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1. INTRODUCTION 

Stochastic cooling is the damping of betatron oscillations ana 
momentum spread of a particle beam by a feedback system. In its 
simplest form, a pickup electrode detects the transverse positions 
or momenta of particles in a storage ring, and the signal produced 
is amplified and applied downstream to a kicker. The time delay of 
the cable and electronics is designed to match the transit time of 
particles along the arc of the storage ring between the pickup and 
kicker so that an individual particle receives the amplified version 
of the signal it produced at the pick-up. If there were only a 
single particle in the ring, it is obvious that betatron oscilla
tions and momentum offset could be damped. However, in addition to 
its own signal, a particle receives signals from other beam 
particles. In the limit of an infinite number of particles, no 
damping could be achieved; we have Liouvilie's theorem with constant 
density of the phase space fluid. For a finite, albeit large number 
of particles, there remains a residue of the single particle damping 
which is of practical use in accumulating low phase space density 
beams of particles such as antiprotons. It was the realization of 
this fact that led to the invention of stochastic cooling by S. van 
der Meer in 1968. 3 8) 

Since its conception, stochastic cooling has been the subject 
of much theoretical and experimental work. The reader is directed 
to the references for a thorough review of its development. The 
earliest experiments were performed at the ISR in 1974, with the 
subsequent ICE studies firmly establishing the stochastic cooling 
technique. This work directly led to the design and construction 
of the Antiproton Accumulator at CERN and the beginnings of p p 
colliding beam physics at the SPS. Experiments in stochastic cool
ing have been performed at Fermilab in collaboration with LBL, and 
a design is currently under development for a p accumulator for 
the Tevatron. 

2. A QUALITATIVE DESCRIPTION OF STOCHASTIC COOLING 
To clarify the basic issues of stochastic cooling, we will 

first give a qualitative description of the betatron oscillation 
cooling system sketched in Fig. 1. A pickup detects the transverse 
position y-j of each of N particles in a storage ring. 
Ideally, the pickup response will be proportional to the transverse 
position of the particles. The signal is amplified and applied to 
a kicker structure one quarter of a betatron wavelength downstream. 
If the electronics has a bandwidth W, the effective duration of a 
single particle pulse at the kicker is approximately 1/2W. (This 
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Fig. 1. Schematic of Stochastic Cooling System 

vv .A „ : Ampl i f ie rs 
PU: Pick-Up Electrode Array 

K: Kicker Electrode Array 
F: F i l t e r ( s ) ( f o r momentum cool ing) 

i ( i (e 9 ,e , ) : Betatron phase advance f r on 9. to 
IT f o r transverse cco l i (-

2n+l rig) 
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is just a manifestation of the Fourier uncertainty principle between time t and its conjugate variable frequency f: at»f >constant.) Thus, when the ith particle passes through the kicker, it receives an impulse from n « N/2WT particles, where T is its revolution period. This impulse changes the betatron angle y{ which, because of the quarter betatron wavelength separation of the pickup and kicker, effectively corrects the betatron oscillation at the pickup by 
n 

gy, - g £ y< U) 
1 j-i J j 

j*i 

where g models the gain of an idealized pickup-amplifier-kicker 
system. The change in y2 is then 

w? = - 2gy2

i - 2g £ y, y, + g 2 £ *\ + g 2 £ £ y < y k (2) 
1 ' j.1 ' J j.i J k j J 

j * i Wj 

Amplifier noise w i l l introduce an additional positive term in (2) 
proportional to the noise power of the system; we ignore this effect 
for the moment. We can now attempt to average this expression over 
the particles in the r ing. For the f i r s t pass through the system, 
the betatron positions are inoependent and uncorrected, that is 
<y,-yj> = 0 for i ^ j . Then equation (2) reduces to 

<ay2> = - 2g <y2> + g2n.<y2> (3) 
9 The largest reduction in <y > occurs when g . 1/n = 2WT/N. 

For this value of g, the rms betatron amplitude damps at a rate 
1 W 1 ,.. 
T = "2N"5nT ( 4 ) 

where a factor of 2 is lost in averaging over the phase of the betatron oscillation and another factor of 2 in changing variables from mean squared values <y2> to rms amplitude <y2>l/2. Equation (4) is the basic cooling relation between rate, bandwidth, and number of particles. Physically, n represents the number of particles which interact during a correction step, and 1/n is the optimal single particle damping per step. Greater bandwidth reduces the size of this "sample" and allows faster damping. In the limit of an infinite number of particles (where the beam becomes a continuous fluid), there can be no damping. Typical systems will have bandwidths of hundreds of megahertz to several gigahertz, revolution frequencies of the order of a megahertz, particle number between 10 6 to loll, a m i cooling times in seconds to hours. A similar analysis can be applied to momentum cooling with the y parameter 
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now interpreted as the energy offset from some desired central 
energy. 

The above results were derived under the condition that 
<y-jyi> * 0 and are strictly applicable only on the first pass 
of tne beam through the feedback system. After the first correc
tion, we have 

*i yj * (*1 " 9*i " 9 J y V (yJ ' *yi ' 9 Si *k) (5) 

and even if y-jyj is initially zero, there now appear nega
tive cross terms; e.g., - gy? - gyf. In other words, the 
feedback system has produced correlations «non9 the beam particle 
positions. It is apparent from equation (2) that such negative 
correlations can act to degrade the cooling. In fact, if there is 
no revolution frequency spread of the particles, these correlations 
will grow and ultimately stop the cooling process. Recall that only 
a fraction n/N of the particles in the ring effectively interact 
during a single correction. If there is a spread in revolution 
frequency, the members of this sample of n particles will change, 
and the growth and long term effects of the correlations will be 
limited. As we shall see, if there is sufficient frequency spread, 
the correlation becomes negligible and the optimal rate of equation 
(4) can be obtained. 

The development of correlation is a coherent effect which is 
closely related to beam instabilities. In fact, if the sign of the 
gain of the feedback system were reversed, instabilities could be 
induced. In this context the notion of Landau damping describes how 
frequency spread "breaks up" incipient instabilities, and we will 
find in the detailed mathematical analysis of cooling dispersion 
integrals of the same form as encountered in instability theory. 
An estimate of the rate of growth of these correlations can be 
obtained by summing enuation (1) over the n particles which 
interact. We have 

- E 
n *-* 

n_ 
_ yi = .7 » y - ngy (6) 

" i=l 1 

If there were no frequency spread, the average transverse position 
of the beam would damp at a rate 

ft) = - ng (7) 
'coherent 

which is n times faster than the single particle cooling. The 
signal would damp away and the cooling would stop. If the sign of 
the gain were reversed, there would be a coherent instability at 
this rate. 



The theoretical analysis of stochastic cooling can be ap
proached from a variety of perspectives with a. fundamental dichotomy 
between frequency domain and time domain analyses. At the heart of 
the matter is the existence of two distinct time scales. One cor
responds to the single particle cooling rate of equation (4), with 
characteristic times of the order of seconds or longer. The other 
scale is that of the coherent effects of Eq. (7) — instabilities, 
signal suppression, and Landau damping — with times typically of 
the order of milliseconds. The coherent phenomena are rapid 
compared to the gross cooling rate and are best treated in the fre
quency domain with the revolution frequencies and betatron ampli
tudes treated as constant. The frequency domain notions of power 
spectrum, bandwidth, filters, and phase provide the basis for 
analysis. The particle dynamics, on the other hand, which describe 
the slow damping of phase space are clearest in the time aomain with 
the Fokker-Planck equation as the main tool. This "two-timing" 
approach is basic to understanding stochastic cooling, and is impli
cit in most of the literature on the subject. It also provides 
constraints on computer simulations, where care must be taken with 
the use of relatively few pseudo particles in a simulation that 
these two time scales do not become comparable. Otherwise, extra
polation to actual cooling scenarios, which do have two disparate 
time scales, becomes high'y questionable. 

3. SCHOTTKY SIGNALS AND SAMPLING 
As a particle is cooled, it experiences a succession of kicks 

from other beam particles. Since the relative positions of the 
particles change slowly (the frequency spread is often a fraction 
of 1% of the revolution frequency), there is a coherence among the 
signals produced by a given particle over many passes through the 
pick-up as experienced by another particle'over many passes through 
the kicker. This correlation over time is translated in the fre
quency domain into a non-constant power spectrum of the particle 
signals; that is, the beam Schottky spectrum. 

Consider a single particle circulating in a ring at angular 
revolution frequency u = 2»/T. The current at a pick-up can be 
described as a series of delta functions of the form 

I(t) - e £ «(t-t0-nT) (8) 

where t 0 is some arbitrary time at which the particle is in the 
pick-up. Since this current is periodic in t, it may be expanded 
in a simple Fourier series 

-., +» imu(t-t ) Kt) . f i e ° (9) 
" n=-°° 
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and we have the basic result that a circulating particle produces a 
signal at each harmonic of its revolution frequency. This is the 
single particle longitudinal Schottky signal. Now consider a col
lection of N particles in the ring. From (9) we immediately have 
that the total current is 

+<» N eu, inu>,{t-t .) 
n — °°j«l 
N eu. / » \ 

"iS-^\ k

l + 5 z c o s B - j { t - t «3 , j ( l o ) 

The signal at the pickup is composed of bands in frequency corre
sponding to each harmonic n, with a width nam, where &u is the 
full width of the revolution frequency distribution f( u) (normal
ized to unity). For sufficiently large n, these Schottky bands 
will touch; there is band overlap. A current sensitive pickup will 
produce a signal with this frequency structure over its bandwidth. 

Suppose that the current is analyzed at frequency nu 0, where u 0 is inside the particle frequency distribution, and 
assume there is no band overlap. Then the squared current in 
Schottky band n is simply 

,2 ( t ) . 4 ( E ̂  c° s -jft-v) fe 17 cos "Vt-V) <n> 
If there is no correlation in the t0-j from a feedback system, 
the cross terms average to zero and 

and 
I™* m l^j ^jjj (l3) 

where 0> is the average revolution frequency. If this current were 
analyzed by a spectrum analyzer with resolution an, about fre
quency n = nun, then only particles such that |n(u -<•>-) | < 
afi/2 would enter into the sum and we have 

Cs(fl)- ^ 1mjf (§) f (") 
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Thus, for uncorrected beam parameters, the power (proportional to (irms(n))2) i n the n t n Schottky band mirrors the frequency distribution, with its width and height proportional to n and 1/n, respectively. However, if there is correlation among the t 0j, the cross terms can act to deform the Schottky spectrum. As we have seen in the previous section, a stochastic cooling feedback system can create correlations, and, in fact, rapid "Schottky signal suppression" is commonly observed when cooling systems are turned on. Other particle interactions through space charge and wall impedances can also induce correlations which modify the Schottky signals; this will be discussed quantitatively in Section 4. This effect is analogous to the polarization and Debye shielding of plasma physics, where a "dielectric function" is used to describe the details. We will derive a similar "suppression factor." 
For the remainder of this section, we will use our knowledge of the Schottky spectrum to analyze longitudinal stochastic cooling without shielding in order to introduce some important physical issues. Betatron cooling can be analyzed similarly, with averaging over rapid betatron oscillations and slowly varying amplitudes. In practice, cooling systens often operate in this regime where the details of feedback shielding are relatively unimportant. 
The signal produced at the pick-up by Iy can be amplified and applied to a kicker for longitudinal (momentum) cooling. The correction signal at the kicker at time t will have the spectral form of the current Ij, modified by the gain of the system. The kicker signal k(t) will generally be of the form 

, inu,(t-t -j 
kW^ILGS x)e J ° J (15) 

o j n 
where G(S2,x-j) represents the electronic transfer character of 
the system at"electronic frequency (that is, the Fourier conjugate 
of time) Si and particle energy x_j. with this functional form 
we are allowing both a direct energy variation of the gain (e.g., 
by transverse position variations due to momentum dispersion) and 
electronic variation (e.g., through a filter structure). A similar 
expression can be derived for a transverse dipole signal, with mul
tiplication by the betatron position yielding sideband structure at 
± Quj. In general, G will roll-off for high frequencies and 
the sum in (12) will converge absolutely. 

Let us now focus attention on a single particle, say the 
i t n . It does not experience the signal at the kicker continu
ously, but rather samples it once every revolution. If the particle 
is at the kicker at time T, plus multiples of the revolution 
period, the correction signal it receives is actually 

k^t) . ^ s t t - y m V M t ) (16) 
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That is, it samples the kicker signal only when it is in the kicker 
(assumed very short). Again, wc may expand the series of delta 
functions in a Fourier series and obtain 

k^t) -LE£G(n«.j.Xj) 
j n m J J 

Ifnuj-fftt^t i ( n o > j t 0 j - n | " i

T

1 ) 
(17) 

Note that k, is the sum of k's translated in frequency by a l l 
multiples of u\. Expression (17) is a special case of the 
"sampling theorem" of signal processing theory. 

