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ABSTRACT 

1 

THEORY OF THE DEVELOPMENT OF GEOTHERMAL 

SYSTEMS CHARGED BY VERTICAL FAULTS 

G.S. Bodvarsson, S.M. Benson and P.A. Witherspoon 
Earth Sciences Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

LBL-14061 

A two-dimensional model of fault-charged hydrothermal systems has been 

developed, that considers the transient development of such systems including 

the effects of heat losses to the confining layers. The model can be used 

for theoretical studies of the development of fault-charged reservoirs. It 

can also be used to estimate the rate of recharge from the fault source and 

the time of evolution, using temperature data from wells. 

The model has been applied to the hydrothermal system at Susanville, 

California. A reasonable match with the areal temperature distribution 

in the primary aquifer, and the temperature profiles of individual wells 

was obtained. This allowed an estimate of the recharge rate from the 

fault into the hydrothermal system to be obtained. As the calculated 

recharge rate (9 x lo-6 m3/s.m) into the Susanville hydrothermal system 

proved to be quite significant, a threefold increase in the potential of the 

Susanville hydrothermal anomaly for space heating purposes is predicted. 
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INTRODUCTION 

The development of geothermal systems and the factors that control their 

development are matters of considerable interest. Thermally induced natural 

convection is one of the most effective means of transferring mass and energy 

through rock layers, and this phenomenon has been investigated by many workers. 

However, not as much attention has been given to the development of fault­

charged geothermal systems. Fault-charged reservoirs are those where one or 

more major faults provide most of the energy to the geothermal reservoir. 

Fault-charged reservoirs commonly display atypical temperature profiles, 

that are characterized by a reversal (figure 1). The profiles are indicative 

of lateral hot water flow and conductive heat losses to the confining beds. 

These temperature data can be analyzed to yield the recharge rate into the 

hydrothermal system, and its time of evolution. 

Fault~charged geothermal systems are found in most geothermally active 

areas in the world. Examples of such systems in the western part of the U.S. 

are the high temperature fields such as Roosevelt Hot Springs in Utah, and East 

Mesa in Imperial Valley, California. Low-moderate temperature systems of this 

type include Klamath Falls and Vale in Oregon and the Susanville hydrothermal 

system in California. 

"---

The distinct characteristics of fault charged geothermal systems make 

it necessary to develop a theoretical basis for understanding their evolution 

and their behavior under exploitation. In this paper a new model for analyzing 

fault-charged geothermal systems is presented. As will be illustrated, the 

model provides some important new insights into the factors that control the 

development and behavior of such systems. Finally, application of the model 

using data from the Susanville, California, hydrothermal system 1s illustrated. 
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. Figure 1. Example of typical temperature profiles from two wells in· a 

fault-charged reservoir (Susanville, California). 
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General background 

Several studies on fault-charged reservoirs have appeared in the literature. 

Sorey (1975) used a numerical simulator to study heat losses associated with 

a hot spring system. He considered two models, a cylindrical fault zone and 

a linear fault discharging hot water from depth into a hot spring. Generally ~ 

the rock formation around the faults was assumed impermeable so that heat losses 

from the fault are only due to conduction. By varying the geometrical dimensions 

of the problem and the discharge rate he calculated the steady state temperature 

distribution around the fault and the temperature ·Of the discharged fluids at 

the hot spring. 

Pritchett and Garg (1979) used numerical techniques to calculate the tran­

sient thermal and velocity fields in a fault-charged aquifer. Heat transfer 

associated with fluid flow up the fault was neglected, but they modeled 1n 

reasonable detail the mass and heat transport within the aquifer. Heat losses 

to the caprock were approximated by a quasi-steady state.process while heat 

losses to the bedrock were neglected. Kilty et al. (1978) developed a finite 

difference numerical model to study convective heat transfer in geothermal 

systems. In their model the flow field was assumed a priori and the steady 

state convective and conductive heat transfer was then calculated. They applied 

the model to the Monroe, Utah hydrothermal system and studied the temperature 

distribution in the system caused by steady upflow of water in a vertical fault. 

Riney et al. (1979) used a numerical model to study the temperature distri­

bution at the East Mesa hydrothermal system in the Imperial Valley of California. 

They assumed that the reservoir is recharged by a cylindrical fault system, 

representing the intersection of three major faults. They modeled the mass and 

heat transfer in the aquifer in some detail, but used only an approximate repre-
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sentation of heat losses to the caprock and neglected heat losses to the bedrock 

altogether. They obtained a reasonable match with the steady state temperature 

distribution in the reservoir and heat flow at the surface. However, the 

authors recognized the non-uniqueness of the reservoir parameters obtained, 

especially the porosities and permeabilities in the reservoir. 

