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ABSTRACT

Perturbed-hard-chain thebry kPHCT) and the local-
cqméosition_concept are used to obtain an equation of state
for asymmetric mixtﬁ:es; PHCT is extended to;polar‘fluids
by_iséigning a semi-théoretical-femperatnre dependence to
the énergy.parameter, T*, and by,uSing”Barker ana
Héﬁ&erson's appfokimation for all higher—-order terms in the

perturbation series for the Helmholtz energy. Based on a

modification of the quasi-chemical theory of Guggenheim, the

local-composition model is applied to mixtures at all fluid .
densities. Using only omne or at most two binary parameters,

the eQnationvof-state'can represent high-pressure vapor-

‘liquid equilibria for several polar-nonpolaf mixtuqu.

+cuz:_rent address: Department of Chemical Engineering; West
Virginia University, Morgantown, WV 26506 :



For design of separation processes in the chemical
industry, accurate prédiction of fluid-phase equilibria is
cfucial. If the process design engineer does not have reli-
able thermodynamic subroutines for his process—simulation
compﬁter programs, he must overdesign distillation coiumns,
extracfibn'units, etc., to minimize the associated risk,
pdssibly destroyiﬁg the economic viability of the process.

?or mixtures of simple, nonpolar fluids (such as light
hydrocarbéns), numerous equations of state are available
that predict vaporfliqﬁid equilibria well.v However, in many
industriai'processes (e.g., coal gasification) iﬁ is neces—
-sary to separate mixtures containing highly'polar components
(inclnding water and other hydrogéen-bonding fluids) in addi-
tion to nomnpolar fluids; for such mixtures, simple equations
of state; with standard, ome—fluid mixing rules, ar? often
not able to repreéent the thermodynamic ptopertiés with suf-
ficient accuracy for process design. The asymmetry of thesé
mixtures produces highly nonrandom molecular configurations
in space, possibly leading to fﬁrmation of two liquid
phases, Instead of the traditionmal model of white and black
billiard balls randomly positioned in space, a more realis-
tic model is required that can account for clustering of
molecules into partially ordered, energetically favorabdle
configurations,

Simple equations of state with simple mixing rules are
not successful for asymmetric mixtures, that is{ those where

the molecules of one component are very much different from



‘those of thebother, either with regard to molecular size or
chemical nature-(intermolecular potential). For~such mix-‘
tures, the usual one-fluid>mixing rules, quadratic in mole
fracion, faii badly at liquid—like densities.

To allow for asymmetry, new empirical, oﬁe-flnid mixing
rules have been suggested by a number of‘authﬁrs, for exam-
ple, Vidal (1978) and PlYcker (1978). These rules have lit-
tle theoretical foundation .and violate a necessary boundary
condition, viz., that the éecond virial coefficient of a
mixture must be quadratic in mole fractionm. As a result,
many applications using fhese eﬁpirical rules hﬁld only for
phase equilibria at low or modest pressures where all signi--
ficant deviations from ideality occur only in the liquid
phase. For thermodynamically consistent iesults, ;nd fbf
applicafion to.high—pressnre vapor—liquid equilibria, it is
necessary to have a'mixing tule.tht is valid for both dilute
and dense fluid mixtures. This is conveniently achieved
through ‘density-dependent mixing rules as discussed previ-
ously by us (Whiting and Prausnitz, 1980, 1981,-1982) and by
Mollerup (1981).

An eqn;tion of state forbmixtnres whose molecules
differ appreciably in size has bgen discussed by Donohue
(1978) and by Liu (1980) who used perturbed-hard-chain
theory (PHCT). A possible extensién t§ mixtures containing‘
polar molecules has been presented byerehling et al. (1975)
wﬁo proposed to take polarity into account through a chemi-

cal (dimeriztion) hypothesis. That extemsion gives good



results for some polar—polar mixturé$>ﬁuf appears to be
somewhat less sﬁccessful for polar~nonpolar mixtures. More
important, that extension becomes computationally unwieldy
for multicomponent mixtures because the number of apparent
molecular species {(monomers and dimers) rises quickly; for a
binary polar-polar mixture, there are already five apparent
species (two monomers and three dimers) and for a termnary
mixture there are nine apparent species (three monomers an¢
six dimers).

