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The ELLIPSE, DALITZ RECTANGULAR, and CM programs work as given on 
the HP-19C and HP-29C, while the other programs need changes from 
the following list. In storage-register addresses and in RCL and 
STO statements: 

[ HP-19C, -29C 

Also: 

• for A read •1 
. " B " •2 
. " C " • 3 
. " D " • 4 
. .. I " 0 

• for RCL(i) read RCL i 
• " STO(i) " STOi 
• " DSZ I •• DSZ 
• •• ISZ I " ISZ 

[ HP-19C, -29C 

In the LEGENDRE program, change step 32 to RCL -0, and make R , not 

The write-up for each program tells what the program does and 
how to run it, discusses any limitations or special cases or pit­
falls, and gives an example or two to test that the program is 
stored properly and that its operation is understood. The examples 
have all been rechecked from the final typescript on an HP-97 and, 
with the necessary changes, on an HP-29C. 



LEGENDRE 
The LEGENDRE program calculates the values of the Legendre poly­

nomial series 
N 

A(x) = C I a P <x) **_ n n n=0 
at x = x , x +Ax, x +2Ax, ••-. The input data are the values of x , 
Ax, N (< 10), the overall normalization constant C, and the expansion 
coefficients a . n 

The method used is of interest. The straightforward way to cal­
culate A(x) is to start at the bottom of the ladder of Legendre poly­
nomials with P_ and P , use the standard recursion relation to climb 
to higher rungs, and accumulate the products a P along the way. 
Suppose, however, we define a new set of (x-dependent) coefficients 
c recursively by 

, / 2n+l -v c n+1 -\ 
C n = a n + t - n ^ X C n + l " l ^ Cn +2 

This leads to the 
remarkable result that 

N 
[ a ? = cn , 

n=0 
and so the need to accumulate a P terms and keep track of the sum 

n n 
along the way is eliminated. This method, which was discovered by 
C.W. Clenshaw, is widely applicable to the summation of series of 
orthogonal polynomials; see, for example, p. 11 of F.S. Acton, 
Numerical Methods that Work (Harper and Row, New York, 1970). ine 
recursion relation for the new coefficients is of course related to 
that for the orthogonal polynomials, and has to be worked out sep­
arately for each case. In general, the two lowest coefficients 
(here c and c.) are involved in the final sum, but for Legendre 
polynomials the result is particularly simple. 

To run the program, store the data in the indicated registers 
and start with a GSB 0 command. After some seconds, the value of x 



is displayed briefly, and then A(x) is displayed and the program 
stops. For easy access, x is at this point in the Y register. 
Thereafter, the stored value of x is incremented by Ax and A(x) is 
calculated for the new value each time R/S is pressed. 

To test the program, zero the registers and then set a q = 1, 
This input generates Pq(x) N = 9, x = 1, Ax = - 0 . . 25 , and C = 1. Th: 

a t x = 1.0, 0 .75 , 0. . 5 , ... . The f i r s t fei 

x = 1.0 P, = 1.000000001 
0.75 0.310331851 
0 . 5 -0.267898560 
0.25 0.176824421 

0 . 0 0.000000000 

of M. Abramowitz and I. Stegun, Handbook of Mathematical Functions 
(Dover, New York, 1972). Some error is to be expected in the ninth 
place, as in 
of accuracy. 



Program: LEGENDRE 

Step Keys Step Keys 
*01 LBLO 31 x tg 

02 0 •t32 RCLO 
03 ENTER 33 + 
04 ENTER 34 RCL A 
05 RCLB 35 X 
06 1 36 R/S 
07 + 37 RCLD 
08 STOI 38 RCLC 

*09 LBL1 39 + 
10 1/x 40 STOC 
11 1 41 GTOO 
12 + *42 LBL2 
13 4 43 RCL (i) 
14 CHS 44 + 
15 x + y 45 xty 
16 2 46 RCL I 
n RCL I 47 GTOl 
18 \h 
19 -
20 RCLC 
21 X 
22 *Zy 
23 ENTER 
24 R+ 
25 X 
26 + 
27 DSZ I 
28 GT0 2 
29 RCLC 
30 PAUSE 

Regi sters 
+ R o ao 

R i ai 
R2 a 2 
R3 a3 
R4 a 4 
R5 a5 
S 6 a6 
R7 a7 
R8 a8 
R9 a9 
RA C 
RB 

N 
Rc x o ( _ v x ) 

RD Ax 

«, used 

HP-19C and -29C users 
see the introduction. 