Using a semi-analytic approach Goyal and Kassoy (1980) developed a steady-

state model of a fault-charged reservoir system. They specified the flow 

rate and the temperature of the fluids in the fault at the bottom of the 

reservoir. Vertical flow within the reservoir was neglected. Constant temper-

ature boundary conditions at the top and bottom of the reservoir were prescribed 

in their model. Goyal and Kassoy (1981) applied the model to the East Mesa 

hydrothermal system. They calculated the recharge· rate to the fault, vertical 

variations of horizontal velocities within the aquifer; temperature fields 

in the aquifer and caprock, and surface heat flows. A reasonable qualitative 

, match with observed data from the field was obtained, but some quantitative 

differences in the temperature field and the surface heatflows still remained. 

Goyal and Narasimhan (1981) have recently used a similar model for a constant 

pressure charging of a fault controlled geothermal reserovoir. 

The model to be presented here is fully transient and includes conductive 

heat transfer to the caprock and bedrock. Vertical variations in temperature 

and velocity within the aquifer are ignored. Therefore, our model is most 

applicable to relatively thin aquifer systems and can be used to study the 

evolution of such systems as well as their steady state behavior. 

MATHEMATICAL MODEl 

Figure 2 shows the· fault-charged geothermal system for which a mathe-

matical model has been developed. Initially, temperatures increase linearly 
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with depth with a geothermal gradient, a. At time t = 0, 

hot water starts to flow up the vertical fault and is recharged into a 

relatively thin horizontal aquifer under forced.convection. The behavior of 

the system is then controlled by the following assumed conditions: 

1. At the ground surface, the temperature, Tbl, remains constant. 

2. No heat losses occur as the fluid moves up the fault and enters the aquifer 

at a constant temperature Tf. This assumption is commonly made in the 

analysis of fault-charged systems, and will result in some errors in the 

temperature field close to the fault. 

3. Within the aquifer: 

a)· the mass flow rate 1s constant, 

b) horizontal conduction is neglected 

c) temperatures in the vertical direction across the relatively thin 

aquifer are uniform, and 

d) thermal equilibrium between fluid and solid is instantaneous. 

4. Within the confining beds (caprock and bedrock): 

a) the permeability is so low that movement of heat is controlled only 

by heat conduction. 

b) 

c) 

horizontal conduction is neglected. Numerical studies by Bodvarsson 

and Tsang (1981) have shown that this assumption is quite reasonable. 

there is no resistance to heat transfer at the interfaces with the 

aquifer. 

5. At some depth, B, below the aquifer the temperature in the bedrock, Tb2, is 

constant. 

6. The thermal properties of the formations above and below the aquifer may 

be different, but all thermal parameters for the liquid and rock are 

constant. 
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Based on the above assumptions, the differential equation governing the 

temperature in the aquifer at any time t can readily be derived by performing 

an energy balance on a control volume in the aquifer: 

z = 0: aT1l 
az z=O - H az- z=O 

(1) 

Similar equations for different systems have been derived by Lauwerier (1955), 

Bodvarsson (1972), Bodvarsson and Tsang (1981) and others. In the caprock and 

bedrock, temperatures are controlled by the one-dimensional, heat-conduction 

equation: 

z > 0: (2) 

z < 0: (3) 

The initial conditions are: 

(4a) 

(4b) 

(4c) 

The boundary conditions are: 

t > 0, (Sa) 

(Sb) 

(Sc) 

(Sd) 
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The following dimensionless parameters are introduced: 

tl 
AlX 

= p c qD ww 
(dimensionless distance) , 

T = 
A.

1
t 

1 2 
plclD 

(dimensionless time) , 

p c 
el 

H a a =---
D plcl 

(dimensionless energy potential ) , 

z 
n = D (dimensionless vertical coordinate) , 

y = 
P2C2 

P lcl 
(heat capaciti ratio) , 

A.2 
IC = 

~ 
(thermal conductivity ratio) 

TD 
T - Tbl 

= 
Tf - Tbl 

·(dimensionless temperature) 

T 
a1D 

= g Tf - Tbl 
(dimensionless thermal gradient) , 

a = B 
o (geometrical factor) , 

. a2 
(&) = ,._ 

al 
( geothe.rmal gradient ratio) • 

After introducing equations 6a-6j, equations 1-3 become: 

n = 0: 

n >.o: 

3TD 
2 

- IC --
3n n=O 

(6a) 

(6b) 

(6c) 

(6d) 

