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A LOCAL-CO&IPOSITION EQUATION OF STATE FOR ASniMETRIC MIXTURES 

Wallace B. Whiting+ and John M. Prausnitz 

Lawrence Berkeley Laboratory and 
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University of California 
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ABSTRACT 

Perturbed-hard-chain theory (PHCT) and the local-

composition concept are used to obtain an equation of state 

for asymmetri~ mixtures. PHCT is extended to polar fluids 

by assig~ing a semi-~heoretical temperature dependence to 

the energy parameter, T*, and by using Barker and 

Henderson's approximation for all higher-order terms in the 

p~rturbation serie~ for the Helmholtz energy. Based on a 

.modification of the quasi-chemical theory of Gttggenheim, the 

local-composition model is applied to mixtures at all fluid 

densities. Using only one or at most two binary parameters, 

the equation of state can represent high-pressure vapor-

liquid equilibria for several polar-nonpolar mixtu~es. 

+ current address: Department of Chemical Engineering, West 
Virginia University, Morgantown, WV 26506 



For design of separation processes in the chemical 

industry, accurate prediction of fluid-phase equilibria is 
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crucial. If the process design engineer does not have reli-

able thermodynamic subroutines for his process-simulation 

computer programs, he must overdesign distillation columns, 

ext r act i on un it s, e t c • , to minim i 2: e the as soc i a t e d r i s k, 

possibly destroying the economic viability of the process. 

For mixtures of simple, nonpolar fluids (such as light 

hydrocarbons), numerous equations of state are available 

that predict vapor-liquid equilibria well. However, in many 

industrial processes (e.g., coal gasification) it is neces­

sary to separate mixtures contai~ing highly polar components 

(including water and other hydrogen-bonding fluids) in addi­

tion to nonpolar fluids; for such mixtures, simple equations 

of state, with standard, one-fluid mixing rules, are often 

not able to represent the thermodynamic properties with suf-

ficient accuracy for process design. The asymmetry of these 

mixtures produces highly nonrandom molecular configurations 

in space, possibly leading to formation of two liquid 

phases. Instead of the traditional model of white and black 

billiard balls randomly positioned in space, a more realis­

tic model is required that can account for clustering of 

molecules into partially ordered, energetically favorable 

configurations. 

Simple equations of state with simple mixing rules are 

not successful for asymmetric mixtures, that is, those where 

the molecules of one component are very much different from 

• 

.. 
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those of the other, either with regard to molecular size or 

c-hemical- nature--(i-nterm-ole-cu-lar potential). For-such mix-

tures, the usual one-fluid mixing rules, quadratic in mole 

fracion, fail badly at liquid-like densities. 
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To allow for asymmetry, new empirical, one-fluid mixing 

rules have been suggested by a number of authors, for exam-

ple, Vidal (1978) and Plt~cker (1978). These rules have lit-

tle theoretical foundation and violate a necessary boundary 

condition, viz., that the second virial coefficient of a 

mixture must be quadratic in mole fraction. As a result, 

many applic~tions using these empirical rules hold only for 

phase equilibria at low or modest pressures where all signi-­

ficant deviations from ideality occur only in the liquid 

phase. For thermodynamically consistent results, and for 

application to high-pressure vapor-liquid equilibria, it is 

necessary to have a mixing rule tht is valid for both dilute 

and dense fluid mixtures. This is conveniently achieved 

t~rough density-dependent mixing rules as discussed previ­

ously by us (Whiting and Prausnitz, 1980, 1981, 1982) and by 

Mollerup (1981). 

An equation of state for mixtures whose molecules 

differ appreciably in size has been discussed by Donohue 

(1978) and by Liu (1980) who used perturbed-hard-chain 

theory (PHCT). A possible extension to mixtures containing 

polar molecules has been presented by Gmehling et al. (1978) 

who proposed to take polarity into account through a chemi-

cal (dimeriztion) hypothesis. That extension gives good 
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results for some polar-polar mixtures but appears to be 

somewhat less successful for polar-nonpolar mixtures. ~!ore 

important, that extension becomes computationally unwieldy 

for multicomponent mixtures because the number of apparent 

molecular species (monomers and dimers) rises quickly; for a 

binary polar-polar mixture, there are already five apparent 

species (two monomers and three dimers) and for a ternary 

mixture there are nine apparent species (three monomers and 

six dimers). 