The energy x-j of particle i wi l l be changed according to 

d x i (18) 

Since cooling is a slow process relative to the revolution fre
quency, the effect of the rapidly oscillating part of k, is 
negligible unless there is a rapidly growing instability. To sim
plify matters further, let us assume that there is no band overlap, 
so the only slowly varying terms occur w«en n • m in the sum. 
(This assumption will be dropped in Section 5.) With this approxi
mation, we have 

dx. in(u-u.)t in((o4t„. 
0 n 

-<Vi! 

dt y y 
(19) 

First consider the self- interaction term; i . e . , when i = j . we 
have 

dt 

+ " inu, ( t . - T ) 

self n—» 1 ' 
(20) 

The phase factor represents the particle transit time between the 
pick-up and kicker. The gain function G contains within it a 
phase factor corresponding to the signal transit time through the 
amplifier chain and the cable. This phase factor is of the form 
exp(-inu>i( T )), where x . »ta0, e- is the azimuthal distance 
between pickup and kicker, and u 0 is the frequency of some par
ticle centered in the distribution, with energy x 0. For this 
particle the phase factors are made to cancel. If the residual 
energy variation of the gain is of the form G(nu,x) = -g(x-x 0), the self-term moves all particles toward the central energy x 0. More complicated gain variations are found in stack cooling systems 
and will be discussed later. The cancellation of the transit time 
and electronic delay time factor is only approximate for all but 
particles with frequency •», and care must be taken to avoid 
residual phases exceeding 9 0 , which would heat the beam. In the 
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literature this effect is described as mixing between pick-up and kicker. 
2 The rms effect of other beam particles requires averaging of x^. As a first approximation, let us average over times short compared to the cooling time, so that the parameters describing k may be considered constant. Then the average change of x2 per unit time due to other beam particles in time 25 is simply 

£-(/",<*>«•) JS-1 (21) 

If we make the further approximation that the t 0j are statisti
cally independent, we have 

2 2 
A>G , sin Jl(<ii,.-u_.)S 

^ ? P ( ' W i 2 .̂.J.fe ( a > (22) 

For short times S, all particles contribute equally to increasing x?. However, for times long compared to a revolution frequency but still short compared to a cooling time, particles within */SJt of ui in frequency dominate. Thus, we have for small perturbations, that a particle reacts principally to a signal in a small neighborhood of harmonics of its revolution frequency. This enhancement of beam noise is a first example of correlation effects in beam cooling. 
Equations (20) and (22) can be combined to yield an average correction per unit time of x< of 

AX? i x W t ,-T) 

2 
, sin £(u.-u.)S 

+ (ZSIEEIGC*-,,*,)! 7 1 h (23) 
o -i J J lor,., . ^cl' 
l 3 (*<»i-»j>S)Z 

Equation (23) is similar to Eq. (3), but contains some correlation effects due to the long time coherence of the sampled Schottky signal. A few simplifying approximations will make the similarities between these two equations more apparent. Let G be constant over a finite bandwidth (2»)W in angular frequency. There will be approximately n = Integer part(4*w/up) terms in the sums in (22). Let mG= -g(x-x0) and let the mixing between pick-up and kicker be negligible, with the sum over j approximated by an integral over the frequency distribution f(») (normalized to unity) and assuming that near neighbors in frequency dominate, we have 
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*(x.-x„)2 { 2 H f sin 2 (ifc-u'JS 1 _ 
-i^-.U * 4 E J - fo.-) t t , • » .(x rx 0)2 

(24) 
For times S short compared to the damping time (so that the revo
lution frequencies remain approximately co/istant) but long compared 
to the '•evolution period, the sin^x/'nx^ function approximates 
a delt-. function, and we nave 

W/-H ! ( s ) ! ' , 1 -< > M l '"* 
The factor N/m is just the sample slse n of Eq. (3). For har
monics £ where the Schottky bands touch, f(o) 1/m Z l/£ "'l/--, 
anc' (3) and (25) agree, when g of (25) is replaced by p/T and 
1/T is factored out to obtain the same units. On the other hand, 
if the Schottky bands are narrow, the effect of the Schottky signal 
is enhanced ever the result in (3), and the cooling is degraded. 
The rate 1/r depends on f(o>). Since f(u) will be changing as 
the longitudinal cooling progresses, an equation for the time de
velopment of f{u) is necessary for a full description. As we shall 
see in the next section this time evolution is described by a 
Fokker-Plauck equation. '. r betatron cooling without simultaneous 
longitudinal cooling, f(u) is constant, and moment equations 
similar in form to (24) and (25) are often useful. 

The analysis so far has singled out one particle (the "cooled" 
particle), and we have studied in detail the effect of the unper
turbed signals of the other particles of the beam, including their 
long time coherence. In addition, these particles are kicked by the 
signal from the cooled particle, and thus become carriers for 
information about it; that is, thzre is feedback through the beam. 
The beam becomes polarized and shields the cooled particle from its 
self interaction. Of course, this assymmetry between cooled parti
cle and other beam particles is not physical, but is an artifact of 
the description. In the next section an approach is developed which 
includes both Schottky signal noise enhancement and feedback. 

4. KINETIC EQUATIONS FOR LONGITUDINAL COOLING 
In this section we will derive a Fokker-Planck equation for longitudinal stochastic cooling which includes both the time coherence of Schottky signals and the shielding induced by the feedback system. Both of these effects are manifestations of correlations. In the usual derivation of the Vlasov equation which describes instabilities in particle accelerators correlation effects are assumed negligible. In addition, there i r no dissipative self-interaction; the equations of motion are Hamilxonian. In stowastic cooling systems, it i; such a self-interaction term which increases 
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the phase space density. In what follows, equations are derived for 
the one particle and two-particle (correlation) density functions. 
The one particle function is just the usual distribution of the 
vlasov equation. Tne two-particle distribution will describe the 
effects of correlation. The argument follows closely that used in 
a plasma physics context to derive the Vlasov equation from "first 
principles", but allows the system to be non-Hamiltonian. 
A. Kinetic Equations for a Non-Liouvillian System 

The stage for our analysis is a 2N-dif»ensicnal ensemble space 
whose elements are vectors (qi,Uj,...,qn,Pn). Each vector repre
sents one whole system of N particles with positions q - and 
momenta p ^ Consider the ensemble distribution D(q,,p,,...,q ,p ) 
describing a collection of these systems of N particles, normal-
iroa so that 

/ ' 
d o , . . ^ D(q1,...,pn) - 1 (26) 

Conservation of the number of ensemMe systems is expressed by 

J£ + V • (u D) = 0 (27) 

where u - ( q j ,P i , . . . , q n ,P n ) . I f the system dynamics are described 
by Hamiltonian equations, then (27) reduces to the condition of 
incompressible f lu id flow24), 

that i s , Liouvil le's Theorem. The Vlasov equation may be derived 
by integrating (28) over 2(N-1) variables with D assumed sym
metric in the particle variables. 

A Hamiltonian description is not applicable to lon^.tudinal 
cooling. Instead, the dynamics are of the form 

P,- - Z G t q ^ q j . P j ) ^ - Q l p ^ (29) 

equation (27) may still be integrated over 2(N-1) or 2(N-2) 
variables to yield equations for one and two particle distribution 
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functions, but, as we shall see, Liouville's theorem for the one 
particle distribution wi l l be lost. 

Define the one particle distribution by 

f ^ . P j . t ) - Jdq 2...dp n Dfy.pj VP, ,^ ) ( 3 0 ) 

and similarly 

f 2 {q 1 > P 1 .q 2 .P2, t ) - I dq 3 . . .dp n D(q 1 ,p 1 , . . . ,q n ,P n , t ) (31) 

From Eq. (27) we have 

I T = " J ^ Z - ^ n ( ^ «XD) • £- (P lD)) (32) 

With dynamics of the form (29), this reduces under the usual (par
t i c l e index) symmetry assumption for D to 

1T+ *1 T^ + ( N - 2 ) Sp7J d q2 d t ,2 GjQj.q2.P2) W l ' V ^ ' * ' + 

+ air [G<(>i«<'i'',i> W p i ' t , J - ° <33> 

The bracketed term is the addition to the usual kinetic equation 
without self-interaction and expresses the violation of Liouvil le's 
Theorem. It is of the form of the coherent part of a Fokker-Planck 
equation and induces compression of phase space. The integral in 
(33) describes interaction with other beam particles and includes 
the "usual" Vlarov average f ie ld effects and also correlation ef
fects that tend to increase the phase space volume and suppress 
cooling through beam feedback. Both terror together may be inter
preted as the divergence of a particle f lux. The corresponding 
equation for f2 is 

12 
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TT + \ Sf + *Z Wz * ( N - 2 ) i ^ / a , ' 3 * 3 G ( q l . q 3' p 3> f 3 

+ ( N " 2 ) i%J d q 3 d p 3 G( q2' q3' p3> f 3 

+ 3p7 G ( V q 2» p 2> f 2 + % G ( q 2» q l ' p l > f 2 

{ap7 G < V q l V 2 * ip j 6hz.lz.PzK2] ' 0 (34) 

where f3 is the three particle distribution function. 
As is the case with the usual kinetic equation of plasma phys

ics (BBGKY theory), 2 4) an infinite hierarchy of relations among 
the f n is developing, and some approximation is needed to ter
minate the sequence. We write 

f 2 = fi^i'Pi.^ fj^z.Pz.t) + 9(q 1.P 1,P 2.P 2.t) (35) 

f 3 = f l ( q l , p l , t ) fi( (l2 , p2 , t' ^ ^ S ' ^ ' 1 ' 
+ fl^l'Pl' 1) 9(q2.P2.()3.P3.t) + 1^(0.3.P3.*) 9(q 1,P 1.q 2.P2. t' 
+ f 1(P 2.P 2,t) 9(q 3.P 3.q 1.P 1.t) + h(q1.'..p3,t) (36) 

and now assume that correlation effects are small but not negligi
ble; in particular h * 0. With this assumption (33) and (34) 
yield 2> 3 (with the distinction N, N-l, N-2 dropped) 

IT* ql "iqf + Nlpf/ d"2 d P2 G<ql'q2.p
2) hbz^'Q ' 

~ N 9p~ J d q 2 d p 2 G( ql» q2« p2^ 9(Qi»Pi.<l2»P2.t) 

' [a%- [G«li.ql«pl> fl««»l-l>l-*»]J < 3 7> 
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and 

H - + q'l ^ + % iq f + N i ^ / d q 3 d p3 «V<3»»3> fl(f l 3.P 3.*) 

+ N 1 ^ J d q 3 d p3 G<Jl2»q3«p3) f l t a 3 ' p 3 ' t ) = 

3 f l f 
- N TpY J d q 3 a p 3 G ^ l ' q 3 ' p 3 ) 9(q2.P2,q3.P3,t) 

af, r 
" N Tp7J d q 3 d p 3 G(l2»"3' p3 ) 9(q3,P3,q1,P1,t) 

^® 
° \ 

3Pa G(q 1,q 2,p 2) f j (q 1 ,P 1 , t ) f j (q 2 ,P 2 , t ) 

~ I p ~ G < q 2 * q l , , > l ' f l < q l ' p l , t ) f j ^ . P g . t ) 

- T p 7 G ( q l > q 2 , P 2 ) 9 (q i - " .P 2 . t ) + a p 7 G ( q 2 ' q l ' p l ' 9(q1. — .P 2 . t) |(D 

" a p ~ G ( q l , q l , p l ) 9 ( t l i . - " . P z . t ) + ~ G(q 2 ,q 2 ,P 2 ) g ( q j , . . . , p 2 , t ) © 

(38) 
The terms labeled (3) are an addition from the violation of 

Liouvi l le 's Thaorem and are of the same order as terms (2 ) . At th is 
level of approximation, terms (2) are normally dropped as second 
order relat ive to (1 ) ' * ) (they are of the same order as h) , and 
we likewise drop (3) from the analysis. The integrals in this 
equation are multiplied by the particle number N and in general 
cannot be considered negligible. With these approximations (38) is 
formally identical to the ucual kinetic equations for two point 
correlations. The cooling of phase space appears only in the last 
term of the one-particle distribution Eq. (37) . Equation (38), 
except for the expl ici t form of interaction, is identical with that 
of the Lenard-Balescu analysis of plasma physics^!). 
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B. Momentum Cooling 
we take as our variables the azimuthal angle e, and x -

(E - E Q ) , where we assume small energy changes relative to EQ. 
For simplicity, consider the situation of nonoverlapping Schottky 
bands. Then the p equation is of the form 

inf^-ft.) 
*i -EEG n(x,J e 1 J (39) 

j n J 

(see Eq. (19), Section 3) where Gn = G(nuj,xn-) is the system 
transfer function ana GQ{X) » 0. We also assume that f j is 
independent of e and g is a function of 6i-*2 o"ly> that 
is 

g (o 1 , » 2 , x 1 , x 2 , t ) = 2 -g J l (x 1 > x 2 , t ) e (40) 

With these simplifying assumptions, (37) reduces to 

^(^- -^(EV'O' iO' -* ) ) 

- N a T / d x , r G n < x ' » 9_ n (x,x ' , t ) (41) 

and (35) reduces to 

— + i itaij-ug) g £ ( x 1 , x 2 , t ) = 

- 1x7 [w w*> v*^] - % [yv fi<vi> w * ] 
af, f 9f, C 

- N Tx7 J d x 3 G * . ( x 3> <U< X2» X3> - N 85^ J d x 3 G_S.<X3> 9 *< x l ' x 3> 
(42) 

The first term on the RHS of Eq. (41) describes the cooling of 
phase space by self interaction. The second term describes Schottky 
signal and feedback effects. In Eq. (42), the first two terms on 
the right hand side describe the direct effects of beam particles 
perturbing each other; the last two terms describe how existing 
coherence limits the correlation growth. The (u]-ci>2) terms 
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on the LHS effect mixing through frequency spread and enhance the 
interaction of particles neighboring in frequency. 