(6e) 

(6£) 

(6g) 

(6h) 

(6i) 

(6j) 

(7) 

(8) 
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n < O: 

The initial condition (Equation 4) becomes: 

- T (n - 1) 
g 

The boundary conditions (Equations Sa-Sd) become: 

TD (O,Tl) = 1, Tl) 0, 
a 

Solutions to equations 7-11 can be obtained in the Laplace domain 

(see appendix A) as the following set: 

n = 0: 

n > 0: 

n < 0: 

u = .!. [ 1 - T. ] exp - re p + fp + 
p g ~ 1 tanhfP 

K~ .. JD] T 
~1 + pg 

~- :gJ 
coshfpn - =--~~ tanh{P 

tanh a/ K -

T 
sinhlpn - __g_ (n - 1). 

p 

v 2 = [u- f] cosh /hn 

[ T J e _,J 

+~· Psinh~n 
tanh a 

K 

T 
- J (wn 

p 

(9) 

(lOa) 

(lOb) 

(lOc) 

( lla) 

(llb) 

(llc) 

(lld) 

(12) 

(13) 

1) • 

(14) 
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In equations 12-14, u, v, and w represent~ll:e teJ~Rer_atur_es _in-the--La-pl-ace-domain----- -
---~--~-~ ~-------- -----~-~-

for the aquifer, the caprock above the aquifer, and the bedrock below the 

aquifer, respectively. Although closed form asymptotic solutions to these 

equations may be obtained, the complete solution cannot easily be inverted from 

the Laplace domain. A numerical scheme developed by Stehfest (1970) was therefore 

used to obtain the results to be presented below. 

Validation of present model 

As a check on the validity of our mathematical model, we compared our work 

with that of Lauwerier (1955). Lauwerier considered lateral flow in an aquifer 

bounded by vertically infinite confining layers. At intermediate times, before 

the influence of constant temp~rature boundaries at z = D, and z = -(B+D) are 

felt, our solution for the aquifer (Equation 12) should be identical with that 

of Lauwerier, provided: 

(a) there is no geothermal gradient, i.e. a= 0, and 

(b) the thermal properties in the caprock and the bedrock are the same, 

i.e. Y = K = 1.0. 

The Lauwerier solution is thus a special case of the present solution. Figure 3 

shows a comparison between our solution for temperature distribution in the 

aquifer and the Lauwerier solution for a given set of parameters. Note that 1n 

Figure 3 the parameters T, ~and 6 are as defined by Lauwerier; all other 

parameters are defined in the nomenclature. The match between our solution and 

that of Lauwerier is near-perfect, confirming the validity of the present model. 

Asymptotic solutions 

At early times, the solution for t~e temperature in the aquifer sim-

plifies considerably, so that inversion into real space is possible (see 

Appendix B). The solution in real space is 
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TD = [1 - Tg) U [T 1- e 1 ~ 1 J + Tg 
a 

(15) 

where U denotes the unit step function. Equation (15) shows that when the 

'~ dimensionless time T1, is less than 81 ~1, the initial temperature Tg 

prevails. However, in the thermal region, when T1 is greater than 81 ~1' 

the aquifer temperature equals the temperature of the fault water. No 

temperature changes occur in the caprock and the bedrock at early times. 

At late times the solutions for the temperatures in the Laplace domain 

(equations 12-14) also simplify to the extent that inversion to real space is 

possible. In real space the steady state solutions are (see Appendix B): 

Tl = 0: 

Tl > 0: 

Tl < 0: 

= [1 - T ] 
g 

= [1 - T ] 
g 

exp + T 
g 

(16) 

(17) 

(18) 

Equations (16)-(18) show that the steady-state temperature profiles are inde-

pendent of 81, as well as the heat capacity ratio (y). 

EVOLUTION OF FAULT-CHARGED HYDROTHERMAL SYSTEMS 

The model has been employed to study the evolution of fault-charged hydro-

thermal systems. Figure 4 shows a plot of dimensionless temperature TD versus 

depth at a given location for several different values of dimensionless time t
1

. 

Initially (t1 = 0) the system is in equilibrium with a linear geothermal grad­

ient, and hot water starts to flow into the permeable aquifer. In the early stages 

of development, only the aquifer is being heated. Later on, however, conductive 

heat transfer between the aquifer and the adjacent rocks 1ncreases, causing the 

caprock and bedrock to be heated and temperatures in the aquifer to stabilize. 
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Temperatures in the aquifer and caprock reach steady state at a dimension-

less timeT, between 1 and 10. However, at this time the temperatures in the 

rock formation below the aquifer are not yet near steady-state. This is a 

consequence of the high value of a = 30. Since the constant-temperature 

boundary at the ground surface is much closer to the aquifer than the deep 

boundary, this is the factor that controls the thermal response. Note that 

the steady state temperature in the aquifer at the location in question is 

approximately To = 0.91. 

