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The Hamiltonian Structure of Multi-Species Fluid Electrodynamics 

Richard G. Spencer 

Physics Department and Lawrence Berkeley Laboratory 
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ABSTRACT 

The phase space for multi-species fluid electrodynamics is the 
function space of fluid variables and Maxwell field variables. The 
Poisson bracket on phase functionals is constructed as a Lie algebra 
product following general methods of infinite dimensional symplectic 
geometry. 

Recently, there has been. a considerable amount of interest in 
the underlying Hamiltonian structures of the three standard models 
of non-dissipative plasma physics. Morrison and Greene (1) and Hoim 
and Kupershmidt (2) have considered ideal magnetohydrodynamics, while 
Morrison (3), WeiiTstein and Morrison (4), and Marsden and Weinstein 
(5) have treated the Maxwell-Vlasov sy?tem, the special relativistic 
generalization of which has been studied by Bialynicki-Birula and 
Hubbard (6). We present here the Hamiltonian structure for multi-
species fluid electrodynamics (7). 

One conclusion that has emerged from this activity is that it is 
advantageous to derive the appropriate Poisson bracket from geometric 
considerations which will insure that it is bilinear, skew-symmetric, 
and satisfies the Jacobi identity. Our work follows the approach of 
Marsden and Weinstein in that the main ingredients in the con-
struction of the Poisson. structure for functionals of the fluid 
variables and the Maxwell field variables are the symplectic manifold 
structure of the co-adjoint orbits of a Lie group (8), and the 
reduction of phase spaces with symmetry (9), (10). - 

We define the physical system of chared fTtiids under consider-
ation. Label fluid species with subscript 5; each is composed of 
particles of mass m 5  and charge q 5 . 	Let a5 q 5 /m5 ; q 5=O is allowed. 
Our treatment holds for an arbitrary number of species, but two 
(oppositely charged) species is the situation most commonly discussed. 
Then, in terms of the fluid velocities 	, mass densities PS,  specific 
entropies a, electric field E, and magnetic field B, the equations of 
ideal multi-fluid dynamics, ii rationalized units, ire 

E=vxB - Eâp u 	 B=-  VxE 	 (la) 

• E=Ea55 	 •8=O - 	 (ib) 
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= - 	v 	(PS  .)  

a s  = —• va  

= —(.5 v) 5  + a5 (E + 	x B) - 	; 1 VP  

where the specific internal 	energy Us (p 5 , aS),  expressed as an 
equation of state, yields the (partial) pressure P S according to 

P5 = p 	aU 5 /p 5 	• (3) 

Eqs. 	(1) 	are the Maxwell 	equations, 	including an external 	time- 
independent charge density Pext, 	and eqs. 	(2) and (3) are the laws 
of compressible ideal fluid dynamics. 	We neglect heat flow, and 
therefore express entropy convection by the adiabatic equation (2b). 

It is natural 	in our construction to replace the velocity field 
variable 	with the momentum density !i 	 Then phase space 

consists of the set of dynamical 	variables (, p5, O, E, 	B), 
while the energy of the system is 	 - 	- 

H (N 9  p s , a ss  E, B)= E f( ½ 	
— 1 	2 

+ 	
U5 )d 3x  

+ f(s l-. iI2 + 1!12)d3x.   
(We shall 	sometimes use the notation of writing, e.g., 

(M1,.,.., 	j() 	for k 	species. 	Whether this 	is the case or 
whether 	refers to the single species s will 	always be clear 
from the context.) 

We wish to express eqs. 	(la) and (2) as Hamiltonian evolution 
equations 

Z 	= 	Z, 	H} 	,  

where Z represents one of the dynamical variables, and the 
Hamiltonian H is given by the energy, eq. (4). Because we are 
abandoning canonical coordinates in favor of these physical 
variables, the bracket in eq. (5) is not expected to have the form 
of a standard Poisson bracket, Here, we present only a sketch of 
the construction of, the Poisson bracket; a detailed exposition will 
be presented in a later publication. 

We regard the system defined by eqs. (1), (2), (3), and (4) as 
the coupling of the vacuum Maxwell equations to ordinary ideal fluid 
dynamics. Therefore, we shall briefly review the Hamiltonian 
structures of these theories. 