Equation (42) may be solved exactly under the assumption that 
the relaxation time of the correlation g is fast on the scale of 
variation of f . In terms of our previous analysis, the time scale 
of coherent effects is rapid compared to the cooling time. We now 
Laplace transform with respect to time (s being the transform 
variable), treating f as constant and examine solutions in the dc 
l im i t ; i .e . , taking s « 0 poles of the Laplace transform of the 
"constant" f . On inverting the transform, we have 

M x l ' x 2 > - s + u i y . g ) | - T x 7 G £ ( x 2 > f< x2> " 1 ^ G J ^ f < x l > 

- N - 5 x 7 / d x 3 < W 9-*< x 2-V " N l ^ / < l x 3 G - * ( x 3 ) W V J 

( « ) 

in the l imi t s » 0+. Define 

i% 6*\t\l*2] 

, , , + N f H

 a x 2 * l» l < 
c * U I ( x l ) = 1 + f i r J dX2 , .H( l - 2 ) 

n>0+ 

; K = u(x) 

(44) 

V l * - NJ d x

2

 G_j,<x2> 9 a (x,x 2 ) + f ( X l ) G_Jl(x1) (45) 

Then after multiplying (43) by G^ijifxj) and integrating we have 

• * | * l ( x i ) H H M ( x i ) " ^ K l ^ i * f ( x i > 

N 3 f 1 f „„ H*UI(x2> , , x , 
" W « 7 J 2 n * i(»,-«,) h * |£ | l V 

(46) 

An iterative solution for H with the second term on the RHS as
sumed small yields 
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H * | £ l ( X l ) 

S * U | f < X l > 
£ ± U I 

N ! l l _ l _ f d x 2 l t J*£ ( x ' ) | 2 f ( "2 ) 

"1 i r* x i , * |* | Jo Ln ^ T V J «*|t|(* ur2' 
(47) 

as the second approximation. 
In the l imit n * 0+, the Cauchy integral yields * times 

the integrand plus a principal value integral; i . e . , 

+ (principal value integral) 

(48) 

For this i terat ive solution there is approximate cancellation of the 
principal value integral between * |A|, when the a sum of (41) is 
performed. For the exact solution (which requires complex plane 
gymnastics of Wiener-Hopf), 4 6) the cancellation is complete. The 
exact result is 

N J d x 2 G±|A| ( x2> 9? |£ | ( x l » x 2 ' 

G±|™|{Xl) M * l ) 

N 

w J 
n>0 + 

dx" 
du 

(x") 3*UI x 

tr\l\^' 

af, 
SX1" f l'X' ' D ± iluj-u') (49) 

If this relation is inserted into (41), after cancellations between 
* t , we have 

ar ^ - - £ j ix [ e > ) J 

j U i»iI G i< x ) | 2 f i 
3X "piT | iu | |e_ £(») 8 

(x) 
(50) 
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This result is of the form of a nonlinear Fokker-Planck 
equation. (See Appendix A.) The first term on the right hand side 
is the coherent cooling of a particle's energy error; the e ( fac
tor describes the feedback of the coherent signal through the beam. 
The second term contains the diffusion effects of the beam signal, 
again including feedback. Note that only the value of f/|£j (the 
Schottky noise density for harmonic i) at energy x enters 
throughout. This is the full statement of Eq. {11) that particles 
sample the noise at harmonics of their revolution frequencies. The 
form of interaction (39) is directly applicable to the Palmer3*) 
method of momentum cooling, where the weighting function G n(x) derives from a transverse position sensitive pickup and the elec
tronic gain is essentially constant over a Schottky band. For the 
filter method, in which energy information is obtained through vari
ation of the electronic gain with frequency, the t, factors are 
modified, with the corresponding G n(x) outside the integration in (41). If amplifier noise is included there will be an additional 
term on the right hand side: 

• ±\tg^i^!!i L a I I eul r\njuj j^ 
„ „x ' \27 / ', , , ,2 3X 

(51) 

where P is the noise voltage power density. The amplifier noise 
acts like additional beam particles, but aoes not enter into the e 
feedback factors. The condition en * 0 corresponds to the on
set of coherent motion and is the analog of the dispersion relations 
for space charge and wall impedance instabilities. In this kinetic 
equation approach, these additional forces can be Included in Eqs. 
(41) and (42) and will lead to modification of the E ^ factors and 
cooling rates. 
C. Schottky Signal Suppression 

The £ t n Schottky signal at frequency £u(x) is propor
tional to 

f (x) + R e f dx- gj(x.x ' ) (52) 

resolution 

where the integral is over the resolution of the analyzing device. 
Since the correlation function is highly peaked near x = x ' , this 
integral is well approximated by 

'/"'"-•-'-far1) Re ax- 9 . ( x , x ' ) * [ - ^ - 1 f(x) (53) 
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(see Eq. (49)). The resulting Schottky signal is modified to 

•±H (54) 

The factor Ujil describes Schottky signal suppression and is 
a direct consequence of Eq. (42). This equation remains valid for 
space charge and wall effects (since it is independent of the cool
ing self-interaction terra) with the appropriate impedance substi
tuted for G. The solution of (39), or equivalently (44) will 
determine associated e„ which describe correlations due to the 
impedance. 

5. FEEDBACK WITH SCHOTTKY BAND OVERLAP 
From the analysis of the previous section, we have seen that 

the longitudinal cooling process is described by the Fokker-Planck 
equation (50). The single derivative term describes the self-
interaction of particles which increases the phase space density. 
The second derivative term describes the effect of other beam par
ticles and produces diffusion or heating. Also, note that it is the 
Schottky signal at harmonics of the "cooled" particle revolution 
frequency that enters into the equation. The e-factors describe 
feedback through the beam and affect both the self-correction term 
and the Schottky noise term. 

The form of the e-factor is closely related to the dispersion 
integrals of coherent instabilities. The condition ej,= 0 is just 
the usual dispersion relation for longitudinal instability from a 
Vlasov equation analysis. In fact, the signal suppression was first 
derived by Sacherer") from a Vlasov equation with the Schottky 
random fluctuation as the initial value. In the model of Section 4 
no Schottky band overlap was assumed. In addition, the discrete 
nature of the correction was lost in dropping rapidly oscillating 
terms. Here we will derive an expression for the signal suppression 
E including these effects. The approach will be through a Vlasov 
equation. 

Consider a longitudinal feeoback system consisting of a pick
up at Sp and a kicker downstream at 6|<. Let both the pick
up and kicker be short (i.e., approximated by 4-functions). Let 
f(a,x,t) be the distribution function for longitudinal coherent 
motion. This distribution satisfies the linearized Vlasov equation 

where F is the longitudinal kick ov the feedback system and f 0 is the unperturbed energy distribution. The kick F is typically 
of the form 

F(e,t) - - 2n«(e-&k)N I dx'u'Gtx'.t-t') f(x',e ,t) (56) 
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Note the s-function character of the kick and that only values of 
f at the pick-up location enter into the signal. G models the 
electrical character of the amplifier. A Fourier transform with 
respect to o and a Laplace transform with respect to t yields 

llfc. 
i f i f„ - Uuf„ + • {«fJN • 

JdxVG(x 1 , 8 ) ( £ e ~ l m S p f m ( x ' ) j e p f m ( x ' ) / + I t (x ,n) = 0 (57) 

where I£.(x,n) represents some in i t i a l perturbation. For cooling 
i t is the random fluctuation of a single particle. We immediately 
have 

h - „ - f e c T & ( " V J d x ' M ' G t x M a E e p f . ( x ' ) - I , 

(58) 

Multiplying by e" 1 ̂ °iu G(x, fl), summing over a, and integrat
ing over x yields 

H(»p,S2) = I(» p £ (in-iiu) ax (uf ) dx H(»p,S2) (59) 

with 
H(», 

f _ -1m© 
t,a) - ax'a'G(x',s3£e p fm(x') •J m 

and finally 

H(e .12) = I(9p_,n) 
/ _ f N G ( x , n ) A ( u f ) iA(0 k-O\ 

(60) 

(61) 

The denominator is the generalization of the e factor, and we 
write 

U(e k-* p) e(n) = l +EjdxNG(x. n)A( u f)£ T_t_i (62) 
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The correspondence to our previous analysis is cm(»o) * 
e(mu>0). Now note that there are poles in this integral when 
mu>0 » SM. I f there is Schottky band overlap, this condition is 
satisfied for some J. 4 m. The sum over SL may be carried out by 
standard techniques*') and yields 

U ( V V 2 T expi(o k ^ p )g 
\ in - ia. • " u j _ e x p 2 T 1 ^ ( 5 3 > 

The final form of the signal suppression factor is 4 4»*) 

/
, exp i (e.,-0 - , 

dx NG(x,n) 2i L - E i r - ^ r (»f„) 
u 1 - exp 2wi S. '* o 

- 1 • J d x NG(x,fl) i [l • ictn „ fi] (exp i ( » k ^ p ) °) ± (.y 

(64) 

The Fokker-Planck equation (50) is modified by replacing the ej/u) 
factors by e(£u). In addition, if there is band overlap, addi
tional diffusion (second derivative) terms appear corresponding to 
values of x' satisfying £u>(x') = mu(x) for some I and tn. 
Physically, if there is band overlap, particles at different revo
lution frequencies produce signals that have the same frequency and 
these particles can interfere with each other's cooling. 

The analysis of betatron cooling proceeds from a similar analy
sis with the complication of averaging over rapid betatron oscilla
tions and slowly varying amplitudes. However, the basic notions of 
correlation, Schoctky noise, and feedback remain (with associated 
E-factors). The practical details will be discussed in subsequent 
sections. 

6. BASIC SYSTEMS 
A. Introduction 

Pick-up electrodes (PU's), signal combiners, amplifiers, trans
mission lines, frequency filters, power splitters and kicker elec
trodes (K's) are the basic hardware components of a cooling system. 
We postpone discussion of most component properties to later sec
tions and concentrate on the derivation of expressions for the gain 
functions G£(u), GjiiQ(iii) for longitudinal and transverse cool
ing systems, respectively, in terms of component transfer functions. 
For simplicity we will mostly concentrate on simple cooling systems 
acting on a fixed number of particles deferring discussion of the 
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more complex stochastic accumulation process, and most of the com
plications arising from coupling between different phase planes to 
later sections. Me seek expressions of the form: 

G " FPU * FA * FK e f o 2 

where FPU»FA»FK a r e transfer functions of PU, Amplifier 
(including f i l t e r s and transmission lines) and K. 

B. PU-Description. 

we want to know the signal voltage spectrum generated by a s in
gle particle circulating in a ring. We wi l l show later that the most 
general spectrum consists of frequencies f = ( q + r v Q + r , Q , ) f r f 

H» rv» r2 * 
where c l» r v» r 7 a r e integers, - » < q,r , r , < + c ° , and Q X,Q Z are 
the horizontal and vert ical betatron tunes, respectively. For the 
cooling process only f Q - , f ± , n a n d f a 0 ±1 a r e u s e f u 1 ' a n a 

we restr ic t our discussion to these. PU response is most conven
iently defined as an impedance. For a short PU there exists a well 
defined equilibrium position x 0 , z 0 (usually z 0 = 0) at the 
PU location and for a particle with betatron amplitudes xg.Zo, 
revolution frequency f 0 and arrival time tpu (modulo T, 
T * l / f 0 ) t the signal voltage is (to f i r s t order in x g , z B ) : 

u s < ' > - u s . l < t > + u s . x < t > + u s . z l t ) ( 6 5 a ) 

with 
*~ i q » { t - t p | . ) 

U s > B ( t ) = e f Q ^ Z p u ( x 0 , q u ) e ™ (65b) 

X 8 ^ V 8 7 , . „ * n , - 1 q B t P U J ^ Q x ) B t 

"s.xW • e fo f 2: S Ti W V ^ V e 

q * < l x (65c) 

z * t Z ^ a -Iqnitp.. i(q±Q 7)ut 

-oo z (65d) 

I t is possible to build PU structures delivering signals (65b)-
(65d) simultaneously but often specialization to only one of them 
is a it.ore advantageous choice. In practice quite long PU's or 
arrays of many (hundreds) of PU's are used. S t i l l , the Sony PU 
can be reduced to the form given above and for arrays of msny PU's 
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the same holds. For ideal signal combiners we may w r i t e : 

"total - £ » „ * * (66a) 
n«i 

If all U„ are equal; U n = D 

"total " 'N U (66b) 

The signal voltage as used in Eqs. (65) i s the voltage o f an ou t 
going wave in a properly terminated wave guiding s t ruc tu re , t y p i 
c a l l y a 50S2 coaxial l i n e feeding the preampl i f ier . As defined above 
the PU impedance re lates pa r t i c l e current and signal vo l tage. 
Sometimes a power r e l a t i on i s desired in the form P(B) = 
( e f 0 ) 2 Zpta). Zp(fi) i s eas i ly obtained as ZJ, 
jZpu(n)| ' / Z c , where Z c stands fo r the charac te r i s t i c 
impedance of the coaxial l i ne (= amp input impedance). 

C. Ampl i f ie rs , F i l t e r s , Transmission Lines 

The ampl i f ier chain is unambiguously characterized by i t s 
complex gain QhiQ) (amplitude and phase) as a funct ion o f 
frequency, we include the t ransfer functions o f f i l t e r s and cables 
(with one exception) i n to the net e lectronic ga in , inc luding e f fec ts 
o f impedance changes e tc . I f several K's are used the gain is 
defined from preamp input to a terminal plane a t the entrance o f the 
s p l i t t i n g network. I t can be ve r i f i ed by the reader tha t the case 
of several power ampl i f ie rs d r i v ing d i f f e ren t k ickers can also be 
reduced to t h i s descr ip t ion . Clearly the ins ta l l ed to ta l amp l i f i e r 
gain i s d i f f e ren t i n general from the net e lect ronic gain used here. 
The only fac tor in the to ta l e lectronic t ransfer funct ion which we 
do not absorb in the net overa l l gain is the one associated w i th 
delays: 

(- ?•) T(n) » exp ^ - i i L^ (67) 

where L represents the t o ta l e l ec t r i ca l length of the system. The 
t o t a l e lect ron ic t ransfer funct ion then i s : 

g A (n ) exp f - i £ L J , i . e . (68a) 

U K , i n ' n » - 9A<n> e * . (-1 f l.) ^ o u t W (63b) 

For the previously introduced single pa r t i c l e s ignals : 
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U M ( t ' " e f o L W x o , q u ' 9 A ^ " ' e x p "• ypwt—iQwtPU—1q« £ ) (69a) 

and 

U K , i ( t ) * e f o £ £ £ V V ^ " ' 8 f l(tQ*QJ-) 

e x p ( - i q u t p u ) exp i ((q±Q)ut-(q±Q)L> t - j (69b) 

wi th A « x g , z g ; = J . , _L , respect ive ly . 