To predict phase equilibria for a#ymmetric mixtures, we
propose here a new equation of state that ?an correlate
pure—component thermodynamic data for polar as well as for
nonpolar fluids. More important, we have established a new
sét]of‘mixing rules based on the two—fluid theory and the
local-composition concept. We have made compromises between
statistical-mechanical rigor and engineering usefulness,

The important achievement is that we have removed the common
implicit assumption that the structure of a dense fluid mix-
ture is a (van der Waals) random assembly of spherically

symmetric molecules.

Equation of State for Pure Polar Fluids

For extension to polar fluids, the most popular varia-
tion on simple equations §f state is to assign an empirical
temper;ture dependence to the equation—of-state parameters
{e.g., Nakamura et al., 1976; Soave, 1979). This procedure

increases the number of adjustable parameters whose physical



significance is unclear.

A more fundamental approach is to follow methods dis-
cussed by Twu and Gubbins (1978), who use molecular theory
for calculating the'efféct of polar interactions and,
thereby, introduce parameters with élear physical sigﬁifi-
cance, No doubt, their method will eventually be reduced to
€ngineering practice, but, at present, we prefer to ﬁse a
less tigorous.but simpler model.

For many polar species,vthe most_impo:tant term in the
muitipole expansion is the dipole-dipole term. Thus, we
havévchosén.to lump all'drientationél contributions to
pure-flunid propertie# into a single term baséd on the
angle—averaged interaction-bgtween point dipéles. .To this
term wé assign a simple temperature dependence.

For point dipoles, an effective nonpolar potential,
O?j, can be defined by averaging thé dipole—dipole potential
over all possibleborientations of two molecules, one of type
. i and one of type j. ~Such a procedure was first suggested
by Keesom (1922), as discﬁssed elsewhere (e.g., Prgusnitz,

1969; Reed and Gubbins; 1973). The result is

2,2
D piﬂ. ‘ L :
By, = - T¢ + oo ., (1)

where By is the dipole moment of i, r is the distance
between molecular centers, k is Boltzmann's bonsfant, and T
is the absolute temperature. The tfuncated terms are all of
higher order in reciprocal temperature.

This idealized point dipole—point.dipolevpotential has



the same dependence on distance of separation, r-6. as does

the London (1930) potential for spherically symmetric, non-
polar molecules. Thus, we define an effective potential-.
well—-depth parameter, T®*, for a polar fluid as

Ts = 70 + D __ . (2)
T(v*)2

where T*(O) is the potential-well-depth parameter for the
nonpolar part of the potential, v* is the close—packed molar
volume, and where parameter D is a measure of polarity; for
nonpolar fluwids, D=0. As in Equatioi 1, all further terms
contain higher powérs'of reciprocal tgmperature.

We chose for our reference equation of state the PHCT
of Donohue (1978). The Eelmholtz energy, A, of N moles of a

pure fluid at temperature T and molar volume v is given by

N id A 4 A ‘
A =_A - 0 + 5 “n . . (3)
NRT NRT ~ 2. Ia

where

JEL = ¢ [Ai:xzixl;:_lex:Lxlz?

NRT L (1 - tve/v)2 J
and

n S mn
An = T* Z ahm (v‘/v) .
m=1

Here A1d s theFHelmholtz energy in-the ideal—gas state at
- the same temperature and molar volime. Table I gives

universal constants a - and t. Pure-component parameters
T*, v*, ¢, and D are characteristic, respectively, of the

'intermolecnlar potential-well depth, the hard-core volume,



the number of external degrees of freedom, and the polarity

of the molécule. ~ .

The PHCT was developed from a truncated perturbation
expansion in power§ of reciprocal temperature for moleculgs
with square-wellbpotentials. Thas, tﬁe form of the effec-
tive potential-well deptﬁ given in Eqpation 2 is appropriate
for use with the PHCT. If we substitute Equation 2 into

Equation 3, we obtain for the Helmholtz energy of square-

well molecules containing point dipoles:

A - aid Ag Ay Ay

NRT ~ NRT * T ° 2 Foeeo (4
where '
A =10 F 4 (gas)n
1 =T S fia (VR
5 aq D o
A, = L th(O)z a,  + —~iz__ (vf/v)m1 .
- om=11l : c(ve) J

Note that there is no dipole-dipole contribution to the
qean—field A1 term.

