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ABSTRACT

We present a new gauge—iﬂvariant mean-plaquette method
for lattice gauge theories. This is used to calculate plaquette
energies and critical couplings for lattice QED&,S’ z(2), SU(2)
and S0(3). The two main featu;es‘of this method is that it is
gauge invariant and it does not predict a first order phase
transition for all theories. 1Im particular, for lattice QCDA,

the method gives.a smooth crass-over region in excellent

agreement with Monte Carlo data.

Based on work for Ph.D. Thesis, U.C. Berkeley. This work
.was supported by the Director, Office of Energy Research,
Office of High Energy and Nuclear Physics, Division of
: Higﬁ Energy Physics of the U.S{.Department of Energy

under Contract DE-AC03-76SF00098.

I. INTRODUCTION

The purpose of this paper is to present a new gauge-invariant
mean-plaquette calculation method for lattice gauge theories. The
starting point of this method is our plaquette formulation of lattice

gauge théoriesl’2

, which is an application of Halpern's field
strength and dual potential formulation in the cont;inuum.3 .

The method is quite straight forward for all lattice gauge
theories, Abelian and non-Abelian. The strong coupling plaquette
energies it gives afe in excellent agreement with Monte Carlo data;
for ail theories we examined, up to the critical point if there is
6ne. For lattice QCDA(SU(Z)), whicﬁ-is known éé have a continuous
crossover instead of a phase transition, our mean-plaquette results
are in remafkable agreement with Monte Carloldata from 8 = 0 to
B = 5; Oﬁr calculation tracks the crossover with high accuracy and
does not predict a phase transition. Abelian theories that we
examined have phase transitions and their critical couplings are
predicted quite accurately by our methodﬂ H;wever,_we have not yet
succeeded in solving our mean-plaquette equaﬁions in the weak coupling
phases of the Abelian theories. These difficulties will be discussed
in more detail.

Our most compiete and impressive results are for lattice QCDAw
We will, however, illustrate our method for lattice QEDA first because
it is easiest to understand for Abelian theofies, and because we want
to motivate some short cuts we will take when doing the calculation

for the non-Abelian theories.



It.is.worth_noting,_that in low order, the method yields
equations, that are ‘simple. enough. to solve on a programmable calculator.
All calculations in ;his paper were done with an HP29C calculator.

We should mention, héweVer, gh;tinumerical results, especially for
the non-Abel;an theories, can be easily impréved by using a computer.
We did not do that here because our purpose is to explain the method
and show hpw it works. Oﬁr low order calculation is quite good
enough for that.

The paper is organized as follows. In Section II we obtain
the mean-plaquette equation for lattice QED&. -In Section III we
show how to find approximate solutions to this equation in the strong
coupling phase. We also discuss oufidifficulties wiéh tﬁe weak
coupling phase. In Section IV we present our results for lattice
QED5 and Z(2) gauge theory in 4 dimensions. Wé obtain the
approximate mean plaquette equation for lattice QCDa (sU(2)) in
Section V and find) approximaté solutions in Section VI. .In Seétidn
VII we présent the results for S0(3) lattice gauge theory and compare

it with QCDA. Conclusions and final remarks are in Section VIII.

- IIL. MEAN-PLAQUETTE FOR LATTICE QED4
In this section we will show, in detail, how to obtain the
mean-plaquette equation for lattice QEDA.
Consider the expectation value of a plaquette PaB(ro)
.
1 FIr @+ @)
< >= gz h ’ ) .
PsTo) >=12 JDUUP (rg)e (I1.1)
Where Puv(r) is the product of the four link variables, Uu’ forming
the plaquetﬁé. Z is the partition function. Using the notation and
results of Reference 1 we change the variable of integration to
plaquettes
a J R 73 B —ZIP (r) +: P (r)]
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where Pu\,"(t)'E expi Guv(r)u .The § function of the lattice Bianchi
identity is periodic and can, therefore, be expanded in a Fourier

seties'giving1
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A?d as discussed in Réfergnce.lg n;(p) is the duai potenti;l, it lies
a}qgg a link in the.dual lattice. p and r are, respectively, the
coordiné;es on the dual'and original lattices, and since they are

in one to ;ne correspondence, a proﬁucﬁ over r also means a product
over P.