To predict phase equilibria for asymmetric mixtures, we 

propose here a new equation of state that can correlate 

pure-component thermodynamic data for polar as well as for 

nonpolar fluids. More important, we have established a new 

set of. mixing rules based on the two-fluid, theory and the 

local-composition concept. We have made compromises between 

statistical-mechanical rigor and engineering usefulness. 

The important achievement is that we have removed the common 

implicit assumption that the structure of a dense fluid mix­

ture is a (van der Waals) random assembly of spherically 

symmetric molecules. 

For extension to polar fluids, the most popular varia­

tion on simple equations of state is to assign an empirical 

temperature dependence to the equation-of-state parameters 

( e . g • • Nakamura e t a 1 . , 1 9 7 6 ; So a v e • 1 9 7 9 ) . This procedure 

increases the number of adjustable parameters whose physical 
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significance is unclear. 

~ ~· 

A more- fundame-ntal approach is to follow methods dis-

cussed by Twu and Gubbins (1978), who use molecular theory 

for calculating the effect of polar interactions and, 

thereby, introduce parameters with cl~ar physical signifi-

cance. No doubt, their method will eventually be reduced to 

engineering practice, but, at present, we prefer to use a 

less rigorous but simpler model. 

For many polar species, the most important term in the 

multipole expansion is the dipole-dipole term. Thus, we 

have chosen to lump all orientational contributions to 

pure-fluid properties into a si~gle term based on the 

angle-averaged interaction between point dipoles. To this 

term we assign a simple temperature dependence. 

For point dipoles, _an effective nonpolar potential, 

0~ .• can be defined by averaging the dipole-dipole potential 
1J 

over all possible orientations of twa molecules, one of type 

i and one of type j. Such a procedure was first suggested 

by Keesom (1922), as discussed elsewhere (e.g., Prausnitz, 

1969; Reed and Gubbins, 1973). The result is 

.aD = 
II ij + • ( 1) 

where lli is the dipole moment of i, r is the distance 

between molecular centers, k is Boltzmann's constant, and T 

is the absolute temperature. The truncated terms are all of 

higher order in reciprocal tempe~ature. 

This idealized point dipole-point dipole potential has 
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the same dependence on distance of separation, r- 6 , as does 

the London (1930) potential for spherically symmetric, non-

polar molecules. Thus, we define an effective potential-

well-depth parameter, T•. for a polar fluid as 

T* = T*(O) + --~--- + . ( 2 ) 
T(v•> 2 

where T*(O) is the potential-well-depth parameter for the 

nonpolar part of the potential, v* is the close-packe~ molar 

volume, and where parameter D is a measure of polarity; for 

nonpolar fluids, D=O. As in Equation 1, all further terms 

contain higher powers of reciprocal temperature. 

We chose for our reference equation of state the PHCT 

of Donohue (1978). The Helmholtz energy. A, o.f N moles of a 

pure fluid at temperature T and mol~r volume v is given by 

where 

and 

.L:-.A!.~ = 
NRT 

~-
NRT 

+ 

~-
NRT 

A 
n 

= c f ti.:~.!.L~.L.:_.l1...:~.!.L~l.! 1 
l (1 - ~v*/v)2 J 

s 
= T*n L: 

m=1 
a 

nm 

( 3) 