Second, we use an approximation to take into account
higher terms in the expansion of Equation 2., To close this
expansion in reciprocal temperature, we use the method of
vBarker and Henderson (1967, 1976) who showed that their
approximation gives better comvergence than do Padé-
approiimant and other methods. Following Barker and Hender-
SOn; we need only the first two perturbatién terms; tﬁe oth-

ers are estimated. This method, applied to Equation 4, is
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id A A 2A
A=_A = 'O + 1 exp[""Z - 1] . (5)
NRT NRT 2A2 LA T J

Equation 5 is our working equation for the Eelmholt:z
energy of pure polar or nonpolar fluids. Through standard
thermodynamic relations, we can derive expressions fd: the
pressure and for the.fugacity;

We have used Equation 5 for several highly polar fluids
(and for several nompolar fluids with D=0). Pure-fluid
parameters,. given in Table II, are obtained from experimen-
tal equilibrium properties (vapor.pressures and liquid den-
sifiés).v'For both methanol and water, the reference energy
vparameter, T(O), is larger than would be expected for the
nonpolar part of the intermolecular potential. These
values, as well as the large value of the parameter c¢ for
methanol, suggest, first, that the referemce system (Ao) is
‘not entirely suitable and, second, that’fhe simple
temperature~dependence that we assign to the energy parame-—
ter T* is not sufficient to account for the strongvhydrogen
bonding of these fluids; thus, to obtain a good fit of the
data, part of the polar contribution becomes incorporated
into the reference part of the equation of state.

The pure—-component surface—areabparameter, q; ., aiso
listed in Table II, is discussed below. It is used only in
the calculation of mixture properties,.

Figures 1 and 2 show typical agreement between experi-
mental and calculated properties of water. Considering the
simple equation used, agreement is remarkably good except in

the critical region, where all analytical equations fail.



(However, see Brandani, 1981.)

Extension to Mixtures: Local-Composition Model

To calculgte fluid-mixture properties with the commonly
-used one~fluid model, we must use a set of mixing tu}es to
relate the characteristic parameters of the mixture to those
of the pure compénents. Several sets qf mixing rules have
been proposed, but nearly all are implicitly based on a (van
der Waals) random-mixing assumption. These common mixing
rules are only slight variations of those proposed by van
-der Waals (1890), who first suggested the one-fluid mixturé
model almost 100 years ago.

In this work, we use a significantly different pro-
véedufe fqr’éxténding an equation of state to mixtures (Whit-
'ihg and Prausnitz, 1980, 1981, 1982; Mollerup, 1981).
Starting frém thé two-fluid theory (wﬁich-underligs the Wil-
son {19641, NRTL [Renon, 1968], UNIQUAC [Maurer, 1978], and
other liquid-state activity-coefficient models), we use a
consistent mixzture theory for fluids at all fluid densities;
Our local-composition theory is b;sed on a quasi-chemical
approximation for the dgéree of nonrandomness inm a fluid
mixtn:e; this theory meets 'the n?cessary c105e-packed—iiquid
and ideal-gas limits (Whiting and Prausnitz, 1981, 1982),

" We are particularly concerned with nénrandomness that
occurs even in mixtures of ﬂearly eqnalfsized molecules
wﬁenevér their intermolecnlar potentials are significantly

‘

different. We assume that this nonrandomness exists, to

&



10

some extent, at all non-zero demnsities,
First, following van der Waals, we separate the
Helmholtz energy into an ideal-gas, a repulsive (hard-

chain), and an attractive part:

A = Aid + ATeP , pattr

. (6)
The repulsive Helmholtz energy oﬁbthe mixture is calcu-
lated using either the one-fluid model or a "rigqrous" equa-—
btionvof state for mixtﬁtes of molecules having purely repul-
sive potentials (e.go.‘the‘equation of state for a hard-
sphere mixture of Mansoori et al. [1972] or the hard-
coﬁvex-hody equation of Boublik [1975]). For the calcula-
tions reported below, we have uged the one—flnid model
" rather than a "rigorous’” hard-sphere-mixture equation
‘because we have found that, for binmary hard-sphere mixtures,
the entropy of mixing calculated with the equation of Man-
soori et al. is essentially identical to that calculated
with the one—-fluid equation (Whiting and Praﬁsnitz, 1982).
Fnrther.'tﬁe,one-fluid-eqnétion offers more flexibility;
while the equation of Mansoori et al. requires additivity
of diametefs'faf unlike spheres, the one-fluid model allows,
when necessary, inttédnction of a Sinary parameter 1ij to
account for nonadditivity. The one-fluid mixing rules we

use for the repulsive contribution are

ve = Z Z xixjv‘.. ) (7)
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m
€y = .; Xicii - (8)
i=1_ ST - .
‘where
3
[ve173 4 gurr3]
ve, = |—2 -t (1 -1,y .- (9)