Now we make the mean-plaquette approximation. Make the following

substitution for all plaquettes except Pus(ro)
Po@, Pt @ =t @) »<e> (I1.5a)
Y > Tuv Hv .
which means S
[Pw(r)]“ — <p>inl 7 (II.5b)

We.dropped the indices from < P> because all plaquettes have. the

same expectation value. Equation (II.3) becomes

ZE e

~ 8 +
. _ o=l u<v 1+“aa(°o) T[Pas(ro*”iéﬁfl
<P>=12 z <P dPaB(rO)[PaB(rO)] e”

{n, ()}
(11.6)
where Z' means the summation does not include ﬁas(po). Doing the

integral finally gives ey
B ugv!nnv(p)l

T <p> 1(8)
{ny(p)} (8 g(o))
<p>= 1|~ v| (11.7)
Z |n_ (0)
q Ev}'<p>u<v‘“" 1 (B)
By () ERREIN

where In(B) is a modified Bessel function,. and ﬂas(po) is the plaquette

dual to Pa (ro).

8
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Equation (II.7) is the mean plaquette self consistency equation

for the plaquette energy in lattice QEDA. It is obviously invariant

under gauge transformations of the dual link variable nh(b). Moreover,
the mean-plaquette substitution (II.5) is invariant under gauge
transformations of the original variables. So, this mean-plaquette

method preserves the gauge invariance of the theory and itsdual.



III. APPROXIMATE SOLUTION OF THE MEAN-PLAQUETTE EQUATION FOR QEDA

We do not know hp& Ed solve Equation.(II.7) because-there is a
very large ngmber of dual- links beiﬂg su@med.oéef.. ﬁowever, we éan
make apprpximations'that will simplify (II.7) in the strong .coupling
phase. Wg will make some comﬁents concerning the weak coupling phase
at the ena-of this sec£ion. . ‘

. To motivate the strong coupling ansaﬁz»that we will use for thé
dual potential, nu(p), we first.recall}soﬁequ our tgsults ffom.
Reference 1. In that paper, we showed that the stréng coupling
expansion is an expansioﬁ~towards festoring the lattice Bianchi
identity. In other words, in the strong coupling phase, only small
‘fluctuatiohs of.the dual ﬁotential are important. This means that
in this éhaée, the'plaquétges_a:e very weakly correlated, and that
a given plaquette is moré strongly correlated to plaquéttes that
share a cube with it than to others that do not.

For these reasons we use the following ansatz

_nu(o) = AM Ap) : . (II1.1)

for all dual links except the four that make the dual plaquette
ﬂas(po)i A(p) is an integer scglar field. Equation (III.l) says
that all, but four, of the dual links are éure gauge. Looking at
Equation‘(II.3) we see that this ansatz has the effect of ignoring
the lattice Bianchi identity everywhere except for the four cubes
(

that share the plaquette P Y. The ansatz (III.1l) makes all

73] r0

ﬁuv = 0 except ﬂas(po) and those dual plaquettes that share a link

with it. ‘Equation (I1.7) becomes

. T
5 Z |n (p)-5 A(p) |
<p3=7z1 &z o v

. .z <p>™P I (B
{A(p) }{n\)(_o) } (1+ﬁae(p0))
’ (111.2)

where here {nvfz)} is a summation over the values of the four nongauge
dual links that form the plaquette ﬁaB(po). Also, X' includes only
these four duai links. The 5 in the exponent of <P>comes from the
fact that each of the surviving "live'" dual links that form ﬁas(po)
belongs to five other dual plaquettes. The summation over A(p) is
just a sum over all gauge equivalent classes and will only result i;
a multiplicétive infinity that cancels between numerator and denomi-

nator. So we only need to do the calucalation for one gauge class

and we do it for AUA (p) = 0. This finally gives

%
P - LV
T o<p> it
. {n } (1+n)
<p>=—La2:3,8 . (111.3)
5 .z !nll
{n z }<P> = In(s)
1,2,3,4
where we called the four live dual links 0, Ny, N, 1y and
naB(DO) En=n;+ n, - ny -1, ) (II1.4)