H~re Aid is the Hel~holtz energy in the ideal-gas state at 

the same temperature and molar volume. Table I gives 

universal constants a and ~. nm Pure-component parameters 

T*, v•, c, and D are characteristic, respectively, of the 

intermolecular potential-well depth, the hard-core volume, 
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the number of external degrees of freedom, and the polarity 

o f th e m o 1 e c u 1 e . - -

The PHCT was developed from a truncated perturbation 

expansion in powers of reciprocal temperature for molecules 

with square-well potentials. Thus~ the form of the effec-

tive potential-well depth given in Equation 2 is appropriate 

for use with ~he PHCT. If we substitute Equation 2 into 

Equation 3, we obtain for the Helmholtz energy of square-

well molecules containing point dipoles: 

where 

= ~- + 
NRT 

5 

Al 
T + • 

r alm (v*/v)m 
m=l 

5 r (0)2 _a!_m_o_ 
A2 ~ r T* a2m + 

m=ll c(v*)2 
(v*/v)ml 

. J 

Note that there is no dipole-dipole contribution to the 

mean-field A1 term. 

Second, we use an approximation to take into account 

( 4) 

higher terms in the expansion of Equation 2. To close this 

expansion in reciprocal temperature, we use the method of 

Barker and Henderson (1967, 1976) who showed that their 

approximation gives better convergence than do Pad6-

approximant and other methods. Following Barker and H~nder-

son , we ne e d on 1 y the f i r s t two p e r t u r bat i on term s ; t h e o t h-

ers are estimated. This method, applied to Equation 4, is 
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= ~-
NRT ( 5) 

Equation S is our working equation for the Helmholtz 

energy of pure polar or nonpolar fluids. Through standard 

thermodynamic relations, we can derive expressions for the 

pressur~ and for the fugacity. 

We have U$ed Equation S for several highly polar fluids 

(and for several nonpolar fluids with D=O). Pure-fluid 

parameters,. given in Table II, are obtained from experimen-

tal equilibrium properties (vapor pressures and liquid den-

sities). ·For both methanol and water, the reference energy 

parameter, T(O), is larger than would be expected for· the 

nonpolar part of the intermolecular potential. These 

values, as well as the large value of the parameter c for 

methanol, suggest, first, that the reference system (A0 ) is 

not entirely suitable and, second, that the simple 

temperature-dependen~e that we assign to the energy parame-

ter T* is not sufficient to account for the strong hydrogen 

bonding of these fluids; thus, to obtain a good fit of the 

data, part of the polar contribution becomes incorporated 

into the reference part of the equation of state~ 

The pure-component surface-area parameter, qi' also 

listed in Table II, is discussed below. It is used only in 

the calculation of mixture properties. 

Figures 1 and 2 show typical agreement between experi-

mental and calculated properties of water. Considering the 

simple equation used, agreement is remarkably good except in 

the critical region, where all analytical equations fail. 

.. 
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(However, see Brandani. 1981.) 

To calculate fluid-mixture properties with the commonly 

used one-fluid model, we must use .a set of mixing rules to 

relate the characteristic parameters of the mixture to those 

of the pure components. Several sets of mixing rules have 

been proposed, but nearly all are implicitly based on a (van 

der Waals) random-mixing assumption. These common mixing 

rules are only s.light variations of those proposed by van 

der Waals (1890), who first suggest~d the one-fluid mixture 

model almost 100 years ago. 

In this work, we use a significantly different pro-

ce4ure for extending an equation of state to mixtures (Whit-

ing and Prausnitz, 1980, 1981, 1982; Mollerup, 1981). 

Starting from the two-fluid theory (which underlies the Wil-

son [1964], NRTL [Renon, 1968], UNIQUAC [Maurer, 1978]. and 

other liquid-state activity-coefficient models), we use a 

ponsistent mixture theory for fluids at all fluid densities. 

Our local-composition theory is based on a quasi-chemical 

approxi~ation for the degree of nonrandomness in a fluid 

mixture; this theory meets the n~cessary close-packe4-liquid 

and ideal-gas limits (Whiti•g and Prausnit~. 1981, 1982). 

We are particularly concerned with nonrandomness that 

occurs even in mixtures of nearly equal-sized molecules 

' whenever thei~ intermolecular potentials are significantly 

different. We assume that this nonrandomness exists, to 
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some extent, at all non-zero densities. 

