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ABSTRACT
Necess&fy conditions are established which must be satisfied by
models of low eﬁérgy supersymmétry if they are to be phe;omenologi-
cally'acceftable at the :reeileQel.' These conditions enable oﬂe‘to
splve the longstanding pnoglem of giving tﬁe.scalar pértners of
quarks and ;eptons large masses in such renormalizable models. A

specific model is written down.
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There has been considerable renewed interest in low energy super-
symmetric models, partly with a view to solving the hierarchy problem
[1-10]. . A number of authors have addressed the problem of constructing

viable renormalizable models incorporating supersymmetry breaking at

.a scale of order 1 TeV. There are three types of such models: .super-

coldr models [10] in which assumptions are made about non-perturbative
effects in field theory, models in which the supersymmetry is broken
softly([3, 4], and models in which the supersymmetry is broken spontan-
eously in perturbation theorvy [2; 5, 8, 91. ©No model of the latfer
type in which the cor':rect'vacuum is ur;iqueiy determined at the tree
level has been constructed. It is the purpose of this paper :to construct
such models. -

An N = 1 supersymmetric ‘gauge theory [11] with gauge group G ==gGa
Qescribes the in;efaction of vector superfields (with ;calar, fermion
aﬂd vector éomﬁonents Dé,lu and vﬁ) with chiral supérfiélds ¢a

(containing scalarvand fermion components Fa, Aa and wa). It is often

‘convenient to use the same name: for a chiral superfield and its A

- component. Self interactions of the.chiral fields are-described by

a sﬁperpoteniial W(¢) which is at most cubic in ¢, and does not contain
hermitian conjugate fields ¢+. The tree level effective potential for

the dynamical A components is given in terms of the auxiliary fields

(o]

D™ "and Fai by
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where o labels different factors of the gauge group, a the various
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chiral superfield representations, and i (which is alﬁays summed)

the components of each representation. The gauge couplings for

c* are ga, and ™2 are the generators of Ga,in the representation

of ¢a. The Fayet—Iliopouios'terms [12] are present oﬁly when o labels
a U(1l) factor. The spontaneous breaking of supersymmetry leads to a

tree level relationship between scalar, fermion and vector masses [13]

. gzda
2J . 2 [)
_ =2
§( DT+ DT my = 2

Tr ¢ (2)

where,mJ is the mass matrix for spin J fields. The sum on ¢ now
runs only over U(l) factors. The charges of the chiral multiplets

are qOl =6 , and

aa
ab139

a* = (2 <¢ai>+r‘;§‘ <4 > £%.
Only U(1) factors with Tr qd # 0 contribute to the right hand side of
Equation 2. In the standard SU(3f x SyU(2) x U(l)y model, Tr_qy = 0.
A supersymmetric extension of this model could only be made viable

at the tree level (i.e.have large massés for scalar partners of quarks
and leptons, called squarks and sleptons) by having other heavy
(order 100 GeV) chiral fields with fermioqs heavier than scalars. It

is simple to see that this will not work; the trace of '

over quarks
vanishes. It can be seen from equation 1 that the sum of the équared
masses of squarks will vanish as the quark'mass goes'to zero. Solutions
to this problem of squark and slepton masses have been sought in two
directions.

If the gauge group of the standard model is extended by (1) [14]
with d # 0 and the trace of § over quarks and leptons separately non-—

zero, chiral representations can be split in mass. “This has been the

basis for much attempted model building [2,5] and phenomenological
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4
speculation. Squarks and sleptons are ;11 given the same sign changes
under U(1) so they all reéeive large masses. No renormalizable realisgic
model of this type exists. In anomaly free models fields tend to acquire
vacuum expectation values (yevs)‘so tha£ & = 0 or color breaks or both
[5, 8].