Equation (III.3) generates a polynomial in <P > which can be
solved numerically. This polynomial is of infinite order, but we can
truncate it at a- suitably high power because <P > is always less

than 1.



Notice that the leading term given by (III.3), all n, = 0, is just

the leading term in the strong coupling expansion

. ) Il(ﬁ)
P>= — — .

<P > 1,08 (111.5)
This is plotted as curve 1 in Figure 1. This term is known to agree
'witthonte Carlo data at large coupling but starts to deviate appreciably
at B = 0.5.

If we include the first nonleading term, one of the four ng =% 1,
we get the polynomial

L,(8) 8L, (8)

1,(8)
<P>‘““““fp> iy NG 1(@

6 -
NO) <P>'. - 0 (III.6)

This can be easily solved numerically. The solution is plotted as
curve 2 in Figure 1. It is very interesting to note that already, at
ghis very low order, agreement between our calculation and Monte
Carlo has improved dramatically. -Moreover, equation (III.6) has no
roots less than one for-g > 0.93*. We interpret this as an indication
of a phase transitioﬁ at Bc = 0.93. We will have more to say about
this interpretation later.

Moreover, writing (III.6) in the form

5
1, (8) + 4<p>7(1,(8) + I,(8))

<p>-= 5
10(3) + 811(8) <P>

Notice that <P>= 1 is always a solution of (III.3) for any B. For
this reason we do not attach any phyical significance to it. The
same is true for the mean-plaquette equations of all the theoriés

~ we examined, Abelian and non-Abelian.

10 ?
i
it is easy to see that solving it by iteration will immediaJely
yield the first 4 terms in the strong coupling expansion pl@s a
number of higher order terms. Although these higher order are present
in the strong coupling éxpansion, they are not complete. To, generate
a more complete set of strong coupling expansion terms, one #eeds to

keep higher powers of < P>in the numerator and denominator.

So, already at the level of the first.nonleading term, bur method
yields remarkably accurate results for the strong coupling phase. To
estimate the importance of higher order terms we do the folleing.

We find the expression for the next higher order term, for e%ample

the next term that contributes in (III.6) is

1,8 I.(g) I,(8)
+ 1038 t <p>10, §12 + 20 L—g <p>1

I R 1,8

(III 7
Then we use the solution of (III.6) to evaluate (III 7) at the coupling
of interest. For example at B = 0. 9, the value of (II1.7) is

0.4% of the value of <P> as glven by (11I.6), and so we do not

expect it to change the value of <:PZ> by much. Indeed, if Le

include this term in (I11.6) and solve for <P>, we find its value

to be shifted up by 1.2%.

Using this method, we fi;d that the combined vglues of Lhe
terms of order 20-and 21 is 0.003% of <P> at g = 0.9. Thi; is
very small and the contributions of higher order terms are eéen smaller
and can be ignored. When.the solution of the polynomial of order

21 generated by (III.3) is plotted in Figure 1, it is indistinguishable

from curve 2, but stops at Bc = 0.91.
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So the mean-plaquette curve -in Figure 1.stops at BC =0.91

because. the polynomial that we solve has no roots less.than one for

B >;0,91f This_is-interprefed.as being due to thé complete
iﬁvaiidify.of the strong coupling ansatz (III.1) for 8 > 0.91. In
other words, the strong coapling vabuum,';s approximated by the
ansatz (III.1), is no longer the vac;ﬁm of thentheory for B > 0.91.
The theory has now a different vacuum that needs to be approximated
by a differept_énsétz. So, a phase transition occurs at Bc = 0.91.
Notice also, that in terms of monopoles,- (III.1) says that the
strong coupling vacuum is a condensate of these monopoles with
small fluctuations in their density.1