First, following van der Waals, we separate the 

Helmholtz energy into an ~deal-gas, a repulsive (hard-

chain). and an attractive part: • 

The repulsive Helmholtz energy of the mixture is calcu-

lated using either the one-fluid model or a "rigorous" equa-

tion of state for mixtures of molecules having purely repul-

sive potentials (e.g •• the equation of state for a hard-

sphere mixture of Mansoor.i et· al. [1972] or the hard-

convex-~ody equation of Boublik [1975]). For the calcula-

tions reported below, we have used the one-fluid model 

rather than a "rigorous" hard-sphere-mixture equation 

because we have found that. for binary hard-sphere mixtures, 

the entropy of ~ixing calculated with the equation of Man-

soori et al. is essentially identical to that calculated 

with the one-fluid equation (Whiting and Prausnitz, 1982). 

Further, the one-fluid equation offers more flexibility; 

while the equation of Mansoori et al. requires additiv~ty 

of diameter.s for unlike spheres, the one.-fluid model allows, 

when nec.essary. introduction of a binary parameter 1.. to 
lJ 

account for nonadditivity. The one-fluid mixing rules we 

use for the repulsive contribution are 

m m 
r r 

i=1 j=1 
X· X· v* · · 

1 J 1 J 
( 7) 
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c~l = ( 8) 

where 

(1 - 1 .. ) 
1J 

Here x. is the mole fraction of component i. subscript M 
1 

denotes mixture, and m is the number of components. 

( 9) 

Although much of the structure of the fluid is deter-

mined by the repulsive part of the intermolecular potentials 

(cf. Chandler. 1978). we seek to include the effects of the 

attractive potential on the nonrandomness of the mixture. 

For a binary mixtur~. we consider two representative 

regions in the fluid, as suggested by Maurer (1978) and as 

indicated in Figure 3. One region centers around a type-1 

molecul~. and the other centers around a type-2 molecule. 

The local compositions in these two regions are different. 

As suggested by quasi-chemical theory (Guggenheim, 1935, 

1952), and following Wilson (1964), we approximate these 

lo~al compositions using Boltzmann factors with energies 

characteristic of the like and unlike two-body interactions: 

~.i = :i :..:£~~~ii:RT~ 
x .. x. exp(-aE .. /RT) 

11 1 11 

( 10) 

xj i + xii = 1 ( 11) 

where i=1 or 2 and a is a universal constant here set equal 

to 0.5. This somewhat arbitrary value for a is a compromise 

between Guggenheim's quasi-chemical theory for lattices 
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(where a is about 1/5) and the Wilson model for local compo-

sitions (where a is 1). (See Whiting and Prausnitz, 1982.) 

Equation 10 indicates that the local mole fraction (x .. ) of 
J 1 

j molecules around an i molecule is proportional to the 

total mol~ fraction of j molecules and proportional to the 

B o 1 t z mann fa c t or of aE .. , 
J 1 

where Eji is characteristic of the 

attractive ji interaction. In previous models (see, e.g., 

Maurer, 1978), this energy was taken to be z&/2, where z is 

the coordination number and & is the energy between two 

nearest-neighbor molecules. For liquids, this lattice-

theory simplification may be reasonable, but, for lower den-

sities, we know that the product z& is a strong function of 

density and a weak function of temperature. For any equa-

tion of state of the van der Waals type, we can calculate 

Eji as a function of density and temperature: it is the 

molar attractive Helmholtz energy of a fluid whose molecules 

interact with a ji-type intermolecular potential. 

The total attractive internal energy, uattr, of a 

binary fluid mixture is the sum of contributions from both 

types of regions: 

where u .. is the molar internal energy of a fluid of J 1 

( 12) 

molecules interacting with a ji-type intermolecular poten-

tial. 