" These failures have enéouraged investigétion of other mechanisms
in which sqﬁar_k and slépton masses arise from radiative corrections
éncé supersymmetry has‘been broken. This has been done in both
supe;color [19] and O'Raifeartaigh [8, 9]>models. Supercolor
models must resort to dynamical speculation about the structure
of the vacuum. In exisfing 0'Raifeartaigh type models the tree level
effective potential is not sufficient to constrain all the squark and
siepton field; to have zero vevs. In the model of reference 9, while
the unbroken géuge group is guaranteed to be SU(3) x U(l)e.m.,-the vevs
of the sneutrinos are not fixéd. Non-zero values would lead to a
phenomenologically unacceptablg model. In the model of Reference 8,
both color and‘electromagnetism could be broken. Both groups show
that a local minﬁum of the effective potential occurs when all
squarks and sleptons have zero vevs; iﬁ'this vacuum two or three loop
radjative corrections to masses make these models viable. The tfee
level vacuum degeneracy necessitates the calculation of the effective
potentiél beyond leading order to determine whether these local
minima are indeed the true vacuumT We will avoid such difficulties
at the expense of enlarging the gauge group, considering models of thg
former type which have sufficient squark and slepton masses at the tree
level. We will establish necessary conditions which the superpotential
must satisfy in such models, and illustrate one way of fulfilling these

requirements in a specific model.

f We understand that the authors of Reference [8] are undertaking such a
calculation.



One constraint comes from the réquirément of aﬁoﬁaly fréedom. The
general conditions far anomaly freedom are réther,cumbersome, but they
can be usefully reorganised into mass relations for scalar fields. For
any particular supermultiplet ¢x transforming as an irreducible
represention R of G,_it follows from Equaﬁion 1 that the trace of the

mass' matrix for ¢x from D2 is given by

. 2 . . . .
-3V 2.0 ox -
: =42 .
.‘4 Tr (3¢ 5 ) Zg d Tr a5 3)
xi 'xj
where .the equality holds only. if <¢x>= 0. Since ¢ now runs only
over Abelian -factors qi? = Gij qu(R). The contribution from Dz to
' 2
the mean square mass of representation R is,mg(R) 4Eg daqa(R) if

the model is to be free of SU(3)2 x U(l) anomalies, then
3a 3b a >
5, (T ) C(R)q (R) %)

where ‘1‘3a are the célor generators in répresentation ¢a’ and the
irréduéible rébresentationé R have color Casimirs C(R) and charges
du(R)q Equation 4 can be converted into a mass relation by multiplying
by gédu and - summing over a

2,00 _ o ' '
ERC(R)mD(R) =0. . _ (5)

_Different anomaly constraints lead to different mass formulae, but
:for our purposes the relation among colored representations is the
‘ most powerful.

The chiral representations ¢a may be divided into two classes,
those in which the fermions ;re light ¢£(for example less than 2 GeV),
and the rgst ¢h. -The ¢£ will contain light quark and lepton super-
fields'&hich can appear in W($) only in cubic interactions. The
contributions from W to light squark and slepton masses will be

comparable to the fermion masses, and if we neglect such small masses

?’\
- ®
6
2 2 : .

m (Rl) = mD(Rl)' Equation 5 now reads.

Z cRYn’(R) + T CRIMA(R) = 0 (6)

R2 7. [ A Rh Rh D Rh .
In a realistic model mz(Rz) must be large and positive. The mass
relation then implies that there must exist at least one colored

field (K) which has negative contribution to its mass squared from

:mDGQ'< 0. Any realistic model must therefore have a superpotgntial

which gives K a large positive mass squared preventing the spontaneous

|

breakdown. of colewu:’ mz(K) = mg(K) + mé(K) > 0.  The utility of such

mass relations is that they sum up the effects of all U(l) faCto%s,

and show that a negative contribution to m%(K) from one U(1) canLot be

cancelled by a positive contribution from another. From considerations

" of these mass relations it seems that little will be gained by having

additional U(1l) factors beyond U(l)