D. Kicker Transfer Function 

We def ine t h i s in terms of the voltage gain aU(J2) or t rans
verse kick A x ' ( f i ) experienced by a pa r t i c l e in a single pass 
through the s t ruc ture ar iven by U|< = U o V 0 1 . 

AU(SJ) = J e v ES(S2) as = UQ J -Sp— e v ds = U 0 K,(n) 

and ° ° (W 
' i AD , /• i n -

» M _ _ i i S . , _ L | e v (E ± v B ) ds p vp J l x,z z , x ' 
0 

U /• i f l §• E ± vB U 
" - T - e - H - " ' - f ^ (2) (70b) 

B*E J

Q

 U o B E ' 

where B2E i s in [eV ] , a Cartesian coordinate system { x , z , s } 
i s used, E,if are the f i e l ds generated by UV and the p a r t i c l e 
t ra jec to ry i s assumed para l le l to the kicker ax is . As in the case 
of PU's, refinements w i l l be treated la ter , and s imi la r remarks as in 
the PU case apply to long structures ano/or arrays o f k ickers . In 
pa r t i cu la r fo r N ident ica l k ickers : 

Ktotai = i ; W K - ( 7 i a ) 

n=l 

For ideal power s p l i t t e r s Up = const. = U 0 / /N and: 

K t o t a l " •"« K < 7 " » 
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We wi l l see later that for any structure K|,Kj_ are not independent 
but at present we wi l l take them as separate quantities. Other ways 
to describe kicker efficiency are possible and in use. He may, 
e . g . , relate the voltage gain to the driving current of the kicker, 
this leads to a kicker impedance Z«, all - Z« IK with Z = 
K Z c , where Zc is the characteristic impedance of the l ine 
feeding the kicker. Furthermore a kicker shunt impeadance Z$h, 
may be used relating all and power, (al l ) 2 = Z j n P, with 
Z S h = |K|2Z C-

E. Overall Gain 

The single particle gain is now obtained. In the longitudinal 
case: 

- 2 v- , , , , , „ , , '""('-tpif k) ^ t - V * = ef„ £ Z p u ( x 0 , q u ) gA(qo.) K,(p u) 
q.P ( 7 Z , 

obtained from the ciscreta (delta function l i ke ) action of the 
kicker. In the long time average: 

p = - q, yielding: 

? i q » { t K - t p l l ) -iqu 7 
x = e f 0 ' : ^ Z p u ( x 0 , q u ) K B ( x 0 , q B ) gA(qu) e e 

q (73) 
or with T = t|< - tpu, T 0 = Lfc 

2 iq«(T-T ) 
x = e f Q 2 2 P U ( x o ' q o ) K | ( x o , q " ' 9 A ^ U ) e 'H^QM 

q q 
(74) 

In view of applying this expression in the evaluation of signal 
suppression factors we might carefully rewrite Gq(u) as G(u,fl) 
in the sense of the theoretical section of this paper: 

Gq(u) = G(»,n) = e f / z p u(x 0( u),n) K,(x0(u),n) g f l(nj e y° °' 

(75a) 
or 

V " > = e f

0

2 Z P u ( x o ( " ) ) ' *") K l ( x o ( u K **°) 9 f l ( q u . ) e 1 q e - i q u T o 

(75b) 
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where e is the azimuthal separation (in radians) between PU and 
K - i 

The dimension of S is V s _ 1 , i f we express particle ener
gies in eV. 

For the transverse case we evaluate the rate of change of a 
single part icle's emittance ei , defined by x . U l B x ) 1 ' 2 

cos(v/)» where s x is the transverse betatron function, iji the 
betatron phase and x is the particle transverse position. 

For a single kick to f i r s t order in ax': 

LC± = - 2 E i

1 / 2 B K

1 / 2 sin (IAX" (76) 

1/2 1/2 
Taking x„u = cf • Bpj, cos # and going through the same steps 

as for the longitudinal case: 

, 1 / 2 . - 2 <«K»PU>' e f < e, = e 1 - '1 2 — ~fe £ Q <?i> Z Pu(v ( < f i ( »<") 9 A ( ( ^ Q ) " ) 

K i ( x o , ( q ± Q ) " ) ' e x p i q i o ( T - T o > e x p ( : f i ( ! L , T o ) ( 7 7 ) 

( ^ B D ! l ) 1 / 2 e f 2 

G((<J*Q)«) = (* i ) - ^ f - 2 p u (x 0,(q*Q)«) g f l((q*Q)») 

K l ( x o * ( q ± q ) ' " ) e x p "̂̂ "V e x p ( T 1 ( ! u T o^ ( 7 8 ' 

The required betatron phase advance from PU to K, î pf- follows 
direct ly from this: 

set i = arg(Z-g-K), and i|ip K = Q U T 0 . 

Then RejG((q±Q>) = ± s in («+* p K ) (79) 

n = 0,2,4 for t = 0 

2,4, for t = TT 

I t is not possible to compensate a substantially "wrong" phase 
advance 4>pK by adjusting the electrical phase of the system. 
I t is l e f t as an exercise to the reader to show that the proper 

The opti mum • solutions are: 

*PK 
2n+l 

- — ' . n 

*PK 
2n-l n 
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phase advance is a multiple of » i f the transverse kicker is 
replaced by a longitudinal (uniform) kicker placed at a point in the 
lat t ice with o p * 0. Also note, by inspecting (77) and (78), 
that i f y rf((2n*l)/2j», the phase of the gain at the * Q side
bands is different. This is clearly visible experimentally in beam 
transfer function measurements. 

Rewriting (78) again to emphasize the distinction between u 
ano Q, with ft* * (<j±Q)u, and assuming ij/pg to be an odd 
multiple of * /2 : 

(8 B ) 1 / 2 ef 2 

G(*.nj ±n £-^(v-).^) 
6 E 

/ \ iaJ- - O 
3 APJ h\*oMfi*)» '" °' (80) 

we proceed to apply these expressions to some simple design 
considerations, further simplifying the expressions in the process. 

F. Transverse Cooling, Simplified Design Procedures 

We consider a system with PU and K in "op » 0 straight 
sections," where a p is the horizontal dispersion function, to 
reduce maximally the energy dependence of the cooling process. 
(This is not always experimentally desirable but simplifies the 
example calculation.) Before entering into calculations we shall 
br ief ly and without proof establish the connection between the 
moment equation, which we w i l l use here, and the more general frame
work involving the Fokker-Planck equation-* previously derived for 
longitudinal cooling. The results follow after transforming from 
(q,p) space to the action-..ngle variables I,ip and integrating 
over i|i. The relevant distribution is denoted by F(cu,I), where 
/^F(u,I)dI = f (u ) , / f((ii)du - 1. I t can then be shown that for a 
linear gain, as introduced above, and non-overlapping Schottky bands 
the following equation holds: 

*--*fcte»,'-i*iJR3Sf*£/"—^*[ 

• i E M «, > M&SletiL j jEjbJl]) ( 8 1 ) 

| q ± Q l " I'O*OMI 2 ^ J ) 
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The interesting difference between (81) and the corresponding equa
tion for momentum cooling is that a particle with «,I' experiences 
heating from all other particles with the same *• and any I: 
therefore the appearance of <I> in (81). Simplifying (81) we can 
write: 

aF( m , I ) 
3t 

. - -fr |g,IF(M,I) + D(») <I u> I 3 F < 3 Y I ? I (82) 

From this the following equation for <!„,> is derived: 

! l ^ - g < I ( o > + D ( u ) < I u > (83) 

Obviously this equation holds also i f we replace <I> by any quan
t i t y proportional to < I> , such as ex ( r m s or f u l l beam) or 
<A Z>. I f , in contrast to the assumptions leading to Eqs. (80) 
and (81) , the rate of change of EX for a single particle is not 
linear in e i , a more general gain function, G(u,e ) with dimen
sions [ms~*j must be introduced. A moment equation is then no 
longer very useful and a correspondingly modified form of Eq. (81) 
must remain the basis for calculation. For the present purposes 
however we assume ex a i^X-

The cooling rate equation in the absence of noise is then: 

.<A > . de. d u l i ,u 
<AZ> a t « i .« d t 

y> I G (q*q)M 

" qTQ I C - q * ) ( u 

T »Nf(u) |Gf (q±0>) | 2 

(84) 

I t can be shown that this can be rewritten as: 

for the case where G can be pulled out of the dispersion integral 
used in the evaluation of eq±q(u). With substantial pick-up -
kicker delay this is not truly the case but for reasonable phase 
shifts across the distribution the error remains small. 

We evaluate the cooling rate at the center frequency u of •«. 
symmetric distribution where only the pole term enters into the 
evaluation of e. The expression for eqtg(u) is obtained from 
that for the longitudinal case ;•>' substituting |q±Q| for | q | , 
and f ( x ) for sf/sx respectively. 
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We then obtain: 

c v s((q*Q)<a) , „ . , 
u 5 |i*̂ Hf«(cU).)|* ( 8 6 ) 

For simple gain models this expression can be evaluated in closed 
form. Let 

G((q±Q) u) = G, rea l , n : < |q| < n ? 

G((p*Q)di) = 0 , otherwise 

and n - q * q * Q 

Then 
n 2 

s C = - 4 f dn £T-, y . - n J U G C ) (87) 

w h e r e n T " n 2 " n l = "max " \ u 

and c = 1 N f M 

where R stands for the somewhat lengthy but elementary expression 
for the integral (84) . R is plotted in Fig. 2 for one and two 
octave bandwidth systems. The cooling rate is not very sensitive 
to the frequency dependence of G: i f the plotted curves are used, 
e . g . , for a system with G|< « g 0 k, i . e . l inearly r is ing, only 
a few precent error occurs, provided 9o(n2 + ni)/2 is substi
tuted for G. 

So far the effect of thermal noise has been neglected. The 
presence of an external (independent of particle amplitude) heating 
term modifies the equation for the evolution of the emittance: 

d E . 

- j ± ~ s e i + a (88a) 

with the solution 

s t . . 
E i ( t ) = e u (e^O) - t j - ) ) + cLH, with eLH « f- (88b) 
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2.0 2.5 

[s-'J 
IBL 823-8193 

Fig. 2. Transverse cooling rate s at center of symmetric 
distribution f( u); n = q m a x - q m i n , €= ^ f ^ , 
G = system gain [see Eq. (87)]. 

30 



where a represents the thermal noise heating term. An expression 
for a, and therefore «x(°°)» my D e obtained by expl ic i t ly wr i t 
ing the Schottky heating term in Eq. (84) ana substituting the 
thermal power density at the preamp input for the Schottky power 
density. The result i s : 

c i H • I - T O T n^n ; TV? | 9A' ( ' 
ui [iE) q,±Q l cq*Qt»)J 

As written, Eq. (89) , gives the asymptotic emittance for the f u l l 
beam, i . e . a(°°) = 1/2 /Bejt 0 0). In many applications total power 
becomes an important issue and we need simple equations to estimate 
the total system power. Generally, 

p = jdf I s A ^ - s r ^ • ( 9 0 ) 

For an amplifier at temperature T 0 ( typically T 0 - 300*K) 
whose input is properly back terminated with resistors at tempera
ture T the thermal input power density is given by dP/df = 
1/2(T/T 0 + ( 1 0 N F / 1 0 - 1 ) ) kT 0 , where NF is the amplifier 
noise figure in dB and k is Boltzmann's constant. For T = 
T 0 and NF = 3oB this reduces to the familiar approximate 
expression dP/df ^ kT. ^ ' ' 

The Schottky input power density for transverse cooling is 
given by 

dP/df = (efQ Z ^ ) 2 <A2> (dN/dfQ)/(4 R.Jql) 

= ( e f o z P U ) Z e P u C i ( a N / o f 0 ) / ( l 6 R i n | q | ) 
where c^ is the f u l l beam emittance. 

Note that ths power densities as given are appropriate for our 
use of both positive and negative frequencies, otherwise they must 
be multiplied by 2. These equations allow a quick evaluation or 
preliminary design of transverse cooling systems. One possible way 
might follow these l ines: 

1) Determine an appropriate frequency range. This follows 
from N, n, f ( u ) , i . e . ap/p, and the desired cooling 
rate [F ig . 2 ] . I t is desirable to achieve the design 
rate with less than the optimum gain, since this results 
quickly in substantial power savings. Fractional band-
widths wi l l typical ly be limited to one octave or less 
at frequencies in excess of 1 GHZ. Apart from practical 
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considerations the upper frequency l imi t may be deter
mined by the phase error occurring due to the PU-K az i -
muthal separation. This phase error is given by AU> • * 
1/2 a», where e Is the PU-K separation, and a f 0 is 
the frequency width of the distribution at the top 
harmonic. 

2) Determine g/j, ana therefore, £ i ( » ) , PN. Psch a s 

a function of npjj, n^ for a given type of PU's 
and K's. E I I " ) should be S. 1/2 the desired f inal 
emittance. Both e, (=>) and PR may be lowered by 
increasing npy. Psch a r , d , again, P(j w i l l 
decrease with increased n^. 

I t is suggested as an exercise to consider the following case: 
N = 108, y » 9.5, nv > .938 GeV, | n | « 0.005, f 0 = 6 - 1 0 5 

Hz, ap/p - * 1.5 1 0 - 3 , ci(O) - 20 nil. Discuss the re lat ive 
merits of systems working in the 1-2, 2-4 and 4-8 GHz range 
respectively. Determine npu, n^.gA. for a 2-4 GHz system 
which w i l l reduce the in i t i a l emittance by a factor 4 in 2s. Keep 
the total power below 500 w. Assume 
NF = 3 dB and refer to section 8E for electrode properties. 