Further away from the fault, one would anticipate a similar behavior 

with less temperature rise. Figure S·shows the thermal evolution at the 

dimensionless distance from the fault of t1 = 1.0. Note that the steady state 

'• 
dimensionless temperature in the aquifer is only about To = 0.4, or less than 

half that attained for a dimensionless distance of t1 = 0.1. Consequently, 

the temperature gradient in the caprock is also reduced. Obviously closer to 

the fault, where t1 < 0.1, the aquifer will be heated mQre fully to tempera-

tures that are essentially To = 1.0. 

Evolution of thermal field within the aquifer 

Figure 6 shows the evolution of the thermal field within the aquifer for 

61 = .005 and other parameters as specified in the figure. It shows. that 

close to the fault (small t1> the temperature rises almost immediately 

to the temperature of the recharging water. The figure also shows that a 

steady-state thermal field is reached shortly after dimensionless time 

T1, exceeds 1.0. Although the steady-state thermal field is independent 

of el (see equations (16-18)), the transient development of the thermal 

field is greatly affected by 61. This is illustrated in Figure 7 for 
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T = 1.0, where it may be seen that the smaller 61 is, the further away from 

the fault the thermal front has advanced. This is reasonable since e1 

represents the heat capacity of the aquifer normalized to that of the caprock. 

Thus, the higher the value of 61 the greater the heat capacity of the 

aquifer and consequently smaller volume of the aquifer away from the fault 

becomes heated. Figure 7 also shows that for higher values of 61, the 

location of the thermal front (Tn = .50) can be expressed by the simple 

relation, 

T = 1 
(19) 

It is apparant that, for values of 61 below 10, equation 19 no longer holds. 

Low values of 61 imply low aquifer heat capacity, and consequently, 

significant heat conduction losses to the caprock and bedrock will occur. 

We found this to be the case for values of dimensionless times ranging up to 

T1 = 1.0. 

Heat losses from the aquifer 

Heat losses from the aquifer to the caprock and bedrock can be calculated 

at any given time by the Fourier law of heat conduction In terms of dimension-

less parameters the Fourier law of heat conduction can be written as 

(20) 
n=O 

where the first and the second terms on the right-hand side represent the heat 

losses to the caprock and the bedrock, respectively. Thus Qnt represents 

the total heat lost from the aquifer to the confining beds. 
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The heat losses from the aquifer to the caprock and bedrock for a given 

location away from the fault (tl = .10) are shown in Figure 8. At early 

times there are no heat losses to the cap rock or the bedrock because the 

thermal front has not yet arrived. Later, the heat losses increase to a maximum 

at Tl = .10, and then rapidly decrease. At Tl = 1.0, the heat losses to the 

caprock stabilize but those to the bedrock continue to decrease and eventually 

become negative (i.e., heat flows from the bedrock into the aquifer) at very 

large times. This behavior can be readily explained, when Figures 4 and 5 are 

considered. The heat losses from the aquifer to the caprock stabilize when the 

constant temperature boundary at z =Dis felt (approximately at Tl = 1.0), 

and a steady linear gradient is established. However, due to the constant 

temperature boundary at z = -(B +D), a linear steady temperature is only 

achieved at late times as the bedrock is being heated and this results in 

negative heat losses. The total heat losses from the aquifer stabilize at 

an approximate value of =1.0 at late times. 

The total heat losses from the aquifer, Qnt versus dimensionless 

distance t1 at various dimensionless times for two different values of 61 are 

shown in Figures 9-10. The figures show that at early times very large 

heat losses occur close to the fault (sto.all t1). However, the heat flux 

clo,se to the fault decreases logarithmically with time. It can be shown 

mathematically that the heat losses close to the fault will decrease with 

time as specified by the following expression (Carslaw and Jaeger, 1959): 

2 =--{nr, . 
1 

(21) 

Equation 21 is valid only if K = y = 1.0, and at times before the constant-

temperature boundary at z = D is felt. 
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Another interesting characteristic of the curves shown in Figures 9-10 

is that they can be enclosed by a single line, representing the area of heat 

losses at any given dimensionless time T1· The reason for this is that the 

advance of the thermal front along the aquifer is linearly related to dimension­

less time. Also, the steady-state curves in Figures 9-10 are identical; this 

again illustrates that the steady-state temperature distribution is independent 

of 61. The peculiar maxima in the heat loss curves for large values of 61, 

(Figure 9) are artifacts created by the numerical inverter. There is no 

theoretical basis for these maxima. The broken lines show the probable 

locations of the true curves on Figure 10. 