ASSOCIATED LEGENDRE 

The ASSOCIATED LEGENDRE program c a l c u l a t e s the va lues of the 

f i r s t - a s s o c i a t e d Legendre polynomial s e r i e s 
N N 

B(x) = C I b P (x) = - C / l - x 2 I b n d p /dx 
n=l n n=l 

at x - x , x +Ax, x +2Ax, ••* (|x| £l). The input data are the 
values of x_. Ax, N (< 10), the overall normalization constant C, 
and the expansion coefficients b . Note the minus sign in the 
definition of P . Angular distributions are sometimes expanded 
with a sign convention opposite to the above, the remedy for which 
is to make C negative. 

The method used here (see the LEGENDRE write-up) is to define 
a new set of coefficients d recursively by 

d = b + (2"±i) x d _ ( 2 & ) d 

n n * n } n+1 * n+1 J n+2 
This leads to 

N 
j b P 1 = -d, /l-x2 *\ n n 1 n=l 

and so again the need to keep track of a partial sum along the way 
is eliminated. 

To run the program, store the data in the indicated registers 
and start with a GSB 0 command. After some seconds, the value of 
x is displayed briefly, and then B(x) is displayed and the program 
stops. For easy access, x is at this point in the Y register. 
Thereafter, the stored value of x is incremented by fix and B{x) is 
calculated for the new value each time R/S is pressed. If x is 
outside the range -1 to +1, Error is displayed. 

N = 9, x = 1, Ax = -0.25, and C = 1. This input generates P (x) 
at x = 1.0, 0.75, 0.5, •-•. The first few results are: 



X = 1.0 3 = 0.000000000 
0.75 0.478134503 
0.5 -0.626763685 
0.25 1.827987321 
0.0 -2.460937500 

These results agree perfectly with those obtained using 7-place 
tables of dPq/dx in chap. 0 of M. Abramowitz and I. Stegun, Hand­
book of Mathematical Functions (Dover, New York, 1972). In fact, 
they are almost certainly accurate to eight places, but some error 
is to be expected in the ninth place. 



Program: ASSOCIATED LEGENDRE 

Step • Ml Step Keys 

*01 LBLO 31 RCLC 

02 0 32 c o s " 1 

03 ENTER 33 sin 

04 ENTER 34 X 

05 RCLB 35 RCLC 

06 STOI 3S PAUSE 

*07 LBL1 37 xiy 

08 1 38 RCL A 

09 + 39 X 

10 1/x 40 R/S 

11 1 41 RCLD 

12 + 42 RCLC 

13 X 43 + 
14 CHS 44 STOC 

15 xty 45 GTOO 

16 RCL I *46 LBL2 

17 Mx 47 xty 
18 2 48 RCL I 

19 + 49 GTOi 

20 RCLC 

21 X 

22 xty 

23 ENTER 

24 R+ 

25 X 

26 + 

27 RCL ( i ) 

28 -
29 DSZI 

30 GT0 2 

Registers 

Ax 
used 
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CONFIDENCE and EVEN N and POISSON 
The CONFIDENCE program calculates confidence levels for the x 2 

probability distribution with N degrees of freedom. The calculation 
is much shorter when N is even than when it is odd, so there is a 
short program, EVEN N, for that case (CONFIDENCE handles any N ) . 
CONFIDENCE may also be used to get confidence levels for the Gaussian 
(or normal) and the Poisson probability distributions, but for the 
Poisson case there is a much shorter program, POISSON. 

Figure 1 shows how the confidence levels will be defined here. 
2 0 

(a) The confidence level CL(x 0» N) for the x probability distri­
bution P«(X ) with N degrees of freedom is the probability that a x 
greater than Xr. would be obtained. 
(b) The confidence level CL (x Q) for the Gaussian probability dis­

tribution P(x) is the probability that a result more than x 0 stan­
dard deviations from the mean would be obtained; this is related to 
CL(vj;, N) by •'•0' 

C L g ( X o ) = CL( X2, 1) 

(c) The confidence level CL (n_, n) for the Poisson probability 
distribution P_(n) with mean n is the probability that a value of 

n
 2 

n greater than n would be obtained; this is related to CL(x n, N) 
by 

CL p(n Q, S) = 1.0 - CLCx^, N) , 
with xl = 2n and N = 2n + 2 . 