le1ng K a large positive mw(K) is not trivial. If K is in|a

. contradicts the definition of K. 1f K is charged under some

real representation of color a term K2 in W implies mD(K) =0 wh?ch
. B ) . - L
of the U(l)s, a term KK (whgre K is an independent chiral - i
superfield with conjugate éhafges aﬁd color) in W can

certaini} give mé(K) > 0. As C(K)mg(K) + C(E)mg(ﬁ) = 0, this pa%r of
fields does not provide a cancellation of the positive squark contribution
to Equation 6. The only possibility is for K to appear in a cub&c
coupling in W in which two of the three fields are colored. The|color
singlet field (J) must acquire a vev thus giving mé(K) > 0. Ve will

now show that in order to guarantee this, it is necessary to have

v

: !
additional terms in W involving J. Assume J only couples to U(l) factors

and

W =VXK2J(or‘XKRJ) + f(anything but J).



Consider the equation for a stationary point in V

?—‘-{r=4<J>2g2q (Na* =0
3T . (s NN e

. where we };a'vg -inserted vevs and required that <K >= 0. Since
.mf)(x)r< 0 (or m2(K) + mi(R) <0, ggzqa(nd“}' 0 so that a W of

this form gives the.unsatisfactory result <J> = 0. If Jand K
transform non-tr—i‘viélly under so.me vother broken non-Abelian factor

a similar argument leads to the same conclusion. Therefore additional
terms must be presen.t in W which force < J > #0, leVW= )\KZJ(or_ AKRKJ)
+ (Dfiving terms for J). ) All previous models failed because the}; did
nog satisfy this criterion.. A superpotential of the ‘al;ove form
necéé's;kily has a mass scale, so that models with trilinear super-
potentbials [5]» eit‘her have light squarks and sleptons at tree level
or broken 'cc;lor.

The simplest superpotential of this type is
\ 2
W = AKK'J + fX(JJl—p )
where J1 has conjugate quantum numbers to J, and X is neutral. One
can easily see that this form is unlikely to be successful since only
can get a_ﬁxuch larger vev

the product JJ, is fixed. As mlz)(Jl) <0,J

1 1
than J such that £+ qa(< s> - <J1>+<Jl>) < 0 for all a.
Squark and slepton fields are then driven to get vevs such that a®

_tries to 'relax to zero. This difficulty can be avoided by adding mass

terms for J and Jl

2 | o,
= A - S
Wy = ARK'J + £X(33) = p%) + MET,+ MIT,.
We now have an Ol'Ra.if‘eartaigh model [15) so that supersymmetry will be
broken in this sector. For f‘%uz > MM, and in the 1:im_if' of vénishing

gauge coupling constants the minimum of this 'potent'i'.al is

]

2 M, 2 M 2 ¥ v )
I =z (-, <5, = M (u2 _ _W)’ <K> = 0, <> undetermined
B2 Y1 M 2 R
£ * e
<J > = =<J3>< = . X D
~Jo° 5 <I><X> and <uy> = oo <I><x >

The indeterminacy will be removed by D2 terms. X, J IJ3 acquire infinitely

2°

large vevs such that Jg - J2 is finite; <J > and < J1> are ch;:-mged

3
iﬁ_finitesﬁﬁa'lly. ‘The d,a can then relax to zero. This difficulty

can be avoided by removing 'J3 from the theory. With gy = 0, <J>

would be infinite but the D2 terms prevent this.

