la s s i f i ed  i n t o  three groups, empirical, ana ly t i -  

cal, and numerical methods. O f  these, the numerical methods are undoubt- 

edly the most general ,  as  numerical simulators have been developed to  

solve highly nonlinear problems such as hea t  and mass t r ans fe r  i n  geo- 

thermal reservoirs .  H o w e v e r ,  a n a l y t i c a l  methods are qu i t e  useful  i n  

solving s impl i f ied  l i n e a r  problems, as  basic parameter groups of parti- 

cu la r  importance i n  the problem can be ident i f ied .  Having iden t i f i ed  

these parameter groups by the ana ly t ic  methods, a more complete solut ion 

of the real nonlinear problem can be obtained using numerical simulators. 

Empirical methods can sometimes be used i n  predict ing the  flow r a t e  

dec l ine  of individual  wens, and also f o r  predict ing f u t u r e  pressure 

decl ine of a geothermal f ie ld .  HoWev?r ,  this method i s  not applicable 

i n  general  and w i l l  therefore  not be discussed fur ther .  

The approach taken i n  the present  work is to apply ana ly t i ca l  and 

numerical methods to geothermal systems. As a f i r s t  step, a new three- 

dimensional numerical simulator capable of solving mass and hea t  t ransfer  

problems involving t h e  flcrw of single-phase l i q u i d  water i n  heterogeneous 

porous or  f rac tured  medium i s  developed. The simulator named PT (P res -  

su re  and Temperature) uses the integrated f in i t e  difference method ( I F D M )  
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for  d i sc re t i z ing  the  flow regime and f o r  t he  numerical formulation of the 

basic mass and energy t ransport  equation. It i s  qu i t e  general, as it 

allows f o r  temperature-dependent rock properties,  and temperature- and 

pressure-dependent f l u i d  properties.  

sparse matrix solver  f o r  t he  l i nea r  equations developed i n  each t i m e  step. 

The simulator employs an e f f i c i e n t  

Along with ana ly t i ca l  techniques, t h e  simulator PT as w e l l  as the 

two-phase simulator SHAFT79 have been employed i n  solving some theoret-  

i ca l  problems of current  i n t e r e s t  t o  the geothermal community. These 

include w e l l - t e s t  analysis  of single- and two-phase reservoirs ,  produc- 

tion strategies from two-phase geothermal reservoirs ,  i n j ec t ion  of cold 

water i n t o  f rac tured  geothermal reservoirs ,  and recharge i n t o  f a u l t -  

charged geothermal reservoirs.  Some of the primary conclusions obtained 

from these studies are summarized below. 

The pressure response during cold-water in jec t ion  i n t o  hot water 

reservoi rs  shows two d i s t i n c t  s t r a i g h t  l i nes  i n  a pressure versus loga- 

rithm of t i m e  plot .  The f i r s t  s t r a i g h t  l i n e  corresponds t o  the Theis 

solut ion using the  f l u i d  proper t ies  of the undisturbed reservoir ;  the 

second s t r a i g h t  l i n e  corresponds t o  the Theis solution using the  f l u i d  

propert ies  of the in jec ted  cold water. In  the case of f a l l o f f  a f t e r  

in jec t ion ,  two l inear  segments can a l so  be observed, bu t  i n  the  reverse 

order compared with the  in jec t ion  behavior. 

conducted r i g h t  a f t e r  in jec t ion ,  three l i n e a r  segments i n  a p lo t  of pres- 

sure  versus logarithm of t i m e  can be observed. The f i r s t  s t r a i g h t  Line 

has a s lope corresponding t o  t w i c e  the cold water Theis solution; the 

When a production test i s  
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second has a slope of t w i c e  the hot-water Theis solut ion,  and f i n a l l y  the 

l a s t  l i n e a r  segment corresponds t o  the hot-water Theis solution. The 

reason fo r  the double slopes i s  the combined e f f e c t s  of the i n i t i a l  pres- 

sure  gradient  (due to  in j ec t ion )  and the f l u i d  production. 

In  studying the  e f f e c t s  of the r e l a t i v e  permeability parameters on 

w e l l  tests i n  two-phase reservoi rs ,  i t  is  found that these parameters are 

introduced i n t o  the equations through the total  kinematic mobility and 

the  flowing enthalpy. The r e l a t i v e  permeability parameters can be deter- 

mined from production tests, i f  t r ans i en t  pressure and enthalpy da ta  are 

obtained and the t ransmissivi ty  i s  knm, as f o r  example from an  injec-  

t i o n  test. The in-place sa tura t ion  can not be obtained and consequently 

the  conventional r e l a t i v e  permeability curves cannot be determined from 

production tests. HOwever, t h e  r e l a t i v e  permeability parameters can be 

expressed i n  terms of flawing enthalpy, and t h i s  can y ie ld  the general  

shape of the r e l a t i v e  permeability curves. 

The m o s t  important cha rac t e r i s t i c  of the r e l a t i v e  permeability cumes  

i s  the immobile l i qu id  cutoff because the total  kinematic viscosi ty  and 

the flowing enthalpy are m o s t  s ens i t i ve  to this factor .  The other cut- 

o f f s  as w e l l  as the  general  shape of the re l a t ive  permeability curves are 

less important. The relative permeability curves g rea t ly  a f f e c t  the rise 

i n  the  flowing enthalpy during a production test. However, the rise i n  

flowing enthalpy is also dependent on the porosity,  flaw rate, and the 

in i t ia l  thermodynamic conditions of the reservoir.  I f  these other 
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f ac to r s  are known, the  rise i n  the flowing enthalpy w i l l  y ie ld  important 

information regarding the  funct ional  forms of the r e l a t i v e  permeability 

curves . 
Reservoir explo i ta t ion  s t r a t e g i e s  are s tudied using reservoir  

parameters corresponding t o  the  Olkaria geothermal f i e l d  i n  Kenya. The 

Olkaria reservoi r  cons is t s  of a vapor-dominated zone overlying a two- 

phase l i q u i d  zone. It i s  found t h a t  production from deeper formations 

will grea t ly  enhance the  energy recovery from the f ie ld .  Production 

from depth w i l l  cause upflow of steam t h a t  condenses i n  the s h a l l o w  vapor 

zone causing an increase i n  the temperatures and pressures. Therefore, 

uniform boi l ing  conditions over the e n t i r e  reservoi r  w i l l  evolve and 

optimum energy ex t r ac t ion  w i l l  result. On the other  hand, when only 

steam i s  produced from t h e  shallow s t e a m  zone, high-enthalpy f lu ids  w i l l  

be produced a t  ea r ly  t i m e s  bu t  the reservoi r  l i f e  w i l l  be limited. Thus, 

t h i s  study cont rad ic t s  the common belief that the  production of higher- 

enthalpy f l u i d s  is beneficial .  