The equations used to calculate CL(x2, N) are as follows, when 
N is even, 

, N' x
2 n -J 

C L ( X 2 , m = ^ z ( x 0 ) 1 + I 2 . 4 . 6 ? . . ( 2 n ) . 
*• n = l J 

2 -h (2 i rexpx 0 ) and N' = ( N - 2 J / 2 . When N i s odd, 

„ „2n- l 
CL( X 2, N) = C L g ( X o ) + 2 Z ( X o ) £ , . 3 . 5 , ? . (; ,„_„ -
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where N" = (N-D/2. There is no closed expression for Ch (xn) * 
For x 0 > 2, a truncated continued fraction has been used: 

0- • X 0
+ / X 0 + / x 0 + 20/6 

CL (XQ) = 1-0 - 2Z(x0) I — 
2n-l 

3.5-.-(2n-l) 

where "infinity" is reached when the last term added to the series is 
smaller than 10 . For N > 1, the early terms of the series here are 
cancelling terms of the series in the equation at the bottom of p. 10. 

2 
Account is taken of the fact that for very large N or very small x n 

the "infinite'' series can be shorter thun the finite one. 
2 

To run CONFIDENCE or EVEN N, store x 0 and N in the indicated 
registers and start the program with a GSB 0 command. When it stops, 

2 
the confidence level is displayed. The range of x n covered is 

2 2 
0.0 < x 0 * 460.5; CL(0.0, N) is of course 1.0, and when x 0 exceeds 
450.5 there is an. overflow. 

To run POISSON, store n, and n as indicated, press GSB 0, and 
see the confidence level when the program stops. It is easy with a 
confidence level of, say, 0.95. 

Following are some examples, with approximate running times. 
The starred examples test all the parts of CONFIDENCE, and they at 
least should be tried. 

CL(0.04, 1) = 0.841480581 = CL (0.2) g (7 sec) 
CU3.61, 1) = 0.057433120 = CL (1.9) g (19 sec) 
CL(4.00, 1) = 0.045500263 CL (2.0) 

g 
(17 sec) 

CL(25.0, 1) = 0.000000573 = CL (5.0) 
g 

(17 sec) 
* CLI3.61, 9) = 0.935159132 

CL (5.0) 
g (24 sec) 

* CL(25,0, 9) = 0.002971180 (21 sec) 
CU2.00, 2) = 0.367879441 = 1.0 - CL p (0, 1.0) (2 sec) 

* CL(50. , 50) = 0.473398469 = 1.0 - CL p (24, , 25. 0) (26 sec) 
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For H = 1, there are 15-place tables or (l-CL/2) in chap. 26 of H. 
Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, 
New York, 1972). For all N, there are 9-place tables of (1-CL) in 
H.L. Harter, New Tables of the Incomplete Gamma-Function Ratio and 
of Percentage Points of the Chi-Square and Beza Distributions (Aero­
space Research Laboratories, U.S. Air Force, 1964). Comparisons 
show that for N •= 1 the absolute error from the progr«5> never exceeds 
1 x 10"'. For St < 100, the absolute error rarely exceeds lxlO - 9, but 
for N > 100 absolute errors as large as 3 x 10" 9 have been found. 



Program: CONFIDENCE 

Step. KfiZi Step Keys Step Ke^s Registers 

*01 LBLO 31 2 61 xty Rl 4 
02 RCL2 32 0 62 x > y? R2 H 

03 STOI 33 STOI 63 GT0 5 R used 

04 1 34 6 64 1 J?, used 4 
*os LBL1 *35 LBL3 65 STOI RT used 

oe RCLI 36 RCLI 66 RCL 4 
07 2 37 xty 67 ABS 

08 - 38 i 68 CHS 

09 x < 0? 39 RCL 3 *69 I.BL6 
10 GT0 2 40 + 70 2 

11 STOI 41 DSZI 72 IT 

12 x = 0? 42 GT0 3 72 i 

13 GT0 7 43 1/x 73 & 
14 RCLI 44 RCL 4 74 X 

IS - 45 + 75 ENTER 

16 f 46 GT0 6 *76 LBL7 

17 1 *47 LBL4 77 R+ 
18 + 48 RCL 3 78 RCLI 
19 GTOl 49 STO-4 79 2 

*20 LBL2 *50 LBL5 80 i 

21 + 51 ISZI 81 ex 

22 RCL . 52 ISZI 82 v 

23 & 53 RCLI 83 RCLI 
24 ST0 3 54 X 84 + 
25 4 55 RCLI 85 RTN 
26 ST0 4 56 * 
27 RCLI 57 ST0-4 
28 4 58 EEX 

29 x > y? 59 CHS 
30 GT0 4 60 9 
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Program: EVEN N Program: POISSON 