The equations of motion for a single fluid species composed of 
uncharged particles are eqs. (2) and (3), with s=l and a 5 =O. The 
Hamiltonian is the first integral in eq. (4). The Poisson bracket 
for this has been given by Morrison and Greene, and rederived by 
Marsden and Weinstein (private coninunication) from the symplectic 
structure on co—adjoint orbits of a certain Lie group G. In order 
to motivate a guess of what G might be, we reason as follows. The 
dual to the Lie algebra g of G, denoted *, must contain the phase 
space variables (M, p, a). This is achieved here by noting that 
momentum densities are just vector field densities on R 3 , the set 
of which we write as X*,  and that mass and entropy densities are 
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scalar field densities on g3, written F*.  Thus the fluid phase 
space is, with x denoting the direct product, 

. (M, P , 	
= 	= X x F*  x  F* 

The duality between q*  and g is via the L 2  pairing, "multiply and 
integrate". It is therefore immediate that 

g=XXFXF 

where x denotes vector fields and F denotes scalar fields on R 3 . 
Now x, which may be thought of as containing the velocity fields on 
i 3 , is the set of generators of displacements of the fluid. Hence 
the part of G which corresponds to the factor X in g is the group of 
diffeomorphisms on 1R 3 , denoted V (see (11) for a discussion of V 
as a Lie group). The group product is 	mposition, since that is 
how two successive displacements of a fluid element combine to yield 
a single displacement. On the other hand, F  is a vector space, so 
that the parts of G corresponding to these factors in g are F itself. 

Hence G may be regarded as sets of triples of parameters labeling 
positions, densities, and entropies of fluid elements. These are 
physically related in the following way. Let n denote a 
diffeomorphism representing the change in position of fluid elements 
from the set of their initial positions {x 0 } to. their positions 
{x} at some later time. Then for the values of the density and 
entropy of the fluid element at x, we have, respectively, 
P(x) = po(X0) and a(x) = aoli(XQ). In other words, we keep track 
of these quantities by composition with T1. Hence the group V acts 
on F x F according to 

in ' ('' f 2 ) = (f1o, f2o), where (f 1 , f 2 )E F x F. 

Finally, then, we conjecture that 

6 = VQ(F x F) 

The semi—direct product structure, indicated by 0, is specified by 
the action above. 

Then, by constructing explicitly the Kostant—Kirillov—Souriau 
syuiplectic structure on co—adjoint orbits of 6, one obtains Morrison 
and Greene's Poisson structure on all of g*.  Suppressing the species 
label and using a dynamical variable as a subscript to denote the 
functional derivative with respect to that variable, it is 

"M 	(Ic 	(r7t 	 1' 	1i 	I.— IA A3•,'i) 	P Gj 
- -J i'M 	VM) - '3M 	

vr)iu U X 

- f [FM  - (vG) - 	(VF) pd3x _f[FM (VG) - 6M (vF)} ad 3x 

The equations of motion for an ideal fluid now follow from eq. (5). 
The vacuum Maxwell equations have been treated as a Hamiltonian 

system by Pauli (12) and Born and Infeld (13), but the discussion of 
Mrsden and Weinstiin (5) from the viewpoiit of the reduction 
procedure has additional noteworthy aspects. The phase space is the 
cotangent bundle T*A to the group A of vector potential fields A on 
3. For (A,Y)ET*A, we define the electric and magnetic fields 

E = —V. B = v x A. Then the canonical syniplectic structure on T*A 
yields tlie following bracket of two functionals F, 6 of E and B: 
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{F, G} (E, B) I I FE - ( vx GB) - GE( vx  FB)]d 3x 	 (7) 

This, together with the Maxwell Hamiltonian (the last term of eq. 
(4)), yields the evolution equations (la) in the vacuum case. To 
obtain the vacuum versions of eqs. (ib) one uses the symmetry of the 
theory under the gauge transformation 

A I 	o,  A+VA 	, 	 (8) 

A E F . We denote the gauge group CA} by G. The Maxwell momentum 
map found in the reduction is JM (A, Y) = - v • V. 