A suitablevweak coupling ansatz for the dual potential, n,, has

to take into account the fact that for B> gc,.all fluctuations

of this potential are important.. This can be done by changing the
summation over .m in (II.7) into an integration by using thé& Poisson
v . .

sum formula

Tt = 3 f+:x £ (x) 2T inx (111.8)
1=-w  mE-w Y
waever, we coﬁld not do the integrals exactly. Work on an approxi-
mation‘scheme is underway.

. Another question that needs to be settled is the order of the
phase transition. At the momenf it is not clear how to determine
that. We feel however, that the weak coupling calculation might
give an inaication of how to answer this questiom.

The results obtained for the strong coupling phase are in

excellent agreement with Monte Carlo. There are two ways to improve

12

this agreement near the critical ﬁoin;. The first is to keep higher
order terms in the polynomialxééﬁérated by (III.3). . The ségond way,
which would require the use of coﬁfuters,is to keép more "live"

duai 1;nks. lIn (III;l) we keét liQe onlf.fhe four.dual linké that

aB

formed the plaquette dual to P
better by'keeﬁing live, in addition to that dual plaquette, all

(ro). We shouid be ab;e to do

other dual plaquettes Fhat share a link with it. This will give 64
dual links to Sum.over. It haslthé effect of taking into accountb
longer correia;ion lengths thch.become important near the critical
coupling. .Another way of saying this is that keeping more live links
takes into accdunt larger .fluctuations in the density of the monopole
con&ensate that forms the strong coupling vacuum. Such fluctuations

are important near the critical coupling.
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IV. OTHER ABELTAN LATTICE GAUGE THEORIES

The mean plaquette method can be applied, in exactly the same
way as for lattice QED4, to other Abelian lattice gauge theofies.
For example, the aﬁalog of (I1.7) for lattice QED5 is deriQed in
exactly the same way as (II1.7) (but here there are ten types of Bianchi
identities) and has the same form. The difference is that the dual
variable in'QED4 was a iink nv, and for 5 dimensions it is a dual
plaquette nuv' Also, ﬂuv(p) in (II1.7) is replaced»by

AL =Xe o ang (o) (1v.1)
uv 2 “aByuv o By

where the indices take the vales 1,2,3,4,5. So, ﬁuv(p) is made from -
the six dual plaquettes-that form a 3 dimensional cube.

The reasoning that led from (II.7) to (III.3) was as follows.
The only dual variables (links in QEDQ) that are kept live, are those
that form the geometrical object (plaqﬁette in QEDA) which is dual
to PaB(rO)' Applying the same reasoning to QED, we find that we keep
live only the six dual plaquettes that form the cube dual to PaB(rO)'
All other dual plaquettes are put equal to pure gauge. And since
each live plaquette is shared by 5 cubes, other than the cube appearing

in the order of the Bessel function, the analog of‘Equation (111.3)

for QEDg is o 5 1§1 |ni|

s <p> I (8)

N (14n)
<p>=- 11.2,3,4,5,6}) : (1v.2)
6 A

® > & lnilx (8

= <p> n
{1,2,3,4,5,6

14

where o, are, the:'six live dual piaquétte variables that form the
cube n B SR

-n. -n

‘n =N W+Tn 4 5

1

en, = n

2 3 6

It is straight forward to convince one's self that in d dimensions

Eﬁﬁation (Iv.2) stillfhéids-but where instead of 6 live dual variables,

there are 2(d-2) of them. And

d-2- 2(d-2)
~mn = X n, - Z n
=1 1 i=d-1 1

In particular, for d = 2 there are no &ual variables and Equation (IV.2)

'yields the exact solution as it should since there are no Bianchi

identities.