Registers Step Keys Registers 

R i xo 

R used 03 STO I RT used 

Step Keys 

*01 LBLO 

02 RCL2 

03 STO I 

04 1 

*05 LBL1 

06 DSZI 

07 DSZI 

08 GT0 2 

09 RCL1 

10 2 

11 v 

12 e* 

13 * 
14 RTN 

*15 LBL2 

16 RCL1 

n RCLI 
18 * 
19 X 

20 1 

21 + 

22 GT01 

Step. Keys 

*01 LBLO 
02 RCLI 

03 STO I 
04 1 
05 ENTER 
06 ISZI 

*07 LBL1 

08 DSZI 
09 GT0 2 
10 RCL2 

11 e x 

12 i 

13 -
14 RTN 

*15 LBL2 

16 RCL2 
17 RCLI 
18 v 

19 X 

20 -̂
21 GTOl 



p 
p' 

i t = Au 

'o <V 
uo <V 

TWO BODY and CM 
In the 2-body reaction a + b -»• 1 + 2, let m. be the mass of par­

ticle i and let P be the momentum of particle a in the inertial 
frame in which particle b is at rest (the lab frame). The four 
masses and P are the input data for the TWO BODY program, which 
calculates the following quantities: 

s = cm. energy squared 
E = cm- energy 

initial-state cm. momentum 
final-state cm. momentum 
range of 4-momentum transfer squared 
4-momentum-transfer squared between particles a 
and 1 when 1 is produced at 0° (180° ) in the cm. 
4--Romentum-transfer squared between particles a 
and 2 when 2 is produced at 0° (180° ) in the cm. 

CM is a shorter program that uses P , m , and m, as in] ut to calcu­
late s, E, and p. 

To run TWO BODY, store the four masses c.id p in the indicated 
a 

rec.sters, and start the program with a GSB 0 command. When it stops, 
tho calculated quantities are in the storage registers {un is dis­
played) . If Error appears when the program is started, then P may 
be below the threshold for the reaction. In some cases, however, P 

a 
can be too low without such notice being given. 

To run CM, store P , m , and m. in the indicated registers, and 
start the program with a GSB 0 command. When it stops, s, E, and p 
are in the storage registers (p is displayed). 

As a test example, consider ir p -+ K S scattering at 4 Gev/c. 
or GeV/c or GeV , the input numbers are P = 
0.9383, m = 0.4937, and m = 1.1894, and the 

output numbers are s = 8.411, E = 2.900, p = 1.294, p' = 1.146, At = 
Au = 5.934, t = -0.019, t = -5.953, u = +0.101, and u = -5.834. ' 0 ir 0 7T 



Program: TWO Program: CM 

Step Keys 
*01 LBLO 

02 RCLO 
03 RCL2 
04 RCL1 
05 RCLO 
06 GSB2 
07 + 
08 /* 
09 + 
10 GSB2 
11 -
12 ST0 5 
13 /x" 
14 ST0 6 
15 v 

16 RCL2 
17 X 
18 ST0 7 
19 RCL3 
20 RCL4 
21 RCL3 
22 GSB2 
23 -
24 RCL5 
25 + 
26 RCL6 
27 * 
28 2 
29 * 
30 STOD 

Step Keys 
31 GSB2 
32 -
33 G 
34 ST0 8 
35 X 
36 4 
37 X 
38 ST0 9 
39 CHS 
40 RCL1 
41 SSB1 
42 STOA 
43 + 
44 STOB 
45 R+ 
46 RCL2 
47 GSB1 
48 STOC 
49 + 
50 STOD 
51 RTN 