G. longitudinal (Momentum) Cooling 

(91) 

The relevant equations are: 

3i|Xx) a*(x) 
at 3x 

% e - J l ( * , 8 x Z M fo i \i\ l « _ t W I Z 

M r i« t ( * ) i * 
(92) 

|Hj{x)| 2 is given by: 

dP„ 
' 2 ^ R i n f o 2 - 0 f i ( i t u ) l9 A{^)| 2|Ks.(x)| 2. (93) 

Using the previously given expressions for Gg(x) Eq. (75a,b), 
these equations completely determine the evolution of the beam den
sity function under the action of a given cooling system. In con
trast to transverse cooling these equations are less amenable to 
reasonably accurate analytical approximations, and in general, 
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numerical evaluation is needed to determine t| i(x,t) . Nevertheless 
a number of approximate estimates are often possible. 

i ) A lower l imit for the required gain may be obtained by 
keeping only the coherent term and equating i t to the 
required rate of change of energy, i . e . 

E' r f . i l =. I d x l - """a* 
i i * I l o x l Tcool 

i i ) an average instantaneous cooling rate for particles with 
xj < x < X2 may be estimated: 

T H * a x 

x i [<Kxa) - d ( x 2 ) ] 

J gjdx 
x l 

x 2 

(94) 

whose evaluation of course requires that we postulate a 
certain ifi(x) to exist at time t . 

i i i ) Assuming a certain in i t i a l i(i(x,t) we can, neglecting 
signal suppression and using a simple gain model, also 
derive an equation for the rate of change of the second 
moment <x^>. 

While a l l these approaches have a certain usefulness for i n i 
t i a l estimates they must remain "crutches", the real answer w i l l 
come from numerical evaluation tracking the evolution of ^ ( x , t ) . 

Two essentially different methods to shape the gain function 
have been developed, the Thorndahl or f i l t e r method,9) and the 
Palmer") method in various modifications. The f i l t e r method 
makes use of a Z-PU and periodic frequency f i l t e r s . Some more 
detailed comments on f i l t e r s wi l l be made in a later section. At 
present i t suffices to state that electronic networks may be r e a l 
ized with transfer functions of the form: 

- i n ^ -ifl-r - i f l / f 
T(n) « 1 - Ae c = 1 - Ae ° « 1 - Ae ° (95) 

The quantities A and c are not in rea l i ty completely frequency 
independent over a wide band, and one of the outstanding problems 
of f i l t e r design is compensation for that dependence. Writing 
J2 m JU = 2wif 
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- 2 w U f / f n 

Ae - 1 - A cos Zulif / f Q + i A s in 2»«f/f 

(96) 

j T (2.co) | . [ l + K- - 2A COS 2 » £ f / f 0 J , 

(97) 

, I A s in 2*«f / f 
a r 9 | T ( £ * ) j = arctg t . A c o s 2 T £ f / f ( > 

This resu l ts in a t ransfer funct ion per iodic in f , wi th minimum 
transmission and a rapid phase jump (-90* to +90 fo r A * 1) 
whenever £f » f 0 . By introducing an overal l * / 2 phase o f f - s e t 
in the electronics we obtain 

Re|G £ j = s i n ^ j l f / f j = s in(2*£ -?f\ (98) 

In the Palmer method,31) by cont ras t , a posi t ion sens i t ive 
PU i s placed at a locat ion with a p ± 0 , r esu l t i ng in a signal 
vo l tage, and therefore overa l l gain, proport ional to Zpu(<xp 

x/e^E). In the simplest case a di f ference PU i s used and 
ZpuUpX/B E) s ( o p x /B 2 E)Z 'p U . Such a pick-up, o f course, 
also detects hor izonta l betatron motion, a fac t which, depending on 
band over lap, locat ion and nature of k icker , can be usea to achieve 
simultaneous betatron coo l ing , or may become a nuisance in that 
betatron signals from par t i c les at one energy long i tud ina l l y heat 
pa r t i c les at another energy. Both methods may be combined of course 
(although the ro le o f f i l t e r s w i l l then be d i f f e r e n t from the one 
j u s t ou t l i ned ) . F ina l l y i t may be pointed out tha t one might o f 
course combine a sum PU wi th a K in a dispersed locat ion and a 
t ransfer funct ion K j (x ) = - K H ( - X ) . Such a k icker w i l l , however, 
always introduce transverse kicks and w i l l not 
be pursued fu r ther here, since some of the associated problems in 
computing the appropriate signal suppression factors have not ye t 
been solved to our s a t i s f a c t i o n . 

Apart from the dif ferences in apparatus there are some more 
fundamental di f ferences between the two methods, one having to do 
wi th thermal noise, the other with signal suppression. The f i l t e r 
method is more e f fec t i ve in reducing the e f fec ts of thermal noise, 
since the overal l e lec t ron ic gain, and there fore , the rms noise 
voltage seen by a pa r t i c l e i s reduced proport ional t o [ 1 + A 2 - 2A 
cos Z i r2 . f / f 0 ] tending towards 1 + A 2 - 2A as f approaches f 0 , 
i . e . , as the par t i c les converge towards the desired equi l ibr ium 
energy x - 0. 

With regard to signal suppression we note tha t the fo l lowing 
expressions apply: 

T(S.U) - 1 -

and 
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a) F i l ter Method: 

2 r ox1 •&-

«*|*|< X »" 1 + f lr# G *|£| ( " ) J a^i(L>) < 9 9 a > 

b) Palmer Method: 

2 f fly' ^ 

**\i\M = 1 TTTTTF J <,*i(x-x-) + l £ l ( 9 9 b ) 

e>»0 + 

For illustration we use a simple, well behaved function, such as 

*{x) - 0, |x| > x n 

* ( x ) = l f 7" ( x ' ( x / x o ) 2 ) • l x | < s x o ( 1 0 0 ) 

The evaluation wi l l be made at a single harmonic with the following 
gain functions: 

a) F i l t e r : G = - g /2 (sin J ±- + i ( | - cos -J f - U x Q (101b) 

with A = 0.9, g > 0, r ea l , [g] = s 

b) Palmer: G - - gx (101b) 

This choice corresponds to a distribution f i l l i n g one fourth of a 
Schottky band at the selected harmonic i , a f i l t e r with - -25 dB 
notch depth and the same single particle cooling rate at the edges 
of the distribution for the two cases. 

With the distribution function (100) the PV-parts can be evalu
ated in closed form: 
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The e factor can then be rewritten as 

e (x ) . 1 + ^ ( « + i B ) - 1 + ^ i ( « + i B ) (103) 
0 

where tf is the f u l l frequency spread of the distribution at the 
£ , t n harmonic and where we recall that in the example we assumed 
one fourth of the Schottky band to be occupied. Figure 3 shows the 
quantity (a + 1B) for both cases. I t can be seen from the figure 
that not only signal suppression but also enhancement is possible, 
and that with suff iciently high gain, instabi l i ty w i l l occur. This 
is an immediate consequence of the substantial imaginary part of the 
gain with the f i l t e r method, which is particularly pronounced near 
the zero of Re{G}. In practice phase shifts wi l l occur with any 
method and i t should be remembered that we neglected to include the 
unavoidable phase error across the distribution due to different 
PU-K transit times of particles with different momenta. 

H. Stochastic Stacking 

The capability to increase the phase-space density of a circu
lating beam, or to maintain i t in the presence of intrabeam and gas 
scattering, weak resonances or beam-beam effects, by means of sto
chastic cooling 4 3 ) is of great interest but the most important 
application to date is the stochastic accumulation of antiprotons. 
In machines such as the CERN-AA ring or the proposed FNAL accumula
tor a density increase of ,> 10* in momentum space and 10 to 100 
in each transverse phase plane are required. 

We wi l l only consider longitudinal cooling in this section. 
This presents the most demanding design task and requires the bulk 
of the cooling hardware. The process is schematically shown in 
Fig. 4 and is analyzed using the Fokker-Planck equation. A detailed 
study requires numerical solution, integrating with pulse by pulse 
injection. This proves to be time consuming, largely due to the 
need for frequent evaluation of the dispersion integrals needed for 
the c-factor. Fortunately i t is observed that over a substantial 
portion of the stack a nearly static situation with time independent 
i, ai^/ax and if; is established. This allows solution of the 
equation with boundary conditions on ty and 9i|73x, without a pre
cise calculation of pulse injection. At various times through the 
accumulation of a stack a few single pulses might be calculated to 
veri fy that they are properly accumulated. 

To gain a semi-quantitative insight we follow van der Meer , 4 1 ' 
observing that over most of the stack width we want an increase in 
1̂  while maintaining a constant (energy and time independent) f lux 
i 0 . (However, near injection and near the core this wi l l not be 
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Ng 
e (x )=1* j j (a+i/3) 

Filter 
Palmer 

XBL 823-8199 

Fig. 3. Example for signal suppression factor e(x): 
see text, Eqs. (99) through (103) for system 
parameters. 

37 



Arg G = 1T\ 
Arg G = o/ 

Time dependent 

Fig. 4. Schematic description of stochastic stacking process: 
A pulse is injected on an injection orbit, then 
Jecelerated (or accelerated) to xi by an RF-system. 
from x-] further acceleration and compression of 
longitudinal phase space density is achieved by a 
stochastic cooling system. Shown is the density 
function iji(x,t) at two different times t] ,t2 and the 
system gain. 
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correct.) Neglecting sigrai suppression and thermal noise we obtain 

•0-*wp*w-lT£^*i!inir (104) 

or 

1 B*E , v ' G ! l ! 

Assuming G^ = Gg, a constant independent of I over the work
ing band, we obtain: 

^ • W ^ m a x - W ' f ) lGol-»o ( 1 0 6 ) 

where the factor p(x) takes into account that Gg(x) may not be 
purely real . Equation (106) cannot be solved analytically for arbi
trary Go(x) but we can find a special choice of Go(x), 
yielding an " impl ic i t" solution. Let 

»'»> v * ) - dx) l ! i - r ) \ a x <l07> 

where r = im i n/ i lmax- Then 
2 

Si »M - 1 2 , t > 4 ( l - r ) 2 W I " l f o , . . . n n n , 
TT= —*T P U) ' , i v 5 iJi»Mxty (108) 
" « 0 0 t n ( i ) 6 Z Ed Q 

with the obvious solution 
*2 

*(x 2) . g)(xj) exp f x(x') dx' (109) 

The steepest density increase is obtained with p(x) = 1 (real 
gain), o(x) = 2 yielding 
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* - ̂  - (17J? V ' | f ° w») 
i n W e E * o 

There w i l l be some res t r i c t i ons imposed on JJ. m a x . n, and the 
stack width x s > e i the r from the use o f frequency f i l t e r s or the 
need to contro l PU-K mixing. I t can be put in the form 

*maxl/>l fo ^ o 

ih x

s 

where k is some number dependent on the de ta i l s o f the system, 
t y p i c a l l y k < 1 . This leads t o : 

E D i n ( I ) *o i n ( I ) *o 

showing tha t the number of e-foldings depends on the r a t i o o f system 
banowidth to pa r t i c l e f l ux and the wel l known fac t tha t a given 
bandwidth is more e f f ec t i ve i f centered a t higher frequency (higher 
r ) . In pract ice several systems are used, wi th the highest f r e 
quency operat ing in the core where also a sign reversal not included 
above is introduced ( th is leads to a nonstationary conf igurat ion and 
some addi t ional "peaking" a t the core) . 

For gain shaping pick-up electrodes in s t ra igh t sections wi th 
high dispersion o p and f i l t e r s are used. In p r inc ip le k ickers 
in sections wi th high dispersion could be used too, possibly e l i m i 
nat ing the need fo r f i l t e r s but the i r use, complicated by the t rans 
verse kicks they impart , has not been f u l l y analyzed. The ro le of 
the f i l t e r s is predominantly t o protect the high density core from 
the thermal noise generated by the high power t a i l system. 
S t a b i l i t y must be ca re fu l l y considered in s p l i t t i n g the gain r o l l -
o f f between the electrodes and f i l t e r s . High demands are also put 
on t l . : l a t t i c e des i rn : n i s t y p i c a l l y rather s t r i c t l y def ined, and 
long s t ra i gh t sections (~15 m in f i e FNAL design) wi th minimized 
8-funct ions in both planes and op = 10 m are des i red. 

7. ELECTRONIC COMPONENTS 

The essential components are stibial combiners, transmission 
l i n e s , amp l i f i e rs , power s p l i t t e r s and f i l t e r s . A l l o f these except 
the f i l t e r s are usual ly commercially ava i lab le . 

Signal combiners may be of the "hybr id" type, i . e . 4 port j unc 
t i ons wi th the property tha t any port connects to only two o f the 
other three and is isolated from the remaining one. They are used 
to create sum and dif ference signals from two incoming s igna ls . 
They have the property that they always provide an impedance matched 
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input independent o f the r e l a t i v e magnitude and phase o f the incom
ing s igna ls . The simple addi t ion o f equal s igna ls , or a rb i t ra ry 
signals in a s i t ua t i on where re f lec t ions are not c r i t i c a l , may be 
achieved by leading N incoming l ines o f impedance Z together 
in to a l i n e o f impedance Z/N. Tapers or mul t is tep transformers are 
used to make the impedance o f input and output l ines equal , i . e . 
t y p i c a l l y 50 fi . The number of input l ines need not be a binary 
number. A l l these devices come very close to "ideal performance;" 
they provide an output voltage Uo u t = l / / f f I U n j - j n . Power 
s p l i t t e r s are essent ia l l y the same networks, the main pract ica l 
d i f ference i s the par t i cu la r power l eve l . 