For Z(2) lattice gauge theory in four dimensions, the analog of

(I11.3) is
. | g
1 5 -
5 <p> i=1|ni|e3cosn(n—l)
=0 3 o
<p> = - 1,2,3,4 A : (1v.3)
. : ] « _
1 5 2 inyg|
S <p> =1 eBcos“n
n=20 :
C1,2,3,4)
where ’
n-= nl + n2 - n3 - na
-28 ‘
o=y (l-ti— ) : (Iv.4)
2 . =28
1 e

The solutions to (1v.2) and (IV.3) are plotted in Figures 2 and 3

respectively. We have in these theories the same problems in the weak .

coupling phase as we do in QEDA, and the same discussion presented in



15
the previous section holds here too. However, z(2) lattice gauge
theory in four dimensions is self dual, and this enables us to
calculate the weak cohpling plaquette energy by using

<> (8) = cosh 2§ - <P (@) sinh 2§ - (1v.5)

where E is given by (IV.4). S

16
V. MEAN-PLAQUETTE FOR LATTICE qcp,

In this section we will apply to lattice QCDA the same mean-
plaquette method we appiied'to Abelian lattice gauge theories and
.derive the,analogléf Bquation (III.3). Because the Bianchi ideﬁtities
for lattice QCD4 are very complicated, we‘will avoid deriving the
analog of Equation (f1.7) by using the Abelian results to motivate
some short cuts thag we will take.

The plaquette energy for lattice QCDA is giyen by

<TrP . (r,)> TrP (r,) E_ugv Tr{va(r)+Puv(r)}
ag 1”7 -1 aB "1’ 4
-——fi————— =12 DUu — e

=<p> v.1)
where Puv(r) is the product of link vatiableé around a plaquette. As
wé‘showed fqr QCD3 in Refgrepce 2, we can chénge the variable of
integration in (V.1) from links to plaquettes.

N - TR ) & B 4] @)
<> =12z fDPW[ gs(rc— D] —5—e _ .

(v.2)

Where,. following the not;tioﬁ of Reference 2, é(Pc— 1) is the lattice
Bianchi identity associated with a given cube, and g is a product over
all cubes in the lattice. Here, there are four types of lattice
Bianchi identitigs becauseAtherg are four types of threg dimensional
cubes. vThese Bianchi identities are derived in exactly the same way
asvin the appepdix of Refetencgwl. ‘

As we saw for QCD3,2 the non-Abelian lattice Bianchi identities

are nonlocal and somewhat messy to write down and work with. However,
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here we do not need to write them out in detail. From the results of
the mean-plaquette calculatlon for Abelian theories, we expect only
‘the four Bianchi 1dent1ties assoc1ated with the 4 cubes that share

(rl), to be important in a mean-plaquette calculation for QCD,.

This should be true at least in the strong coupling region.
Dropping all the Bianchi identities, eicept the four mentioned
above, Equation (V.2) becomes
. 8 +
4 TrP, (r) 27 ETr{P (r)+Puv(r)}

-1
<p>az IDPW[ ms(p - 1)] 2

c=1 (v.3)

where ¢ = 1 to 4 labels the four cubes that share Pas(ri). We
emphasize, that Equation (V.3) is expected to give accurate results
for the whole strong coupling region after we make the mean-plaquette

approximation not before. G(Pc- 1)can be character expanded2

-1 =2
§(R-1) =% (23, +1) xy (P) (v.4)
[ c
1 3
JC = 0, E, 1,2...