The problem of cold-water in jec t ion  i n t o  f rac tured  geothermal res- 

e rvo i r s  i s  s tudied using the  integrated approach of both ana ly t i ca l  and 

numerical techniques. Analytical  methods are used to study the e f f e c t s  

of thermal conduction on the advancement of the’ thermal  f r o n t  away from 

t h e  in j ec t ion  w e l l .  It i s  found t h a t  contrary to common belief, t h e  cold 

water w i l l  not shor t -c i rcu i t  through the f rac tures  i n t o  the production 

region, i f  the production region is a reasonable distance from t h e  
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i n j ec t ion  w e l l s .  Instead, the  cold w a t e r  i n  the  f rac tures  w i l l  be heated 

rapidly by the conducting rock medium and a shor t  dis tance away from t h e  

in j ec t ion  w e l l  t he  thermal f r o n t s  i n  the f r ac tu re  and the rock matrix 

w i l l  coincide. This w i l l  r e s u l t  i n  an optimal, uniform energy sweep of 

the reservoir  system. 

The numerical simulator PT is used t o  study the  importance of the 

assumptions employed i n  the  ana ly t ica l  approach and extend the work t o  

cases where the rock matrix i s  permeable. A combined use of the r e s u l t s  

from a n a l y t i c a l  and numerical work w i l l  enable realistic estimates of the 

rate of advancement of the thermal f r o n t  away from t h e  in jec t ion  w e l l  t o  

be made. 

Analytical methods are used t o  study fault-charged geothermal res- 

ervoirs .  In  t h i s  work, temperature var ia t ions within the aquifer  a r e  

neglected but  the t r ans i en t  heat  losses  to the caprock and bedrock are  

rigorously modeled. A na tu ra l  geothermal gradient is included i n  the 

solution. The model developed can be used for theore t ica l  studies of 

the development of fault-charged geothermal reservoirs  or for  p rac t i ca l  

appl icat ions such as estimating t h e  recharge rate i n t o  such systems. 

Theoretical  studies of of the  develupment of the thermal f i e l d ,  hea t  

losses  from the  aquifer ,  and hea t  losses  a t  the surface are car r ied  out. 

It i s  found t h a t  t he  heat  losses thraugh the caprock to the grourd sur- 

face are of primary importance. 

i n  the  caprock is established, the  thermal f i e l d  i n  the aquifer  becomes 

steady . 

Soon a f t e r  a l i nea r  temperature p r o f i l e  
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This model w a s  applied to the Susanville hydrothermal system i n  

Cal i fornia ,  and the  recharge rate i n t o  the system approximated. It was 

found t h a t  the recharge from an  infer red  f a u l t  may increase the  power 

po ten t i a l  of the  Susanville anomaly for space heating purposes threefold. 

Final ly ,  the app l i cab i l i t y  of numerical simulators to the ana lys i s  

of w e l l - t e s t  da t a  and f o r  predict ing the  longevity of a geothermal f i e l d  

i s  i l l u s t r a t e d .  Analysis of in j ec t ion  tests from t h e  Krafla geothermal 

f i e l d  using t h e  simulator PT i s  described. 

mination of the t ransmissivi ty  and the s t o r a t i v i t y  of t h e  formation 

This ana lys is  enabled deter-  

around the w e l l s .  It was found that  the inject ion-tes t  data implies high 

to ta l  compressibi l i ty  f o r  the Krafla reservoi r  t h a t  is due either to frac-  

ture compressibil i ty or two-phase conditions near t h e  w e l l s .  Furthermore, 

t h e  t ransmissivi ty  of the w e l l s  could be determined. In  the case of one 

of t he  w e l l  tests analyzed, i t  w a s  found that the water-level changes 

during t h e  in j ec t ion  tes t  cannot be matched using t h e  numerical simulator 

unless  the permeabili ty of the reservoi r  is increased during t h e  simula- 

t ion.  This provides additional support  t o  the theory t h a t  cold-water 
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i n j ec t ion  tests can s t imulate  the rock formation around the w e l l .  

Field-wide simulation studies of the Baca geothermal f i e l d  i n  New 

I 
I 

Mexico w e r e  ca r r ied  o u t  using the  two-phase simulator SHAET79. The res- 

e rvo i r  capaci ty  of the f i e l d  w a s  estimated by volumetric means using the  

ex i s t ing  geological,  geophysical, and w e l l  data. Then numerical simula- 
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i n  an attempt to  estimate the longevity of t he  f i e l d  when f l u i d s  equiva- 

l e n t  t o  50 MWe are extracted from t h e  f i e ld .  

carried o u t  using various reservoir  boundary conditions and constant and 

var iable  rates. It was found t h a t  the l o w  t ransmissivi ty  of the reser- 

vo i r  severely limits f l u i d  flaw from the reservoi r  i n t o  the production 

region. The longevity r e s u l t s  therefore  ind ica te  that it is  questionable 

i f  50 MWe can be produced from t h e  reservoi r  f o r  t h i r t y  years. 

a l s o  found t h a t  the Baca w e l l s  w i l l  produce superheated steam soon after 

explo i ta t ion  begins. Therefore, t h e  ava i lab le  w a s t e  w a t e r  f o r  i n j ec t ion  

purposes may become Limited. 