Heie xi-is the mole fraction of component i, subscript M
denotes mixture, and m is the number of components.
Although much of the structure of the fluid is deter-
mined by fﬁe repulsive part of the intermolecular potentials
(cf. Chandler, 1978), we seek to inélnde the effects of the
attractive potential on the nonrandomness of the mixture.
For a binafy'mixture. we consider two representative
rggions in the fluid, as suggested by Maurer (1978) and as
indicated‘in Figure 3. One region cenfers around a type-1
molecule, and the other centers around a type—-2 molecule,
“The local‘éompositiohs in these two regions are different.
As suggested by quasi—-chemical theory (Guggenheim, 1935,
1952), and following Wilson (1964), we approximate these
local compbsitions ;sing Boltzmann factors with gnergies

characteristic of the like and unlike two-body interactions:

Xji _ Xj exp(-ak;;/RT) (10)
X x exp(-aEii/RT)
xji A T 1 ., (11)

where i=1 or 2 and o is a universal constant here set equal
" to 0.5. This somewhat arbitrary value for a is a compromise

between Guggenheim’s quasi-chemical theory for lattices
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(where a is about 1/5) aﬁd the Wilson model for local compo-
sitions (where ¢ is 1). (See Whiting and Prausnitz, 1982.)
Equ#tion 10vindicates that the local mole fraction (xji) of
j molecules around an i molecule is proportional to.the
total mole fraction of j molecules and proportiomnal to the
Boltzmann factor of ani' where Eji is characteristic of the
attractive ji interaction. In previous models (see, .85
Maurer, 1978), this energy was takea to be ze/2, where z is
the coordination number and ¢ is the energy between two
nearest-neighbor molecules. For liquids, this lattice-
theory simplification may be reasonable, but;'fof.lower den-
sities, we know that the product z&¢ is a strong function of
dehsity and a weak function of temperature. For any equa-
tion of state of the van def Waals type, we cah calculate
Eji as a function of density and temperature:. it is the
molar attractive Helmholfz energy of a fluid whose molecules
interact with a ji-type intermolecular potential.

The total attractive intermnal energj, gattr, of a
binary fluid mixture is the sum of contributions from both

types of regions:

attr _
v Ni(xppup1+x11m11) + Naplxppugp+xypugg) o (12)

where U;j is the molar internal emergy of a fluid of
molecules interacting with a ji-type intermolecglﬁr poten—
tial.

By combining Equations 10-12 and recognizing (from the
Gibbs-Helmholtz relatiqn) the following relationship between

the characteristic Helmholtz energy Eji and the attractive
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internal eénergy u

jit
d3(E../T)
[T S : (13)
L a(1/T) 1, ji
we obtain |
2 3(E, /T)}
S ox t———dd—— exp(-aE. ./RT)
attr 2 . J[ a(1/T) j ji
= = =, &= . (14)
=1 2 x. exp(-aE../RT)
j=1 J J3

_where N=N; +N,. Using the Gibbs-Helmholtz r&lation, we sub-

stitute Equation 14 to obtain the attractive contribution to

‘the Helmholtz energy:

C atts 1/T _attr
e ﬂ—ﬁ-- EVES
0
g 2 2
T Tan Iy taZ®g exploaBy/RT) (15)

where the lower limit of integration is at infinite tempera-
ture. At this limit, there is no att;actiye contribution to
the Helmholtz energy.

The attractive contrxbﬁtzon to the equatxon of state.is
obtained by dxfferentzatxng‘Equatxon 15 with respect to

volume:

pattr . _|aastti/n]

2 2. dE; . :
- Z Z b -{-lé} exp(=-aE; ./RT)
- v JT j1
‘ (16)
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This procedure can be applied to any generalized vanm
der Waals equation of state,.
To calculate Eji and u;; from an equation of state, we

need to specify those parameters which characterize the ji

interaction. They are

0.5
(0) (0)
re(0) ZIT‘ii.°iiT‘ji °5il (1 -1, (17)
ji 2 ji
I_ (cii + ch) J .
o 0.5 ' e
Dji = (DiiDjj) . (18)

The parameter v‘ji is given by Equation 9, as it was for the

athermal (reference) system. Binary parameternkji (|kji|<1)

is obtained from 1imited, binary experimental results.

len

|m
5]
(-

=

Extensio 0 Multicomponent Mixtures of Large a

We extend the local—qomposition model to multicomponent
mixtures by considefing m different types of regions in the
fluid, where m i; the number of compoments. "Each tegion
contains a molecule of type i at its center (i=1,2,...,m).
Thus, whereas we speak of a two—fluid model for bimary mix-
tures, we speak . of a three-fluid model for ternary mixtures
and, in general, an m-fluid model for multicomponent mix-
tures containing m cémponents.