Heat losses at the surface 

The heat losses at the ground surface can also be calculated using the 

Fourier law of heat conduction, and evaluating the derivative at the surface 

(z =D). Figure 11 shows the heat losses at the surface versus distance from 

the fault (~1), for a given set of parameters. It may be seen that the 

thermal front reaches the surface close to the fault at a dimensionless time of 

about T1 = .001. Heat flux at the surface increases with dimensionless time 

until a steady state value is reached at dimensionless time Tl > 1.0. For the 

particular situation shown in Figure 11, the anomalous heat fluxe·s at the 

surface due to the fault-charged aquifer beneath extend to a dimensionless 

distance of approximately ~1 = 10. Further away from the fault, the heat 

losses are controlled by the normal geothermal gradient. 

Steady-state conditions 

Equations 16-18 give the steady-state temperatures in the aquifer, caprock, 

and bedrock. Figure 12 shows the steady-state temperature distribution in the 

aquifer for various values of K/a. Note that the smaller the value of K/a, the 
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further away from the fault the thermal field extends. The parameter K/a is a 

measure of heat losses to the bedrock, with high values indicating either that 

the thermal conductivity of the bedrock is high, or that the constant-temperature 

boundary beneath the aquifer is close (small value of B). 

The steady-state heat losses from the aquifer can easily be derived 

from equations 16-18, and is given by (see Appendix B): 

(22) 

Heat losses from the aquifer as a function of distance from the fault are shown 

in Figure 13 for various values of a. For this calculation, the geothermal 

gradient was specified as zero and K was fixed at 1.0. The figure shows that 

the lower the value of a, the higher the heat losses close to the fault and the 

shorter the extent of the thermal field from the fault. This behavior is 

reasonable as a is inversely related to the steady loss of heat to the bedrock. 

For very large values of a the heat losses to the bedrock are negligible and 

consequently the total heat loss is simply controlled by the heat flux at the 

ground surface. 

Application to Susanville Geothermal Project 

As a first attempt to validate this model for fault-charged hydro­

thermal systems, it was applied to data from the geothermal system at 

Susanville, California. The more than 20 exploration wells in Susanville 

have located a low-temperature (< 80°C), shallow geothermal aquifer of 

limited areal extent [Benson et al., 1981]. Figure 14 shows the 

location of the wells and the temperature contours at an elevation of 

1150 m, which corresponds to a depth of 125 m, where the primary aquifer 

is found. The temperature contours shown in Figure 14 suggest that the 
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reservoir ~s charged by a fault with a NW strike; the fault being located 

slightly west of a line intersecting well S-9 and the Davis well. The 

steep temperature gradients to the west of the proposed fault illustrate 

that it is recharging the aquifer only to the east. Temperature contour 

maps at different depths show fault-related characteristics similar to 

those shown in Figure 14. Furthermore, many of the wells at Susanville 

show a reversal with depth as shown in Figure 1. 

One potential use for the hydrothermal energy at Susanville is space 

heating. However, the limited areal extent of the hydrothermal system 

(Figure 14) indicates that the mass of hot water (the limiting tempera­

ture taken as 60°C) amounts to only 1-3 x 107 m3 (depending upon the 

aquifer thickness selected). Current plans (U.S. Department of Energy, 

1980) call for an extraction rate of approximately 0.035 m3/s (550 gpm) 

for space heating of 14 public buildings. If recharge is neglected, this 

corresponds to a lifetime of 9-27 years. If the project is intended for 

20 years, its success will depend greatly upon the recharge rate. Are­

liable estimate of the recharge into the Susanville hydrothermal system 

is therefore of considerable economic interest. Application of our model 

to the Susanville anomaly can give the first estimate of the recharge rate. 

Table 1 shows the parameters selected from the well data. The maxi­

mum temperature measured in the field is approximately 80°C in well S-9, 

which is located very close to the proposed fault (see Figure 14). The 

temperature of the water recharging the aquifer is therefore fixed at 80°C. 

Picking 60°C as the average aquifer temperature, the fluid parameters can 

be obtained, Pw = 983 kg/m3, cw = 4179 J/kg °C. It is now possible to 

determine that the appropriate value of el = 0.31 (equation (6c)). 
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The objective of this exerc1se is to use the model to match the tem­

perature contour data shown in Figure 14 and the temperature profiles 

from individual wells in an attempt to estimate the hot water recharge. 