The simulation s tud ie s  were 

I t  was 

Comparison of r e s u l t s  from lumped- and distrikuted-parameter m o d e l s  

f o r  t h e  B a c a  reservoir  c l ea r ly  i l l u s t r a t e s  t h a t  lumped-parameter m o d e l s  

can lead to  a ser ious  overestimation of the  generating capacity f o r  a 

low-permeability reservoir such as the Baca reservoir.  The use of lumped- 

parameter m o d e l s  f o r  such reservoirs may mislead the f i e l d  developers to 

the  ex ten t  that an incor rec t  development plan w i l l  r esu l t .  
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APPENDIX A: INPUT GUIDE FOR PROGRAM PT 

The input  guide t o  the numerical code PT i s  conveniently organized 

i n t o  input  blocks as shown i n  Table 13. Each input  block must start with 

a card with its name i n  the f i r s t  f i v e  ( 5 )  columns, except fo r  input  

block A ( t h e  problem i d e n t i f i c a t i o n  c a r d ( s ) ) .  

input  block K ( t h e  end card)  must be specified. Other input  blocks are 

opt ional  and required only for specific problems. 

given below: 

Input blocks A t o  F and 

The input  guide is 

Table 13. Input Blocks for Program PT. 

Block N a m e  Description 

A 

B 

C 

D 

E 
F 

G 

H 

I 

J 

K 

PROBLEM IDENTIFICATION CARD( S) 

SPECS 

ROCKS 

E L U I D  

NODES 

CONNE 

INCON 

GENER 

FLOWS 

DIMEN 

Problem controls ,  limits, and 

con s ta n t  8 

I Material proper t ies  of the  rocks 

Mode 1: No compaction calcu- 

I la t ions 

M o d e  2 : Compaction ca l cu la  ti ons 

Propert ies  of the  f l u i d  

Node descr ipt ion 

Connections between nodes 

I n i t i a l  con& t ions  

Generation rates of production or 

in j ec t ion  

Constant mass flow rates between 

nodes 

Dimensionless parameters 

I ENDED Cards that end data deck 
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A. PROBLEM IDENTIFICATION CARD, Format (All 14A5) 

Any number of problem iden t i f i ca t ion  cards using columns 2 
through 70. The l a s t  iden t i f i ca t ion  card should have the symbol **I' 

i n  the f i r s t  column. 

B. SPECS: Problems Controls,  L i m i t s ,  and Constants 

Card lb. .Format (415, 6E10.4). Output and t i m e  s t e p  controls.  

Columns var iables  Description 

0-5 D A T A  Controls option on output data,  normal amount (01, 
m i n i m u m  ( - I ) ,  o r  maximum ( 1 )  number of parameters 
pr inted . 

6-1 0 IPRINT Number of t i m e  steps between data output, i n  addi- 
t i o n  to output  on f i r s t  and l a s t  t i m e  steps, and 
output  controled by TIMEP. 
IPRINT i s  not used i f  negative, zero, o r  unspeci- 
f ied.  

11-15 MCYC M a x i m u m  allowed number of cycles. MCYC w i l l  not  be 
used i f  zero or unspecified. 

16-20 MSEC M a x i m u m  allawed machine t i m e  i n  seconds. 
MSEC w i l l  not be used i f  zero o r  unspecified. 
I f  negative, problem w i l l  end after the f i r s t  cycle. 

21-30 TAU I n i t i a l  problem t i m e .  W i l l  be set t o  zero i f  
unspecified. 

3 1-40 TIMEP Problem t i m e  interval between data output, i n  addi- 
t i o n  to o u t p l t  an f i r s t  and l a s t  cycles, and output 
control led by IPRINT. 
TIMEP i s  ignored i f  negative, zero, or unspecified. 
Output w i l l  be wri t ten  a t  exact mult iples  of TIMEP, 
i f  possible,  by adjust ing the t i m e  steps i n  the 
range from SMALL to DELTO. The adjustment is a l s o  
l imited to a range from 2/3 to 3/2 of the same step 
that would otherwise be used. 

41-50 T I M A X  M a x i m u m  allowable problem simulation t i m e .  
TIMAX W i l l  not be used i f  zero or  unspecified. 
If it is negative, problem w i l l  end after the f i r s t  
cyc le . 
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Columns Variables Description 
~ ~~ ~~~ ~~~~~ ~- ~~~~ 

5 1-60 FIRST In i t ia l  t i m e  step. FIRST i s  set  t o  i f  less 
than 10-'l o r  unspecified. 

61-70 SMALL Minimum allowed t i m e  step. May be  used w i t h  DELlMX 
t o  l i m i t  range of t i m e  step. N o t  usually needed. 
SMALL i s  set t o  10-12 i f  less then 10-12 o r  
unspecified . 

7 1-80 DEL% Maximum allowed t i m e  step. May be  used w i t h  SM&L 
t o  Limit range of t i m e  step. 
i f  unspecified or not i n  the  range from 10-lo t o  
101 2. 

DELTMX i s  set t o  1012 

Card 2b. Format (215, 7E10.4). Constraints and L i m i t s  

columns var iab les  Description 

0-5 

6-1 0 

11-20 

21-30 

31-40 

41-50 

51-60 

KT 

NUM 

PINI 

GF 

SCALE 

TMAX 

T M I N  

N u m b e r  of l a rge ,  constant temperature/pressure 
boundary nodes. , These nodes should be l i s t e d  last 
i n  input  block "NODES". 

Ident i f ica t ion  number of a node f o r  which 
temperature, rate of temperature change, pressure, 
rate of pressure change, t i m e ,  and dimensionless 
parameters w i l l  be wri t ten  out  a f t e r  each cycle. 
NUM w i l l  no t  be used i f  zero o r  unspecified. 

I n i t i a l  pressure of node NUM. P INI  i s  used t o  
ca lcu la te  the total  change i n  pressure of node NUM. 

Acceleration due to  gravity. GF i s  set equal t o  
9.80665 cm/seC2 i f  unspecified. 

Scale factor .  S e t  t o  1.0 i f  negative, zero, or 
unspecified. W i l l  be applied t o  a l l  geometric 
input  da t a  i n  input  blocks "NCDES" and "CONNE". 

Maximum allowable problem temperature. W i l l  be set 
to  400 i f  unspecified. 

Minimum allowable problem temperature. 

~ 

I 
I 

I 
1 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 

D 
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Columns va ri ab1 es Description 

61-70 RMAX Maximum allowable problem pressure. W i l l  be set t o  
lo8 i f  unspecified. 

71-80 R M I N  Minimum allowable problem pressure. 