*52 LBL1 
53 RCL7 
54 GSB2 
55 + 
56 /x' 
57 RCLD 
58 -
59 RCL7 
60 RCL8 

Step Keys 
61 -
62 GSB2 
63 -
64 CHS 
65 RTN 

*66 LBL2 
67 X? 
68 x ty 
69 X 2 

70 RTN 

Reqi sters 
Ro p 

a 
R i a 
R2 % 
R3 m i 
R4 m 2 

R5 s 
R6 E 
R7 P 
R9 P' 
R9 at = Au 
RA fco 
RB *. 
Rc uo 
RD U 

It 

Step Keys 
*01 LBLO 

02 RCLO 
03 RCL1 
04 + P 
05 RCL2 
06 + 
07 x2 
oe RCLO 
09 X* 
10 -
11 ST0 3 
12 «£ 
13 ST0 4 
14 RCLO 
15 xty 
16 i 

27 RCL2 
18 X 
19 ST0 5 
20 RTN 

Registers 
R0 Pa 
Rl ma 
R2 ""b 
R3 s 

R4 E 

R5 P 
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registers; for a decay a •> 1 + 2, set nu = 0. Start the program with 
a GSB 0 command. When it stops, the values of YBe , yp*, p', E (the 
total cm. energy), and cos 0 will be in the storage registers, with 
cos 8 = +1. The components P_„ and P.. for this value of cos 8 will 
be in the X and Y registers. Each time R/S is pressed, the value of 
cos 9 is decreased by 0.1 and the program stops with the correspond-
ing components of P in the X and Y registers: 

U, Y) = (P^, Pu) . 

When cos 8 eventually goes below -1, Error is displayed. Then, to 
obtain the half ellipse for P , interchange m and m in the regis­
ters {i.e., now consider particle 2 to be particle 1), and start 
over with a GSB 0 command. If Error appears when the program is 
started, then P may be below the threshold for the reaction. Error 
also appears if P = 0 . 

The ->P key changes the rectangular coordinates P-,. and P_. in 
the X and Y registers to the polar coordinates P. and 0., where 0 1 

is the lab angle at which particle 1 is produced. After the first 
pass through the program has been made, the lab angle 3., correspond­
ing to any cm. angle 8 may be found by storing the value of 
(cos 8 + 0.1) in the RQ register, then pressing R/S, then -»-P: 0 is 
in the Y register. 

As a test example, consider TT p •*• K E scattering at 3 GeV/c. 
The input numbers, in GeV/c or GeV, are P = 3.0, m = 0.1396, ni = 
0.9383, m = 0.4937, and m = 1.1894. Start the program with a 
GSB 0 command, and it stops with P .. = 2.659 GeV/c, P^ =0.0 GeV/c, 
y6e = 1.231 GeV, yp' = 1.427 GeV/c, p' = 0.926 GeV/c, E = 2.557 
GeV, and cos 0 = 1.0. Press R/S and the program stops with P .. = 

0.404 GeV/c (P = 2.548 GeV/c, 0 = 9.113 ), and 
cos 8 = 0.9. 



Program: ELLIPSE 

- 2 1 -

Step Keys 

*01 LBLO 

02 RCLO 

03 RCL2 

04 RCL1 

05 RCLO 

06 GSB2 

07 + 
08 /? 
09 + 
10 STO 6 

11 GSB2 

12 -
13 STO 8 

14 T 

15 RCL4 

16 RCL3 

17 GSB2 

IS -
19 X 

20 + 
21 2 
22 

23 STO 5 

24 xty 
25 i 

26 RCL8 

27 & 
28 STO 8 

29 STO v f 

30 X 

Step Keys 

31 RCL3 

32 GSB2 

33 -
34 CHS 
35 G 
36 STOx 

37 STO 7 

38 1 
39 STO 9 

*40 LBL1 

41 RCL7 

42 RCL9 

43 cos" 1 

44 sin 
45 X 

46 RCL6 

47 RCL9 

48 X 

49 RCL5 

50 + 
51 R/S 
52 

53 1 
54 STO- ! 

55 GTOl 

*56 LBL2 

57 X2 

58 xty 
59 X2 

60 RTN 

Reqi sters 
Ro p 

a 
R i m a 
R2 % 
R3 m i 
R4 m 2 
R5 TfBeĵ  

R6 •yp' 

R7 P ' 

R8 E 

R9 c o s 8 



DALITZ RECTANGULAR 
The DALITZ RECTANGULAR program calculates coordinates of points 

on the boundary of the rectangular Dalitz plot for the decay of a 
particle or system of mass M into three particles having masses m_, 

2 2 
m», and m . The x and y coordinates of the plot are m _ and m 1 , 
where m. . is the invariant mass of the system of particles i and j. i] 2 2 2 Let m_-+ and m.„+ be the smallest and largest values that m_ 9 

attains anywhere on the boundary. The values of m.- for which bound-
2 2, X l 

l12' m13 ] 

2 2 2 2 
m,_ + , m-io* + &* m, J + 2A, — , ra._+ , 

2 
where A is a step size in m . (If, however, m = m_ = 0, see below.) 
This sequence repeats over and over, first for points along the upper 
boundary (the boundary on which nu is larger), then for points along 
the lower boundary, then back to the upper boundary, and so on. 