By combining Equations 10-12 and recognizing (from the 

Gibbs-Helmholtz relation) the following rel•tionship between 

the characteristic Helmholtz energy E .. and the attractive 
J 1 
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internal energy uji: 

f~!d~~1 
L a<11T> J 

we obtain 

2 
r 

v 

i=1 

= u .. 
J 1 

2 f~!ii~:~1 . . r X j l a ( 1 IT) j e xp ( -a.E j i I RT) 

xi ~L---2--------~-------------­
r x. exp(-a.E .. IRT) 

j =1 J J 1 

13 

(13) 

( 14) 

. where N=N1 +N2 • Using the Gibbs-Helmholtz relation, we sub-

stitute Equation 14 to obtain the attractive contribution to 

the Helmholtz energy: 

1IT n~~!. 
= T I N d(1/T) 

0 

2 2 
r x. ln_r xJ. exp(-a.EJ. iiRT) 

i=1 1 J=1 
= =.RI 

a (15) 

where the lower limit of integration is at infinite tempera-

ture. At this limit, there is no attractive contribution to 

the Helmholtz energy. 

The attractive contribution to the equation of state is 

obtained by differentiating Equation 15 with respect to 

volume: 

pattr 

2 2 raE.d 
- i~l -~1 Xixj La~-j exp(-a.Ej iiRT) 

= -----~------------~--------------2 
r XJ. exp(-a.EJ·iiRT) 

j=1 

( 16) 
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This procedure can be applied to any generalized van 

der Waals equation of state. 

To calculate E .. and u .. from an equation of state, we 
J 1 J 1 

need to specify those parameters which characterize the ji 

interaction. 

T*(O) 
j i 

They are 

D .. = (D .. D .. ) 0 • 5 
J 1 11 JJ 

(1 - k .. ) 
J 1 

( 17) 

(18) 

The parameter v* .. is given by Equation 9, as it was for the 
J 1 

athermal (reference) system. Binary parameter k .. ( lk· ·I <1) 
J 1 J 1 

is obtained from limited, binary experimental results. 

We extend the local-composition model to multicomponent 

mixtures by considering m different types of regions in the 

fluid, where m is the number of components. Each region 

contains a molecule of type i at its center (i=l,2, ••. ,m). 

Thus, whereas we speak of a two-fluid model for binary mix-

tures, we speak of a three-fluid model for ternary mixtures 

and, in general, an m-fluid model for multicomponent mix-

tures containing m components. 

To extend our model to mixtures of large and small 

molecules, we assume that each molecule has an external sur-

face area equal t~ q .. only this area is available for 1. 
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intermolecular attraction. (The parameter qi is calculated 

w i t h t h e me t h. o d o f Bon d f [ 19 6 8 L . and , t ii us ~ r e q u i r e s no 

binary experimental data.) The parameter qi is arbitrarily 

normalized as in UNIQUAC (Abrams, 1975), such that q . is 
1 

unity for one -CH2 - unit in a long-chain normal hydrocarbon. 

If we designate the average attractive Helmholtz energy per 

un i t surf a c e a r e a o f a j i i n t e r a c t i on a s 11 • • , t h e a t t r a c t i v e 
J 1 

internal energy of the fl~id is 

m 
r ( 19) 

i=1 

where x .. is the local mole fraction of type j molecules in J 1 

a type i region. These local compositions are given by 

Equations 10 and 11, where the characteristic energy, Eji' 

is now equal to q.,.. ..• 
1 'I J 1 

For a multicomponent mixture of large and small 

molecules, the attractive contribution to the pressure, 

pattr, is 

m 

- r 
pattr = i=1 

where, for the equation of state given by Equation 5, 

1'1·. = 1J 

2 • 
----~:~1~-ii ___ _ 
( q . q . ) 0 • 5 2 A2 v • . . 

1 J 1J 

r2Az 1 
exp -- - 1 

LA1 T J 

(20) 

( 21) 

Parameters in the equation of state are given by Equations 

9, 17, and 18. 

At zero density (also at infinite temperature), our 
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local-composition model reduces to the random-mixing model, 

as all local mole fractions become identical to the respec-

tive overall mole fractions. 