Card 3b. Format (415,6E10.4) . Numerical controls  

Columns var iab les  D e S C r  ip t ion  

0-5 

6-1 0 

11-15 

16-20 

21-30 

31-40 

NOPT 

NP UNCH 

NEWTON 

NUTS 

ERRM 

ERRE 

Parameter t h a t  spec i f ies  i f  both m a s s  and energy 
equations are t o  be solved: 
0 or blank: both mass and energy equations 
1:  only mass equation 
2: only energy equation ( f l u i d  density has t o  be 

cons tan t ) 

I f  g rea t e r  than zero, causes decks of punched cards 
i n  the format of input  blocks "INCON" and "FLOWS" 
to be produced when the problem ends normally. 
I f  less than zero, only a deck i n  the format of 
input  block "INCON" is produced. These decks may 
be inser ted  i n  the input  deck, which may then be 
resubmitted t o  continue the problem. 

Parameter specifying i f  Newton Raphson i t e r a t i o n  i s  
t o  be used: 
0 or blank: Newton Raphson 
1:  N o  Newton Raphson 

Maximum number of i t e r a t i o n s  to be used i n  the 
Newton Raphson i t e r a t i o n  procedure. 
If convergence is not achieved, t he  t i m e  step w i l l  
be cu t  i n  half .  Default is f i v e  i t e r a t i o n s  if 
Nom is equal to  2. 

Maximum allowable res idua l  f o r  mass equation f o r  
any node. Default  is Used as a convergence 
cri teria i n  Newton Raphson i t e r a t i o n  procedure. 

Maximum allowable res idua l  f o r  energy equation 
f o r  any node. Default  ( i f  blank o r  not spec i f ied)  
i s  1.0. Used as a convergence criteria i n  Newton 
Raph son i t e r a t i o n  procedure . 
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Columns Variables Description 

m 41-50 WARY Desired maximum pressure change during a t i m e  step. 
RVARY i s  set  to 1000.0 i f  unspecified or zero. 
Controls s ize  of the t i m e  s t e p  between l i m i t s  of 
SMALL and DELIMX. 

5 1-60 WARY Desired m a x i m u m  temperature change during a t i m e  I 
step. WARY i s  set  to 5.0 i f  unspecified or zero. 
Controls size of the t i m e  s t e p  between l i m i t s  of 
SMALL and DELIMX. 

I 
71-80 WUP Upstream weighting parameter. WUP is set equal I 

61-70 g s T E A D Y  Steady flow fo r  a l l  connections not specif ied i n  
input  block "FLOWS". I f  i den t i ca l  f o r  a l l  connec- 
t ions,  t he  input  block "FLOWS" i s  n o t  needed. 
QSTEADY i s  only used i f  NOPT i s  equal t o  2. 

to  0.7 i f  unspecified, less than 0.5, or grea te r  
than 1.0. 

Card 4b. Format (6E10.3). General i n i t i a l  conditions 

Columns var iab les  D e  scr i p  t ion 

1-1 0 TONE I n i t i a l  temperature f o r  a l l  nodes f o r  which no T I  i 
11-20 DONE I n i t i a l  f l u i d  density fo r  a l l  nodes. I 

is  specif ied i n  input  block "INCON". 

21-30 PONE I n i t i a l  pressure for a l l  nodes for  which no P I  i s  
specif ied i n  input  block "INCON". 

. I  

31-40 FCONE In i t ia l  preconsolida t i o n  pressure f o r  a l l  nodes 

I 
I 
I 

f o r  which no PCI is specif ied i n  input  block "INCON". 

41-50 GMONE Mass i n j e c t i o n  rate fo r  a l l  nodes fo r  which no G I  
i s  specif ied i n  input  block "GENER". 

51-60 HCONE H e a t  content of in jec ted  f l u i d  f o r  a l l  nodes for  
Which no HCL i s  specif ied i n  input  block "GENER". 
(Units: energy/unit mass) 
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C. ROCKS. Material Properties for  the Sol ids  

MODE I: I f  no compaction calculat ions are required 

Card IC. Format (A5, 415, 5X, 5E10.4). Material Description. 

Columns Variables Description 

1-5 
~ ~~ ~~ ~~~ ~~~~~~~ 

AMAT Material n a m e .  D o  not  use "SYSTM" as  a material 
name. 

6-1 0 MAT Material iden t i f i ca t ion  number. Must not be zero  
o r  l e f t  blank. 

11-15 LTABC N u m b e r  of points l i s t e d  on Spec i f ic  Heat Table card 
or  cards (following Card 21, posi t ive i f  vs temper- 
a ture ,  zero i f  spec i f i c  hea t  is constant 
(equal t o  CAPT). 

LTABK Number of points l i s t e d  on thermal-conductivity 
table card or cards (following Card 2 and any 
s p e c i f i c  heat  tab le  cards 1, positive i f  vs tempera- 
ture ,  zero i f  conductivity i s  constant 
(equal t o  CONDUC (X) ) . 

16-20 

LTABP Number of points  l i s t e d  on i n t r i n s i c  permeability 
table card or cards (following Card 2 and any 
s p e c i f i c  heat  and/or thermal conductivity table 
cards), pos i t ive  i f  vs temperature, zero i f  perme- 
a b i l i t y  is constant. 

21-25 

DENS Density of t he  sol id .  S e t  to i f  less than 
or not specified. 

31-40 

41-50 CAPT Specific hea t  of the solid,  i f  constant. 
I n i t i a l  value, i f  var iable ,  set t o  10-36 i f  less 
than 10-36 or not specified.  

51-60 CONDUC( X) Thermal conductivity of t he  solid-liquid mixture 
along t h e  X-axis of anisotropy, i f  constant. 
I n i t i a l  value, i f  var iable ,  set to  10-24 o r  not 
specified.  

61-70 PERMEAB(X) I n t r i n s i c  permeability of the porous media along 
the x-axis of anisotropy, i f  constant. 
I n i t i a l  value, i f  var iable ,  set to 10-24 i f  less 
than or  not specified.  

71-80 COMPR Matrix compressibility. 
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Card 2c. Format (8E10.3). Material Description 

Columns var iables  Description 
~ ~~ ~ ~ 

1-1 0 ANISCON Anistropy for thermal conductivity. It is  the 
r a t i o  between the  conduct ivi t ies  along the  Y and 
x axes (i.e., CONDUC(Y)/CONDUC(X)). 
Axes x and Y are a r b i t r a r i l y  fixed i n  space and are 
parallel t o  the principal axes of material aniso- 
tropy. S e t  to 1.0 i f  zero or not specified.  