To extend our model tovmixtures of large and small

molecules, we assume that each molecule has an external sur-

face area equal to 9;; only this area is available for
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intermolecular "attraction. (The parameter q; is calculated
with the method:of andi“f1968T]7and, thus, requires no
binary'expe;imental data;) The parameter 9; is arbitrarily
normalized as in UNIQUAC (Abrams, 1975), such that q. is
unity for one —CHZ- unit in a long-chain normal hydrocarbon.
If we designate the average attractive Helmholtz emergy per
unit'surface_area'of'a ji interaction as nji‘ the attractive

internal emergy of the fluid is

attr m m 9(n;./T)
merp Ly, fagm)
N i=1 ' j=1 J°? Laum iy o

where X;; is the local mole fraction of type j molecules in
a type i region. These local compositions are given by

Equations 10 and 11, where thé characteristic energy, Eji'

is now equal to g

7

itjie
For a multicomponent mixture of large and small
molecules, the attractive contribution to the pressure,

pattr, is

m m [an ? {-aq n ]
-3 by x.x,q.“sl; exp ‘-_ﬁ?li ‘
Pa.ttr'= i=1 J=1 13 "l. v JT l- J (20)
- 2 fzeaing '
5 Ti TR RT

where, for the equation of state givgﬁ by'EquationAS,_

2 *
;= L, HPE‘AZ - 1] (21)
ij ~ 0.5 AT : '
(a;q;)" ""24,vs, LA ]

Parameters in the eguation of state are given by Equations

9, 17, and 18.

At zero density (also at infinite temperature), our
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local-composition model reduces to the random-mixzing model,
as all local mole fract;ons become identical to the respec-—
tive overall mole fractions.

In our model, the second virial coefficient of the mix-
ture has the proper'quadrétic mole-fraction dependence. Our
model also has a reasonmable high~density limit; im that
limit, our local-composition model, when applied to the van
der Waals equation, gives an expression similar to the Wil-

son equation for liquid-state activity coefficients.

Results

To illustrate application, we have reduced high-pressure
vapor—liquid equilibria for fi?e, strongly asymmetric binary
systems. Table III gives values of the bimary parameter kij
for these mixtures.

Figures 4—10 show good agreement-between experiment and
calculation. For vapor—-liquid equilibria of the ﬁydrogen
Sulfide-water system (Figures 4 and 5), we obtain a gobd fit
at both 38 and 171°C using our equation of state and the
local-composition mixing rules with one temperature-—-
dependent binary parameter. By contrast, Eveleiq et al.
(1976) found that the same data at any one temperature could
b§ fitAwith the Soave-Redlich—-Kwong (1972) equation and the
standard one~fluid mixing rules only by the additionm of a
second binary parameter and by correcting the energy parame-

ter a in the equation of state for water at each tempera-

ture.
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Figure 7 shows our fit of the vapor-liquid equilibria

"for ethane—water at 300°C.v Unlike the other systems studied,

this system is not well represegted with our method if oniy
one binmary parameter is ﬁsed. To fit the bompositions of
both phases, we included bina;y patametér 1ij fof the nonad-
ditivity of molecuiar»diameters (Equation 9). This second

parameter helps to correct for deficiencies of our reference

. system, the hard-chain fluid as describéd by omne-fluid

theory. Improvement of this reference system is needed.
Whiting and Prausnitz (1982) have indicated a possible way

to include corrections to the hard-chain entropy of mixing.

Conclusion

The work reported here increases our ability to calcu-
late high—-pressure vﬁpor—liquid equilibria for asymmetfic
systems, especially for those containing one or moré,pola;
components., Improvements have been made in both the pure-
coméongnt eqﬁhtionbof state (to account for orientation-
dependent intermolecular potentials) and in the mixiﬁg rales

(to account for density-dependent nonrandomness).
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Nomenclature

A = universal constants given in Table I
A = total Helmholtz energy

¢ = ope—-third the number of effective external degrees of
freedom per molecule ' 1

D = polarity parametef in the equation of state
E.. = molar attractive energy of ij interactions
k = Boltzmann's constant

k.. = binary parameter fof_the energy parameter
1-j = binary parameter for the size parameter

N = total number of moles

number of moles of compoment i

4
]