After a number of computer runs, the match shown in Figures 15 and 16 was 

obtained. As Figure 15 shows, the calculated temperature contours compare 

very well with the observed ones in the hottest region of the field, 

close to the proposed fault. Further away, however, there are large dif­

ferences between the calculated and the observed temperatures. There are 

several possible reasons for the discrepancy. First, only limited data 

are available away from the fault (only wells S-5 and S-10), so that tem­

perature contours are not accurately known. Second, evidence shows that 

there is a high regional flow of ground-water towards the southeast and 

that mixing of the colder shallow groundwater with the hot fluids is tak­

ing place. Third, the subsurface geology is considerably more complex 

than can be accounted for by the simple model we have used here. In any 

case, the model matches the temperature profiles of wells close to the 

proposed fault very well, as shown in Figure 16. 

The match shown in Figures 15 and 16 was obtained using two different 

sets of parameters. First, if the lower constant temperature boundary is 

placed very deep (H » D), the parameters obtained indicate that the 

hydrothermal system has been under development approximately 2000 years 

and that the fault charges the system at a rate of 9 x 10-6 m3/s·m. 

Second, a very similar match is obtained if the constant temperature boun­

dary is placed at a depth of about 400 meters (a= 2.0); in this case the 

parameters obtained show that steady-state temperature conditions are 

reached (consequently the evolution time cannot be determined except that 
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Table I. Parameters used for the Susanville model. 

Aquifer thickness, b 

Depth to aquifer, D 

Aquifer porosity, ~ 

Thermal conductivity of rock, AI 

Rock heat capacity, ci 

Rock density, PI 

Value 

35 m 

I25 m 

0.2 

1.5 J/m·s··c 

1000 (J/kg • ·c> 

2700 (kg/m3) 

---~--
---
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it exceeds 10,000 years) but the calculated recharge rate is the same as 

in the first case (9 x lo-6 m3fs·m). If one considers the age of the 

subsurface formations at Susanville, the second case seems more likely. 

Also it is not unlikely that a deeper permeable aquifer with circulation 

of colder water is present at the site, and this would act as a constant 

temperature boundary. 

Anyway, the accuracy of the calculated recharge rate is of more con­

cern to the developers of the Susanvillle hydrothermal system than the 

time of evolution. If the heat losses from the aquifer are controlled by 

heat conduction as we have assumed in the present model, the calculated 

recharge rate should be reasonably accurate. However, in the model hori­

zontal conduction is neglected in the model, and this may make the actual 

recharge rate greater than what we have calculated. 

If we assume that the calculated recharge rate is correct and that 

the fault recharges over a distance of 2500 m, the total rate of recharge 

is approximately 0.0225 m3/s. This recharge rate corresponds to approxi­

mately 70% of the proposed extraction rate; consequently a project life­

time of 25-75 years could be expected, or approximately three times the 

longevity if no recharge is considered. It should be emphasized, however, 

that the simplicity of the present model does not warrant definite con­

clusions. The results presented here should be considered as rough first 

estimates. 

Unfortunately, detailed heat flow data over the Susanville anomaly 

are not available at present; such data would have been useful in confirm-

1ng the accuracy of the model. Figure 17 shows the calculated heat flow 

values plotted against distance from the proposed fault. 
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Conclusions 

A two-dimensional model for fault-charged hydrothermal systems has been 

developed and used in theoretical studies. The physical model used considers 

a vertical fault recharging hot water to a horizontal aquifer, thereby 

causing a temperature reversal with depth. The results obtained indicate 

that the evolution of the thermal field is greatly dependent on e1, a 

parameter denoting the ratio of the heat capacity of the aquifer to that of 

the caprock. The lower the value of 81 the greater the heat losses from 

the aquifer to the caprock and bedrock. A steady-state thermal field in the 

caprock is established at dimensionless time of TI = 1-10. The steady-state 

temperature field is greatly dependent on the distance to the constant 

temperature boundary condition at the ground surface (z =D). The constant 

temperature boundary condition below the bedrock (z = -(D + B)) exerts a 

negligible effect, as long as the bedrock is much thicker than the caprock 

(D <<B). Consequently the heat losses from the aquifer are primarily 

governed by the constant temperature condition at the ground surface. 