Preampl i f ie rs , and power ampl i f iers below 1 GHz, are usual ly 
so l id s t a t e , w i th noise f igures fo r preamps between 2.5 and 3 dB in 
the 1 to 2 and 2 to 4 GHz range, and lower (5. 2 dB} in the few hun
dred MHz range. Travel l ing wave tube ampl i f ie rs (TWTA) w i l l be 
required in the GHz range fo r power levels exceeding a f rac t ion o f 
1 w. F lat phase and gain character is t ics are requ i red , in p a r t i c u 
l a r l y substant ial phase deviat ions should not occur in the high gain 
reg ion . This c r i t e r i o n is qu i te well sa t i s f i ed by TWTA's, whi le 
many s c l i d state power ampl i f iers often show a very sharp gain cu t 
o f f w i th substant ial phase errors (- 2») w i th in the working band. 

Periodic f i l t e r s are usually "custom made". Host o f the p i o 
neering work in that area has been performed by L. Thorndahl e t a l . 
a t CERN.9) we w i l l not discuss a l l the in t r incac ies involved 
here but merely i l l u s t r a t e the pr inc ip les . Three basic conf igura
t ions are common, as depicted in Figs. 5. Consider f i r s t the con
f i gu ra t i on shown in F ig . 5a. Applying standard "S-matrix" 
formal i sm^ ) to the junc t ion shown y ie lds : 

J 21 
2 + y , 

(112) 

where y|_ i s the normalized admittance o f the shorted, lossy 
1 ine . 

: y ctghf isL + oL), (113) 

where 6,0 are the (frequency dependent in real cables) propagation 
and loss constants o f the l i n e . Therefore 

S 21 =

 2 • 5 _ ( 2 _ J , „-ZUBL*.LJ 
(114) 

or i f we use, for s i m p l i c i t y , y « 2 

S,, = 4 ^1 - e" s 2 1 = 1 
2aL, e - 2 lBL \ (115) 
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y=1 y=i 

D » L'-f =2L 

L'-£ = 2L 

XBL 823-8201 

Schematic filter configurations: 
5a: shorted line, minimum transmission at f n = nc/2L 
5b: splittar-combiner network, minimum transmission at 

f n = nc/2L 
5c: "active" filter, maximum transmission at f n = nc/2L U,L,L' are "electrical lengths: at f n) 
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which is o f the same form previously used in the context o f momentum 
coo l ing. Inspection of Eq. (114) shows tha t the r a t i o o f maximum 
to minimum transmission fo r a given attenuation a increases as 
y » « . This is not possible in pract ice , also minimum a fo r a 
given outer diameter is reached at Z as 77 fi. In p rac t i ce , at f r e -
qusncies o f a few 100 MHz, series res is tors are inserted in the 
input and output l i n e s , which has essent ia l ly the same e f fec t as 
increasing y in Eq. (114). 

A simple analysis of the next conf igurat ion y ie lds exact ly the 
same resu l t for the transfer funct ion. Using an open l i n e , or 
equiva lent ly an adding instead o f a subtract ing network in the 
second case y ie lds f i l t e r s with the same character is t ics but t rans 
la ted by f 0 / 2 . These f i l t e r s produce, w i th in the l i m i t s o f 
the i r cable losses, sharp minima. The t h i r d i l l u s t r a t e d conf igura
t i on generates a sharp maximum. Analyzing the network we obtain fo r 
the transmission: 

T ( " ) - 1 _ 6 e -W.)f ( U 6 ) 

Care must be exercised to avoid i n s t a b i l i t y i n the choice o f 
the gain G. Typical phase/amplitude character is t ics are shown i n 
F ig . 6. Common to a l l i s a f a i l i n g phase charac te r i s t i c a t maximum 
transmission which may be a problem i f the f i l t e r is to be used at 
maximum transmission such as in stochastic s tack ing. 

The most fundamental problems in f i l t e r construct ion are posed 
by cable losses and ve loc i t y dispersion. High un i fo rmi ty , large 
diameters (contro l lea by the cu t -o f f frequencies of modes other than 
the TEM-mode), and possibly cryogenic temperatures are requ i red. 
In addi t ion compensating networks may be used. In these schemes 
t y p i c a l l y a signal proport ional to the Cable loss , generated by 
taking the d i f ference signal between a high ana a low loss l i n e , i s 
subtracted from the signal transmitted through the f i l t e r a f ter 
su i tab le a t tenuat ion. 

8 . PICK-UP AND KICKER ELECTRODES, GENERAL 
SINGLE PARTICLE SCHOTTKY SPECTRUM 

A. In t roduct ion and Overview 

We w i l l discuss pick-up and kicker electrodes in greater depth 
and more de ta i l than a l l other system components. Their performance 
af fects important quant i t ies such as signal to noise r a t i o , t o t a l 
ampl i f ie r power requirements, and amplitude and phase character is
t i c s o f the overa l l system gain. Unlike most components, they are 
not commercially avai lable but must be ta i l o red to the spec i f i c 
appl icat ion needs. Furthermore, the i r requirements fo r space and 
spec i f i c locat ions in a cool ing r ing l a t t i c e in te rac t st rongly wi th 
the overa l l machine design. Reliable calculat ions and measurements 
of ten pose a non t r i v ia l task. 
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Fig. 6. F i l t e r t ransfer funct ions, shown fo r ( n - l / 2 ) f 0 =S f < 
(n + l / 2 ) f 0 ; amplitude i s normalized to maximum transmission. 
a) type (a) with y L or type (b) 
b) type (c) 
In a l l cases e •2aL = 0 . 9 . 

44 



In t h i s chapter we w i l l proceed along th's fo l lowing l i nes o f 
development: 

F i r s t , we w i l l describe general expressions fo r the PU-response. 
We w i l l base t h i s discussion on the Lorent* rec ip roc i t y theorem 
which, i n our view, provides some conceptual s imp l i f i ca t ions and i s 
re la ted c losely to the second ob jec t ive , the discussion o f kicker 
t ransfer funct ions. These discussions w i l l provide us with general 
expressions for the pick-up and kicker t ransfer funct ions. We w i l l 
use these then to obtain the signal spectrum of a s ingle pa r t i c l e 
c i r c u l a t i n g in a r i n g . F ina l l y we apply the resu l ts obtained to 
estimate the character is t ics of some example s t ruc tures . 

B. PU-Characterist ics, Reciprocity Theorem 

Figure 7 schematically shows a pick-up (or k icker) s t ruc tu re : 
a d i scon t i nu i t y o f some sor t in the beam chamber connected to the 
"outside wor ld" by one or more wave guiding s t ruc ture?, i n pract ice 
transmission l i n e s . Viewed as pick-up, we want to calculate the 
complex voltage amplitudes in the output por t (s) generated by a 
p a r t i c l e t r ave l l i ng through the s t ruc ture . The relevant equations 
are , o f course 

V 2 A--L" L 4 = - V a n d ^ - 4 H - - p/en ( 1 1 7 > 
d- at* ° tT itc ° 

where j , p are the current and charge density corresponding to the 
p a r t i c l e . These, to be exact, must be complemented by the r e l a t i v -
i s t i c equations o f motion, i . e . : 

^ • = e(E + v x B ) and £ | = e ( v . E ) (118) 

where t,T§ are the f i e l d s corresponding to t>t of Eq. (117). For 
PU response calculat ions we may, in contrast to s t a b i l i t y ca lcu la
t ions or electron beam tube evaluat ions, e . g . , neglect (118), i . e , 
we need not take in to account the ef fects on the par t ic les t r a j e c 
to r ies by the f i e l ds generated by the p a r t i c l e . (This is borne out 
by the numerical resu l ts and, fo r stochastic coo l ing , is true in the 
case o f kicker electrodes a lso . ) Instead of solv ing Eq. (117) 
d i r e c t l y we use the Lorentz rec ip roc i t y theorem, which of course 
must lead to the same resu l t since i t i s based so le ly on Maxwell's 
equations, but seems to provide some pract ica l s imp l i f i ca t i on and 
provides us with a un i f ied view of PU and kicker response. To 
aerive the theorem' 1) we make, use o f Maxwell's cur l equations fo r 
f i e l d s depending on time as e i a t , i .e 
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Fig. 7. Schematic representation of a PU or K; figure 
relevant to discussion of reciprocity theorem. 
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cur l E - - ittB and cur 

and the vector i d e n t i t y : 

1 B . vjj + cur l H + iflDJ (119a) 

d i v ^ x B 2 - E 2 x B j j = (cur l E j j • B g - (cur l &A • Ej 

- (cur l E j BJ + (cur l Bj ) E 2 (119b) 

For i so t rop ic and constant (independent of l ^ t ) u and c we com
bine (119a) and (119b) to obtain wi th B = V H , D = ct: 

div^Ej x H2 - E 2 x H j j = E 2 - J j - Ej • J 2 (120) 

- • 

Note furthermore that i f the current densi t ies J i . are expressed 
J. = J> ' + oE. , where oE, represent conduction currents in a r e 
s i s t i v e conductor Eq. (120) becomes: 

d i v ^ x H 2 - E 2 x H j = E 2 • j j 0 ) - E a • J ^ 0 ) (121) 

In tegra t ing over a volume V bounded by a surface I we ob ta in : 

( D d l ^ x H2 - E2 x H J = J d v ( E 2 * J { 0 ) " E l " J 2° / ( 1 2 2 ) 

I V 

where the surface in tegra l vanishes i f : 

a) I i s at i n f i n i t y , or more generally includes a l l the sources 

b) I i s a per fec t l y conducting surface 

c) Z i s^character ized by a surface impedance 2^, £;inq -
- Z m n x fi 

For our appl icat ion we make the fo l lowing choices: 
{ I J . B J . J , } 5 {? B f (5g,J„} are the electromagnetic f i e l ds at frequency 

a generated by the pa r t i c l e represented by the current density 
~5R. At the output ports t h i s f i e l d must correspond to an outgoing 
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TEM wave i f we select the location of the terminal planes Z\, 
Z2> 3-N-2 properly and operate at frequencies S2 below the cut
off for other modes, therefore: 

* • V R *• 
E B (E k ) - V B grad i and Hg(Zk) = -j- (n x grad t) (123) 

where Z = ( 1 / e ' ) 1 / 2 2 0 , ZQ = 377 n and t is the two-
dimensional potential function appropriate for the particular trans
mission 1 ine geometry. ^ + + + 

For the f ields {E2,H2> = Ex.Hj we select a TEM 
wave with an incoming voltage ^amplitude Vj in the k t h 

guide. This creates the fields E-r.Hj in the interior of V, 
i ts sources are obviously outside the volume V, 3y « 0 there
fore and at the terminal planes we have: 

E T (Z k ) - V T (1 + S k k ) grad t 
(124a) 

> v , > 
H r (Z k ) = - y - d - S k k ) (n x grad#) 

* • 

E T(Z„) - V, S„. grad 0 n^k, N-l, N-2 T n I nk ( 1 2 4 b ) 

• V > 
H T (Z n ) - -j- S n k (n x grad i) 

where Sn|( are the elements of the S-matrix of the considered 
N-port junction. To complete the description of our configuration 
we Jjave to define Ej.H-r at Zf|_i and z N . we require 
{Ej,Hj} a {0,0} at these locations. This implies that the 
frequency is below cut-off of the beam pipe or that we insert 
attenuating materials and structures for any propagating modes. 
Performing the surface integral we then obtain immediately from b) 
or c) above that only z . , s. - 1 .2 . . . .N can contribute. The con
tributions for Z N _ J , ZN vanish with the requirements just 
maae and on further inspection, i t is seen that a non zero result 
is obtained only at those ports where both incoming and outgoing TEH 
waves are present, i . e . only at \ . Therefore 
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<J>(E B x H T - E T X H B ) d£ - J ( E B X H T - E T X Hg) dZ 

h 
* •+ 

grad 4 x (n x grad t) d l 

- ^ / i r ad « | 2 d l (125) 

r k 

where Zr, is the charac ter is t ic impedance o f the output l i n e . 
Comparing th i s f i n a l l y w i th Eq. (122) we obtain the resu l t 

In worfls: the output voltage amplitude at a terminal plane 1 ^ 
in the k t n output po r t , generated by a current density Jg 
(at frequency n ) in the i n te r i o r of the s.tructure, is obtained by 
performing the volume in tegra l of Eq. (126)) where Ej i s the 
f i e l d excited by an incoming wave wi th amplitude,. Vf at the t e r 
minal plane I|<. Once the current density Jg i s known the 
only n o n - t r i v i a l task is to calculate the f i e l d s inside the s t r u c 
ture fo r a given exc i t a t i on . This task must be performed anyhow in 
order to establ ish the kicker properties and, as we shal l see, the 
in tegra l in Eq. (126) i s c losely re la ted to the energy gain of a 
p a r t i c l e in a kicker o f ident ica l e lec t r i ca l propert ies. 

he conclude t h i s paragraph by ca lcu la t ing the signal voltage 
due to a single passage o f a pa r t i c l e wi th ve loc i t y v and charge 
e. we make the usual paraxial ray approximation, assume the PU to 
be located in a d r i f t space, and as mentioned above, neglect any 
e f fec ts on the pa r t i c l e t ra jec to ry due to the in teract ion wi th the 
PU, i . e . : 

£-*(• 
Then 

)- l / 2 
s v , X ' E | | - = const, z ' 5 4 f - « const. 
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j(x,z,s,t) - e v «(x-x(s)) «(z-z(s)) «{s-vt) (127) 

s(t-O) » 0. By Fourier transform: 

+00 

J = ev «(x-x(s)) S ( z -z (s ) ) - i - f dk e i k < s - v t > 

or for the quant i ty J(I2,x,z,s) which we need fo r use in Eq. (126): 

> * - i £ s 
J(n,x,z,s) =^-«(x-x(s)) «(z-z(s)) e v (128) 

Insertion in (126) finally yields: 

x ' E x ( x ( s ) , z ( s ) , s ) + z ' E z ( x ( s ) , z ( s ) , s ) + E s ( x ( s ) , z ( s ) , s ) 

. a 
- ' 7 s 

e 

(129) 

or equ iva lent ly : 

v B(n) 4 * {«• M D •*•*.©•*,($)}*-*' 
where the t i l d e indicates the Fourier transform wi th respect to the 
( long i tud ina l ) spat ia l coordinate s . 