We now consider the ccmbined ystem of charged species plus the 
Maxwell equations. The Hamiltonian, written in terms of the 
canonical momenta N s  = Ms + a5 p 5A and the other pre-reduction 
variables, is 	 - 	— 

A. I.) = J 	P S 
' 1.Ns - apI 2  + p S  u ]d 3x 	(9) 

+ ½J[l V x A 12 + Ix. 2 ] d3x 

To apply reduction to the full phase space P=Uja, P, 
0, A, Y)} Eg x T*A, the action of Gon T*A, eq. (8), must be 
extended to an action 	of 0 on all of P. We require that Ho = H, 
and that 	preserves Poisson brackets of functionals F, G on P, i.e., 
CF°4, GoP}= CF,G}o. It is obviousfrom eq. (9) that the action 

' 	, !.) = (! 	+ a5p5VA, PSI, °s' A + VA, Y) 	 (10) 

satisfies the first requirement, and one can show that it also 
satisfies the second. 

In order now to obtain the momentum map J:P__G* for F, it 
suffices to calculate J 5 : g *........G*, the momentum map ong 

' a)}. We first define a map as:G —F(P5 ), from 

the Lie algebra of 0 to functions on P5 . Letting A[95*] be the 

infinitesimal generator of the action on g*  corresponding to A€G, 

and letting x[H]  denote the Hamiltonian vector field on co-adjoint 

orbits in 	with Hamiltonian function H: 	 is given by 

the relation X[a 5  (A)] 	A[gs*].1 S 
is then defined by 

J 5 (1j5 , P SI  a5)(A) = a5(A)(N5, 
PSI 

a s ); one finds 

J5Q5,
PSI 	 = -a5p5. 

Therefore, the momentum map on P, obtained by summing 

s, °s' 	' !)= M' fl + E J(L5 	' as), 	 (11) 

is 	J(, p 5 , a s , A, Y) = - V • V - a5 p 5 . 

With E = -Y, reduction at the external charge density Pext  then 
specifies That the dynamics takes place on the level set of constant 
external charge 

ext = Q!s s 
p5, 

0s' ' !. ) E 'Iv= ext Ea5p5, 
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Coordinates on the reduced phase space J(pt)/G are now 
given by: 
Proposition 1: 

ext)/G = l(!1s' p s , as..' ..)I" E = next 	a 5 p 5 , vB = o} 

Proof: To elements (N , 	, a , A s  Y) of P, associate 

quintuples (, 5, :. B: E), where 	= 	- ap A, 

B = v x A, and E = -V. Then the proposition follows from the 
iiiomentumThiap c&istructed above, and from a simple verification that 
two elements of J(pext)  are associated to the same quintuple 
if and only if they are related by the gauge transformation eq. (10). 

It remains now to compute the Poisson structure on J(pext)IG. 
Proposition 2: For two functionals F,G of the field variables 

a, E, B), the Poisson bracket is given by 

} (!.s , p s' a s ,E, B) = 	IF,GI(M 5 , p s' as) + j F,G} (.., .) 	(12) 

+ j (FM. GE -  GM FE + B FMx GM)aSPS d3x 

where the first and second terms are defined in eqs. (6) and (7), 
and species subscripts have been suppressed in the functional 
derivatives. 

Proof: Given F and G, define F on P  according to F(, P, aS, 
A, Y) = F(M5 , P s , a, B, E). Define G similarly. Then {F,G} 

is found by computing {F,} as the sum of eq. (6), written for 
unreduced variables, and the canonical bracket on T*A , and by 
expressing the result in terms of the variables on J(p ext)/G. 

We observe that the first term of eq. (12) involves only the 
fluid variables and that the second is purely electromagnetic, while 
the third provides the coupling of the fluids to the electric and 
magnetic fields. Bilinearly, skew symmetry, and the Jacobi identity 
all follow for eq. (12) by the methods used in its derivation. In 
addition it is readily verified that the correct evolution equations 
for the phase space variables, in the form of eq. (5), follow from 
eqs. (12) and (4). Additional body forces, such as gravity, can 
easily be incorporated into eq. (2c.) by the inclusion of an 
appropriate term in the Hamiltonian. Finally, eqs. (ib), rather 
then being postulated separately as initial conditions, follow from 
the gauge invariance of electromagnetism. 
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