In our model, the second virial coefficient of the mix-

ture has the proper quadratic mole-fraction dependence. Our 

model also has a reasonable high-density limit; in that 

limit, our local-composition model, when applied ~o the van 

der Waals equation, gives an expression similar to the Wil-

son equation for liquid-state activity coefficients. 

To illustrate application, we have reduced high-pressure 

vapor-liquid equilibria for five, strongly asymmetric binary 

systems. 

for these 

Table III gives values of the binary parameter k .. 
lJ 

mixtures. 

Figures 4-10 show good agreement between experiment and 

calculation. For vapor-liquid equilibria of the hydrogen 

sulfide-water system (Figures 4 and 5), we obtain a good fit 

at both 38 and 171°C using our equation of state and the 

loc~l-compositiott mixing ~ules with one temperature-

dependent binary parameter. By contrast, Evelein et al. 

(1976) found that the same data at any one temperature could 

be fit with the Soave-Redlich-Kwong (1972) e~uation and the 

standard one-fluid mixing rules only by the addition of a 

second binary parameter and by correcting the energy parame-

ter a in the equation of state for water at each tempera-

ture. 
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Figu.re 7 shows our fit of the vapor-liquid equilibria 

UnHke the~ other ·systems st-u-died, 

this system is not well represented with our method if only 

one binary parameter is used. To fit the compositions of 

both phases, we included binary parameter 1 .. for the nonad­
lJ 

ditivity of molecular diameters (Equation 9). This second 

parameter helps to correct for deficiencies of our reference 

system, the hard-chain fluid as described by one-fluid 

theory. Improvement of this reference system i• needed. 

Whiting and Prausnitz (1982) have indicated a possible way 

to include corrections to the hard-chain entropy of mixing. 

The work reported here increases our ability to calcu-

late high-pressure vapor-liquid equilibria for asymmetric 

systems, especially for those containing one or more polar 

components. Improvements have been made in both the pure-

component equation of state (to account for orientation-

dependent intermolecular potentials) and in the mixing rules 

(to account for density-dependent nonrandomness) . 

This work was supported by the Director, Office of 

Energy Research. Office of Basic Energy Sciences, Chemical 

Sciences Division of the U.S. Department of Energy under 

contract number W-7405-ENG-48. 



a = universal constants given in Table I nm 

A = total Helmholtz energy 

c = one-third the number of effective external degrees of 
freedom per molecule 

D = polarity parameter in the equation of state 

E .. = molar attractive energy of ij interactions lJ 

k =Boltzmann's constant 

kij = binary parameter for the energy parameter 

1 .. = binary parameter for the size parameter 1J 

N = total number of moles 

Ni = number of moles of component i 

P = pressure 

qi = surface-area parameter for component i 

r = distance of separation between two molecules 

R = ideal-gas constant 

T = absolute temperature 

T* = total energy parameter in the equation of state 

18 

T*(O) = reference energy parameter in the equation of state 

u .. = internal energy (per mole) of an ij interaction lJ 

U = total internal energy 

v = molar volume 

v• = molecular size parameter in the equation of state 

xi = mole fraction of component i 

X •• 
lJ = local mole fraction of component i 

a type j molecule 
in the neighborhood of 

a= nonrandomness parameter (equal to 0.5 in this work) 

e = nearest-neighbor energy in quasi-chemical theory 
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11 • • lJ = attractive Helmholtz energy per unit 
an ij interaction 

surface area for 

~i = dipole moment for an i molecule 

0~. = 
lJ 

intermolecular potential between two point dipoles, 
one of type i and one of type j 

"t = universal constant, given in Table I 

M = mixture 

ij = the interaction between an i molecule and a j. molecule 

attr = att~acti~e contribution 

id = ideal gas contribution 

rep = repulsive contribution 
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ill.!£. 1· U n i v e r sa 1 Con s t an t s f or Per t u r b e d- H a r d- C h a i n 

Theory 

n\m 1 2 

1 -7.04677 -7.22636 

2 -3.56999 11.35209 

~ = ---~--- = 0.7405 
(18)0.5 

3 4 s 

-3.16538 14.34352 -1.26227 

-10 . 85 3 7 5 -3.6131 7. 3 43 3 4 



.. .... d; 

TaJ!.!.!. !!· Pure-Component Parameters 
i 

~.2.!!!P..Q.!!~nt T(O) 00 
3 . 