C. Expressions fo r Kickers 

The evaluation of the kicker t ransfer funct ions i s r e l a t i v e l y 
s t ra ight forward i f we know the f i e l ds inside the s t ruc tu re . The 
s t a r t i n g point i s provided by Eq. (118). 

The energy change experienced by a pa r t i c l e in a s ing le pass 
wi th harmonic exc i ta t ion of the kicker (E a e 1 f i t ) i s eas i l y 
evaluated. 

*LVn( f l )J = V/Hz in Eq. (129). Later, f o r d iscrete spectra, we 
w i l l use [Vg(f i ) ] = V. Equation (126) remains va l i d wi th e i ther 
convention provided a l l quant i t ies are treated cons is tent ly . 
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AE - e 

dS X - £ x 

/ 
s l 

( x ( s ) , z ( s ) , s ) + z ' E z ( x ( s ) , z ( s ) , s ) + E s ( x ( s ) , z ( s ) , s ) e 1 

2 

(130) 

where we made the subst i tu t ion s = v t . Or in form of the Fourier 
transforms of the f i e l d s : 

i E = e j x ' I x ( - f ) + z ' E z ( - f ) + E s ( - ^ ) j ^ (131, 

where the r e l a t i on to the PU s e n s i t i v i t y expression (129) i s 
evident. 

We also need to know the transverse e f f e c t s , a p x , a p z , 
from a transverse k icker fo r betatron cooling or in ordsr to ca lcu
la te the transverse kicks due to a longi tudinal k i cke r . Expressions 
fo r AP X 2 (S2, may _be described in analogy to the long i tud ina l 
Case, evaluating (E+vxB) along the pa r t i c l e ' s t r a j ec to ry . Instead 
o f t h i s e x p l i c i t approach, we w i l l derive an equation r e l a t i n g the 
transverse to the long i tud ina l k icks . 

Assuming again an e ^ 1 time dependence of the f i e l ds we 
rewr i te dp/dt by subs t i tu t i ng i/£2 curl E for B in the expres
sion fo r dp/d t . we ob ta in : 

^ = e 
dt 

where d p , / d t , d p s / d t are obtained by cyc l i c permutation of the 
var iables ( x . z . s ) . w i th dE x /d t = d/dt Ex ( ( x ( t ) , z ( t ) , s ( t ) , t ) 
where x , z , s represent the par t ic les t ra jec to ry through the kicker 
we a r r i ve a t : 

Af ter subs t i tu t ing s - v t , we obtain: 

IT* a \ ' * ' ax £ e n v ds (134) 

51 



AP„ 

5 2 I 
*5 
3x 

+ z ' 5 : + J L E 

3x ax s 
(135) 

since E x ( s i ) = EX(S2) - 0 by d e f i n i t i o n . This expression 
reveals the close r e l a t i o n between transverse kick strength and the 
transverse var ia t ion of the longi tudinal kick s t rength. I f the 
distances x ' L , z ' L , i = S2 - sj are short compared to the 
scale o f transverse changes of the f i e l ds in the s t ructure we may 
s imp l i f y f u r the r : 

i p

x -'hiz*ZM' 4 P z = r ? 7 i 4 E < 2 > (136) 

Often the terms x ' E x , z ' E z

 m a y be safe ly neglected compared 
wi th E s . In tha t case we are l e f t wi th a single expression to 
be evaluated: 

aE = e I E.(x,z,s)e 
. a 

1 7 s 

ds (137) 
b7. 

from which a l l pick-up and kicker properties of a given st ructure 
may be der ived. 

AP S and aE are o f course c losely re lated and one may be 
obtained from the other without use o f v.he equations described 
above. I t i s l e f t as an exercise to the reader to show that a p p l i 
cat ion of Eqs. (135,137) y ie lds the correct answer. 

0. General Single Pa r t i c l e Spectrum 

we derive the signal spectrum of a pa r t i c l e c i r cu la t i ng wi th 
frequency ui/2n, energy deviat ion x, ap/p = x/e^E, and beta
t ron amplitudes x 8 = /e x Bx. *B a /e?B z . 

The signal frequencies are determined by the current density 
which is the d r i v ing term, whi le the respective amplitudes must 
depend on the PU s t ruc tu re . 

The current density i s given by: 

j (x,z,s , t) = e(x , (s , t ) ,z ' (s , t ) , l ) «(x-x(s,t)«(z-z(s.t))) 

£ s ( t - f - n T ) (138) 
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where s is the distance along the t r a j ec to r y w i th in the PU, 
-L/2 •? s < L /2 , where L is the PU le . ig th . We Fourier transform 
the «-functions to ob ta in : 

j ( x , z , s , t ) = e ( x ' ( s , t ) z ' ( s , t ) , l ) 2 L 

Tc 1k (x-x(s.t)) ik (z-z(s.t)) iquft-f-) 
J J dk x d k z e x V ' e z V ' f 0£e ' v / (133) 

In order to shorten the expressions we concentrate on j s : 

J f . £ jy *, ^ ( - M ,«,(«<«.«») j.;-(* - *) 
(140) 

For x ( s , t ) we w r i t e : 

x ( s , t ) = x p ( s ) + x g ( s ) cos(q x ut + 5 x ( c ) ) , (141a) 

a (s)x 
x . (s ) = - S — * < 1 4 1 b > 

M BE 

« x (s ) = * x ( s ) - Q x B-S. (141c) 

where o p ( s ) i s the dispersion funct ion and where I | I X (S ) i s 
the betatron phase advanro from the reference point s = 0 in the 
centre o f the PU. 

S im i la r l y : 

6 

we make use o f the expansion 

z ( s , t ) = z g ( s ) COS(Q 2 u t + « 2 ( s ) ) 

e i a c o s e = £ e l r i e i r e O r ( a ) (142) 

where J r ( a ) i s a Bessel function to obta in : 
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y«.'.«.«>-& E « , r>^' r»? 

; ; - . 
.* » 1 k * x

 0

i k^ z c " 1 q u » _ i k * V s ) J r x Q x u t J rx«x« s» 
OK e e e e e e 

ir,Q_ut i r , s , ( s ) / » , . - t 

6 Z Z e Z Z Jr xKV s>) J r 2 KV s >) ^ ^ 

At any locat ion s in the PU therefore: 

i ( q + r Y Q y + r 7 Q > t 
J q , r „ , r J s > ' 

' x ' 1 z 

(143) 

i„ r r (s) e x x z z (144) 

wi th 

, . e f o J ( r x + r z > t + frx«x(s)+frz«2(s)-1q- £ 
J q . r x , r z

( s ) = I T e 

t " . ik x ik z - i k x (s) . . . . 
f f c k x flkz e x e e x p ^KV*)) ^KV*)) 

(145) 

In general therefore a spectrum Si = (q + r Q + r Q )m i s 

poss ib le , w i th -<*> < q,r , r < +=° . I t is easy to see that the corn-
components Jx.Jz w i l 1 n o t introduce new frequencies since a l l 
they imply i s essent ia l l y another m u l t i p l i e r exp(*iQ x(ut), 
exp(-*iQ z iut). How strong the d i f f e ren t sideband signals are 
depends, of course, on the PU s t ruc ture . 

To demonstrate the pr inc ip le we evaluate the J s • E s 

cont r ibu t ion to Eq. (126) only. With Si = (p+ r Q + r ( )» : 
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i ( r „ T 7 ) f - - i £ s ef 
V » > - - O T l d x d z d s e e I T ?i?^n"Jd 

/ / 
ik (x-x ( s ) ) i k z i r if. {s) i r j , (s) 

dk x dk 2 e x p e z e x x e z z J r ( - k x x 6 ) 

J r ( - k z V E s ( x ' z ' s > ( I 4 6 ' 

Upon introducing the two-dimensional Fourier transform o f 
E s ( x , z , s ) : 

E s (m, i ,s ) = ± ffaxaz e i m x e U z E s ( x , z , s ) 

we obta in : 

V°> = -zmxir h5™1* e e e 

imx (s) ; 
e p J r (mx e) J r ( i z B ) E s(m,Jl,s) (147) 

Cumbersome as i t appears, Eq. (146) represents one possible general 
formulat ion fo r the signal spectrum generated by a c i r cu la t i ng par
t i c l e in an a rb i t r a r y PU (or PU ar ray) . We examine a few of i t s 
aspects to establ ish the connection with previously introduced 
concepts. 

i ) For x B = z B = 0 a l l Bessel functions except J 0 , 
( J o ( 0 ) = 1 ) , vanish and therefore also a l l sidebands 
wi th r x , r 2 4 0. Recall ing tha t we always assume 
the PU to be located in a d r i f t space, we obta in : 

Z + f - I * * , v 

V " ' =-?v^rr e fo J d s e v E s ( x

P < 0 >V-° - s ) 
~ L / 2 (148a) 

- e f

0 Vv*") ( 1 4 8 b ) 
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in agreement with the PU-impedance introduced, scraewhat 
arb i t rar i ly , in Eq. (65b), The suppression of the argu
ment x p " in (148b) needs no further just i f icat ion 
for a short PU; for a long PU or an array of many PU's 
i t implies a statement about the lat t ice functions at 
the location of the electrode. 

i i ) For the betatron sidebands, (q±Qx)""» (q±Qz)'"» t n e 
terms proportional to J i must be inspected. For 
suff iciently small arguments mxB, Hze, we write: 

h af MI V B ( q ^ x . ) = - 2 v T ( ( q ± Q x ) u ) ef 0 ^ 

*llr2 - i ( q * Q J ^ s l * ( s ) , . 
J ase " X ( | (s ) £ E s(x p(s).0,s) 

-L/2 
(149a) 

V B(q^Q z .) = - 2 v T ( (qfq z > w ) e f o 2 Ifli 

l'f2 - i(q*QJ ^ s 1* (s) , . 
J dse e y s ) £ E s ( x p ( s ) , 0 , s ) 

-L/2 
(149b) 

Again the expressions reduce immediately to Eqs. (65b,c) 
for a short PU, and provide the basis for the correct 
extension of Eqs. (65b,c) to a long PU structure. 

i i i ) For a short PU we can write approximately 

V n > a e f o Z p u < V n ) ( 1 5 0 ) 

for any frequency fi and obtain a simplified version 
of (147) in the form 

e f o Cf ^Wf 

ikx — 
J r (mx6) J r (£z 6) e p Zp u(m,£,n) . (151) 
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I t should be pointed out that there are conf igurat ions 
where these expressions are o f more than academic 
i n t e res t . In stochast ic accumulation, e . g . , va r i a t i on 
of Z p u w i th Xp i s essential to shape the l o n g i 
tud ina l system gain. With f i n i t e x e , z 6 not only 
higher order sidebands appear but also the response at 
n m qm is modified and becomes dependent on betatron 
amplitudes. Lat t ice functions must be chosen to m in i 
mize t h i s e f f e c t . Their magnitude is s t r i k i n g l y evident 
in F igs. 8 and 9 , calculated from Eq. (151). 

I t i s l e f t as an exercise fo r the reader to ve r i f y 

that the same frequencies Si = ( f * " ' " x Q x

+ r

z

( ? 2 h> exert an 
influence in a long time average on a pa r t i c l e t ravers 
ing a k icker of a rb i t r a r y f i e l d conf igura t ion . 

E. A Few Specif ic Electrode Models 

we w i l l now apply these rather theoret ical arguments to the 
approximate evaluation o f some pract ical s t ructures. As our f i r s t 
example we select the simple device depicted in F ig . 10, which is 
sometimes referred to as a wal l current monitor and which might 
t y p i c a l l y serve as a E-PU, i . e . , a device with minimized spa t ia l 
(transverse) va r ia t ion of response which simply detects the passage 
o f a p a r t i c l e . 

Let us f i r s t consider the voltage gain of a p a r t i c l e t r a v e l 
l i n g pa ra l l e l to the axis at radius r. From Eq. (131) 

&U = / 2 V E ( T , - ^ (152) 

The f i e l d must sa t i s f y the vector Helmholtz equation: 7 E + k o f f = 0 . 
s t 

8E„ 

In cy l i nd r i ca l coordinates the longi tudinal component i s - ° 

and wi th k 2 = tf/v2, k2, * fi2/c2: 

? £ ( P T F ) - ? T E . - 0 ( 1 5 4 ' 

The so lu t ion is Io (ko r ' 6 - r ) , where I 0 i s the modified 
Bessel func t ion . Therefore: 

aUtrjjMU^) « I ^ / I ^ ) (155) 

In particular: 
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o at frequencies 
position xp for common mode 

operation of the PU structure shown in Fig. 11. Shown 
are the nominal response A q . Q and the sidebands r x = +1.+2 for z s = 0, x R 3'0|0.5b and b. 
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Fig. 10. Schematic description of "wall current monitor," I-PU. 
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AU(O) .tUMIlJ-^j (156) 

To calculate aU(a) exac t ly we must know Ec(a,s}. An a p t r o x i -
mate resu l t i s obtained by noting that aU(a) • U, the voltage 
across the gap, provided SI « Bc/d. Then 

^W-W'ofe) ( 1 5 7 ) 

We observe that the frequency response o f the device is l im i ted a) 
by the gap length d , and b) the appearance o f the Bessel funct ion 
I 0 ( k 0 a / 6 T ) - The physical o r i g in of the l a t t e r becomes evident 
i f we look a t the device as a PU which, by v i r t ue of Eqs. (129) and 
(131), must exh ib i t the same behavior: i t is just the expression, 
appropriate for the boundary condit ions of th i s con f igura t ion , o f 
the fac t t ha t the f i e l ds o f a pa r t i c l e passing an observer at a 
distance a from the t ra jec to ry f a l l o f f rap id ly fo r frequencies 
in excess o f SI = v-r/a. 