Application of the model to temperature data from wells at Susanville, 

California is illustrated. The model is used to match temperature profiles 

from individual wells as well as temperature contours at the depth of the 

primary aquifer at Susanville. The results indicate that a fault is recharging 

the system at a rate of 9 x lo-6 m3/s.m. As the recharge rate is quite 

significant, this may increase the potential of the Susanville prospect by a 

factor of three. 
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NOMENCLATURE 

a: geothermal gradient (OC/m) 

B: thickness of bedrock (m) 

D: thickness of caprock (m) 

H: thickness of aquifer (m) 

p: Laplace parameter 

4!: porosity 

q: the recharge rate (m3/s·m) 

Qn: dimensionless heat losses 

t: time (sec) 

T: temperature (OC) 

Tb1: temperature at ground surface (°C) 

Tn: dimensionless temperature, Tn = (T-Tbl)/(Tf-Tbl) 

Tf: temperature of .recharged water (°C) 

Tg: dimensionless geothermal gradient, Tg = alD/(Tf-Tbl) 

x: lateral coordinate {m) 

z: vertical coordinate (m) 

y: dimensionless heat capacity, Y = Pzcz/p l·Cl 

n: dimensionless vertical coordinate, n = z/D 

61: dimensionless heat capacity, 61 = (B/D)(paca/Plcl) 

K: dimensionless thermal conductivity, K = Az/Al 

A: thermal conductivity (J/m-s-•c) 

E;1: dimensionless distance from fault, E;1 = A1x/pwe~D 
pc: volumetric heat capacity (J/m3•c) 

a: dimensionless geometrical factor, a = B/D 

T1: dimensionless time, T1 = A1t/p1c1D2 

w: ratio of geothermal gradients, .w = az/ a1 

Subscripts 

a: aquifer 

1: Rock matrix above aquifer 

2: Rock matrix below aquifer 

w: Liquid water 
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APPENDIX A 

SOLUTION OF GOVERNING EQUATIONS 

In dimensionless form the equations govern1ng the temperature in the 

aquifer, caprock and bedrock are: 

n = O: 
n=O 

n > o: 

n < 0: 

The initial conditions are: 

TD (r 0) = T "'1' g a 

The boundary conditions are: 

aT 
D a 

T ( 0 

T ) 0 

After applying Laplace transformation with respect to Tl, Equations 

(Al)-(A3) become: 

(Al) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

(A8) 

(A9) 

(AlO) 
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n = o: 
av av j au ---l - K a 2 --~at a-~ _pu._u_ -T~O--·~--~~(-A-11-) -on------- n 1 a I g n=o n=o 1 

n > o: 

n < o: 

a2 
v1 

- 2- - pv 1 - T ( n - 1) = 0 
an g 

a2 
v2 

-- - qv - T (wn - 1) = 0 an2 2 g . 

where q is defined as q = (Y/K)p. The boundary conditions become: 

u (0) 
a 

1 =-
p 

(A12) 

(A13) 

(A14) 

(A15) 

(A16) 

(A17) 

Equations (A12) and (A13) are nonhomogeneous second-order ordinary differ-

ential equations. The general form of the equations for a dependent var-

iable y is: 

a2 
~ - py = T (n - 1) 
an 2 g 

(A18) 

To solve equation (A18) one must obtain a solution to the homogeneous 

equation (yc) and a particular solution to the nonhomogeneous equation 

(yp)· The complete solution is then: 

(A19) 
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The solution to the homogeneous equation is simply: 

Y = A cosh IP n + B sinh IP n c 
(A20) 

where A and B are constants. Now we guess a solution to the nonhomogen-

eous equation as: 

y = Cn + D (A21) 
p 

where C and Dare constants• Substituting equation (A21) into equation 

(A18) and equating the coefficients yields: 

T 
C = - _A (A22) 

p 

T 
D = J. (A23) 

p 

The complete solution to equation (A18) can now be written as: 

T 
y = A cosh fP n + B sinh fP n - -K (n - 1) (A24) 

p 

After obtaining a solution for equation (A18), the solutions for 

equations (A12) and (A13) are: 

T 
Tl > 0: v1 = a1cosh IPn + b1sinh /Pn- Pg (n- 1) 

T 
Tl < 0: v2 = a2cosh lq n + b2sinh lq n - f (wn - 1) 

where a1, a2, b1, b2 are constants. Applying boundary condition 

given by equation (A15) yields: 

a "" a = u 1 2 a 

T 
_.....!, 

p 

(A25) 

(A26) 

(A27) 

Similarily, the boundary conditions given by equations (A16) and (A17) 



45 

can be used to determine b1 and b2: 

[u - Tg] 

bl = - a ~ 
tanh ;p (A28) 

[u ·- Tg] 

b2 = a E 
tanh f1i a 

(A29) 

Substituting equations (A27)-(A29) into equations (A25) and (A26) yields: 