11-20 ANISPER Anisotropy f o r  intr insic  permeability. It is  the 
ra t io  between PERMEAB(Y) and PERMEAB(X). 
set  to 1 .O i f  zero or not specified.  

21-30 POR Porosity. se t  to 10-12 i f  less than 10-12 o r  n o t  
specified.  set t o  .9999 if specif ied equal t o  1.0. 

31-40 M PR coe f f i c i en t  of thermal expansion f o r  rock matrix. 

Card 3c, etc. Format (8E10.3) . 'Specific H e a t  Table 
(omit i f  spec i f i c  hea t  is constant) 

Columns Variables Description 

1-1 0 CAPT( 1 )  Spec i f ic  heat. 

11-20 TVARC(I ) Temperature or t i m e  corresponding t o  CWT( I ) .  

21-30 CAPT( 2)  specific heat. 

(etc. ) 

Card 4c, etc. Format (8E10.3). Thermal Conductivity Table 
(omit i f  thermal conductivity is constant)  

~~ ~ ~~ ~ 

Columns Variables D e S C r  ip t ion  

1-10 CONT( 1 ) Thermal conductivity . 
11-20 TVARK( 1 )  Temperature oorresponding to CONT( 1 ) . 
21-30 CAPT( 2)  Thermal conductivity. 

(etc. 
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Card 5c, etc .  Format (8E10.3). I n t r i n s i c  Permeability Table 
(omit i f  i n t r i n s i c  permeability i s  constant)  

Columns Variables De scr i p  ti on 

1-1 0 PERT( 1 ) I n t r i n s i c  permeability 

11-20 WARP( 1)  Temperature corresponding t o  PERT( 1 ) . 
21-30 PERT( 2) I n t r i n s i c  permeability . 

(e*. 1 

Card 6c 

Repeat card sequence from I C  t o  5c fo r  each d i f f e ren t  material .  Follow- 

ing the  cards corresponding t o  the l a s t  material ,  place a blank card. 
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MODE 11: If compaction calculat ions are required 

Card lcc. Format (A5, 25X, 2E10.4). Average propert ies  of overburden 
and flow region 

columns var iab les  Description 

1-5 Punch the word "SYSTM" 

31-40 THICK Thickness of t o t a l  system (overburden p lus  flow 
region) 

41-51 DENSBUR Average densi ty  of total System. 

Card 2cc. Format (A5,  415, 5X, 5E10.4). Material descr ipt ion 

Same as C a r d  1 i n  MODE 1 .  Set COMPR equal to zero, or leave columns 

7 1 - 80 blank . 
Card 3cc. Format (5El0.3) . Material descr ipt ion 

~ ~~ ~~ ~ ~~ 

columns variables Description 

1-1 0 ANISCON Same as i n  MODE I 

11-20 ANISPER Same as i n  MODE I 

21-30 AV Coeff ic ient  of compressibil i ty (a , )  

31-40 Ez Reference void ra t io  (eo) 

41-50 PZ Reference etfective stress (ao ' )  a t  which e = eo 
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Card 4cc. Format (5E10.3). Material descr ipt ion 
~~ ~ 

Columns Variables D e  s cr i p  t i on 

1-1 0 cs swelling index (cs 1 

11-20 cc Compre ssion index ( cc 1 

21-30 CK Slope of s t r a i g h t  l i n e  on the e versus log k p lo t ;  
(ck)  

31-40 EK Reference void r a t i o  (ek) 

41-50 CONZ Reference i n t r i n s i c  permeability 

Cards Scc, 6ccf7cc, and &c are the  same as Cards 3c, 4c, 5c, and 6c of 

MODE I. 

N o t e :  If some materials are deforming according t o  Terzaghi's one- 
dimensional theory (i.e., COMPR = 0, AV = 0, CC, CS # 0)  and 
others  are not, use MODE 11, reserving MODE I only for  those 
materials with nonzero rock matrix impermeability (COMPR). 
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D. FLUID: Material Propert ies  for  the Fluid 

Card Id .  Format (8E10.4). Fluid Propert ies  descr ipt ion 

Columns Variables Description 
~ 

0-10 DENSF Fluid densi ty  i f  constant. I f  blank or zero, the 
f l u i d  density w i l l  be calculated as a function of 
pressure and temperature. 

11-20 VISCF Dynamic v iscos i ty  of f l u i d  i f  constant. I f  blank 
or zero t h e  f l u i d  v iscos i ty  w i l l  be calculated as 
a function of temperature. 

21-30 COMPRF Compressibility of f l u i d  i f  constant. I f  blank or  
zero, the  compressibil i ty w i l l  be calculated as a 
function of pressure and temperature. 

31-40 SH EATF Specific hea t  of f lu id .  S e t  t o  i f  zero or 
uns pec i f  i ed . 

41-50 MPF Thermal expansion of f l u i d  i f  constant. I f  zero 
or unspecified, EXPF W i l l  be calculated as a 
€unction of pressure and temperature. 

E. NODES: Node Descriptions 

C a r d  le. Format (415, 3E10.3) 

Co lumn s Variables Description 

1-5 NODE Node iden t i f i ca t ion  number. 

6-1 0 NSEQ N u m b e r  of addi t iona l  nodes of same volume. 

11-1 5 NADD Increment between successive values of NODE i n  the  
sequence of NSEQ + 1 nodes generated when NSEQ is 
used. 

16-20 NODMAT Ident i f ica t ion  number of the material of which t h e  
node is  a part. 

1 
I 
I 

I 
I 

21-30 VOLUME Volume of node. Multiplied by (SCALE)3 t o  obtain 
volume to be used i n  the simulation. 
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Columns Variables D e  scr ip t ion  

31-40 DELZ Increment i n  elevation, when multiplied by SCALE, 
between successive nodes when NSEQ i s  used. 

41-50 Z Elevation of nodal po in t  with respect to  datum 
leve l ,  when multiplied by SCALE. 

Card 2e. 

Following t h e  card describing t h e  last node, place a blank card. 