where XJ (P) is the trace of P in the (2J + 1) dimensional
representatlon. Moreover, because we have only 4 non-Abelian lattice
Bianchi identities that share one plaquette, we can easily "Abelianize"
them.2 Then, each Pc is just the product of the six gauge invariant

plaquettes that form the cube. To fix ideas, let P ) be P

12(71)>
then the Abelianized Bianchi identity for the (xyz) cube sitting on

aB(rl

2
top of Plz(rl) is given by

18

s{P, (r )P )P

127 P3¢y + P}

+ cont
13 12(r1 * DRy + DEpy(ry) - 1

It
™8

23 +D % (B, (r )Py (x )P r+ DIP],(r, + 3)p23( L e
J

1

070
(v.5)

where.i,.f, and 3 are unit vectors in the 1, 2 and 3 directions. Using

the Gross and Witten trick;4 the right hand side of Equation (V.5)-

becomes’
s fol §2J +1) XJ(Plz(rl))( (p23(r1))x (p13 1+2))XJ(1:12(:1+3))
c 27 .
+, e +
X5 (By3(xy D) X (?13(r)
® TrP, ,(r,) TrP, . () TrP. . (r +§)
_ -4 1271 2371 1371
: ?o 1 (2ch1). Uyy 2 U, ( 2 )UZJ‘( —3 )
=0,5 . , c c c
c 2 . B - .
. +‘ N
. TrP (r +§) . TrP23(r1+l) TrPlB( 1)
*Ups ; 23 T3 Wy %)
c . 2 c c
(v.6)
where we‘used
_ TrP .
xg(B) = Up; 550 w.7

and Un(x) is the Chebyshev polynomial of the second kind and order n.
The other three Bianchi identities are treated similarly. Substituting

(v. 4, 5, 6) in (V.3), and making the mean-plaquette approximation

1
3 Trpw(r) — <p> _ (v.8)

for all plaquettes except Py (r ) gives



19 ) 20

4 . ’ 4 .
<p>-= 27t z [, (2J +1)"‘U5 <pr >1|dp, (£ )[,I.U TrPlz(rl) , . VI. APPROXIMATE SOLUTIONS FOR LATTICE QCD
S o i=1Y1 27, 12017 M4=1727, (————) 4
{J - i i 2 :
1,2,3,4
U Tep(x)) B orerp. (r) + 97 (£ )] (V.9) :
< 1217 e4 12717 - 121 R - As for ‘Abel:ian theories; the . leading term, all Ji = 0, of

2 . .
Equation (V.9) is just the leading term of the strong coupling

. . v .
For each configuration of the Ji s, the integral over P12(rl) is easy expansion

to do. Equation (V.9) is the approximate mean-plaquette equation

for lattice QCDA.. It is the analog of Equation (III.3) for lattice (VI.1)

QED4. It can be solved numerically by truncating the summation at ) : "

high enough values of the Ji'sJ This will be done in the next section. This is plotted as curve 1 in Figure 4. As is well known, this is

accurate only in the very large coupling limit.

N

If we include the first nonleading term, one of the Ji =

. L *
we obtain the polynomial

I,(g) 31,(8) I,(p)
2 4P+ + 16 12_(3)‘ <P=0 (v1.2)
1

- . _ ' <P> -
: L, () . L, ()

Note the similarity of (YI;Z) to (III.6). Thi; similarity disappears
Qhen higﬁer ofder terms are included. Equation (VI.2) is plotted ;s
curve 2 in Figure 4. That figure shows that agreement with Monte Carlo
improved mérkedly upoﬂ the inclusion of the fipét nonleading term..
Moreover, already at this very low order, curve 2 exhibits a (mild)
érossover region at about the same.coupling where the Monte Carle data

exhibits such a. behaviour.

Actually, for g less than about 1, the cont;ibutiqn from the (1,0,0,0)
configutation of Ji is larger than that from (%,0,0,0), but both are
small enquéh to be unimp?rtant; Nonleadiﬁéterms however, become
important for B 2 1, and in this region the (_—%-,0,0',0) term is the

larger. That is why it appears in (VI.2) as the first nonleading term.
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The importance of higher order terms is estimated in the same

wey>as for the Ahelian theories. Usmg that method, we fmd that at 8= 2,

the values of J that glve the dominant contrlbutlons are (0 0 ) 0),-

0 O 0) (;, ;, 0, 0 2D, (;,0 0,0), and ( 0 0). Contrlbutions
from other conf1gurat1ons of J may be 1gnored up toB 2. Notice

that we are not attempting to find all the roots of (V. 9) but are
verlfying that (V 9) has a solution that agrees very well with Monte
Carlo data.