Before writing down a realistic model the problem of weak inte‘r-
ac_t:ion bréékdow;l mﬁst be solved while maintain.ing & # 0. The Higgs
suéerfields (H) vlrhic.}'ilt:ouble. to quarks and leptons mﬁst be constrained
to ha\(e" nON<Zero vevs. Sinée squarks and sleptor{s havé positive mass
squared from D2 these Higgs fields generally havé 1;12D(H) < 6, and easily
get vevs which a]:low d® to reiax toward zero. T};is can be prevented by

using a Fayet-Iliopoulos [12] type model. TFor example, a U(l) gauge

theory with W = mH+H_ leads to a potential

2
- o2t T t t 2
Vo= m (HH,_+ HH) +52- (HH, - H'H_+¢)
2, 2 m?
which for ¢g”" > m has<H+>=Oand_<H_>=‘g—Tsothat
g
d = % > 0. The field H_ will-play the role of the Higgs, while H+

is argx additional field. In the remainder of this paper an explicit
realistic model is written down which incorporates the general features
discussed above. _

The gauge group is chosen to bé SU(3) x SU(2) x U(1) XfJ(l), and the

anomaly free representations of the chiral fields are shown in Table 1.

"The superpotential is

_ 2 2 = 2
__w = KT+ AT+ AGSST + £X(IT) - WT)

+ MI T, +'mJJ1 : (7
e Tty = B iR
<+ mHHH + mHH H' + gELEH + gDQDH + gUQUH .

K, T, S and § are all prevented from getting vevs by the same



O'Raifeartaigh sector. Three generations of quarks and leptons are

understood. In the following we will set mH = m'H for convenience.

This is not essential. The physics of the model is not chAnged pro-

vided m'H/mH is order one. The potential is:

2 2 2

- |3 1 52 1.3
v ’8:#' +3 (@) + 5 @)

a

g . N . .

By 1 «+ R N e s L P S-S T
+ e (— - — —_— - — — —_—

3 (6‘QQ 3UU+3DD -2 LL +BE+5-8s =288
-lH‘LH'w%ﬁ'*~ '+%H'+H' -%ﬁ""ﬁ')z'

2
23* o N . n . . o
+5 QQ+TT+DD+LL+EE- 2k - 2177 - 25%s - 25%%

+

+ 1/3'+
1J1+4J2J2+ any'y

o+ 4 e e
+ 43 J-4J Y - antn + 2f'E - 2m e 4 oA TEY +xs)2
Y has been set to zero. This is weakly natural because remormalization

(infinite) of EY vanishes when the trace of qY over each set of degenerate

scalarsbvanishes'[lﬂ;Fbré suitable tange'of.parameters the global minimum

is at
<X>= - u/f
: m m.m, - m m.m
2 2 2
<J§=;l-(u2-—l‘2—2') <J> =;g'(u —“%“_‘—)
: 2 f 1 f
_¢h v~ 0 . 2 _ .2 2 2 _ .2
<H>—(0), <H2> —(h) with my —2M —ZZmH, m, = 2m, and
2 _(E_ ™ 2 MM (ML ™™
Vet v/,
.88 - f 12 :
All other vevs vanish. In this vacuuh d = —3 So that the squark and
m, 2g
slepton masses are —E. In order to obtain the correct value for Mw
/2_ N g
4n = (240 GeV)?. To ensure that <K >,< T >,< § > and< § >vanish,
AK T.8 éhould not be too small. A suitable set of parameters is
t] "

£=A, =2 = A, =1/2, g = 1/14

2,34, m =

=
It
-
=
1
N
W

_1
=5 &

N
10

witg TeV the uﬁit of ﬁass.' The Yukawa couplings (gE?gD?gU) have the
same values as in the standard model.z For these particular values the
heaviest partiéles are K and T with mass 860 GeV, while S and § weigh
400 GeV and .squarks and sleptons weigh 140 GeV.