Note: Place the boundary nodes a t  the end of the sequence. mere should 
be KT of these nodes as specif ied i n  input  block "SPECS". 

F. CONNE: Connections Between Nodes 

Card If. Format (615, 4E10.3) 

Columns var iab les  Description 

NOD2 

11-1 5 NSEQ 

16-20 

21-35 

26-30 NSOTRPY 

1-5 

6-1 0 

NAD2 

Dm2 
31-40 
41-50 

51-60 AREA 

Ident i f ica t ion  numbers of the connected nodes. 

N u m b e r  of addi t ional  i den t i ca l  connections. 

Increments between successive values of NOD1 and 
NOD2, respect ively,  i n  t he  sequence of NSEQ+l 
connections generated when NSEQ i s  used. 

Anisotropy parameter. I f  nonzero, it is se t  equal 
t o  1,  ind ica t ing  that this connection i s  parallel 
t o  the Y-axis of anisotropy 
( s e e  input  block "ROCKS"). 

Distance, when mult ipl ied by SCALE, from t h e  nodal 
p o i n t s  i n  NOD1 and NOD2 t o  the connected in te r face  

In te r face  area between nodes NOD1 and NCD2. 
Multiplied by (S(aLE)2 t o  ob ta in  in t e r f ace  area 
t o  be used i n  simulation. 
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Columns Variables 
~ 

61 -70 HINT Heat-transfer coe f f i c i en t  f o r  conduction and 
convection across the space between the connected 
surfaces. I f  HINT i s  not specif ied or  se t  = 0, i t  
w i l l  be set to 1050. 

Card 2. 

Following the  card describing the  l a s t  connection between nodes, place a 
blank card. 

G. INCON: I n i t i a l  Conditions 

Card lg. Format (315, 5X, E10.4, E20.9, 2E10.3) 

Columns Variables Description 

1-5 NOTE Node iden t i f i ca t ion  number . 
6-10 NSEQ Number of addi t ional  nodes with iden t i ca l  i n i t i a l  

conditions. 

11-15 NADD Increment between successive node numbers i n  
sequence of NSEQ+l nodes generated when NSEQ i s  
used . 

21 -30 T I  Init ial  temperature. If not  specif ied,  T I  i s  set 
to  TONE ( input  block "SPECS"). 

31 -50 P I  I n i t i a l  pressure. If n o t  specified, P I  i s  set to 
PONE ( input  block "SPECS"). 

51 -60 POR I n i t i a l  porosity.  

61 -70 PCI I n i t i a l  preconsolidation stress. PCI is set to 
PCONE ( input  block "SPECS") i f  not specified. 
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Card 2. 

Following t h e  card specifying t h e  i n i t i a l  condition of the l as t  node, 
place a blank card. 

N o t e :  The order on which the nodes are described i n  this block may 
d i f f e r  from the  order followed i n  input  block "NODES". 

H. GENER: Generation R a t e  

Card lh. Format (415, 5, 2E10.4) 

Columns Variables Description 

1-5 NODG Ident i f ica t ion  number of generation node. 

6-1 0 NSEQ N u m b e r  of addi t iona l  nodes with i d e n t i c a l  genera- 
t i o n  rates. 

11-1 5 NADD Increment between successive node numbers i n  
sequence of NSEQ+l nodes generated when N S E Q  
is used. 

16-20 LTABG N u m b e r  of points l i s t e d  on generation r a t e  table .  
Zero o r  one i f  generation rate is constant with 
t i m e  . 

21-30 G Generation rate i f  constant fo r  node NODG. 

31-40 HCI Specif ic  enthalpy of in jec ted  w a t e r  (temperature 
t i m e s  spec i f i c  heat) .  H C I  i s  set to HCONE 
( inpu t  block "SPECS") i f  not  specified.  

Card 2h. Format (8E10.3). Generating rate t ab le  
(omit i f  generation rate is constant)  

~~ 

Columns Variables Description 

1-1 0 G( 1 )  Generation rate. 

11-20 TIMX( 1 ) T i m e  corresponding t o  generation rate. 
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Columns Variables Description 

21 - 30 G( 2) Generation rate. 

31-40 TIMX( 2)  Time corresponding t o  generation rate. 

(etc. 1 

Card 3h. 

Following las t  card i n  table, place a blank card. 

I. FLOWS: Constant Flow R a t e s  B e t w e e n  Connections 

N o t e :  This input  block is  required only i f  NOPT = 2 ( inpu t  block "SPECS") 

Card 11. Format (4(15, E15.6)) 
~~ 

Columns Variables D e  scr i p  t i on 
~~~ ~ 

1-5 CONNEC( 1 ) Connection number (index number assigned i n  
BLOCK 5)  

6-20 maw( 1 )  Mass flow ra te  f o r  CONNEC( 1 ) 

21-25 CONNEC( 2 )  Connection number . . 
0 

66-80 n M ( 4 )  Mass flow rate  f o r  CONNEC(4). 

Note: Specify only connections which have nonzero f l o w  rates. In each 
card, give data f o r  four  connections, last  card may specify less 
than four connections. FLm is positive when i t  is  from NOD2 
towards NOD1 (see i n p u t  block "CONNE"). 

Card 2. 

Following t h e  last card, specifying mass flow r a t e s ,  place a blank card. 

8 



3 39 

J. DIMEN: Dimensionless Parameters. 

Card lj. Format ( I S ,  5X, 2E10.4) 

Columns Variables Description 
~~~~~ ~~ 

1-5 NDIM Parameter that spec i f i e s  i f  dimensionless pressure 
o r  flowrate is t o  be calculated.  
0 or blank: dimensionless pressure 
1 : dimensionless flowra te 

11-20 DIMTIM Cons tan t t h a t  give s dimensionless t i m e  when 
multiplied w i t h  t o t a l  t i m e .  

21-30 DMPAR Constant that gives  dimensionless pressure/f lowrate 
when multiplied w i t h  total  pressure change f o r  node 
NUM (dimensionless pressure)  or flow through 
connection 1 (dimensionless flow rate)  . 

Card 2j. 

To end input  block "DIMRV', place a blank card. 

K. ENDED: Cards t h a t  end da ta  deck 

C a r d  lk. 