Solving Equation (V.9) keeping only the above mentioned terms
yields curve 3 in Figure 4. ThlS curve is in excellent agreement
with the Monte Carlo data points. It tracks the crossover with very
high aecuracy; and even up to g =5, the dlscrepancy between the
mean plaquette and the Monte Carlo curves is only 5%.

One of the most gratlfying results of this calculetion 1s‘the
obv1ous absence of a phase transtion.

The fact that we kept only a few terms from the expansions of
the iattice Bianchi identities, and the excellent agreement between
theﬂmean—plaquette curve and Mbnte Carlo results, tell us that the
correlation length ie quite short even up to 8 => ‘

- Moreover, the excellent agreement.with Monte Carlo inoicates
that we were justified in dropping the terms that ne dropped. To
improve agreement in the.é:>2.8 region, one must keep some mote.
higher order terme. This is straight forward but reqnires the use

of a computer. .

% Pepr))>

-1 ’ 4
<p> =1z z [II(ZJ s~
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VII. MEAN-PLAQUETTE FOR SO(3) LATTICE GAUGE THEORY

The plaquette energy for SO0(3) lattice gauge theory is

' B
(@ (x)) 52 %, (P (1))

-1 _ 1Vag 1 3u<vi1V py
3 =1Z JDPuv[ gé(Pc 1)} —3 e (VII.1)
where Xl(P) is the trace of P in the three dimensional representation.

Going through the same steps as.for QCDA, with the mean-plaquette

substitution being

3 %@ @)—<e> (VIL.2)
giees
i{uz(<P>),uo(<P>)}] fap gry)

Uy,2,3,4)

Tr (r TrP (r, (r I(r ))
x[ ZJ(PB )] (é)slas}

(VIL.3)

Ji = 0,1,2,3,...
where U, {U,(<P>), U,(<P>) means that we must express U in
23, "2 0 234
terms of u, and*U0 (which can always be done because Jg takes only

integer values), then put U2( <P>) = 3 <p> (by Equations (V.7), €VII.2)).
Unlike Qcep,, the Iy here take only integer values because the S0(3)

action is even under P _(r) —~- P: (r) while ¥ (P (r)) is odd
' By w 2n#1, MY

(o)
and thus the integrals vanish.

Again, by explicit calculation we find that for g < 2.5, the dominant
Ji configurations and (0,0,0,0),(1,0,0,0),(1,1,0,0),(3,0,0,0),(1,1,1,0),
(1,3,0,0). Taking only these into account, Equation (VII.3) is solved
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numerically yielding Figure 5. That figure shows that the mean-
p;aquette calculation predicts a first order phase transition at
Bc EAZ 5, in excellentkagreement w1th Monte Carlo simulations.

Agreement between mean-plaquette and Monte Carlo is not so.good
in the weak coupling phase. The reason is that the terms that were
dropped for B < 2 5, because they were small become 1mportant for
B > 2.5 and must therefore be kept. Therefore, to 1mprove,agreenent
between the mean—plaquette calculatlon and Monte Carlo, for SO0(3)
and'QCDA at weah coupling, more terms shonld‘be kept when solving‘
(V.9) or (VII.3). These terms are of interest in the strong coupling
region as well where, although their effect is small, itris not zero.
They may chahge the results by about'3%.. We may also need to keep a
few more Bianchi identities, accoreing to the same prescription as for
lattice QEDA, jn order to get better agreement in‘the weak coupling
region especially for S0(3).

The fact that keeping only a few terms from the expansion of.the
lattice Bianchi identit& did give the plaquette energy for the weak
eoupling>phase of SO0(3) (althought not accurately, in the order we
worked with), means that the fluctuations of the dual potentiai J )
are still not very 1arge. In other words the plaquettes are still
quite disordered and the correlatlon 1ength rather short..