D(dm6 K2 /mot 2 ) Datj Ref. v• (em I mo 1) .2. .!1. 

CH
4 

150.9 20.18 1.0 0 1.16 I 2 

cn3 oH 329.2 20.12 2.34 3.00 1.43 It, 6 

C2H6 231.8 2 8.40 1 .18 0 1.70 5-

co 2 
205.5 17.52 1.62 1.01 1.12 4 

H2 0 440.4 11.17 1.74 4.17 1.40 i 3 

n
2 

s 276.5 18.81 1.24 0.315 1.68 I 7 

NH
3 

289.0 12.81 1.54 0.694 1.28 4 

Data Roforonoos: 

1. Ambrose, D.; Sprako, C. H. S. I. Ch~~· Th~£~~Q~.!!~~1~ 1970, !, 631. 
2. Angus, S.; Armstrong, B.; do Reuck, K. M. "International Thermodynamic Tables ofl tho 
Fluid State. 5: Methane"; Pergamon Pross: Oxford, 1978. 
3. Bain, R. W. "NEL Steam Tables 1964"; Her Majesty's Stationery Office: Edinburgh,] 
1964. 
4. Din, F., ed., "Thermodynamic Functions of Gases," v. 1; Buttorworths: London, 195~. 
5. Goodwin, R. D.; Roder, B. M.; Straty, G. C. Na!. Bu£. StA.!!Q· (~.~.) Toc!.!!1£A1 N.2!.!. 
1976, No. 684. I 
6. Kay, W. B.;Donham, W. E. Ch~~· EnK. Sol. 19SS, !, 1. 
7. Roamer, H. B.; Sago, B. H.; Lacey, W. N. lnQ. Eng. Ch~m. 1950, !!, 140. 

N 
w 
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Ta,h.!~ !ll· Binary Parameters 

~ll~E T ( ° C) k12 112 Data Ref. 

CH 4 tH2 o 150t300 0.10 4 

C2 H6 I H2 0 250 0.26 0.03 1 

C02 /CH3 0H 25 0.16 2 

H2 S/ H2 0 38 0.205 3 

171 0.17 3 

CH 4 / NH 3 25 0.136 5 

Data References: 

1. Danneil, A.; T~dheide, K.; Franck, E. U. Ch~,m.-In~.­

Tec~. 1967. !!. 816. 

2. Ohgaki, K.; Katayama. T. l· Che_m. En~. DatA 1976, ~t. 
s 3 • 

3. Selleck, F. T.; Carmichael. L. T.; Sage, B. H. InJ!. 
En~. Chem. 1952. !!. 2219. 

4. Sultanov, R. G.; Skripka. V. 
Pr~,my~. 1971. t~ (4), 6; Ibid. 

G • ; N am i .o t , A • Y u . 
1972. tl (5), 6. 

5 • Z e i n i n g e r • H • . C h e ,m • - !..!!.& • - T e.£.~ . 1 9 7 3 , !2. , 1 0 6 7 . 
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TWO- FLUID THEORY FOR A BINARY MIXTURE 

TYPE- f REGION TYPE-2 REGIO~ 

(2)_ .· . + 
u - xl2 ul2 x22u22 

FOR THE MIXTURE: 

uattr. 

N 

(i) . u = molar attract1ve internal energy of hypothetical fluid i 

i = 1 or 2 

.x. = mole fraction of component i 
1 • 

x.. local mole fraction of component i about a central molecule j 
1J 

uij = attractive internal energy per mole for a hypothetical fluid 

where all molecules interact according to an ij potential 

N = total number of moles 

XBL22-5144 

Figure 3. 
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