The last  card of the deck must be a Final  C a r d  w i t h  the word "*SPLIT" i n  
colums 1 through 6. This card stops the program. 
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APPENDIX B: EQUATION OF STATE FOR LIQUID WATER 

The v iscos i ty  of l iqu id  w a t e r  is  calculated based on the  following 

expression: 

[&I 
p = dl10  

where d l  = 2.414 x 

dens i ty  is calculated as a function of pressure and temperature as 

follows (Buscheck, 1980) : 

d2 = 247.8, and d3 = 133.15. The f l u i d  

C ( T )  x: c + c ( T  - Tref )  + c3(T - Tref l 2  
1 2 

l 4  3 + c 4 ( T  - Tref) + c 5 ( T  - Tref 

5 
) + c 7 ( T  - T + c 6 ( T  - Tref ) 6  r e f  



1 

The coef f ic ien ts  are: 

34 1 

, 

0 < T < 199OC, T = lO0OC re f 

a = -96628 

a = -.70650 x 

5 a = -.28521 x i o -  

a - -59365 x 

a5 = -32285 x i o  

1 

2 

3 

4 -  

-1 0 

199 < T < 35OoC, Tref = 26OOC 

a = -79829 

a = -.i4906 x 

a = -.57448 x 

a = -40265 x i o  

a = .i766i x 

1 

2 

3 

-7 
4 

5 

7 O < P < 4 x l O  pa 

b, = -.12953 x 

b2 = .SI594 x 

b3 = -.99714 x 

b4 -10275 x I O  -9 
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= 18OOC ref 140 < T G 22OoC, T 

c = 1.2092 
1 

c = -70811 x 2 

-4 
c = e71415 x 10 3 

-6 
C 4 = -079423 x 10 

-8 
c =L -e53925 x 10 

5 

-9 
c = -5148 x 10 

6 

-1 1 
c = -e54612 x 10 7 

220 < T < 35OoC, Tref = 26OOC 

c = -2.2437 
1 

c = -23865 x 10-1 2 

-4 
c = -215671 x 10 3 

-7 
c = -81759 x 10 

4 

-8 
c = -54541 x 10 

5 

c = .36389 x 
6 

c = .48355 x 
7 
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This dens i ty  function i s  accurate t o  within 1% f o r  0 < T < 3OO0C, 

and 5% for  300 < T < 350OC. The f l u i d  compressibility and thermal expan- 

s i v i t y  are calculated from t h e  density function on the  basis of t h e i r  

de f in i t i ons  : 
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APPENDIX C 

SIMULTANEOUS SOLUTION OF THERMAL Q U A T I O N S  FOR FRACTURE AND ROCK 

In  dimensionless form, the  equation governing the  temperature i n  the 

f rac ture  and the  rock are: 

Fracture : 

Rock : 

r a2TD r aTD 

The i n i t i a l  and boundary conditions are: 

0 T < O  

1 T > O  
I T (0,T) = 

Df 

( C 2  1 

(C3 1 

( C 4 )  

( C 5 )  

(C6 1 

After applying Laplace transformation with respect t o  T, equations ( C l )  

and ( C 2 )  become: 

2 - -  a :  p v = o ,  

where u and v are the temperatures of the f rac ture  and the rock matrix i n  
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the  Laplace space, respectively.  In  the Laplace domain, t he  boundary 

conditions (equations (C4)-(C7) becane: 

u(0)  = l /P ,  ( C 9 )  

u ( 0  = V ( S , O ) ,  ( C 1 0 )  

q = o .  
rl=l 

The solut ion t o  equation (C9) is: 

v = A cash Jf;-rl + B s inh  GT), ( C 1 2 )  

where A and B are constants. Applying boundary conditions given by 

equations (C10)  and (C1 1 ) , A and B can be determined: 

B = -A tanh 6 ,  ((213) 

A = U  0 ( C 1 4 )  

Subs t i tu t ing  equations (C13) and (C14) i n t o  ( C 1 2 )  y ie lds:  

v = u(cosh Gn - sinh G n  tanh 5). (C15) 

Solving the equation f o r  the temperature i n  the  f rac ture  (equation (C8) 1: 

Subs t i tu t ion  of equation (C16) i n t o  equation (C8)  y ie lds:  

rewri t ing (C17) : 

The so lu t ion  of equation (C17) is: 

Applying boundary conditions given by equation (C9) enables determination 
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I 
I 

of the cons t an tC  as C = l / p  and equation (C19) becomes: 

1 1 (0p + 2 6 tanh 6 1 6  u = - exp [- 
P ( 2  + e)  ( (220) 

Final ly ,  having obtained a solut ion for  the f r ac tu re  temperature i n  the 

Laplace domain ( u )  one can write the complete solut ion for the rock 

temperature i n  the Laplace domain (v ) :  

A S S y m t O t i C  Solutions 

A t  e a r ly  t i m e s  (p + 4 the  temperature i n  the fracture i n  the Laplace 

domain i s  given by: 

u = -  1 exp - [* P] 
P 

( C 2 2 )  

The temperature i n  the rock mat r ix . in  t h e  Laplace domain a t  ea r ly  t i m e s  

i s  zero as s inh  x + cosh x and tanh x + 1 when x + 0, Equation (c22) can 

e a s i l y  be inverted t o  yield:  

(C23) 

where u denotes the u n i t  function. A t  l a te  t i m e s  (p + 0) ,  t h e  equation for 

the temperature i n  the f r ac tu re  i n  the Laplace domain (equation (C20))  

reduces to: 

((224) 

Inversion of equation ((224) from the  Laplace domain t o  real space yields:  

(C25) 

s imi l a r  development for equation (C21) yie lds  i d e n t i c a l  r e s u l t s  f o r  the 

temperature i n  the rock matrix as s inh x + 0 and cosh x + 1 when x + 0. 
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- 
a n  T l  = 0: 

APPENDIX D 

SOLUTION OF EQUATIONS FOR FAULT-CHARGED RESERVOIR 

aTD a aTD a 
0, - K -  - - -  

rl=O 1 1 an r\=O 

In dimensionless form the equations governing the temperature in the 

aquifer, caprock and bedrock are: 

aTD 1 
a2TD 

-- -- 1 
2 r\ > 0: 

an  

2 

1 

92TD aTD 
1 Y  -- - - -  

K a T  
n < 0: 

an2 

The i n i t i a l  conditions are: 