. A model ig natural in the strong sensé if W contains all terms
consistentlwiéhrthe symmetries of the model. The oﬁly symmétry under
which X tranforms and which does not eliminate 112X is an R symmetry.-
Therefore, any strongly natural O'Raifeartaigh m&del must have an R
symmetry. As vector superfields are real they necessa?ily have zero k
character, whiéh means thaF the fermionic component 2¢ .transforms non-
trivi#lly.> Forlunbroken gauge factors Au'.can not get a Dirac mass,
and\a Majdrana mass term of the type X is forbiddgn‘by R unless R is
spontaneou#ly broken. Therefore, in a strongly naturél model either ‘the
gluinos are massless 6r theré is a massless Goldstone boson (or axion if
R has aicolor'anomaly)} To ‘avoid there difficulties we will not use R
symmetries. itmight appear that ;he term mJJ1 ensures that W has no R

invariance. This is incorrect; a non-linear R symmetfy exists in W.

When X is displaced by its vev and the comﬁonent Lagfangian_inspected‘

"a linear R symmetry is found to exist. We must modify W to remove

this problem. This is easily but inelegantly done by adding a term
A Z(RN + PP - e m3(ﬁN' + N'N)

SNN + m6PP

+ m4(§P + P'P) +m
where Z is a singlet field, N, P, P', N' are colored but singlets under
other gauge factors, and N, P, P', N' are in conjugate representations
to N, P, P', N'. The parameters u, A, m, are chosen such that vevs

vanish, and mg # m, so that the R symmetry does not reappear. Our

model will be natural in the weak sense that terms not present in V at
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the tree level will be induced with small finite order g2 coefficients.

The large ratio of squark to K masses gives rise to the possibility
For example, a negative

2
contribution to the squared squark mass of order %F-Mé could -be disastrous.

that the vacuum may be unstable at one loop.

Fortunatelx the only such contributidn is for g = g and these terms are
much smaller than the tree level squared squark mass. Other one loop
corrections to squark and slepton masses are harmless.

The modelrhas three neutralvgauge bosons. The photon and its
couplings have been constructed to be identical to the standard model.
Four fermion goupling between Quarks and leptons mediated by the Z
boson (Zum) have strength ~'GF/1000.MW = MZ cos 9(1 + p) and p < 0.01
if - mﬁ <100 Gev.

Apart from quarks and leptons the only light fermions at tree

level are the photino, gluines, V_,’ WY and the Goldstino which are all

z?
massless. The winos, zino and Zumidd}a&eDirac masses of order 100 GeV.
The photino and gluinec acquire Majqiana masses from radiative corrections.

Tﬁe model has an axion. Iﬁdepéndent ﬁ(l) rotations can be performed
on the set of fields'J, Jl, J2, K, T, S and §, and on Ehé remainder.

Only one of these currents is gauged, the other Has an anomaly giving
mass to the corresponding Goldstone boson. This, and other aspects of
this model are under in?esﬁigation. [17] .

We have demonstrated that it is straightforward. to construct models
of low energy supersymmetry with a well defined vacuum. Criteria have
been established which‘any such model must satisfy. An explicit examplé
has been given. There are several problems to be overcome before such
models can be perturbatively grand unified. For exaﬁple_Tr g # 0, and
also the SU(3) and SU(2) coupling constants are not asymptofically free

above 1 TeV. This latter problem is probably more serious, and afflicts

12

all existing supersymmetric models other than those of

Ref.[3,4]. Work in this direction is in progress.
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TABLE I: Left Handed Chiral Superfields

. o ' Su(3)  su(2) LGN u(1)

Q, 3 2 1/6 1
g 3 1 -2/3 1

X
B, 3 1 1/3 1
L 1 2 -1/2 1

X
E 1 1 1 1

X
K 8 1 0 -2
T 1 3 0 -2
S 1- 2 /5/2 -2
5 T 2 /572 -2
i J 1 1 0 4
3 1 1 0 -4
I, 1 1 ) 4
X 1 1 0 0

Y 1 1 o apt/?
H 1 2 -1/2 -2
2l 1 2 +1/2  +2
H' 1 2 #l/2 -2
" 1 2 -1/2 +2
L 3

Quantum numbers of fields appearing in the supgrpotential

Eq. 7. x =1, 2, 3 label generations.
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