Tl > 0: vl = k -:gJ jcosh IP n _ s inh ~ nj- .Tg ( n _ 1) 
tanh p p 

(A30) 

Tl < 0: v = 2 ~a - ;gj jcosh lq n + smh q n _ _K (wn _ l) . , 1"0 l T 
tanh ;qa p · (A31) 

Since the equatio~s for the temperature in the caprock and bedrockhave 

been solved in the Laplace domain, one can proceed to solve equation (All): 

:~ 11· = n=o 

ru- ~] T ~a P g 
tanhFp - p 

av 21 = -+ _rq_· -.:;~~· - ~ 
an n=O tanh~ a 

WT 
_ __£ 

p 

(A32) 

(A33) 

Substitution of equations (A32) and (A33) into equation (All) and noting 

that KW = 1 yields: 

(A34) 
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Rearrangement of. equation (A34) yields: 

au ~ J 
at' a + 6 p + fp + K /q U 

.,. 1 tanh fP tanhfq a: a . 1 

-~~p+ lj? + Kiq]-o 
p . ~ 1 tanh .(If tanh f<i a 

Now let us define u as: 

T 
~=u _ _£ 

a p 

Substitution of equation (A36) into equation (A35) yields: 

au + ~ p + fp + K l7j J U = Q ~ ·~ 1 tanh fP tanh {'q' a 
1 

The solution of equation (A35) is: 

u = cl exp - ~lp + ta~ fP 

(A35) 

(A36) 

(A37) 

(A38) 

where C1 is a constant. Applying equation (A36) in terms of ua yields: 

u = C exp - ~ p + {j) + K rq J E; + T g 
a 1 ~ 1 tanh IP tanh 1<1 a 1 p ·"' (A39) 

The constant C1 can now be determined using the boundary condition given 

by equation (Al4): 

1 c1 = - [1 - T 1 
p g 

(A40) 

Substitution of equation (A40) into equation (A39) yields: 

1 [1 ] - re + IP + K 19 l t' + Tg 
u a = p - T g exp ~ 1 P tanh IP t anh/<i a J "'1 P (A41) 

Equation (A41) represents the temperature in the aquifer in the Laplace 

domain. 
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APPENDIX B: 

Asymptotic Solutions 

At early times, the solution for the temperature in the Laplace 

domain is: 

n = o: 

n > o: 

n < o: 

T 
u .. J 

a p 

T 
v = - J [n - 1] 

1 p 

T 
v = - ....£ (wn - 1) 

2 p 

(Bl) 

(B2) 

(B3) 

Equations (Bl)-(B3) can easily be inverted from the Laplace domain to 

real space to yield: 

n = o: TD = T (B4) 
a g 

n > o: TD =- T (n - 1) (BS) 
1 g 

n < o: TD ... - T (wn - 1) (B6) 
2 g 

Equations (B4)-(B6) represent the initial conditions specified in the 

problem. However, at a slightly later time, the temperature in the aqui-

fer in the Laplace domain is: 

(B7) 

Equation (B7) can be inverted to real space to yield: 

(BS) 
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At late times as p + 0; tanh fP + fP and the equations for the 

temperature in the Laplace domain simplify to: 

n = o: 

1 ~ + ~] 
T 

n > 0: v1 =- [1- T ][1- n] exp- ~1 - ....£ (n - 1) p g p 

1 ~ + ;J exp- e . i] ·~ 
T 

n < 0: v2 =·- [1 - T ] 
_ __[ 

(wn -
p g p 

Equations (B9)-(B11) can be inverted to real space to yield: 

n = 0: 

n > 0: 

n < o: 

TD a = [I - T g I exp - ~ + i] t I + T g 

T0 I = [I - T 
8

][ 1 - n I exp - e + ~J t 1 - T g (n - I) 

T
02 

= [I - T 
8
1 ~ + ~j exp - ~ + d] t 1 - T g (wn - 1) 

1) 

(B9) 

(B10) 

(Bll) 

(B12) 

(B13) 

(B14) 

Equations (B12)-(Bl4) give the steady state temperature distribution in 

the aquifer, caprock and bedrock. 

The steady state total heat losses from the aquifer can be calcu-

lated using the Fourier law of heat conduction. In dimensionless form 

the equation for the dimensionless total heat losses from the aquifer is: 

(B15) 
n=O 

Equations (BI3) and (B14) can easily be differentiated with respect to n 

and evaluated at n = 0. Equation (BIS) thus becomes: 

= -[1-T ] 
g ~ + i] exp - ~ + i] ~ 1 + T (w - 1) . g (Bl6) 
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