In t h i s der ivat ion i t i s i m p l i c i t l y assumed tha t we are below 
c u t - o f f fo r any propagating waveguide modes (at least TM modes wi th 
E2 ^ 0 ) . Above cu t - o f f we could s t i l l fo l low th i s analysis but 
obviously the e l e c t r i c f i e l d s at the wal l ( r -a ) would then not 
only be given by those across the gap but also those along a t tenu
a t ing surfaces necessary to damp out these modes. 

The second part o f the problem at hand is the ca lcu la t ion of 
the gap voltage in terms of some externa l ly applied vol tage. This 
ca lcu la t ion can ra re l y be performed exact ly f o r a pick-up or k icker 
e lect rode, we use a s imp l i f ied model also in t h i s case. With 
regard to F ig . 10 we consider the e f fec t o f the en t i re conf igurat ion 
as a load impedance concentrated a t the ends o f the transmission 
( s t r i p ) l i n e s . 

To t h i s impedance there corresponds a re f l ec t i on coe f f i c i en t 
S i i . The voltage across the gap is then ( e - ^ L + e 1 B L S i - | ) V 0 , 
where V 0 , S n re fer to the reference terminal plane locat ion 
and L i s the e l e c t r i c a l length from the reference plane to the 
gap. S u is an experimentally measurable quant i ty and we ob ta in : 

and 

^ u ^ ( e - i f l L ^ i B L h 1 ) ^ ( ¥ ) ( 1 5 9> 
f o r a pa r t i c l e t r a j ec to ry on and para l le l to the cyl inder ax is . The 
weakness of the model is the assumption that the re f l ec t i on is com
p le te l y due to a local ized impedance at the end of the s t r i p l i n e s . 
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Again, however, a measurement of the phase of S n can help to 
determine how good this assumption i s . 

Another pick-up or kicker device of practical importance is the 
loop coupler shown in Fig. 11 . Driven in common mode i t provides 
a E-PU or longitudinal kicker, in push-pull we obtain a vertical 
A-PU or vertical transverse kicker. As derived previously a l l 
quantities of interest wi l l follow from / ( x ' E x

+ z ' E z + E s ) 
exp(iQs/v)ds. The most important contribution to the integral comes 
from E s , even in the push-pull configuration and we drop there
fore the terms x ' E x , z ' E 2 for our approximate analysis. 

For a part icle with x > a/2, 2 = b, x' * z' = 0 we obtain 

aU(a/2,b) . J2 i (Sj U sin (k 0 + 0.) f (160) 

where U is the voltage appliea at the input to the spl i t t ing 
network. In deriving (160) i t was assumed that the signal propa
gates through the loop as a TEM-wave (with propagation constant k 0 ) 
without reflections and that the longitudinal f ie ld may be repre
sented as a s-function at the two gaps. In general we expect: 

# - , K I I Z 

and 

( x , z ) = / 2 i ( j ^ U « c (x ,z ,n ) sinMk Q +2.) I (161a) 

AU p p (x,z) = / 2 1 0 U a p p ( x , 2 , ^ ) s i n j k , • f ) f | (161b) 

where the subscripts c,pp refer to common mode and push-pull 
exci tat ion, respectively. Equations (161) are completely general 
and can be applied to an analysis of nonlinearities and higher order 
sidebands in the sense of section 80. The simpler expressions for 
"nominal" PU impedances and kicker transfer functions follow: 

(162a) 

(162b) 

(163a) 

S. (x ,52) - / ? i ( 2 L / Z R ) 1 / 2 . c ( x . « i.n) sin (k Q + *)*] 
p u j (x.n) - -L ( 2 L Z R ) 1 / 2 a c(x ,o,n) sinUkQ 

+ v)f] 
Kx(x,n) ( Z L ^ ) 1 / 2 ^ T o c(x,o,I2) sin M 
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Fig. 11. "Loop coupler" type PU or K. Shown are the geometric 
conf igurat ion (top) and the e l ec t r i ca l conf igurat ion 
fo r PU and K operation in e i ther common or push-pull 
mode. 
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(163b) 

K z ( x > S 2) - - /2 - £ - ULHR)m £ .p p(x.O.B) sin[(k0 • fl) * ] 

(1< 

I f <*•"> = ^ < Z L Z R> 1 / 2 £ «c^'°- n) s 1 n [ ( k o + $ M j < 1 6 4 a> 

7F <»•«> " ^ < W ^ £ »pp ( x ' ° ' n ) S i n [ ( k " + v) ?] ( 1 6 4 b ) 

For the evaluation of a (x , z , f i ) we make use o f standard equations 
fo r the exc i ta t ion of the eigenitodes of the rectangular wave guide 
by f i e l d s on coupling apertures. Since we r e s t r i c t our a t ten t ion 
to Es we need onlv concern ourselves wi th the TO modes which 
we wr i t e as f o l l o w s : 3 ' ' 

E = a m „ ( s , t ) grad * n + c „ ( s , t ) 4 „ • u c (165) 
m,p v =• m,p m.p' * m,p s ' 

wi th 

H = o„ „ ( s , t ) u, x grao $ 
m,p' * ' s 3 m,p 

V P ( X - Z ) " s 1 n J T L s 1 n f i T -

where the coef f i c ien ts d rn l P , a m j P , c m > p sa t i s f y the fo l l ow
ing equations i f the dr iv ing te rms 'ar ise* f rom f i e lds on coupling 
ho les: 3 ?) 

dz \ " ' " " " "'••' ' o 

">,P k d z • 

z

n •> 

c - i cS-k^ a (166) 
m,p kQ mp °m,p * ' 

where 

and 
^=(fj + (ff 
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V s ' - - 5 - T - / d x f s { x " 0 > s ! + ( - l ) P _ 1 e s ( x , b , s ) J s in Of- (167) 

where e s is the longi tudinal component o f the e lec t r i c f i e l d on 
the coupling aperture and IT = It ab/4. 

Analogous expressions could be derived f o r the TE modes, 
inc lud ing both e s ana e x , i f we were to take the x ' E x , 
z ' E z terms into account as w e l l . T'.ie so lu t ion of (166) i s imme
d i a t e l y obtained f o r the Fourier transform c m j P ( r ) o f c m > p ( s ) : 

' m , P ( r ) V + ) ' P - K * 7 s ' r ) ( 1 6 8 ) 

m,p o 

The expression for the longi tudinal f i e l d i s : 

' s ( r ) % S ^ ( r ) * m . p ( x ' z ) " S :*>p{T) s i n ^ s 1 n ^ 
With 

(169) 

a Ji k o 
r = - V « Km = 7T iT2 + (f) ( 1 7 0 ) 

(ST)' 

the voltage gain follows as: 

*U(x,z) = -n, Z±±®. sin ESL sin Egl (^ • (^) 2 ) 

J - 1 » l « a f 1 { S x ( « ' . o . - a ) M - l ) ^ S 1 ( x - . b . - a ) ) 

(171) 

From (171) we see that symmetric (common mode) exc i ta t ion leads 
t o odd p only while anti-symmetric (push-pul l) exc i ta t ion y ie lds 
even p only. The sum (169) over the index p is not uniformly 
convergent since the expansion includes funct ions which a l l go to 
0 a t the boundary while (169) must reproduce the non-zero tangen
t i a l f i e l d on the coupling apertures. Therefore we seek a closed 
form solut ion fo r the summation over p. The i-'ourier series for the 
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functions f(z) = - cosh(K(z + b/2)), - b < z «C 0, f(z) -
cosh(K(x - b/2)), 0 < z < + b, and f(z) - sinh(K(z + b/2)), 
-b < z < 0, f(z) * sinh(K(z-b/2)j, 0 < z < b, provide us with the 
solutions: 

_ - cosh(K (z-b/2)) 
4U c(x,z) - & Z \ c o s j ^ i ) sin SSL 

J o x - s 1 n S a U s ( x M , . - a ) (172a) 

o 

, sinh(K(z-b/2)) 
»Upp(x.z) - ^ Z l s i n h ( V / 2 ) S t n ™ 

J d x • sin ^ e s(x' ,b,- fj (172b) 
o 

As can be seen this solution has the required properties 

MJc(x,b) = aUc(x,o) = ^ T e s ( x ' , b , - £] 

and 

AUpp(x,b) = - 4U p p(x,o) - ^ e s ( x ' , b . - S ) . 

we notice furthermore that the -r-Oependence required for a true 
3-dimensional and relativistic solution is contained in the quantity 
Km (Eq. (170)). 

Convergence of the sum over m is quite good, except for 
z » b, z » 0. Connection with Eqs. (161) is established by setting 

5 s ( x ' , , ' , ~ v) = (2» r 1 / 2 i 9 (x ' ) sin(ko • fl) I 

leading to 

5 m v cosh(K(z-b/2)) I m . 
ac(x,z,«) - S i sin B L ^ J , ( x . ) sin ^ d x . 

o 
(173a) 
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9 m v sinh(K (z-b/2) ) % , 
° P p < x ' z ' « ' • Z : | « f a 5 7 L sinh^b/i?) J ^ s i n 5 f - d x ' 

0 (173b) 

Curves f o r a , f o r a given simple model o f g ( x ) , are shown i n 
F i g . 12. 

I t should be pointed out that th i s is an exact "so lu t ion" i n 
terms of the assumed f i e l d s on the coupling apertures. We have, 
However, s t r i c t l y speaking, no a p r i o r i knowledge about these 
f i e l d s , they const i tu te part of the problem. A complete so lu t ion 
would require a simultaneous, se l f -cons is tent so lu t ion o f the f i e l d 
problem both inside the beam chamber and the s t r i p l ines o ' ;he loop 
which is a formioable task for th i s pa - ' i cu la r geometry. 

I t is seen that the performance o f a s ing le wideband electrode 
i s l im i teo to Zpu £ 50 Q , K < 2. Appl icat ions such as f a s t 
cool ing (precooling) or t a i l coolinfg "n stochast ic stacking require 
approximately one order of magnitude i.igher values. By summing the 
outputs from N indiv idual electrodes Zpu a ,/N Zpu i K a 
/N Kj is obtained, i . e . the impedance o f the array increases 
w i th / T , where L is i t s length. 

Several attempts have been made to design and bu i l d t r a v e l l i n g 
wave electrodes, based on hel ices or pe r i od i ca l l y loaded transmis
sion l infcb. The voltage gain in such a s t ruc tu re i s 

4 U . E s ( n ) L . S M , x . [a _ r ( a) l L 

where T{n) i s the propagation constant o f the s t ruc tu re . The 
design problem i s to match the phase ve loc i t y ( v p n = n / r ( n ) ) to 
the p a r t i c l e ve loc i t y v over a s u f f i c i e n t l y wide frequency range 
and to maximize E f o r a given t o ta l power f low. The advantages 
seem obvious: a voltage gain « L, rather than -JZ, and no need 
fo r extensive signal combining (or power s p l i t t i n g ) networks. The 
drawback is that (at least fo r bro^band operation ana structures 
based on loaded transmission l ines and hel ices) the r a t i o o f 
E s /V- j n seems to decrease approximately as 1 / Y 2 , eventual ly 
overcoming the advantages. The f i r s t such electrode used fo r s t o 
chast ic cool ing i s the "s lot -box" designed by L. F a l t i n ' 6 ) , suc
cess fu l l y operated a t the ISR and the CERN AA-r ing. Also, very high 
impedances were obtained wi th the he l i ca l and ladder l i ne electrodes 
b u i l t by LBL for use a t the FNAL 200 HeV cooling r i n g . 2 2 ' 2 3 ) 

F i n a l l y , i t should be observed that in special appl icat ions 
where narrow band operation i s possible (slow cool ing of a small 
number of pa r t i c l es ) very high impedances are achieved by using PU's 
based on resonant cav i t ies .10) 
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b=30 mm 
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Fig. 12. a c ( x , z , n ) , dpp(x,z,J2) and t h e i r der ivat ives 
vs. x (see tex t ) f o r PU of F ig. 11 . 
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APPENDIX A 

Comments on the Fokker-Planck Equation 

The so lu t ion of Eq. (47) i s a non t r i v ia l task requ i r ing a 
computer. The basic equation i s nonlinear through the f - 3 f / 3 x 
term, the gain funct ions are complex numbers, ana the c fac tors 
contain Cauchy singular in tegra ls . However, some insight can be 
generated from an examination of a s imp l i f i ea version of t h i s 
Fokker-Planck equation. 

Consiaer the equation 

I t woulo describe cool ing wi th a per fec t ly l inear gain wi th Schottky 
noise and signal suppression neg l ig ib le compared to ampl i f ie r noise. 

I f we drop the second der ivat ive term, ( A . l ) reduces to 

£ - 9 x £ = g f (A.2) 

The l e f t hand side is of the form of a to ta l time der iva t i ve 

d t ~ 3 v o 9 f ( x J (A. 3) 

the trajectory defined by 

dx x(0) = x n (A.4) 

We have immediately f o r an i n i t i a l d i s t r i bu t ion f 0 

f ( x , t ) . e 9 t f 0 ( x Q ) - e 9 t f Q ( e 9 t x ) (A.5) 

This "method of characteristics" is also of use for more general 
gain functions, we have that the first derivative term increases 
the density and narrows the distribution; i.e., it cools. 

If we keep the second derivative term of (A.l) alone, we have 



9 f ft ' f /A C \ 

I t - A 17 ( A - 6 ) 

which has as one so lu t ion 

, - (x -x ) 2 / 4 A t 
f ( x , t ) = S r ^ e (A.7) 

The standard deviat ion of t h i s d i s t r i bu t i on is simply 

<x Z > - 2At (A.8) 

In the l i m i t t * 0 , f ( x , t ) »• « (x -x 0 ) and (A.7) i s ac tua l l y the 
Green's funct ion fo r (A .6 ) . We have that the second der iva t i ve term 
causes d i f f u s i o n , increasing <x^> wi th t ime. 
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