An interesting question is then why does QCD4 have a crossover
while SO(3) has a phase transition? The only differenee between
Equations (V.9) and(VIi.3), other than the value of the integrals, is
that in (V.9) all values?of J1 contrlbute whereas in (VII 3) only

integer values do. 'As mentioned before, the absence of half odd

_actlon to d13t1ngu1sh between P (r) and - P
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inteéerrvalues of J ‘for 86(3) is due to the inability of this
B(r). On the other
hand, the QCD action can distinguish these two cases and therefore
has an extra Z(2) degree of freedom that S0(3) lacks. The effect
of this Z(2) degree of freedom in Qcp, is ‘to allow half odd integer

values of Ji to contribute in (V.9). Moreover, as pointed out

‘in Section VI, the nonzero values of JF, that give the dominant con-

i

tributions to <P> for B & 2 (i.e. near the crossover) are half . -
odd integers. This.indicates that the 2(2) degree of freedom is
playing‘an important role at’the crossover. This seems to agree with
the idea that the Z(2) degree of freedom smoothes out the phase

transition and makes it a continuous crossover.
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VIII. CONCLUSIONS

Finally Qe present our physical interpretation of this method
and the reasons it seems to work betﬁer than previous mean-field
schemes.

It 45 clear that topological excitations play:an important
role in the phﬁse structure of lattice gauge theo;ies. Usual
mean—fielq methods are 1nsensiti§e to fluctuations of these excitations
and it is, perhaps, for this reason that, in a low number of dimensions,

these methods give the wrong critical behaviour.

The mean-plaquette method presented here, automatically takes

into account the existence of the topological excitations and the

fluctuations in their density. This is easiest to illustrate with

the Abelian theories. As mentioned in Section (III), the strong coupling
ansatz (III.l)Vééys that the topological excitatibns‘form a condensate
with small fluctuations in its deﬁéity. As we keep contributions of
larger values of n, in (111.3), we:ére in fact calculating, éertur—
bativeiz, the effeéi of larger fluctuations in the density of this
condensate - i.e. longer cBérelation lengths. And since the difference
in the density of the‘topolbgical‘excitations, between the strong and
weak coupling pﬁases, is ﬁonperturﬁative, the strong coupling ansatz
(III.1) cannot give the weak couplingfresuits. Thelsame interpretation
applies to non-Abelian theories, only ﬁere the fluctuations in the

density of the topological excitations seem to be always perturbative.

This is the extent of our understanding of why the method works.

It is not complete, and more work is needed to understand it more fully.
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FIGURE CAPTIONS

QED4 plaquette energy. The dots are Monte Carlo data
po;nts§’6. Curve 1 is the leading term of the strong .
coupliﬁg expansion.v Curve 2 is the solution to Equation
(III.6) and is iﬂdistinguishable from thée solution to the
polynomial of order 21 generated by (III.S). Bc(mean-plaquette)
= 0.91, Bc(Monte Carlo) = 1. ' : -

QED5 plaquette energy. The points are Monte Carlo dafa
points,5 and the‘solid cﬁrve is the mean-plaquette result.
B;(;ean plaquette) = 0.79 and Bc(Monte.Carlo) = 0.74
Plaﬁuette.energy of Z(2) in 4 dimensions. The dote are Monte
Carlo data,7 and the solid curve is the mean plaquette
result. Bc(mean plaquette) z'0,4247, Bc(exéct) = 9.4407.
QCDA plaquette energy. The dots are Monte Carlo data.§

Curve 1 is the leading term of the strong coﬁpling expansion

I(VI,l). ‘Curve 2 is the solution of (VI.2) and curve 3

is explained.beloﬁ Equation (VI.2).

Figure 5. Plaquette ‘energy for SO(3). The dots are Monte Carlo

data.6 The solid lines are the mean plaquette results.

Bc(mean—plaquette) = 2.5, Bc(Monte Caflo) = 2.48.
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