Store the four masses and the step size A in the indicated reg­
isters (A in fact need not be chosen ^ntil after the first pass is 2 2 made through the program, when m._+ and m + are available). Start 
the program with a GSB 0 command, when it stops, the values of m-t->^ 

2 and m,-"}• will be in the indicated registers, and the coordinates 
2 2 (m._, m.-) of the leftmost point of the boundary will be in the X 

and Y registers. From then on a new boundary point is obtained each 
time R/S is pressed: 

«, y) = (•£. •£> . 
2 The step size A, or the current value of DL (in R ), or the boundary 

one is on (±1 in R ) may be changed at any time (A should not be made 
negative). No error message is given if M is less than (m + m_-t-m ). 

2 There is a special case. If m. *= nu = 0, then nuj is zero, and 
to avoid a division by zero the program skips the first in the se-

2 quence of m. _ values given above (i.e., the sequence becomes A, 2A, 
2 L* 

\2 
stored before the first pass is made. Now the upper and lower 



2 2 
boundaries end at the points (0, M ) and (0, m ), and the segment of 

2 3 

the m. _ axis between these points is part of the boundary. 
As a test example, consider the decay of a 3-GeV system into 

K ir~p. The input masses, in GeV, are M = 3.0, m = 0.4977, m = 
0.1396, and m = 0.9383. after the GSB 0 command, the program stops 
with the coordinates (0.406, 7.152) — here and below the units are 

2 2 2 
GeV . The values of HL + and m t are 0.406 and 4.251, which sug­
gests that a reasonable value of A, at least to start with, might be 
0.2. Storing this and pressing R/S gives the coordinates (0.606, 
8.179). Pressing R/S again gives the coordinates (0.806, 8.119). 
another test is to set M = 1.0, m1 = m = m, = 0, and A = 0.2. The 
boundary is the triangle with vertices at (0, 0), (1, 0), and (0, 1). 

I 



-24-

Program: DALITZ RECTANGULAR 

Step Keys 
*01 LBLO 

02 RCL1 
03 RCL2 
04 + 
05 X2 

06 S70 6 
07 RCLO 
08 RCL3 
09 -
10 x2 

11 ST0 7 
12 1 
13 ST0 8 

*14 LBL1 
15 RCL6 

*16 LBL2 
17 ST0 5 
IS x= 0? 

19 GT0 3 
20 a 
21 ST0 9 
22 RCL3 
23 RCLO 
24 RCL3 
25 GSB5 
26 RCL1 
27 RCL2 
28 RCL1 
29 GSB5 
30 RCL8 

Step Keys 
31 X 
32 -
33 RCL9 
34 GSB6 
35 RCL5 
36 R/S 

*37 LBL3 
38 RCL7 
39 RCL5 
40 x = g? 

41 GTOl 
42 RCL4 
43 + 
44 x*tf 
45 x> y? 

46 GT0 4 
47 1 
48 CHS 
49 ST0x8 

*50 LBL4 
51 R.+ 
52 GT0 2 

*53 LBL5 
54 GSB6 
55 RCL5 
56 + 
57 ABS 
58 RCL5 
59 /ST 
60 i 

Step Keys 
61 2 
62 * 
63 STO + 9 
64 GSB6 
65 ABS 
66 £• 
67 RTH 

*68 LBL6 
69 X2 

70 x%y 
71 X2 

72 -
73 RTN 

Registers 
Ro M 
h mi 
R2 m2 
R3 m3 
R4 A 

R5 ^2 
R6 

miV 
R7 n12 + 

R8 ±1 
R9 used 
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DALITZ TRIANGULAR 
The DALITZ TRIANGULAR program calculates coordinates of points 

on the boundary of the normalized triangular Dalitz plot for the 
decay of a particle or system of mass M into three particles having 
masses m., w , and m . Let T. be the kinetic energy of particle i 
in the rest frame of M, Q = (T + T +T ) be the total kinetic energy 
released by the decay, and t. = T./Q be the fraction of Q taken up 
by particle i. Then the fractions t., t , and t are the distances 
measured inward from the base, left-hand side, and right-hand side 
of an equilateral triangle whose altitude is unity. Figure 3(a) 
shows a schematic of the plot, and fig. 3(b) shows some boundaries 
drawn using the program. Each boundary touches each side of the 
circumscribing triangle at one point. A boundary has a sharp cor­
ner where it touches a side if the particle whose kinetic energy is 
measured from that side has a mass of zero. 