The boundary conditions are: 

T ( C l ,  - a,'cl) = T ( Q  + 1 )  
D2 Q 

After applying Laplace transformation w i t h  respect to  T1, equations 

(D1  )-(D3) become: 

( D 2 )  

( D 3  1 
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rl=O 
rl = 0: 

au  
+ B T  = o  

lPua 1 g 
rl=O 

2 a v. 

rl < 0: - -  W2 - Tg(9 - 1 )  = 0 
an2  

where q is defined as q = ( Y / K ) p .  The bourdary conditions become: 

1 
P 

Ua(O)  = - 

U a ( S 1 )  = V , ( S , , O )  = v2(S,,O) 

V l ( E 1 , 1 )  = 0 

v (5 ,-u) = 3 ( u  + 1 )  
T 

2 1  P 

(D10) 

( D l 1 1  I 
1 
i 
I 

EqMtions (D10) and ( D l l  ) are nonhomogeneous second-order ordinary d i f f e r -  

e n t i a l  equations. 

iable y is: 

The general  form of the equations for  a dependent var- 

(D16) 

3 To solve equation (016) one must obtain a solut ion t o  the homogeneous 

equation (y,) and a pa r t i cu la r  solut ion t o  the  nonhomogeneous equation 

( Y p )  The complete solut ion is  then: 

Y = Y, + Yp ( D 1 7 )  
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The so lu t ion  to  the homogeneous equation is  simply: 

= A cash G n  + B s i n h  Gn 
yC 

(Dl81 

where A and B are constants. Now w e  guess a solut ion t o  the nonhomogen- 

eous equation as: 

Yp=CTI+D (D19) 

where C and D are constants. Subs t i tu t ing  equation (D19) i n t o  equation 

( ~ 1 6 )  and equating the coe f f i c i en t s  yields:  

T 

P 
9 c =  - -  

T 

P 
D = -  g 

The complete Solution t o  equation (D16) can now be wr i t t en  as: 

T 

P 
y = A cosh 6 n  + B s inh  6Tl - ( r l  - 1 )  

( 0 2 0 )  

( D 2 1 )  

(D22) 

A f t e r  obtaining a so lu t ion  for  equation (Dl61, t h e  solut ions for  

equations (D10) and (D11) are: 

T 
0 < 0:  v = a2cOsh r'pn + b2sinh 61) - 9 (n - 1 )  

2 P 

where al , a2, bl ,  b2 are constants. Applying boundary condition 

given by equation (D13) yields:  

Ag 
a 1 = a 2 = u  a P  - -  

(024) 

(D25) 

S imi la r i ly ,  t h e  boundary conditions given by equations (D14) and (Dl5) 
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can be used t o  determine bl and b2: 

(D2 6 )  I 
I T 

- [ua - 51 (D27) 
b2 tanh 

subs t i t u t ing  equations (D25)-(D27) i n t o  equations (D23) and (D24) yields:  

(D28) 1 

I Since the equations f o r  t h e  temperature i n  the caprock and bedrock have 

been solved i n  the Laplace domain, one can proceed tm solve equation (~9): 

T 

- -  = -  
t a n h q  P 

subs t i t u t ion  of equations (D30) and (D31) i n t o  equation (D9) yields:  

1 
8 

(D30) 
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Rearrangement of equation (D3 2) yie lds  : 

Now l e t  us  def ine 3 as:  

subs t i t u t ion  of equation (D34) i n t o  equation (D33) yields:  

The so lu t ion  of equation (D35) is: 

(D3 6) 

where C1 i s  a constant. Applying equation (D34) i n  terns of ua yields: 

T j'p K r  Q a = c1 exp - [v + 
+ &]5 + 

The constant  C, can now be determined using the boundary condition given 

by equation (D12): 

1 - - [ l  - Tg] 
c l -  p (D38) 

Subs t i tu t ion  of equation (D38) i n t o  equation (D37) yields:  

Equation (D39) represents  the temperature i n  t h e  aquifer  i n  the Laplace 

domain. 
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c 

A s y m p t o t i c  Solutions 

A t  ea r ly  t i m e s ,  t h e  solut ion for  the temperature i n  the Laplace 

domain is: 

rn 

T 
v = - -  [TI - 1 1  
1 P 

TI > 0: 

(D40) 

(D4l) 

T 

2 P 
(D42) v = - -  [TI - 1 1  TI < 0: 

Equations (D40)-(D42) can eas i ly  be inverted from the Laplace domain to 

real space t o  yield:  

q = 0: TD = T (043) 9 a 

(D4 4) 
TD1 = - Tgr'l - l 1  

TI > 0: 

TD2 = - - l 1  
TI < 0: 

Equations (D43)-(D45) represent  the i n i t i a l  conditions specified i n  the 

problem. H o w e v e r ,  a t  a s l i g h t l y  la ter  t i m e ,  t he  temperature i n  the aqui- 

f e r  i n  the Laplace domain is: 

rn 

(D46) 

Equation (D46) can be inverted to real space. t o  yield:  

9 1 1  9 
= [l - T I U 1 [ ~ l -  6 5 I + T TD (D4 7 )  

a 
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A t  late t i m e s  as p + 0, tanh i p  + dp and the  equations f o r  the  

temperature i n  the Laplace domain simplify to: 

T 
1 9 
P ua - - - [ l  - Tgl exp - [ l  + : I C 1  + l) = 0: 

T 
T l  > 0 :  v = -  11 - Tgl[l - tll exp - [l + $ I t 1  - - P (T l  - 1 )  1 P  

Equations (D48)-(D50) can be inverted t o  real space t o  yield:  

= 0: TD = [ l  - Tgl elq? - [l + +] 6 ,  + Tg 
a 

Equations (D51)-(D53) give the steady s t a t e  temperature d is t r ibu t ion  i n  

the  aqui fe r  caprock and bedrock. 

The steady state t o t a l  heat  losses from the aquifer can be calcu- 

lated using the Fourier law of heat conduction. I n  dimensionless form 

the  equation for  the dimensionless total hea t  losses  from t h e  aquifer is: 

Equations (D52) and (D53) can eas i ly  be d i f f e ren t i a t ed  with respect  t o  q 

and evaluated a t  q = 0. Equation (D54) thus becomes: 
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