P = pressure
Q. = surface—area parameter for component i
r = distance of separation between two molecules

R = jideal-gas constant

T = absolute temperature

T* = total emnergy paraﬁeter in the eqpatioq of stafe

T‘(O) = reference energy parameter in the equation of state
uij = internal energy (per mole) of an ij interaction

U = total internal energy

v = molar volume

v* = molecular size parameter in the equation of state
X, = mole fraction of component i
xij = local mole fraction of component i in the neighborhood of

a type j molecule
@ = nonrandomness parameter (equal to 0.5 in this work)

e = nearest-neighbor energy in quasi-chemical theory
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nij = attractive Helmholtz energy per unit surface area for
an ij interaction ’

B, = dipole moment for an i molecule

ﬂ?, =’intermolechlar pbtential between two point dipoles,
: one of type i and one of type j

T =.universa1 constant, given in Table I

Subscripts

M = mixture

ij = the interaction betwée# aﬂ i.moleCnle and a j'molecnle

 Superscripts

attr = attractive comtribution
id = ideal gas contribution

‘rep = repulsive contribution
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Table I. Universal Comstants for Perturbed-Hard?Chain
Theory

n\m 1 2 3 4 5

1 -7.04677 . -7.22636 -3.16538 14.34352 -1.26227

2 -3.56999 11.35209 -10.85375 -3.6131 7.34334
t = —2%—0 = 0.7405



T

(0)

(K)

150.9

329.2

231.8

205.5

440.4

276.5

289.0

Data References:

1. Ambrose,
2.
Fluid State.

3. Bain, R, W. ”"NEL Steam Tables 1964"; Her Majesty's Stationery Office: Edinburgh,
1964. A o : .

4, Din, F., ed., “Thermodynamic Functions of Gases,” v. 1; Butterworths: London, 1956.
5. Goodwin, R. D.

1976, No. 684. : .

6. Kay, W. B.;Donham, W. E., Chem. Eng. Sci. 1955, 4,

7. Roamer, H, II.; Sage, B. H.; Lacey, W, N. 1Ind. Eng.

D.;

5:

Sprake, _
Angus, S.; Armstrong, B.; de Reuck, K. M,

Methane”; Pergamon Press:

; Roder, H. M.; Straty, G. C, Nat. Bur, Stand. (U.S.) Technical Note

v'(cmslmol)

Pure—Component Parameters.

20.18

20,12

28.40

17.52

11.17

18.81

12.81

C. H.

s'

D(dn’k?/mo1?) a
0 | 1.16
3.00 1.43
0 1.70
1.01 1.12
4.117 1.40
0.315 1.68
0.694 1.28
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Chem.

J. Chem. Thermodynamics 1970, 2, 631,
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1950, 42, 140.
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Table III Binary Parameters
System 1c) ki, 19, Data Ref

CH,/H,y0 1504300 0.10 - 4

CoHg/Hy0 250 ~ 0.26 0.03 1

€0, /CH;0H © 25 0.16 - ' 2

H,S/H,0 38 0.205 - 3
171 0.17 - 3

CH,/NH,4 25 0.136 - 5

Data References:

1. Danneil, A.; TWdheide, K.; Franck, E. U. Chem.-Ing.-

Tech. 1967, 39, 816.

2. Ohgaki, K.; Katayama, T. J. Chem. Eng. Data 1976, 21,

53. '

3. Selleck,
Eng. Chem.

F. T.; Carmichael, L. T.; Sage, B. H. Ind.
1952, 44, 2219. '

G.; Namiot, A. Yu. Gazoyv.
19721 ll (5)) 6.

4., Sultanov, R.
Promysh. 1971,

G.; Skripka, V.
16 (4), 6; Ibid.
Chem.-Ing.-Tech.

5. Zeininger, H, 1973, 45, 1067.
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TWO-FLUID THEORY FOR A BINARY MIXTURE
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TYPE-{ REGION TYPE-2 REGION
w. 2. '
U™ = Xp Up + Xy U2 Xp Upp ¥ Xpolos

FOR THE MIXTURE:

Uoftr.

N

- n (2)
=X Ut XU

u(l) = molaf attractive incarnalvenergy of hypothetical fluid i

i=1o0r2
Xy = mole fraction of component i
x.. = local mole fraction of component i about a central molecule j

u.. = attractive internal energy per mole for a hypothetical fluid

where all molecules interact'éccording to an ij potential

" N = total number of moles
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Figure 3.
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