To avoid actually having to plot in triangular coordinates, the 
boundary points are calculated using a rectangular system having its 

the horizontal coordinate is (t -t )/,/T. Let t.,t be the largest 
value that t. attains anywhere on the boundary. The values of t. 
for which boundary coordinates are going to be calculated are 

0, A, 2A, •-*, t t , 

where A is a step size in t.. (If, however, m„ = m = 0, see below.) 
This sequence repeats over and over, first for points along the right 
side of the boundary, then for points along the left side, then back 
to the right side, and so on. 

Store the four masses and the step size A in the indicated reg­
isters (a value of 0.05 or 0.1 for A is about right), and start the 
program with a GSB 0 command. When it stops, the values of t + and 
Q will be in the indicated registers., and the coordinates 
(t , (t -t )//3 ) of the lowermost point of the boundary will be in 
the X and Y registers. From then on a new boundary point is obtained 
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each time R/S is pressed: 

U, y) = { t v (t2-t3)//3) . 

The step size A, or the current value of t. (in B-), or the boundary 
one is on (±1 in J?_) may be changed at any time (A should not be made 
negative). No error message is given if M is less than (m_ +m_+nO. 

0, then to avoid a divi-
the sequence of t. valu 

given above. £n this case, the upper boundary of the plot is the 
sion by zero the program skips the last in the sequence of t. values 

the other of the circumscribing triangle. 
0 ± + As a test example, consider K +ir u v decay. The input masses, 

in GeV, are M = 0.4977, m = 0.1396, m = 0.1057, and m = 0; and 
set A = 0.05. when, after the GSB 0 command, the program stops, the 
coordinates of the first point to be plotted are (0.0, -0.170); and 
t + = 0.466 and Q = 0.2524 GeV. Press R/S and the next coordinates 
are (0.05, -0.040). Press it again, and the coordinates are 
(0.10, +0.020). Another test is to set H ̂  0 and m = in= m - 0. 
Then tt = 0.5, Q = M, and the boundary is the triangle with vertices 
at the centers of the sides of the circumscribing trianalj. 



Program: DALITZ TRIANGULAR 

Step i Keys Step . Ml Step . Ml 
*01 LBLO 31 RCL1 61 -

02 RCLO 32 GSB5 62 -
03 RCL1 33 STO A 63 RCL7 
04 - 34 GSB5 64 3 
05 STO 7 35 x = 0? 65 & 
06 RCL2 36 GT0 3 66 X 
07 RCL3 37 STOB 67 i 

08 + 38 RCL2 6c RCL5 
09 STO-7 39 X2 69 R/S 
10 + 40 RCL3 •70 LBL3 
11 RCLO 41 X2 71 RCL6 
12 2 42 - 72 RCL5 
13 X 43 RCLB 73 x = g? 
14 * 44 * 74 GTOl 
15 STO 6 45 ST0x9 75 RCL4 
16 1 46 + 76 + 
n STO 8 47 RCL2 77 xty 

*18 LBL1 48 2 78 x> y? 
19 0 49 X 79 GT0 4 

*20 LBL2 50 GSB5 80 1 
21 STO 5 51 RCLA 81 CHS 
22 RCL7 52 X 82 ST0x8 
23 X 53 RCL8 *83 LBL4 
24 RCL1 54 X 84 R+ 
25 + 55 RCL9 85 GT0 2 
26 RCLO 56 + *86 LBL5 
27 xfy 57 RCLB 87 X 2 

28 - 58 i 88 xig 
29 STO 9 59 RCL2 89 X2 

30 LAST* 60 RCL3 90 -

Step Keys 
91 ABS 
92 Jx 
93 RTN 

Reqi sters 
Ro M 
R i ml 
R2 m 2 
R3 m3 
R4 A 
R5 fcl 
R6 V 
R7 Q 
R8 ±1 
R9 used 
RA 

used 
RB 

used 


